Field of the Invention
This invention is directed to a closure assembly for a fluid loaded syringe or other medical device/container which includes structural features allowing it to be used independently, as a closure cap or syringe cap, connected in flow restricting relation to the access portion of a medical container or like device including, but not limited to a syringe. Alternatively, the closure assembly may be used in combination with an end cap and indicator member, and thereby serve as a part of a tamper evident cap (TEC) for the medical device/container or syringe. When used in either capacity, the structural and operative features of the closure cap or syringe cap provide for divergent connecting/disconnecting procedures including a push-on or snap-on type connection and a rotate-off type disconnection.
Description of the Related Art
In hospitals or other medical care facilities, it is very common for medical doctors and other authorized medical personnel to order that a patient be given a drug or medication by injection. In fact, it is currently estimated that more than 16 billion injections are administered on a worldwide basis in any given year.
As a result, it is becoming relatively common in hospital settings for a number of syringes to be pre-loaded or filled by a pharmacist, or other authorized personnel within a hospital or similar facility, at an appropriate location for subsequent dispensing to one or more patients. The pharmacy or other location where syringes are filled can and often will be located in a remote part of the hospital, relative to the patient care area where the injection is to be administered. In some cases, the loading of syringes occurs in another building or facility entirely, often referred to as “third party pharmacies.” This may even be a growing trend among hospitals to limit certain costs. Regardless, a syringe filling station at a large medical facility may resemble a factory, from which drug loaded syringes are delivered to a large number of nurse's stations in multiple hospital or medical buildings. Because many nurse's stations are typically remotely located from a syringe filling station, a loaded syringe is quite often given to another person for delivery to a nurse's station, for subsequent dosing of the patient by qualified personnel. From the foregoing, it may be understood that during the course of loading a syringe with a drug, and delivering the loaded syringe to a nurse's station or to a patient, the syringe can easily be handled by numerous personnel.
Also, and especially in the case of a very expensive drug or an addictive drug, there is some danger that a pre-loaded syringe will be tampered with by a person seeking to improperly gain access to the drug. A resulting danger also exists relating to the possibility of inappropriately substituting saline solution or some other unauthorized substance for the intended medication originally loaded into the syringe. Thus, the growing use of syringes which are pre-loaded with a drug presents another problem in that it is important to know if the pre-loaded syringe has, or has not, been tampered with, exposed to contamination or otherwise compromised.
The benefits of using a pre-filled syringe and the ability to readily determine whether or not it has been tampered with, are abundantly clear. At the same time, however, drugs and medications are specific to each particular patient's disorder or disease being treated, and in addition, interactions between drugs and medications given to a patient incorrectly can have serious and deadly consequences. It is, therefore, important to know that a particular medication being injected is, in fact, the drug that was prescribed by the treating physician, and that it has not been replaced by another compound. Moreover, some drugs can have harmful effects in large doses. Accordingly, it is also important to ensure that the proper dosage is followed, as prescribed. Since pre-filled syringes are prepared in advance of being delivered and used, they may be loaded carefully by a pharmacist or other similarly qualified individual to ensure the appropriate medication and dose is prepared. This reduces errors on injection by nurses or physicians who may be in a stressful or time-sensitive situation and may not have the luxury of verifying the correct medication or measuring out a dose, particularly small doses, from a source vial.
There has historically been a problem, however, of knowing if a sealed, preloaded syringe has, or has not, been compromised by it being tampered with or if it might otherwise have a loss of sterility or have become contaminated. This and related types of problems have been described in the inventor's own previously granted U.S. Pat. No. 4,667,837 and in other patents, such as U.S. Pat. No. 5,328,474. Despite attempts in the past to prevent unauthorized access to syringe(s) pre-loaded with a drug or medication, it is understood that some problems continue to exist in this field of art and there remains an ongoing need for further improvements, despite the introduction of inventive products according to the above-noted two patents and others.
For instance, there remain problems of manufacturing such products in a manner which is relatively easy and inexpensive, as well as some problems involved with the assembly and placement onto a drug loaded syringe, such as at a drug filling station. Other problems exist relative to maintaining the sterility during storage at the manufacturing facility of some caps for syringes, and during transport of them to a hospital or other medical facility, during storage of them at a hospital or other medical facility, including any transport to a nursing station and ultimately, to a patient care area.
Accordingly, there is a need in this area for an improved closure assembly having the structural versatility to be used as a closure cap or closure cap or syringe cap or as a tamper evident cap (TEC), wherein the proposed closure assembly can be used in either capacity with standard or conventional pre-loaded syringe in a manner which overcomes problems and or disadvantages of the type set forth above. The development of any such improved closure assembly would preferably offer certain features such as, but not limited to, the cooperative structuring of a connecting structure which enables the proposed closure assembly to be connected to and removed from the nozzle or access portion of a preloaded syringe by a “push-on” connection and a “rotate-off” disconnection. In addition, if any such improved, closure assembly were developed, it would ideally be structurally and operatively reliable, while still remaining relatively easy and cost effective to make and assemble, in order to facilitate widespread use and acceptance through out the medical profession.
From the foregoing, one might appreciate that the present invention seeks to address such problems and others associated with closure assemblies for preloaded syringes including, but not limited to, tamper evident caps and luer lock caps during their manufacture, assembly and/or use.
The present invention is directed to a closure assembly for a standard syringe, a pre-loaded syringe or other medical device/container having an access portion or structure which includes a discharge port. For purposes of clarity, in describing the structural and operative features of the present invention, primary reference will be made to a conventional or standard syringe 11 as disclosed in the prior art representation of
As emphasized hereinafter, the structural and operative versatility of the preferred embodiments of the closure assembly allow it to be used as a closure cap or closure cap or syringe cap connected in flow restricting relation to a discharge port, such as at 4 of a syringe, such as at 11. Alternatively, the closure cap or closure cap or syringe cap may be used in combination with an end cap and an included indicator member, wherein this combination defines a tamper evident cap (TEC).
As also explained in greater detail hereinafter, the structural and operative features of the closure cap or closure cap or syringe cap, facilitate a connecting procedure onto a syringe, and in some embodiments, what could be considered a divergent connecting/disconnecting procedure. More specifically, the closure cap or closure cap or syringe cap may be manipulated to accomplish a “push-on” or “snap on” manner of connection and a “rotate-off disconnection.” In addition, the versatile structural features of the closure cap or closure cap or syringe cap also provide for a “rotate-on” connection, as well as “rotate-off” disconnection as preferred.
Therefore, the closure cap or closure cap or syringe cap of the closure assembly includes a access engaging portion removably connectible in surrounding, flow restricting relation to the discharge port 4 of the nozzle or access portion 2 of a syringe 11 of the type generally represented in
In at least one preferred embodiment, the connecting structure comprises a segmented thread structure including a plurality of protrusions formed on an exterior surface or wall surface of the access engaging portion. Moreover, the plurality of protrusions are collectively disposed into an array comprising a predetermined configuration which facilitates both the push-on connection and/or rotate-off disconnection. The divergent connection/disconnection capabilities of the closure cap or closure cap or syringe cap relative to the nozzle or access portion 2 and discharge port 4 of a syringe 11 is further defined by the plurality of protrusions collectively comprising a substantially helical configuration. This helical configuration of the protrusions, as well as the protrusions being cooperatively dimensioned with the attachment structure 3′ of the nozzle or access portion 2, facilitates a rotational, threaded attachment there between.
Additional versatility of the closure cap or closure cap or syringe cap is provided by the inclusion of a flexible construction of the access engaging portion. Such a flexible construction is sufficient to accomplish at least a predetermined degree of flexure of the access engaging portion sufficient to facilitate or provide for the “push-on” or “snap-on” connection of the closure cap or closure cap or syringe cap on to the nozzle or access portion 2 of the syringe 11. The “push-on” or “snap-on” connection is preferably accomplished by an axial alignment between the nozzle or access portion and the closure cap or closure cap or syringe cap and a substantially linearly directed force being exerted on either the closure cap or closure cap or syringe cap or the syringe 11 towards one another. The use of the “push-on” connection may be especially preferred and more efficient in a manufacturing or assembling facility where a large number of closure assemblies are attached to an equivalently large number of preloaded syringes. In such an environment, the closure cap or closure cap or syringe cap (or closure cap or closure cap or syringe cap and end cap TEC's combination) may be fixedly maintained on a stable platform thereby enabling the syringe to be aligned therewith and having a substantially linear force being applied thereto. The result will be the aforementioned “push-on” or “snap-on” attachment of the closure cap or closure cap or syringe cap and the nozzle or access portion of the syringe. Alternatively, the syringe may be similarly disposed in a stable position or orientation, thereby enabling the closure cap or closure cap or syringe cap to be aligned with the nozzle or access portion thereof and being linearly pushed on to the nozzle or access portion. The aforementioned push-on connection between the closure cap or closure cap or syringe cap and the nozzle or access portion of the syringe will be the result.
The aforementioned rotate-off disconnection comprises a relative rotational engagement between the closure cap or closure cap or syringe cap and the attachment structure of the nozzle or access portion. Due to the fact that the protrusions may be formed into the substantially helical configuration, the closure cap or closure cap or syringe cap may be rotationally threaded on to or rotationally unthreaded from the nozzle or access portion through the rotational engagement between the plurality of protrusions and the attachment structure associated with the nozzle or access portion of the syringe. As described above and as is commonly utilized, the attachment structure 3′ of the syringe 11 may include and be at least partially defined by an internally threaded or substantially similarly configured surface surrounding the discharge port 4 and/or nozzle tube 2′.
Additional structural features of one or more preferred embodiments of the closure assembly of the present invention include the aforementioned flexible construction of the access engaging portion of the closure cap or closure cap or syringe cap. Moreover, this flexible construction comprises at least one but preferably a plurality of hinge structures integrally formed into the access engaging portion of the closure cap or closure cap or syringe cap. Further, at least one but more practically each of the plurality of hinge structures may be defined by a “living hinge”. In general or conventional terms, a living hinge is a thin flexible hinge made from the same material as two comparatively rigid pieces which it serves to interconnect. As such, the thin flexible hinge segment of membrane is integrally formed with the two comparatively rigid pieces which it interconnects thereby facilitating an at least partial hinged movement there between and a flexure of the access engaging portion. Accordingly, the flexible construction at least partially defined by the plurality of living hinges is operable and sufficient to accomplish a predetermined flexure of the access engaging portion at least during the push-on connection.
The fixed or integral mounting of the plurality of protrusions of the connecting structure on the exterior of the access engaging portion facilitates an at least minimal forced inward movement of the plurality of protrusions, because of the flexure of the remainder of an access engaging portion. More specifically, as the protrusions engage or the threads or surface 3′ of the attachment structure surrounding the nozzle tube 2′, a substantially “snap-action” occurs as the protrusions are forced over the threads or ribs of the attachment structure 3′ due to the exertion of the linear pushing force on either the closure assembly or the syringe, as set forth above. As a result, the plurality of protrusions are forced over the threads, ribs or other connecting structures associated with the attachment structure of the nozzle or access portion. The forced snap-action of the protrusions and the threads of the attachment structure 3′ thereby results in the aforementioned push-on connection. However, the remainder of the access engaging portion is sufficiently rigid or able to also permit a rotate-off disconnection or an “un-threading” of the plurality of protrusions from the thread-like structure defining the attachment structure of the nozzle or access portion of the syringe.
Further with regard to the flexible construction of the access engaging portion, a plurality of channels are formed in an outer wall thereof in adjacent, contiguous and/or communicating relation with corresponding ones of the living hinges. Moreover, the flexibility of the membranes or segments is attributable to the significantly reduced thickness thereof, when compared to the remainder of the outer wall of the access engaging portion. Also, the hinge segments or membranes are disposed in segregating relation between the interior of the channel and the interior of the access engaging portion. Therefore, when the push-on connection is attempted sufficient flexure will be developed in the access engaging portion to force the aforementioned “snap-action” of the plurality of protrusions as they are forced over the threaded or ribbed surface of the attachment structure 3′ of the syringe 11.
As set forth above, the closure cap or closure cap or syringe cap of the present invention demonstrates sufficient structural versatility to be used alone, as a single closure and flow restrictor for the discharge port 4 of the syringe 11. However, the closure cap or closure cap or syringe cap may also be used in combination with an end cap and included indicator member and thereby serve as a tamper evident cap (TEC).
The end cap comprises a substantially hollow interior having an annular indicator member fixedly but removably secured therein by virtue of at least one but preferably a plurality of frangible attachment members. When used in combination with the end cap, the closure cap or closure cap or syringe cap is movably retained within the hollow interior of the end cap by virtue of it being disposed between the annular indicator member and the closed end portion of the end cap. Additional cooperative structuring of the closure cap or closure cap or syringe cap and the end cap may include a “cliff and ramp” type of connection and/or structure. Interaction of the “cliff and ramp” connectors on both the closure cap or closure cap or syringe cap and the closed end of the end cap will provide for concurrent rotation of the end cap and closure cap or closure cap or syringe cap in a single direction. Therefore, when used in combination with the end cap, the closure cap or closure cap or syringe cap may be rotationally or threadedly attached to the attachment structure 3′ of the nozzle or access portion 2 of a syringe 11. However, due to the fact that the closure cap or closure cap or syringe cap is movable and not fixed within the interior of the end cap, the closure cap or closure cap or syringe cap cannot be rotated with the end cap in an opposite direction. Accordingly, the combination of the end cap and closure cap or closure cap or syringe cap, used as a TEC, will still allow for the “push-on” connection of the closure cap or closure cap or syringe cap with the attachment structure 3′, while providing the additional versatility of being able to concurrently rotate the end cap and closure cap or closure cap or syringe cap in the aforementioned single direction to accomplish a “rotate-on” connection.
Access to the interior contents of the syringe 11 is then accomplished by forced removal, such as by a pulling force exerted on the end cap, serving to expose the closure cap or closure cap or syringe cap still attached to the nozzle or access portion 2 of the syringe 11. Such removal of the end cap in this manner will reveal the indicator member being effectively sandwiched between the closure cap or closure cap or syringe cap and the end of the syringe 11. The indicator member will thereby provide a clear visual indication that attempted access to the contents of the syringe, either authorized or unauthorized, has been made.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As shown in the accompanying drawings, the present invention is directed to a closure assembly generally indicated as 10 in the embodiment of
The various structural and operative features of the closure assembly 10 facilitate its versatility by including a closure cap or closure cap or syringe cap generally indicated as 12, which may also be referred to at times herein as a closure cap or closure cap or syringe cap portion. The closure cap or closure cap or syringe cap 12 is structured to be used independently in connection with a syringe 11, in flow restricting relation to the nozzle or access portion 2, and in particular, to the discharge port 4. However, the closure cap or closure cap or syringe cap 12 of the closure assembly 10′ may also be used in combination with an end cap, generally indicated as 14 in
First, and with primary reference to
The aforementioned operative versatility of the closure assembly 10 and/or 10′ is due at least in part to a connecting structure, which is generally indicated as 24 in
In addition, structural features which further facilitate the aforementioned different types of connection/disconnection of the closure cap or syringe cap to the nozzle or access portion 2 include the access engaging portion 18 and more specifically, the outer wall 22 having a “flexible construction.” In at least one preferred embodiment, this flexible construction comprises at least one hinge, generally indicated as 28 in
Moreover, each living hinge 28 preferably comprises an elongated channel 30 integrally formed in the outer wall 22 of the closure cap or syringe cap 12, such that an open side of each channel 30 is exposed to the exterior of the outer wall 22. Each living hinge 28 will preferably further comprise a hinge membrane or hinge segment 32 of reduced thickness when compared to the thickness of the outer wall 22. Practical ranges of the thickness of each of the hinge segments or membranes range from generally about 0.25 mm to 0.5 mm. However, it is emphasized that dimensional parameters of the hinge segments 32 may vary dependent upon the degree of flexure intended to be demonstrated by the outer wall 22 and/or the access engaging portion 18.
Therefore, the connecting structure comprising the plurality of protrusions 26 arranged in a predetermined array in combination with the flexible construction of the access engaging portion 18 provide a divergent connection/disconnection of the closure cap or syringe cap 12 onto the nozzle or access portion 2 and nozzle or access portion tube 2′ of the syringe 11.
In more specific terms, the connecting structure 24 in combination with the flexible construction of the outer wall 22 of the access engaging portion 18 facilitate an “interactive engagement” with the attachment structure 3′ of the syringe 11. Such interactive engagement comprises and enables a “push-on” connection of the closure cap or syringe cap onto the nozzle or access portion 2 as well as a “rotate-off” disconnection of the closure cap or syringe cap 12 from the nozzle or access portion 2. The push-on connection may be more specifically defined by an axial alignment between the nozzle or access portion tube 2′ and the hollow interior 20 of the access engaging portion 18. Once such an axial alignment is accomplished, a substantially linearly directed force may be exerted on either the closure cap or syringe cap 12 or the syringe 11 in the manner schematically represented as 35 and 35′ respectively in
With further regard to the aforesaid “push-on” connection, the fixed or integral mounting of the plurality of protrusions 26 on the exterior of the access engaging portion 18 facilitates at least a minimal, radially inward displacement of the plurality of protrusions 26 with the outer wall 22, because of the flexible construction of the access engaging portion 18 and resulting flexure of the outer wall 22, as set forth above. More specifically, as the protrusions 26 are forced transversely over the threads or ribs of the attachment structure 3′, a “snap-fit” type of action occurs there-between due to the exertion of the linear pushing force 35 and/or 35′ on either the closure assembly 10 or the syringe 11, as set forth above. As a result, the plurality of protrusions 26 are concurrently forced over the threads or ribs on the attachment structure 3′ and flexed, at least minimally, radially inward along with the outer wall 22. This forced “snap-fit” action between the protrusions 26 and the threads of the attachment structure 3′ results in the aforementioned push-on connection.
However, in order to maintain a secure connection between the closure cap or syringe cap 12 and the nozzle or access portion 2 and discharge port 4, a rotate-off disconnection is provided. Accordingly, once the closure cap or syringe cap 12 is mounted in the operative position, as represented in
While the aforementioned push-on or snap-on connection and the rotate-off disconnection may be preferred in many practical applications, the versatility of the closure cap or syringe cap 12 also facilitates the ability to perform a “rotate-on” connection of the closure cap or syringe cap 12 with the nozzle or access portion 2. Accordingly, the aforementioned interactive engagement between the connecting structure 24 and the attachment structure 3′ provides for a rotate-on connection and a rotate-off disconnection, as well as the push-on connection and rotate-off disconnection in the manner described above.
As set forth above, and as specifically represented in
Cooperative structuring between the closure cap or syringe cap 12 and the end cap 14 is further demonstrated in
Based on the above, authorized or non-authorized attempted access to the syringe 11, and more specifically, to the contents thereof, is indicated by forced removal of the end cap 14 from the closure cap or syringe cap 12. Such a forced removal may be accomplished by a pulling force, schematically indicated as 35″ in
Therefore, the closure assembly 10 and 10′ of the present invention provides a unique structure capable of connecting the closure cap or syringe cap 12, whether used independently or in combination with the end cap 14, by means of a “push-on connection” and a “rotate-off disconnection”. In addition, interactive rotational engagement between the plurality of protrusions 26 of the connector structure 24 facilitates a “rotate-on connection” and a “rotate-off disconnection” of the closure cap or syringe cap 12 and the nozzle or access portion 2.
Yet another preferred embodiment of the present invention is represented in
More specifically, the closure assembly 100 includes a closure cap 102 having an access receiving portion 104. The interior 106 of the access receiving portion 104 includes a tapered configuration which may be in the form of or at least partially define a Luer fitting and/or a female Luer fitting. Such Luer fitting is dimensioned to receive the access portion tube 2′ of the syringe 11 or other type medical device/container therein in flow restricting relation to a discharge port 4 thereof. In addition, the access receiving portion 104 includes a segmented threaded structured generally indicated as 108 on the exterior surface thereof. The segmented thread structure 108 may be structurally distinguishable from but operatively similar to the segmented thread structure comprising the plurality of protrusions 26 formed on the exterior of the access engaging portion of the embodiments of
However, the segmented thread structure 108 in the embodiment of
More specifically, the plurality of thread segments 112′ defining the outer thread section 112 extend outwardly from the outer surface of the access receiving portion 104 a lesser distance than that of each of the thread segments 113′, defining the inner thread section 113. Moreover, the dimension and outwardly protruding distance of each of the thread segments 112′ is such as to facilitate an axial, linearly directed, overlapping, sliding engagement of the attachment structure 3′ and the threads or ribs associated therewith, as being part of the access portion 2 of the syringe or medical container/device. As a result, the aforementioned push-on connection will be accomplished by the attachment structure 3′ moving linearly in overlapping, sliding or confronting engagement with the plurality of lesser dimensioned thread segments 112′ defining the outer thread section 112. In contrast, the larger dimension of the thread segments 113′ of the inner thread section 113 is such that the thread segments 113′ extend outwardly from the outer surface of the access receiving portion 104 a greater distance than the thread segments 112′, as set forth above. As a result, the linear movement and overlapping, sliding engagement of the attachment structure 3′ of the access portion 2 will contact and/or engage the outwardly protruding thread segments 113′ and thereby be prevented or restricted from being axially forced or moved in overlapping relation thereto. Instead, connection between the attachment structure 3′ and the inner thread section 113 may be accomplished by a rotational, threaded engagement. Such a rotational, threaded engagement may further accomplish a rotate-off disconnection or a rotate-on connection of the attachment structure 3′ of the access structure 2 with the segmented thread structure 108.
Therefore, the closure assembly 100 is structured to facilitate an interactive engagement comprising a rotate-off disconnection of the closure cap 102 from the access portion 2 and/or attachment structure 3′ associated therewith. In addition, the closure assembly 100 is structured to further define the interactive engagement including an at least partial push-on connection between the closure 102 and the access portion 3′, in the manner described above with regard to the embodiment of the closure assembly 10, 10′ as represented in
As also described above, the push-on connection is accomplished primarily between the access portion 2 and associated attachment structure 3′ being linearly disposed in overlapping, sliding engagement with the thread segments 112′ of the upper thread section 112. This push-on connection is further facilitated by at least a minimal amount of flexure of the access receiving portion 104 due to its being formed, at least in part, from an inherently flexible material such as, but not limited to, polypropylene.
As set forth above, and as specifically represented in
Cooperative structuring between the closure cap or syringe cap 102 and the end cap 14 is further demonstrated in
Based on the above, authorized or non-authorized attempted access to the syringe 11, and more specifically, to the contents thereof, is indicated by forced removal of the end cap 14 from the closure cap or syringe cap 102. Such a forced removal may be accomplished by a pulling force, schematically indicated as 35″ in
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
The present application is based on and a claim of priority is made under 35 U.S.C. Section 119(e) to a provisional patent application that is currently in the U.S. Patent and Trademark Office, namely, that having Ser. No. 60/772,094 and a filing date of Mar. 4, 2013, and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1970631 | Sherman | Aug 1934 | A |
2834346 | Adams | May 1958 | A |
2888015 | Hunt | May 1959 | A |
3245567 | Knight | Apr 1966 | A |
3364890 | Andersen | Jan 1968 | A |
3706307 | Hasson | Dec 1972 | A |
3747751 | Miller et al. | Jul 1973 | A |
3905375 | Toyama | Sep 1975 | A |
4216585 | Hatter | Aug 1980 | A |
4216872 | Bean | Aug 1980 | A |
4313539 | Raines | Feb 1982 | A |
4420085 | Wilson et al. | Dec 1983 | A |
4430077 | Mittleman et al. | Feb 1984 | A |
4457445 | Hanks et al. | Jul 1984 | A |
4521237 | Logothetis | Jun 1985 | A |
4530697 | Kuhlemann et al. | Jul 1985 | A |
4571242 | Klein et al. | Feb 1986 | A |
4589171 | McGill | May 1986 | A |
4667837 | Vitello et al. | May 1987 | A |
4693707 | Dye | Sep 1987 | A |
4726483 | Drozd | Feb 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4760847 | Vaillancourt | Aug 1988 | A |
4832695 | Rosenberg et al. | May 1989 | A |
4834706 | Beck et al. | May 1989 | A |
4844906 | Hermelin et al. | Jul 1989 | A |
4919285 | Roof et al. | Apr 1990 | A |
5009323 | Montgomery et al. | Apr 1991 | A |
5049129 | Zdeb et al. | Sep 1991 | A |
5135496 | Vetter et al. | Aug 1992 | A |
5165560 | Ennis, III et al. | Nov 1992 | A |
5230429 | Etheredge, III | Jul 1993 | A |
5292308 | Ryan | Mar 1994 | A |
5328466 | Denmark | Jul 1994 | A |
5328474 | Raines | Jul 1994 | A |
5356380 | Hoekwater et al. | Oct 1994 | A |
5458580 | Hajishoreh | Oct 1995 | A |
5468224 | Souryal | Nov 1995 | A |
5531695 | Swisher | Jul 1996 | A |
5540666 | Barta et al. | Jul 1996 | A |
5549571 | Sak | Aug 1996 | A |
5558648 | Shields | Sep 1996 | A |
5624402 | Imbert | Apr 1997 | A |
5702374 | Johnson | Dec 1997 | A |
5776124 | Wald | Jul 1998 | A |
5785691 | Vetter et al. | Jul 1998 | A |
5807343 | Tucker et al. | Sep 1998 | A |
5883806 | Meador et al. | Mar 1999 | A |
5884457 | Ortiz et al. | Mar 1999 | A |
5902269 | Jentzen | May 1999 | A |
5951522 | Rosato et al. | Sep 1999 | A |
5951525 | Thorne et al. | Sep 1999 | A |
5954657 | Rados | Sep 1999 | A |
5989227 | Vetter et al. | Nov 1999 | A |
6000548 | Tsals | Dec 1999 | A |
6021824 | Larsen et al. | Feb 2000 | A |
6027482 | Imbert | Feb 2000 | A |
6068614 | Kimber et al. | May 2000 | A |
6126640 | Tucker et al. | Oct 2000 | A |
6190364 | Imbert | Feb 2001 | B1 |
6193688 | Balestracci et al. | Feb 2001 | B1 |
6196998 | Jansen et al. | Mar 2001 | B1 |
6280418 | Reinhard et al. | Aug 2001 | B1 |
6322543 | Singh et al. | Nov 2001 | B1 |
6338200 | Baxa et al. | Jan 2002 | B1 |
6375640 | Teraoka | Apr 2002 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6485460 | Eakins et al. | Nov 2002 | B2 |
6500155 | Sasso | Dec 2002 | B2 |
6520935 | Jansen et al. | Feb 2003 | B1 |
6540697 | Chen | Apr 2003 | B2 |
6565529 | Kimber et al. | May 2003 | B1 |
6581792 | Limanjaya | Jun 2003 | B1 |
6585691 | Vitello | Jul 2003 | B1 |
6726652 | Eakins et al. | Apr 2004 | B2 |
6726672 | Hanly et al. | Apr 2004 | B1 |
6764469 | Broselow | Jul 2004 | B2 |
6821268 | Balestracci | Nov 2004 | B2 |
6921383 | Vitello | Jul 2005 | B2 |
6942643 | Eakins et al. | Sep 2005 | B2 |
7141286 | Kessler et al. | Nov 2006 | B1 |
7182256 | Andreasson et al. | Feb 2007 | B2 |
7374555 | Heinz et al. | May 2008 | B2 |
7404500 | Marteau et al. | Jul 2008 | B2 |
7425208 | Vitello | Sep 2008 | B1 |
7437972 | Yeager | Oct 2008 | B2 |
7588563 | Guala | Sep 2009 | B2 |
7632244 | Buehler et al. | Dec 2009 | B2 |
7641636 | Moesli et al. | Jan 2010 | B2 |
7735664 | Peters et al. | Jun 2010 | B1 |
7762988 | Vitello | Jul 2010 | B1 |
7802313 | Czajka | Sep 2010 | B2 |
7918830 | Langan et al. | Apr 2011 | B2 |
8079518 | Turner et al. | Dec 2011 | B2 |
8091727 | Domkowski | Jan 2012 | B2 |
8140349 | Hanson et al. | Mar 2012 | B2 |
8328082 | Bochenko et al. | Dec 2012 | B1 |
8348895 | Vitello | Jan 2013 | B1 |
8353869 | Ranalletta | Jan 2013 | B2 |
8443999 | Reinders | May 2013 | B1 |
8556074 | Turner et al. | Oct 2013 | B2 |
8579116 | Pether et al. | Nov 2013 | B2 |
8591462 | Vitello | Nov 2013 | B1 |
8597255 | Emmott et al. | Dec 2013 | B2 |
8597271 | Langan et al. | Dec 2013 | B2 |
8616413 | Koyama | Dec 2013 | B2 |
8702674 | Bochenko | Apr 2014 | B2 |
8864021 | Vitello | Oct 2014 | B1 |
8864707 | Vitello | Oct 2014 | B1 |
8864708 | Vitello | Oct 2014 | B1 |
8945082 | Geiger et al. | Feb 2015 | B2 |
9101534 | Bochenko | Aug 2015 | B2 |
9199042 | Farrar et al. | Dec 2015 | B2 |
9199749 | Vitello | Dec 2015 | B1 |
9272099 | Limaye et al. | Mar 2016 | B2 |
9311592 | Vitello | Apr 2016 | B1 |
9336669 | Bowden et al. | May 2016 | B2 |
9402967 | Vitello | Aug 2016 | B1 |
9463310 | Vitello | Oct 2016 | B1 |
20020023409 | Py | Feb 2002 | A1 |
20020133119 | Eakins et al. | Sep 2002 | A1 |
20030183547 | Heyman | Oct 2003 | A1 |
20040064095 | Vitello | Apr 2004 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040186437 | Frenette et al. | Sep 2004 | A1 |
20040225258 | Balestracci | Nov 2004 | A1 |
20050146081 | MacLean et al. | Jul 2005 | A1 |
20050148941 | Farrar et al. | Jul 2005 | A1 |
20060084925 | Ramsahoye | Apr 2006 | A1 |
20070106234 | Klein | May 2007 | A1 |
20070142786 | Lampropoulos et al. | Jun 2007 | A1 |
20080068178 | Meyer | Mar 2008 | A1 |
20090149815 | Kiel et al. | Jun 2009 | A1 |
20100084403 | Popish et al. | Apr 2010 | A1 |
20100126894 | Koukol et al. | May 2010 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110046550 | Schiller et al. | Feb 2011 | A1 |
20120064515 | Knapp et al. | Mar 2012 | A2 |
20120096957 | Ochman | Apr 2012 | A1 |
20120110950 | Schraudolph | May 2012 | A1 |
20130018356 | Prince et al. | Jan 2013 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20150305982 | Bochenko | Oct 2015 | A1 |
20160144119 | Limaye et al. | May 2016 | A1 |
20160158449 | Limaye et al. | Jun 2016 | A1 |
20160176550 | Vitello et al. | Jun 2016 | A1 |
20160328586 | Bowden et al. | Nov 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
61772094 | Mar 2013 | US |