The technology relates to closures. In particular, the technology relates to metal or composite closures.
Composite closures typically include a metal or plastic insert disk and a plastic peripheral band. The insert disk may form a seal with a mouth of a container and usually is held in place by a vacuum within the container.
All-metal closures are an alternative to composite closures. All-metal closures, such as those on many baby food jars, include an integral top portion and skirt. The skirt may have threads or discontinuous lugs to provide mechanical engagement with a container neck finish.
The top and bottom surfaces of the metal used for insert disks or metal closures typically are coated with a solvent-based, water-based, or UV-curable coating or other composition that provides decoration, protection from scratching, adhesion for a gasket material, and/or inhibits corrosion. But because a blank for the insert disk or closure is typically cut from pre-coated sheets, the edge at the periphery of the disk (that is, the “cut edge”) is uncoated when cut.
Conventional processes either specifically coat the cut edge with a corrosion preventing material or roll it into a curl so that any corrosion is hidden by the curl. In the case of the cut-edge being rolled into a curl, while any corrosion is “hidden,” it is possible that water can be trapped in the curl promoting corrosion of the cut edge which can subsequently “bleed out” of the curl and be deposited onto the container, causing unsightly staining which is unacceptable to the end user of the package.
A closure component formed from a metal sheet and having a cut edge is provided. The closure component may be formed to prevent certain corrosion of the cut edge when in the presence of oxygen and water, steam, humid air or other corrosion inducing media.
One example of a closure component is an insert disk for a composite closure. The insert disk may have a pre-formed polymer layer on at least one of its surfaces and may include a circular body and a rim portion. The rim portion may be joined to the circular body by a first bend. The rim portion may also be joined to a cut edge by a second bend such that the cut edge may be embedded into the polymer film layer to resist corrosion of the cut edge.
Another example of a closure component is an all metal closure. The metal closure may have a pre-formed polymer layer on at least one of its surfaces and may include a circular body, a peripheral skirt, and a rim portion. The peripheral skirt may extend downwardly from the circular body. The rim portion may be joined to the peripheral skirt by a first bend. The rim portion may also be joined to a cut edge by a second bend such that the cut edge may be embedded into the polymer layer to resist corrosion of the cut edge.
The closure components may be formed from a metal sheet having a pre-formed polymer layer adhered onto at least one of its surfaces. Initially, a circular blank may be cut from the sheet, such that the blank may have a circular “raw” cut edge unprotected by the polymer layer. The metal blank may then be formed such that the cut edge may be embedded into the polymer layer, thereby protecting the cut edge from certain corrosion inductive media.
Preferred structures and methods for employing edge protection technology are described herein. Embodiments of closures that employ this technology are also described. The present invention is not limited to any particular closure configuration but rather encompasses use in any closure application. Further, the present invention encompasses configurations and methods related to polymer coated metal edges.
As shown in
Insert disk 18 includes a center portion 26 and an annular channel 30 disposed circumferentially about the center portion 26. The annular channel 30, which may be substantially downward-facing, is formed by an inboard wall 34 and an outboard wall 38 with an upper wall 42 formed therebetween. The channel upper wall 42 forms a substantially flat top surface. A sealant 46, such as plastisol or other conventional material, may be disposed in the channel 30. As shown, the channel inboard wall 34 has a sloped profile, in cross section, and channel outboard wall 38 has a substantially vertical profile, although any configuration is contemplated.
As shown, a rim portion 50 is formed at the lower end of channel outboard wall 38, and extends radially outwardly. The rim portion 50 may be a curl and includes a cut edge 62. The cut edge 62 curves generally radially outwardly at the bottom portion of channel outboard wall 38 and then curves radially inwardly such that the cut edge 62 is embedded in an outer surface 64 of the channel outboard wall 38. That is, the cut edge 62 contacts the outer surface 64 of channel outboard wall 38, such that the cut edge 62 is protected from corroding when in the presence of oxygen and water, steam, humid air or other corrosion inducing media.
As shown, band 22 includes an annular skirt 66 and a ring 70 extending radially inwardly from an upper portion of the skirt 66. Threads 74 extend radially inwardly from an interior portion of skirt 66. Depending on the position of band 22 relative to container 14 and disk 18, the underside of ring 70 and channel third wall 42 are spaced apart to form a gap 80. Above threads 74, a retaining feature, such as bead 84, extends substantially radially inwardly from skirt 66. Alternatively, retaining bead 84 may be omitted and the closure may be configured such that a top portion 88 of the closure threads 74 may perform the function of the retaining bead 84. In this regard, the term “retaining feature” encompasses retaining bead 84, closure thread top portion 88 and any other structure that performs the retaining function and/or opening function.
The container 14, with which closure 10 may be coupled, includes a neck 92 having threads 96 and forming a rim 100. As in conventional closures and containers, rim 100 protrudes into channel 30 such that sealant 46 is deformed to enhance a seal between disk 18 and container 14.
As shown, the circular body 114 includes a center portion 142 and an annular channel 146 disposed circumferentially about the center portion 142. The annular channel 146, which is substantially downward-facing, includes an inboard wall 150 extending up from the center portion 142, an outboard wall 152 and a top portion 154 extending therebetween. The top portion 154 may be substantially flat and parallel to the center portion 142. The inboard wall 150 may have a sloped profile in cross section, and the outboard wall 152 may have a substantially vertical profile.
The rim portion 118 extends circumferentially about an end of the peripheral skirt 116 and includes a first portion 156, a second portion 158 and a cut edge 160. The first portion 156 extends from the peripheral skirt 116 at a first bend 164. As shown, the first bend 164 forms an included angle of approximately 180 degrees, and the first portion 156 is substantially parallel to the peripheral skirt 116 and outboard wall 152. The second portion 158 extends from the first portion 156 at a second bend 168. As shown, the second bend 168 forms an included angle of approximately 90 degrees. The end of the second portion 158, that is, the cut edge 160 then terminates at the coating layer 134.
As shown in
As shown, the circular body 184 includes a center portion 212 and an edge portion 216. The edge portion 216 extends from the circular body 184 at an angle. For example, the edge portion 216 may extend from the circular body 184 at an angle of 5.0-18.0 degrees.
The all metal closure 180 may also include a gasket 250. The gasket 250 may be disposed on a portion of the underside surface 200. For example, the gasket 250 may be disposed on the peripheral skirt 188 and circular body 184. The gasket 250 will help seal in the contents of a container when the container and closure engage each other.
As shown, the peripheral skirt 188 extends downwardly from the edge portion 216, and includes a wall portion 220 and a rim portion 224. As shown, the rim portion 224 may be a curl and is formed at the lower end of the wall portion 220. The rim portion 224 first extends radially outwardly at a first bend 228 and then radially inwardly at a second bend 232 at a relatively constant radius of curvature. The rim portion 224 includes a cut edge 244. The cut edge 244 curves generally radially inwardly and then curves radially outwardly such that the cut edge 244 embeds into a surface 248 of the peripheral skirt 188. That is, the cut edge 244 contacts the second coating layer 208 such that the cut edge 244 is protected from corrosion when in the presence of oxygen and water, steam, humid air or other corroding inducing media. It shall be understood that the rim portion 224 is not limited to the disclosed embodiment. For example, the cut edge 244 may curve generally radially outwardly and then may curve radially inwardly such that the cut edge 244 may embed into the first coating 204.
The insert disk and all metal closure are made by cutting a circular metal blank. Before cutting, each side of the metal is coated with a polymeric coating layer. It should be understood, however, that both sides do not have to be coated and that only one side of the metal may be coated. The coatings, such as the first coating layers 134 and 204, and the second coating layers 138 and 208 shown in
Conventional coatings may contain polymers and may be applied as a liquid (i.e. paint) onto the metal which may then be subsequently heated or cured by radiation (normally ultraviolet radiation or electron beam), resulting in a film being formed it-situ on the metal surface. Materials that may be used are polyester, epoxy, epoxy ester, acrylic, vinyl, phenolic or any other material having a Type D 80-100 hardness as measured on a Durameter.
Alternatively, the metal may be covered by a laminate of polymer film that has an existence independent of the metal. That is, a pre-existing polymer film may be adhered onto the surfaces of the metal. The film may have a variety of thicknesses. For example, the film may be between 7-50 microns thick. Materials that may be used are polypropylene, polyethylene, PET, or any other material having a Type A 50-100 hardness as measured on a Durameter. It should be understood by those skilled in the art, that the laminate of polymer film may also be foamed.
The edge of the blank, that is the cut edge, typically has no film on it and remains exposed during subsequent forming of the metal into the finished closure. The cut edge can corrode in the presence of corrosive media such as water, steam, or humid air, if the metal used (e.g. steel) is subject to corrosion.
In some cases it may be beneficial to heat the crimped closure. Such heating may soften the coatings and allow the cut edge to penetrate and embed slightly into the polymer film. The crimped closures may be heated by induction or other conventional heating methods.
Number | Name | Date | Kind |
---|---|---|---|
2493086 | Reifsnyder | Jan 1950 | A |
3270904 | Foster et al. | Sep 1966 | A |
3285452 | Moloney et al. | Nov 1966 | A |
3323672 | Acton | Jun 1967 | A |
3446381 | Podesta et al. | May 1969 | A |
3912102 | Michel | Oct 1975 | A |
3913772 | Ochs | Oct 1975 | A |
3933267 | Rohde | Jan 1976 | A |
4209126 | Elias | Jun 1980 | A |
4705183 | Moloney | Nov 1987 | A |
4807770 | Barriac | Feb 1989 | A |
4809858 | Ochs | Mar 1989 | A |
4982872 | Avery | Jan 1991 | A |
5093208 | Heyes et al. | Mar 1992 | A |
5103991 | Collins | Apr 1992 | A |
5190177 | Collins | Mar 1993 | A |
5443853 | Hayes | Aug 1995 | A |
5555988 | Koch et al. | Sep 1996 | A |
5685443 | Taber et al. | Nov 1997 | A |
6375023 | Lecinski et al. | Apr 2002 | B1 |
6868978 | Amschlinger et al. | Mar 2005 | B2 |
20090178995 | Tung et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 9803406 | Jan 1998 | WO |
WO 2005019059 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090236353 A1 | Sep 2009 | US |