Clot retrieval system for removing occlusive clot from a blood vessel

Information

  • Patent Grant
  • 11395667
  • Patent Number
    11,395,667
  • Date Filed
    Thursday, August 3, 2017
    7 years ago
  • Date Issued
    Tuesday, July 26, 2022
    2 years ago
Abstract
A clot capture catheter comprises an elongate tubular shaft having a proximal end, a distal end and an inflatable expansile member at the distal end. The expansile member is inflatable from a collapsed delivery configuration to an expanded configuration. In the expanded configuration, the expansile member extends to define a funnel shape having an enlarged distal clot entry mouth at the distal-most end of the catheter. In the expanded configuration, the expansile member may extend distally beyond the distalmost tip of the shaft. The expansile member may be integral with the distal tip of the catheter shaft.
Description
FIELD OF THE INVENTION

This invention relates to devices intended for use in procedures involving removing acute blockages from blood vessels. Acute obstructions may include clot, misplaced devices, migrated devices, large emboli and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus—this mechanism is common in the formation of coronary blockages. The invention is particularly suited for use in cases involving the removal of clot from cerebral arteries in patients suffering acute ischemic stroke (AIS), from coronary native or graft vessels in patients suffering from myocardial infarction (MI), and from pulmonary arteries in patients suffering from pulmonary embolism (PE) and from other peripheral arterial and venous vessels in which clot is causing an occlusion.


BACKGROUND INFORMATION

Recent clinical studies have shown that mechanical thrombectomy is a very effective method of restoring blood flow to the ischemic tissue of patients who have recently suffered an acute ischemic stroke. This procedure typically involves advancing a thrombectomy device (which may be a stent-retriever and/or an aspiration catheter) to the occlusive clot, engaging with the clot and retracting the clot into the safety of a local aspiration catheter or a more proximally placed guide or sheath. In the latter case a balloon guide catheter is often employed, as with such a catheter the balloon can be inflated to restrict flow past the catheter, which makes it easier to safely retrieve the captured clot into the catheter mouth. Aspiration through the balloon guide catheter is typically used to reverse flow in the distal vasculature and assist the passage of the captured clot into the catheter mouth.


However, despite the benefits provided by balloon guides, there are significant limitations to currently available devices:


One of these limitations is due to the location of the balloon on the catheter. Conventional balloon guide catheters have a “dead space” distal to the balloon because of the manner in which the distal neck of the balloon is attached to the catheter shaft and because of the presence of a distal catheter tip. This dead space is a region from which clot cannot easily be aspirated or sucked, and thus if clot fragments become lodged in this region they may escape distally upon deflation of the balloon (which must be done prior to removal of the catheter from the patient), potentially causing occlusion of a blood vessel and serious patient harm.


A second limitation of conventional balloon guide catheters is the level of shear stress induced in the clot as it withdrawn into the catheter. This stress is influenced by a number of factors, including the relative size of the clot and catheter lumen and the coefficient of friction of the clot relative to the catheter. The clot entering the catheter must abruptly change in shape to conform to the inner diameter of the catheter in order to enter the catheter. This abrupt change can create a high shear stress at the interface between clot and catheter tip, which can result in shearing or tearing of the clot, releasing clot fragments which may then hang up in the previously mentioned dead space, or causing large portions or the entirety of the clot to be dislodged from the stent-retriever or aspiration catheter which has retracted it to the balloon guide catheter. If these clot portions or fragments are not then aspirated fully into the balloon guide catheter they may travel distally and cause injury or death.


STATEMENTS OF THE INVENTION

This invention solves the previously described problems of clot shear and clot fragments lodging in the “dead space” at the distal tip of a balloon guide catheter. The subject of this invention is a catheter configured for use in a mechanical thrombectomy procedure comprising an elongate tubular shaft with an expandable distal tip portion.


The elongate shaft comprises a first inner lumen through which other catheters or components may be passed and through which clot may be aspirated, and a second inner lumen within the wall of the shaft running from the proximal hub of the catheter to an inflatable member at the distal end of the shaft. This second inner lumen may be circular in cross section, or may be oblong, and may comprise multiple lumens.


One embodiment of the expandable distal tip portion comprises a funnel shaped balloon and has a collapsed and an expanded state. In the collapsed state the balloon is deflated and may be folded and/or pleated in order to minimize its profile for advancement through an introducer sheath and through the vasculature of the patient. In the expanded state the balloon is inflated. Inflation of the balloon serves a number of purposes:

    • 1) The balloon can be inflated to a diameter that brings it into contact with the vessel wall, thus partially or completely preventing blood flow past the balloon. This in turn may help to reduce the likelihood of some or all of the clot being retrieved into the catheter during a thrombectomy procedure. This also facilitates effective aspiration through the catheter, ensuring that this aspiration creates reverse flow in the distal vessel.
    • 2) Inflation of the balloon can help to stabilize the catheter within the vessel, preventing unintended catheter movement and consequent vessel trauma.
    • 3) Inflation of the balloon of this invention also changes the shape of the catheter tip, optimizing the geometry of the interface between the catheter tip and any material or devices being withdrawn into it. In particular this shape change reduces the shear forces exerted on thrombus material as it is withdrawn into the catheter, and minimizes or eliminates any “dead space” or pocket in which thrombus might be caught.


In one embodiment of this invention the funnel shaped balloon is integral to the distal catheter tip portion and is formed from a length of polymer tubing which is inverted so that the distal junction between the balloon and catheter sits under (and within) the balloon itself.


The balloon wall thickness may be profiled/tapered in order to force the balloon to preferentially expand more in certain areas than in others, thus enabling a funnel shaped profile to be attained upon inflation. In one embodiment the wall thickness of the proximal and distal portions of the balloon is greater than that of the middle section. In another embodiment the wall thickness of the proximal portion of the balloon is greater than that of the middle and distal sections.


In another embodiment a proximal portion of the balloon is reinforced in order to limit its expansion when inflated, thus causing preferential expansion of the distal portion of the balloon and creating a bulbous funnel shape at the distal end. This reinforcement may be in the form of ribs, which may run axially or radially along the balloon, and/or may be formed from the same or a different material to the balloon itself.


The inverted balloon may be positioned such that it overhangs the catheter tip, in which case the balloon material is not under any axial tension in the unexpanded state, unlike most conventional compliant balloons. This lack of axial tension combined with a degree of overhang (ideally greater than 0.5 mm but less than 3.5 mm) is key to ensuring the balloon can inflate to a funnel-like shape.


The balloon may be pre-formed into a funnel-like shape prior to assembly onto the catheter shaft, in which case it may be beneficial to also provide it with pleats or preferential fold lines in order to facilitate efficient wrap down to a low profile.


In one series of embodiments multiple balloons are employed on the catheter shaft. This has the benefit of allowing individual balloon properties to be tailored for specific tasks. For example a low pressure, compliant, balloon may be designed to seal against the vessel wall to help create flow arrest, while another balloon may be designed to adopt a funnel-like shape at the distal catheter tip to minimize shear forces on the clot and facilitate easy entry of large and/or firm clots into the catheter mouth. In some cases a higher pressure, less compliant, balloon may be employed to help keep the catheter tip from lying too close to the vessel wall and impeding clot retrieval.


The materials used in the construction of this catheter must be carefully selected. For high pressure balloons relatively high modulus materials such as PET or Polyamide make good choices, but for certain inflatable portions of the catheters of this invention a much softer more compliant material is desired. This preferably comprises an amorphous elastomeric polymer, so that it can be stretched/strained under inflation pressure to a diameter at least twice and as much as 5 times its uninflated diameter and recover most or all of its unexpanded shape upon deflation. This requires the material to withstand an elastic strain of at least 200% and ideally 500% or more with minimal levels of plastic deformation. Recoverable strains of such a high level are greatly facilitated by crosslinking of the polymer chains, and hence thermoset materials such as silicone rubbers may be a good choice for a compliant balloon. However silicone is not an easy material to join to a second material as it cannot easily be melted and made miscible with another material to form a strong and low profile weld joint for example. For this reason polyurethane elastomers are a preferred material for the balloon of this invention. In particular thermoplastic polyurethane elastomers would make an ideal material as this can be melted as part of a welding or joining process, or can be solvent bonded or adhesively bonded. In addition such polyurethanes can be joined to compatible families of materials in order to create a greater stiffness gradient along the length of the catheter than would be possible if limited to polyurethanes alone. For example, a very soft polyurethane can be used for the balloon and very distal section of the catheter; one or more Pebax (polyether block amide copolymer) materials may be used for a mid-section of the catheter; and polyamide material(s) may be used for the proximal section of the catheter shaft. This series of materials offers increasingly higher durometers and Young's modulus (or stiffness), so that a very flexible distal shaft region can be smoothly transitioned to a much stiffer proximal shaft region. The Polyether block amide material has the advantage of being joinable to both the Polyurethane and the Polyamide, even though the Polyurethane and the Polyamide are not so easily joined to one another.


In one aspect the invention provides a clot capture catheter comprising an elongate tubular shaft having a proximal end, a distal end and an inflatable expansile member at the distal end, the expansile member being inflatable from a collapsed delivery configuration to an expanded configuration, wherein, in the expanded configuration, the expansile member extends to at least the distalmost tip of the shaft and extends radially outwardly from the shaft at the distalmost tip of the shaft to define a mouth.


In one aspect the invention provided a clot capture catheter comprising an elongate tubular shaft having a proximal end, a distal end and an inflatable expansile member at the distal end, the expansile member being inflatable from a collapsed delivery configuration to an expanded configuration, wherein, in the expanded configuration, the expansile member extends radially outwardly at the distalmost tip of the catheter to define a funnel shaped profile having an enlarged distal clot entry mouth.


In one embodiment, in the expanded configuration, the diameter of the distalmost portion of the catheter defined by the expansile member is larger than the diameter of the generally cylindrical inner lumen of the distal region of the catheter.


In one case, in the expanded configuration, the expansile member extends distally beyond the distalmost tip of the shaft.


In one embodiment the expansile member comprises a balloon. The balloon, in the expanded configuration, may be of funnel shape having an enlarged distal entry mouth and a narrower proximal end.


In one case the balloon is integral to the distal tip of the catheter shaft.


The expansile member may be formed from a polymeric tube which is inverted so that a distal junction between the balloon and the catheter shaft is located within the balloon.


In one embodiment the balloon comprises regions which have different properties to one another.


The balloon may comprise a proximal region, a distal region and a median region between the proximal and distal regions and wherein, in the expanded configuration, the distal region expands to a greater extent than the proximal region.


In one case at least one region has a different wall thickness than at least one other region.


In one case the wall thickness of the proximal and distal regions is greater than the wall thickness of the median region.


In one embodiment the wall thickness of the proximal region is greater than the wall thickness of the median region and the distal region.


In one case the expansile member comprises a proximal neck and a distal neck, the proximal neck having a first thickness, and being connected to the catheter shaft proximal of the distal end of the catheter, a proximal portion of the expansile member comprising a second thickness, a distal portion of the expansile member comprising a third thickness, and the distal neck, which is inverted and joined to the distal end of the catheter shaft, comprising a fourth thickness.


In one embodiment a mid-portion of the expansile member comprises a variable thickness which tapers from the second thickness to the third thickness.


In one case the first thickness is greater than the second thickness, and the second thickness is greater than the third thickness.


In one embodiment the fourth thickness is greater than the third thickness.


In one case the fourth thickness is greater than the first thickness.


In one embodiment the first thickness is approximately the same as the second thickness in the deflated state, but is greater than the second thickness in the inflated state.


In one case a band is provided between the proximal and distal regions of the expansile member, the band having a greater wall thickness than the wall thickness of the proximal and/or distal region, to create a relatively non-expansile region such that the expansile member preferentially inflates proximal and distal of the band to provide a funnel shape profile.


In one case at least one of the regions is reinforced to limit the expansion of that region.


In one embodiment the proximal region comprises a reinforcement.


In one case the reinforcement comprises ribs.


The ribs may extend axially and/or radially along at least a portion of the proximal region.


In one embodiment the ribs are of the same or a different material than that of the balloon.


In one case the expansile member in the collapsed configuration extends beyond the distal tip of the catheter shaft.


The expansile member may extend beyond the distal tip of the catheter shaft for a distance of from 0.5 mm to 3.5 mm.


In one embodiment the catheter shaft comprises a main inner lumen, and an inflation lumen for inflating the expansile member.


The inflation lumen may extend within the wall of catheter shaft.


In one case the inflation lumen and the catheter lumen are eccentric.


In a further case the inflation lumen and the catheter lumen are concentric.


In one case the inflatable expansile member comprises an amorphous elastomeric polymer.


The elastomeric polymer may be a thermoplastic polyurethane elastomer.


In one embodiment a portion of the shaft of the catheter comprises the inflatable expansile member.


In one case a distal region of the catheter shaft comprises an amorphous elastomeric polymer.


In one embodiment the amorphous elastomeric polymer of the distal region of the catheter is a thermoplastic polyurethane elastomer.


In one case a distal portion of the shaft comprises a first amorphous elastomeric polymer and the inflatable expansile member comprises a second amorphous elastomeric polymer which is different than the first amorphous elastomeric polymer


In one embodiment the catheter shaft comprises a proximal region, a distal region and a median region between the proximal region and the distal region and wherein the proximal, the median and the distal regions of the shaft comprise materials with differing stiffness.


In one case the proximal region of the catheter shaft comprise a polyamide, the distal region comprises a thermoplastic polyurethane elastomer and the median region comprises a polyether block amide copolymer.


In one case the catheter further comprises an expansile marker band at or adjacent to the expansile member.


In one embodiment the distal marker band is located beneath the expansile member.


In one case the radiopaque distal marker is of generally tubular shape having axially extending slots which are configured to facilitate expansion of the marker.


In one embodiment the clot capture catheter comprises two to more expansile members.


In a further embodiment at least some of the expansile members have differing compliance.


In one case a clot capture catheter comprises inflatable balloon members mounted on the distal section of the catheter, the balloon member comprising an inner balloon members positioned within an outer balloon.


In one embodiment the elastic compliance of the balloon members are different.


In one case only the inner balloon communicates with an inflation lumen facilitating expansion.


In one embodiment the inner balloon is configured to contact the outer balloon, on expansion.


In one case, in the expanded configuration, an effective diameter of the distal-most portion of the expansile member is at least 20%, greater than the diameter of the inner lumen at the distal end of the catheter shaft.


In another case the effective diameter is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100% greater than the diameter of the inner lumen at the distal end of the catheter shaft.


In one embodiment the distal tip region of the expansile member is flared outwardly from the catheter shaft lumen at an opening angle.


In one case the opening angle is from 10 to 60 degrees, or from 15 to 45 degrees.


In one embodiment the expansile member comprises features such as an undulation and/or a fold to assist in flaring of the distal tip region.


In one case the inflatable member is inverted and joined to the catheter shaft at a proximal joint area and wherein the shaft comprises multiple layers, including an outer sleeve, a middle layer, an inner liner, and a reinforcing braid or coil.


In one embodiment the proximal end of the inflatable member is joined to the elongate shaft at proximal joint area and the other end of the inflatable member is inverted and joined to the middle layer at a junction such that the middle section of a generally tubular polymer member that forms the expansile member is positioned at the distal end of the catheter, and the portion of the tubular polymer member that lies between the junction and the middle section is joined to the distal section of the catheter shaft.


In one case a strip of material is mounted over the expansile member and joined proximally to the catheter body and the distal end of the material strip is bonded to the atraumatic distal catheter tip.


In one embodiment a plurality of material strips are positioned radially around the balloon.


In one case the material strip comprises a low elastic compliance polymer such as PET.


In one embodiment the expansile element is of composite construction comprising semi-rigid ribs interspersed with sections of elastic expansile material.


In one case the ribs extend parallel to the axis of the catheter. The ribs may extend in a spiral configuration.


In one embodiment the catheter comprises a sealed inflation chamber which is adapted to be filled with a radiopaque fluid.


In one case a clot capture catheter comprises a plunger for inflating the expansile member and deflating the expansile member.


In another case a clot capture catheter comprises a controller for moving the plunger to control the inflation and deflation of the expansile member.


The controller may comprise a manual knob.


In one embodiment the plunger is defined by a corrugated body.


In one case a clot capture catheter comprises a spring to bias the movement of the corrugated body.


In one embodiment the profile of the distal tip of the expansile member in the expanded configuration is of non-uniform shape.


In one case the profile comprises an ellipse.


In one embodiment a kit comprises a clot capture catheter, a clot engaging device and a microcatheter for the clot engaging device.


The clot engaging device is a stent-retriever device.


In another aspect the invention provides clot capture procedure comprising:

    • providing a clot capture catheter having an inflatable member at the distalmost tip of the catheter;
    • with the inflatable member in a collapsed configuration, advancing the clot capture catheter towards a clot;
    • inflating the inflatable member at the distal tip of the catheter so that the inflatable member extends outwardly from the distalmost tip of the catheter to the vessel wall;
    • drawing the clot into the catheter;
    • deflating the inflatable member; and
    • withdrawing the catheter.


In one case the method comprises aspirating to draw the clot into the catheter. Alternatively or additionally, the method comprises engaging the clot with a mechanical device such as a stent-retriever to draw the clot into the catheter.


In one embodiment a clot capture procedure comprises providing a microcatheter, advancing the microcatheter through the clot capture catheter, and deploying the clot engaging device from the catheter.


In another aspect the invention provides a method for capturing clot comprising: —

    • advancing a catheter through the vasculature to a position proximal of the target clot in a vessel;
    • crossing the clot with a microcatheter;
    • advancing a clot capture device through the microcatheter to the site of the clot;
    • retracting the microcatheter to deploy the clot capture device at least partially beneath the clot;
    • inflating the expansile member of the catheter to slow or stop flow in the vessel;
    • retracting the clot capture device proximally towards the catheter;
    • connecting a syringe or pump to the proximal end of catheter and aspirating to reverse blood flow in the vessel;
    • retracting the clot capture device and captured clot under aspiration into the mouth of the catheter;
    • continuing to retract the clot capture device under aspiration through and out of the catheter; and
    • discontinuing aspiration and deflating the expansile member in order to restore blood flow to vessel.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 is an isometric view of a clot retrieval catheter of this invention;



FIGS. 2a-2d are sectional views through the shafts of clot retrieval catheters of the invention;



FIGS. 3a-3e are sectional views through the shaft and portions of the shaft of a clot retrieval catheter of the invention;



FIG. 4 is a side view illustrating one method of manufacture of a catheter shaft;



FIG. 5 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIGS. 6a-6b are sectional views of a distal portion of a clot retrieval catheter of the invention;



FIGS. 7a-7c are sectional views of distal portions of clot retrieval catheters of the invention;



FIGS. 8a-8c are sectional views of distal portions of clot retrieval catheters of the invention;



FIGS. 9a-9d are views of a conventional prior art thrombectomy procedure;



FIGS. 10a-10d are views of a thrombectomy procedure employing a clot retrieval catheter of the invention;



FIG. 11 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIG. 12 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIG. 13 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIG. 14 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIG. 15 is a sectional view of a distal portion of a clot retrieval catheter of the invention;



FIG. 16a-16c are sectional views of a distal portion of a clot retrieval catheter of the invention;



FIG. 16d is a side view of a distal portion of a clot retrieval catheter of the invention;



FIGS. 16e-16g are views of one expansile marker band of the invention;



FIGS. 16h-16i are views of another expansile marker band of the invention;



FIG. 17a-17b are sectional views of a distal portion of a clot retrieval catheter of the invention;



FIG. 17c is an isometric view of a distal end of the catheter of FIGS. 17a and 17b;



FIG. 18a is a simplified view of a distal portion of a clot retrieval catheter of the invention;



FIG. 18b is a cross sectional view on the line A-A in FIG. 18a;



FIGS. 18c-18d are sectional views through the distal portion of a clot retrieval catheter of this invention;



FIGS. 19a-19b are views of the proximal hub of a clot retrieval catheter of the invention;



FIGS. 20a and 20b are isometric views of the distal end of clot retrieval catheters of the invention; and



FIG. 20c is a simplified view of a clot retrieval catheter of the invention, in use.





DETAILED DESCRIPTION

Specific embodiments of the present invention are now described in detail with reference to the Figures, wherein identical reference numbers indicate identical or functionality similar elements. The terms “distal” or “proximal” are used in the following description with respect to a position or direction relative to the treating physician. “Distal” or “distally” are a position distant from or in a direction away from the physician. “Proximal” or “proximally” or “proximate” are a position near or in a direction toward the physician.


Accessing cerebral, coronary and pulmonary vessels involves the use of a number of commercially available products and conventional procedural steps. Access products such as guidewires, diagnostic catheters and microcatheters are described elsewhere and are regularly used in cath lab procedures. It is assumed in the descriptions below that these products and methods are employed in conjunction with the device and methods of this invention and do not need to be described in detail.


The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in many cases in the context of treatment of intracranial arteries, the invention may also be used in other body passageways as previously described.



FIG. 1, reference numeral 100 illustrates a clot capture catheter of the invention which comprises a distal inflatable portion 101, attached to a distal shaft 102, which is in turn attached to a shaft mid-section 103, which is attached to a shaft proximal section 104. A proximal hub 105 is connected to the proximal end of the catheter shaft and comprises a luer attachment 106 and a side port 107. Side port 107 provides access to an inflation lumen running through the wall of the catheter shaft from the hub to the inflatable portion 101. The inflation lumen is illustrated in sectional views of the shaft shown in FIG. 2.


The inflatable portion 101 of the distal tip preferably comprises an amorphous elastomeric polymer, so that it can be stretched/strained under inflation pressure to a diameter at least twice and as much as 5 times its uninflated diameter and recover most or all of its unexpanded shape upon deflation. This requires the material to withstand an elastic strain of at least 200% and ideally 500% or more, ideally with minimal levels of plastic deformation or hysteresis. Recoverable strains of such a high level are greatly facilitated by crosslinking of the polymer chains, and hence thermoset materials such as silicone rubbers may be a good choice. However silicone is not an easy material to join to a second material as it cannot easily be melted and made miscible with another material to form a strong and low profile weld joint for example. For this reason polyurethane elastomers are also a suitable material for the balloon of this invention. In particular thermoplastic polyurethane elastomers would make ideal materials as these can be melted as part of a welding or joining process, or can be solvent bonded or adhesively bonded.



FIGS. 2a-2d illustrate a number of possible sectional views through various embodiments of the shaft of the catheter of FIG. 1, as indicated by section line 108 in FIG. 1. FIG. 2a shows a shaft 150 with an inner lumen 152 and a single inflation lumen 151. FIG. 2b shows a shaft 160 with an inner lumen 162 and three inflation lumens 161. FIG. 2c shows a shaft 170 with an inner lumen 172 and a single oblong, crescent shaped inflation lumen 171. FIG. 2d shows a shaft 180 with an outer shaft wall 184, an inner shaft wall 183, and an internal lumen 182. The space between the inner and outer shaft walls creates the inflation lumen 181. In all of these shaft variants the shaft construction may also comprise a low friction coating or liner (such as PTFE) on the inner lumen wall. Reinforcing braid and/or coil wires or fibers may be used to provide hoop strength (to withstand aspiration through the inner lumen without collapse) and kink resistance. The main wall of the shaft may comprise one or more materials, with thermoplastic polymers such as Polyurethane, Pebax and Polyamide being examples of preferred options. In one example of a preferred shaft material configuration one or more grades of polyurethane are used for the balloon and very distal section of the catheter; one or more Pebax (polyether block amide copolymer) materials are used for a mid-section of the catheter; and one or more polyamide material(s) are used for the proximal section of the catheter shaft. This series of materials offers increasingly higher durometers and Young's modulus (or stiffness), so that a very flexible distal shaft region can be smoothly transitioned to a much stiffer proximal shaft region. The Polyether block amide material has the advantage of being joinable to both the Polyurethane and the Polyamide, even though the Polyurethane and the Polyamide are not so easily joined to one another.


The inflation lumen may be formed in a number of different ways as will be described later, and may be lined with a material or materials (such as PTFE, FEP, PET or Polyimide for example), of a higher melting point or softening point to that of the main wall of the shaft in order to facilitate formation of the inflation lumen and subsequent removal of any forming mandrels used in that process. The shaft may be eccentric in design as shown in FIGS. 2a-2c in order to provide sufficient wall thickness to create an inflation lumen without creating an excessive overall catheter diameter. Alternatively, a concentric design such as that illustrated in FIG. 2d may be employed.



FIGS. 3a-3e show a series of sectional views through portions of a shaft of the clot retrieval catheter of this invention, illustrating how one embodiment of the inflation lumen might be formed. In this embodiment elongate tube 200 of FIG. 3a is fitted with three mandrel wires 201, causing the tube to deform into an oblong shape as shown in FIG. 3b. The assembly of tube 200 and wires 201 is then placed on top of an elongate shaft 203, and an outer jacket 202 is placed over both as shown in FIG. 3c. Heat and pressure are then applied (optionally through another outer jacket or heat shrink tuning, not shown) as indicated by lines 204, in order to laminate the entire assembly together. This process fuses the outer jacket 202 to the inner elongate shaft 203 and surrounds the inflation lumen tube 200 with its internal mandrel wires 201 as shown in FIG. 3d. The mandrels serve the purpose of preventing collapse of the inflation lumen during this forming process, and maintaining its desired shape. Once the forming process is completed the mandrels are removed, leaving the inflation lumen 206 open and unobstructed through the composite shaft 205 as shown in FIG. 3e. Many variants of this design and process are possible—for example the inflation tube could be made from a low friction material such as PTFE, in which case it could be either left in place upon removal of the mandrel wires, or it could be removed itself with or after the mandrel wires. In another embodiment the inflation tube is made by solution casting and comprises a polyimide or other relatively high modulus material, which can be manufactured in a wall thickness of as little as 0.001″ or lower and still maintain a high degree of structural integrity. Another advantage of polyimide as a material choice is that it will not melt during the catheter forming/fusing process, minimizing the challenge of mandrel removal at the end. The mandrels themselves may be metallic or formed from a very high tensile polymer, and are ideally coated with a low friction material such as PTFE or Parylene.



FIG. 4 illustrates a preferred method of manufacture of the catheter shaft of this invention. An interface between two lengths of polymer tubing (251 and 252) of different durometers and/or modulus of elasticity, are illustrated being joined together at a point along the shaft length by a heat and pressure forming process involving an external heat shrink tube 252 and a heat source 253. It is desirable the catheter shaft have a stiffness gradient along much of its length in order to transition seamlessly from a stiff and pushable proximal end to a highly flexible and atraumatic distal end. It is not desirable that this stiffness gradient be abrupt, which can be a problem at a junction between two shaft materials. Feathering the ends of the tubing to be joined as shown in region 254 creates a more gradual stiffness transition from a first material 250 to a second material 251. In this way the % of each material in a given cross section of shaft can be varied over a greater length than would be possible by the minimal amount of material mixing that would occur in a simple butt joint. The construction shown enables overlap area 254 to extend to greater than 10 mm in length if desired, but an overlap length of between 1 mm and 5 mm is preferred.



FIG. 5 shows a sectional side view of the distal end of a clot retrieval catheter 300 similar to catheter 100 shown in FIG. 1. The catheter comprises a substantially cylindrical elongate tubular shaft 302, to which is mounted an inflatable distal balloon 301. Distal balloon 301 is configured in such a way as to create a funnel shaped profile upon expansion. This funnel shaped profile may be attained by the position and wall thickness profile of the expansile membrane forming the balloon, and/or may be attained by the use of addition elements to help flare the catheter tip as explained in more detail elsewhere in this document. Line 303 denotes the centerline of the catheter tip region. Lines 305 and 306 are lines parallel to centerline 303 indicating the diameter 311 of the opening at the distal-most face of the catheter. Points 309 and 310 indicate where lines 305 and 306 intersect distal face 304, indicating the extent of the open diameter of the distal end of the catheter. Lines 307 and 308 are lines parallel to centerline 303 indicating the diameter 312 of the inner lumen of the catheter into which clot must ultimately be squeezed in order to remove it fully through the catheter.


The critical feature of this profile is that the effective diameter 311 of the distal-most portion of the catheter is significantly greater than the diameter 312 of the generally cylindrical inner lumen of the distal region of the catheter. Conventional clot retrieval catheters may have some rounding or chamfering of their distal tips to create a very minor lead-in, but this has minimal effect of reducing the shear stress on clot and avoiding fragment loss. The invention disclosed creates a genuine funnel shape without the need for a pull-wire or other such stiff and bulky mechanical actuation. The funnel created is such that diameter 311 is ideally at least 20% greater than diameter 312, and preferably 50% or 100% greater than diameter 312. Thus if diameter 312 is 0.084″ as might be the case for a typical catheter of this type, then diameter 311 is at least 0.101″ and is ideally as much as 0.126″ or 0.168″ or more.


The wall thickness profile of the inflatable member 301 is very similar to that of inflatable member 400 of FIG. 7b, and the description provided therein may be referred to.



FIGS. 6a and 6b show simplified sectional views of the distal region of a clot retrieval catheter of this invention in the inflated and uninflated states respectively. The catheter comprises an elongate shaft 320 with an inner liner 323, a distal tip section 326 and an inflatable portion 328. The inflatable portion 328 has different wall thicknesses in different regions in order to create the desired shape and effect upon inflation. Low wall thickness region 321 experiences the highest strain and consequently expands the most upon inflation, creating a balloon-like shape that can be used to restrict or prevent blood flow from passing the catheter. High wall thickness region 322 undergoes much lower strain at the same stress (and pressure) levels, and hence cannot expand to the same diameter as the lower wall thickness region, however it is placed under axial tension by the pressure within the inflated member, and this tension pulls on and helps to flare the tip section 326 to an opening angle 330. Opening angle 330 is preferably between 10 and 60 degrees, and is most preferably between 15 and 45 degrees. Thin wall thickness region 327 acts as a hinge to minimize the resistance to flaring of the tip. Further features such as folds or undulations may also be provided to this region to assist in tip flaring—an example of this is provided in FIG. 16. A further thin wall hinge (not shown) may be provided at region 329 to assist in the flaring of the tip region into a funnel-like shape. A marker band 324 is shown beneath the inflatable portion, which serves a dual purpose of providing visibility of the catheter tip under fluoroscopy and also of providing hoop strength to the catheter shaft to prevent deformation under inflation pressure.



FIGS. 7a-7c show simplified section views through the distal portion of clot retrieval catheters of this invention, illustrating how varying the wall thickness profile of the inflatable portion of the catheter can be used to influence the shape of the inflated balloon.


In FIG. 7a the proximal neck 351 of inflatable member 354 comprises a first thickness, and is connected to catheter shaft 350 proximal of the distal end of the catheter. The proximal portion 352 of the inflatable member comprises a second thickness, while the distal portion 353 comprises a third thickness, and the distal neck 355, which is inverted and joined to the distal end of the catheter shaft 350, comprises a fourth thickness. The mid portion 356 of the inflatable member 354 comprises a variable thickness which tapers from the second thickness 352 to the third thickness 353. In one embodiment the first thickness is greater than the second thickness, and the second thickness is greater than the third thickness. In one embodiment the fourth thickness is greater than the third thickness. In one embodiment the fourth thickness is greater than the first thickness. In one embodiment the first thickness is generally equal to the second thickness in the deflated state, but is greater than the second thickness in the inflated state. This thinner profile of the distal section of the inflatable member causes that section to preferentially inflate and expand distally, creating the desired funnel shape cross section. However over-inflation of such a profile may result in the distal section 356 impinging on the lumen of the catheter, a problem which is solved by the profile illustrated in FIG. 7b and elsewhere in this document.



FIG. 7b shows another embodiment of the distal portion of a clot retrieval catheter of this invention, with a slightly different wall thickness profile. In this case the wall thickness of the proximal 401 and distal 403 portions of the inflatable member 400 is greater than that of the mid 402 portion. This thinner profile of the middle section of the inflatable member causes that section to preferentially inflate radially, which causes an axial strain in the proximal and distal sections. This axial strain lifts and flares the distal portion 403, creating the desired funnel shaped profile.



FIG. 7c shows another embodiment of the distal portion of a clot retrieval catheter of this invention, with a slightly different wall thickness profile. In this case a band 451 of greater wall thickness is provided between the proximal and distal regions of balloon 450, to create a relatively non-expansile region 451, forcing the balloon to preferentially inflate proximal and distal of that band, thus creating a distal “bulge” 452 and hence the desired funnel shape profile.


In each of these embodiments the wall thickness of the thinner walled sections decreases by a greater % upon inflation than does the wall thickness of the thicker walled sections, which enables the uninflated wall thickness to be used to control the inflated shape of the inflatable member.



FIGS. 8a-8c show partial section views around centerline 502 through the distal portion of clot retrieval catheters of this invention, illustrating examples of how an inverted member (tubular or otherwise) can be used to form the inflatable member of the catheter.



FIG. 8a shows inflatable member 500, which is joined to elongate shaft 501 at proximal joint area 507. Shaft 501 comprises multiple layers, including an outer sleeve 510, a mid-layer 503, an inner liner 505, and a reinforcing braid or coil 504. Shaft 501 also comprises an internal inflation lumen (not shown) as described elsewhere. The inflatable member 500, the catheter outer sleeve 510 and the catheter mid-layer 503 are preferably all made from either the same family of materials (such as polyurethanes for example) or at least from materials with compatible components, so that they can be joined together through a heat and pressure or solvent bonding process. The proximal end of inflatable member 500 is joined to elongate shaft 501 at proximal joint area 507, while the other end of inflatable member 500 is inverted and joined to middle layer 503 at junction 508. Thus the middle section of the generally tubular polymer member 511 that forms inflatable member 500 is positioned at the distal end of the catheter, and the portion 509 of the tubular polymer member 511 that lies between junction 508 and the middle section is laminated onto the distal section of the catheter shaft (comprising the inner liner and reinforcing braid or coil.



FIG. 8b shows a very similar construction to that shown in FIG. 8a, except that in this case inflatable member 550 has a shorter inverted length, and the mid layer 503 of shaft 501 extends substantially to the distal end of the catheter liner and braid. Thus the junction 508 between the inverted portion of inflatable member 550 and the shaft can be made closer to the distal end of the catheter.



FIG. 8c shows a very similar construction to that shown in FIG. 8a, except that in this case inflatable member 600 is formed from an extended inverted portion of the mid-layer 503 of the shaft 501.



FIGS. 9a-9d (prior art) illustrate one of the big problems with conventional balloon guide catheter technology that can cause serious patient harm during a clot retrieval procedure.



FIG. 9a shows a clot retrieval device such as a stent-retriever 701 retrieving a clot or thrombus 702 through vessel 700 into the distal mouth 705 of balloon guide catheter 703. Balloon guide catheter 703 comprises a balloon 704 positioned just proximal of its distal tip portion 710. A typical thrombectomy procedure involving a stent-retriever involves:

    • Using conventional endovascular access techniques to advance the balloon guide catheter 703 (or similar guide or sheath) through the vasculature to a position proximal of the target clot;
    • Crossing the clot with a microcatheter, usually with the aid of a guidewire;
    • Advancing a stent-retriever through the microcatheter to the site of the clot;
    • Retracting the microcatheter to deploy the stent-retriever at least partially beneath the clot;
    • Inflating the balloon 704 of the balloon guide catheter 703 in order to slow or stop flow in the vessel 700;
    • Retracting the stent-retriever proximally towards the balloon guide catheter;
    • Connecting a syringe or pump to the proximal end of balloon guide catheter 703 and aspirating in order to reverse blood flow in vessel 700;
    • Retracting the stent-retriever and captured clot under aspiration into the mouth 705 of the balloon guide catheter 703;
    • Continuing to retract the stent-retriever under aspiration through and out of the balloon guide catheter 703;
    • Discontinuing aspiration and deflating balloon 704 in order to restore blood flow to vessel 700.



FIG. 9a illustrates the stage of this procedure in which the stent-retriever 701 and clot 702 are about to be withdrawn into the mouth 710 of balloon guide catheter 703. Balloon 704 is inflated and the operator has commenced aspiration through the balloon guide catheter 703 in order to reverse blood flow in vessel 700 and assist in withdrawing the clot safely into the mouth 710 of the catheter. However because the tip 710 extends distally of the distal end of the balloon 704 there exists a dead space 706 around the distal tip 710 just distal of the balloon 704. In which there is little or no reverse flow to pull the clot or any clot fragments into the catheter mouth.



FIG. 9b illustrates the stage of the above procedure in which the stent-retriever 701 and clot 702 are being withdrawn into the mouth 710 of balloon guide catheter 703. As the clot is pulled into the catheter it must deform in shape in order to fit into the catheter lumen. The level of deformation required depends on the relative size of the clot and catheter lumen, and also on the degree to which the stent-retriever compresses the clot against the catheter. Greater levels of deformation give rise to greater levels of shear stress on the clot, which are often concentrated at the tip of the catheter, as that is where the clot undergoes an abrupt shape change. This can cause the clot to tear and release fragments, particularly if the clot does not have a very organized fibrin structure and/or if a lytic drug such as tPa has been given to the patient. In this case clot fragments 707 and 708 have been released from the clot and are sitting in the dead space 706, and the shear stresses on the clot have induced an overhang region 709 which has been pushed proximal of the distal mouth 705 of the catheter and is at risk of tearing free from the main body of the clot.



FIG. 9c shows the consequences of the previously described high shear forces combined with dead space 706: clot fragments 707 and 708 that were shown in FIG. 9b have been joined by a third fragment 709, and the reverse flow through the vessel into the catheter induced by the aspiration has failed to pull them out of the dead space and into the catheter mouth.



FIG. 9d shows a later stage in the procedure after removal of the stent-retriever 701 and any captured clot from within the catheter 703. At this stage aspiration through the catheter is stopped and the balloon 704 is deflated. This results in restoration of blood flow to the vessel 700 distal to the catheter, and consequently clot fragments 707, 708 and 709 are released and flow downstream, where they are likely to occlude one or more vessels, potentially causing serious patient harm or even death.


Any suitable clot capture device can be used as part of the kit and the procedures described herein. The clot capture device may be of a stent-retriever type. The clot capture device may be as described in any of our WO2012/120490A, WO2014/139845A, WO2016/083472A and/or WO2017/089424A.



FIGS. 10a-10d illustrate a similar thrombectomy procedure to that shown in FIGS. 9a-d, but this time employing a clot retrieval catheter 803 of this invention. The same procedural steps described above are carried out, but because the catheter 803 has the twin advantages of 1) little or no dead space distal to the balloon and 2) a flared distal mouth to minimize shear stress on the clot, in this case the clot is fully retrieved into the catheter and no clot fragments are lost upon balloon deflation.



FIG. 10a shows a clot retrieval device such as a stent-retriever 801 retrieving a clot or thrombus 802 through vessel 800 into the distal mouth 805 of clot retrieval catheter 803. Clot retrieval catheter 803 comprises a balloon 804 positioned at its distal end. As described in relation to FIGS. 9a-d above the balloon 804 has been inflated to restrict flow in vessel 800, and aspiration through the catheter 803 may be employed to further assist clot entry into the catheter mouth 805 by reversing blood flow in vessel 800.



FIG. 10b illustrates the stage of the above procedure in which the stent-retriever 801 and clot 802 are being withdrawn into the mouth 805 of catheter 803. The funnel shaped profile 806 of the catheter 803 minimizes the shear stress induced in the clot as it is withdrawn into the catheter, and any fragments created or otherwise present (such as fragment 807 shown) have little or no dead space between balloon and tip to get caught within.



FIG. 10c shows the benefits of this lack of dead space, as the aspiration and flow reversal through the catheter pulls fragment 807 safely into the catheter lumen, following the stent-retriever 801 and main body of clot 802.



FIG. 10d shows a later stage in the procedure after removal of the stent-retriever 801 and captured clot 802 from within the catheter 803. At this stage aspiration through the catheter is stopped and the balloon 804 is deflated. This results in restoration of blood flow to the vessel 800 distal to the catheter, safely restoring oxygenated blood to the distal vasculature without releasing any harmful clot fragments.



FIG. 11 shows an embodiment of the invention 900 which illustrates a partial section of the distal end of a clot capture catheter. Two inflatable balloon members 902 and 906 are mounted on the distal section of the catheter 905, with one balloon member 906 position within the outer balloon 902. One or both expansile balloon members may communicate with an inflation lumen to allow fluid to be injected into the balloon causing it to expand. The elastic compliance of the two expansile members may vary with the compliance of balloon 902 lower than the compliance of balloon 906 or vice versa. In one case only balloon 906 communicates with an inflation lumen facilitating expansion. When this balloon 906 expands, it occludes the artery or vessel in which it is deployed to improve the efficacy of aspiration and clot retraction into the catheter. In addition as balloon 906 expands it contacts balloon 902 forcing it to expand and increase diameter. The compliance of the balloon 902 ensures that as the diameter increases, the length of the balloon shortens which pulls the distal tip of the catheter 904 into a funnel like shape that facilitates clot retrieval. The bond 903 between the balloon 902 and the distal tip 904 is positioned at or near the distal tip of the catheter to facilitate the forming of the funnel shape. The compliance of one or both of these balloons may differ from the circumferential direction to the longitudinal direction parallel to the catheter axis. This will facilitate preferential expansion in one direction when fluid is injected under pressure through the inflation lumen.



FIG. 12 illustrates another embodiment of the invention 920 with multiple expansile balloons mounted on the catheter. This figure is also a partial section view, and in this embodiment an expansile member 922 is mounted at the distal tip of the catheter 924. The distal expansile member 922 forms a lead-in shape 921 to facilitate clot retraction into the catheter. Mounting multiple balloons or expansile members on the catheter allows the functions of an expansile balloon to be separated and allows different performance attributes to be met by different expansile elements. For example in this case, the distal balloon 922 facilitates clot retrieval and may centralize the catheter tip in the vessel while the balloon 923 occludes the vessel and provides flow arrest. Therefore the distal balloon 922 may have a diameter smaller than the vessel in which the catheter is deployed and may be a ‘non-compliant’ or low compliance balloon, while the more proximal positioned balloon 923 may be a soft compliant balloon with a larger diameter than the vessel to provide atraumatic vessel occlusion. The distance between the balloons along the axis of the catheter can vary from 2 mm to 150 mm and in the preferred embodiment vary from 2 cm to 10 cm. As the distal balloon has a smaller diameter than the vessel, it may be inflated to a higher pressure without causing any expansile strain to the vessel. This higher pressure could provide the benefit of partially centering the catheter tip in the vessel. Positioning the balloon 923 that provides flow arrest proximal of the catheter tip facilitates designing the catheter so that this balloon is positioned in a more suitable section of the vessel than the location of the distal tip, e.g. a section of the vessel with increased bony or external support. Alternatively the proximal balloon could be positioned in the proximal section of the internal carotid artery or even in the common carotid artery.



FIG. 13 shows another partial section view of a catheter with multiple balloons. In this embodiment 940, the balloon 942 is located within the balloon 943. Both balloons can communicate with inflation lumens and can inflate simultaneously or individually as desired by the operator. Balloon 942 is a low compliance balloon with a diameter suitable to partially self-center the catheter tip in the vessel. The higher compliance softer outer balloon 943 provides atraumatic occlusion of the vessel providing flow arrest prior to clot aspiration or retrieval. This vessel occlusion can occur with the same pressure in both balloons or an increased pressure can be applied to one of the balloons depending on the phase of the procedure.



FIG. 14 illustrates a partial section view of a clot retrieval catheter 960 which has an expansile balloon 963 mounted at the distal tip. FIGS. 8 and 9 show the benefits of attaching the balloon at the distal tip of the catheter so there is no ‘dead-space’ between the distal tip and the balloon and subsequently reduced risk of clot shearing as clot is retrieved into the catheter. FIG. 14 shows how the balloon 963 may be attached to the catheter 964 for optimum positioning at the tip 961 by inverting the neck 962 of the balloon. One method of assembly is to bond or weld the neck of the balloon 962 to the tip of the catheter 961, then invert the balloon and join the proximal neck 965 of the balloon to the catheter 964. Joining the balloon to the catheter in this way not only reduces clot shear it also allows the atraumatic tip of the catheter 961 to flare and act as a lead-in for the clot during clot retrieval.



FIG. 15 shows a similar balloon catheter construction to that shown in FIG. 14. However in this embodiment 980, the distal neck 982 of the balloon 983 is attached to the inner surface of the catheter tip 981. In this design the bonding of the distal neck 982 may be completed before or after the proximal neck bond by inverting the balloon neck inside the catheter.



FIG. 16a is a partial section view of the distal end of invention 1000 showing a schematic of an expansile member 1001 mounted on the catheter shaft 1004. The expansile element 1001 is joined to the catheter proximally at 1005 and at the distal tip 1003 of the catheter. The neck of the expansile element 1002 is shown inverted at the join to the tip 1003 so that the element 1001 expands fully to the tip 1003 reducing the risk of clot shearing as discussed elsewhere in this patent. In addition, as the element 1001 expands it applies tension to the catheter tip 1003. In this embodiment the distal tip section 1006 has a lower bending stiffness than the catheter section 1004 so that the tip 1003 can flare and expand into a funnel shape under tension, to facilitate improved clot retrieval performance.



FIG. 16b shows a cut-away illustration of a distal catheter construction similar to the device shown in the schematic image in FIG. 16a. The expansile element in this embodiment is a balloon 1020 which is joined to the catheter 1026 at the proximal end of the balloon 1022. The distal end of the balloon is inverted and welded to the catheter material 1027 to form the distal tip 1023. The catheter 1026 is constructed so that material 1027 protrudes distal of the catheter reinforcement braid 1025 and is under the inflation lumen 1021. The inflation lumen 1021 provides a channel for fluid to be introduced into the balloon 1020 for expansion. When the balloon is expanded, the tension in the balloon 1020 pulls the tip 1023 (distal of the braid 1025) into a funnel shape to improve the efficacy of clot removal. A distal radiopaque marker 1024 is incorporated into the catheter construction to indicate the position of the distal tip in the vasculature under fluoroscopy. The radiopaque marker 1024 is formed in a shape that can expand easily so that it will not restrict the expansion of the catheter tip 1023.



FIG. 16c is a partial section of a distal end of another catheter of the invention. It is shown in the expanded configuration and in this case the balloon neck 1040 is bonded to the catheter material 1041 which protrudes over the liner 1042 and braid. The radiopaque marker 1043 is shown expanded to facilitate the distal catheter tip forming a funnel or lead-in shape 1026.



FIG. 16d shows a distal view of the catheter 1060 with the tip 1063 in the non-expanded configuration. The image shows how the distal tip material may be formed in pleats 1062 to facilitate expansion into a funnel shape when the balloon is expanded. The radiopaque marker 1061 is shaped around the pleats 1062 but still has an expansile capability.



FIG. 16e-16g show an isometric, side and end view respectively of an alternative radiopaque distal marker 1080 for incorporation in the clot capture catheter. This marker is formed of a highly radiopaque material such as gold, platinum or tungsten in a tubular shape with slotted cuts 1081 to allow the marker to expand. Alternatively a gold coated nitinol marker may be used so that it can recover to its original shape after the balloon is deflated. The benefit of this shape of marker is that it can prevent the catheter tip collapsing inwards towards the centerline of the catheter, reducing the aspiration lumen when the balloon is expanded.



FIG. 16h and FIG. 16i show side and end views respectively of a similar expansile radiopaque marker 1090 with increased slot widths 1091 to improve integration with the catheter tip material. This marker is also expansile while restricting a reduction of diameter when under external pressure. The use of a radiopaque marker or other reinforcement to prevent reduction of the inner diameter when the balloon is inflated, allows softer catheter tip materials to be used.



FIG. 17a is a cross sectional view of another embodiment of the invention. This figure shows the distal end of a clot retrieval catheter 1100 in its introduced configuration prior to expansion of the expansile element 1107. The catheter is constructed with an expansile element or balloon 1107 mounted on the body section 1109 of the catheter. The balloon is bonded at the proximal and distal ends at 1105 and 1104 respectively and communicates with an inflation lumen (not shown) to facilitate expansion. A strip of material 1108 is mounted over the balloon and joined proximally 1106 to the catheter body 1109. The distal end of the material strip 1108 is bonded to the atraumatic distal catheter tip 1102. In this configuration the distal end of the strip 1108 is inverted 1103 prior to joining to the catheter tip 1102. A number of material strips 1108 are positioned radially around the balloon 1107.



FIG. 17b shows the device 1100 in its deployed or expanded configuration. Fluid has been injected into the balloon 1134 to expand it and occlude the vessel producing flow arrest to improve the efficacy of clot retrieval. In this embodiment, the material strips 1133 are produced from a low elastic compliance polymer with a thin wall such as PET. These material strips 1133 are put under tension when the balloon 1134 expands and this tension causes the atraumatic tip of the catheter 1132 to deform, expanding the distal edge and producing a funnel shape 1132. By inverting the end 1131 of the strip 1133 prior to joining to the catheter tip, it ensures the tension applied to the tip is at the distal end, producing a larger diameter funnel shape.



FIG. 17c is an isometric type view of a device similar to that shown in FIG. 17b. In this case material strips 1163 are positioned radially around the balloon 1160 and are joined to the catheter proximal of the balloon at 1164. The distal ends of the strips 1163 are inverted 1161 and bonded to the catheter tip 1162. Expansion of balloon 1160 pushes out the material strips 1163 causing a tension to be applied to the catheter tip 1162 forming a funnel shape.



FIG. 18a is a sectional schematic of another embodiment of the invention. The distal end 1200 of the catheter is constructed of a distal balloon 1201 mounted on a catheter shaft 1203. As before, when balloon 1201 is expanded it provides flow arrest capability in the vessel by occluding flow. In addition, expansion of the balloon applies tension to the catheter tip 1202 causing it to form a funnel shape improving lead-in for the clot, reducing clot shear and improving the efficacy of aspiration and clot retrieval with a stentriever.



FIG. 18b is a section view A-A from FIG. 18a and illustrates a composite balloon construction which consists of semi-rigid ribs 1222 interspersed with sections of elastic expansile material 1221. When fluid is introduced into the balloon through the inflation lumen (not shown), pressure increases and the soft segments 1221 expand in diameter creating flow occlusion in the vessel. The ribs 1222 which can have a different durometer to the expansile segments 1221 are more efficient at transferring tension to the distal tip and enhance the ability of the balloon to expand the tip to form a funnel shape. The ribs 1222 may be co-extruded with the balloon material or may be formed by integrating a wire or other material into the balloon extrusion. The ribs may run parallel to the axis of the catheter or may be formed in a spiral configuration to improve the flow arrest capabilities of the balloon.



FIG. 18c shows section A-A in the non-expanded configuration with the ribs 1242 and expansile segments 1241 concentric during introduction of the catheter to the target location.



FIG. 18d shows an alternative balloon section view in the non-expanded configuration. In this embodiment the balloon 1260 is formed from a single profiled extrusion with varying wall thickness around the circumference. The areas with reduced wall thickness 1261 expand under pressure creating flow arrest in the vessel while the segments with increased wall thickness 1262 act as ribs applying tension to the atraumatic catheter tip, causing it to expand.



FIG. 19a shows a stylized view of a handle or proximal region of one embodiment of a clot retrieval catheter 1300 of this invention in which inflation and deflation of the balloon 1301 can be performed without any need to prepare or flush the inflation area in advance. This is made possible by a sealed system in which the inflation lumen and inflation regions are evacuated of all air and then filled with a sterile radiopaque solution. Thus the operator need simply turn the threaded knob or actuator 1307 to inflate the balloon 1301 to the desired diameter. The catheter 1300 comprises an elongate shaft 1308 with an inflatable balloon 1301 at its distal end and a proximal hub assembly 1302 at its proximal end. The shaft and balloon may be configured as per any of those previously disclosed herein. The proximal hub assembly comprises an inflation controller 1306, a side port 1303 (optional), a preparation port 1311 and a proximal connector 1305. Proximal connector 1305 may be a rotating hemostasis valve or may be simply a luer or connector to which a valve or other luer, connector or fitting may be attached, and/or through which other catheters or devices may be advanced or retracted. The sterile radiopaque solution held within the chamber 1314, which is within the inflation controller 1306, may comprise contrast media such as an iodine solution.



FIG. 19b shows a sectional view through a portion of the proximal hub assembly 1302 of the catheter 1300 of FIG. 19a. Clockwise rotation of threaded knob 1307 causes the end 1315 of the knob 1307 to compress the corrugated member 1310. This in turn reduces the volume of the chamber 1314 within the corrugated member 1310, forcing fluid (which may be sterile contrast media) out of the chamber and into the inflation lumen 1313 which runs from the inflation controller through the elongate shaft 1308 to the distal inflatable balloon 1301. This in turn causes the balloon to inflate, and the degree of inflation can be controlled by controlling the depth to which the knob is screwed into the inflation controller. A transparent inflation controller body 1306 may be used, through which a dark/opaque knob will be visible, allowing the operator to align the end of the knob 1315 with an appropriate marking on the controller body. Counter-clockwise rotation of the knob 1307 allows corrugated chamber 1310 to expand, and this expansion may be assisted by means of a coil spring 1309. This expansion pulls fluid back through the inflation port from the balloon, deflating the balloon.


Preparation port 1311 and sealing cap 1312 are used to evacuate, fill and seal the unit prior to use. In a preferred embodiment these steps are performed by the manufacturer and the unit is provided to the customer ready for use.


In an alternative embodiment these steps of evacuating, prepping and sealing may be done by a second operator (such as a cath lab nurse or technician or fellow) prior to use of the device by a first operator.



FIG. 20a shows the distal end of a different embodiment of the invention where the balloon 1402 is mounted on the catheter shaft 1401. The balloon 1402 is shown in the expanded configuration and the distal tip 1403 forms a non-uniform shape. The tip 1403 still provides a lead-in for clot during retrieval improving efficacy and reducing clot shear. The distal tip shape may be symmetrical and align with bending elements of the catheter shaft.



FIG. 20b shows an alternative embodiment where the atraumatic distal tip 1423 forms an eccentric shape during introduction and may also expand to form an eccentric lead-in or funnel for the clot.



FIG. 20c illustrates how a catheter similar to the catheter of FIG. 20b may be positioned in the neurovasculature 1441 so that the balloon 1440 produces flow arrest and the eccentric tip 1443 provides a lead-in for clot retrieval. In one embodiment of such a system the catheter shaft 1442 is biased with a curved shape in the unconstrained condition in order to assist in orienting the eccentric balloon tip appropriately to the vasculature. In one embodiment this curve comprises a curve immediately proximal of the balloon 1440 as shown. In another embodiment the curve comprises a more proximal curve, which is designed to be positioned within the aortic arch of the patient. In yet another embodiment the catheter comprises both such curves. In yet another embodiment the catheter comprises a plurality of curves. In yet another embodiment the catheter comprises a steerable element by which a curve can be selectively applied to the catheter during or after its advancement through the vasculature to the target site.


It will be apparent from the foregoing description that while particular embodiments of the present invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. For example, while the embodiments described herein refer to particular features, the invention includes embodiments having different combinations of features. The invention also includes embodiments that do not include all of the specific features described.


The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.

Claims
  • 1. A clot capture catheter comprising an elongate tubular shaft having a proximal end, a distal end and an inflatable expansile member at the distal end, the inflatable expansile member being inflatable from a collapsed delivery configuration to an expanded configuration, wherein the inflatable expansile member comprises a balloon; wherein, in the expanded configuration, the inflatable expansile member extends to at least a distalmost tip of the elongate tubular shaft and extends radially outwardly from the elongate tubular shaft at the distalmost tip of the elongate tubular shaft to define a mouth;wherein expansion of the balloon applies tension to the distalmost tip of the elongate tubular shaft, thereby causing a distal portion of the elongate tubular shaft to form a funnel shape; andwherein the distal portion of the elongate tubular shaft comprises a distal section and a proximal section of differing stiffnesses and defining a hinge therebetween, the distal section having a lower bending stiffness than the proximal section, and the hinge being circumscribed by the balloon.
  • 2. The catheter of claim 1, wherein the balloon is integral to the distalmost tip of the elongate tubular shaft, wherein the balloon is formed from a polymeric tube which is inverted so that a distal junction between the balloon and the elongate tubular shaft is located within the balloon.
  • 3. The catheter of claim 1, wherein the balloon comprises a proximal region, a distal region and a median region between the proximal and distal regions and wherein, in the expanded configuration, the distal region expands to a greater extent than the proximal region.
  • 4. The catheter of claim 3, wherein at least one region has a different wall thickness than at least one other region.
  • 5. The catheter of claim 3, wherein the inflatable expansile member comprises: a proximal neck and a distal neck, the proximal neck having a first thickness, and being connected to the elongate tubular shaft proximal of the distal end of the elongate tubular shaft,a proximal portion of the balloon comprising a second thickness,a distal portion of the balloon comprising a third thickness, andthe distal neck, which is inverted and joined to the distal end of the elongate tubular shaft, comprising a fourth thickness.
  • 6. The catheter of claim 5, further comprising a band between the proximal and distal regions of the balloon, the band having a greater wall thickness than a wall thickness of the proximal and/or distal regions of the balloon to create a relatively non-expansile region such that the balloon preferentially inflates proximal and distal of the band to provide a funnel shape profile.
  • 7. The catheter of claim 6, wherein at least one region of the proximal or distal regions of the balloon is reinforced to limit the expansion of that region.
  • 8. The catheter of claim 7, wherein the proximal region comprises a reinforcement, wherein the reinforcement comprises ribs, wherein the ribs extend axially and/or radially along at least a portion of the proximal region.
  • 9. The catheter of claim 1, wherein the inflatable expansile member extends beyond the distalmost tip of the elongate tubular shaft for a distance of from 0.5 mm to 3.5 mm; wherein the elongate tubular shaft comprises a main inner lumen, and an inflation lumen for inflating the inflatable expansile member.
  • 10. The catheter of claim 9, wherein the inflation lumen and the main inner lumen are concentric.
  • 11. The catheter of claim 9, wherein a distal portion of the elongate tubular shaft comprises a first amorphous elastomeric polymer and the inflatable expansile member comprises a second amorphous elastomeric polymer which is different than the first amorphous elastomeric polymer.
  • 12. The catheter of claim 1, further comprising a radiopaque expansile marker band at or adjacent to the inflatable expansile member, wherein the radiopaque expansile marker band is located beneath the inflatable expansile member, wherein the radiopaque expansile marker band is of generally tubular shape having axially extending slots which are configured to facilitate expansion of the radiopaque expansile marker band.
  • 13. The catheter of claim 1, wherein a strip of material is mounted over the inflatable expansile member and joined proximally to the elongate tubular shaft and a distal end of the material strip is bonded to an atraumatic distalmost tip of the elongate tubular shaft.
  • 14. The catheter of claim 13, wherein a plurality of material strips are positioned radially around the balloon.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a United States national stage entry of an International Application No. PCT/EP2017/069668 filed Aug. 3, 2017, which claims priority to European Patent Application No. 16186028.3 filed Aug. 26, 2016, and U.S. Provisional Application No. 62/376,264 filed Aug. 17, 2016. The contents of these applications are incorporated herein by reference in their entirety as if set forth verbatim.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/069668 8/3/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/033401 2/22/2018 WO A
US Referenced Citations (748)
Number Name Date Kind
4243040 Beecher Jan 1981 A
4324262 Hall Apr 1982 A
4351342 Wiita Sep 1982 A
4575371 Nordqvist et al. Mar 1986 A
4719924 Crittenden et al. Jan 1988 A
4738666 Fuqua Apr 1988 A
4767404 Renton Aug 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5092839 Kipperman Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123840 Nates Jun 1992 A
5171233 Amplatz Dec 1992 A
5234437 Sepetka Aug 1993 A
5256144 Kraus et al. Oct 1993 A
5372124 Takayama et al. Dec 1994 A
5385562 Adams Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5396902 Brennen et al. Mar 1995 A
5449372 Schmaltz Sep 1995 A
5520651 Sutcu May 1996 A
5538512 Zenzon et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5645558 Horton Jul 1997 A
5658296 Bates Aug 1997 A
5662671 Barbut Sep 1997 A
5695519 Summer et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5728078 Powers, Jr. Mar 1998 A
5769871 Mers Kelly Jun 1998 A
5779716 Cano Jul 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Danniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911725 Boury Jun 1999 A
5935139 Bates Aug 1999 A
5938645 Gordon Aug 1999 A
5947995 Samuels Sep 1999 A
5968057 Taheri Oct 1999 A
5971938 Hart et al. Oct 1999 A
5997939 Moechnig et al. Dec 1999 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6146396 Kónya et al. Nov 2000 A
6146404 Kim Nov 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6238412 Dubrul May 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6309379 Willard Oct 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak Mar 2002 B1
6375668 Gifford et al. Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6409683 Fonseca et al. Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6346116 Brooks et al. Nov 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6511492 Rosenbluth Jan 2003 B1
6517551 Driskill Feb 2003 B1
6520934 Lee Feb 2003 B1
6520951 Carrillo, Jr. Feb 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592616 Stack Jul 2003 B1
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hanoock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6726703 Broome et al. Aug 2004 B2
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
6997939 Linder Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7153320 Euteneuer et al. Dec 2006 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7220269 Ansel May 2007 B1
7220271 Clubb May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma et al. Jun 2007 B2
7232462 Schaeffer Jun 2007 B2
7288112 Denardo et al. Oct 2007 B2
7306618 Demond Dec 2007 B2
7316692 Huffmaster Jan 2008 B2
7323001 Cubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin et al. Oct 2009 B2
7618434 Santra et al. Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7736385 Agnew Jun 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8372133 Douk et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osbourne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8900265 Ulm, III Dec 2014 B1
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642635 Vale et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Paterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
10028759 Wallace et al. Jul 2018 B2
10149692 Turjman et al. Dec 2018 B2
10265086 Vale Apr 2019 B2
10716915 Ogle et al. Jul 2020 B2
10610668 Burkholz et al. Aug 2020 B2
20010001315 Bates May 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010041899 Foster Nov 2001 A1
20010044598 Parodi Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010051810 Dubrul Dec 2001 A1
20020002383 Sepetka et al. Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barvut May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188276 Evans Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030023204 Vo Jan 2003 A1
20030040769 Kelley et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030125798 Matrin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153940 Nohilly et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 Wlite Aug 2003 A1
20030171769 Barbu Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030212430 Bose Nov 2003 A1
20030216611 Vu Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040010280 Adams et al. Jan 2004 A1
20040010282 Kusleika Jan 2004 A1
20040014002 Lundgren Jan 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093065 Yachia et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153118 Clubb Aug 2004 A1
20040193107 Pierpont et al. Sep 2004 A1
20040199202 Dubrul Oct 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20050015047 Shah Jan 2005 A1
20050020974 Noriega Jan 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050267491 Kellett et al. Aug 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050288686 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20060009785 Maitland et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060010636 Vacher Jan 2006 A1
20060030933 DeLeggge et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287701 Pal Dec 2006 A1
20070088383 Pal et al. Apr 2007 A1
20070142858 Bates Jun 2007 A1
20070149996 Coughlin Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288038 Bimbo Dec 2007 A1
20070293887 Okushi et al. Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097398 Mitelberg Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188928 Salahieh Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090024157 Anukhin Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090131908 McKay May 2009 A1
20090163846 Aklog et al. May 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090221967 Thommen et al. Sep 2009 A1
20090270815 Stamp et al. Oct 2009 A1
20090281610 Parker Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299374 Tilson Dec 2009 A1
20090299393 Martin Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100030186 Stivland Feb 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100292726 Olsen et al. Nov 2010 A1
20100305604 Pah Dec 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009942 Gregorich Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110098683 Wiita et al. Apr 2011 A1
20110054504 Wolf et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110130756 Everson, Jr. et al. Jun 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110218564 Drasler et al. Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110264132 Strauss et al. Oct 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 diPama et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120116440 Leynov et al. May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20130006284 Aggerholm et al. Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130289697 Baker et al. Oct 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140046359 Bowman et al. Feb 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140135812 Divino et al. May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140194919 Losardo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140257362 Eldenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277053 Wang et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150081003 Wainwright et al. Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150142043 Furey May 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150238314 Börtlein et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150306311 Pinchuk et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150351770 Fulton, III Dec 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160066921 Brady et al. Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160121080 Cottone May 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160151079 Aklog et al. Jun 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160262880 Li et al. Sep 2016 A1
20160317168 Brady et al. Nov 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170065401 Fearnot et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172554 Bortlein et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Sethna Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180042623 Batiste Feb 2018 A1
20180193591 Jaroch et al. Jul 2018 A1
20180235743 Farago et al. Aug 2018 A1
20190021759 Krolik et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190192175 Chida et al. Jun 2019 A1
20190209206 Patel et al. Jul 2019 A1
20190216476 Barry et al. Jul 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190255290 Snyder et al. Aug 2019 A1
20190365411 Avneri et al. Dec 2019 A1
Foreign Referenced Citations (95)
Number Date Country
1658920 Aug 2005 CN
1972728 May 2007 CN
103071195 May 2013 CN
104507380 Apr 2015 CN
104905873 Sep 2015 CN
105007973 Oct 2015 CN
105307582 Feb 2016 CN
105726163 Jul 2016 CN
106232059 Dec 2016 CN
20 2009 001 951 Apr 2010 DE
10 2009 056 450 Jun 2011 DE
10 2010 010 849 Sep 2011 DE
10 2010 014 778 Oct 2011 DE
10 2010 024 085 Dec 2011 DE
10 2011 014 586 Sep 2012 DE
2301450 Mar 2011 EP
2628455 Aug 2013 EP
3302312 Apr 2018 EP
3 420 978 Jan 2019 EP
2498349 Jul 2013 GB
9-19438 Jan 1997 JP
WO 9304722 Mar 1993 WO
9424926 Nov 1994 WO
9727808 Aug 1997 WO
9738631 Oct 1997 WO
9920335 Apr 1999 WO
9956801 Nov 1999 WO
9960933 Dec 1999 WO
0121077 Mar 2001 WO
0202162 Jan 2002 WO
0211627 Feb 2002 WO
0243616 Jun 2002 WO
02070061 Sep 2002 WO
02094111 Nov 2002 WO
03002006 Jan 2003 WO
03018085 Mar 2003 WO
03030751 Apr 2003 WO
03051448 Jun 2003 WO
2004028571 Apr 2004 WO
2004056275 Jul 2004 WO
2005000130 Jan 2005 WO
2005027779 Mar 2005 WO
WO 2005027751 Mar 2005 WO
2006021407 Mar 2006 WO
2006031410 Mar 2006 WO
2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
2007054307 May 2007 WO
2007068424 Jun 2007 WO
2008034615 Mar 2008 WO
2008051431 May 2008 WO
2008131116 Oct 2008 WO
WO 2009019664 Feb 2009 WO
2009031338 Mar 2009 WO
2009076482 Jun 2009 WO
2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
WO 2009103125 Aug 2009 WO
2010010545 Jan 2010 WO
2010046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
2010146581 Dec 2010 WO
2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
2011095352 Aug 2011 WO
2011106426 Sep 2011 WO
2011110316 Sep 2011 WO
2012052982 Apr 2012 WO
2012064726 May 2012 WO
2012081020 Jun 2012 WO
2012110619 Aug 2012 WO
2012120490 Sep 2012 WO
2012156924 Nov 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
2013105099 Jul 2013 WO
2013109756 Jul 2013 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
2015061365 Apr 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
WO 2015179377 Nov 2015 WO
2015189354 Dec 2015 WO
2016010995 Jan 2016 WO
WO 2017004234 Jan 2017 WO
2018193603 Oct 2018 WO
WO 2018178979 Oct 2018 WO
WO 2019064306 Apr 2019 WO
WO 2019079296 Apr 2019 WO
WO 2020139979 Jul 2020 WO
Non-Patent Literature Citations (15)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
International Search Report and Written Opinion issued for Application No. PCT/EP2017/069668 dated Nov. 27, 2017.
International Search Report and Written Opinion issued for Application No. PCT/EP2017/0696688 dated Nov. 27, 2017.
International Search Report of PCT/IE2011/000057, dated Feb. 3, 2012 (5 pages).
International Search Report of PCT/IE2012/000011, dated Oct. 10, 2012 (3 pages).
Office Action issued in U.S. Appl. No. 14/737,249 dated Apr. 10, 2018.
Office Action issued in U.S. Appl. No. 15/158,384 dated Jul. 20, 2018.
Partial European Search Report issued in Application 17204015.6 dated May 17, 2018.
U.S. Office Action issued in corresponding U.S. Appl. No. 15/158,384 dated Jun. 12, 2019.
Written Opinion and International Search Report, dated Jul. 27, 2011, from international Application No. PCT/IE2011/000026 (8 pages).
Extended European Search Report issued in corresponding European Patent Application No. 20 19 5533 dated Feb. 8, 2021.
European Search Report issued in corresponding EP Appln. No. 20 19 7446 dated Jan. 19, 2021.
Struffert, T., et al. “Intravenous flat detector CT angiography for non-invasive visualisation of intracranial flow diverter: technical feasibility” Eur Radiol 21:1797-1801 (2011).
Extended European Search Report dated Jul. 28, 2021 issued in European Patent Application No. 20 21 0069.
Extended European Search Report dated Aug. 5, 2021 issued in European Patent Application No. 21 16 7037.
Related Publications (1)
Number Date Country
20190167287 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
62376264 Aug 2016 US