1. Field of the Invention
The present invention relates to articulated arms and coordinate measurement, and more particularly to coordinate measurement machines.
2. Description of the Related Art
Rectilinear measuring systems, also referred to as coordinate measuring machines (CMMs) and articulated arm measuring machines, are used to generate highly accurate geometry information. In general, these instruments capture the structural characteristics of an object for use in quality control, electronic rendering and/or duplication. One example of a conventional apparatus used for coordinate data acquisition is a portable coordinate measuring machine (PCMM), which is a portable device capable of taking highly accurate measurements within a measuring sphere of the device. Such devices often include a probe mounted on an end of an arm that includes a plurality of transfer members connected together by joints. The end of the arm opposite the probe is typically coupled to a moveable base. Typically, the joints are broken down into singular rotational degrees of freedom, each of which is measured using a dedicated rotational transducer. During a measurement, the probe of the arm is moved manually by an operator to various points in the measurement sphere. At each point, the position of each of the joints must be determined at a given instant in time. Accordingly, each transducer outputs an electrical signal that varies according to the movement of the joint in that degree of freedom. Typically, the probe also generates a signal. These position signals and the probe signal are transferred through the arm to a recorder/analyzer. The position signals are then used to determine the position of the probe within the measurement sphere. See e.g., U.S. Pat. Nos. 5,829,148 and 7,174,651, which are incorporated herein by reference in their entireties.
Generally, there is a demand for such machines with a high degree of accuracy, high reliability and durability, substantial ease of use, and low cost, among other qualities. The disclosure herein provides improvements of at least some of these qualities.
In one embodiment an articulated arm CMM includes a plurality of articulated arm members, a measuring probe at a distal end, and a base at a proximal end. The articulated arm further comprises a docking portion on the base, the docking portion configured to form a connection with a modular feature pack.
In another embodiment, an articulated arm CMM system comprises an articulated arm comprising a plurality of articulated arm members, a measuring probe at a distal end, and a base at a proximal end, the base comprising a docking portion. The articulated arm CMM system also includes a plurality of feature packs configured to electronically connect to the articulated arm via the docking portions and provide additional electronic functionality.
In another embodiment, a feature pack for an articulated arm portable CMM comprises a modular design with a shape substantially matching the shape of the base of the portable CMM. The feature pack further includes at least one electronic device providing additional functionality to the CMM.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
The position of the rigid transfer members 20 and the coordinate acquisition member 50 may be adjusted using manual, robotic, semi-robotic and/or any other adjustment method. In one embodiment, the PCMM 1, through the various articulation members 30-36, is provided with seven rotary axes of movement. It will be appreciated, however, that there is no strict limitation to the number of axes of movement that may be used, and fewer or additional axes of movement may be incorporated into the PCMM design.
In the embodiment PCMM 1 illustrated in
As is know in the art (see e.g., U.S. Pat. No. 5,829,148, which is hereby incorporated by reference herein) and depicted in
The hinge joint, in turn, is formed, in part, by the combination of a yoke 28 extending from one end of a transfer member (see
Each hinge or swiveling joint has its own dedicated motion transducer in the form of an encoder 37 which can be seen in
In various embodiments, the coordinate acquisition member 50 comprises a contact sensitive member 55 (depicted as a hard probe in
Further description of certain embodiments of a coordinate acquisition member that can be used with the embodiments described herein can be found in U.S. patent application Ser. No. 12/487,535, filed 18 Jun. 2009 and entitled ARTICULATING MEASURING ARM WITH LASER SCANNER, now issued as U.S. Pat. No. 7,908,757, which is incorporated by reference herein in its entirety. As depicted in said reference, the coordinate acquisition member can include a modular laser scanner that can attach to the main body of the coordinate acquisition member (which can also include a touch probe). The modular features can allow various other coordinate detection devices to be used with the coordinate acquisition member. Additionally, other coordinate acquisition members can be used, as is generally know by those of skill in the art.
Advantageously, as depicted in
To facilitate assembly of the dual-axis assembly, the dual-axis housing 100 can include a removable back cover 102, shown removed in
The removable back cover 102 can provide a general sealing of the interior of the dual-axis housing 100 from the external elements, protecting the encoders 37 positioned within the housing. When the cover 102 is removed the separate encoder 37 associated with the articulation member 34 can be exposed and inserted/removed from the dual-axis housing 100 into a swivel-receiving portion 104 generally axially aligned with the depicted transfer member 20 (as depicted in
Additionally, additional electronics can be inserted/removed while the cover 102 is removed, as depicted in
Further, in the depicted dual-axis housing 100 the separate encoder 37 associated with the articulation member 35 can be inserted/removed independent of the back cover 102. To facilitate this insertion/removal, the dual-axis housing 100 can have a hinge-receiving portion 106 oriented perpendicularly from a primary plane of the housing. The hinge-receiving portion 106 can have an open end 108, into which the encoder 37 can enter, and a substantially closed end 110 against which the encoder can abut to define a position for the encoder. Once the encoder 37 has been inserted, a cap piece 112 can then be inserted to secure the encoder within the hinge-receiving portion 106.
As depicted in
In the depicted embodiment, the encoder associated with the articulation member 35 can mount with an adjacent transfer member, not shown in
Placing the encoders 37 into a single housing can provide numerous advantages over prior art assemblies with separate housings. For example, the combined housing can reduce the number of parts and joints required, and thus also reduce cost and assembly time. Further, the accuracy of the device can improve from the elimination of deflection, misalignment, or other problems with multiple components. Additionally, removal of the additional housing can allow a more compact combined joint assembly, allowing the arm to be better supported and have less weight. As shown
Although depicted as enclosing the second and third axes from the base, a similar dual-axis housing 100 can be used with other combinations of articulation members, such as the fourth and fifth articulation members 32, 33. Further, the dual-axis housing can provide additional advantages not explicitly discussed herein. However, it should be noted that in other embodiments of the inventions described herein, the articulation members 30-36 can each have a separate housing.
It should be appreciated that the dual-axis housing or joint assembly described above can be used in other types of CMMs and need not be used in combination with the additional embodiments described below.
This improved counterbalance system 80 can provide a number of advantages. For example, this design can allow the first axis of rotation from the base (associated with articulation member 36) to be shorter, reducing associated deflection. Additionally, this reduced length can be accomplished without a reduced angular span of rotation about the pivot 88. The improved counterbalance system 80 can also reduce the number of parts required, as the locking mechanism and the counterbalance mechanism can be integrally combined into a single system. Further, the piston assembly 84 can damp the motion about the pivot 88. This reduces the chance of damaging the CMM when a user tries to move the arm while it is still locked. However, it should be noted that in other embodiments of the inventions described herein, a different counterbalance system can be used, such as a weight provided on a back end of a transfer member 20. Further, in other embodiments of the inventions described herein, a different locking mechanism can be used, such as a rigid physical stop. It should be appreciated the improved counterbalance system 80 described above can be used in other types of CMMs and need not be used in combination with the additional embodiments described above and below the preceding section.
It should be appreciated the improved handle 40 described above can be used in other types of CMMs and need not be used in combination with the additional embodiments described above and below the preceding section
Additionally or alternatively, in some embodiments a CMM arm 1 can be at least partially controlled by motion of the arm itself, as depicted in
For example, in some embodiments the CMM arm 1 can enter into different data acquisition modes depending on its general orientation. Varying the data acquisition mode by position can be advantageous where the CMM arm 1 regularly measures products that require different data acquisition modes along different parts of a product.
Further, in some embodiments the arm can enter into different data acquisition modes depending on its speed of movement. For example, an operator of the CMM may move the CMM slowly when a critical point will soon be measured. Thus, the CMM can increase its measurement frequency, accuracy, or other characteristics when the arm is moving slowly. Additionally, the CMM can be toggled between a mode where the arm is used as a computer mouse and a measurement mode with a quick movement of one of the last axes (embodiments of an associated computer further described below).
As with the previous embodiments, it should be appreciated that these features related to control of the arm can be used in other types of CMMs and need not be used in combination with the additional embodiments described above and below the preceding section.
As one example, a feature pack 90 can include a battery, such as a primary battery or an auxiliary battery. Advantageously, in embodiments where the pack 90 is an auxiliary battery the CMM can include an internal, primary battery that can sustain operation of the CMM while the auxiliary battery is absent or being replaced. Thus, by circulating auxiliary batteries a CMM can be sustained indefinitely with no direct power connection.
As another example, a feature pack 90 can include a data storage device. The available data storage on the feature pack 90 can be arbitrarily large, such that the CMM can measure and retain a large amount of data without requiring a connection to a larger and/or less convenient data storage device such as a desktop computer. Further, in some embodiments the data storage device can transfer data to the arm, including instructions for arm operation such as a path of movement for a motorized arm, new commands for the arm upon pressing of particular buttons or upon particular motions or positions of the arm, or other customizable settings.
In examples where the feature pack includes wireless capability, similar functionality can be provided as with a data storage device. With wireless capability, data can be transferred between the CMM and an external device, such as a desktop computer, continuously without a wired connection. In some embodiments, the CMM can continuously receive commands from the auxiliary device. Further, in some embodiments the auxiliary device can continuously display data from the arm, such as the arm's position or data points that have been acquired. In some embodiments the device can be a personal computer (“PC”) and the feature pack can transmit arm coordinate data and scanner data wirelessly to the PC. Said feature pack can combine the arm data and scanner data in the feature pack before wireless transmission or transmit them as separate data streams.
In further embodiments, the feature packs can also include data processing devices. These can advantageously perform various operations that can improve the operation of the arm, data storage, or other functionalities. For example, in some embodiments commands to the arm based on arm position can be processed through the feature pack. In additional embodiments, the feature pack can compress data from the arm prior to storage or transmission.
In another example, the feature pack can also provide mechanical support to the CMM. For example, the feature pack can connect to the base 10 and have a substantial weight, thus stabilizing the CMM. In other embodiments, the feature pack may provide for a mechanical connection between the CMM and a support on which the CMM is mounted.
In yet another example, the feature pack can include thermal functionality. For example, the feature pack can include a heat sink, cooling fans, or the like. A connection between the docking portion and the feature pack can also connect by thermally conductive members to electronics in the base 10 and the remainder of the CMM, allowing substantial heat transfer between the CMM arm and the feature pack.
Further, as depicted in
Again, the feature packs 90 can be used in combination with each other and the other features described herein and/or can be used independently in other types of CMMs.
Additionally, in some embodiments the CMM arm 1 can include an absolute encoder disk 95, a demonstrative embodiment depicted in
In prior art encoders an incremental and repetitive surface was often used, in which the coded surface only indicates incremental steps and not an absolute position. Thus, incremental encoders would require a return to a uniquely identified home position to re-index and determine the incremental positions away from the home position. Advantageously, some embodiments of an absolute encoder disk 95 can eliminate the required return to a home position. This feature of a CMM can also be used in combination with the other features described herein and/or can be used independently in other types of CMMs.
Advantageously, the absolute encoder disk 95 can improve functionality of a CMM arm 1 that enters a sleep mode. Entering sleep mode can reduce the power consumption of a CMM arm 1. However, if enough systems are shut down during sleep mode then incremental encoders may “forget” their position. Thus, upon exiting sleep mode incremental encoders may need to be brought back to the home position prior to use. Alternatively, incremental encoders can be kept partially powered-on during sleep mode to maintain their incremental position. Advantageously, with an absolute encoder disk 95 the encoders can be completely powered off during sleep mode and instantly output their position when power is returned. In other modes, the absolute encoder can read its position at a lower frequency without concern that it may miss an incremental movement and thus lose track of its incremental position. Thus, the CMM arm 1 can be powered-on or awakened and can immediately begin data acquisition, from any starting position, without requiring an intermediary resetting to the “home” position. In some embodiments absolute encoders can be used with every measured axis of rotation of the CMM. This feature of a CMM can also be used in combination with the other features described herein and/or can be used independently in other types of CMMs. For example, as described above, this sleep mode can be induced by movement into a particular position. As a further example, the encoder disk 38a can be an absolute encoder disk 95.
Additionally, in some embodiments the CMM arm 1 can be associated with calibration software. Generally, calibration of a CMM arm can be performed by positioning the distal end of the CMM arm (e.g. the probe) at certain predefined and known positions, and then measuring the angular position of the arm. However, these calibration points often do not define a unique arm orientation, but instead can be reached with a plurality of arm positions. To improve the effectiveness of the calibration procedure, software can be included that indicates a preferred or desired CMM arm calibration position 1a, including the distal point as well as the orientation of the rest of the arm. Further, in some embodiments the software can also show the arm's current position 1b in real time as compared to the desired position 1a, as depicted in
As depicted in
In various embodiments, the computer 210 may include one or more processors, one or more memories, and one or more communication mechanisms. In some embodiments, more than one computer may be used to execute the modules, methods, and processes discussed herein. Additionally, the modules and processes herein may each run on one or multiple processors, on one or more computers; or the modules herein may run on dedicated hardware. The input devices 230 may include one or more keyboards (one-handed or two-handed), mice, touch screens, voice commands and associated hardware, gesture recognition, or any other means of providing communication between the operator 240 and the computer 210. The display 220 may be a 2D or 3D display and may be based on any technology, such as LCD, CRT, plasma, projection, et cetera.
The communication among the various components of system 200 may be accomplished via any appropriate coupling, including USB, VGA cables, coaxial cables, FireWire, serial cables, parallel cables, SCSI cables, IDE cables, SATA cables, wireless based on 802.11 or Bluetooth, or any other wired or wireless connection(s). One or more of the components in system 200 may also be combined into a single unit or module. In some embodiments, all of the electronic components of system 200 are included in a single physical unit or module.
The enhanced capabilities of the calibration software can allow the operator to refer simply to the live images on the display and position the live image over the desired image which reduces the need for manuals or additional training documentation which slows down the calibration process. Additionally, new calibration technicians can be trained accurately and quickly with the aid of the aforementioned display. The data acquired from these methods of calibration can be more repeatable and more accurate due to, e.g., increased consistency of articulations. In addition to positioning of the CMM in the correct pose, the calibration artifact 120 should be positioned in the correct location within the arm's volume of reach. When the display shows a true 3 dimensional image, the position of the calibration artifact in 3D space can also be correctly displayed, further ensuring that the correct volume of measurement is measured.
These calibration features of a CMM can also be used in combination with the other features described herein and/or can be used independently in other types of CMMs. For example, in some embodiments the calibration process can utilize commands based on the position and motion of the CMM (as discussed above). In some embodiments, during calibration holding the arm still for an extended period of time can indicate to the calibration software that the arm is in the desired position. The software can then acknowledge its processing of this command with a change in display, sound, color, etc. This result can then be confirmed by the operator with a rapid motion of the arm out of said position. The calibration software can then indicate a next calibration point, or indicate that calibration is complete. In addition this functionality can be extended to the operator as well. One example is during the calibration of the probe the software can display the required articulation pose that the CMM should be in as well as the actual pose that it is in. The operator can then move the CMM until it is in the correct position and record a position or it can be recorded automatically. This simplifies the process for the user and improves the accuracy of the data taken. Different methods can be presented depending on the type of probe that is sensed to be present such as laser line scanner, touch trigger probe, etc.
Even further, in some embodiments the CMM arm 1 can include a tilt sensor. In some embodiments the tilt sensor can have an accuracy of at least approximately 1 arc-second. The tilt sensor can be included in the base 10, a feature pack 90, or in other parts of the CMM arm 1. When placed in the base 10 or the feature pack 90, the tilt sensor can detect movement of the CMM arm's support structure, such as a table or tripod on which the arm sits. This data can then be transferred to processing modules elsewhere in the arm or to an external device such as a computer. The CMM arm 1 or the external device can then warn the user of the movement in the base and/or attempt to compensate for the movement, for example when the tilt changes beyond a threshold amount. Warnings to the user can come in a variety of forms, such as sounds, LED lights on the handle 40 or generally near the end of the arm 1, or on a monitor connected to the arm 1. Alternatively or additionally, the warning can be in the form of a flag on the data collected by the arm 1 when tilting has occurred. This data can then be considered less accurate when analyzed later. When attempting to compensate for the movement, in some embodiments the tilting and its effects on position can be partially measured and accounted for in the calibration process. In further embodiments, the tilting can be compensated by adjusting the angular positions of the articulation members accordingly. This feature of a CMM can also be used in combination with the other features described herein and/or can be used independently in other types of CMMs.
In further embodiments, a trigger signal is sent from the arm to the scanner upon each measurement of the arm position. Coincident with the arm trigger the arm can latch the arm position and orientation. The scanner can also record the time of receipt of the signal (e.g. as a time stamp), relative to the stream of scanner images being captured (also, e.g., recorded as a time stamp). This time signal data from the arm can be included with the image data. Dependent on the relative frequency of the two systems (arm and scanner) there may be more than one arm trigger signal per scanner image. It might not be desirable to have the arm running at a lower frequency than the scanner, and this usually results in the arm and scanner frequencies being at least partially non-synchronized. Post-processing of the arm and scanner data can thus combine the arm positions by interpolation with the scanner frames to estimate the arm position at the time of a scanner image. In some embodiments, the interpolation can be a simple, linear interpolation between the two adjacent points. However, in other embodiments higher-order polynomial interpolations can be used to account for accelerations, jerks, etc. This feature of a CMM can also be used in combination with the other features described herein and/or can be used independently in other types of CMMs.
The various devices, methods, procedures, and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein. Also, although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, the invention is not intended to be limited by the specific disclosures of preferred embodiments herein.
This application is a continuation of U.S. patent application Ser. No. 13/411,252, filed Mar. 2, 2012, now issued as U.S. Pat. No. 8,407,907, which is a continuation application of U.S. patent application Ser. No. 12/748,206, filed Mar. 26, 2010, now issued as U.S. Pat. No. 8,151,477, and entitled “CMM WITH MODULAR FUNCTIONALITY”, which claims the priority benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/259,105 (filed Nov. 6, 2009), the entirety of each hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4492036 | Beckwith | Jan 1985 | A |
4561776 | Pryor | Dec 1985 | A |
4592697 | Tuda et al. | Jun 1986 | A |
4838696 | Pryor | Jun 1989 | A |
4961267 | Herzog | Oct 1990 | A |
4972090 | Eaton | Nov 1990 | A |
5008555 | Mundy | Apr 1991 | A |
5084981 | McMurtry et al. | Feb 1992 | A |
5088337 | Bennett | Feb 1992 | A |
5129044 | Kashiwagi et al. | Jul 1992 | A |
5148377 | McDonald | Sep 1992 | A |
5187874 | Takahashi et al. | Feb 1993 | A |
5189797 | Granger | Mar 1993 | A |
5251156 | Heier et al. | Oct 1993 | A |
5332895 | Rieder | Jul 1994 | A |
5396712 | Herzog | Mar 1995 | A |
5408754 | Raab | Apr 1995 | A |
5412880 | Raab | May 1995 | A |
5505003 | Evans et al. | Apr 1996 | A |
5510977 | Raab | Apr 1996 | A |
5521847 | Ostrowski et al. | May 1996 | A |
5526576 | Fuchs et al. | Jun 1996 | A |
5528505 | Granger et al. | Jun 1996 | A |
5611147 | Raab | Mar 1997 | A |
5615489 | Breyer et al. | Apr 1997 | A |
5757499 | Eaton | May 1998 | A |
5768792 | Raab | Jun 1998 | A |
5794356 | Raab | Aug 1998 | A |
5822450 | Arakawa et al. | Oct 1998 | A |
5829148 | Eaton | Nov 1998 | A |
5978748 | Raab | Nov 1999 | A |
5991704 | Rekar et al. | Nov 1999 | A |
6015473 | Rosenberg et al. | Jan 2000 | A |
6134506 | Rosenberg et al. | Oct 2000 | A |
6151789 | Raab et al. | Nov 2000 | A |
6161079 | Zink et al. | Dec 2000 | A |
6166811 | Long et al. | Dec 2000 | A |
6219928 | Raab et al. | Apr 2001 | B1 |
6366831 | Raab | Apr 2002 | B1 |
6370787 | Kikuchi | Apr 2002 | B1 |
6430828 | Ulbrich | Aug 2002 | B1 |
6487896 | Dall'Aglio | Dec 2002 | B1 |
6526670 | Carli | Mar 2003 | B1 |
6598306 | Eaton | Jul 2003 | B2 |
6606539 | Raab | Aug 2003 | B2 |
6611346 | Granger | Aug 2003 | B2 |
6611617 | Crampton | Aug 2003 | B1 |
6618496 | Tassakos et al. | Sep 2003 | B1 |
6668466 | Bieg et al. | Dec 2003 | B1 |
6759648 | Baxter et al. | Jul 2004 | B2 |
6817108 | Eaton | Nov 2004 | B2 |
6892465 | Raab et al. | May 2005 | B2 |
6904691 | Raab et al. | Jun 2005 | B2 |
6925722 | Raab et al. | Aug 2005 | B2 |
6931745 | Granger | Aug 2005 | B2 |
6952882 | Raab et al. | Oct 2005 | B2 |
6973734 | Raab et al. | Dec 2005 | B2 |
6984236 | Raab | Jan 2006 | B2 |
6988322 | Raab et al. | Jan 2006 | B2 |
7003892 | Eaton et al. | Feb 2006 | B2 |
7017275 | Raab et al. | Mar 2006 | B2 |
7043847 | Raab et al. | May 2006 | B2 |
7051447 | Kikuchi et al. | May 2006 | B2 |
7051450 | Raab et al. | May 2006 | B2 |
7069664 | Raab et al. | Jul 2006 | B2 |
7073271 | Raab et al. | Jul 2006 | B2 |
7096077 | Price et al. | Aug 2006 | B2 |
7152456 | Eaton | Dec 2006 | B2 |
7174651 | Raab et al. | Feb 2007 | B2 |
7269910 | Raab et al. | Sep 2007 | B2 |
7296364 | Seitz et al. | Nov 2007 | B2 |
7296979 | Raab et al. | Nov 2007 | B2 |
7372581 | Raab et al. | May 2008 | B2 |
7395606 | Crampton | Jul 2008 | B2 |
7441341 | Eaton | Oct 2008 | B2 |
7525276 | Eaton | Apr 2009 | B2 |
7546689 | Ferrari et al. | Jun 2009 | B2 |
7568293 | Ferrari | Aug 2009 | B2 |
7578069 | Eaton | Aug 2009 | B2 |
D599226 | Gerent et al. | Sep 2009 | S |
7591078 | Crampton | Sep 2009 | B2 |
7614157 | Granger | Nov 2009 | B2 |
7624510 | Ferrari | Dec 2009 | B2 |
7640674 | Ferrari et al. | Jan 2010 | B2 |
7676945 | Prestidge et al. | Mar 2010 | B2 |
7693325 | Pulla et al. | Apr 2010 | B2 |
7743524 | Eaton et al. | Jun 2010 | B2 |
7774949 | Ferrari | Aug 2010 | B2 |
7779548 | Ferrari | Aug 2010 | B2 |
7784194 | Raab et al. | Aug 2010 | B2 |
7797849 | Gomez et al. | Sep 2010 | B2 |
7805851 | Pettersson | Oct 2010 | B2 |
7805854 | Eaton | Oct 2010 | B2 |
7908757 | Ferrari | Mar 2011 | B2 |
7954250 | Crampton | Jun 2011 | B2 |
7984558 | Ferrari | Jul 2011 | B2 |
D643319 | Ferrari et al. | Aug 2011 | S |
8001697 | Danielson et al. | Aug 2011 | B2 |
8015721 | Eaton et al. | Sep 2011 | B2 |
8082673 | Desforges et al. | Dec 2011 | B2 |
8099877 | Champ | Jan 2012 | B2 |
8104189 | Tait | Jan 2012 | B2 |
8112896 | Ferrari et al. | Feb 2012 | B2 |
8122610 | Tait et al. | Feb 2012 | B2 |
8123350 | Cannell et al. | Feb 2012 | B2 |
8127458 | Ferrari | Mar 2012 | B1 |
8145446 | Atwell et al. | Mar 2012 | B2 |
8151477 | Tait | Apr 2012 | B2 |
8176646 | Ferrari | May 2012 | B2 |
8201341 | Ferrari | Jun 2012 | B2 |
8220173 | Tait | Jul 2012 | B2 |
8229208 | Pulla et al. | Jul 2012 | B2 |
8327555 | Champ | Dec 2012 | B2 |
8336220 | Eaton et al. | Dec 2012 | B2 |
8402669 | Ferrari et al. | Mar 2013 | B2 |
8407907 | Tait | Apr 2013 | B2 |
8497901 | Pettersson | Jul 2013 | B2 |
20080016711 | Baebler | Jan 2008 | A1 |
20090083985 | Ferrari | Apr 2009 | A1 |
20110112786 | Desforges et al. | May 2011 | A1 |
20110170534 | York | Jul 2011 | A1 |
20110173827 | Bailey et al. | Jul 2011 | A1 |
20110175745 | Atwell et al. | Jul 2011 | A1 |
20110178765 | Atwell et al. | Jul 2011 | A1 |
20110213247 | Shammas | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
3204885 | Feb 1983 | DE |
4345091 | Jul 1995 | DE |
19945189 | Apr 2001 | DE |
10112977 | Nov 2002 | DE |
10 2006032094 | Jan 2008 | DE |
0266070 | May 1988 | EP |
0522610 | Jan 1993 | EP |
0591550 | Apr 1994 | EP |
2108917 | Oct 2009 | EP |
2 177 868 | Apr 2010 | EP |
2740546 | Apr 1997 | FR |
2274526 | Jul 1994 | GB |
05031685 | Feb 1993 | JP |
2003021133 | Jan 2003 | JP |
2003175484 | Jun 2003 | JP |
WO 9305479 | Mar 1993 | WO |
WO 9808050 | Feb 1998 | WO |
WO 2007039278 | Apr 2007 | WO |
WO 2008066896 | Jun 2008 | WO |
Entry |
---|
European Patent Office, International Search Report and Written Opinion, Sep. 15, 2011, Issue PCT/US2010/055713. |
Horie T. et al., Remote force control of robot using PHANToM haptic model and force sensor, Assembly and Task Planning, Proceedings of the IEEE international L. Symposium, May 28, 2001, pp. 128-135, NJ, USA. |
Number | Date | Country | |
---|---|---|---|
20130239424 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61259105 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13411252 | Mar 2012 | US |
Child | 13786183 | US | |
Parent | 12748206 | Mar 2010 | US |
Child | 13411252 | US |