The present invention relates to the field of power transistors. More particularly, the present invention relates to the field of integrated MOS power transistors with reduced gate charge.
A power supply is a device or system that supplies electrical or other types of energy to an output load or group of loads. The term power supply can refer to a main power distribution system and other primary or secondary sources of energy. A switched-mode power supply, switching-mode power supply or SMPS, is a power supply that incorporates a switching regulator. While a linear regulator uses a transistor biased in its active region to specify an output voltage, a SMPS actively switches a transistor between full saturation and full cutoff at a high rate. The resulting rectangular waveform is then passed through a low-pass filter, typically an inductor and capacitor (LC) circuit, to achieve an approximated output voltage.
SMPS is currently the dominant form of voltage conversion device because of its high power conversion efficiency, small size and weight, and low cost. SMPS takes input power from a source, such as a battery or wall socket, and converts the input power into short pulses according to the demand for power from the circuits coupled to the SMPS output.
MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are commonly used in SMPS. MOSFETs are commonly manufactured separately, as discrete transistors. Each MOSFET is then connected to other integrated circuits that are part of the SMPS. Using discrete devices in this manner increases cost and size of the overall SMPS.
High performing MOSFETs are significant to the conversion efficiency of SMPS because MOSFETs are some of the most power dissipating components in the SMPS. Also, the maximum possible switching frequency of the MOSFETs dictates the size, cost, and power losses in the inductors and capacitors included in the SMPS output filter circuits. Under normal SMPS operation, MOSFETs are turned on and off rapidly, so for efficient operation the MOSFETs should have low values of both resistance and gate capacitance.
A MOSFET has a gate, a drain, and a source terminal, as well as a fourth terminal called the body, base, bulk, or substrate. The substrate simply refers to the bulk of the semiconductor in which the gate, source, and drain lie. The fourth terminal functions to bias the transistor into operation. The gate terminal regulates electron flow through a channel region in the substrate, either enabling or blocking electron flow through the channel. Electrons flow through the channel from the source terminal towards the drain terminal when influenced by an applied voltage.
The channel of a MOSFET is doped to produce either an N-type semiconductor or a P-type semiconductor. The drain and source may be doped of opposite type to the channel, in the case of enhancement mode MOSFETs, or doped of similar type to the channel as in depletion mode MOSFETs. The MOSFET utilizes an insulator, such as silicon dioxide, between the gate and the substrate. This insulator is commonly referred to as the gate oxide. As such, the gate terminal is separated from the channel in the substrate by the gate oxide.
When a voltage is applied between the gate and source terminals, the electric field generated penetrates through the gate oxide and creates a so-called “inversion layer”, or channel, at the semiconductor-insulator interface. The inversion channel is of the same type, P-type or N-type, as the source and drain, so as to provide a channel through which current can pass. Varying the voltage between the gate and substrate modulates the conductivity of this layer, which functions to control the current flow between drain and source.
A power MOSFET is a specific type of MOSFET widely used as a low-voltage switch, for example less than 200V. A lateral power MOSFET refers to a configuration where both the drain and the source are positioned lateral of each other, such as both at the top surface of the substrate. This is in contrast to a vertical power MOSFET where the drain and source are stacked vertically relative to each other, such as the source at the top surface of the substrate and the drain at the bottom surface.
One limiting factor in how fast the power MOSFET can be switched on and off is the amount of gate charge needed to turn the transistor on and off. The gate charge refers to the number of electrons that are moved into and out of the gate to turn the transistor on and off, respectively. The larger the needed gate charge, the more time to switch the transistor on and off. There is an advantage to quickly switching the power transistor in a switch-mode power supply. The higher the frequency, the smaller the size of the discrete components used in the gate drive circuit of the SMPS. Smaller components are less expensive than larger components.
A gate oxide 28 is formed on the top surface of the substrate 10. A polysilicon gate 30 is formed over the gate oxide 28. As shown in
There are three main regions in the substrate 10 relative to the operation of the power transistor: a channel region, a transition region, and a drift region. The channel region is formed underneath the polysilicon gate 30 and in the P-type region 12 of the substrate 10. In other words, the channel region is formed where the polysilicon gate 30 overlaps the P-type region 12. The drift region is the portion of the N-type region 12 underneath the trench 26, or the STI region. The drift region is where most of the drain-to-gate voltage is dropped in the transistor off state. The STI region is necessary to achieve a high drain-to-gate voltage. If the polysilicon gate 30 were to instead terminate over the thin gate oxide, this would result in too high a voltage across the gate oxide and the power transistor would not function. As such, the STI region and the polysilicon gate extension over the STI region are necessary to drop the high gate-to-drain voltage.
The transition region is the portion of the N-type region 12 underneath the gate oxide 28 and the polysilicon gate 30. The transition region provides a current flow path from the channel region to the drift region when the power transistor is turned on. The transition region is also referred to as the accumulation region or the neck region. In many applications, the transition region accounts for the largest single component of on-resistance in a low-voltage power MOSFET. The length of the transition region is an important design consideration, where the length refers to the horizontal direction in
A split gate power transistor includes a laterally configured power MOSFET having a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a polysilicon switching gate positioned over a first channel region of the substrate, and a second portion forming a polysilicon static gate formed over a second channel region and a transition region of the substrate. The first channel region and the second channel region are bridged by a doped bridge region in the substrate. A portion of the static gate extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. The extended portion of the static gate functions as a field plate to establish a high breakdown voltage. The switching gate is electrically coupled to a first voltage source and the static gate is electrically coupled to a second voltage source.
In an aspect, a split gate power transistor is disclosed. The split gate power transistor includes: a doped substrate comprising a source, a bridge, a first channel region, and a second channel region within a first doped region, a drain and a transition region within a second doped region, and a trench within the second doped region, wherein the trench is formed in a first surface of the substrate and the trench is filled with field oxide, further wherein the first channel region is positioned between the source and the bridge, the second channel region is positioned between the bridge and the transition region, the transition region is positioned between the second channel region and the trench, and the trench is positioned between the transition region and the drain; a gate oxide layer positioned on the first surface of the substrate; a first gate positioned on the gate oxide layer and over the first channel region; and a second gate positioned on the gate oxide layer and over the second channel region, the transition region, and a portion of the trench, wherein the first gate is separated from the second gate such that at least a portion of the bridge is uncovered by both the first gate and the second gate.
In another aspect, a method of fabricating a split gate power transistor is disclosed. The method includes: doping a substrate to faun a source and a channel region within a first doped region, and a drain and a transition region within a second doped region, wherein the channel region is positioned between the source and the transition region, and the transition region is positioned between the channel region and the drain; forming a trench within a portion of the transition region proximate the drain; filling the trench with a field oxide; applying a gate oxide layer to a top surface of the substrate; forming a conductive layer over the channel region, the transition region, and a portion of the trench; removing a portion of the conductive layer over a first portion of the channel region, thereby forming two separate conductive layer portions including a first conductive layer portion positioned over a first portion of the channel region, and a second conductive layer portion positioned over a second portion of the channel region, the transition region, and the portion of the trench; and doping the first conductive layer portion, the second conductive layer portion, and a third portion of the channel region exposed where the portion of the conductive layer is removed, thereby forming a doped bridge region between the first portion of the channel region and the second portion of the channel region. The doped bridge region is doped a same type as the source, the drain, and the transition region. The method also include forming a first conductive channel in the first portion of the channel region between the source and the doped bridge region, and forming a second conductive channel in the second portion of the channel region between the doped bridge region and the transition region. The first conductive channel is formed by applying a first voltage to the first gate, and the second conductive channel is formed by applying a second voltage to the second gate. In some embodiments, the power transistor is fabricated using processes compatible with fabricating a complimentary metal-oxide-semiconductor device. In some embodiments, the power transistor is fabricated monolithically as an integrated circuit that includes a switch mode power supply circuit.
The first gate and the second gate are electrically isolated from each other. The first gate is electrically coupled to a first voltage supply, and the second gate is electrically coupled to a second voltage supply. In some embodiments, a constant voltage is applied to the second gate and a switching voltage is applied to the first gate. In other embodiments, a constant voltage is applied to the first gate and a switching voltage is applied to the second gate. In some embodiments, the gate and the field plate are polysilicon. In some embodiments, the first doped region is a P-type region and the second doped region is a N-type region. In some embodiments, the power transistor comprises a lateral double-diffused metal-oxide-semiconductor field-effect transistor. The doped substrate also includes a drift region within the second doped region, wherein the drift region is positioned under the trench. In some embodiments, the substrate comprises a silicon substrate. In some embodiments, the source comprises a double-diffused region. In some embodiments, the trench is formed using a shallow trench isolation process.
Embodiments of the split gate power transistor are described relative to the several views of the drawings. Where appropriate and only where identical elements are disclosed and shown in more than one drawing, the same reference numeral will be used to represent such identical elements.
Embodiments of the present application are directed to a split gate power transistor. Those of ordinary skill in the art will realize that the following detailed description of the split gate power transistor is illustrative only and is not intended to be in any way limiting. Other embodiments of the split gate power transistor will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Reference will now be made in detail to implementations of the split gate power transistor as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Embodiments of a split gate power transistor include a laterally configured power MOSFET having a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a polysilicon switching gate positioned over a first channel region of the substrate, and a second portion forming a polysilicon static gate formed over a second channel region and a transition region of the substrate. The first channel region and the second channel region are bridged by a doped bridge region in the substrate. The bridge is doped the same type as the source and the drain. A portion of the static gate extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. The extended portion of the static gate functions as a field plate to establish a high breakdown voltage. The switching gate is electrically coupled to a first voltage source and the static gate is electrically coupled to a second voltage source. In an exemplary application, a constant voltage is applied to the static gate, and a high frequency switching voltage is applied to the switching gate. The constant voltage applied to the static gate is large enough to establish an inversion layer in the second channel region below the static gate. With the constant voltage applied, the static gate functions as the field plate.
The polysilicon layer is cut over a channel region, or body, of the MOSFET. The substrate includes a doped bridge region, referred to as a bridge, that splits the channel region to form the first channel region and the second channel region. The bridge is formed during fabrication of the switching gate and the static gate. When the polysilicon layer is cut, a portion of the substrate is exposed where the cut portion of the polysilicon is removed. The two polysilicon portions and the exposed portion of substrate are doped. During this doping process, the doped bridge region is formed at the exposed portion of the substrate. The bridge splits the would be channel region into the first channel region and the second channel region. The first channel region is positioned between the source and the bridge. The second channel region is positioned between the bridge and the transition region.
In conventional power MOSFETs, such as that shown in
The split gate power transistor configuration is applicable to all switchable power supply integrated circuits that have internal switches. The fabrication process for the split gate power transistor is CMOS compatible As such, the split gate power transistor can be manufactured monolithically with the output circuit of the SMPS circuit. This configuration is not limited to integrated MOSFETs. The split gate power transistor configuration can be applied to any lateral power MOSFET, either integrated or discrete.
A gate oxide 128 is formed on the top surface of the substrate 110. In some embodiments, the gate oxide layer is deposited using conventional semiconductor deposition processes. A polysilicon layer is formed over the gate oxide 128. A slice of the polysilicon layer is removed, forming two electrically isolated polysilicon portions. The slice of the polysilicon layer is removed from above the P-type region 112. In some embodiments, the polysilicon portions are formed using conventional semiconductor deposition and etching processes. A first polysilicon portion forms a switching gate 130. A second polysilicon portion forms a static gate 132. The switching gate 130 and the static gate 132 are physically separated by a gap 134, which corresponds to the removed slice of polysilicon. A doped bridge region 136, referred to as a bridge, is formed in the substrate below the gap 134. The bridge 136 is formed during fabrication of the switching gate 130 and the static gate 132. Fabricating the switching gate 130 and the static gate 132 includes a doping step. During this doping step, a mask is applied that leaves the switching gate 130, the static gate 132, and the portion of substrate under the gap 134 exposed to dopant. As the dopant is applied, the doped bridge region 136 is formed at the exposed portion of the substrate. The switching gate 130, the static gate 132, and the bridge 136 are doped the same type as the source region 122, and the drain 118.
An insulating oxide 138 covers the switching gate 130 and the static gate 132. As shown in
The static gate 132 extends over the field oxide filled trench 126 to support high gate-to-drain voltage. The static gate 132 is necessary to maintain a higher breakdown voltage. If the static gate is not extended over the trench 126, or the trench 126 itself is removed, the breakdown voltage suffers. In this case, almost all the gate-to-drain voltage is dropped across the thin gate oxide, which does not enable the power transistor to meet the rated voltage.
There are four main regions in the substrate 110 relative to the operation of the split gate power transistor: a first channel region, a second channel region, a transition region, and a drift region. The first channel region is formed underneath the switching gate 130 and in the P-type region 112 of the substrate 110. The second channel region is formed underneath the static gate 132 and in the P-type region 112 of the substrate 110. In other words, the second channel region is formed where the static gate 130 overlaps the P-type region 112. The bridge 136 splits what would have been a single channel region in the P-type region 112 if the gap 134 had not been formed. In the split gate power transistor, the bridge 136 splits this would be single channel region into two separately controllable channel regions, the first channel region and the second channel region. The first channel region is positioned between the source region 122 and the bridge 136. The second channel region is positioned between the bridge 136 and the transition region. The position of the bridge 136, and therefore the gap 134, is far enough from the source region 122 so as to prevent punch-though from the source 122 to the bridge 136 when the device is in an off state. The bridge is also positioned far enough from the P-N junction between the second channel region and the transition region so as to not negatively impact the breakdown voltage.
The drift region is the portion of the N-type region 114 underneath the trench 126, or the STI region. The drift region is necessary to support a high gate-to-drain voltage. If the static gate 132 were to instead terminate over the thin gate oxide, this would result in too high a voltage over the gate oxide and the split gate power transistor would not function. As such, the STI region and the static gate extension over the STI region are necessary to drop the high gate-to-drain voltage. The transition region is the portion of the N-type region 114 underneath the static gate 132. The transition region is also referred to as the accumulation region or the neck region.
Compared to a comparable conventional power transistor that does not have a split gate configuration, such as the power transistor 100 in
In operation, a first voltage supply is electrically coupled to the switching gate 130, schematically shown as terminal 146 in
When the switching voltage is high, a conductive channel is created between the source N+ region 122 and the bridge 136, thereby turning-on the transistor. With the transistor turned on, current flows from the source 116 through the first channel formed underneath the switching gate 130 to the bridge 136, through the second channel formed underneath the static gate 132 to the transition region, and through the transition region and drift region to the drain 118. The transition region and the drift region provide a current flow path from the second channel region to the drain 118 when the split gate power transistor is turned-on. When the switching voltage is low, the current can not flow from the N+ region 122 to the bridge 136 since the conductive first channel region is not created, thereby turning-off the transistor.
The N-type region 214 extends across the entire width of the lower portion of the substrate, including underneath the P-type region 214 on the left hand side of
The curve 300 is the gate charge curve of the split gate power transistor of
It can also be seen that the flat portion of the curve 300 is reduced compared to the flat portion of the curve 310. The flat portion represents the gate-to-drain charge Qgd, which is the integral of the gate-to-drain voltage across the flat region. Within the flat region, more and more current is forced into the gate, but the gate-to-source voltage remains constant.
The gate-to-drain charge Qgd is related to the feedback capacitance between the drain and the gate. In general, the portion of the gate that is positioned over the drain well is amplified and has more of an effect on the gate charge than the portion of the gate that is over the source well. By splitting the polysilicon gate into the switching gate and the static gate, and applying a constant voltage to the static gate, which is the only gate portion positioned over the drain well, the feedback capacitance related to the Miller effect is reduced if not eliminated.
The split gate power transistor provides a reduction in the product of on-resistance (R) and gate charge (Qg). An on-resistance of the power MOSFET is the resistance between the drain and the source while the transistor is turned on. However, there is a slight increase in the product of on-resistance (R) and gate area (A), referred to as the specific on-resistance. The specific on-resistance provides a conceptual measure of the size of the power transistor. The specific on-resistance of the split gate configuration rises compared to a comparable conventional power transistor that does not have a split gate configuration, such as the power transistor 2 in
When the split gate power transistor is turned completely on, for example when the constant voltage applied to the static gate is 5V and the switching voltage applied to the switching gate is high, the current flows through the first channel region, the bridge, and the second channel region, through the transistor region and the drift region, which is under the field oxide filled trench, and back up to the N+ drain. Due to the constant voltage at the static gate, which covers the transition region, electrons accumulate in the transition region.
In an exemplary application, accounting for all effects related to the split gate configuration there is an approximate 65% reduction in the R*Qg product, and an approximate 55% increase in the R*A product compared to comparable conventional power transistor that does not have the split gate configuration.
The split gate power transistor also improves the hot carrier lifetime compared to the comparable conventional power transistor of
In an exemplary application, the cut gap between the switching gate and the static gate is fabricated using 0.18 micron semiconductor processing technology, resulting in a 0.25 micron wide gap. However, the gap can be larger or smaller than 0.25 microns, limited in size only by the available technology. For example, utilization of 0.13 micron semiconductor fabrication technology can achieve a gap width of 0.2 microns. In practice, the gap can be as small as technology allows, thereby minimizing the overall size of the transistor, such as the half-pitch. In the exemplary application using 0.18 semiconductor fabrication technology, the channel region is lengthened by 0.25 microns.
The following highlight some of the properties of the split gate power transistor, especially as compared to a comparable power transistor. First, the gate capacitance and the gate charge are reduced because the switching portion of the gate, the switching gate, has a smaller gate area. Second, because a constant voltage is applied to the static gate that is over the transition region, the gate-to-drain feedback capacitance is greatly reduced. This further reduces the gate charge compared to a comparable power transistor because during switching, the gate-to-drain capacitance is amplified by the Miller effect. Third, the hot carrier lifetime is improved. Fourth, the breakdown voltage BVdss is increased. Fifth, switch mode power supply (SMPS) efficiency is improved. Sixth, the process of fabricating the split gate power transistor is CMOS compatible. As such, the split gate power transistor can be fabricated monolithically with CMOS devices, including the output circuits of a SMPS. Fabrication of a power MOSFET on the same integrated circuit as the SMPS circuit results in smaller overall SMPS system size and cost.
The operation of the split gate power transistor is described above as applying a switching voltage to the gate 130 and a static voltage to the gate 132. Alternatively, the split gate power transistor can be operated such that a constant voltage is applied to the gate 130 and a switching voltage is applied to the gate 132. In an exemplary application, this alternatively configured power transistor functions as an integrated high voltage NAND gate. This integrated device reduces total device area compared to a conventional low-side switching device that connects a discrete CMOS device to a lateral DMOS.
In general, the switching gate and the static gate can be depletion-mode MOS devices or enhancement-mode MOS devices. The bridge is required for the device to operate properly if the static gate is operated in enhancement mode.
Embodiments of the split gate power transistor are described above as N-channel MOSFETs. Alternative embodiments are also contemplated, for example a P-channel MOSFET. Application to a P-channel MOSFET requires a slightly different configuration. Alternative configurations can be implemented where the split gate power transistor is configured with all aspects having opposite polarities than those shown in the described embodiments.
The gate material is described above as being polysilicon. Alternatively, the gate can be made of any conventional material used in the fabrication of semiconductor transistors including, but not limited to, polysilicon and/or metal. The substrate is described above as being silicon. Alternatively, the substrate can be a silicon-based compound, for example silicon germanium (SiGe).
The split gate power transistor has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the power transistor. Such references, herein, to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the power transistor.