The present invention relates generally to information storage and retrieval systems, and more particularly to semiconductor storage elements including one or more transistors.
In general, current memory designs place static random access memory (SRAM) blocks and read only memory (ROM) blocks into completely separate arrays. These arrays then are not physically in proximity with each other and do not share the same basic cell layout. As a result of this, such SRAM blocks and ROM blocks typically have separate address decoding circuitry, output sensing and multiplexing circuitry, and timing circuitry. Some common adverse consequences of this are increased overall circuit complexity, footprint, and power consumption and dissipation.
Designs have now appeared where SRAM and ROM blocks use either common address decoding circuitry or shared sense amplifiers. Relatively recently, a few designs unify SRAM and ROM blocks in physical proximity in the same basic cell layout. These early unified designs, however, still have a number of disadvantages.
For example, U.S. Pat. No. 6,826,073 by Liaw et al. (hereinafter Liaw '073) teaches a combination cell that adds a seventh-transistor ROM circuit to an essentially conventional six-transistor SRAM circuit. The result here, unfortunately, has a number of limitations. For instance, the resulting memory cell has a single word line; a bit line and a bitnot line for its SRAM function (i.e., the conventional differential arrangement); and yet further has a third bit line for its ROM function. When the single word line of Liaw '073 is enabled both its SRAM and ROM functions are accessed together, and the storage states of both appear across the three bit lines. It then falls upon “down stream” circuitry that is necessarily provided and used here to sort out whether RAM or ROM has been read.
Another example of a unified bit cell design is seen in U.S. Pat. No. 6,128,218 by You et al. (hereinafter You '218). This teaches a hybrid memory device that includes an essentially conventional six-transistor SRAM circuit and a four-transistor ROM circuit. [You '218 also teaches a six-transistor SRAM and six-transistor 2xROM cell that is not relevant here.] Conforming with tradition, and thus unlike Liaw '073, You '218 employs only a differential bit and bitnot line arrangement for both its SRAM and ROM functions. For its SRAM function You '218 employs a RAM word line, but for its ROM function it employs both a ROM word line and a ROM activation line. Thus, You '218 uses at least twice the transistors that are used in conventional two-transistor ROM cells, and using cells of this type requires complex “up stream” address decoding circuitry.
Accordingly, there still remains a need for a unified SRAM/ROM cell that efficiently integrates physically into a same basic cell layout, without increasing the transistor count beyond that of discrete SRAM cell and ROM cell solutions, and that uses simple and essentially conventional bit and word line arrangements.
Accordingly, it is an object of the present invention to provide SRAM/ROM unified bit cell.
Briefly, a preferred embodiment of the present invention is a unified memory cell. Bit and bitnot sense lines, and a random access memory (RAM) word line as well as a read only memory (ROM) word line are provided. The unified memory cell unifies a static RAM (SRAM) bit cell and a ROM bit cell. The SRAM bit cell is coupled between the bit and bitnot sense lines, and it is responsive to a signal on the RAM word line. The ROM bit cell is also coupled between the bit and bitnot sense lines, and it is responsive to a signal on the ROM word line. The ROM bit cell particularly includes a first ROM pass transistor and a first node for permanently programming connection of this first ROM pass transistor to either of a voltage line or a ground line. The ROM bit cell further includes a second ROM pass transistor and a second node for permanently programming connection of this second ROM pass transistor to either of the voltage line or the ground line.
These and other objects and advantages of the present invention will become clear to those skilled in the art in view of the description of the best presently known mode of carrying out the invention and the industrial applicability of the preferred embodiment as described herein as illustrated in the figures of the drawings.
The purposes and advantages of the present invention will be apparent from the following detailed description in conjunction with the appended figures of drawings in which:
In the various figures of the drawings, like references are used to denote like or similar elements or steps.
A preferred embodiment of the present invention is a CMOS SRAM/ROM unified bit cell. As illustrated in the various drawings herein, and particularly in the views of
For context,
The SRAM bit cell 32 particularly includes pass transistors 36a-b (as shown) and the ROM bit cell 34 particularly includes pass transistors 38a-b (as shown). The pass transistors 36a-b, 38a-b here are essentially identical, but with the pass transistors 38a-b of the ROM bit cell 34 strapped to Vdd/Vss 40 or ground 42 at programming nodes 44 for bit programming. The physical layouts the SRAM bit cell 32 and the ROM bit cell 34 are thus substantially the same. The SRAM bit cell 32 and the ROM bit cell 34 are commonly connected to a bit sense line 46 (BL) and a bitnot sense line 48 (BLN), and a unique RAM word line 50 and a unique ROM word line 52 are provided, as shown.
As discussed in the Background Art section, above, RAM type memories have traditionally had such peripheral circuitry as they needed, and ROM type memories have separately had such peripheral circuitry as they needed. It has been the present inventors' observation that this is illogical and often quite wasteful, e.g., of circuit footprint, materials, power, and design resources to deal with the redundancy.
The nMOS transistors 66,68 and the pMOS transistors 70,72 comprise a latch for the SRAM bit cell 32. The nMOS pass transistors 36a, 36b are the pass transistors used to connect the SRAM bit cell 32 to the bit sense line 46 and the bitnot sense line 48 when the SRAM bit cell 32 is read or written to. This configuration of transistors 36a-b,66,68,70,72 is a classic six transistor (“6T”) static random access memory (“SRAM”) bit cell.
The SRAM bit cell 32 of the SRAM/ROM bit cell 30 is read by the microprocessor 12 (
The ROM bit cell 34 of the SRAM/ROM bit cell 30 is read by the microprocessor 12 (
One approach to programming the ROM bit cell 34 to a particular data value is to use vias to connect metal straps already provided in the physical layout from the sources of the nMOS pass transistors 38a-b to Vdd/Vss 40 and ground 42, respectively. For example, if the ROM bit cell 34 is to be programmed to a data value of one the source 74 of the nMOS pass transistor 38a connects to a metal strap 76, so a via 78 is added to connect the metal strap 76 to Vdd/Vss 40. Similarly, the source 80 of the nMOS pass transistor 38b connects to a metal strap 82, so a via 84 is added to connect the metal strap 82 to ground 42. Conversely, if the ROM bit cell 34 is to be programmed to a data value of zero the source 74 also connects to a metal strap 86, so a via 88 is added to connect the metal strap 86 to ground 42. And similarly, the source 80 of the nMOS pass transistor 38b also connects to a metal strap 90, so a via 92 is added to connect the metal strap 90 to Vdd/Vss 40.
An alternate approach to programming the ROM bit cell 34 to a data value can use insertion of particular of the metal straps 76,82,86,90 with instances of the vias 78,84,88,92 that are already present in the physical layout. For example, if the ROM bit cell 34 is programmed to a data value of one, the metal strap 76 is inserted to connect the source 74 of the nMOS pass transistor 38a to Vdd/Vss 40, and the metal strap 82 is inserted to connect the source 80 of the nMOS pass transistor 38b to ground 42.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and that the breadth and scope of the invention should not be limited by any of the above described exemplary embodiments, but should instead be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4855803 | Azumai et al. | Aug 1989 | A |
5311464 | Takase et al. | May 1994 | A |
5365475 | Matsumura et al. | Nov 1994 | A |
5388076 | Ihara | Feb 1995 | A |
5408428 | Burgess et al. | Apr 1995 | A |
5432742 | Ihara et al. | Jul 1995 | A |
5453949 | Wiedmann et al. | Sep 1995 | A |
5455788 | Clark | Oct 1995 | A |
5517061 | Azmanov | May 1996 | A |
5880999 | Ansel et al. | Mar 1999 | A |
5923582 | Voss | Jul 1999 | A |
6128218 | You et al. | Oct 2000 | A |
6222216 | Rao et al. | Apr 2001 | B1 |
6438024 | Gold et al. | Aug 2002 | B1 |
6771528 | Jeung et al. | Aug 2004 | B2 |
6822889 | Chen et al. | Nov 2004 | B2 |
6826073 | Liaw et al. | Nov 2004 | B2 |
6906942 | Ostermayr | Jun 2005 | B2 |
7018889 | Porter et al. | Mar 2006 | B2 |
7023744 | Shimanek et al. | Apr 2006 | B1 |
20060028853 | Osada et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080170430 A1 | Jul 2008 | US |