This invention generally relates to the field of digitally controlled printing devices, and in particular to liquid ink print heads which integrate multiple nozzles on a single substrate and in which a liquid drop is selected for printing by thermo-mechanical means.
Ink jet printing has become recognized as a prominent contender in the digitally controlled, electronic printing arena because, e.g., of its non-impact, low noise characteristics and system simplicity. For these reasons, ink jet printers have achieved commercial success for home and office use and other areas.
Ink jet printing mechanisms can be categorized as either continuous (CIJ) or Drop-on-Demand (DOD). U.S. Pat. No. 3,946,398, which issued to Kyser et al. in 1970, discloses a DOD ink jet printer which applies a high voltage to a piezoelectric crystal, causing the crystal to bend, applying pressure on an ink reservoir and jetting drops on demand. Piezoelectric DOD printers have achieved commercial success at image resolutions greater than 720 dpi for home and office printers. However, piezoelectric printing mechanisms usually require complex high voltage drive circuitry and bulky piezoelectric crystal arrays, which are disadvantageous in regard to number of nozzles per unit length of print head, as well as the length of the print head. Typically, piezoelectric print beads contain at most a few hundred nozzles.
Great Britain Patent No. 2,007,162, which issued to Endo et al., in 1979, discloses an electrothermal drop-on-demand ink jet printer that applies a power pulse to a heater which is in thermal contact with water based ink in a nozzle. A small quantity of ink rapidly evaporates, forming a bubble, which causes a drop of ink to be ejected from small apertures along an edge of a heater substrate. This technology is known as thermal ink jet or bubble jet.
Thermal ink jet printing typically requires that the heater generates an energy impulse enough to heat the ink to a temperature near 400° C. which causes a rapid formation of a bubble. The high temperatures needed with this device necessitate the use of special inks, complicates driver electronics, and precipitates deterioration of heater elements through cavitation and kogation. Kogation is the accumulation of ink combustion by-products that encrust the heater with debris. Such encrusted debris interferes with the thermal efficiency of the heater and thus shorten the operational life of the print head. And, the high active power consumption of each heater prevents the manufacture of low cost, high speed and page wide print heads.
Continuous inkjet printing itself dates back to at least 1929. See U.S. Pat. No. 1,941,001 which issued to Hansell that year.
U.S. Pat. No. 3,373,437 which issued to Sweet et al. in March 1968, discloses an array of continuous ink jet nozzles wherein ink drops to be printed are selectively charged and deflected towards the recording medium. This technique is known as binary deflection continuous ink jet printing, and is used by several manufacturers, including Elmjet and Scitex.
U.S. Pat. No. 3,416,153, issued to Hertz et al. in December 1968. This patent discloses a method of achieving variable optical density of printed spots, in continuous inkjet printing. The electrostatic dispersion of a charged drop stream serves to modulatate the number of droplets which pass-through a small aperture. This technique is used in ink jet printers manufactured by Iris.
U.S. Pat. No. 4,346,387, entitled METHOD AND APPARATUS FOR CONTROLLING THE ELECTRIC CHARGE ON DROPLETS AND INK JET RECORDER INCORPORATING THE SAME issued in the name of Carl H. Hertz on Aug. 24, 1982. This patent discloses a CIJ system for controlling the electrostatic charge on droplets. The droplets are formed by breaking up of a pressurized liquid stream, at a drop formation point located within an electrostatic charging tunnel, having an electrical field. Drop formation is effected at a point in the electrical field corresponding to whatever predetermined charge is desired. In addition to charging tunnels, deflection plates are used to actually deflect the drops. The Hertz system requires that the droplets produced be charged and then deflected into a gutter or onto the printing medium. The charging and deflection mechanisms are bulky and severely limit the number of nozzles per print head.
Until recently, conventional continuous ink jet techniques all utilized, in one form or another, electrostatic charging tunnels that were placed close to the point where the drops are formed in the stream. In the tunnels, individual drops may be charged selectively. The selected drops are charged and deflected downstream by the presence of deflector plates that have a large potential difference between them. A gutter (sometimes referred to as a “catcher”) is normally used to intercept the charged drops and establish a non-print mode, while the uncharged drops are free to strike the recording medium in a print mode as the ink stream is thereby deflected, between the “non-print” mode and the “print” mode.
Typically, the charging tunnels and drop deflector plates in continuous ink jet printers operate at large voltages, for example 100 volts or more, compared to the voltages commonly considered damaging to conventional CMOS circuitry, typically 25 volts or less. Additionally, there is a need for the inks in electrostatic continuous ink jet printers to be conductive and to carry current. As is well-known in the art of semiconductor manufacture, it is undesirable from the point of view of reliability to pass current bearing liquids in contact with semiconductor surfaces. Thus the manufacture of continuous ink jet print heads has not been generally integrated with the manufacture of CMOS circuitry.
Recently, a novel continuous ink jet printer system has been developed which renders the above-described electrostatic charging tunnels unnecessary. Additionally, it serves to better couple the functions of (1) droplet formation and (2) droplet deflection. That system is disclosed in the commonly assigned U.S. Pat. No. 6,079,821 entitled CONTINUOUS INK JET PRINTER WITH ASYMMETRIC HEATING DROP DEFLECTION filed in the names of James Chwalek, Dave Jeanmaire and Constantine Anagnostopoulos, the contents of which are incorporated herein by reference. This patent discloses an apparatus for controlling ink in a continuous ink jet printer. The apparatus comprises an ink delivery channel, a source of pressurized ink in communication with the ink delivery channel, and a nozzle having a bore which opens into the ink delivery channel, from which a continuous stream of ink flows. Periodic application of weak heat pulses to the stream by a heater causes the ink stream to break up into a plurality of droplets synchronously with the applied heat pulses and at a position spaced from the nozzle. The droplets are deflected by increased heat pulses from the heater (in the nozzle bore) which heater has a selectively actuated section, i.e. the section associated with only a portion of the nozzle bore. Selective actuation of a particular heater section, constitutes what has been termed an asymmetrical application of heat to the stream. Alternating the sections can, in turn, alternate the direction in which this asymmetrical heat is supplied and serves to thereby deflect ink drops, inter alia, between a “print” direction (onto a recording medium) and a “non-print” direction (back into a “catcher”). The patent of Chwalek et al. thus provides a liquid printing system that affords significant improvements toward overcoming the prior art problems associated with the number of nozzles per print head, print head length, power usage and characteristics of useful inks.
Asymmetrically applied heat results in stream deflection, the magnitude of which depends on several factors, e.g. the geometric and thermal properties of the nozzles, the quantity of applied heat, the pressure applied to, and the physical, chemical and thermal properties of the ink. Although solvent-based (particularly alcohol-based) inks have quite good deflection patterns (see in this regard U.S. application Ser. No. 09/451,790 filed in the names of Trauernicht et al), and achieve high image quality in asymmetrically heated continuous ink jet printers, water-based inks are more problematic. The water-based inks do not deflect as much, thus their operation is not robust. In order to improve the magnitude of the ink droplet deflection within continuous ink jet asymmetrically heated printing systems there is disclosed in commonly assigned U.S. application Ser. No. 09/470,638 filed Dec. 22, 1999 in the names of Delametter et al. a continuous inkjet printer having improved ink drop deflection, particularly for aqueous based inks, by providing enhanced lateral flow characteristics, by geometric obstruction within the ink delivery channel.
The invention to be described herein builds upon the work of Chwalek et al. and Delametter et al. in terms of constructing continuous ink jet printheads that are suitable for low-cost manufacture and preferably for printheads that can be made page wide.
Although the invention may be used with ink jet print heads that are not considered to be page wide print heads there remains a widely recognized need for improved ink jet printing systems, providing advantages for example, as to cost, size, speed, quality, reliability, small nozzle orifice size, small droplets size, low power usage, simplicity of construction in operation, durability and manufacturability. In this regard, there is a particular long-standing need for the capability to manufacture page wide, high resolution ink jet print heads. As used herein, the term “page wide” refers to print heads of a minimum length of about four inches. High-resolution implies nozzle density, for each ink color, of a minimum of about 300 nozzles per inch to a maximum of about 2400 nozzles per inch.
To take full advantage of page wide print heads with regard to increased printing speed, they must contain a large number of nozzles. For example, a conventional scanning type print head may have only a few hundred nozzles per ink color. A four inch page wide printhead, suitable for the printing of photographs, should have a few thousand nozzles. While a scanned printhead is slowed down by the need for mechanically moving it across the page, a page wide printhead is stationary and paper moves past it. The image can theoretically be printed in a single pass, thus substantially increasing the printing speed.
There are two major difficulties in realizing page wide and high productivity ink jet print heads. The first is that nozzles have to be spaced closely together, of the order of 10 to 80 micrometers, center to center spacing. The second is that the drivers providing the power to the heaters and the electronics controlling each nozzle must be integrated with each nozzle, since attempting to make thousands of bonds or other types of connections to external circuits is presently impractical.
One way of meeting these challenges is to build the print heads on silicon wafers utilizing VLSI technology and to integrate the CMOS circuits on the same silicon substrate with the nozzles.
While a custom process, as proposed in the patent to Silverbrook, U.S. Pat. No. 5,880,759 can be developed to fabricate the print heads, from a cost and manufacturability point of view it is preferable to first fabricate the circuits using a nearly standard CMOS process in a conventional VLSI facility. Then, to post process the wafers in a separate MEMS (micro-electromechanical systems) facility for the fabrication of the nozzles and ink channels.
It is therefore an object of the invention to provide a CIJ printhead that may be fabricated at lower cost and improved manufacturability as compared to those ink jet printheads known in the prior art that require more custom processing.
It is another object of the invention to provide a CIJ printhead that features a planar surface suitable for cleaning of the printhead.
In accordance with a first aspect of the invention, there is provided an inkjet print comprising a silicon substrate including an integrated circuit formed therein for controlling operation of the print head, the silicon substrate having one or more ink channels formed therein; an insulating layer or layers overlying the silicon substrate, the insulating layer or layers having a series of ink jet bores formed therein along the length of the substrate and forming a generally planar surface and each bore communicates with an ink channel; and a heater element associated with each nozzle bore that is located proximate the bore for asymmetrically heating ink as it passes through the bore.
In accordance with a second aspect of the invention, there is provided a method of operating a continuous ink jet printhead comprising providing a silicon substrate having an integrated circuit formed therein for controlling operation of the print head, the silicon substrate having one or more ink channels formed therein, the silicon substrate being covered by one or more insulating layers having a channel formed therein and terminating at a nozzle opening, the surface of the printhead being relatively planar for facilitating maintenance of the printhead around the nozzle openings; moving ink under pressure from the one or more channels formed in the silicon substrate to a respective ink channel formed in the insulating layer or layers; and asymmetrically heating the ink at the nozzle opening formed in a relatively thin membrane formed covering the insulating layer or layers to affect deflection of ink droplet(s), each nozzle communicating with an ink channel formed in the insulating layer or layers.
In accordance with a third aspect of the invention, there is provided a method of forming a continuous ink jet print head comprising providing a silicon substrate having an integrated circuit for controlling operation of the print head, the silicon substrate having an insulating layer or layers formed thereon, the insulating layer or layers having electrical conductors formed therein that are electrically connected to circuits formed in the silicon substrate, forming in the insulating layer or layers a series of relatively large bores each of which extends from the surface of the insulating layer or layers to the silicon substrate, depositing a sacrificial layer in each of the series of bores; forming over the sacrificial layer in each bore an insulating layer or layers that include a heater element; forming a nozzle opening in the insulating layer or layers that include a heater element; and removing the sacrificial layer from each of the bores to form a print head having a relatively planar surface around the area of the nozzle bores to facilitate maintenance of the printhead.
In accordance with a fourth aspect of the invention, there is provided an ink jet print head comprising a silicon substrate including an integrated circuit formed therein for controlling operation of the print head, the silicon substrate having one or more ink channels formed therein, an insulating layer or layers overlying the silicon substrate, the insulating layer or layers having a series of ink jet nozzle bores formed therein along the length of the substrate and each bore being formed in a thin membrane that communicates with an ink channel; the ink channel being formed in the insulating layer or layers; and a heater element associated with each nozzle bore that is located within the membrane and proximate the bore for asymmetrically heating ink as it passes through the bore.
These and other objects, features and advantages of the present invention will become apparent to those skilled in the art upon reading of the following detailed description when taken in conjunction with the drawings wherein there are shown and described illustrative embodiments of the invention.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed the invention will be better understood from the following detailed description when taken in conjunction with the accompanying drawings.
This description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
Referring to
Heater control circuits read data from an image memory, and send time-sequenced electrical pulses to the heaters of the nozzles of nozzle array 20. These pulses are applied an appropriate length of time, and to the appropriate nozzle, so that drops formed from a continuous ink jet stream will form spots on a recording medium 13, in the appropriate position designated by the data sent from the image memory. Pressurized ink travels from an ink reservoir (not shown) to an ink delivery channel, built inside member 14 and through nozzle array 20 on to either the recording medium 13 or the gutter 19. The ink gutter 19 is configured to catch undeflected ink droplets 11 while allowing deflected droplets 12 to reach a recording medium. The general description of the continuous inkjet printer system of
Referring to
With reference to
With reference to
If not fired simultaneously, it is preferred to fire the bottom heaters at a small advance ahead of the top heaters.
In
In typical operation, the heater resistance is of the order of 400 ohms for a heater conform all to an 8.8 micrometers diameter bore, the current amplitude is between 10 to 20 mA, the pulse duration is about 2 microseconds and the resulting deflection angle for pure water is of the order of a few degrees, in this regard reference is made to U.S. application Ser. No. 09/221,256, entitled “Continuous Ink Jet Printhead Having Power-Adjustable Multi-Segmented Heaters” and to U.S. application Ser. No. 09/221,342 entitled “Continuous Ink Jet Printhead Having Multi-Segmented Heaters”, both filed Dec. 28, 1998.
The application of periodic current pulses causes the jet to break up into synchronous droplets, to the applied pulses. These droplets form about 100 to 200 micrometers away from the surface of the printhead and for an 8.8 micrometers diameter bore and about 2 microseconds wide, 200 kHz pulse rate, they are typically 3 to 4 pL in volume. The drop volume generated is a function of the pulsing frequency, the bore diameter and the jet velocity. The jet velocity is determined by the applied pressure for a given bore diameter and fluid viscosity as mentioned previously. The bore diameter may range from 1 micrometer to 100 micrometers, with a preferred range being 6 micrometers to 16 micrometers. Thus the heater pulsing frequency is chosen to yield the desired drop volume.
The cross-sectional view taken along sectional line A-B and shown in
As was mentioned earlier, the CMOS circuitry is fabricated first on the silicon wafers as one or more integrated circuits. The CMOS process may be a standard 0.5 micrometers mixed signal process incorporating two levels of polysilicon and three levels of metal on a six inch diameter wafer. Wafer thickness is typically 675 micrometers. In
Because of the need to electrically insulate the metal layers, dielectric layers are deposited between them making the total thickness of the film on top of the silicon wafer about 4.5 micrometers.
The structure illustrated in
As a result of the conventional CMOS fabrication steps, a silicon substrate of approximately 675 micrometers in thickness and about 6 inches in diameter is provided. Larger or smaller diameter silicon wafers can be used equally as well. A plurality of transistor devices are formed in the silicon substrate through conventional steps of selectively depositing various materials to form these transistors as is well known. Supported on the silicon substrate are a series of layers eventually forming an oxide/nitride insulating layer that has one or more layers of polysilicon and metal layers formed therein in accordance with desired pattern. Vias are provided between various layers as needed and openings may be provided in the surface for allowing access to metal layers to provide for bond pads. The various bond pads are provided to make respective connections of data, latch clock, enable clocks, and power provided from a circuit board mounted adjacent the printhead.
With reference now also to
With reference now to
A thin, about 3500 angstroms, protection layer, such as PECVD Si3N4, is deposited next and then the via3's to the metal 3 layer are opened. The vias can be filled with Ti/TiN/W and planarized, or they can be etched with sloped sidewalls so that the heater layer, which is deposited next can directly contact the metal3 layer. The heater layer consisting of about 50 angstroms of Ti and 600 angstroms of TiN is deposited and then patterned. A final thin protection (typically referred to as passivation) layer is deposited next. This layer must have properties that, as the one below the heater, protects the heater from the corrosive action of the ink, it must not be easily fouled by the ink and can be cleaned easily when fouled. It also provides protection against mechanical abrasion.
A mask for fabricating the bore is applied next and the passivation layers are etched to open the bore and the bond pads.
The silicon wafer is then thinned from its initial thickness of 675 micrometers to 300 micrometers, see
In
With reference to
As noted above, in a CIJ printing system it is desirable that jet deflection could be further increased by increasing the portion of ink entering the bore of the nozzle with lateral rather than axial momentum. Such can be accomplished by blocking some of the fluid having axial momentum by building a block in the center of each nozzle just below the nozzle bore.
In accordance with a second embodiment of the invention, a method of constructing a lateral flow structure will now be described. It will be understood of course that although the description will be provided in the following paragraphs relative to formation of a single nozzle that the process is simultaneously applicable to a whole series of nozzles formed in a straight or staggered row along the wafer.
In accordance with the second embodiment of the invention, a method of constructing of a nozzle array with a ribbed structure but also featuring a lateral flow structure will now be described. With reference to
Thereafter, openings in the dielectric layer are filled with a sacrificial film such as amorphous silicon or polyimide and the wafers are planarized.
A thin, 3500 angstroms protection membrane or passivation layer, such as PECVD Si3N4, is deposited next and then the via3's to the metal3 level (mtl3) are opened. See
The silicon wafer is then thinned from its initial thickness of 675 micrometers to approximately 300 micrometers. A mask to open the ink channels is then applied to the backside of the wafer and the silicon is then etched in an STS deep silicon etch system, all the way to the front surface of the silicon. Finally the sacrificial layer is etched from the backside and front side resulting in the finished device shown in
As illustrated in
As shown schematically in
It is preferred to have etching of the silicon substrate be made to leave behind a silicon bridge or rib between each nozzle of the nozzle array during the etching of the ink channel. These bridges extend all the way from the back of the silicon wafer to the front of the silicon wafer. The ink channel pattern defined in the back of the wafer, therefore, is a series of small rectangular cavities each feeding a single nozzle. The ink cavities may be considered to each comprise a primary ink channel formed in the silicon substrate and a secondary ink channel formed in the oxide/nitride layers with the primary and secondary ink channels communicating through an access opening established in the oxide/nitride layer. These access openings require ink to flow under pressure between the primary and secondary channels and develop lateral flow components because direct axial access to the secondary ink channel is effectively blocked by the oxide block. The secondary ink channel communicates with the nozzle bore.
With reference to
There has thus been described an improved ink jet printhead and methods of operating and forming same. The inkjet printheads are characterized by relative ease of manufacture and/or with relatively planar surfaces to facilitate cleaning and maintenance of the printhead and a relatively thin insulating layer or layers, such as a passivation layer or layers, through which is formed the nozzle bore. Adjacent each nozzle bore is an appropriate asymmetric heating element. The printhead described herein are suited for preparation in a conventional CMOS facility and the heater elements and channels and nozzle bore may be formed in a conventional MEMS facility.
Although the present invention has been described with particular reference to various preferred embodiments, the invention is not limited to the details thereof Various substitutions and modifications will occur to those of ordinary skill in the art, and all such substitutions and modifications are intended to fall within the scope of the invention as defined in the appended claims.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This is a Divisional application of U.S. application Ser. No. 09/792,114, filed Feb. 22, 2001 now U.S. Pat. No. 6,502,925, entitled; CMOS/MEMS INTEGRATED INK JET PRINT HEAD AND METHOD OF FORMING SAME.
Number | Name | Date | Kind |
---|---|---|---|
6062678 | Ishinaga et al. | May 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6491376 | Trauernicht et al. | Dec 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20030016272 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09792114 | Feb 2001 | US |
Child | 10242080 | US |