1. Field of the Invention
The subject invention is related to pistons, and more precisely, to steel pistons for diesel engines.
2. Related Art
Internal combustion engine manufacturers are encountering increasing demands to improve engine efficiencies and performance, including, but not limited to, improving fuel economy, improving fuel consumption, reducing oil consumption, increasing compression loads within the cylinder bores, decreasing weight and making engines more compact. Some of these demands may be achieved by increasing the temperature and pressure of the air/fuel mixture in the combustion chamber. It is thus important that the pistons in the engine be resistant to these increased temperatures and pressures.
In order to produce a piston which can operate in such an environment, many manufacturers have turned to forming pistons entirely of steel rather than entirely of aluminum or of both aluminum and steel. However, when exposed to the increased temperatures of combustion, steel may oxidize, which could dramatically reduce the piston's performance and durability. One process for reducing the risk of oxidation is to coat the piston with a cobalt or nickel based material. However, such an approach has its limits and may not be the most cost effective solution in all conditions.
According to an aspect of the present invention, a piston for a diesel engine is provided including a crown portion fabricated of steel and presenting a combustion surface having a combustion bowl with a bowl rim area. A coating including at least one of a noble metal and a refractory metal is selectively applied to at least a portion of the bowl rim area and substantially only to those selective portions of the bowl rim area. The oxidation resistant coating is advantageous because it protects the steel base metal of the piston from oxidation and also is able to resist the pressures and temperatures of combustion. The coating is preferably applied only to the portions of the upper surface of the piston in line with the fuel injectors when the piston is in a top-dead-center position. Thus, the material cost for the increased oxidation protection is minimized without compromising the utility of the piston.
Another aspect of the present invention provides for a method of making a piston for diesel engines including the step of preparing a crown portion of steel and having a combustion surface with a combustion bowl and a bowl rim area. The method continues with the step of selectively applying a coating including at least one of a noble metal and a refractory metal to substantially only the bowl rim area of the crown portion.
Yet another aspect of the present invention is a method of making a piston for diesel engines and wherein the step of selectively applying the coating onto the bowl rim area is further defined as electrodepositing the coating onto the bowl rim area of the crown portion with a wand applicator.
According to still another aspect of the invention, the metal applied to the piston is rhenium, a refractory metal which has a high melting temperature (3186° C.), is resistant to chemical attack and is neither overly ductile nor overly brittle.
These and other features and advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an exemplary piston 20 for use in a diesel engine 22 and constructed according to one aspect of the present invention is generally shown in
Referring to
In order to withstand the pressures and temperatures of combustion in the combustion chamber of a diesel engine 22, at least the crown portion 24 of the piston 20 is formed primarily or entirely of steel, e.g. 4140H steel or microalloyed steel. The crown and skirt portions 24, 25 of the piston 20 body are preferably shaped through a precision (or investment) casting process and subsequently machined to its final form. However, it should be appreciated that these portions 24, 25 of the piston 20 may be formed and shaped through any suitable process including, for example, forging or machining from a billet. As with conventional pistons, the exemplary piston 20 also includes a plurality of ring grooves 30 for receiving piston rings 32 (shown in
A coating 34 is applied to the combustion surface of the crown portion 24 at substantially only the combustion bowl rim area 28 and only at specific locations along the combustion bowl rim area 28. The coating 34 is substantially entirely of one or more noble or refractory metals (such as rhenium, gold, platinum, iridium, palladium, osmium, silver, rhodium and ruthenium), thereby protecting the coated portions of the base steel material of the crown portion 24 from oxidation. Specifically, the coating 34 is substantially only applied to the combustion surface at the combustion bowl rim area 28. Referring now to
The coating 34 most preferably includes rhenium (a refractory metal) for its high melting point temperature (approximately 3186° C.). This is advantageous because during operation of the diesel engine 22, the coating 34 is directly exposed to the temperatures of combustion. Additionally, rhenium is advantageous because it is resistant to chemical attack and is neither overly ductile nor overly brittle. However, it should be appreciated that the coating 34 may alternately include other noble and/or refractory metals. For example, it might be desirable to formulate the coating 34 of various combinations of rhenium, ruthenium, palladium, osmium, iridium, platinum, rhodium, gold, silver, cobalt and nickel.
Locating the coating 34 substantially only on the combustion bowl rim area 28 is advantageous because it provides the piston 20 with sufficient resistance to oxidation in a cost effective manner since the amount of the noble metal used is kept to a minimum. Additionally, the coating 34 is preferably between one and one hundred microns (1-100 μm) in thickness. As such, the material costs for the improved oxidation resistance are very small. It should be appreciated that the specific portions of the combustion bowl rim area 28 coated with the noble metal could vary based on, for example, the number of fuel injectors 40 per cylinder of the engine, the types of fuel injectors 40, the orientations of the fuel injectors 40 relative to the piston 20 and the geometry of the piston 20. The remainder of the combustion surface of the piston 20 may be uncoated or may be coated with one or more materials that are less costly than the noble metal coating 34.
Before applying the coating 34 to the crown portion 24, the crown portion 24 should be thoroughly cleaned and activated. This is performed preferably with a voltage of between ten and fifteen Volts (10-15 V) and may include an acid activator and intermediate rinsing steps. Additionally, as best shown in the exaggerated and enlarged view of
Referring now to
Another aspect of the present invention is a method of making a piston 20 for a diesel engine 22. The method includes the steps of preparing a crown portion 24 of steel and having a combustion surface with a combustion bowl 26 and a combustion bowl rim area 28. The method continues with the step of selectively applying a coating 34 including at least one of a noble metal and a refractory metal to substantially only the combustion bowl rim area 28 of the crown portion 24. The application of the noble and/or refractory metal coating 34 may be through, for example, electrodepositing or a slurry paste which is dried then melted with a laser. However, it should be appreciated that any desirable process may be employed to apply the noble and/or refractory metal coating 34 onto the combustion bowl rim area 28 of the crown portion 24. The noble and/or refractory metal coating 34 may be substantially entirely of one or more of the elements rhenium, gold, platinum, iridium, palladium, osmium, silver, rhodium and ruthenium. The noble and/or refractory metal coating 34 is preferably applied onto the crown portion 24 to a thickness of between one and one hundred microns (1-100 μm). The method may also include the step of applying a bond layer 44 including nickel to the bowl rim before the step of selectively applying the noble metal coating 34 to the bowl rim and then applying the noble and/or refractory metal coating 34 onto the bond layer 44.
Yet another aspect of the present invention is another method of making a piston 20 for diesel engines 22. The method includes the step of preparing a crown portion 24 of steel and having a combustion surface with a combustion bowl 26 and a combustion bowl rim area 28. The method continues with electrodepositing a coating 34 including a noble metal and/or a refractory metal, and preferably being substantially only of one or more noble metals or refractory metals, onto substantially only the combustion bowl rim area 28 of the crown portion 24 with a wand applicator 46. During the electrodepositing step, the crown portion 24 may either be held stationary while the wand applicator 46 is moved relative to it or vice versa. The metal coating 34 may be substantially of one or more of the elements rhenium, gold, platinum, iridium, palladium, osmium, silver, rhodium and ruthenium.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3668083 | Meyer et al. | Jun 1972 | A |
3911891 | Dowell | Oct 1975 | A |
4185593 | McClure | Jan 1980 | A |
4530340 | Totman | Jul 1985 | A |
4811707 | Pfefferle | Mar 1989 | A |
4902359 | Takeuchi et al. | Feb 1990 | A |
4941439 | Wicen | Jul 1990 | A |
5352538 | Takeda et al. | Oct 1994 | A |
5667663 | Rickerby et al. | Sep 1997 | A |
6240912 | Stanglmaier et al. | Jun 2001 | B1 |
6755175 | McKay et al. | Jun 2004 | B1 |
6877473 | Bischofberger et al. | Apr 2005 | B2 |
7029721 | Hasz et al. | Apr 2006 | B2 |
7259351 | Lineton et al. | Aug 2007 | B2 |
7383807 | Azevedo et al. | Jun 2008 | B2 |
7418940 | Yi et al. | Sep 2008 | B1 |
7458358 | Lineton et al. | Dec 2008 | B2 |
20030196547 | Bischofberger et al. | Oct 2003 | A1 |
20070261663 | Lineton et al. | Nov 2007 | A1 |
20080149897 | Burkle | Jun 2008 | A1 |
20100154940 | Luft et al. | Jun 2010 | A1 |
20100275874 | Fujiwara et al. | Nov 2010 | A1 |
20110180032 | Mungas et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2545242 | Apr 1977 | DE |
2804562 | Aug 1979 | DE |
9010077 | Oct 1990 | DE |
1188913 | Mar 2002 | EP |
2164701 | Mar 1986 | GB |
Entry |
---|
International Search Report mailed Apr. 17, 2013 (PCT/US2012/062667). |
Rubenstein “Electrochemical Metallizing Principles and Practice”, Van Nostrand Reinhold Co., Inc. 1987, pp. 4, 6 and 50. |
Number | Date | Country | |
---|---|---|---|
20130118438 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61553529 | Oct 2011 | US |