Coating apparatus and methods

Information

  • Patent Grant
  • 9283350
  • Patent Number
    9,283,350
  • Date Filed
    Friday, October 25, 2013
    11 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
Embodiments of the invention include coating apparatuses and related methods. In an embodiment, the invention includes a coating apparatus. The coating apparatus can include a motor, a rotating contact member, a fluid applicator, a fluid pump, and a base member. The fluid applicator can include an orifice. The rotating contact member can be configured to rotate around a device to be coated that does not rotate. The rotating contact member can be configured to move along the lengthwise axis of a device to be coated. In an embodiment, the invention includes a method of coating a medical device. The method of coating a medical device can include a rotating a contact member around the outer diameter of a non-rotating medical device, applying a coating solution to the outer diameter of the non-rotating medical device at a position adjacent to the contact member, and moving at least one of the contact member and the non-rotating medical device with respect to one another so that the contact member moves with respect to the lengthwise axis of the non-rotating medical device. Other embodiments are also included herein.
Description
FIELD OF THE INVENTION

The present invention relates to coating apparatuses and related methods. More specifically, the present invention relates to coating apparatus for coating medical devices including a rotating contact member.


BACKGROUND OF THE INVENTION

Functional improvements to implantable or insertable medical devices can be achieved by coating the surface of the device. For example, a coating formed on the surface of the device can provide improved lubricity, improved biocompatibility, or drug delivery properties to the surface. In turn, this can improve movement of the device in the body, extend the functional life of the device, or treat a medical condition near the site of implantation. However, various challenges exist for the design and use of coating apparatus designed to provide coatings to medical devices.


Traditional coating methods, such as dip coating, are often undesirable as they may result in flawed coatings that could compromise the function of the device or present problems during use. These methods can also result in coating inaccuracies, which can be manifested in variable amounts of the coated material being deposited on the surface of the device. When a drug is included in the coating material, it is often necessary to deliver precise amounts of the agent to the surface of the device to ensure that a subject receiving the coated device receives a proper dose of the agent. It has been difficult to achieve a great degree of accuracy using traditional coating methods and machines.


SUMMARY OF THE INVENTION

Embodiments of the invention include coating apparatus and related methods. In an embodiment, the coating apparatus can include a motor, a rotating contact member, a fluid applicator, a fluid pump, and a base member. The fluid applicator can include an orifice. The orifice of the fluid applicator can be disposed adjacent to the rotating contact member. The rotating contact member can be in mechanical communication with the motor. The rotating contact member can be configured to rotate around a device to be coated that does not rotate. The rotating contact member can be configured to move along the lengthwise axis of a device to be coated. The fluid pump can be in fluid communication with the fluid applicator. The base member can support the rotating contact member and the fluid applicator.


In an embodiment, the invention includes a method of coating a medical device. The method of coating a medical device can include rotating a contact member around the outer diameter of a non-rotating medical device. The method can further include applying a coating solution to the outer diameter of the non-rotating medical device at a position adjacent to the contact member. The method can further include moving at least one of the contact member and the non-rotating medical device with respect to one another so that the contact member moves with respect to the lengthwise axis of the non-rotating medical device.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE FIGURES

The invention may be more completely understood in connection with the following drawings, in which:



FIG. 1 is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 2A is a front view of a drive shaft and rotating contact member of a coating apparatus in accordance with various embodiments herein.



FIG. 2B is a front view of a drive shaft and rotating contact member of a coating apparatus in accordance with various embodiments herein.



FIG. 3A is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 3B is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 4 is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 5 is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 6 is a schematic cross-sectional view of a rotating contact member in accordance with various embodiments herein.



FIG. 7 is a schematic cross-sectional view of a rotating contact member in accordance with various embodiments herein.



FIG. 8 is a schematic cross-sectional view of a rotating contact member in accordance with various embodiments herein.



FIG. 9 is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 10 is a schematic view of a coating apparatus in accordance with various embodiments herein.



FIG. 11 is a schematic view of a coating apparatus in accordance with various embodiments herein.





While the invention is susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the invention is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION OF THE INVENTION

The embodiments of the present invention described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices of the present invention.


All publications and patents mentioned herein are hereby incorporated by reference. The publications and patents disclosed herein are provided solely for their disclosure. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate any publication and/or patent, including any publication and/or patent cited herein.


Based on structural characteristics, certain types of medical device are more difficult to coat than others. By way of example, some devices cannot be easily spin-coated even though they include a long shaft based on their characteristics and shape. For example, devices that have some curvature and cannot be straightened out generally cannot be coated with apparatus that require spinning of the device. As such, these devices have been traditionally coated using techniques such as dip coating. However, dip coating suffers from at least three drawbacks. First, dip coating is a relatively slow process making it expensive. Second, because dip coating requires a large container or vat of material to dip into, there is frequently a large amount of coating material that is wasted in the form of a residual volume in the container into which the device is dipped. Third, dip coating can result in various coating irregularities including thickness variation, webbing, and the like.


Apparatus disclosed herein can be used to coat device that would otherwise be coated using dip-coating or device spin-coating techniques. In specific, coating apparatus herein can include a rotating contact member that rotates around the outer diameter of a device to be coated and applying a coating material while the device to be coated remains substantially rotationally stationary. The apparatus can be moved along the lengthwise axis of the device to be coated (and/or the device to be coated can be moved relative to the apparatus) while the rotating contact member rotates around the device to be coated applying the coating. The apparatus can coat the device regardless of shapes such as curvature since only a relatively small length of the device to be coated is in the apparatus at any given time and thus the device does not need to be substantially straight over its entire length as would normally be required if the device were being coated with an apparatus where the device itself was spun.



FIG. 1 is a schematic view of a coating apparatus 102 in accordance with various embodiments herein. The coating apparatus 102 includes a rotating contact member 104, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 includes an orifice 108. In operation, the fluid pump 110 can cause a coating solution to pass through the fluid applicator 106 and out of the orifice 108 and onto a medical device 101 to be coated. While FIG. 1 shows the orifice positioned to deposit coating material near the trailing edge of the drive shaft, it will be appreciated that the orifice can also be positioned in other locations to deposit the coating material. Also, while in some embodiments the orifice is on the top side of the medical device, it will be appreciated that it can also be located on the side or the bottom. The rotating contact member 104 can include a spiral-shaped element 114. The coating apparatus 102 can include a mounting structure 116. The mounting structure 116 can allow the rotating contact member 104 to rotate. The mounting structure 116 can include bearings, bushings, or the like. The coating apparatus 102 can further include a drive shaft 118. In some embodiments, the drive shaft 118 can be a part of the rotating contact member 104. The medical device 101 can move in the direction of arrow 103 with respect to the coating apparatus 102. Alternatively, the coating apparatus 102 can move in the direction of arrow 105 with respect to the medical device 101. In some embodiments, both the coating apparatus 102 and the medical device 101 can move with respect to each other.



FIG. 2A is a front view of a drive shaft and rotating contact member of a coating apparatus in accordance with various embodiments herein. The rotating contact member 104 can include spiral-shaped element 114. The rotating contact member 104 can define a channel 220. The channel 220 can be sized to accommodate a medical device 101 (not shown) as described in FIG. 1. The coating apparatus 102 can include drive shaft 118.


In some embodiments, the rotating contact member can include a plurality of bristles and/or a brush. FIG. 2B is a front view of a drive shaft and rotating contact member of a coating apparatus in accordance with various embodiments herein. The rotating contact member 104 can include bristles 115. The bristles 115 can be oriented circumferentially around the rotating contact member 104 with an inward bias in some embodiments. In some embodiments the bristles 115 can be connected to drive shaft 118 or a similar structure that rotates. The rotating contact member 104 can define a channel 220. The channel 220 can be sized to accommodate a medical device 101 (not shown) as described in FIG. 1.



FIG. 3A is a schematic view of a coating apparatus in accordance with various embodiments herein. The coating apparatus 102 includes a rotating contact member 204, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 includes an orifice 108. The coating apparatus 102 can include mounting structure 116. The coating apparatus 102 can include drive shaft 118. The rotating contact member 204 can include a brush 214 or similar brush-like structure. The brush 214 can contact the surface of the medical device 101 to be coated as the rotating contact member 204 rotates around and contacts the medical device 101 to be coated.



FIG. 3B is a schematic view of a coating apparatus in accordance with various embodiments herein. The coating apparatus 102 includes a rotating contact member 204, a fluid applicator 106, a fluid pump 110, and a base member. The coating apparatus 102 can include mounting structure 116. The coating apparatus 102 can include drive shaft 118. The rotating contact member 204 can include bristles 215 or similar structure. The bristles 215 can contact the surface of the medical device 101 to be coated as the rotating contact member 204 rotates around and contacts the medical device 101 to be coated.



FIG. 4 is a schematic view of a coating apparatus in accordance with various embodiments herein. The coating apparatus 102 includes a motor 422, a rotating contact member 104, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 includes an orifice. The coating apparatus 102 can include a mounting structure 116. The coating apparatus 102 can include drive wheels 424. The drive wheels 424 can contact the medical device 101 to be coated and can serve to push or pull the medical device 101 to be coated through the rotating contact member 104. The motor 422 can provide motive force to rotate the rotating contact member 104 and/or the drive wheels (or shafts) 424. By way of example, the motor 422 can be used to turn a drive gear 423 which can in turn drive an open center gear 425 causing the rotating contact member 104 to rotate. However, it will be appreciated that there are many different ways of conveying motive force from the motor 422 to the rotating contact member 104 including pulleys, belts, other types of gears, and the like. The motor 422 can be of many different types. In various embodiments the motor 422 can be an electric motor. In some embodiments, a motor can be omitted.



FIG. 5 is a schematic view of a coating apparatus in accordance with various embodiments herein. The coating apparatus 102 includes a rotating contact member 504, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 includes an orifice. The coating apparatus 102 can include mounting structure 116. The rotating contact member 504 can have an inner diameter just slightly larger than the outside of the medical device 101 to be coated.



FIG. 6 is a schematic cross-sectional view of a rotating contact member in accordance with various embodiments herein. The rotating contact member 504 can include a housing 626. The housing 626 can define a central lumen 628. The central lumen 628 can have a diameter sufficiently large so as to accommodate the outside diameter of the medical device 101 (not shown) to be coated. In some embodiments, the inner surface 627 of the central lumen 628 can be substantially smooth. In other embodiments, the inner surface of the central lumen 628 can include surface features. In some embodiments, the inner surface of the central lumen 628 can include thread-like projections similar to the inner diameter of a nut.


In some embodiments, the central lumen can be substantially the same over the length of the rotating contact member. In other embodiments, different portions of the central lumen can be different. Referring now to FIG. 7, the rotating contact member 504 can include housing 626. The housing 626 can define central lumen 628. In this embodiment, the diameter of central lumen 628 is larger on one side of the rotating contact member 504 than on the other. In some embodiments, the central lumen 628 can have a tapered 752 or funnel-like shape on one side.


In some embodiments, the coating material can be applied through the fluid applicator. However, in other embodiments, the coating material can be applied through other structures. Referring now to FIG. 8, the rotating contact member 504 can include a housing 626. The housing can define central lumen 628. The housing 626 can include fluid port 830. The fluid port 830 can provide fluid communication between the central lumen 628 and the exterior surface 831 of the rotating contact member 504. A coating composition can be supplied to exterior portion of the fluid port 830 and can then flow to the central lumen 628 where it can be applied to a device to be coated. In some embodiments multiple fluid ports 830 can be provided on the rotating contact member 504.


Coating apparatus in accordance with embodiments herein can take on various configurations. In some embodiments, the coating apparatus can be hand held. Referring now to FIG. 9, the coating apparatus 102 includes a rotating contact member 104, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 includes an orifice. The coating apparatus 102 can include mounting structure 116. The coating apparatus 102 can include drive wheels 424, 424. The coating apparatus 102 can include drive shaft 118. The coating apparatus 102 can include a hand grip 932. The hand grip 932 can include a control element such as a trigger 933 to control operation of the apparatus.


In some embodiments, the apparatus can be mounted on a structure and move along the lengthwise axis of a device to be coated. Referring now to FIG. 10, the coating apparatus 102 includes a rotating contact member 104, a fluid applicator 106, a fluid pump 110, and a base member 112. The fluid applicator 106 can include an orifice. The coating apparatus 102 can include a mounting structure 116. The coating apparatus 102 can include drive wheels. The coating apparatus 102 can include drive shaft 118. The coating apparatus 102 can also include a linear actuator 1034. The linear actuator can provide motive force in order to move the coating apparatus linearly so as to provide movement along the lengthwise axis of the device 101 to be coated.



FIG. 11 is a schematic view of a coating apparatus in accordance with various embodiments herein. In this embodiment the coating apparatus 102 includes a six-axis robot arm 1136. The robot arm 1136 can be used to move the coating apparatus 102 in such a way that it follows the contours of a medical device 1101 to be coated.


It will be appreciated that the rotating contact member can take on many different shapes and configurations. In some embodiments, the rotating contact member can have a spiral shape. For example, the rotating contact member can be a spiral-shaped element. The spiral-shaped element can include a flexible material. The spiral-shaped element can be formed of various materials including polymers, metals, and the like. In some embodiments, the spiral-shaped element is formed of a shape-memory metal. The spiral of the spiral-shaped element can include at least about two turns. In some embodiments, the spiral-shaped element is arranged so that rotation carries a coating composition along the surface of the device to be coated in the same direction along the lengthwise axis of the device as the rotating contact member moves. In other words, the spiral-shaped element can be used to push the coating material outward ahead of the oncoming rotating contact member versus pull the coating material inward toward the rotating contact member. However, in other embodiments, the orientation of the spiral-shaped element can be reversed so that it pulls the coating material in towards the rotating contact member.


The rotating contact member can include a housing in some embodiments. The housing can be made of many different materials including metals, polymers, composites, ceramics, and the like. In some embodiments, the housing can be formed of polytetrafluoroethylene. The housing can define a central lumen into which the device to be coated fits. The central lumen can have a larger diameter at one end than at the other. The central lumen can form a funnel shape in some embodiments. The funnel shape can be disposed at one end of the housing. The housing can also define a fluid port in some embodiments. The housing can be cylindrical in some embodiments


The rotating contact member can rotate at a speed in the range of about 50 to 400 RPM. The rotating contact member can rotate at a speed of about 100 to 200 RPM. In some embodiments, the rotating contact member can rotate at a speed of greater than about 50 RPM. In some embodiments, the rotating contact member can rotate at a speed of greater than about 75 RPM. In some embodiments, the rotating contact member can rotate at a speed of greater than about 100 RPM. In some embodiments, the rotating contact member can rotate at a speed of greater than about 125 RPM. In some embodiments, the rotating contact member can rotate at a speed of less than about 400 RPM. In some embodiments, the rotating contact member can rotate at a speed of less than about 350 RPM. In some embodiments, the rotating contact member can rotate at a speed of less than about 275 RPM. In some embodiments, the rotating contact member can rotate at a speed of less than about 200 RPM.


The rotating contact member and/or the channel can be sized to accommodate a device to be coated having a diameter of between 0.5 mm and 20 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter greater than about 0.5 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter greater than about 1 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter greater than about 3 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter less than about 15 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter less than about 11 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter less than about 8 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter between about 0 mm and about 15 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter between about 1 mm and about 11 mm. In some embodiments, the rotating contact member and/or the channel can accommodate a device to be coated having a diameter between about 3 mm and about 8 mm.


The coating apparatus can include drive wheels in various embodiments (such as that shown in FIG. 9. The drive wheel can contact the device to be coated can generate force to push or pull the device to be coated through the apparatus. In some embodiments, the drive wheel pulls the device to be coated through the rotating contact member. In some embodiments, the drive wheel can be substantially smooth. In some embodiments, the drive wheel can include a surface texture. The drive wheel can be formed of various materials. In some embodiments, the drive wheel can be formed of silicone (PMDS).


The apparatus can move along the lengthwise axis of the device to be coated at various speeds through the action of the drive wheels or another source of motive force. In some embodiments, the apparatus can coat that device to be coated at a speed of between 0.1 and 1.5 cm per second.


In some embodiments, the apparatus can coat a device to be coated at a speed of greater than 0.1 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of greater than about 0.5 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of greater than about 1.0 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of less than about 2 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of less than about 1.5 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of less than about 1 cm/s. In some embodiments, the apparatus can coat a device to be coated at a speed of between about 0 cm/s and about 2 cm/s. In some embodiments, the apparatus can coat that device to be coated at a speed of between about 0.1 cm/s and about 1.5 cm/s. In some embodiments, the apparatus can coat that device to be coated at a speed of between about 0.5 cm/s and about 1 cm/s.


In some embodiments, the rotating contact member can assume an open configuration and a closed configuration. In some embodiments, the device to be coated can be inserted or removed from the rotating contact member when it is in the open configuration.


In some embodiments, the coating apparatus can include a drive shaft. The drive shaft conveys motive force between the motor and the rotating contact member. The drive shaft can be hollow. In some embodiments, the device to be coated can be disposed within the rotating contact member and/or the drive shaft such that the rotating contact member and/or the drive shaft rotates around the device to be coated.


In an embodiment, the invention includes a method of coating a medical device. The method of coating a medical device can include rotating a contact member around the outer diameter of a non-rotating medical device. The method can further include applying a coating solution to the outer diameter of the non-rotating medical device at a position adjacent to the contact member. The method can further include moving at least one of the contact member and the non-rotating medical device with respect to one another so that the contact member moves with respect to the lengthwise axis of the non-rotating medical device.


In some embodiments, rotation of the spiral shaped contact member causes the coating composition to move along the surface of the non-rotating medical device in the same direction along the lengthwise axis of the non-rotating medical device as the rotating contact member moves. In some embodiments, applying a coating solution comprises applying the coating solution onto the rotating contact member. In other embodiments, applying a coating solution comprise applying the coating solution directly onto the device to be coated. In some embodiments, an operation of inserting the non-rotating medical device into the contact member can be performed before the step of rotating the contact member.


Medical Devices


The coating apparatus of embodiments herein allows the precise application of coating materials onto medical devices with an extraordinary degree of control regarding where the coating stops and starts along the length of the medical device, uniformity of the coating applied and the amount of coating applied.


Many different types of medical device can be coated with apparatus described herein. By way of example, medical devices coated in accordance with embodiments described herein can include devices having a degree of curvature and/or stiffness such that they cannot practically be spun- or dip-coated. In a particular embodiment, the device can be one including a curved shaft. In some embodiments, the device can be one that lacks a central lumen.


In some embodiments, the present apparatus and coating methods can be used to coat catheters for transaortic valve implants (TAVI; see SAPEIN trancatheter heart valve; available from Edwards Lifesciences Corporation, Irvine, Calif.). TAVI devices and procedures can be used in cases where patients have severe aortic stenosis but where those patients are not candidates for surgery. TAVI catheters typically are not straight and have three dimensional bends or curves. The catheters are curved in order to assist the physician in the accurate placement of the valve at the site of the stenosis. There is a need to apply hydrophilic coatings to TAVI catheters to improve lubricity upon delivery of the TAVI to the site.


In the past, coating these non-linear, highly curved catheters using traditional methods such as dip or spray coating has resulted in coatings that are inconsistently applied or that require inordinate amount of waste coating material compared to the coating material applied to the surface of the medical device. Apparatus and methods of the present disclosure can be used to accurately apply a coating to the surface of TAVI devices with bends and curves, since apparatus and methods disclosed herein are largely not dependent upon the spatial configuration of the medical device to achieve accurate surface coatings.


In yet other embodiments, the medical device to be coated can be a balloon catheter. The balloon catheter can be coated in the apparatus described herein in the collapsed state. Alternatively, the balloon catheter can be coated in the apparatus described herein in the partially or fully expanded state. In one embodiment, the balloon catheter can be coated with a bioactive material such as a chemical ablative (e.g. vincristine, paclitaxel) and used for renal artery denervation therapy for hypertension.


Coating Solutions


It will be appreciated that coating solutions applied onto balloons can include various components including, but not limited to, one or more active agents, carrier agents, solvents (aqueous and/or non-aqueous), polymers (including degradable or non-degradable polymers), monomers, macromere, excipients, photoreactive compounds, linking agents, and the like. The relative amounts of the components of the coating solution will depend on various factors.


The coating solutions can be formulated so as to provide various functional properties to the medical device to which they are applied. By way of example, the coating solutions can be formulated so as to provide lubricious properties; anti-infective properties, therapeutic properties, durability and the like.


In other embodiments, the coating solution has relatively low viscosity. By way of example, in some embodiments, the coating solution can have viscosity of less than about, 100 50, 40, 30, 20, or 10 centipoise. In some embodiments, the coating solution can have a viscosity of between about 1 and 100 centipoise.


In some embodiments, the coating solution can have a solids content that is relatively low. By way of example, in some embodiments, coating solutions used in conjunction with embodiments herein can have a solids content of less than about 10 mg/ml. In some embodiments, coating solutions used in conjunction with embodiments herein can have a solids content of less than about 5 mg/ml. In some embodiments, coating solutions used in conjunction with embodiments herein can have a solids content of less than about 2 mg/ml.


It should be noted that, as used in this specification and the appended claims, the singular forms ‘a,’ ‘an,’ and ‘the’ include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing ‘a compound’ includes a mixture of two or more compounds. It should also be noted that the term ‘or’ is generally employed in its sense including ‘and/or’ unless the content clearly dictates otherwise.


It should also be noted that, as used in this specification and the appended claims, the phrase ‘configured’ describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration to. The phrase ‘configured’ can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.


All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.


The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims
  • 1. A coating apparatus comprising: a motor;a rotating contact member in mechanical communication with the motor, the rotating contact member configured to rotate around a device to be coated that does not rotate, the rotating contact member also configured to move relative to the device to be coated along a lengthwise axis of the device to be coated;a fluid applicator comprising an orifice adjacent to the rotating contact member;a fluid pump in fluid communication with the fluid applicator; anda base member supporting the rotating contact member and the fluid applicator.
  • 2. The coating apparatus of claim 1, the rotating contact member comprising a spiral shape.
  • 3. The coating apparatus of claim 2, the rotating contact member comprising a spiral shaped wire.
  • 4. The coating apparatus of claim 3, the spiral shaped wire comprising a shape memory metal.
  • 5. The coating apparatus of claim 3, the spiral oriented so that rotation carries a coating composition along the surface of the device to be coated in the same direction along the lengthwise axis of the device to be coated as the rotating contact member moves.
  • 6. The coating apparatus of claim 1, the rotating contact member comprising a channel into which a device to be coated fits.
  • 7. The coating apparatus of claim 1, the rotating contact member comprising a plurality of bristles.
  • 8. The coating apparatus of claim 1, the rotating contact member comprising a brush.
  • 9. The coating apparatus of claim 6, the rotating contact member comprising a housing, the channel comprising a central lumen defined by the housing.
  • 10. The coating apparatus of claim 9, wherein the diameter of the central lumen is larger at one end than the other.
  • 11. The coating apparatus of claim 9, the lumen comprising a funnel shape at one end of the housing.
  • 12. The coating apparatus of claim 9, wherein the housing is cylindrical.
  • 13. The coating apparatus of claim 1, wherein the rotating member rotates at a speed of 50 to 400 rotations per minute.
  • 14. The coating apparatus of claim 1, wherein the rotating member rotates at a speed of 100 to 200 rotations per minute.
  • 15. The coating apparatus of claim 6, wherein the channel accommodates a device to be coated having a radius of between 0.5 mm and 20 mm.
  • 16. The coating apparatus of claim 1, further comprising a drive wheel contacting the device to be coated, wherein the drive wheel pulls or pushes the device to be coated through the rotating contact member.
  • 17. The coating apparatus of claim 16, wherein the drive wheel pulls the device to be coated through the rotating contact member at a speed of between 0.1 and 1.5 cm/s.
  • 18. The coating apparatus of claim 1, wherein the rotating contact member moves between an open configuration and a closed configuration, wherein the device to be coated is inserted or removed from the rotating contact member when it is in the open configuration.
  • 19. The coating apparatus of claim 1, further comprising a drive shaft that conveys motive force between the motor and the rotating contact member, wherein the drive shaft is hollow and a portion of the device to be coated is disposed within the drive shaft.
  • 20. The coating apparatus of claim 1, the base including a hand grip.
  • 21. The coating apparatus of claim 1, the base mounted on a six-axis robot arm.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 61/734,788 filed Dec. 7, 2012, the content of which is herein incorporated by reference in its entirety.

US Referenced Citations (177)
Number Name Date Kind
1281672 Schorn Oct 1918 A
1866100 Hach Jul 1932 A
2330880 Gladfelter et al. Oct 1943 A
2493787 Torretti Jan 1950 A
2781280 Miller Feb 1957 A
3198170 Toshio Aug 1965 A
3318281 Plegat May 1967 A
3935896 Tegtmeier et al. Feb 1976 A
3963069 Marti et al. Jun 1976 A
4051805 Waldrum Oct 1977 A
4060116 Frailly Nov 1977 A
4073335 Fort et al. Feb 1978 A
4075975 Oswald Feb 1978 A
4153201 Berger et al. May 1979 A
4174678 Van Den Bergh Nov 1979 A
4195637 Gruntzig et al. Apr 1980 A
4240373 Anger Dec 1980 A
4289089 Tacke et al. Sep 1981 A
4301968 Berger et al. Nov 1981 A
4337896 Berger et al. Jul 1982 A
4352459 Berger et al. Oct 1982 A
4375820 Vinarcsik et al. Mar 1983 A
4503802 Keller et al. Mar 1985 A
4541564 Berger et al. Sep 1985 A
4567934 Nakao et al. Feb 1986 A
4572451 Ikeda et al. Feb 1986 A
4638045 Kohn et al. Jan 1987 A
4655393 Berger Apr 1987 A
4723708 Berger et al. Feb 1988 A
4743252 Martin, Jr. et al. May 1988 A
4978067 Berger et al. Dec 1990 A
5041089 Mueller et al. Aug 1991 A
5087246 Smith Feb 1992 A
5102402 Dror et al. Apr 1992 A
5183509 Brown et al. Feb 1993 A
5219120 Ehrenberg et al. Jun 1993 A
5304121 Sahatjian Apr 1994 A
5318587 Davey Jun 1994 A
5382234 Cornelius et al. Jan 1995 A
5387247 Vallana et al. Feb 1995 A
5413638 Bernstein, Jr. et al. May 1995 A
5501735 Pender Mar 1996 A
5527389 Rosenblum et al. Jun 1996 A
5571089 Crocker Nov 1996 A
5643362 Garves Jul 1997 A
5656332 Saito et al. Aug 1997 A
5658387 Reardon et al. Aug 1997 A
5743964 Pankake Apr 1998 A
5776101 Goy Jul 1998 A
5807331 Den Heijer et al. Sep 1998 A
5833891 Subramaniam et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837088 Palmgren et al. Nov 1998 A
5882336 Janacek Mar 1999 A
5882405 Kish et al. Mar 1999 A
5897911 Loeffler Apr 1999 A
6019784 Hines Feb 2000 A
6153252 Hossainy et al. Nov 2000 A
6156373 Zhong et al. Dec 2000 A
6203551 Wu Mar 2001 B1
6203732 Clubb et al. Mar 2001 B1
6245099 Edwin et al. Jun 2001 B1
6254921 Chappa et al. Jul 2001 B1
6322847 Zhong et al. Nov 2001 B1
6333595 Horikawa et al. Dec 2001 B1
6345630 Fishkin et al. Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6394995 Solar et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6406754 Chappa et al. Jun 2002 B2
6431770 Kurematsu et al. Aug 2002 B1
6435959 Skrmetta Aug 2002 B1
6506437 Harish et al. Jan 2003 B1
6517515 Eidenschink Feb 2003 B1
6517889 Jayaraman Feb 2003 B1
6521299 Dessauer Feb 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6562136 Chappa et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6605154 Villareal Aug 2003 B1
6607598 Schwarz et al. Aug 2003 B2
6616765 Castro et al. Sep 2003 B1
6623504 Vrba et al. Sep 2003 B2
6656529 Pankake Dec 2003 B1
6669980 Hansen Dec 2003 B2
6673154 Pacetti et al. Jan 2004 B1
6676987 Zhong et al. Jan 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6709514 Hossainy Mar 2004 B1
6709712 Chappa et al. Mar 2004 B2
6723373 Narayanan et al. Apr 2004 B1
6725901 Kramer et al. Apr 2004 B1
6743462 Pacetti Jun 2004 B1
6743463 Weber et al. Jun 2004 B2
6783793 Hossainy et al. Aug 2004 B1
6803070 Weber Oct 2004 B2
6818063 Kerrigan Nov 2004 B1
6896842 Hamilton et al. May 2005 B1
6981982 Armstrong et al. Jan 2006 B2
7010933 Ishitomi et al. Mar 2006 B2
7045015 Renn et al. May 2006 B2
7125577 Chappa Oct 2006 B2
7163523 Devens, Jr. et al. Jan 2007 B2
7192484 Chappa et al. Mar 2007 B2
7198675 Fox et al. Apr 2007 B2
7335314 Wu Feb 2008 B2
7563324 Chen et al. Jul 2009 B1
7611532 Bates et al. Nov 2009 B2
7669548 Chappa Mar 2010 B2
7958840 Chappa Jun 2011 B2
8632837 Gong et al. Jan 2014 B2
2253019 Crepeau Aug 2014 A1
20010001824 Wu May 2001 A1
20020051730 Bodnar et al. May 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020103526 Steinke Aug 2002 A1
20020115400 Skrmetta Aug 2002 A1
20020155212 Hossainy Oct 2002 A1
20030003221 Zhong et al. Jan 2003 A1
20030044514 Richard Mar 2003 A1
20030054090 Hansen Mar 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030059920 Drohan et al. Mar 2003 A1
20030088307 Shulze et al. May 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030190420 Chappa et al. Oct 2003 A1
20040062875 Chappa et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040081745 Hansen Apr 2004 A1
20040161547 Carlson et al. Aug 2004 A1
20040185168 Weber et al. Sep 2004 A1
20040194704 Chappa et al. Oct 2004 A1
20040213893 Boulais Oct 2004 A1
20050098097 Chen et al. May 2005 A1
20050142070 Hartley Jun 2005 A1
20050158449 Chappa Jul 2005 A1
20060020295 Brockway et al. Jan 2006 A1
20060029720 Panos et al. Feb 2006 A1
20060045981 Tsushi et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060064142 Chavan et al. Mar 2006 A1
20060074404 Struble Apr 2006 A1
20060088653 Chappa Apr 2006 A1
20060096535 Haller et al. May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060116590 Fayram et al. Jun 2006 A1
20060165872 Chappa et al. Jul 2006 A1
20060191476 Nagase et al. Aug 2006 A1
20070101933 Chappa May 2007 A1
20070116855 Fox et al. May 2007 A1
20070131165 Fox et al. Jun 2007 A1
20070141232 Tochterman et al. Jun 2007 A1
20070259100 Guerriero et al. Nov 2007 A1
20070259102 Mcniven et al. Nov 2007 A1
20080149025 Swenson Jun 2008 A1
20080274266 Davis et al. Nov 2008 A1
20090018643 Hashi et al. Jan 2009 A1
20090090299 Menendez et al. Apr 2009 A1
20090269481 Chappa et al. Oct 2009 A1
20100040766 Chappa et al. Feb 2010 A1
20100055294 Wang et al. Mar 2010 A1
20100070020 Hashi et al. Mar 2010 A1
20100227044 Scheer Sep 2010 A1
20110281019 Gong et al. Nov 2011 A1
20110281020 Gong et al. Nov 2011 A1
20110311713 O'neill et al. Dec 2011 A1
20120315376 Nguyen et al. Dec 2012 A1
20130337147 Chappa et al. Dec 2013 A1
20140121597 Chappa et al. May 2014 A1
20140328998 Chappa et al. Nov 2014 A1
Foreign Referenced Citations (19)
Number Date Country
2351016 Dec 2001 CA
3335502 Sep 1983 DE
144873 Jun 1985 EP
0001322 Jan 2000 WO
0132382 May 2001 WO
0220174 Mar 2002 WO
03004072 Jan 2003 WO
2004028579 Apr 2004 WO
2004028699 Apr 2004 WO
2004037126 May 2004 WO
2004037443 May 2004 WO
2007100801 Sep 2007 WO
2008002357 Jan 2008 WO
2009132214 Oct 2009 WO
2010024898 Mar 2010 WO
2010146096 Dec 2010 WO
2013181498 Dec 2013 WO
2014066760 May 2014 WO
2014182833 Nov 2014 WO
Non-Patent Literature Citations (24)
Entry
U.S. Appl. No. 10/976,193,, “Notice of Allowance mailed Mar. 8, 2011”, 6 Pgs.
Examiner's Answer, from U.S. Appl. No. 12/109,139, mailed Mar. 22, 2013, 12 pages.
“Final Office Action”, mailed Dec. 28, 2011 in co pending U.S. Appl. No. 12/109,139, “Coating Application System With Shaped Mandrel,” (6 Pages)., 6.
“Final Office Action”, mailed Sep. 4, 2012 in U.S. Appl. No. 12/109,139, “Coating Application System With Shaped Mandrel,” (8 pages)., 8.
“International Preliminary Report on Patentability”, for PCT Application No. PCT/US2013/043547, mailed on Dec. 11, 2014 (7 pages).
“International Search Report and Written Opinion”, for PCT/US2013/066810, mailed Apr. 17, 2014 (18 pages).
“International Search Report and Written Opinion”, for PCY/US2013/043547, mailed Oct. 1, 2013 (10 pages).
“Invitation to Pay Additional Fees and, Where Applicable, Protest Fee”, for PCT/US2013/066810, mailed Feb. 7, 2014 (6 pages).
“Invitation to Pay Additional Fees”, for PCT Application No. PCT/US2014/037179, mailed on Oct. 24, 2014 (5 pages).
“Non Final Office Action mailed Jul. 14, 2011 in co pending U.S. Appl. No. 12/109,139, “Coating Application System With Shaped Mandrel” (9 pages)”, 9 Pgs.
“Non-Final Office Action”, mailed Apr. 4, 2012in co-pending U.S. Appl. No. 12/109,139, “Coating Application System With Shaped Mandrel,” (8 pages)., 8.
“Office Action Mailed Jul. 9, 2007 for U.S. Appl. No. 11/539,443”.
Office Action Mailed on Oct. 6, 2005 for U.S. Appl. No. 10/976,348.
“Office Action Mailed on Feb. 22, 2006 for U.S. Appl. No. 10/976,348”.
“Office Action Mailed on May 17, 2007 for U.S. Appl. No. 10/976,193”.
“Office Action Mailed on Jun. 13, 2006 for U.S. Appl. No. 10/976,193”.
“Pct International Search Report and Written Opinion from International Application No. PCT/US2005/038628, corresponding to U.S. Appl. No. 10/976,193, mailed Mar. 22, 2006, pp. 1-16”.
PCT International Search Report and Written Opinion from International Application No. PCT/US2009/041575, corresponding to U.S. Appl. No. 12/109,139, mailed Jul. 22, 2009, pp. 1-15.
“Pct Notification Concerning Transmittal of International Preliminary Report on Patentability from International Application No. PCT/US2005/038628, corresponding to U.S. Appl. No. 10/976,193, mailed May 10, 2007, pp. 1-10”.
“Pto-892 Mailed Jul. 9, 2007 for U.S. Appl. No. 11/539,443”.
“Pto-892 Mailed on Oct. 6, 2005 for U.S. Appl. No. 10/976,348”.
“Pto-892 Mailed on May 17, 2007 for U.S. Appl. No. 10/976,193”.
“Restriction Requirement”, for U.S. Appl. No. 13/906,599, mailed on Dec. 3, 2014 (6 pages).
“Restriction Requirement”, mailed Apr. 29, 2011 in co pending U.S. Appl. No. 12/109,139, “Coating Application System With Shaped Mandrel,” (7 pages)., 7 Pgs.
Related Publications (1)
Number Date Country
20140161964 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61734788 Dec 2012 US