This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081098, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 956.6, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.
The disclosure concerns a coating device for coating components with a coating agent, in particular for painting motor vehicle body components with a paint. Furthermore, the disclosure concerns a corresponding operating method for such a coating device.
For the serial painting of motor vehicle body components, rotary atomizers are usually used as application devices, which have the disadvantage of a limited application efficiency, i.e. only a part of the applied paint is deposited on the components to be coated, while the rest of the applied paint has to be disposed of as so-called overspray.
Other known atomizer types are air atomizers, airless atomizers, airmix atomizers and air-assist atomizers. However, these atomizer types also have the disadvantage that a spray mist is emitted so that unwanted overspray occurs when coating.
A newer development line, on the other hand, provides for so-called printheads as application equipment, such as those known from DE 10 2013 002 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1. In contrast to the known rotary atomizers, such printheads do not emit a spray of the paint to be applied, but rather a narrowly confined paint jet or—e.g. at edges or edge areas—a droplet jet which is deposited almost completely on the component to be painted, so that almost no overspray occurs.
With the well-known printheads, the paint is supplied either unpressurized, self-priming, purely physically according to the principle of communicating tubes or a paint container under pressure. However, these different types of paint supplies are disadvantageous for various reasons.
In the case of self-priming paint supplies, the delivery volume and thus also the output volume is limited to values of less than 1 ml/min.
In the case of pressure conveying, on the other hand, the conveying volume can be influenced by changing boundary conditions, such as filters or hoses that become clogged, changes in the cross-section of crushed, bent or twisted hoses, which can occur, for example, when hoses are laid in a painting robot or in the case of blocked nozzles or channels in the printhead.
As state of the art printheads are particularly capable of ejecting inks with a viscosity of <15 mPas, the above mentioned delivery methods work sufficiently well. Due to the considerably higher viscosity of coating agents, such as paints, these methods are not sufficient to ensure a constant coating agent delivery volume.
However, in the series painting of vehicle body components, high-quality coatings are applied, which can only be achieved with a constant application rate of the respective coating agent (e.g. paint, adhesive, sealant, primer). The disturbing influence of the above mentioned factors, however, increases with the viscosity of the coating agent.
Furthermore, it should be noted that the viscosity of paints for painting vehicle body components is so high that, together with the application rate and the tube and hose lengths between the paint reservoir and the application device, a pressure is applied that is large enough to convey sufficient paint to the applicator. The viscosity of the paint can vary greatly and depends on several parameters, such as temperature and shear.
When the well-known printheads are used as an application device in the series painting of vehicle body components, the paint supply is therefore still unsatisfactory in practice.
With regard to the technical background of the disclosure, reference should also be made to DE 10 2014 013 158 A1, DE 10 2008 053 178 A1, DE 10 2009 038 462 A1, DE 10 2006 021 623 A1, JP 2013/188 706 A and U.S. Pat. No. 6,540,835 B2.
Generally, disclosure includes setting the coating agent pressure and/or the flow rate of the coating agent in a controlled manner in order to produce defined application conditions during the application of coating agents (e.g. paint, adhesive, sealant, primer, etc.) with a printhead so that high-quality coatings can be applied.
The term “coating agent” used in the disclosure is to be generally understood and includes, for example, paints (e.g. water-based paint, solvent-based paint, base coat, clear coat), waxes (e.g. preservative wax), thick materials, sealants, insulating materials and adhesives.
In accordance with the state of the art, the coating device according to the disclosure first has a printhead for applying the coating agent (e.g. paint, adhesive, sealant, primer, etc.) to the component (e.g. motor vehicle body component). The term “printhead” used in the context of the disclosure is to be understood in general and only serves to distinguish from atomizers (e.g. rotary atomizers, disc atomizers, airless atomizers, airmix atomizers, ultrasonic atomizers) which emit a spray of the coating agent to be applied. In contrast, the printhead emits a narrowly confined coating agent jet. Such printheads are known from the state of the art and are described for example in DE 10 2013 092 412 A1, U.S. Pat. No. 9,108,424 B2 and DE 10 2010 019 612 A1.
In addition, the coating device according to the disclosure has a coating agent supply to supply the printhead with the coating agent to be applied, resulting in a specific coating agent pressure and flow rate of the coating agent.
The disclosure now provides that the coating agent supply will control the coating agent pressure and/or flow rate of the coating agent to produce defined application conditions, which is important for the application of high quality coatings.
In an example of the disclosure, the coating agent supply has a metering pump that meters the coating agent and delivers it to the printhead. The term metering pump references that the flow rate is essentially independent of pressure ratios at the inlet and outlet of the metering pump. This means that a defined flow rate can be set according to the control of the metering pump, which is important for high-quality coatings.
For example, the metering pump can be a gear pump, a wobble piston pump or a micro gear pump, to name just a few examples.
Here it is advantageous if the metering pump can be flushed with a flushing agent to flush out coating agent residues from the metering pump. This is particularly advantageous if the metering pump is to be used to pump different colours one after the other. In the case of a colour change, the metering pump can first be flushed with a flushing agent in order to flush out coating agent residues of the old colour from the metering pump. Alternatively, the metering pump can first be blown out and then flushed. The metering pump can also be cleaned alternately with flushing agent and pulsed air.
Alternatively, within the scope of the disclosure, there is the possibility that the coating agent supply has a piston metering unit in order to supply the coating agent in a controlled manner. The coating agent is pressed out of a cylinder by a sliding piston so that the piston position directly determines the amount of coating agent applied.
The piston metering unit can, for example, be arranged on or in the applicator (printhead), before of the robot hand axis, behind the robot hand axis, on the distal robot arm (“Arm 2”) or on the proximal robot arm (“Arm 1”), travelling on a linear traversing axis, on the cabin wall of the painting cabin or outside the painting cabin.
Another variant of the disclosure, on the other hand, provides for a cartridge dispenser with a cartridge filled with a coating agent, with a cartridge outlet for dispensing the coating agent and a cartridge inlet for introducing a displacement fluid which displaces the coating agent contained in the cartridge and ejects it through the cartridge outlet. The flow rate of the coating agent at the printhead can be precisely controlled by controlling the displacement fluid introduced into the cartridge (e.g. solvent first, then compressed air) so that defined application conditions can also be set in this way.
In another variant of the disclosure, the coating agent supply has a coating agent reservoir (e.g. ring line) in order to supply the coating agent to be applied, the defined application conditions being set by a pressure regulator which regulates the coating agent pressure. A pressure sensor can also be provided to measure the coating agent pressure, whereby the measured quantity of the coating agent pressure can then be made available to the pressure regulator.
In one example, the coating agent supply has a coating agent pump to convey the coating agent to the printhead. The coating agent pump is preferably a metering pump in the sense described above, but in this example another type of pump can be used as a coating agent pump.
Furthermore, the coating agent supply in this example has a pressure sensor which measures the coating agent pressure at the printhead, i.e. upstream of the printhead, inside the printhead or directly at a nozzle of the printhead or at the metering pump.
In the case of a pressure regulator, this example also has a flow measuring cell which measures the flow rate from the coating agent pump to the printhead, in particular the volume flow or mass flow of the coating agent being pumped.
Finally, this example has a controller which controls the coating agent pump as a function of the measured coating agent pressure and/or as a function of the measured flow rate of the coating agent.
Furthermore, in this example a bypass line is may be provided in order to bypass the coating agent pump. A bypass valve is also provided to control the flow of coating agent through the bypass line. The discharge of coating agent via the by-pass line also allows the pressure conditions at the printhead to be checked and can also be used for flushing and pressing.
The above mentioned controller controls the coating agent pump preferably in dependence on the measured coating agent pressure and/or in dependence on the measured coating agent flow, whereby different control objectives are possible. A control objective provides that the coating agent pressure is controlled to a specified target pressure. Another control objective, on the other hand, provides that the flow rate of the coating agent is controlled to a specified target flow rate.
The controller can therefore preferably be switched between a pressure control mode and a flow control mode. In pressure control mode, the controller adjusts the coating agent pressure to the specified target pressure. In the flow rate control mode, however, the controller adjusts the flow rate of the coating agent to the specified target flow rate.
In this example, a control unit can be used to switch between these two operating modes (pressure control mode and flow rate control mode). Here it may be taken into account that the printhead is partly operated in a stationary state and partly in a transient state. In the stationary state (steady state) no nozzles are opened or closed at the printhead, whereby a preferably constant flow rate of the coating agent should be applied. In the transient state of the printhead, however, nozzle valves are closed or opened, which includes a corresponding dynamic adjustment of the applied quantity flow. The control unit preferably switches the controller to the flow control mode when the printhead is operated in a stationary state in which no nozzle valves of the printhead are opened or closed. The control unit, on the other hand, prefers to switch the controller to the pressure control mode when the printhead is operating in a transient state where nozzle valves of the printhead are dynamically opened or closed.
The controller can calculate the different states in advance on the basis of the coating program, since it is known at any time during the coating process which nozzle is open or closed. Thus, the required coating agent volume flow can be calculated for any point in time or the points in time of the changeover from volume control operation to pressure control operation can be calculated. This significantly increases the dynamics of the control system.
In addition, the control unit can also control the aforementioned bypass valve depending on the stationary or transient state of the printhead.
In another example of the disclosure, the coating agent supply has a coating agent supply (e.g. ring line), a coating agent return (e.g. ring line) and a pressure actuator (e.g. control valve, pressure regulator) which adjusts the coating agent flow from the coating agent supply to the coating agent return. The return preferably leads the coating agent back to reuse, e.g. back to the ring line, to the paint tank or to another applicator. In addition, the coating agent supply in this example has a coating agent outlet (e.g. nozzle of the printhead) which can be connected to the coating agent supply or is connected to the coating agent supply.
In this example, the pressure actuator—as already briefly mentioned above—can be designed as a return pressure regulator which adjusts the coating agent flow into the coating agent return and thereby regulates the coating agent pressure flow upwards upstream of the return pressure regulator and thus also at the coating agent outlet to the specified target pressure.
Alternatively, as briefly mentioned above, it is possible for the pressure actuator to be a controllable return valve which adjusts the flow of coating agent to the coating agent return in order to establish defined application conditions at the coating agent outlet. As described above, the controller can also calculate the position of the return valve in advance and thus increase the control dynamics.
In another variant of this example, the pressure actuator is a double-acting control valve which, depending on its valve position, either connects the coating agent supply with the coating agent outlet and closes the coating agent return, or connects the coating agent supply with the coating agent return and closes the coating agent outlet. The supplied flow of coating agent is thus directed from the pressure actuator either into the coating agent return or through the coating agent outlet, so that the flow of coating agent conveyed can remain constant in quantity and only the direction of the coating agent flow is changed, namely either into the coating agent return or through the coating agent outlet. For example, the double-acting control valve may then have a dumbbell-shaped or rocker-shaped valve element.
This double-acting control valve may be located in the printhead. However, it is also possible for the double-acting control valve to be located upstream of the printhead.
It should also be mentioned that the coating agent outlet controlled by the double-acting control valve may be a nozzle opening of the printhead. In this case, the double-acting control valve is located directly at the nozzle opening.
It should also be mentioned that the double-acting control valve has the same free flow cross-section to the coating agent return and to the coating agent outlet, resulting in the same flow resistance in both valve positions.
In a another example, the coating agent supply for conveying the coating agent has a coating agent pump with an adjustable flow rate, in particular a metering pump. The nozzle head has several coating agent nozzles for dispensing the coating agent, whereby a nozzle valve is assigned to each individual coating agent nozzle, so that the individual coating agent nozzles can be individually controlled. In addition, a control unit is provided for setting the delivery rate of the coating agent pump, the control unit determining the number of open nozzle valves and setting the delivery rate of the coating agent pump as a function of the number of open nozzle valves. The control unit can determine the number of open nozzle valves, for example by interrogating the control signals for the individual nozzle valves or as described above. The flow rate of the coating agent pump is then adjusted according to the required flow rate depending on the number of open nozzle valves. It should be noted that the control unit preferably has a very short response time of less than 100 ms, 60 ms, 10 ms, 1 ms, 100 μs or even less than 10 μs in order to be able to react sufficiently quickly to the dynamic opening and closing of the individual nozzle valves.
Another way to control the application conditions on the printhead is to provide a buffer reservoir that holds the coating agent and buffers pressure fluctuations of the coating agent.
The buffer reservoir may be located directly in the printhead in order to buffer pressure fluctuations as effectively as possible. Alternatively, it is also possible to place the buffer reservoir outside the printhead and upstream of the printhead.
For example, the buffer reservoir can be realized by a cylinder with a movable piston, whereby the piston can be pretensioned by a spring, compressed air, an electric actuator, a piezoelectric actuator or a magnetic actuator.
It should also be mentioned that the printhead is preferably moved over the surface of the component to be coated by a manipulator (e.g. painting robot) with a serial robot kinematics along a programmed movement path at a certain drawing speed. When passing over a component edge, the individual coating agent nozzles of the printhead are then be closed or opened one after the other, which also requires a corresponding dynamic adjustment of the delivery rate of the coating agent pump. It should be noted that the required reaction time of the coating agent pump depends on the drawing speed of the printhead and on the distance of the adjacent coating agent nozzles along the programmed path of movement. The coating agent pump therefore preferably has a sufficiently short time constant, whereby the time constant of the coating agent pump indicates the time span which elapses with a change in the desired flow rate until 63.2% (1-1/e) of the desired change in the flow rate has been implemented. The following formula is therefore preferable:
s>v−τ
with:
However, it should be taken into account that the distance of the adjacent coating agent nozzles along the programmed path of movement can also be influenced by a rotation of the printhead. Thus, the coating agent nozzles are usually arranged along a nozzle line in the printhead, where the printhead with the nozzle line is rotatable relative to the programmed trajectory, so that the nozzle line with the programmed trajectory includes a printhead angle. The printhead may then be rotated and moved in such a way that the following formula applies:
v·τ<s=d·cos α
with:
In general it should be mentioned that the printhead emits a narrowly limited jet of coating agent in contrast to a spray mist, as is the case with rotary atomizers, for example.
For example, the printhead can emit a droplet jet or even individual droplets in contrast to a jet of coating agent that is connected in the longitudinal direction of the jet.
Alternatively, however, there is also the possibility that the printhead emits a coating agent jet being continuous in the longitudinal direction of the jet, in contrast to the droplet jet mentioned above.
The control of the coating agent pressure according to the disclosure is preferably carried out with a maximum fluctuation range of ±500 mbar, ±200 mbar, ±100 mbar or even ±50 mbar at the most.
It should also be mentioned that the printhead preferably has an application efficiency of at least 80%, 90%, 95% or even 99%, so that essentially the entire applied coating agent is completely deposited on the component without overspray.
The printhead preferably enables a surface coating performance of at least 0.5 m2/min, 1 m2/min, 2 m2/min or at least 3 m2/min, i.e. the printhead can coat a corresponding component surface within the specified time period.
It should also be mentioned that the flow rate of the applied coating agent and thus the exit speed of the coating agent is preferably adjusted in such a way that the coating agent does not bounce off the component after hitting it.
For example, the exit velocity of the coating agent can be in the range of 5 m/s to 30 m/s.
The application distance between nozzle and component surface can, for example, be in the range from 4 mm to 200 mm, especially from 5 mm to 100 mm, 5 mm to 50 mm, 10 mm to 40 mm.
The disclosure also offers various possibilities with regard to the applied coating agent. Preferably, however, the coating agent is a paint, such as a base coat, a clear coat, an effect paint, a mica paint or a metallic paint. For example, these coatings can be water-based or solvent-based.
To eject the coating agent to be applied, the printhead may have at least one electrically controllable actuator, such as a magnetic actuator or a piezo actuator. Pneumatic valves or drives are also conceivable.
The disclosure also includes a corresponding operating method, whereby the individual steps of the operating method according to the disclosure are already apparent from the above description of the coating device according to the disclosure and therefore do not have to be described in more detail.
In the following,
The coating agent to be applied is fed into the printhead via a coating agent feed 2 and can either leave the nozzle head through the nozzle 1 or be returned to a coating agent return 3 depending on the position of the nozzle valve, the flow path from the coating agent feed 2 to the coating agent return 3 leading through a return opening 4 which is either released (
The control valve is only schematically shown here and has a valve needle 5 which can be shifted in the direction of the double arrow by an actuator not shown (e.g. solenoid actuator).
A seal 6, 7 is fitted to each of the two opposite ends of the valve needle 5 in order to be able to close the nozzle 1 or the return opening 4.
In the valve position shown in
Instead, the control valve releases the nozzle 1 so that coating agent can escape from the coating agent feed 2 through the nozzle 1.
In the valve position shown in
In this valve position, on the other hand, the control valve closes the nozzle 1 with the seal 7 so that no coating agent can escape from the nozzle 1.
The control valve is therefore double-acting, since the control valve controls not only the coating agent flow through the nozzle 1, but also the coating agent flow from the coating agent feed 2 to the coating agent return 3.
It should be mentioned here that the return opening 4 essentially has the same free flow cross-section as the nozzle 1 and thus also has the same flow resistance. This means that the coating agent flow through the coating agent feed 2 is not influenced by the position of the control valve, since the coating agent flow supplied is discharged either through the return opening 4 or through the nozzle 1 without changing the flow resistance. This is advantageous because switching the control valve will not result in unwanted pressure surges which could affect the coating quality. The recirculation should generate a similar back pressure or be almost pressureless so that the flow conditions remain constant.
The control valves V1-Vn are each individually controlled by control signals S1-Sn, whereby the generation of the control signals S1-Sn is not shown here for simplification.
In addition, the coating device shown has a coating agent return 11 in order to circulate unneeded coating agent or to divert it into a return.
The coating agent flow through the coating agent return is adjusted by a return valve VR, whereby the return valve VR is controlled by a control unit 12.
In addition, the coating device shown has a pressure sensor 13 which measures the coating agent pressure in the printhead 10, i.e. immediately in front of the nozzles N1-Nn.
The pressure sensor 13 is connected on the output side with the control unit 12, which controls the return valve VR depending on the measured pressure. The aim of controlling the return valve VR by the control unit 12 is to set the coating agent pressure in the printhead 10 as constant as possible, regardless of the valve position of the V1-Vn control valves. Thus, opening the control valves V1-Vn leads to a larger coating agent flow through the respective nozzles N1-Nn, which without countermeasures initially leads to an undesired pressure drop of the coating agent pressure in the printhead 10. The control unit 12 can counteract this by closing the return valve VR accordingly, so that less coating agent is diverted via the coating agent feedback 11. The reduced coating agent flow into the coating agent return 11 then compensates, if possible, for the increased coating agent flow through the open control valves V1-Vn. Ideally, this compensation should be such that the flow of coating agent into the printhead 10 remains constant regardless of the valve position of the control valves V1-Vn, which also results in a constant coating agent pressure in the printhead 10. This compensation therefore leads to a constant coating agent pressure even when the control valves V1-Vn are opened or closed dynamically, thus contributing to a good coating result.
The example shown in
One difference between this example and the example shown in
The coating agent to be applied is supplied to the printhead 14 via a coating agent feed 16, a metering pump 17 and a flow measuring cell 18, whereby the flow measuring cell 18 measures the flow rate Q of the coating agent.
In addition, the coating device has a pressure sensor 19 which measures the coating agent pressure p in the printhead 14.
The pressure sensor 19 and the flow measuring cell 18 are connected on the output side to a controller 20 which controls the metering pump 17.
In addition, a bypass valve 21 is provided which is controlled by the control unit 15.
During operation of this coating device, a distinction is made between a stationary state and a transient state.
In the stationary state, no control valves are dynamically opened or closed in the printhead 14, so that the system is in the stationary state.
In the transient state, however, control valves in the printhead 14 are dynamically closed or opened so that the system is not in the stationary state.
Depending on these two states, the controller 20 is then operated either in a flow control mode or in a pressure control mode.
In the pressure control mode, the controller 20 controls the metering pump 17 in such a way that a coating agent pressure p that is as constant as possible is provided at the input of the printhead 14.
In the flow rate control mode, however, the controller 20 controls the metering pump 17 in such a way that the flow rate Q of the coating agent is as constant as possible.
The control unit 15 switches the controller 20 between the pressure control mode and the flow rate control mode in such a way that in the transient state it switches to the pressure control mode, whereas in the stationary state it switches to the flow rate control mode.
The printhead 22 is supplied with the paint to be coated via a ring line arrangement 23 with several lines for different colours F1, F2, . . . , Fn.
The desired color F1-Fn is selected by a color changer 24 from the ring line arrangement 23, whereby the color changer 24 feeds the selected color to a metering pump 25, which feeds the selected coating agent with a defined flow rate to the printhead 22.
In addition, the color changer 24 is connected to a ring line arrangement 26, which forms a coating agent return.
The color changer 24 therefore not only has the function of selecting the desired paint F1-Fn from the ring line arrangement 23 and feeding it to the metering pump 25 and thus also to the printhead 22. Rather, the color changer 24 also has the task of returning excess coating agent to the ring line arrangement 26 depending on the valve position of the control valves in the printhead 22 in order to prevent pressure fluctuations in the printhead 22 as far as possible or if no coating agent of a certain color is required.
In addition, the coating device has a pressure sensor 27, which measures the paint pressure in the printhead 22 or at the metering pump and is connected on the output side to a control unit 28. The control unit 28 now controls the color changer 24 in such a way that pressure fluctuations in the printhead 22 are avoided as far as possible. For this purpose, the control unit 28 opens or closes the return to the ring line arrangement 26 in order to compensate for a dynamic increase or decrease in the applied coating agent flow. The control unit 28 thus ensures controlled printing conditions in the printhead 22, which contributes to a good coating result.
A feature of this example is that a return pressure regulator 29 controls the coating agent flow into the coating agent return 11 instead of the return valve VR. The return pressure regulator 29 regulates the coating agents pressure upstream of the return pressure regulator 29 and thus within the printhead 10 to a specified set pressure. The return flow regulator 29 can compensate for an increase or decrease in the applied coating agent flow if the control valves V1-Vn are opened or closed dynamically. Thus the return pressure regulator 29 ensures an essentially constant coating agent pressure in the printhead 10.
A feature of this example is that a control unit 30 controls the metering pump 9 depending on the control signals S1-Sn for the control valves V1-Vn of the printhead 10.
For example, if one or more of the control valves V1-Vn are closed dynamically, the control unit 30 can reduce the flow rate of the metering pump 9 to prevent the coating agent pressure in the printhead 10 from overshooting. In this example, not only does the return pressure regulator 29 contribute to achieving the desired pressure conditions in the printhead 10, but also the control of the metering pump 9 by the control unit 30.
A feature of this example is that the printhead 10 contains an integrated buffer reservoir 31 which buffers pressure fluctuations in the printhead 10.
For example, the buffer reservoir 31 may have a cylinder with a sliding piston, where the piston can be preloaded by a spring or compressed air.
Due to its buffer effect, the buffer reservoir 31 also contributes to ensuring that no significant pressure fluctuations occur in the printhead 10 even when the control valves V1-Vn are opened or closed dynamically, as these are buffered by the buffer reservoir 31.
In the printhead 32, several nozzles 34 are arranged next to each other along a nozzle line 35, which is very simplified. The nozzles 34 are arranged along the nozzle line 35 at a distance d from each other.
The nozzle head 32 can be rotated each time by the multi-axis painting robot, whereby the nozzle head 32 with the nozzle li-nie 35 encloses an angle α relative to the programmed movement path 33. Depending on the rotation angle α of the printhead 32, a certain distance s between the adjacent nozzles 34 along the programmed movement path 33 is set.
In the above example the nozzles 34 in the printhead 32 are be closed one after the other as the printhead 32 approaches the boundary of an area to be coated. If the printhead 32 reaches the end of an area to be coated along the programmed trajectory 33, the nozzles 34 of the printhead 32 are closed one after the other from front to rear.
This closing of the nozzles 34 leads to a dynamic reduction of the applied coating agent flow, so that the associated coating agent pump should be shut down accordingly in order to avoid excess coating agent delivery and the associated excess coating agent pressure. However, a coating pump usually has a certain inertia and cannot react immediately to a change in the desired flow rate, but only with a certain delay, as shown in
If possible, the coating agent pump should now be able to react so quickly that the coating agent pump with its flow rate can follow the dynamic opening and closing of the nozzles 34 of the nozzle head 32. The coating device should therefore fulfil the following formula:
v·τ<s=d·cos α
with:
If this formula is fulfilled, the coating agent pump can approximately track the amount of coating agent pumped to the dynamic opening or closing of the nozzles 34.
The disclosure is not limited to the examples described above. Rather, a large number of variants and modifications are possible which also make use of the inventive idea and therefore fall within the scope of protection. The feature of a control of the coating agent pressure or the flow rate of the coating agent is therefore not a necessary feature in the context of the further aspects of disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 014 956.6 | Dec 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/081098 | 12/1/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/108562 | 6/21/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3421694 | Muller | Jan 1969 | A |
3717306 | Hushon et al. | Feb 1973 | A |
3981320 | Wiggins | Sep 1976 | A |
4141231 | Kudlich | Feb 1979 | A |
4375865 | Springer | Mar 1983 | A |
4383264 | Lewis | May 1983 | A |
4423999 | Choly | Jan 1984 | A |
4430010 | Zrenner et al. | Feb 1984 | A |
4435719 | Snaper | Mar 1984 | A |
4478241 | Cardenas-Franco | Oct 1984 | A |
4555719 | Arway et al. | Nov 1985 | A |
4668948 | Merkel | May 1987 | A |
4734711 | Piatt et al. | Mar 1988 | A |
4826135 | Mielke | May 1989 | A |
4894252 | Bongen et al. | Jan 1990 | A |
4941778 | Lehmann | Jul 1990 | A |
4974780 | Nakamura et al. | Dec 1990 | A |
4985715 | Cyphert et al. | Jan 1991 | A |
5050533 | Zaber | Sep 1991 | A |
5072881 | Taube, III | Dec 1991 | A |
5429682 | Harlow, Jr. et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5538221 | Joswig | Jul 1996 | A |
5556466 | Martin et al. | Sep 1996 | A |
5602575 | Pauly | Feb 1997 | A |
5636795 | Sedgwick et al. | Jun 1997 | A |
5647542 | Diana | Jul 1997 | A |
5659347 | Taylor | Aug 1997 | A |
5681619 | Ogasawara | Oct 1997 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5843515 | Crum et al. | Dec 1998 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964407 | Sandkleiva | Oct 1999 | A |
5976343 | Schlaak | Nov 1999 | A |
6179217 | Yoshida et al. | Jan 2001 | B1 |
6540835 | Kim et al. | Apr 2003 | B2 |
6607145 | Boriani et al. | Aug 2003 | B1 |
6641667 | Ochiai et al. | Nov 2003 | B2 |
6712285 | Provenaz et al. | Mar 2004 | B2 |
6777032 | Ogasahara et al. | Aug 2004 | B2 |
6811807 | Zimmermann et al. | Nov 2004 | B1 |
6849684 | Poppe et al. | Feb 2005 | B2 |
7160105 | Edwards | Jan 2007 | B2 |
7178742 | Nellentine et al. | Feb 2007 | B2 |
7182815 | Katagami et al. | Feb 2007 | B2 |
7244310 | Edwards | Jul 2007 | B2 |
7270712 | Edwards | Sep 2007 | B2 |
7357959 | Bauer | Apr 2008 | B2 |
7387071 | Heinke et al. | Jun 2008 | B2 |
7449070 | Fellingham | Nov 2008 | B2 |
7604333 | Horsnell | Oct 2009 | B2 |
7757632 | Edwards | Jul 2010 | B2 |
7837071 | Achrainer | Nov 2010 | B2 |
7901741 | Katagami et al. | Mar 2011 | B2 |
8028651 | Rademacher et al. | Oct 2011 | B2 |
8118385 | Van De Wynckel et al. | Feb 2012 | B2 |
8449087 | Kataoka et al. | May 2013 | B2 |
8545943 | Frankenberger et al. | Oct 2013 | B2 |
8652581 | Merchant | Feb 2014 | B2 |
8678535 | Beier et al. | Mar 2014 | B2 |
8875655 | Pettersson et al. | Nov 2014 | B2 |
8882242 | Beier et al. | Nov 2014 | B2 |
9108424 | Wallsten et al. | Aug 2015 | B2 |
9140247 | Herre et al. | Sep 2015 | B2 |
9156054 | Ikushima | Oct 2015 | B2 |
9266353 | Beier et al. | Feb 2016 | B2 |
9393787 | Ikushima | Jul 2016 | B2 |
9464573 | Remy et al. | Oct 2016 | B2 |
9592524 | Fritz et al. | Mar 2017 | B2 |
9701143 | Ikushima | Jul 2017 | B2 |
9707585 | Reimert et al. | Jul 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9901945 | Fehr et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
10016977 | Stefani et al. | Jul 2018 | B2 |
10105946 | Nakamura et al. | Oct 2018 | B2 |
10150304 | Herre et al. | Dec 2018 | B2 |
10252552 | Pitz et al. | Apr 2019 | B2 |
10272677 | Stefani et al. | Apr 2019 | B2 |
10532569 | Wallsten et al. | Jan 2020 | B2 |
20010017085 | Kubo et al. | Aug 2001 | A1 |
20010019340 | Kubo et al. | Sep 2001 | A1 |
20020024544 | Codos | Feb 2002 | A1 |
20020043280 | Ochiai et al. | Apr 2002 | A1 |
20020043567 | Provenaz et al. | Apr 2002 | A1 |
20020105688 | Katagami et al. | Aug 2002 | A1 |
20020128371 | Poppe et al. | Sep 2002 | A1 |
20030020783 | Sanada | Jan 2003 | A1 |
20030041884 | Bahr | Mar 2003 | A1 |
20030049383 | Ogasahara et al. | Mar 2003 | A1 |
20040028830 | Bauer | Feb 2004 | A1 |
20040089234 | Hagglund | May 2004 | A1 |
20040123159 | Kerstens | Jun 2004 | A1 |
20040173144 | Edwards | Sep 2004 | A1 |
20040221804 | Zimmermann et al. | Nov 2004 | A1 |
20040231594 | Edwards | Nov 2004 | A1 |
20040238522 | Edwards | Dec 2004 | A1 |
20040256501 | Mellentine | Dec 2004 | A1 |
20040261700 | Edwards | Dec 2004 | A1 |
20050000422 | Edwards | Jan 2005 | A1 |
20050015050 | Mowery et al. | Jan 2005 | A1 |
20050016451 | Edwards | Jan 2005 | A1 |
20050023367 | Reighard et al. | Feb 2005 | A1 |
20050243112 | Kobayashi et al. | Nov 2005 | A1 |
20060061613 | Fienup et al. | Mar 2006 | A1 |
20060068109 | Frankenberger et al. | Mar 2006 | A1 |
20060146379 | Katagami et al. | Jul 2006 | A1 |
20060238587 | Horsnell | Oct 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20070062383 | Gazeau | Mar 2007 | A1 |
20070292626 | Larsson et al. | Dec 2007 | A1 |
20080271674 | Rademacher | Nov 2008 | A1 |
20080309698 | Nakano et al. | Dec 2008 | A1 |
20090027433 | Van De Wynckel et al. | Jan 2009 | A1 |
20090029069 | Edwards | Jan 2009 | A1 |
20090181182 | Sloan | Jul 2009 | A1 |
20100132612 | Achrainer | Jun 2010 | A1 |
20100156970 | Ikushima | Jun 2010 | A1 |
20100170918 | Achrainer | Jul 2010 | A1 |
20100279013 | Frankenberger et al. | Nov 2010 | A1 |
20100282283 | Bauer | Nov 2010 | A1 |
20100321448 | Buestgens et al. | Dec 2010 | A1 |
20110014371 | Herre | Jan 2011 | A1 |
20110084150 | Merchant | Apr 2011 | A1 |
20110248046 | Simion | Oct 2011 | A1 |
20110262622 | Herre | Oct 2011 | A1 |
20120085842 | Ciardella | Apr 2012 | A1 |
20120105522 | Wallsten | May 2012 | A1 |
20120114849 | Melcher | May 2012 | A1 |
20120162331 | Kataoka | Jun 2012 | A1 |
20120186518 | Herre | Jul 2012 | A1 |
20120219699 | Pettersson et al. | Aug 2012 | A1 |
20120249679 | Beier et al. | Oct 2012 | A1 |
20120282405 | Herre | Nov 2012 | A1 |
20130201243 | Yoshida | Aug 2013 | A1 |
20130215203 | Chen | Aug 2013 | A1 |
20130257984 | Beier et al. | Oct 2013 | A1 |
20130284833 | Fritz et al. | Oct 2013 | A1 |
20140076985 | Pettersson et al. | Mar 2014 | A1 |
20140242285 | Pettersson et al. | Aug 2014 | A1 |
20150009254 | Kaiba et al. | Jan 2015 | A1 |
20150042716 | Beier et al. | Feb 2015 | A1 |
20150086723 | Bustgens | Mar 2015 | A1 |
20150098028 | Ohnishi | Apr 2015 | A1 |
20150328654 | Schwab | Nov 2015 | A1 |
20150375258 | Fritz et al. | Dec 2015 | A1 |
20150375507 | Ikushima | Dec 2015 | A1 |
20160052312 | Pitz et al. | Feb 2016 | A1 |
20160074822 | Han | Mar 2016 | A1 |
20160288552 | Ikushima | Oct 2016 | A1 |
20160306364 | Ikushima et al. | Oct 2016 | A1 |
20170087837 | Stefani et al. | Mar 2017 | A1 |
20170106393 | Hampson et al. | Apr 2017 | A1 |
20170136481 | Fritz et al. | May 2017 | A1 |
20170252765 | Medard | Sep 2017 | A1 |
20170267002 | Pitz et al. | Sep 2017 | A1 |
20170299088 | Rau | Oct 2017 | A1 |
20170361346 | Lahidjanian et al. | Dec 2017 | A1 |
20180022105 | Nakamura et al. | Jan 2018 | A1 |
20180056670 | Kerr | Mar 2018 | A1 |
20180093491 | Murayama | Apr 2018 | A1 |
20180178505 | Stefani et al. | Jun 2018 | A1 |
20180222186 | Stefani et al. | Aug 2018 | A1 |
20180250955 | Herre | Sep 2018 | A1 |
20190091712 | Medard et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2287527 | Aug 1998 | CN |
1331661 | Jan 2002 | CN |
1438942 | Aug 2003 | CN |
1512919 | Jul 2004 | CN |
1176815 | Nov 2004 | CN |
1668386 | Sep 2005 | CN |
1761530 | Apr 2006 | CN |
101264698 | Sep 2008 | CN |
101309755 | Nov 2008 | CN |
101657264 | Feb 2010 | CN |
101784348 | Jul 2010 | CN |
102177002 | Sep 2011 | CN |
102198434 | Sep 2011 | CN |
102971080 | Mar 2013 | CN |
103153483 | Jun 2013 | CN |
103909743 | Jul 2014 | CN |
104613205 | May 2015 | CN |
104994966 | Oct 2015 | CN |
105358259 | Feb 2016 | CN |
106414081 | Feb 2017 | CN |
1284250 | Nov 1968 | DE |
7710895 | Sep 1977 | DE |
3045401 | Jul 1982 | DE |
3221327 | Sep 1983 | DE |
3225554 | Jan 1984 | DE |
3634747 | Aug 1987 | DE |
3804092 | Sep 1988 | DE |
4115111 | Nov 1991 | DE |
4138491 | May 1993 | DE |
9405600 | Jun 1994 | DE |
68924202 | Feb 1996 | DE |
19606716 | Aug 1997 | DE |
19630290 | Jan 1998 | DE |
19731829 | Jan 1999 | DE |
19743804 | Apr 1999 | DE |
9422327 | Mar 2000 | DE |
19852079 | May 2000 | DE |
19936790 | Feb 2001 | DE |
20017629 | Mar 2001 | DE |
10048749 | Apr 2002 | DE |
69429354 | May 2002 | DE |
69622407 | Mar 2003 | DE |
10307719 | Sep 2003 | DE |
60001898 | Feb 2004 | DE |
102004021223 | Dec 2004 | DE |
10331206 | Jan 2005 | DE |
102004034270 | Feb 2006 | DE |
102004044655 | Mar 2006 | DE |
102004049471 | Apr 2006 | DE |
60212523 | Feb 2007 | DE |
69836128 | Aug 2007 | DE |
60125369 | Oct 2007 | DE |
102006021623 | Nov 2007 | DE |
102006056051 | May 2008 | DE |
102007018877 | Oct 2008 | DE |
102007037663 | Feb 2009 | DE |
10 2008 018 881 | Sep 2009 | DE |
102008053178 | May 2010 | DE |
102009029946 | Dec 2010 | DE |
102009038462 | Mar 2011 | DE |
102010004496 | Jul 2011 | DE |
102010019612 | Nov 2011 | DE |
102012006371 | Jul 2012 | DE |
102012005087 | Oct 2012 | DE |
102012005650 | Sep 2013 | DE |
102012212469 | Jan 2014 | DE |
102012109123 | Mar 2014 | DE |
202013101134 | Jun 2014 | DE |
102013002412 | Aug 2014 | DE |
102013011107 | Aug 2014 | DE |
102013205171 | Sep 2014 | DE |
102014006991 | Dec 2014 | DE |
102014007523 | Nov 2015 | DE |
102014008183 | Dec 2015 | DE |
102014012705 | Mar 2016 | DE |
102014013158 | Mar 2016 | DE |
0138322 | Apr 1985 | EP |
0297309 | Jan 1989 | EP |
0665106 | Aug 1995 | EP |
1120258 | Aug 2001 | EP |
1764226 | Mar 2007 | EP |
1852733 | Nov 2007 | EP |
1884365 | Feb 2008 | EP |
1946846 | Jul 2008 | EP |
2002898 | Dec 2008 | EP |
2133154 | Dec 2009 | EP |
2151282 | Feb 2010 | EP |
2196267 | Jun 2010 | EP |
2380744 | Oct 2011 | EP |
2433716 | Mar 2012 | EP |
2468512 | Jun 2012 | EP |
2641661 | Sep 2013 | EP |
2644392 | Oct 2013 | EP |
2777938 | Sep 2014 | EP |
2799150 | Nov 2014 | EP |
2842753 | Mar 2015 | EP |
3002128 | Apr 2016 | EP |
3156138 | Apr 2017 | EP |
3213823 | Sep 2017 | EP |
3257590 | Dec 2017 | EP |
3272669 | Jan 2018 | EP |
3068626 | Oct 2019 | EP |
3010918 | Mar 2015 | FR |
2200433 | Aug 1988 | GB |
2367771 | Apr 2002 | GB |
2507069 | Apr 2014 | GB |
S5722070 | Feb 1982 | JP |
S62116442 | May 1987 | JP |
H04-106669 | Sep 1992 | JP |
H0798171 | Oct 1995 | JP |
H09192583 | Jul 1997 | JP |
2000158670 | Jun 2000 | JP |
2000317354 | Nov 2000 | JP |
2001129456 | May 2001 | JP |
2001157863 | Jun 2001 | JP |
2001239652 | Sep 2001 | JP |
2001300404 | Oct 2001 | JP |
2002361863 | Dec 2002 | JP |
2003506210 | Feb 2003 | JP |
2003136030 | May 2003 | JP |
2004142382 | May 2004 | JP |
2005526234 | Sep 2005 | JP |
2007021760 | Feb 2007 | JP |
2007152666 | Jun 2007 | JP |
2007520340 | Jul 2007 | JP |
2007245633 | Sep 2007 | JP |
2007289848 | Nov 2007 | JP |
2010531213 | Sep 2010 | JP |
2010531729 | Sep 2010 | JP |
2010241003 | Oct 2010 | JP |
2011206958 | Oct 2011 | JP |
2012506305 | Mar 2012 | JP |
2012135925 | Jul 2012 | JP |
2012206116 | Oct 2012 | JP |
2012228643 | Nov 2012 | JP |
2012228660 | Nov 2012 | JP |
2013067179 | Apr 2013 | JP |
2013530816 | Aug 2013 | JP |
2013530816 | Aug 2013 | JP |
2013188706 | Sep 2013 | JP |
2014019140 | Feb 2014 | JP |
2014050832 | Mar 2014 | JP |
2014111307 | Jun 2014 | JP |
2015-009222 | Jan 2015 | JP |
2015096322 | May 2015 | JP |
2015520011 | Jul 2015 | JP |
2015193129 | Nov 2015 | JP |
2016507372 | Mar 2016 | JP |
2016526910 | Sep 2016 | JP |
2016175077 | Oct 2016 | JP |
2016175662 | Oct 2016 | JP |
2018012065 | Jan 2018 | JP |
2020513311 | May 2020 | JP |
2020513314 | May 2020 | JP |
8601775 | Mar 1986 | WO |
9856585 | Dec 1998 | WO |
02098576 | Dec 2002 | WO |
03021519 | Mar 2003 | WO |
2003062129 | Jul 2003 | WO |
2004048112 | Jun 2004 | WO |
2004085738 | Oct 2004 | WO |
2005016556 | Feb 2005 | WO |
2005075170 | Aug 2005 | WO |
2006022217 | Mar 2006 | WO |
2007121905 | Nov 2007 | WO |
2009019036 | Feb 2009 | WO |
2010046064 | Apr 2010 | WO |
2010146473 | Dec 2010 | WO |
2011044491 | Apr 2011 | WO |
2011128439 | Oct 2011 | WO |
2011138048 | Nov 2011 | WO |
2013121565 | Aug 2013 | WO |
2015071270 | May 2015 | WO |
2015096322 | Jul 2015 | WO |
2015186014 | Dec 2015 | WO |
2016-087016 | Jun 2016 | WO |
2016142510 | Sep 2016 | WO |
2016145000 | Sep 2016 | WO |
2017006245 | Jan 2017 | WO |
2017006246 | Jan 2017 | WO |
2018102846 | Jun 2018 | WO |
Entry |
---|
Lipták , Béla. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2-2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.com/hotlink/pdf/id:ktOOCC7HL1/instrument-engineers/process-time-constant (Year: 2006). |
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2-2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006) (Year: 2006). |
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available). |
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available). |
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available). |
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available). |
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available). |
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation). |
Non Final Office Action for U.S. Appl. No. 16/468,697 dated Oct. 22, 2020 (78 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,689 dated Oct. 15, 2020 (77 pages). |
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available). |
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages). |
Non-Final Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/468,701 (80 pages). |
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages). |
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages). |
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation). |
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation). |
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages). |
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages). |
Ghasem, G. et al; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7. |
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation). |
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation). |
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation). |
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages). |
International Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation). |
EPO Official Notification of Opposition for Application No. 17821803.8 dated Feb. 10, 2021 (64 pages; with English machine translation). |
Notice of Allowance dated in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages). |
Fianl Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages). |
Final Office Action dated Jun. 11, 2021 for U.S. Appl. No. 16/468,701 (53 pages). |
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 201780077018.3 dated Aug. 27, 2020 (11 pages; Search Report in English). |
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation). |
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation). |
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017.9 (17 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages with English machine translation). |
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only). |
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation). |
JPO Office Action dated Jul. 3, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation). |
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages). |
Number | Date | Country | |
---|---|---|---|
20190337001 A1 | Nov 2019 | US |