The present invention is directed to coating processes for applying a bifurcated coating to an article. More particularly, the present invention is directed to applying a bifurcated coating to an article including an aluminide coating and a chromide coating.
Gas turbines include components, such as buckets (blades), nozzles (vanes), combustors, shrouds, and other hot gas path components which are coated to protect the components from the extreme temperatures, chemical environments and physical conditions found within the gas turbines. Different coating systems may be applied to different locations of the same turbine components to meet the local conditions which vary across the turbine components.
In one example, the airfoil and shank of a turbine bucket (blade) experience different conditions, and whereas the airfoil may be subjected to conditions which lead to oxidation, the shank may be more susceptible to conditions which lead to pitting. Providing coatings to address oxidative conditions and pitting conditions typically requires multiple coating processes which lead to long coating cycles, multi-step masking procedures, and sequential furnace runs, particularly in instances where the separate coating systems are incompatible with one another.
In an exemplary embodiment, a coating process for applying a bifurcated coating to an article includes applying an aluminizing slurry to a first portion of the article, applying a chromizing slurry to a second portion of the article, and simultaneously heat treating the article, the aluminizing slurry, and the chromizing slurry. Heat treating the aluminizing slurry forms an aluminide coating on the first portion of the article and an aluminide diffusion zone between the article and the aluminide coating. Heat treating the chromizing slurry forms a chromide coating on the second portion of the article and a chromide diffusion zone between the article and the chromide coating. The first portion and the second portion are both maintained in an unmasked state while applying the aluminizing slurry and the chromizing slurry and during the heat treating.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided are processes for applying a bifurcated coating to an article. Embodiments of the present disclosure, in comparison to processes not utilizing one or more features disclosed herein, decrease costs, increase process efficiency, decrease masking for each separated coating, decrease coating times, decrease furnace runs, increase production capacity, or a combination thereof.
Referring to
In a further embodiment, the coating process includes masking a third portion 110 of the article prior to the application of the aluminizing slurry 102 and the chromizing slurry 106. Any suitable masking process may be employed to prevent the third portion 110 from being coated by the aluminizing slurry 102 and the chromizing slurry 106.
The coating process may include a pre-coating cleaning prior to applying either of the aluminizing slurry 102 and the chromizing slurry 106. The cleaning may include any suitable cleaning process, including, but not limited to, steam cleaning, ultrasonic cleaning, solvent treatment, grit blasting, and combinations thereof.
The first portion 104 may be a contiguous area (as shown in
Referring again to
In one embodiment, the aluminizing slurry 102 includes a donor powder, an activator powder, and a binder, the donor powder including a metallic aluminum alloy having a melting temperature higher than aluminum, and the binder including at least one organic polymer gel. The aluminizing slurry 102 may include any suitable composition, including, but not limited to, a composition having, by weight, about 35 to about 65% of the donor powder, about 1 to about 25% of the activator powder, and about 25 to about 60% of the binder.
The donor powder of the aluminizing slurry 102 may include a metallic aluminum alloy having a melting temperature higher than aluminum (melting point of about 1,221° F.). In one embodiment, the donor powder includes metallic aluminum alloyed with chromium, iron, another aluminum alloying agent, or a combination thereof, provided that the alloying agent does not deposit during the diffusion aluminiding process, but instead serves as an inert carrier for the aluminum of the donor material. In a further embodiment, the donor powder includes a chromium-aluminum alloy such as, but not limited to, by weight, 44% aluminum, balance chromium and incidental impurities. In another embodiment, the donor powder has a particle size of up to 100 mesh (149 μm), alternatively up to −200 mesh (74 μm). Without being bound by theory, it is believed that the donor powder being a fine powder reduces the likelihood that the donor powder will be lodged or entrapped within the article 100.
The activator powder of the aluminizing slurry 102 may include any suitable material, including, but not limited to, ammonium chloride, ammonium fluoride, ammonium bromide, another halide activator or combinations thereof. Suitable materials for the activator powder react with aluminum in the donor material to form a volatile aluminum halide, such as, but not limited to, AlCl3 or AlF3, which reacts at the article 100 to deposit aluminum, which diffuses into the article 100.
The binder of the aluminizing slurry 102 may include at least one organic polymer gel. Suitable binders include, but are not limited to, a polymeric gel available under the name Vitta Braz-Binder Gel from the Vitta Corporation, and low molecular weight polyols such as polyvinyl alcohol. In one embodiment, the binder further includes a cure catalyst, an accelerant, or both, such as, but not limited to, sodium hypophosphite.
In one embodiment, the aluminizing slurry 102 is free of inert fillers and inorganic binders. The absence of inert fillers and inorganic binders prevents such materials from sintering and becoming entrapped in the article 100.
In one embodiment, the chromizing slurry 106 includes a donor powder, an inorganic salt having a melting point that is less than or equal to about 800° C., an activator, and a binder, wherein the donor powder includes chromium. The donor powder may include chromium in the form for chromium powder, and may further include an aluminum powder. In one embodiment, the chromium powder includes an additive such as aluminum, cobalt, nickel, silicon, or mixtures thereof. In another embodiment, if aluminum powder is present, the aluminum powder includes an additive such as cobalt, nickel, silicon, or mixtures thereof.
The chromizing slurry 106 includes donor powder particles having any suitable size, including, but not limited to, particles having a mean diameter of about 1 to about 10 microns (i.e., micrometers (μm)) as measured using a conventional particle size analyzer. The purity of the donor powder particles may be at least about 95% by weight, and in one embodiment is at least about 99% by weight.
The inorganic salt of the chromizing slurry 106 may be any suitable inorganic salt having a melting point that is less than or equal to about 800° C., including, but not limited to, KCl, LiF, LiCl, CaCl2, MgCl2, KOH, or combinations thereof. In one embodiment, the inorganic salt is a binary mixture of two inorganic salts. Typically, the salts in the binary mixture are in a well-mixed solid powder form. Such binary mixtures of two inorganic salts may include, but are not limited to, KCl—BaCl2, NaCl—KCl, NaCl—CaCl2, NaCl—BaCl2, NaCl—MgCl2, MgCl2—BaCl2, MgCl2 CaCl2, NaCl—Na2CO3, and mixtures thereof. The binary mixtures may have various molar ratios of the component salts. In one embodiment, the salt is KCl—BaCl2 in a 0.555:0.445 molar ratio. In another embodiment, the salt is NaCl—BaCl2 in a 0.6:0.4 molar ratio. The molar ratio of the salts in a binary mixture affects the melting point of the binary mixture. Accordingly, the molar ratio of the binary mixture may be controlled to select a melting point of the binary mixture that is less than or equal to about 800° C. In another embodiment, the inorganic salt is a ternary mixture of three inorganic salts. Typically, the salts in the ternary mixture are in a well-mixed solid powder form. Such ternary mixtures of two inorganic salts may include, but are not limited to, LiF—NaF—MgF2, LiCl—KCl—CaCl2, LiF—PuF3—ThF4, and mixtures thereof. The ternary mixtures may have various molar ratios of the component salts. As with the binary mixtures, the molar ratio of the salts in a ternary mixture affects the melting point of the ternary mixture. Accordingly, the melting point of the ternary mixture may be adjusted by altering the molar ration of the three salts so that the melting point is less than or equal to about 800° C.
The activator of the chromizing slurry 106 may be any suitable activator, including, but not limited to, ammonium halides, chromium halides, aluminum halides, and mixtures thereof. In one embodiment, the activator is NH4Cl, NH4F, NH4Br, CrCl2, CrCl3, AlCl3, or a combination thereof.
The binder of the chromizing slurry 106 may be any suitable binder which promotes cohesiveness of the chromizing slurry 106 and which decomposes when exposed to a predetermined temperature. In one embodiment, the predetermined temperature is a temperature within the range from about 600° C. to about 1300° C., alternatively the temperature range from about 800° C. to about 950° C. The binder may imbue the chromizing slurry 106 with the physical properties of a paste or a viscous liquid at room temperature. The binder may include one component or a combination of components. In one embodiment, the binder is a waterborne acrylic resin based binder, at least one organofunctional silane based binder, at least one cellulose-derived water-soluble polymer based binder, at least one polyvinyl alcohol based binder, at least one epoxy resin based binder, at least one alcohol soluble resin based binder, or a combination thereof. In a further embodiment, the binder is “BINDER B-200”, which is commercially available from APV Engineered Coatings. As used herein, “BINDER B-200” refers to a composition including, by weight, about 69% water, about 20% to about 30% ethanol, about 1% to about 5% polyvinyl alcohol, about 1% to about 5% isopropanol, and about 0.1% to about 1% 4-methyl-2-pentanone.
In one embodiment, the chromizing slurry 106 includes, by weight, about 1% to about 60% of the donor powder, about 1% to about 70% of the inorganic salt, about 1% to about 30% of the activator, and at least about 1% of the binder.
In another embodiment, the chromizing slurry 106 includes: a chromium powder; a binary mixture of two inorganic salts selected from the group consisting of KCl—BaCl2, NaCl—KCl, NaCl—CaCl2, NaCl—BaCl2, NaCl—MgCl2, MgCl2—BaCl2, MgCl2 CaCl2, NaCl—Na2CO3, and mixtures thereof, wherein the binary mixture has a melting point that is less than or equal to about 800° C.; an activator selected from the group consisting of NH4Cl, NH4F, NH4Br, CrCl2, CrCl3, AlCl3, and mixtures thereof; and a binder. In a further embodiment, the binary mixture of two inorganic salts is KCl—BaCl2 and the activator is NH4Cl. In an alternate further embodiment, the binary mixture of two inorganic salts is NaCl—BaCl2 and the activator is NH4Cl.
The aluminizing slurry 102 and the chromizing slurry 106 may be applied, independently, by any suitable application technique, including, but not limited to, high-velocity oxygen fuel deposition, vacuum plasma spray deposition, painting, and combinations thereof.
Referring to
The heat treating of the article 100, the aluminizing slurry 102, and the chromizing slurry 106 may include any suitable temperature, including, but not limited to a temperature within a range of about 1,750° F. to about 2,100° F., alternatively between about 1,800° F. to about 2,075° F., alternatively between about 1,850° F. to about 2,050° F. In one embodiment, the heat treating of the article 100, the aluminizing slurry 102, and the chromizing slurry 106 includes heating the article 100, the aluminizing slurry 102, and the chromizing slurry 106 to a temperature which is at or above the solution temperature for the aluminizing slurry 102 and the chromizing slurry 106. The heat treatment may include any suitable duration, including, but not limited to a duration from about 2 hours to about 8 hours, alternatively between about 3 hours to about 7 hours, alternatively between about 4 hours to about 6 hours, alternatively between about 4.5 hours to about 5.5 hours, alternatively about 5 hours.
In one embodiment, heat treating the article 100, the aluminizing slurry 102, and the chromizing slurry 106 consists of a single furnace cycle. In a further embodiment, applying the bifurcated coating 208 to the article 100 further includes aging the aluminide coating 200, the aluminide diffusion zone 202, the chromide coating 204, and the chromide diffusion zone 206. As used herein, “aging” is distinct from a “furnace cycle” in that the aging process is carried out at a lower temperature than the furnace cycle, and may be conducted in a separate heating environment from the furnace of the furnace cycle.
In one embodiment, following application of the aluminizing slurry 102 and the chromizing slurry 106 to the article 100, the article 100 is placed immediately in a coating chamber to perform the diffusion process. The coating chamber is evacuated, and may be backfilled with an inert or vacuum (with partial pressure) atmosphere (such as argon or hydrogen, respectively). The temperature within the coating chamber is raised to a temperature sufficient to burn off the binder (e.g. about 300° F. to about 400° F.), with further heating being performed to attain the desired diffusion temperature, during which time the activator is decomposed, the aluminum halide is formed, and aluminum is deposited on the article 100, forming the bifurcated coating 208 having the aluminide coating 200, the aluminide diffusion zone 202, the chromide coating 204, and the chromide diffusion zone 206.
Heating the aluminizing slurry 102 and the chromizing slurry 106 may form a residue on the bifurcated coating 208. The bifurcated coating 208 may be subjected to a post-coating cleaning following the heat treating. The post-coating cleaning may include any suitable technique, including, but not limited to, directed forced gas flow, grit blasting, glass bean blasting, solvent treatment, ultrasonic treatment, and combinations thereof.
Referring to
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2685543 | Sindeband | Aug 1954 | A |
3544348 | Boone | Dec 1970 | A |
3741791 | Maxwell et al. | Jun 1973 | A |
3867266 | Miyata et al. | Feb 1975 | A |
3903338 | Cook et al. | Sep 1975 | A |
RE29212 | Baldi et al. | May 1977 | E |
5217757 | Milaniak et al. | Jun 1993 | A |
5366765 | Milaniak et al. | Nov 1994 | A |
6022632 | Olson et al. | Feb 2000 | A |
6110262 | Kircher et al. | Aug 2000 | A |
6296705 | Ireland et al. | Oct 2001 | B1 |
6444054 | Kircher et al. | Sep 2002 | B1 |
6706325 | Spitsberg et al. | Mar 2004 | B2 |
6730179 | Kircher | May 2004 | B2 |
7150926 | Strangman | Dec 2006 | B2 |
7597966 | Spitsberg et al. | Oct 2009 | B2 |
8124426 | Gaidis | Feb 2012 | B2 |
8262812 | Helmick et al. | Sep 2012 | B2 |
8596985 | Walker et al. | Dec 2013 | B2 |
8741381 | Zhang et al. | Jun 2014 | B2 |
8916005 | Cavanaugh et al. | Dec 2014 | B2 |
8973808 | Lin et al. | Mar 2015 | B2 |
20040115355 | Bauer et al. | Jun 2004 | A1 |
20050014010 | Dumm et al. | Jan 2005 | A1 |
20050031877 | Gigliotti, Jr. et al. | Feb 2005 | A1 |
20060141283 | Madhava | Jun 2006 | A1 |
20070009660 | Sasaki et al. | Jan 2007 | A1 |
20090126833 | Cavanaugh | May 2009 | A1 |
20100151125 | Kool et al. | Jun 2010 | A1 |
20110058591 | Lim et al. | Mar 2011 | A1 |
20110058952 | Pillhoefer et al. | Mar 2011 | A1 |
20120060721 | Kool et al. | Mar 2012 | A1 |
20120324902 | Pope et al. | Dec 2012 | A1 |
20130004712 | Belov | Jan 2013 | A1 |
20130175325 | Lin et al. | Jul 2013 | A1 |
20140044938 | Pillhoefer et al. | Feb 2014 | A1 |
20140044986 | Pillhoefer et al. | Feb 2014 | A1 |
20150197841 | Tang | Jul 2015 | A1 |
20150197842 | Tang | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
5696067 | Aug 1981 | JP |
63190158 | Aug 1988 | JP |
2003183809 | Jul 2003 | JP |
2006199988 | Aug 2006 | JP |
2010134918 | Nov 2010 | WO |
2015047783 | Apr 2015 | WO |
Entry |
---|
G.W. Goward; “Progress in coatings for gas turbine airfoils,” Surface and Coatings Technology, Oct. 10, 1998, vol. 108-109, pp. 73-79. |
Zhu et al.; “Oxidation of a Novel Chromium Coating with CeO2 Dispersions,” Oxidation of Metals, Dec. 2004, vol. 62, Issue 516, pp. 411-426. |
Cao, et al.; “A Novel Duplex Low-temperature Chromizing Process at 500 degrees C,” J. Mater Sci. Technol., vol. 23, No. 6, 2007, pp. 823-827. |
Cao, et al.; Phase transformations in low-temperature chromized 0.45 wt. per cent C plain carbon steel, Surface and Coatings Technology, vol. 201, 2007, pp. 7970-7977. |
Sikalidis, ed., Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications, Chapter 4 by Kimura entitled “Molten Salt Synthesis of Ceramic Powders”, Aug. 2001, pp. 75-100. |
Leferink, et al.; “Chromium Diffusion Coatings on Low-Alloyed Steels for Corrosion Protection Under Sulphidizing Conditions,” VGB Kraftwerkstechnik, vol. 73, No. 3, 1993, pp. 1-14. |
Kool, et al.; “Chromide Coatings, Articles Coated with Chromide Coatings, and Processes for Forming Chromide Coatings,” filed on Dec. 30, 2014 as U.S. Appl. No. 14/585,890 (not yet published). |
APV Engineered Coatings, Safety Data Sheet for S-0099-01, date prepared Sep. 17, 2015, pp. 1-8, Akron. |
Wang, et al.; “Diffusion Coatings for Metal-Based Substrate and Methods of Preparation Thereof”, filed on Jun. 24, 2015 as U.S. Appl. No. 14/749,096 (not yet published). |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2017/030487 dated Sep. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
20170370002 A1 | Dec 2017 | US |