Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages

Information

  • Patent Grant
  • 8758801
  • Patent Number
    8,758,801
  • Date Filed
    Tuesday, November 27, 2012
    12 years ago
  • Date Issued
    Tuesday, June 24, 2014
    10 years ago
Abstract
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings including block-polymers comprising at least one poly(hydroxyacid) or poly(hydroxy-alkanoate) block, at least one block of a biologically compatible polymer and at least one type of linking moiety.
Description
FIELD

This invention is directed to coatings for drug delivery devices, such as drug eluting vascular stents, and methods for producing the same.


DESCRIPTION OF THE STATE OF THE ART

Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease, which often manifests itself as stenoses in coronary arteries due to atherosclerosis. A surgeon inserts a catheter assembly having a balloon portion through the skin into a patient's cardiovascular system by way of the brachial or femoral artery. The surgeon positions the catheter assembly across the occlusive lesion. The surgeon inflates the balloon, once positioned, to a predetermined size to radially compress the atherosclerotic plaque of the lesion and to remodel the artery wall. After deflating the balloon, the surgeon withdraws the catheter from the patient's vasculature.


But sometimes this procedure forms intimal flaps or tears arterial linings. These injuries can collapse or occlude the vessel. Moreover, the artery may develop thrombosis and restenosis up to several months after the procedure and may require further angioplasty or a surgical by-pass operation. Implanting a stent into the artery can rectify the injuries and help preserve vascular patency.


In a related manner, local administration of therapeutic agents with stents or stent coatings has reduced restenosis. But even with the progress in stent technology in recent years, stents still can cause undesirable effects. For example, the continued exposure of a stent to blood can lead to thrombus formation itself, and the presence of a stent in a blood vessel can weaken the blood vessel wall over time, which may allow arterial rupture or the formation of an aneurism. A stent can also become so tissue overgrown that it becomes less useful and that its continued presence may cause a variety of problems or complications. Therefore, biodegradable or bioabsorbable stents are desirable to diminish risks that would otherwise associate with the continued presence of a no-longer-needed device at the treatment site.


Polymeric stent coatings can cause adverse and inflammatory reactions in vivo. And there is much less history of using polymerically coated stents, while bare metal stents have an extensive history. Use of absorbable or resorbable coatings also allows for drug release profiles that are difficult to achieve with non-absorbable polymers. Hence, there is great interest in using erodable, absorbable, or resorbable coatings on stents. Next, device coatings with non-fouling properties are desirable. Non-fouling compounds such as poly(ethylene glycol) (PEG) provide these properties. But in order for a copolymer containing PEG to possess non-fouling properties, it is believed that the copolymer must present a high concentration of PEG at the polymer-water interface—to repel protein because repelling proteins requires this. High PEG concentration in the copolymer can deleteriously affect other coating performance aspects. For example, high PEG levels can significantly increase water swelling. This, in turn, can lead to too rapid drug release. It can also reduce the coating's mechanical properties, compromising its durability. Accordingly, there is a need for non-fouling coatings based on biologically absorbable or biologically degradable polymers that are simultaneously non-fouling and that have the drug release and mechanical properties suitable for a coating.


SUMMARY

Embodiments of the current invention relate to block copolymers comprising a poly(hydroxyacid) or poly(hydroxy-alkanoate) block, a block comprising a biocompatible polymer, and a linking moiety.


In some embodiments, the poly(hydroxyacid) or poly(hydroxy-alkanoate) are chosen from specific compounds that are described below. Some embodiments select the biologically compatible polymer to be poly(ethylene glycol) or other polymers that are described below.


Some embodiments select the linking moiety from dicarboxylic acids, diacid chlorides, anhydrides, or from a diisocyanate. In some cases the dicarboxylic acid is selected from specific compounds that are discussed below.


Invention block polymers can have the following formula




embedded image


wherein A are poly(hydroxyacid) or poly(hydroxy-alkanoate) blocks, B are blocks of polymeric biocompatible moiety, X is a linking moiety, and n is an integer between about 2 and about 700.


In addition to polymer embodiments, embodiments of the current invention are directed towards methods of making the polymers, coatings made from the polymers, and medical devices comprising those coatings.







DETAILED DESCRIPTION

The following definitions apply:


“Biologically degradable,” “biologically erodable,” “bioabsorbable,” and “bioresorbable” coatings or polymers mean those coatings or polymers that can completely degrade or erode when exposed to bodily fluids such as blood and that the body gradually resorbs, absorbs, or eliminates. The processes of breaking down, absorbing and eliminating the coating or polymer occurs by hydrolysis, metabolic processes, enzymatic processes, bulk or surface degradation, etc.


For purposes of this disclosure “biologically degradable,” “biologically erodable,” “bioabsorbable,” and “bioresorbable” are used interchangeably.


“Biologically degradable,” “biologically erodable,” “bioabsorbable,” or “bioresorbable” stent coatings or polymers mean those coating that, after the degradation, erosion, absorption, or resorption process finishes, no coating remains on the stent. “Degradable,” “biodegradable,” or “biologically degradable” broadly include biologically degradable, biologically erodable, bioabsorbable, or bioresorbable coatings or polymers.


“Biodegradability,” “bioerodability,” “bioabsorbability,” and “bioresorbability” are those properties of the coating or polymer that make the coating or polymer biologically degradable, biologically erodable, or biologically absorbable, or biologically resorbable.


“Bulk degradation” and “bulk-degrading” refer to degradation processes with several hallmarks. First, the water penetration rate into the polymeric body of the stent or coating is much faster than the polymer hydrolysis or mass loss rate. Next, hydrolysis-induced reduction of the polymer molecular weight occurs throughout the polymeric stent body or stent coating. Certain spatial variations in hydrolysis rate due to a buildup of acidic degradation products within the polymeric body can occur and are termed the autocatalytic effect. The acidic degradation products themselves catalyze further polymer hydrolysis. The mass-loss phase typically occurs later in a bulk degradation process, after the molecular weight of the polymeric body has fallen. As a result, in an idealized bulk-degrading case, the stent or coating mass loss, occurs throughout the entire stent or the coating rather than just at the surface.


The terms “block-copolymer” and “graft copolymer” are defined in accordance with the terminology used by the International Union of Pure and Applied Chemistry (IUPAC). “Block-copolymer” refers to a copolymer containing a linear arrangement of blocks. The block is defined as a portion of a polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from the adjacent portions. “Graft copolymer” refers to a polymer composed of macromolecules with one or more species of block connected to the main chain as side chains, these side chains having constitutional or configurational features that differ from those in the main chain.


The term “AB block-copolymer” is defined as a block-copolymer having moieties A and B arranged according to the general formula -{[A-]m-[B]n}—x, where each of “m,” “n,” and “x” is a positive integer, and m≧2, and n≧2.


The term “ABA block-copolymer” is defined as a block-copolymer having moieties A and B arranged according to the general formula -{[A-]m-[B-]n-[A]p}-x, where each of “m,” “n,” “p,” and “x” is a positive integer, and m≧2, and n≧2, and p≧2.


The blocks of the ABA and AB block-copolymers need not be linked on the ends, since the values of the integers determining the number of A and B blocks are such as to ensure that the individual blocks are usually long enough to be considered polymers in their own right. Accordingly, the ABA block copolymer can be named poly A-block-co-poly B block-co-poly A block-copolymer, and the AB block copolymer can be named poly A-block-co-poly B block-copolymer. Blocks “A” and “B,” typically, larger than three-block size, can be alternating or random.


The term “poly(hydroxyacid)” refers to polymeric hydroxyacids. Hydroxyacids are substances having at least one hydroxyl group and at least one carboxyl group.


The term “poly(hydroxy-alkanoate)” refers to polymeric hydroxy-alkanoates. Hydroxy-alkanoates are esters of hydroxyacids.


A coating for an implantable medical device, such as a stent, according to embodiments of the present invention, can be a multi-layer structure that can include any of the following four layers or layer combinations:

    • a primer layer;
    • a drug-polymer layer (also referred to as “reservoir” or “reservoir layer”) or alternatively a polymer-free drug layer;
    • a topcoat layer; or
    • a finishing coat layer.


Each coating layer can be formed by dissolving the polymer or polymer blend in a solvent, or a solvent mixture, and applying that solution by spraying it onto the device or immersing the device into the solution. After this application, the coating dries by evaporation. Drying at an elevated temperature accelerates the process. The coating can be annealed between about 40° C. and about 150° C. for between about 5 minutes and about 60 minutes. In some embodiments, annealing the coating improves its thermodynamic stability. Some embodiments require annealing; some embodiments specifically exclude annealing.


To incorporate a drug into the reservoir layer, the drug can be combined with the polymer solution that is applied onto the device, as described above. Alternatively, a polymer-free reservoir can be made. Some embodiments desiring rapid drug release use polymer-free drug reservoirs. To fabricate a polymer free reservoir, the drug can be dissolved in a suitable solvent or mixture of solvents, and the resulting drug solution can be applied on the stent by spraying or immersing the stent in the drug solution.


Alternatively, the drug can be introduced as a colloid system, such as a suspension in an appropriate solvent phase. Depending on a variety of factors, e.g., the nature of the drug, those having ordinary skill in the art can select the suspension solvent the solvent phase of the suspension, as well as the quantity of the drug to be dispersed in it. The suspension can be mixed with a polymer solution and the mixture can be applied on the device as described above. The drug's suspension is applied on the device without being mixed with the polymer solution.


The drug-polymer layer can be applied directly onto at least part of the device surface to store at least one active agent or a drug that is incorporated into the reservoir layer. The optional primer layer can be applied between the device and the reservoir. In some embodiments, this improves the adhesion of the drug-polymer layer to the device. The optional topcoat layer can be applied over at least a portion of the reservoir layer and can serve as a rate limiting membrane, which helps to control the drug release rate. In one embodiment, the topcoat layer can be essentially free from active agents or drugs. If a topcoat layer is used, the optional finishing coat layer can be applied over at least a portion of the topcoat layer for further control of the drug release rate and for improving coating biocompatibility. Without a topcoat layer, the finishing coat layer can be deposited directly on the reservoir layer.


Release of a drug from a coating having both topcoat and finishing coat layers includes at least three steps. First, the polymer of the topcoat layer absorbs a drug at the drug-polymer-topcoat-layer interface. Next, the drug diffuses through the free volume between the topcoat layer macromolecules. Next, the drug arrives at the topcoat-finishing layer interface. Finally, the drug similarly diffuses through the finishing coat layer, arrives at the finish coat layer's outer surface, and these desorb from it into the surrounding tissue or bloodstream. Consequently, topcoat and finishing coat layer combinations, if used, can serve as a rate limiting barrier. The drug can be released through the degradation, dissolution, or erosion of the layer.


In one embodiment, any or all of the layers of the device coating, can be made of a biologically degradable, erodable, absorbable, or resorbable polymer. In another embodiment, the outermost layer of the coating can be limited to such a polymer.


To illustrate in more detail, in a coating having all four layers described above (i.e., the primer, the reservoir layer, the topcoat layer and the finishing coat layer), the outermost layer is the finishing coat layer, which is made of a polymer that is biologically degradable, erodable, absorbable, or resorbable. In this case, the remaining layers (i.e., the primer, the reservoir layer, the topcoat layer) can also comprise a biologically degradable polymer, which can be the same or different in each layer.


If a finishing coat layer is not used, the topcoat layer can be the outermost layer and can be made of a biologically degradable polymer. In these or other embodiments, the remaining layers (i.e., the primer and the reservoir layer) can also comprise a biologically degradable polymer, which can be the same or different in each of the three layers.


If neither a finishing coat layer nor a topcoat layer is used, the device coating may have only two layers, the primer, and the reservoir. The reservoir in this case is the outermost layer of the device coating and can comprise biologically degradable polymer. Optionally, the primer can also comprise a biologically degradable polymer. The two layers can comprise the same or different materials.


The biological degradation, erosion, absorption or resorption of a biologically degradable, erodable, absorbable or resorbable polymer can increase the drug release rate due to the gradual disappearance of the reservoir polymer, the topcoat layer, or both. Whether the release rate increases depends on the drug release rate versus the polymer degradation, erosion, and adsorption or resorption rate. By choosing an appropriate polymer, drug-to-polymer ratio, or concentration, and coating design, the coating can provide either fast or slow drug release, as desired. By choice of the PEG or hydrophilic component content, the hydroxy acid ester bond lability, the polymer molecular weight, in coating design, the polymer can be engineered to show fast or slow degradation. Those having ordinary skill in the art can determine whether a coating having slow or fast release rate is advisable for a particular drug. For example, fast release may be recommended for coatings loaded with antimigratory drugs, which often need to be released within 1 to 2 weeks. For antiproliferative drugs, slow release may be needed (up to 30 days release time).


Biologically degradable, erodable, absorbable, or resorbable polymers that can be used for making any of the stent coating layers include at least one of poly(hydroxyacids), or derivatives thereof, such as poly(hydroxy-alkanoates), or any combination thereof. Examples of poly(hydroxyacids) include any of poly(lactic acids), i.e., poly(D,L-lactic acid) (DLPLA), poly(D-lactic acid), poly(L-lactic acid), poly(L-lactide), poly(D-lactide), poly(D,L-lactide), poly(caprolactone), poly(β-butyrolactone), poly(valerolactone), poly(glycolide), poly(3-hydroxyvaleric acid β-lactone), and poly(dioxanone). Some embodiments specifically exclude any one of or any combination of these poly(hydroxyacids).


Poly(lactic acid), H—[O—CH(CH3)—C(O)]n—OH, can be obtained by ring-opening polymerization of lactide (a cyclic dimer of lactic acid), as demonstrated schematically by Reaction I, where lactide is compound (A) and poly(lactic acid) is compound (B):




embedded image


The number average molecular weight of poly(lactides) can be between about 5,000 and about 300,000 Daltons, corresponding to the value of the integer n in the compound (B) between about 69 and about 4,166. Those having ordinary skill in the art can determine the conditions under which the transformation of lactide to poly(lactide) illustrated by Reaction I can be carried out.


Polymers including poly(hydroxyacid) or poly(hydroxy-alkanoate) moieties that can be used include block-copolymers illustrated by Formula I:




embedded image


wherein A are blocks of a poly(hydroxyacids) or a poly(hydroxy-alkanoate), B are blocks of a polymeric biocompatible moiety, X is a linking moiety, and n is an integer having a value between about 1 and about 880, such as, about 2 and about 350, or about 4 and about 175.


A-Blocks


The number average molecular weight of a poly(hydroxyacid) or poly(hydroxy-alkanoate) A-blocks can be between about 72 and about 100,000 Daltons, more narrowly, between about 360 and about 30,000 Daltons, or about 1000 Daltons.


Instead of poly(lactides), other poly(hydroxyacid) or poly(hydroxy-alkanoate) A-blocks can compose the block-copolymer of Formula I. Examples of some of the poly(hydroxy-alkanoates) that can be used for making the alternative A-blocks include:

    • poly(3- or 4-hydroxybutyrate) (3-PHB or 4-PHB);
    • poly(3-hydroxyvalerate) (3-PHV);
    • poly(3-hydroxybutyrate-co-valerate) (3-PHB-3-HV);
    • poly(caprolactone) (PCL);
    • poly(lactide-co-glycolide) (PLGA);
    • poly(L-lactide);
    • poly(D-lactide);
    • poly(D,L-lactide);
    • poly(L-lactide-co-glycolide);
    • poly(D,L-lactide-co-glycolide);
    • poly(L-lactide-co-caprolactone);
    • poly(D,L-lactide-co-caprolactone);
    • poly(glycolide-co-caprolactone);
    • poly(L-lactide-co-D,L-lactide);
    • poly(L-lactide-co-trimethylene carbonate);
    • poly(D,L-lactide-co-trimethylene carbonate);
    • poly(glycolide-co-trimethylene carbonate);
    • poly(L-lactic acid);
    • poly(D-lactic acid); or
    • poly(D,L-lactic acid)


Any mixture of compounds of the groups described above can be also used. In some embodiments, these compounds are selected such that they exclude any one or any combination of the groups described above.


B. B-Blocks


B-blocks are biologically compatible polymers. Examples of suitable biocompatible moieties include:

    • poly(alkylene glycols), for example, PEG, poly(L-lysine)-graft-co-poly(ethylene glycol), poly(ethylene oxide), poly(propylene glycol) (PPG), poly(tetramethylene glycol), or poly(ethylene oxide-co-propylene oxide);
    • poly(N-vinyl pyrrolidone);
    • poly(acrylamide methyl propane sulfonic acid) (AMPS) and salts thereof;
    • poly(styrene sulfonate);
    • sulfonated dextran;
    • polyphosphazenes;
    • poly(orthoesters);
    • poly(tyrosine carbonate);
    • hyaluronic acid and derivatives thereof, for example, hyaluronic acid having a stearoyl or palmitoyl substitutent group, copolymers of PEG with hyaluronic acid or with hyaluronic acid-stearoyl, or with hyaluronic acid-palmitoyl;
    • heparin and derivatives thereof, for example, copolymers of PEG with heparin; or copolymers thereof;
    • poly(2-hydroxyethyl methacrylate);
    • a graft copolymer of poly(L-lysine) and poly(ethylene glycol) and mixtures thereof;
    • poly(2-hydroxyethyl methacrylate);
    • poly(3-hydroxypropyl methacrylate); or
    • poly(3-hydroxypropyl methacrylamide).


Any mixture of the compounds of these groups can be also used. Some embodiments select these compounds such that any one or any combination of these groups or compounds is specifically excluded.


In some embodiments, the molecular weight of a suitable biocompatible polymeric moiety is chosen such that the patient's kidneys can clear the material from the patient's bloodstream. A molecular weight of a suitable biocompatible polymeric moiety can be below 40,000 Daltons to ensure the renal clearance of the compound, or between about 100 and about 40,000 Daltons, between about 300 and about 20,000 Daltons, or about 1000 Daltons.


C. Linking Moiety X


The linking moiety X in block-copolymer (II) serves to connect two adjacent interior poly(hydroxyacid) or poly(hydroxy-alkanoate) blocks. Moiety X can be derived from a dicarboxylic acid, (HOOC—(CH2)y—COOH), from its anhydride, from an acid chloride, from a diisocyanate, such as hexamethylene diisocyanate, 1,4-diisocyanatocyclohexane, or lysine diisocyanate, in which the carboxyl has been converted to an ester or other non-reactive group. One example of a dicarboxylic acid that can be used is succinic acid. Examples of some other dicarboxylic acids that can be used are summarized in Table 1.











TABLE I









Dicarboxylic Acid (HOOC—(CH2)y—COOH)









y
Formula
Name












0
HOOC—COOH
oxalic (ethanedioic) acid


1
HOOC—CH2—COOH
malonic (propanedioic)


3
HOOC—(CH2)3—COOH
glutaric (pentanedioic) acid


4
HOOC—(CH2)4—COOH
adipic (hexanedioic) acid


5
HOOC—(CH2)5—COOH
pimelic (heptanedioic) acid


6
HOOC—(CH2)6—COOH
suberic (octanedioic) acid


7
HOOC—(CH2)7—COOH
azelaic (nonanedioic acid)


8
HOOC—(CH2)8—COOH
sebacic (decanedioic) acid


9
HOOC—(CH2)9—COOH
nonane-1,9-dicarboxylic




(undecanedioic) acid


10
HOOC—(CH2)10—COOH
decane-1,10-dicarboxylic




(dodecanedioic) acid


11
HOOC—(CH2)11—COOH
brassylic (tridecanedioic) acid


12
HOOC—(CH2)12—COOH
dodecane-1,12-dicarboxylic




(tetradecanedioic) acid


13
HOOC—(CH2)13—COOH
tridecane-1,13-dicarboxylic




(pentadecanedioic) acid


14
HOOC—(CH2)14—COOH
thapsic (hexadecanedioic) acid


NA
HOOC—(C6H4)—COOH
terephthalic acid


NA
HOOC—(C2H2)—COOH
fumaric acid


NA
HOOC—(C2H2)—COOH
maleic acid


NA
HOOC—(CH2COCH2)—COOH
1,3-acetonedicarboxylic acid









Any mixture of dicarboxylic acids shown in


Table I, or their anhydrides, can be also used. In some embodiments, the dicarboxylic acid is specifically selected to exclude any one or any combination of the acids listed in


Table I.


Block-copolymer shown by Formula I can be synthesized by standard methods known to those having ordinary skill in the art, for example, polycondensation of PEG with PLA, followed by reaction with a dicarboxylic acid or anhydride, or acid chloride, or chloroanhydride.


One way of synthesizing a Formula I block-copolymer is a two-step process, comprising, first, ring opening polymerization and, second, a coupling step. Ring opening polymerization comprises reacting lactide with PEG, where PEG is used as a macroinitiator. Condensation can occur at an elevated reaction temperature (about 140° C.), neat or in a solvent, such as toluene, in the presence of stannous octanoate. to this yields a hydroxyl-terminated, triblock-copolymer PLA-PEG-PLA. Coupling comprises further reacting the PLA-PEG-PLA triblock-copolymer with a dicarboxylic acid or anhydride to connect the chains. For example, succinic or adipic, acid or anhydride can be used as the dicarboxylic acid. Coupling can be carried out in the presence of a coupling agent, such as 1,3-dicyclohexylcarbodiimide (DCC). Instead of DCC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) can be used. With carbodiimides, a catalyst such as N-dimethylaminopyridine (DMAP), diazabicycloundecane (DBU), N-(methylpolystyrene)-4-(methylamino)pyridine, or 4-pyrrolidinopyridine is used in coupling. Instead of the dicarboxylic acid or anhydride, a diisocyanate or diacid chloride can be used.


In some embodiments, using succinic anhydride as an anhydride, the obtained block copolymer, as in Formula I, can obtained, in which poly(D,L-lactide) serves as A-blocks, poly(ethylene-glycol) as B-blocks, and the succinic-acid-derived group, —CO—(CH2)12-COOH—, serves as the linking moiety X. One possible structure of such a block-copolymer is shown by Formula II:




embedded image


The block-copolymer shown by Formula II can have a total number-average molecular weight between about 2000 and about 200,000 Daltons, or about 45,000 Daltons. The value of the integer m can be between about 2 and about 700, or about 10. The value of the integer n can be between about 2 and about 700, or about 10. The value of the integer x can be between about 5 and about 100, or about 14. The value of the integer y can be between about 2 and about 700, or about 10. The value of the integer z can be between about 2 and about 700, or about 10. The value of the integer a can be between about 5 and about 100, or about 14. The value of the integer b can be between about 2 and about 700, or about 10.


In these or other embodiments, instead of dicarboxylic acid or anhydride, a chloroanhydride of a dicarboxylic acid can be used in chain extending. For example, adipoyl, sebacyl, or terephthaloyl chloride can be used. In this reaction, HCl, which is released as a by-product, can be neutralized to avoid hydrolyzing the PLA blocks. Common neutralizing agents are triethylamine and pyridine. Those having ordinary skill in the art can determine how to neutralize HCl. In some embodiments, a bromoanhydride of a dicarboxylic acid can be used in chain extending.


According to another embodiment of the present invention, the step sequence can be reversed. Condensation can comprise reacting an alpha-hydroxy acid, such as lactic acid, with a dicarboxylic acid or anhydride, to obtain a poly(lactic acid)-dicarboxylic acid adduct with carboxyl end groups. Coupling comprises further reacting the PLA-dicarboxylic acid adduct with a hydroxy-terminated, biocompatible molecules such as PEG. Coupling can be carried out in the presence of a coupling agent, such as DCC or, alternatively, EDC, and a catalyst such as DMAP. This scheme gives rise to a very similar multi-block copolymer with the formula:




embedded image


where the A and B blocks are defined as before.


According to yet another embodiment of the invention, a block copolymer is made wherein the poly(hydroxy acid) and polymeric, biocompatible moieties are reacted separately, and then coupled. Specifically, a first block is made by reacting a hydroxy-terminated polymeric, biocompatible moiety, such as PEG with a diacid or anhydride as shown below in Reaction II.




embedded image


A second block is made by ring opening polymerization with a cyclic hydroxy-alkanoate, such as lactide, using a dihydric initiator, such as 1,3-propanediol, as shown in Reaction III.




embedded image


These two blocks are then coupled together using a coupling agent, such as DCC or EDC, facilitated by a catalyst such as N-dimethylaminopyridine (DMAP), diazabicycloundecane (DBU), N-(methylpolystyrene)-4-(methylamino)pyridine, or 4-pyrrolidinopyridine. This embodiment may be described by Formula III, below:




embedded image


wherein, A-blocks and B-blocks, and linking moiety X are as described before. Linking moiety Y is a dihydric moiety that can be ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,4-cyclohexanedimethanol, 1,4-hydroxymethylbenzene, serinol, dihydroxyacetone, any linear or branched C2 to C12 hydrocarbon with two primary hydroxyl groups, and any linear or branched C2 to C12 with unsaturation and two primary hydroxyl groups. In some embodiments, the Y-moiety is selected to specifically exclude any one or any combination of those listed above.


Any layer of the coating can contain any amount of the bioabsorbable polymer(s) described above, or a blend of more than one such polymer. If less than 100% of the layer comprises a bioabsorbable polymer(s) described above, other, alternative, polymers can comprise the balance. Examples of the alternative polymers that can be used include poly-acrylates, such as poly(butyl methacrylate), poly(ethyl methacrylate), poly(ethyl methacrylate-co-butyl methacrylate), poly(acrylonitrile), poly(ethylene-co-methyl methacrylate), poly(acrylonitrile-co-styrene), and poly(cyanoacrylates); fluorinated polymers or copolymers, such as poly(vinylidene fluoride) and poly(vinylidene fluoride-co-hexafluoro propene); poly(N-vinyl pyrrolidone); polydioxanone; polyorthoester; polyanhydride; poly(L-lactide); poly(D,L-lactide); poly(D-lactide); poly(glycolide); poly(lactide-co-glycolide); poly(caprolactone); poly(3-hydroxybutyrate); poly(4-hydroxybutyrate); poly(3-hydroxybutyrate-co-3-hydroxyvalerate); poly(glycolic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); poly(trimethylene carbonate); poly(iminocarbonate); co-poly(ether-esters); polyalkylene oxalates; polyphosphazenes; biomolecules, such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene chloride; polyvinyl ketones; polyvinyl aromatics such as polystyrene; polyvinyl esters such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, e.g., poly(ethylene-co-vinyl alcohol) (EVAL); ABS resins; and poly(ethylene-co-vinyl acetate); polyamides such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers, epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose. Some embodiments select the alternate polymers to specifically exclude any one or any combination of the alternate polymers listed above.


Representative examples of some solvents suitable for making the stent coatings include N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), cyclohexanone, xylene, toluene, acetone, i-propanol, methyl ethyl ketone, propylene glycol monomethyl ether, methyl butyl ketone, ethyl acetate, n-butyl acetate, and dioxane. Some solvent mixtures can be used as well. Representative examples of the mixtures include:

    • DMAC and methanol (e.g., a 50:50 by mass mixture);
    • water, i-propanol, and DMAC (e.g., a 10:3:87 by mass mixture);
    • i-propanol, and DMAC (e.g., 80:20, 50:50, or 20:80 by mass mixtures);
    • acetone and cyclohexanone (e.g., 80:20, 50:50, or 20:80 by mass mixtures);
    • acetone and xylene (e.g. a 50:50 by mass mixture);
    • acetone, FLUX REMOVER AMS, and xylene (e.g., a 10:50:40 by mass mixture); and
    • 1,1,2-trichloroethane and chloroform (e.g., an 80:20 by mass mixture).


FLUX REMOVER AMS is trade name of a solvent manufactured by Tech Spray, Inc. of Amarillo, Tex. comprising about 93.7% of a mixture of 3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and the balance of methanol, with trace amounts of nitromethane. Those having ordinary skill in the art will select the solvent or a mixture of solvents suitable for a particular polymer being dissolved.


Some embodiments comprise invention polymers coated onto a medical device containing or constructed from a polymer, a medical device containing or constructed from a metal, or a bare medical device, or invention polymers coated on top of drug coatings already present on a medical device. Alternatively, some embodiments comprise invention polymers disposed between a medical device and a drug coating. Also, some embodiments comprise invention polymers composing polymer-based medical devices or invention polymers composing medical device substrates (implantable or not). Some invention embodiments comprise medical devices not made from polymer-containing or -constructed stents. Some invention embodiments comprise stents not made from metal-containing or constructed stents.


In some embodiments, invention polymers serve as the base material for coatings on medical devices. In some embodiments, coatings may contain a primer layer. Some embodiments exclude a primer layer. In some embodiments, invention polymers serve as a topcoat on drug reservoir layers either that contain or do not contain polymers. Some embodiments employ an additional polymer layer on top of the invention polymer. This top layer can be another layer of inventive polymer, a typical plasma polymerized layer, a layer polymerized without a plasma source, or any combination of these. Of these embodiments, some specifically exclude layers of additional inventive polymers, typical plasma polymerized layers, layers polymerized without a plasma source, or any combination of these.


Some embodiments add conventional drugs, such as small, hydrophobic drugs, to invention polymers (as discussed in any of the embodiments, above), making them biostable, drug systems. Some embodiments graft-on conventional drugs or mix conventional drugs with invention polymers. Invention polymers can serve as base or topcoat layers for biobeneficial polymer layers. In some embodiments, a drug is any substance capable of exerting a therapeutic, diagnostic, or prophylactic effect in a patient.


The selected drugs can inhibit vascular, smooth muscle cell activity. More specifically, the drug activity can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis. The drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active agents include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances, as well as their combinations, and any prodrugs, metabolites, analogs, congeners, derivatives, salts and their combinations.


An example of an antiproliferative substance is actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Examples of antineoplastics include paclitaxel and docetaxel. Examples of antiplatelets, anticoagulants, antifibrins, and antithrombins include aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocor). Examples of antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin. Examples of cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck & Co.), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from Glazo), Seramin (a PDGF antagonist), serotonin blockers, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other useful drugs may include alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, and carboplatin. Exposure of the composition to the drug should not adversely alter the drug's composition or characteristic. Accordingly, drug containing embodiments choose drugs that are compatible with the composition. Rapamycin is a suitable drug. Additionally, 40-O-(2-hydroxy)ethyl-rapamycin, or a functional analog or structural derivative thereof, is suitable, as well. Examples of analogs or derivatives of 40-O-(2-hydroxy)ethyl-rapamycin include, among others, 40-O-(3-hydroxy)propyl-rapamycin and 40-O-2-(2-hydroxy)ethoxyethyl-rapamycin. Those of ordinary skill in the art know of various methods and coatings for advantageously controlling the release rate of drugs, such as 40-O-(2-hydroxy)ethyl-rapamycin.


Some embodiments choose the drug such that it does not contain at least one of or any combination of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, or antioxidant substances, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.


Some invention embodiments choose the drug such that it does not contain at least one of or any combination of actinomycin D, derivatives and analogs of Actinomycin D, dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, actinomycin C1, paclitaxel, docetaxel, aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin, prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor and 7E-3B, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, mutamycin, angiopeptin, angiotensin converting enzyme inhibitors, CAPTOPRIL, CILAZAPRIL, or LISINOPRIL, calcium channel blockers, Nifedipine, colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN, monoclonal antibodies, PDGF receptors, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor, Seramin, PDGF antagonists, serotonin blockers, thioprotease inhibitors, triazolopyrimidine, nitric oxide, alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, Rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, or a functional analogs of 40-O-(2-hydroxy)ethyl-rapamycin, structural derivative of 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, and 40-O-2-(2-hydroxy)ethoxyethyl-rapamycin, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.


Some invention embodiments comprise a drug or drug combination, and some require a drug or combination of drugs. Of the drugs specifically listed above, some invention embodiments exclude a single or any combination of these drugs.


Some embodiments comprise invention polymers combined with other polymers in multilayer arrangements. For example, an invention polymer could under- or over-lay another polymer such as a polymer coated on a device, a medical device, an implantable medical device, or a stent. In some embodiments, invention polymers do not underlay another polymer; in other embodiments, invention polymers must overlay another polymer.


Some invention embodiments define the genera of medical devices to exclude at least one of self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), vascular grafts, artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, guidewires, ventricular assist devices, artificial hearts, cardiopulmonary by-pass circuits, blood oxygenators, or endocardial leads.


Some invention embodiments comprise multilayered structures in which an invention polymer is present in one or more of the layers of the multilayered structure.


The drug-polymer layer can be applied directly onto at least a part of the medical device surface to serve as a reservoir for at least one active agent or a drug. An optional primer layer can be applied between the device and the reservoir to improve polymer adhesion to the medical device. Some embodiments apply the topcoat layer over at least a portion of the reservoir layer, and the topcoat layer serves as a rate limiting membrane, which helps to control the rate of release of the drug.


Implantable medical devices are also within the scope of the invention. Examples of such implantable devices include stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, abdominal aortic aneurysm devices, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.


EXAMPLES

The following examples are provided to further illustrate embodiments of the present invention.


Example 1

Synthesis of multi-block PEG300-Poly(D,L-lactide), 30/70 weight ratio, coupled by succinic acid.


To a 250 ml, three necked flask, equipped with magnetic stirring, vacuum, and argon purge is added PEG300 (37.5 gm (0.125 mole). Using an oil bath, the PEG is heated to 105° C., and stirred under vacuum for two hours to remove water. The flask is purged with argon, and D,L-lactide (76.94 g, 0.534 mole) is added, and vacuum applied with stirring for another 30 minutes. After purging with argon, the flask is heated to 140° C., and polymerization is initiated by adding 10.8 ml of a 5% (w/w) stannous-octanoate-dry-toluene solution. After stirring for 24 hours, the reaction solution is cooled and poured into 500 ml of cold methanol to precipitate the polymer. The polymer is washed with methanol/petroleum ether and dried under vacuum. The triblock copolymer from above (25 g, 4.17×10−4 mole) and succinic anhydride (0.0417 g, 4.17×10−4 mole) is dissolved in 200 ml of anhydrous dichloromethane. To this is added 1,3-dicyclohexylcarbodiimide (0.103 g, 5×10−4 mole) and 4-dimethylaminopyridine (0.0012 g, 1×10−5 mole). After stirring at room temperature for 24 hours, the reaction solution is centrifuged to precipitate dicyclohexylurea and the supernatant solution poured into 150 ml of cold methanol to precipitate the polymer. After filtration, the polymer is washed with methanol/petroleum ether and dried under vacuum.


Example 2

Synthesis of multi-block PEG600-Poly(D,L-lactide), 10/90 weight ratio, coupled by hexamethylene diisocyanate.


To a 250 ml, three necked flask, equipped with magnetic stirring, vacuum, and argon purge is added PEG600 (12.5 gm (0.0208 mole). Using an oil bath, the PEG is heated to 105° C., and stirred under vacuum for two hours to remove water. The flask is purged with argon and D,L-lactide (109.4 g, 0.76 mole) is added, and the vacuum applied with stirring for another 30 minutes. After purging with argon, the flask is heated to 140° C., and polymerization initiated by addition of 15.4 ml of a 5% (w/w) solution of stannous octanoate in dry toluene. After stirring for 24 hours, 1,6-diisocyanatohexane (10.13 g, 0.0602 mole) as a 10% solution in dry dimethylformamide is added and the solution stirred at 140° C. for another hour. The reaction solution is cooled and poured into 500 ml of cold methanol to precipitate the polymer. The polymer is washed with methanol/petroleum ether and dried under vacuum. The triblock copolymer from above (25 g, 4.17×10−4 mole) and succinic anhydride (0.0417 g, 4.17×10−4 mole) is dissolved in 200 ml of anhydrous dichloromethane. To this is added 1,3-dicyclohexylcarbodiimide (0.103 g, 5×10−4 mole) and 4-dimethylaminopyridine (0.0012 g, 1×10−5 mole). After stirring at room temperature for 24 hours, the reaction solution is centrifuged to precipitate dicyclohexylurea and the supernatant solution poured into 150 ml of cold methanol to precipitate the polymer. After filtration, the polymer is washed with methanol/petroleum ether and dried under vacuum.


Example 3

Use of the polymer from example 1 as a biocompatible topcoat


A first composition can be prepared by mixing the following components:

    • about 2.0 mass % poly(D,L-lactide); and
    • the balance, acetone.


The first composition can be applied onto the surface of bare 12 mm small VISION stent (available from Guidant Corporation). The coating can be sprayed and dried to form a primer layer. A spray coater can be used having a 0.014 round nozzle maintained at ambient temperature with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). About 20 μg of the coating can be applied at per one spray pass. Between the spray passes, the stent can be dried for about 10 seconds in a flowing air stream at about 50° C. About 110 μg of wet coating can be applied. The stents can be baked at about 80° C. for about one hour, yielding a primer layer composed of approximately 100 μg of poly(D,L-lactide)


A second composition can be prepared by mixing the following components:

    • about 2.0 mass % poly(D,L-lactide);
    • about 1.0 mass % everolimus; and
    • the balance, a 50/50 blend (w/w) of acetone and 2-butanone.


The second composition can be applied onto the dried primer layer, using the same spraying technique and equipment used for applying the primer layer, to form the drug-polymer layer. About 180 μg of wet coating can be applied followed by drying and baking at about 50° C. for about 1 hour, yielding a dry drug-polymer layer having solids content of about 170 μg.


A third composition can be prepared by mixing the following components:

    • about 2.0 mass % the polymer of example 1; and
    • the balance, a 50/50 blend (w/w) of acetone and chloroform.


The third composition can be applied onto the dried drug-polymer layers, using the same spraying technique and equipment used for applying the primer and drug-polymer layers, to form a topcoat layer. About 110 μg of wet coating can be applied followed by drying and baking at about 50° C. for about 1 hour, yielding a dry topcoat layer having solids content of about 100 μg.


Example 4

Use of the polymer from example 1 as a drug/polymer reservoir coating


A first composition can be prepared by mixing the following components:

    • about 2.0 mass % poly(D,L-lactide); and
    • the balance, acetone.


The first composition can be applied onto the surface of bare 12 mm small VISION stent (available from Guidant Corporation). The coating can be sprayed and dried to form a primer layer. A spray coater can be used having a 0.014 round nozzle maintained at ambient temperature with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). About 20 μg of the coating can be applied at per one spray pass. Between the spray passes, the stent can be dried for about 10 seconds in a flowing air stream at about 50° C. About 110 μg of wet coating can be applied. The stents can be baked at about 80° C. for about one hour, yielding a primer layer composed of approximately 100 μg of poly(D,L-lactide)


A second composition can be prepared by mixing the following components:

    • about 2.0 mass % the polymer of example 2;
    • about 0.5%; paclitaxel
    • the balance, a 50/50 blend (w/w) of acetone and chloroform.


The second composition can be applied onto the dried primer layer, using the same spraying technique and equipment used for applying the primer layer, to form the drug-polymer layer. About 150 μg of wet coating can be applied followed by drying and baking at about 50° C. for about 1 hour, yielding a dry drug-polymer layer having solids content of about 140 μg.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from the embodiments of this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of the embodiments of this invention.


Additionally, various embodiments have been described above. For convenience's sake, combinations of aspects (such as monomer or initiator type) composing invention embodiments have been listed in such a way that one of ordinary skill in the art may read them exclusive of each other when they are not necessarily intended to be exclusive. But a recitation of an aspect for one embodiment is meant to disclose its use in all embodiments in which that aspect can be incorporated without undue experimentation. In like manner, a recitation of an aspect as composing part of an embodiment is a tacit recognition that a supplementary embodiment exists in which that aspect specifically excludes that aspect.


Moreover, some embodiments recite ranges. When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points. For those embodiments that disclose a specific value or condition for an aspect, supplementary embodiments exist that are otherwise identical, but that specifically include the value or the conditions for the aspect.

Claims
  • 1. A polymer having the formula:
  • 2. The polymer of claim 1, wherein the poly(hydroxyacid) or poly(hydroxy-alkanoate) is one of poly(lactide-co-glycolide); poly(L-lactide); poly(D-lactide); poly(D,L-lactide); poly(L-lactide-co-glycolide); poly(D,L-lactide-co-glycolide); poly(L-lactide-co-caprolactone); poly(D,L-lactide-co-caprolactone); poly(L-lactide-co-D,L-lactide); poly(L-lactide-co-trimethylene carbonate); poly(D,L-lactide-co-trimethylene carbonate); poly(L-lactic acid); poly(D-lactic acid); poly(D,L-lactic acid); or a combination thereof.
  • 3. The polymer of claim 1, wherein Y is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,4-cyclohexanedimethanol, 1,4-hydroxymethylbenzene, serinol, dihydroxyacetone, any linear or branched C2 to C12 hydrocarbon with two primary hydroxyl groups, or any linear or branched C2 to C12 with unsaturation and two primary hydroxyl groups.
  • 4. The polymer of claim 1 wherein the poly(hydroxyacid) or poly(hydroxy-alkanoate) is one of poly(L-lactide); poly(D-lactide); poly(D,L-lactide); poly(L-lactide-co-D,L-lactide); poly(L-lactic acid); poly(D-lactic acid); poly(D,L-lactic acid); or a combination thereof.
  • 5. The polymer of claim 1 wherein the linking moiety is derived from at least one of or any combination of malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, brassylic acid, dodecane-1,12-dicarboxylic acid, tridecane-1,13-dicarboxylic acid, thapsic acid, fumaric acid, maleic acid, and 1,3-acetonedicarboxylic acid.
  • 6. The polymer of claim 1 wherein the linking moiety is derived from at least one of or any combination of glutaric acid, adipic acid, pimelic acid, brassylic acid, dodecane-1,12-dicarboxylic acid, tridecane-1,13-dicarboxylic acid, thapsic acid, fumaric acid, maleic acid, and 1,3-acetonedicarboxylic acid.
  • 7. The polymer of claim 1 wherein each A is a poly(D,L-lactide) block.
  • 8. The polymer of claim 7 wherein n is about 10.
  • 9. A method of making a polymer comprising: reacting a hydroxy-terminated polymeric, biocompatible moiety with a diacid or anhydride to make a first block;making a second block by ring opening polymerization with a cyclic hydroxy-alkanoate using a dihydric initiator;coupling the first block to the second block using a coupling agent, facilitated by a catalyst, such that a final block copolymer is formed having the formula:
  • 10. The method of claim 9, wherein the hydroxy-terminated polymeric, biocompatible moiety is poly(ethylene glycol) (PEG).
  • 11. The method of claim 9, wherein the cyclic hydroxy-alkanoate is lactide.
  • 12. The method of claim 10, wherein the dihydric initiator is 1,3-propanediol.
  • 13. The method of claim 9, wherein the coupling agent is 1,3-dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC).
  • 14. The method of claim 9, wherein the catalyst is N-dimethylaminopyridine (DMAP), diazabicycloundecane (DBU), N-(methylpolystyrene)-4-(methylamino)pyridine, or 4-pyrrolidinopyridine.
  • 15. The method of claim 9, wherein Y is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,4-cyclohexanedimethanol, 1,4-hydroxymethylbenzene, serinol, dihydroxyacetone, any linear or branched C2 to C12 hydrocarbon with two primary hydroxyl groups, or any linear or branched C2 to C12 with unsaturation and two primary hydroxyl groups.
  • 16. The method of claim 9, wherein the poly(hydroxyacid) or poly(hydroxy-alkanoate) is one of poly(lactide-co-glycolide); poly(L-lactide); poly(D-lactide); poly(D,L-lactide); poly(L-lactide-co-glycolide); poly(D,L-lactide-co-glycolide); poly(L-lactide-co-caprolactone); poly(D,L-lactide-co-caprolactone); poly(L-lactide-co-D,L-lactide); poly(L-lactide-co-trimethylene carbonate); poly(D,L-lactide-co-trimethylene carbonate); poly(L-lactic acid); poly(D-lactic acid); poly(D,L-lactic acid); or a combination thereof.
  • 17. The method of claim 9 wherein the linking moiety is derived from at least one of or any combination of malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, brassylic acid, dodecane-1,12-dicarboxylic acid, tridecane-1,13-dicarboxylic acid, thapsic acid, fumaric acid, maleic acid, and 1,3-acetonedicarboxylic acid.
  • 18. The method of claim 9 further comprising: depositing the final block copolymer on a region of an implantable portion of a medical device.
  • 19. The method of claim 18 wherein the medical device is a stent.
  • 20. A coating made with the polymer of claim 1.
  • 21. A medical device comprising the coating of claim 20.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of application Ser. No. 10/902,982, filed Jul. 30, 2004, which is incorporated herein by reference.

US Referenced Citations (307)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5202413 Spinu Apr 1993 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5324775 Rhee et al. Jun 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5514380 Song et al. May 1996 A
5516881 Lee et al. May 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5578325 Domb et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5665831 Neuenschwander et al. Sep 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6350812 Vert et al. Feb 2002 B1
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6498229 Shalaby Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6616765 Hossainy et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
7241455 Richard Jul 2007 B2
8357391 Pacetti et al. Jan 2013 B2
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010027340 Wright et al. Oct 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030056920 Winheim Mar 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030139567 Kim et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040215313 Chang Oct 2004 A1
Foreign Referenced Citations (81)
Number Date Country
42 24 401 Jan 1994 DE
0 301 856 Feb 1989 EP
0 396 429 Nov 1990 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
1 555 278 Jul 2005 EP
0 684 961 Dec 2006 EP
2 838 964 Oct 2003 FR
06-041310 Feb 1994 JP
07-309938 Nov 1995 JP
2001-190687 Jul 2001 JP
2001-517603 Oct 2001 JP
2004-107670 Apr 2004 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9848028 Oct 1998 WO
WO 9901118 Jan 1999 WO
WO 9907343 Feb 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004007588 Jan 2004 WO
WO 2004009145 Jan 2004 WO
WO 2004009664 Jan 2004 WO
Non-Patent Literature Citations (51)
Entry
Bae et al. Journal of Controlled release 2000 64:3-13.
Huang et al. Macromolecular Chemistry and Physics 2003 204:1994-2001.
Choi et al. Journal of Controlled Release 1998 54:39-48.
Anonymous, Cardiologists Draw—Up the Dream Stent, Clinica 710:15 (Jun. 17, 1996), printed Aug. 25, 2003 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), printed Aug. 25, 2003 (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Barrera et al., “Copolymerization and Degradation of Poly(Lactic Acid-Co-Lysine)”, Macromolecules, vol. 28, No. 2, Jan. 16, 1995, pp. 425-432.
Chen et al., “Synthesis and Properties of Poly(L-Lactide)-Poly(Ethylene Glycol) Multiblock Copolymers by Coupling Triblock Copolymers”, Polymers for Advanced Technologies, vol. 14, No. 3-5, 2003, pp. 245-253.
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Drachman et al., “Neointimal thickening after stent delivery of paclitaxel: change in composition and arrest of growth over six months”, Journal of the American College of Cardiology (2000) 36:2325-2332.
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Farnia et al., “Synthesis and Characterization of Novel Biodegradable Triblock Copolymers from L-Lactide, Glycolide, and PPG”, Journal of Applied Polymer Science (1999) 73:633-637.
Ferruti et al., “Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments”, Biomaterials, vol. 16, No. 18, Dec. 1995, pp. 1423-1428.
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Huang et al., Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999).
Huh et al., “Synthesis and characterization of poly(ethylene glycol)/poly(1-lactic acid) alternating multiblock copolymers”, Polymer, vol. 40, No. 22, Oct. 1999, pp. 6147-6155.
Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α,ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Kricheldorf et al., “Macrocycles, 8 Multiblock Copoly(Ether-Esters) of Poly(THF) and E-Caprolactone via Macrocyclic Polymerization”, Macromol. Chem. and Physics, vol. 200, No. 5, May 1999, pp. 1183-1190.
Kurcok et al., “Anionic Polymerization of Lactones. 14. Anionic Block Copolymerization of σ-Valerolactone and L-Lactide Initiated with Potassium Methoxide”, Macromolecules (1992) 25:2285-2289.
Levy et al., Strategies for Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Matsumaru et al., Embolic Materials for Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Nordrehaug et al., A novel biocompatible coating applied to coronary stents, European Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Pechar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991).
Schmidmaier et al., “Biodegradable poly(D,L-lactide) Coating of Implants for Continuous Release of Growth Factors”, Journal of Biomedical Materials Research—Applied Biomaterials (2001) 58:449-455.
Shigeno, Prevention of Cerebrovascular Spasm by Bosentan, Novel Endothelin Receptor; Chemical Abstract 125:212307 (1996).
Södergård et al., “Properties of lactic acid based polymers and their correlalation with composition”, Progress in Polymer Science (2002) 27:1123-1163.
van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Wan et al., “Biodegradable poly(L-lactide)-poly(ethylene glycol) multiblock copolymer; synthesis and evaluation of cell affinity”, Biomaterials (2003) 24:2195-2203.
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).
International Search Report, Written Opinion, and Preliminary Report on Patentability for PCT/US2005/024314 (published Jan. 30, 2007) 22 pages.
Heller et al., “Poly (ortho esters): synthesis, characterization, properties and uses”, Advanced Drug Delivery Reviews, 54(7), pp. 1015-1039 (Oct. 16, 2002).
Heller et al., “Poly(ortho esters)”, Encyclopedia of Controlled Drug Delivery, vol. 2, Ed. E. Mathiowitz, John Wiley & Sons New York, pp. 852-874 (Jul. 1, 1999).
Lee et al., “Crystallization behavior of poly(l-lactide)-poly(ethylene glycol) multiblock copolymers”, European Polymer Journal, 35(12), pp. 2147-2153 (Oct. 11, 1999).
Related Publications (1)
Number Date Country
20130116380 A1 May 2013 US
Divisions (1)
Number Date Country
Parent 10902982 Jul 2004 US
Child 13686392 US