This application claims the priority from CN Application having serial number 201910696675.7, filed on Jul. 30, 2019, which are incorporated herein by reference for all purposes.
The present invention relates to the field of micro-devices, and in particular, to a coil and a manufacturing method thereof.
A coil is one of electronic elements widely used in inductor devices. How to efficiently fabricate high-precision coils in batches and at low costs has always been a difficult issue.
Therefore, it is necessary to provide a solution to resolve the problem.
The present invention is intended to provide a coil and a manufacturing method thereof, which can efficiently manufacture high-precision coils in batches and at low costs through a wafer level process.
To resolve the foregoing technical problems, a method for manufacturing coils provided according to an aspect of the present invention, includes: depositing a first metal layer on a first surface of a wafer and patterning the first metal layer to obtain a first patterned metal layer on the first surface; etching a plurality of through holes on a second surface of the wafer to the first surface of the wafer, and depositing a second metal layer on the second surface of the etched wafer and patterning the second metal layer to obtain a plurality of through hole metals and a second patterned metal layer on the second surface; and dicing the wafer to obtain a plurality of independent coils. Each coil comprises the first patterned metal layer, the through hole metals and the second patterned metal layer. The first patterned metal layer is coupled with the second patterned metal layer through the through hole metals.
According to another aspect of the present invention, a coil manufactured based on a wafer level process are provided, including: a base body being formed by dicing a wafer; a first patterned metal layer formed on a first surface of the base body; a second patterned metal layer formed on a second surface of the base body; and two rows of through hole metals extending from the first surface of the base body to the second surface of the base body, and each row of through hole metals comprising one or more through hole metals spaced apart from each other. The first patterned metal layer is coupled with the second patterned metal layer through the through hole metals, and the first patterned metal layer is obtained by depositing a first metal layer on a first surface of the wafer and patterning the first metal layer. The through hole metal and the second patterned metal layer are obtained by etching a plurality of through holes on a second surface of the wafer to the first surface of the wafer, and depositing a second metal layer on the second surface of the etched wafer and patterning the second metal layer.
Compared with the prior art, high-precision coils according to one embodiment of the present invention can be efficiently fabricated in batches and at low costs through a wafer level process. The coil may be used for generating or inducing an electromagnetic field.
The drawings described herein are provided to further understand the present application, and are intended to be a part of this application. In the drawing:
In order to make the schemes and advantages of the embodiments of the present invention clearer, the exemplary embodiments of the present invention are further described in detail with reference to the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present invention, and not all exhaustive embodiments. It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other in case of no conflict.
The present invention provides a method for manufacturing coils, which can be used for efficiently manufacturing high-precision coils in batches and at low costs through a wafer level process. The coil may be used for generating or inducing an electromagnetic field, and may be applied to an inductor device, a fluxgate sensor, an electromagnetic induction coil, a radio frequency transceiver and/or an integrated circuit inductor.
At operation 1, as shown in 100a in
At operation 2, as shown in 100b in
At operation 3, as shown in 100c in
At operation 4, as shown in 100d in
At operation 5, as shown in
At operation 1, as shown in 200a in
At operation 2, as shown in 200b in
At operation 3, as shown in 200c in
At operation 4, as shown in 200d in
At operation 5, as shown in
In an alternative embodiment, the operation of turning over the wafer 201 may be performed selectively, as long as it can be ensured that the subsequent operations 3 and 4 are performed. The operation of attaching the DAF to the first patterned metal layer may be changed to be performed after the operation 4, as long as the attachment of the DAF is completed before the operation 5. In addition, the operation of attaching the DAF to the first patterned metal layer may be changed to attach the DAF to the second patterned metal layer.
For ease of description, the operations 1, 2, 3, and 4 are described in order, but the order of the operations may be adjusted according to requirement. For example, the operations 3 and 4 are performed first, and then the operation 1 is performed.
In another alternative embodiment, the operation of patterning the first metal layer may be performed immediately after the first metal layer is deposited, or may be performed in a subsequent process, for example, may be performed after the operations 2, 3, or 4. The operation of patterning the second metal layer may be performed immediately after the second metal layer is deposited, or may be performed in a subsequent process.
In the foregoing descriptions, “first surface” may also be replaced with “front surface”, “second surface” may also be replaced with “back surface”. The term “spiral” in this specification may be a standard spiral shape, but may also refer to a non-standard spiral shape, for example, an irregular spiral shape shown in
In the foregoing descriptions, the through holes may refer to through holes shown in 200c in
By means of the method for manufacturing coils of the present invention, high-precision coils can be efficiently fabricated in batches and at low costs through a wafer level process. The coil may be used for generating or inducing an electromagnetic field, and may be applied to an inductor device, a fluxgate sensor, an electromagnetic induction coil, a radio frequency transceiver and/or an integrated circuit inductor.
In this specification, the terms “include”, “comprise”, or their any other variant is intended to cover a non-exclusive inclusion, not only including those listed elements but also including other elements that are not expressly listed.
In this specification, directional terms such as front, back, up, and down are defined according to the positions of parts in the accompanying drawings and relative positions of the parts, and are used only for clearly and conveniently describing the technical solutions. It should be understood that the use of the directional terms should not limit the protection scope claimed by the present application.
Moreover, in a case that no conflict occurs, the embodiments in this specification and the features in the embodiments may be combined.
Obviously, a person skilled in the art may make various changes and variations to the application without departing from the spirit and scope of the application. Thus, if these modifications and variations of this application fall within the scope of the claims and their equivalent technologies, the application is also intended to include these changes and variations.
Number | Date | Country | Kind |
---|---|---|---|
201910696675.7 | Jul 2019 | CN | national |