The present invention relates to a coil component.
Conventionally, coil components such as surface-mounted planar coil elements, etc. have been widely used for electric appliances such as household apparatuses, industrial apparatuses, and so on. Especially, in small portable devices, with the fulfillment of functions, there has occurred a need to obtain a plurality of voltages from a single power source in order to drive the respective devices. Here, the surface-mounted planar coil element is used also for this power source purpose, or the like.
Such a coil component is disclosed in, for instance, Japanese Unexamined Patent Publication No. 2005-210010. In the coil component disclosed in this document, planarly spiraled air core coils are provided on front and rear surfaces of a board respectively, and the air core coils are interconnected by a through-hole conductor provided to pass through the board at magnetic core portions of the air core coils.
The aforementioned air core coil is formed by causing a plating growth of a conductor material such as Cu on a seed pattern provided on the board, but an interval of winding part of the coil is narrowed by the plating growth in an in-plane direction of the board. When the interval of the winding part of the coil is narrowed, a technique of more reliably insulating is desired because there is a concern that an insulation property of the coil is deteriorated.
Thus, development of a technique for providing a resin wall in the interval of winding part of the coil to ensure reliable insulation is underway. However, when the winding part of the coil is formed by the plating growth, the winding part is grown while being inclined to the board, which causes part of a surface of the winding part to be greatly recessed, and the winding part whose thickness is greatly changed is obtained.
According to the present disclosure, a coil component in which a change in thickness of the winding part is prevented is provided.
A coil component according to an aspect of the present disclosure includes: a board; a coil provided on a main surface of the board and having a seed part disposed on the main surface of the board and a plating part subjected to plating growth on the seed part; a resin body provided on the main surface of the board and having a plurality of resin walls between which winding part of the coil extends; and a covering resin composed of a magnetic powder-containing resin and configured to integrally cover the coil and the resin body of the main surface of the board, wherein each of a pair of neighboring resin walls and the seed part between the pair of resin walls are separated by a predetermined distance.
In the coil component, since each of the pair of neighboring resin walls and the seed part between the pair of resin walls are separated by a predetermined distance, the plating part grown on the seed part is easy to grow uniformly between the pair of neighboring resin walls. For this reason, the winding part whose surface is gentle and in which a change in thickness is prevented is obtained by the plating growth.
Further, there may be an aspect in which the seed part between the pair of resin walls is formed at least at a middle position between the pair of neighboring resin walls. In addition, there may be an aspect in which each of the pair of neighboring resin walls and the seed part between the pair of resin walls are separated by an equal distance. In these cases, the winding part having a symmetrical shape with respect to the middle position between the pair of neighboring resin walls is easily obtained, and the change in thickness is further prevented.
Further, there may be an aspect in which, when a width of the seed part between the pair of resin walls is defined as W1, and an interval between the pair of resin walls is defined as W2, W1/W2≥1/5. In this case, the seed part has a sufficient bonding force for the board, and a situation in which the seed part is peeled from the board is prevented.
Further, there may be an aspect in which cross section shape of the resin wall of the resin body is rectangular shape. At this point, there may be an aspect in which aspect ratio of the resin wall of the resin body is greater than 1, and the resin wall extends long in normal direction of the main surface of the board.
Further, there may be an aspect in which cross section shape of the winding part of the coil is rectangular shape. At this point, there may be an aspect in which aspect ratio of the winding part of the coil is greater than 1, and cross section of the winding part extends long in normal direction of the main surface of the board.
Further, there may be an aspect in which the resin wall of the resin body is higher than the winding part of the coil. In this case, the winding part can have a thickness according to a design size over a height direction. Also, a situation in which the winding part goes beyond the resin wall to come into contact with each other is significantly avoided
Further, there may be an aspect in which the resin body is provided before the coil is subjected to plating growth on the main surface of the board, and the winding part of the coil is not bonded to the resin wall of the resin body.
Further, there may be an aspect in which, among the plurality of resin walls arranged on the main surface of the board, the resin wall located outermost is thicker than the resin wall located inside thereof.
Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings. Note that, in the description, the same elements or elements having the same function are designed to use the same sign, and duplicate description thereof will be omitted.
First, a structure of a coil component according to an embodiment of the present disclosure will be described with reference to
The coil component 1 is made up of a body section 10 having an approximately cuboid shape, and a pair of external terminal electrodes 30A and 30B that are provided to cover a pair of end faces facing the body section 10. The coil component 1 is designed with dimensions of a 2.0 mm long side, a 1.6 mm short side, and a 0.9 mm height by way of example.
Hereinafter, with showing a procedure for manufacturing the body section 10, a structure of the coil component 1 will be described.
The body section 10 includes a board 11 illustrated in
As illustrated in
Back to
The coil 13 is formed of copper, and has the winding part 14 formed on the helical pattern 14A of the seed pattern 13A, and the extracting electrode part 15 formed on the end portion pattern 15A of the seed pattern 13A. When viewed in a top view, the coil 13 is the same as the seed pattern 13A, and has a shape of a planarly spiraled air core coil extending to be parallel to each of the main surfaces 11a and 11b of the board 11. In greater detail, the winding part 14 of the board upper surface 11a is counterclockwise rotating spiral in a direction directed to the outside when viewed from the upper surface side, and the winding part 14 of the board lower surface 11b is counterclockwise rotating spiral in a direction directed to the outside when viewed from the lower surface side. Both of the coils 13 of the board upper and lower surfaces 11a and 11b have end portions interconnected via a through-hole that is separately provided adjacent to the opening 12. When an electric current flows to both of the coils 13 in one direction, rotating directions in which the electric current of both of the coils 13 flows are the same, and thus magnetic fluxes generated at the coils 13 are overlapped and intensified.
As illustrated in
The winding part 14 of the coil 13 is made up of a seed part 14a that is a part of the helical pattern 14A, and a plating part 14b that is subjected to plating growth on the seed part 14a, and is formed as the plating part 14b gradually grows around the seed part 14a. At this point, the winding part 14 of the coil 13 grows to fill a space defined between the two neighboring resin walls 18, and is formed in the same shape as the space defined between the resin walls 18. As a result, the winding part 14 of the coil 13 has a shape extending long in the normal direction (Z direction) of the board 11. That is, the shape of the space defined between the resin walls 18 is adjusted, and thereby the shape of the winding part 14 of the coil 13 is adjusted, and the winding part 14 of the coil 13 can be formed in a shape as designed.
Also, clearances CL are provided between the seed part 14a and the left and right resin walls 18, and the seed part 14a is separated from each of the left and right resin walls 18 by a predetermined distance. In the example illustrated in
A cross section size of the winding part 14 of the coil 13 has a height of 50 to 260 μm, a width (thickness) of 10 to 260 μm, and an aspect ratio of 1 to 20 by way of example. The aspect ratio of the winding part 14 of the coil 13 may be 2 to 10, or 10 to 20. A cross section size of the resin wall 18 has a height of 50 to 300 μm, a width (thickness) of 5 to 30 μm, and an aspect ratio of 5 to 30 by way of example. The aspect ratio of the resin wall 18 may be 10 to 30. The cross section size of the resin wall 18 may have a height of 180 to 300 μm, a width (thickness) of 5 to 12 μm, and an aspect ratio of 15 to 30. A cross section size of the seed part 14a has a width of 5 to 300 μm (e.g., 15 μm) and a height of 2 to 80 μm (e.g., 10 μm). Also, a size of the clearance CL is 1 to 40 μm (e.g., 20 μm).
When the winding part 14 of the coil 13 grows between the two neighboring resin walls 18, it grows while coming into contact with inner surfaces of the resin walls 18 defining the growth region. At this point, neither a mechanical bond nor a chemical bond occurs between the winding part 14 of the coil 13 and the resin wall 18. That is, the winding part 14 of the coil 13 is subjected to plating growth without being bonded to the resin walls 18, and is interposed between the resin walls 18 in the non-bonded state. The “non-bonded state” in the present specification refers to a state in which a mechanical bond such as an anchor effect and a chemical bond such as a covalent bond do not occur.
As illustrated in
Also, the thickness D of the winding part 14 of the coil 13 is uniform over the height direction. This is because the interval between the neighboring resin walls 18 is uniform over the height direction.
In the aspect illustrated in
Also, since the space defined by the resin walls 18 is open at its upper end, and an upper end portion of the resin wall 18 does not wrap around so as to cover an upper side of the winding part 14, a degree of freedom in designing the upper side of the winding part 14 is high. That is, it is possible to select an aspect in which an arbitrary layer is formed on the winding part 14 or an aspect in which no layer is formed on the winding part 14.
When the layer is formed on the winding part 14, various forms and materials of the layer can be selected. For example, as illustrated in
Further, as illustrated in
The aforementioned plating growth of the coil 13 is performed on both of the main surfaces 11a and 11b of the board 11. The ends of the coils 13 of both of the main surfaces 11a and 11b are connected and conducted in the opening of the board 11.
After the coils 13 are subjected to plating growth on the board 11, the board 11 is covered entirely with the covering resin 21 as illustrated in
The metal magnetic powder-containing resin constituting the covering resin 21 is composed of a resin in which metal magnetic powder is dispersed. The metal magnetic powder may be composed of, for instance, an iron-nickel alloy (a permalloy), carbonyl iron, amorphous, a Fe—Si—Cr alloy in a state of amorphous or crystalline, sendust, or the like. The resin used in the metal magnetic powder-containing resin is, for instance, a thermosetting epoxy resin. A content of the metal magnetic powder included in the metal magnetic powder-containing resin is 90 to 99 wt % by way of example.
Further, the body section 10 illustrated in
Finally, the external terminal electrodes 30A and 30B are provided for end faces (end faces opposite to each other in the Y direction) to which the end portion patterns 15A of the body section 10 are exposed so as to be electrically connected with the end portion patterns 15A, and thereby the coil component 1 is completed. The external terminal electrodes 30A and 30B are electrodes for connection to a circuit of the board on which the coil component is mounted, and may be formed in a multilayered structure. For example, the external terminal electrodes 30A and 30B may be formed by applying a resin electrode material to the end faces and then performing metal plating on the resin electrode material. Cr, Cu, Ni, Sn, Au, solder, etc. may be used for the metal plating of the external terminal electrodes 30A and 30B.
Here, the plating growth of the winding part 14 is described with reference to
In the aforementioned coil component 1, as illustrated in
For comparison, an aspect in which no clearances CL are present between the seed part 14a and the left and right resin walls 18 is illustrated in
As described above, according to the aforementioned coil component 1, since each of the pair of neighboring resin walls 18 and the seed part 14a between the pair of resin walls 18 are separated by a predetermined distance, the plating part 14b grown on the seed part 14a is easy to grow uniformly between the pair of neighboring resin walls 18. For this reason, the winding part 14 whose surface is gentle and in which a change in thickness is prevented is obtained by the plating growth.
Especially, in the coil component 1, since the seed part 14a is formed at the middle position between the left and right resin walls 18, and the left and right clearances CL have the same magnitude, the winding part 14 having a symmetrical shape with respect to the middle position between the left and right resin walls 18 is easily obtained, and the change in thickness is further prevented.
On the other hand, when each of the pair of neighboring resin walls 18 and the seed part 14a between the pair of resin walls 18 are not separated, the winding part 14 having a great change in thickness is obtained. Especially, as illustrated in
In the coil component 1, since the width W1 of the seed part 14a and the interval W2 of the resin walls 18 satisfy a relation of W1/W2≥1/5, the width of the seed part 14a is designed such that a bonding force having a sufficient magnitude to an extent that the seed part 14a is not peeled from the board 11 is obtained. Thereby, a situation in which the seed part 14a is peeled from the board 11 is prevented.
Further, according to the coil component 1, since the winding part 14 of the coil 13 is interposed between the plurality of resin walls 18 in the non-bonded state, the winding part 14 of the coil 13 and the resin walls 18 can be displaced relative to each other. For this reason, even when there is a change in ambient temperature, for instance when a use environment of the coil component 1 becomes high in temperature, and a stress caused by a difference in coefficient of thermal expansion between the winding part 14 of the coil 13 and the resin wall 18 occurs, the winding part 14 of the coil 13 and the resin walls 18 move relatively, and thereby the stress is relieved.
Also, according to a method of manufacturing the coil component 1, the winding part 14 of the coil 13 is subjected to plating growth to be interposed between the resin walls 18 of the resin body 17. That is, before the coil 13 is covered with the covering resin 21, the resin wall 18 is already interposed in the interval of the winding part 14 of the coil 13 all over. For this reason, there is no need to separately fill a resin in the interval of the winding part 14 of the coil 13, and a dimensional accuracy of the resin in the interval of the the winding part 14 of the coil 13 is stabilized by the resin wall 18.
The coil component 1 is not limited to the above form, and can employ various forms.
For example, the magnitudes of the left and right clearances CL of the seed part 14a need not necessarily be equal to each other. As long as the clearance CL is provided between the seed part 14a and each of the resin walls 18, the seed part 14a may be disposed closer to one of the resin walls 18.
Number | Date | Country | Kind |
---|---|---|---|
JP2015-110591 | May 2015 | JP | national |
This application is a continuation of U.S. application Ser. No. 15/166,519, filed May 27, 2016, which is based upon and claims the benefit of priority from Japanese Patent Application No. 2015-110591, filed on May 29, 2015, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20030151849 | Sasaki | Aug 2003 | A1 |
20040145826 | Sasaki | Jul 2004 | A1 |
20040164835 | Shoji | Aug 2004 | A1 |
20060012916 | Sasaki | Jan 2006 | A1 |
20130222101 | Ito et al. | Aug 2013 | A1 |
20130249662 | Tonoyama | Sep 2013 | A1 |
20140009254 | Ohkubo et al. | Jan 2014 | A1 |
20150035634 | Nakamura | Feb 2015 | A1 |
20150035640 | Wang | Feb 2015 | A1 |
20150109088 | Kim | Apr 2015 | A1 |
20150255206 | Han | Sep 2015 | A1 |
20160071643 | Heo | Mar 2016 | A1 |
20160336105 | Choi et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1523617 | Aug 2004 | CN |
103180919 | Jun 2013 | CN |
2005-210010 | Aug 2005 | JP |
2015-032625 | Feb 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20200143980 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15166519 | May 2016 | US |
Child | 16733293 | US |