This application claims benefit of priority to Japanese Patent Application No. 2020-000974, filed Jan. 7, 2020, the entire contents of which is incorporated herein by reference.
The present disclosure relates to a coil component.
Hitherto, electronic components are mounted on various electronic devices. For example, a laminated coil component is known as one of the electronic components, as described, for example, International Publication No. 2013-031880. In the coil component of International Publication No. 2013-031880, recesses are formed at four corners on the bottom surface of a substrate, and outer electrodes are provided at the recesses. Each of the outer electrodes is made up of a plurality of metal layers.
Incidentally, in the above-described coil component, the recesses are provided at the four corners of the bottom surface of the substrate, and, when the coil component is connected to a mounting substrate, solder enters into the recesses. A distance to other electronic components on the mounting substrate can be reduced by the amount of entry of solder in the recesses. However, when solder enters into the recesses of the coil component and, as a result, the amount of entry of solder between the coil component and the mounting substrate increases, stress easily concentrates on portions where solder has entered when high temperature treatment is performed in solder mounting process or the like. Thus, there are concerns about occurrence of a fracture or the like of the substrate. In this way, there remains room for improvement in terms of reliability.
Accordingly, the present disclosure provides a coil component capable of contributing to improvement in reliability.
According to preferred embodiments of the present disclosure, a coil component includes a magnetic substrate having a rectangular bottom surface having a pair of long sides and a pair of short sides, a top surface located across from the bottom surface, and a plurality of side surfaces each connecting the bottom surface and the top surface, a multilayer body having an electrically insulating layer formed on the top surface and a coil formed in the electrically insulating layer, and an outer electrode provided on the bottom surface. The magnetic substrate has a recess provided at a corner portion of the bottom surface, the outer electrode has an electrode body portion provided around the recess on the bottom surface, and the electrode body portion has a protruding portion extending along a ridge portion between the bottom surface and one of the side surfaces.
With this configuration, since the electrode body portion has the protruding portion extending along the ridge portion between the bottom surface and one of the side surfaces, it is possible to restrict the amount of entry of solder with the protruding portion, so a contact area between the magnetic substrate and solder at the ridge portion is reduced. Thus, stress concentration that occurs at the recesses when high temperature treatment is performed in solder mounting process or the like is reduced.
Other features, elements, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of preferred embodiments of the present disclosure with reference to the attached drawings.
Hereinafter, an embodiment will be described with reference to the accompanying drawings.
The accompanying drawings may illustrate components in a magnified view for the sake of easy understanding. The scale ratio of components may be different from actual ones or those in other drawings.
As shown in
In
As shown in
As shown in
Here, in this specification, the “substantially rectangular shape” includes such a shape that at least one of the four corner portions of the substantially rectangular shape is cut out. In other words, in the bottom surface 11a serving as a bottom surface, such a shape of the bottom surface 11a that four corner portions each formed by extending the short-side ridge portion 71 and the long-side ridge portion 72 are cut out in a substantially circular arc shape toward the center of the bottom surface 11a is also included in the substantially rectangular shape. The shape of the first substrate 11 may be regarded as a substantially rectangular parallelepiped shape having the substantially rectangular bottom surface 11a.
The first substrate 11 has recesses 15a, 15b, 15c, 15d recessed toward the center of the first substrate 11 at the four corner portions when viewed in a direction perpendicular to the bottom surface 11a. In other words, each of the recesses 15a, 15b, 15c, 15d provides a substantially circular arc ridge portion 73 at the bottom surface 11a and is formed such that the diameter of the circular arc gradually reduces toward the top surface 11b.
The first substrate 11 is a magnetic substrate. An example of the magnetic substrate is a ferrite sintered body. The first substrate 11 may be a resin molded body containing magnetic powder. The magnetic powder is, for example, ferrite or a metal magnetic material, such as iron (Fe), silicon (Si), and chromium (Cr), and the resin material is, for example, a resin material, such as epoxy. When the first substrate 11 is a resin containing magnetic powder, it is desirable that magnetic powder is adequately dispersed in a resin when two or three types of magnetic powder having different particle size distributions are mixed.
As shown in
As shown in
The cutout portion C1a and the cutout portion C2a are provided at positions that overlap the outer electrode 14a in the Z-axis direction. The cutout portion C1b, the cutout portion C2b, and the cutout portion C3b are provided at positions that overlap the outer electrode 14b in the Z-axis direction. The cutout portion C1c and the cutout portion C2c are provided at positions that overlap the outer electrode 14c in the Z-axis direction. The cutout portion C1d, the cutout portion C2d, and the cutout portion C3d are provided at positions that overlap the outer electrode 14d in the Z-axis direction.
The electrically insulating layers 21a to 21c may be made by using various resin materials, such as polyimide resin, epoxy resin, phenolic resin, and benzocyclobutene resin. The coil 22a includes a coil conductor 31 and extended portions 32, 33, 34, 35, 36, 37.
The coil conductor 31 is provided between the electrically insulating layer 21a and the electrically insulating layer 21b and has a substantially flat spiral shape that approaches the center while winding in a clockwise direction when viewed in plan from the upper side in the Z-axis direction. The center of the coil conductor 31 coincides with the center of the coil component 10 when viewed in plan in the Z-axis direction.
The extended portion 32 is connected to an outer end portion of the coil conductor 31. The extended portion 32 is extended to the cutout portion C1c of the electrically insulating layer 21a. The extended portion 32 extends through the electrically insulating layer 21a in the Z-axis direction via the cutout portion C1c. The extended portion 32 is extended to the cutout portion C2c of the electrically insulating layer 21b and is connected to the extended portion 33 provided at the cutout portion C2c.
The thus configured extended portion 32 is connected to the end portion of the coil conductor 31 and is extended to the cutout portion C1c of the electrically insulating layer 21a that makes up the multilayer body 13. Thus, the extended portion 32 is exposed to the recess 15c when viewed in plan from the lower side toward the upper side in the Z-axis direction.
The extended portion 34 extends through the electrically insulating layer 21b in the Z-axis direction via the via hole H1, thus being connected to an inner end portion of the coil conductor 31. The extended portion 35 is connected to the extended portion 34 such that a first end side extends through the electrically insulating layer 21c in the Z-axis direction via the via hole H3. A second end side of the extended portion 35 is extended to the cutout portion C3d of the electrically insulating layer 21c. The extended portion 35 extends through the electrically insulating layer 21c in the Z-axis direction via the cutout portion C3d.
The extended portion 36 is provided at the cutout portion C2d of the electrically insulating layer 21b. Thus, the extended portion 36 is connected to the second end side of the extended portion 35. The extended portion 36 extends through the electrically insulating layer 21b in the Z-axis direction via the cutout portion C2d.
The extended portion 37 is provided at the cutout portion C1d of the electrically insulating layer 21a. Thus, the extended portion 37 is connected to the extended portion 36. The extended portion 37 extends through the electrically insulating layer 21a in the Z-axis direction via the cutout portion C1d.
The thus configured extended portion 34 to 37 are connected to the end portion of the coil conductor 31 and are extended to the cutout portion C1d of the electrically insulating layer 21a that makes up the multilayer body 13. Thus, the extended portion 37 is exposed to the recess 15d when viewed in plan from the lower side toward the upper side in the Z-axis direction.
The coil 22b includes a coil conductor 41 and extended portions 42, 43, 44, 45, 46. The coil conductor 41 is provided between the electrically insulating layer 21b and the electrically insulating layer 21c and has a substantially flat spiral shape that approaches the center while turning in the clockwise direction when viewed from the upper side in the Z-axis direction in plan. In other words, the coil conductor 41 turns in the same direction as the coil conductor 31. The center of the coil conductor 41 substantially coincides with the center of the coil component 10 when viewed in plan in the Z-axis direction. Thus, the coil conductor 41 overlaps the coil conductor 31 when viewed in plan in the Z-axis direction.
The extended portion 42 is connected to an outer end portion of the coil conductor 41. The extended portion 42 is extended to the cutout portion C2a of the electrically insulating layer 21b. The extended portion 42 extends through the electrically insulating layer 21b in the Z-axis direction via the cutout portion C2a.
The extended portion 43 is provided at the cutout portion C1a of the electrically insulating layer 21a. Thus, the extended portion 43 is connected to the extended portion 42. The extended portion 43 extends through the electrically insulating layer 21a in the Z-axis direction via the cutout portion C1a.
The thus configured extended portions 42, 43 are connected to the end portion of the coil conductor 41 and are extended to the cutout portion C1a. Thus, the extended portion 43 is exposed to the recess 15a when viewed in plan from the lower side toward the upper side in the Z-axis direction.
A first end side of the extended portion 44 extends through the electrically insulating layer 21c in the Z-axis direction via the via hole H2, thus being connected to an inner end portion of the coil conductor 41. A second end side of the extended portion 44 is extended to the cutout portion C3b of the electrically insulating layer 21c. The extended portion 44 extends through the electrically insulating layer 21c in the Z-axis direction via the cutout portion C3b.
The extended portion 45 is provided at the cutout portion C2b of the electrically insulating layer 21b. Thus, the extended portion 45 is connected to the extended portion 44. The extended portion 45 extends through the electrically insulating layer 21b in the Z-axis direction via the cutout portion C2b.
The extended portion 46 is provided at the cutout portion C1b of the electrically insulating layer 21a. Thus, the extended portion 46 is connected to the extended portion 45. The extended portion 46 extends through the electrically insulating layer 21a in the Z-axis direction via the cutout portion C1b.
The thus configured extended portions 44 to 46 are connected to the end portion of the coil conductor 41 by the extended portion 44 and are extended to the cutout portion C1b by the extended portion 46 connected to the extended portion 44 via the extended portion 45. Thus, the extended portion 46 is exposed to the recess 15b when viewed in plan from the lower side toward the upper side in the Z-axis direction.
The second substrate 12 has a substantially sheet shape. The second substrate 12 has a bottom surface 12a and a top surface 12b facing away from the bottom surface 12a. The bottom surface 12a faces the multilayer body 13 in the Z-axis direction, and the top surface 12b faces away from the multilayer body 13 in the Z-axis direction. The second substrate 12 is, for example, a magnetic substrate as an example of a magnetic layer. The second substrate 12 is made of, for example, any one of the materials exemplified for the first substrate 11. The second substrate 12 is bonded to the top surface of the multilayer body 13 with the adhesion layer 23 interposed therebetween. For example, thermosetting polyimide resin may be used as the adhesion layer 23. The second substrate 12 may be made up of a magnetic layer other than the magnetic substrate.
Each of the outer electrodes 14a, 14b, 14c, 14d has an electrode body portion 51 and a connection portion 52 connecting the electrode body portion 51 and the coil 22a or the coil 22b. The electrode body portion 51 of each of the outer electrodes 14a, 14b, 14c, 14d is formed around an associated one of the recesses 15a to 15d on the bottom surface 11a of the first substrate 11. More specifically, the electrode body portion 51 of the outer electrode 14a is formed around the recess 15a. The electrode body portion 51 of the outer electrode 14b is formed around the recess 15b. The electrode body portion 51 of the outer electrode 14c is formed around the recess 15c. The electrode body portion 51 of the outer electrode 14d is formed around the recess 15d.
The connection portion 52 of each of the outer electrodes 14a, 14b, 14c, 14d is formed at an associated one of the recesses 15a to 15d of the first substrate 11. More specifically, the connection portion 52 of the outer electrode 14a is formed at the recess 15a. The connection portion 52 of the outer electrode 14b is formed at the recess 15b. The connection portion 52 of the outer electrode 14c is formed at the recess 15c. The connection portion 52 of the outer electrode 14d is formed at the recess 15d.
The outer electrodes 14a, 14b, 14c, 14d are respectively formed at the four corners of the bottom surface 11a that is the bottom surface of the first substrate 11. As shown in
Each of the outer electrodes 14a, 14b, 14c, 14d is made so as to have a substantially rectangular shape when viewed from the lower side toward the upper side in the Z-axis direction. A short-side direction of each of the outer electrodes 14a, 14b, 14c, 14d coincides with a short-side direction of the bottom surface 11a of the first substrate 11. A long-side direction of each of the outer electrodes 14a, 14b, 14c, 14d coincides with a long-side direction of the bottom surface 11a of the first substrate 11. Here, the case in which the sides of the outer electrodes 14a, 14b, 14c, 14d are straight and the case in which the sides are slightly wavy are included. The long-side direction of each of the outer electrodes 14a, 14b, 14c, 14d does not need to coincide with the long-side direction of the bottom surface 11a. The short-side direction of each of the outer electrodes 14a, 14b, 14c, 14d does not need to coincide with the short-side direction of the bottom surface 11a.
Each of the outer electrodes 14a, 14b, 14c, 14d is made up of a plurality of laminated metal layers. As shown in
The first metal layer 61 is provided on the bottom surface 11a of the first substrate 11. The first metal layer 61 is located at an innermost side of the metal layers 61 to 65 in the Z-axis direction. In other words, the first metal layer 61 corresponds to a base layer. Here, the “innermost side” means a position closest to the first substrate 11 serving as the magnetic substrate among the plurality of laminated metal layers.
The first metal layer 61 is a metal thin film containing titanium (Ti) as a main ingredient and is formed by, for example, sputtering. The first metal layer 61 has, for example, a thickness of greater than or equal to about 100 nm and less than or equal to about 200 nm (i.e., from about 100 nm to about 200 nm).
The second metal layer 62 is provided on the first metal layer 61. The second metal layer 62 is a metal thin film containing copper (Cu) as a main ingredient and is formed by, for example, sputtering. The second metal layer 62 corresponds to a first outer metal layer that covers the first metal layer 61 serving as the base layer. The second metal layer 62 has, for example, a thickness of greater than or equal to about 100 nm and less than or equal to about 200 nm (i.e., from about 100 nm to about 200 nm).
The third metal layer 63 is provided on the second metal layer 62. The third metal layer 63 is a metal film containing copper (Cu) as a main ingredient and is formed by, for example, electrolytic plating. The third metal layer 63 corresponds to a first outer metal layer that covers the first metal layer 61 serving as the base layer. The third metal layer 63 has, for example, a thickness of about 10 μm.
As shown in
The third metal layer 63 of the connection portion 52 is formed so as to entirely cover the connection portion 52. At this time, the third metal layer 63 is formed up to a position that overlaps a ridge portion 74 of an associated one of the recesses 15a to 15d continuous in a direction from the short-side ridge portion 71 toward the top surface 11b. At this time, the third metal layer 63 is formed up to a position that overlaps a ridge portion 75 of an associated one of the recesses 15a to 15d continuous in a direction from the long-side ridge portion 72 toward the top surface 11b.
The third metal layer 63 has a protruding portion 63a that extends along the short-side ridge portion 71 of the first substrate 11 while being in contact with the short-side ridge portion 71. The protruding portion 63a is formed so as to extend toward the center in the Y-axis direction on the bottom surface 11a. In other words, in the third metal layers 63 of the outer electrodes 14a, 14b arranged in the Y-axis direction, the protruding portions 63a extend so as to approach each other. An elongation of the protruding portion 63a at the short-side ridge portion 71 is longer than or equal to about 1/100 and shorter than or equal to about 7/100 (i.e., from about 1/100 to about 7/100) of the length of the short-side ridge portion 71. The protruding portion 63a is longer than or equal to about 3 μm and shorter than or equal to about 21 μm (i.e., from about 3 μm to about 21 μm) along the short-side ridge portion 71.
The fourth metal layer 64 is provided on the third metal layer 63. The fourth metal layer 64 is a metal film containing nickel (Ni) as a main ingredient and is formed by, for example, electrolytic plating. The fourth metal layer 64 corresponds to a second outer metal layer provided so as to cover the third metal layer 63 that makes up the first outer metal layer.
As shown in
An elongation of the protruding portion 64a at the short-side ridge portion 71 is longer than or equal to about 1/50 and shorter than or equal to about 4/50 (i.e., from about 1/50 to about 4/50) of the length of the short-side ridge portion 71. The length along the short-side ridge portion 71 (length along the Y-axis direction) of the protruding portion 64a is greater than or equal to about 6 μm and more preferably greater than or equal to about 12 μm. However, in consideration of stress concentration on the protruding portion 64a, the length is preferably less than about 25 μm. The fourth metal layer 64 has, for example, a thickness of about 3 μm. The fourth metal layer 64 has a length of about 72 m in the short-side direction, and has a tolerance of about 10 μm.
The fifth metal layer 65 is provided on the fourth metal layer 64. The fifth metal layer 65 is a metal film containing tin (Sn) as a main ingredient and is formed by, for example, electrolytic plating. The fifth metal layer 65 corresponds to an outer metal layer located on the first metal layer 61 serving as the base layer as in the case of the second metal layer 62, the third metal layer 63, and the fourth metal layer 64.
As shown in
The length along the short-side ridge portion 71 (length along the Y-axis direction) of the protruding portion 65a is greater than or equal to about 8 μm and more preferably greater than or equal to about 27 μm. However, the fifth metal layer 65 containing tin as a main ingredient is dissolved by solder S, so the influence on stress concentration is small. The fifth metal layer 65 has, for example, a thickness of about 3 μm. The fifth metal layer 65 has a length of about 75 μm in the short-side direction, and has a tolerance of about 10 μm. An elongation of the fifth metal layer 65 along the short-side ridge portion 71 is preferably less than or equal to about 13 μm.
In the thus configured coil component 10, when the first substrate 11, the multilayer body 13, and the second substrate 12 are laminated as a laminate, the laminate has a length of about 0.23 mm in the lamination direction D (Z-axial direction), a length of about 0.3 mm in the Y-axis direction that is the short-side direction among directions perpendicular to the lamination direction D, and a length of about 0.45 mm in the X-axis direction that is the long-side direction among the directions perpendicular to the lamination direction D. A tolerance of the length in each of the three axial directions is about ±0.02 mm.
As shown in
As shown in
The operation of the thus configured coil component 10 will be described below. The outer electrodes 14a, 14c are used as input terminals. The outer electrodes 14b, 14d are used as output terminals.
Differential transmission signals composed of a first signal and a second signal that are different in phase by 180 degrees are respectively input to the outer electrodes 14a, 14c. Because the first signal and the second signal are in a differential mode, the first signal and the second signal generate mutually opposite magnetic fluxes in the coils 22a, 22b when passing through the coils 22a, 22b. The magnetic flux generated in the coil 22a and the magnetic flux generated in the coil 22b cancel out each other. Therefore, in each of the coils 22a, 22b, almost no variation in magnetic flux occurs due to flow of the first signal or the second signal. In other words, the coil 22a or the coil 22b does not generate counter-electromotive force that impedes flow of the first signal or the second signal. Thus, the coil component 10 has an extremely small impedance for the first signal and the second signal.
On the other hand, when the first signal and the second signal each contain common mode noise, the common mode noises respectively generate magnetic fluxes having the same direction in the coils 22a, 22b when passing through the coils 22a, 22b. Therefore, in each of the coils 22a, 22b, magnetic flux increases due to flow of the common mode noise. Thus, each of the coils 22a, 22b generates counter-electromotive force that impedes flow of the common mode noise. Thus, the coil component 10 has a large impedance for the first signal and the second signal.
Next, a manufacturing method for the coil component 10 will be described with reference to
As shown in
Subsequently, as shown in
After that, as shown in
Then, as shown in
Subsequently, as shown in
After that, as shown in
Then, as shown in
Subsequently, as shown in
After that, as shown in
Then, as shown in
Subsequently, the outer electrodes 14a, 14b, 14c, 14d are formed by forming the fourth metal layers 64 and the fifth metal layers 65 in this order by using electrolytic plating. As a result, the coil component 10 is finished. When the fourth metal layer 64 and the fifth metal layer 65 are formed, since the third metal layer 63 has the protruding portion 63a that extends along the short-side ridge portion 71 as described above, the fourth metal layer 64 and the fifth metal layer 65 similarly respectively have the protruding portions 64a, 65a that extend along the short-side ridge portion 71. With the protruding portions 64a, 65a, the contact of solder S with the first substrate 11 is reduced.
According to the above-described present embodiment, the following advantageous effects are obtained.
(1) When each electrode body portion 51 has the protruding portions 63a, 64a, 65a that extend along the short-side ridge portion 71 on the bottom surface 11a, the amount of entry of solder S is restricted by the protruding portions 63a, 64a, 65a, so a contact area between the first substrate 11 and solder S at each short-side ridge portion 71 is reduced. Thus, stress concentration that occurs at the recesses when high temperature treatment is performed in solder mounting process or the like is reduced, so it is possible to contribute to improvement in reliability.
Particularly, each protruding portion 63a extends along the short-side ridge portion 71 while being in contact with the short-side ridge portion 71 where stress easily concentrates, so it is possible to elongate the distance between the relatively close outer electrode 14a and outer electrode 14b and the distance between the relatively close outer electrode 14c and outer electrode 14d in the portions other than the protruding portions 63a, with the result that electrical insulation is ensured between the coil 22a and the coil 22b. In comparison with a configuration in which the protruding portions 63a, 64a, 65a are omitted, the surface areas of the outer electrodes 14a, 14b, 14c, 14d increase, so it is possible to enhance fixing force caused by solder S.
(2) Each protruding portion 63a is provided in the third metal layer 63, and each protruding portion 64a is provided in the fourth metal layer 64 provided so as to cover the third metal layer 63. In this way, by providing the protruding portion 63a in each third metal layer 63, the protruding portion 64a is also voluntarily formed in each fourth metal layer 64 formed by plating. Similarly, the protruding portion 65a is provided in each fifth metal layer 65 provided so as to cover the fourth metal layer 64. By providing the protruding portion 64a in each fourth metal layer 64, the protruding portion 65a is also voluntarily formed in each fifth metal layer 65 formed by plating.
(3) Each third metal layer 63 is a metal layer containing copper, and each fourth metal layer 64 is a metal layer containing nickel. The protruding portion 64a extends along the protruding portion 63a in each fourth metal layer 64 containing nickel, and a contact area between the first substrate 11 and solder S can be reduced by the fourth metal layer 64. Thus, stress concentration is reduced, so it is possible to contribute to improvement in reliability.
The above-described embodiment may be modified as follows. The above-described embodiment and the following modifications may be implemented in combination without any technical contradiction.
As shown in
In the above-described embodiment, each of the outer electrodes 14a, 14b, 14c, 14d is made up of five metal layers 61, 62, 63, 64, 65; however, the configuration is not limited thereto. Alternatively, each of the outer electrodes 14a, 14b, 14c, 14d may be made up of four or less or six or more layers.
In the above-described embodiment, the recesses 15a, 15b, 15c, 15d are respectively provided at four corner portions; however, the configuration is not limited thereto. For example, a recess may be added to the center of the bottom surface 11a of the first substrate 11. Alternatively, another recess may be added between the recess 15a and the recess 15c or between the recess 15b and the recess 15d.
In the above-described embodiment, the coil component 10 includes four outer electrodes 14a, 14b, 14c, 14d; however, the configuration is not limited thereto. The coil component 10 may include six outer electrodes. In this case, an outer electrode is provided between the outer electrode 14a and the outer electrode 14c arranged in the long-side direction (X-axis direction) of the coil component 10, and an outer electrode is provided between the outer electrode 14b and the outer electrode 14d arranged in the long-side direction (X-axis direction) of the coil component 10.
In the above-described embodiment, the coil component 10 including a flat spiral coil conductor is employed; however, the configuration is not limited thereto. For example, a coil component may include a three-dimensional spiral (helical) coil conductor in which a spiral advances in the lamination direction D.
While preferred embodiments of the disclosure have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the disclosure. The scope of the disclosure, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2020-000974 | Jan 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8710947 | Wada | Apr 2014 | B2 |
8810350 | Seko | Aug 2014 | B2 |
9196669 | Yang | Nov 2015 | B2 |
9362043 | Kido | Jun 2016 | B2 |
9601259 | Ozawa | Mar 2017 | B2 |
20140266547 | Watanabe | Sep 2014 | A1 |
20150091685 | Kitajima | Apr 2015 | A1 |
20170207018 | Jung | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
103703524 | Apr 2014 | CN |
2003-309021 | Oct 2003 | JP |
2013-031880 | Feb 2013 | JP |
2013-089640 | May 2013 | JP |
5673837 | Feb 2015 | JP |
2016-058753 | Apr 2016 | JP |
2018-78189 | May 2018 | JP |
6394846 | Sep 2018 | JP |
2013031880 | Mar 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20210210273 A1 | Jul 2021 | US |