The present invention relates generally to beverage dispensing systems, and in particular to ice/beverage dispensers having cold plates that are used as cooling engines chilling product to be delivered at a remote location.
It is known in the beverage dispensing art to use combined ice and beverage dispensers that employ cooling engines, usually cold plates, to provide heat exchange cooling of various drinks. The ice/beverage dispenser is usually contained in a single cabinet, in an upper portion of which is an ice retaining bin and in a lower portion of which is a cold plate. The cold plate is cooled by a volume of ice gravity fed from a lower opening in the bin into the lower portion of the cabinet and onto and in heat exchange contact with the cold plate. The ice chills the cold plate which, in turn, provides for heat exchange cooling of beverage liquids flowed through tubing chilling circuits embedded in the cold plate. In situations where a cold plate is used in conjunction with a post-mix ice/beverage dispenser, sources of carbonated water and beverage syrup flavorings are connected to the cold plate to be cooled for delivery to post-mix beverage dispensing valves. Carbonated drinks are produced when the cooled carbonated water and syrup flavoring constituents are subsequently mixed together and dispensed from the post mix valves.
An ice/beverage dispenser customarily has four or more, and often eight or more, post-mix beverage dispensing valves for dispensing various selected beverages. The valves are normally positioned along a front surface of the dispenser, normally accommodating access to the dispenser by only one person at a time. In fast food restaurants where a number of customers may be awaiting service of beverage orders, the inability of more than one person at a time to access the dispenser can result in unwanted delays in servicing customers.
To decrease the time required to serve a number of beverages, it is known to utilize, together with an ice/beverage dispenser, a separate remote beverage dispensing tower that is coupled to the ice/beverage dispenser. A beverage dispensing tower typically is a simplified structure consisting primarily of a cabinet for carrying a limited number of post-mix beverage dispensing valves, but the tower customarily does not have either ice retaining and dispensing capability, a cold plate or associated sources of water and syrup. When a remote tower is to be coupled to a base unit comprising an ice/beverage dispenser, a challenge is to make the process of installation quick and efficient while maintaining at the tower good drink quality at required temperatures.
To provide for cooling of beverages that are dispensed from the tower, a cooling system is provided for the beverage liquids. The tower may be a considerable distance from the supplies of beverage liquids, which normally are located at the ice/beverage dispenser, and during idle periods when beverages are not being dispensed from the tower, plain and/or carbonated water and syrup flavorings in a python extending between supplies thereof and the tower can become warm, and if dispensed into a cup can result in an inferior beverage. So that a warm drink will not be dispensed, during idle periods when the tower is not in use it is known to recirculate the water between the cooling system and tower so that it will remain cold in the tubing.
Known systems for cooling plain and/or carbonated water delivered to a remote beverage dispensing tower make use of a mechanical refrigeration system to create a large ice bank in an agitated water bath or can comprise a cold plate. The water line(s) are immersed in the water bath for chilling prior to the water being delivered through a python to post-mix beverage dispensing valves of the remote tower. If desired, the syrup lines for the tower can also be immersed in the water bath for cooling or, alternatively, the syrup can be chilled by the syrup lines being in close heat exchange contact with the chilled water lines in the python. Incoming water to the tower, if not already carbonated, may be carbonated via a carbonator tank and water supply pump associated with the tower. While such refrigeration systems for beverage liquid components delivered to a remote tower are effective, they are expensive to implement and increasing cost constraints have resulted in a demand for less cost prohibitive solutions. A somewhat more economical approach is for the same carbonator as is used to deliver carbonated water to the primary ice/beverage dispenser to be used to provide carbonated water for the remote dispensing tower. However, a disadvantage of this arrangement is that during periods of peak use of the ice/beverage dispenser and remote tower, the ability of the carbonator to continuously deliver chilled carbonated water is compromised.
Establishments in which ice/beverage dispensers are used often serve various consumable items other than beverages, many of which require chilling either to maintain their quality or because they are perishable. Chilling of such products customarily is accomplished through use of a mechanical refrigeration system, which adds additional cost to the food service operation.
Ice/beverage dispensers utilize a cooling engine for chilling beverages served by the dispenser, which cooling engine customarily comprises a cold plate designed to have a cooling capacity sufficient to properly chill beverages served by a dispenser during periods of peak demand, with little surplus cooling capacity remaining during such periods. However, a cold plate could be made to have a cooling capacity in excess of the maximum required to fully meet the beverage chilling needs of a dispenser, in which case it could advantageously be used to chill liquid beverage components delivered to a remote beverage dispensing tower or to chill other remotely located products as may be served by the establishment where the ice/beverage dispenser is used. If an ice/beverage dispenser were made to have such a surplus capacity cold plate, then it would also be advantageous to provide the cold plate with some means that enables a user to selectively couple to one or more of its cooling circuits, without need for extensive modification of its plumbing, for convent transfer of its cooling capacity to a remote location. This would desirably enable a user of the ice/beverage dispenser to use the dispenser either as a stand-alone unit or to retrofit the dispenser so that its cold plate then serves as a cooling engine for product to be chilled at a remote location or to chill product for delivery to a remote location. In addition, because a cold plate depletes ice in contact with it when it is used in heat transfer cooling of product, it would be desirable to provide some means to ensure that a sufficient supply of ice always remains in contact with the cold plate.
An object of the present invention is to provide an ice/beverage dispenser a cold plate of which is adapted to serve as a cooling engine for product delivered to or chilled at a remote location.
Another object is to provide such an ice/beverage dispenser in which the dispenser cold plate is provided with means enabling convenient use of the dispenser as a stand-alone unit or retrofit of the dispenser so that its cold plate serves as a cooling engine for product delivered to or chilled at a remote location.
A further object of the invention is to provide such an ice/beverage dispenser in which its cold plate has surplus cooling capacity that is utilized by the dispenser when the cold plate is not otherwise serving as a cooling engine for other product.
Yet another object of the invention is to provide such an ice/beverage dispenser with a system that ensures that an adequate supply of ice always remains in heat exchange contact with its cold plate.
In accordance with the present invention, a beverage dispensing and chilling system comprises a beverage dispenser including a cold plate having fluid chilling circuits; a closed-loop fluid conveying circuit including at least one fluid chilling circuit of the cold plate, the closed-loop circuit extending between the beverage dispenser and a location remote from the dispenser; and means for circulating fluid through the closed-loop circuit to chill the fluid and to deliver the chilled fluid to the remote location.
In various embodiments of the system, the beverage dispenser has a pump and the circulating means includes the pump; the beverage dispenser has a pump and the circulating means includes a pump separate from the beverage dispenser pump; and the beverage dispenser comprises an ice and beverage dispenser.
Also in various embodiments, the system includes a product container at the remote location and the closed-loop fluid conveying circuit is heat exchange coupled with an exterior of the product container; the system includes a product container at the remote location and the closed-loop fluid conveying circuit has a portion within an interior of the container for heat exchange coupling to product in the container; the system includes a heat exchanger at the remote location and the closed-loop fluid conveying circuit includes at least one fluid circuit of the heat exchanger at the remote location for heat exchange chilling of the heat exchanger; and the system includes a product dispenser at the remote location, the chilled fluid circulated through the closed-loop circuit is product to be dispensed at the remote location and the closed-loop circuit is coupled to the product dispenser for delivering chilled product to the product dispenser.
In a further contemplated embodiment, the cold plate fluid chilling circuits include a first fluid chilling circuit for chilling a beverage component for dispensing by the beverage dispenser and a second fluid chilling circuit and the at least one fluid chilling circuit of the dosed-loop fluid conveying circuit comprises the second fluid chilling circuit The beverage dispenser includes valve means having a first state for coupling the cold plate second fluid chilling circuit in-line with the closed-loop fluid conveying circuit and a second state for removing the second fluid chilling circuit from the closed-loop fluid convening circuit and for instead fluid coupling the second fluid chilling circuit to be in fluid circuit with the first chilling circuit for chilling of the beverage component by both the first and second cold plate fluid chilling circuits.
In another embodiment, the system includes a remote tower at the remote location and the dosed-loop fluid conveying circuit is heat exchange coupled to the remote tower for chilling a beverage component to be dispensed at the remote tower. The remote tower can include a carbonator tank and the closed-loop fluid conveying circuit can then be heat exchange coupled to the carbonator tank. The beverage dispenser can also include a carbonator tank and a carbonator pump for delivering water to an inlet to the carbonator tank, and means are provided for coupling the beverage dispenser carbonator pump to the dosed-loop fluid conveying circuit for circulating fluid through the closed-loop circuit. The fluid circulated through the closed-loop fluid conveying circuit may be water, in which case the system includes means for coupling the closed-loop fluid conveying circuit to an inlet to the remote tower carbonator tank to deliver water into the tank. The remote tower may have a carbonator tank and a carbonator pump for delivering water to an inlet to the remote tower carbonator tank, in which case the closed-loop fluid conveying circuit can include the remote tower carbonator pump for circulation of fluid through the closed-loop circuit.
The invention also contemplates maintaining a supply of ice on the cold plate in response to loading of the cold plate by the remote tower. In this case, a beverage dispensing system comprises a beverage dispenser having a cold plate with fluid chilling circuits and a remote beverage dispensing tower including at least one beverage valve for dispensing a beverage. Further included are a beverage component conveying circuit for delivering a beverage component to the remote tower for being dispensed at the tower, the beverage component conveying circuit extending between the beverage dispenser and the remote tower and including at least one fluid chilling circuit of the cold plate for chilling the beverage component, and means responsive to dispensing of beverage at the remote tower for delivering ice to the cold plate.
The invention also contemplates a method of providing chilling at a location remote from a beverage dispenser having a cold plate with a plurality of fluid chilling circuits. The method comprises the steps of flowing fluid through at least one of the cold plate fluid chilling circuits to chill the fluid; and delivering the chilled fluid to the location remote from the beverage dispenser.
The beverage dispenser may be an ice and beverage dispenser, in which case included is the step of using ice to chill the cold plate of the dispenser.
The beverage dispenser may include a pump, and the delivering step then comprises using the pump to deliver the chilled fluid to the location remote from the beverage dispenser. Alternatively, where the beverage dispenser includes a pump, the delivering step can comprise using another separate pump to deliver the chilled fluid to the location remote from the beverage dispenser.
In various contemplated practices of the method, product is in a container at the remote location, and included is the step of heat exchange coupling the chilled fluid delivered to the remote location to the container; product is in a container at the remote location, and included is the step of heat exchange coupling the chilled fluid delivered to the remote location to the product in the container; product is in contact with a heat exchanger at the remote location, and included is the step of flowing the chilled fluid delivered to the remote location through a fluid circuit of the heat exchanger at the remote location; a product dispenser is at the remote location, the chilled fluid delivered to the remote location is product, and included is the step of coupling the chilled product delivered to the remote location to the product dispenser for dispensing of the chilled product by the product dispenser.
It is contemplated that the plurality of cold plate fluid chilling circuits include at least one beverage component chilling circuit and at least one auxiliary fluid chilling circuit, and that the flowing step comprises flowing fluid through the at least one auxiliary chilling circuit. Also included are the steps of flowing a beverage component through the at least one beverage component chilling circuit, and using at least one valve to control fluid placement of the at least one auxiliary fluid chilling circuit, such that in a first state of the at least one valve, the flowing step flows fluid through the at least one cold plate auxiliary fluid chilling circuit and, in a second state of the at least one valve, the auxiliary fluid chilling circuit is switched to be in fluid circuit with the at least one beverage component chilling circuit, so that in the second state of the at least one valve, the step of flowing a beverage component flows the beverage component through both the at least one beverage component chilling circuit and the at least one auxiliary fluid chilling circuit.
The at least one valve, in each of its first and second states, may be used to couple a supply of the beverage component to the at least one cold plate beverage component chilling circuit.
In a contemplated practice of the method, the chilled fluid delivered to the remote location is heat exchange coupled to a beverage dispensing tower at the remote location. If the remote tower has its own carbonator tank, then the chilled fluid delivered to the remote location may be heat exchange coupled to the carbonator tank at the remote location.
A method of maintaining a supply of ice on the beverage dispenser cold plate in response to loading of the cold plate by the remote tower is also contemplated. According to this aspect of the invention, the steps involved in dispensing beverages include fluid coupling a fluid chilling circuit of a beverage dispenser cold plate to a remote tower to chill a beverage component dispensed by the remote tower; dispensing beverage at the remote tower; and, in response to performance of the dispensing step, delivering ice to the beverage dispenser cold plate.
The foregoing and other objects, advantages and features of the invention will become apparent upon a consideration of the following detailed description, when taken in conjunction with the accompanying drawings.
The present invention provides an improved ice/beverage dispensing and product chilling system in which a cold plate of an ice/beverage dispenser is used as a cooling engine for product to be chilled at a remote location or to chill product for delivery to a remote location. The ice/beverage dispenser may be of the general type shown in
With reference also to
According to the present invention, the cold plate 26 of the ice/beverage dispenser 10 is adapted for use as a cooling engine for product to be delivered to or chilled at a remote location. For the purpose, the cold plate is provided with a surplus of cooling capacity, in excess of that required to properly chill beverages served by the dispenser 10 during periods of peak use. This may be accomplished, for example, by having the cold plate be of the multi-layered type and providing the cold plate with extra or auxiliary fluid chilling circuits, so that the total number of fluid chilling circuits of the cold plate exceeds the number normally required by the dispenser 10. To avoid the necessity of changing the cold plate of an ice/beverage dispenser in order to retrofit the dispenser to serve as a cooling engine for other product, it is desirable that in the original manufacture of the dispenser, its cold plate be constructed to provide such excess cooling capacity. If the dispenser is not to serve as a base unit cooling engine for other product, the auxiliary cooling circuit(s) of its cold plate can advantageously be used to provide a surplus of cooling capacity for the dispenser itself that can, for example, improve a carbonation process performed in the dispenser. Should it be desired to retrofit the dispenser to cool other product, the auxiliary cold plate chilling circuit(s) can be converted to that use. Since fluid connections in an ice/beverage dispenser are plumbed, it is contemplated that the dispenser 10 be provided, as initially manufactured, with valve means fluid coupled to its cold plate and easily switchable between a first state in which the auxiliary chilling circuits of the cold plate 26 function to cool beverages served by the dispenser and a second state, used when the cold plate of the dispenser is retrofit to be a cooling engine for other product, in which the auxiliary chilling circuits of the cold plate are used to chill such other product. In this manner, the auxiliary chilling circuits of the cold plate advantageously are at all times used, either to provide a surplus of cooling for the dispenser or to chill other product.
The invention finds use in a variety of applications, in that the transferable chilling feature of the ice/beverage dispenser 10, via use of its cold plate 26 as a cooling engine, can be used to chill any product that requires cooling below ambient and delivery or chilling at a remote location from the dispenser. The dispenser can be adapted for recirculating a primary fluid to a remote location for consumption or a recirculating fluid can be used, via a heat exchange process at a remote location, to chill or maintain cold any product, e.g., perishable food. Among various uses contemplated for the invention are: recirculating cold carbonated water through a manifold for delivery as a carbonated drink; recirculating cold potable water through a manifold for delivery as a non-carbonated beverage; recirculating cold potable water to a heat exchanger/carbonator tank for delivery as a carbonated beverage; recirculating cold potable water through a manifold for delivery at a cold water fountain; recirculating cold water to a heat exchanger/container to cool a dairy products such as milk, cream or butter; recirculating cold water to a heat exchanger/container to maintain a salad bar; and recirculating cold fruit juice through a manifold for delivery as a beverage. These uses are not intended to be exclusive, merely suggestive of the many uses available for the invention.
Reference is made to the schematic representations of systems shown in
In the system of
In the system of
In the system of
In the system of
For a better understanding of the invention and to facilitate an appreciation of various types of structures that may be embodied in systems for practicing the invention, the ice/beverage dispenser 10, which is adapted to dispense both ice and carbonated and/or plain water drinks, will be described in greater detail in connection its use in beverage dispensing systems that include a remote beverage dispensing tower. These systems, shown schematically in
When using a remote beverage dispensing tower, a challenge is to maintain the ability to dispense a cold drink at the remote dispensing location. If the tower experiences periods of idleness or low demand, the temperatures of the fluids in the long interconnecting pythons can warm up to the prevailing ambient temperature, resulting in a warm and unsatisfactory beverage of inferior quality being dispensed.
With reference to
To improve the efficiency of the carbonation process and so that cold carbonated water will be available for dispensing into drinks by the ice/beverage dispenser 10, a carbonator pump 72 delivers water to the carbonator 62 through tubing circuits 74 in the cold plate 26 and through the check valve 66 and solenoid controlled valve 68, the pump 72 and valve 68 being under control of and operated by a controller 76. The carbonator 62 has a water level sensor 78 that provides an input to the controller 76, such that the controller operates the carbonator pump 72 and the valve 68 in a manner to maintain desired levels of water in the carbonator 62. So that carbonated water in the carbonator 62 will be and will remain cold for dispensing, the carbonator 62 advantageously is located in the cold plate compartment 27 of the dispenser 10 in heat exchange contact with the cold plate 26.
As is conventional, the remote beverage dispensing tower 52 does not have a cold plate and is not provided with a supply of ice. Therefore, to improve the efficiency of the carbonation process by the remote carbonator 50 and so that cold carbonated water will be available for delivery to the beverage dispensing tower valves 60, the invention contemplates that to refill the carbonator tank 50, the carbonator pump 72 deliver water through the cold plate circuits 74, the check valve 56 and the solenoid controlled valve 58 to an inlet to the carbonator tank 50, with the pump 72 and valve 58 also being under control of and operated by the controller 76. The carbonator 50 includes a water level sensor 80 that provides an input to the controller 76, such that the controller operates the carbonator pump 72 and the valve 58 in a manner to maintain desired levels of water in the carbonator 50. So that carbonated water in the carbonator 50 will be and will remain cold for dispensing, a closed loop cold water recirculation circuit delivers chilled water to and into heat exchange relationship with the carbonator tank. The chilled water is flowed through the closed loop circuit by the carbonator pump 72, and beginning at an outlet from the pump 72, the dosed loop water recirculation circuit leads to and passes through the cold plate circuit 74, where the cold plate acts as a cooling engine to chill the water. From the cold plate circuit 74, the recirculation circuit leads through a python 82 to an inlet to a coil of tubing 84 that is wrapped around the exterior of the carbonator tank 50 in intimate heat exchange contact with the tank, so that there is a transfer of heat from the carbonator tank, and therefore from carbonated water in the carbonator tank, to the chilled water flowing through the coil of tubing. From the coil of tubing 84, the dosed loop water recirculation circuit returns through the python 82 and a solenoid controlled valve 86 to an inlet to the carbonator pump 72, the valve 86 also being operated by the controller 76. The inlet to the carbonator pump 72 is fluid coupled to the potable water supply, and so that concentrate beverage syrup delivered to the remote tower beverage dispensing valves 60 will be cold, the syrup supply lines are in intimate heat exchange contact with the cold water recirculation circuit.
The controller 76 utilizes three different control schemes, as seen in
The
In the
Referring to the
The second carbonator pump 88 serves as a recirculating pump for supplying cold water through a check valve 92, a dedicated cooling circuit 94 of the cold plate 26 and the python 82 to the cooling coil 84 wrapped around and in heat exchange relationship with the carbonator tank 50 of the remote tower 52, which water, after exiting the cooling coil, is returned through the python and the solenoid controlled valve 86 to the inlet to the pump 88. The second carbonator pump 88 has two modes of operation, a standby mode and a carbonator tank refill mode. In the standby mode of the carbonator pump 88, the valve 58 is closed and the valve 86 is opened so that the pump then circulates cooling water through the coil 84 to chill the carbonator tank 50. In the refill mode, the valve 58 is opened and the valve 86 is closed so that the pump 88 then delivers cold water to the inlet to the carbonator tank 50 to refill the tank. Because two pumps are used and each delivers water through separate cold plate circuits, it is not necessary to prioritize refilling of the carbonator tanks 50 and 62, and both tanks can be refilled at the same time.
Referring now to the
In the
While the
It would be desirable to be able to quickly, conveniently and efficiently retrofit an existing ice/beverage dispenser, located on a user's premises, to function as a base unit for an associated remote tower, without need for extensive modification of the dispenser and reworking of plumbing. This would enable a user, who already has an ice/beverage dispenser, to economically increase beverage serving capacity and/or the number of different beverages served should the need arise, simply by the addition of a remote tower that is coupled to and served by an existing ice/beverage dispenser, without requiring the user to purchase a new ice/beverage dispenser or incur the costs of extensive retrofitting of the existing dispenser. To facilitate such expansion of beverage serving capability, the invention further contemplates that valves, adapter blocks or conversion modules be included as original parts of an ice/beverage dispenser as manufactured and as delivered to a customer, which adapter blocks would facilitate economical and convenient conversion or retrofit of an ice/beverage dispenser to a base unit the cold plate of which supports a remote beverage dispensing tower. As will be become apparent an adapter block is, functionally, any type of valving arrangement that is switchable between states and, in one state, provides for dedication to the ice/beverage dispenser 10 of all chilling circuits of the cold plate 26 and, in another state, provides for dedication of one or more chilling circuits of the cold plate for use in chilling fluid delivered to a remote location, such as to a remote beverage dispensing tower.
In each of the systems of
Referring to the
The
In the
It is noted that the
In the
In a first one of its functions, the second carbonator pump 88 serves to deliver cold water through the adapter block 102, the cold plate auxiliary cooling circuit 106, the adapter block 100 and the python 82 to the cooling coil 84 wrapped around and in heat exchange contact with the remote tower carbonator tank 50. After exiting the cooling coil, the water returns through the python and solenoid controlled valve 86 to the inlet to the pump 88, with a check valve 116 preventing flow of the water to the pump 72.
In a second one of its functions, the carbonator pump 88 serves to refill the remote tower carbonator tank 50. In the recirculating or standby mode of the pump 88, the valve 58 is closed and the valve 86 is opened, so that the pump then circulates cooling water through the coil 84 to chill the carbonator tank 50 as above described. In the refill mode of the pump 88, the valve 58 is opened and the valve 86 is closed, so that the pump then delivers chilled water to the inlet to the carbonator tank 50 to refill the tank. Because two pumps are used, one for each of the base unit and remote tower carbonator tanks 62 and 50, it is not necessary to prioritize refilling of the tanks to ensure that sufficient water pressure will be available at the orifice inlets to the tanks during refill for proper atomization of water entering the tanks, and both tanks can be refilled at the same time.
From the diagrammatic illustrations of
Each adapter block 100 and 102 includes a body 118 having a passage 120 with opposite ends 122 and 124. A valve member receiving passage 126 extends generally orthogonal to the plane of the drawing and therefore to the passage 120 and is in fluid communication with the passage 120 through a channel 128. Valve members in the form of rotors 130 are received in the passages 126 and have tabs 132 that extend into radial extensions 134 of the passages. The radial extensions have an arcuate extent on the order of about 90° and define at their opposite ends stops for engaging the tabs upon rotation of the rotors, whereby the rotors are constrained for back and forth rotational movement to an extent generally on the order of 90°. The rotors 130 have arcuate passages 136 with opposite ends 138 and 140, the passages have an extent on the order of about 90° and the bodies 118 have openings 142 and 144 that, together with the channel 128, can communicate with ends of the rotor passages 136 upon rotation of the rotors. The channel 128 and the opening 144 are generally diametrically opposed and the opening 142 is at about 90° with respect to each of the channel 128 and opening 144. O-ring seals 146 in the channels 140 and openings 142 and 144 seal with the rotors 130. Covers 148 dose opposite sides of the adapter block bodies 118 and an opening 150 in one cover 148 for each adapter block accommodates outward extension of rotor shafts 152 for manual rotation of the rotors between their two positions 90° apart, which positions define the first and second states of the adapter blocks 100 and 102.
Dole fittings 154 are secured by retainers 156 in the ends 124 of the body passages 120 as well as in the openings 142 to fluid couple the adapter blocks 100 and 102 to and mount the adapter blocks on the ice/beverage dispenser cold plate 26, such that the passage ends 124 are fluid coupled to opposite ends of the cold plate chilling circuit 104 and the openings 142 are fluid coupled to opposite ends of the cold plate chilling circuit 106. Dole fittings 158 are secured by retainers 160 in the ends 122 of the body passages 120 and provide a fluid inlet to the adapter block 102 and a fluid outlet from the adapter block 100. In addition, Dole fittings 162 are secured in the adapter block openings 144 and, for the arrangement shown in
The adapter blocks 100 and 102 advantageously are mounted on and fluid coupled to the cold plate 26 of the ice/beverage dispenser 10 as delivered to a customer, irrespective of whether the dispenser, at the time of delivery, is to be immediately coupled to and serve as a base unit for the remote beverage dispensing tower 52. As delivered to a customer, the dispenser is in condition to serve as a stand-alone unit and the inlet Dole fitting 158 to the adapter block 102 is fluid coupled to the outlet from the carbonator pump 72 to receive a flow of water in the direction of an arrow 166 and the outlet Dole fitting 158 from the adapter block 100 is fluid coupled to the carbonator tank 62 to deliver a flow of water to the tank in the direction of an arrow 168.
As mentioned,
As described, in one state the valves or adapter blocks 100 and 102 fluid couple the ice/beverage dispenser carbonator pump 72 to the dispenser carbonator tank 62 through the cold plate fluid chilling circuit 104 and place the cold plate auxiliary fluid chilling circuit 106 in-line with the closed-loop fluid recirculation circuit including the python 82. Then, in another state the adapter blocks continue to fluid couple the carbonator pump 72 to the carbonator tank 62 through the fluid chilling circuit 104, remove the auxiliary fluid chilling circuit 106 from being in-line with the closed-loop recirculation circuit of the python 82, and place the auxiliary fluid chilling circuit 106 in parallel with the fluid chilling circuit 104 and therefore in-line between the carbonator pump 72 and carbonator tank 62. Since in each of their states the adapter blocks 100 and 102 fluid couple the carbonator pump 72 to the carbonator tank 62 through the cold plate fluid chilling circuit 104, it is not necessary that this particular fluid coupling be provided through the adapter blocks. The invention therefore further contemplates that the outlet from the carbonator pump 72 be plumbed to fluid connect through the cold plate fluid chilling circuit 104 to the inlet to the carbonator tank 62 without use of the adapter blocks 100 and 102, and that valves or adapter blocks then be used to either place the cold plate auxiliary fluid chilling circuit 106 in-line with the closed-loop fluid recirculation circuit of the python 82 or to place the auxiliary chilling circuit in parallel with the fluid chilling circuit 104 and thereby in line-between the carbonator pump 72 and carbonator tank 62. A disadvantage of this latter arrangement, a design for which would be readily apparent to those skilled in the art, is that additional hard plumbing would be required, which more conveniently could be provided by the adapter blocks. Also, if the adapter blocks in this latter arrangement are mounted directly on the cold plate, the mounting would be less secure, since each adapter block would then be coupled to only one inlet/outlet of the cold plate, instead of to two.
The carbonator tank 184 provides carbonated water to some of the ice/beverage dispenser post-mix valves 18 through a delivery line 200 that includes fluid chilling circuits 202 and 204 of the cold plate 34. The carbonator tank 186, in turn, provides carbonated water to the remote tower post-mix valves 182 through a check valve 206 and a carbonated water delivery line 208 that includes a fluid chilling circuit 210 of the cold plate. All of the post-mix valves need not necessarily receive carbonated water, and in the embodiment shown plain water is supplied to two of the ice/beverage dispenser valves 18 through a delivery line 212 that includes a cold plate fluid chilling circuit 214.
The line 208 for delivering carbonated water from the carbonator tank 186 to the remote tower post-mix valves 182 defines a closed loop fluid convening circuit with circulation being provided by a pump 216 driven by a motor 218. It is understood, however, that while in this embodiment a separate pump 216 and motor 218 provide circulation of carbonated through the line 208, use of such separate motor and pump is not necessary and circulation can be provided using any of the techniques employed in previously described embodiments of beverage dispensing systems. For example, carbonated water in the line 208 could be circulated by the ice/beverage dispenser carbonator motor and pump 190 and 188, or by the remote tower carbonator motor 198 and pump 196, along with appropriate valving.
Whenever a beverage is drawn from the ice/beverage dispenser 10 or remote tower 180, the dispenser cold plate 34 is loaded as a result of warm beverage components flowing through its chilling circuits. As is conventional, an attempt is made to maintain cold plate performance by agitation of ice in the ice retaining compartment 25 of ice/beverage dispenser hopper 24 to cause ice pieces to pass through the lower hopper opening 33 into the underlying cold plate compartment 27 and onto the upper heat exchange surface of the cold plate 34. Such agitation customarily occurs in response to two events: 1) when ice is dispensed from the hopper 24 through the ice chute 23, with agitation moving ice pieces to and through the hopper ice outlet opening and into the ice chute for dispensing into a cup, and also moving ice through the hopper lower opening 33 into the cold plate compartment 27; and 2) periodically at selected intervals as determined by a timer, so that when the dispenser 10 is idle for a extended period the mass of ice in the hopper is prevented from agglomerating and congealing into a lump. Consequently, when a drink is drawn from the dispenser 10, even though warm beverage components flow through the cold plate fluid chilling circuits, which load the cold plate and result in melting of ice on the heat exchange surface of the cold plate, since a drink dispense at the dispenser is usually accompanied by an ice dispense from the dispenser into a cup, agitation of ice occurs to replace cold plate ice consumed incident to the drink dispense. However, agitation of ice does not necessarily occur when drinks are dispensed from the remote tower 180, with the result that the dispensing of drinks from the tower can overload the cold plate 34 and result in an absence of ice on it heat exchange surface.
When the ice/beverage dispenser 10 is combined with and serves as a base unit for the remote tower 180, agitation of ice in the dispenser hopper 24 may not occur sufficiently often to replenish ice that melts on the cold plate heat exchange upper surface when the cold plate is loaded by warm beverage components flowing through it incident to drawing drinks at the tower. This undesirable situation can occur because cups filled with beverage at the remote tower 180 do not necessarily receive ice from the ice/beverage dispenser 10, and therefore do not trigger an ice agitation event, but instead can be filled with ice from a separate supply located by the remote tower. Consequently, if for an extended period drinks are drawn from the remote tower into cups filled with ice from a separate supply of ice, and if during that period ice agitation and replenishment of ice on the cold plate heat exchange surface do not occur because the ice/beverage dispenser is idle, it is possible that the cold plate 34 will become overloaded in the area of the water chilling circuit 210 that serves the tower, resulting in melting of ice and no ice coverage on the cold plate in that area.
To prevent overloading of the cold plate 34 in the area of the fluid chilling circuit 210 that serves the remote tower 180, the invention contemplates sensing when drinks are drawn from tower and operating the ice/beverage dispenser agitator motor 29 in response to one or more drinks being drawn. One contemplated way to sense the dispensing of drinks at the tower is by detecting energization of the remote tower carbonator pump motor 198 to deliver replacement water into the tower carbonator tank 184, which occurs upon a sufficient decrease in the level of water in the tank following the dispensing one or more beverages from the tower. Upon occurrence of energization of the pump motor 198, the agitator motor 29 is energized for a predetermined time to rotate the agitator 32 and cause some of the ice pieces in the hopper 24 to pass downward through the hopper lower opening 33 into the underlying cold plate compartment 27 to maintain a supply of ice in contact with the entirety of the heat exchange upper surface of the cold plate 34, including the area of the surface in proximity to the remote tower carbonated water chilling circuit 210.
Timed energization of the agitator motor 29, in response to drinks dispense at the remote tower 180, may be implemented in various ways, as is readily apparent to one skilled in the art One way, as mentioned above, is to sense the dispensing of drinks at the remote tower 180 by detecting energization of the remote tower carbonator motor 198, which may be accomplished, for example, through use of a circuit of a type as the one shown in
In essence, (1) the agitator motor 29 is activated either by closing of the ice dispense switch DG1 when the ice gate opens to dispense ice from the ice/beverage dispenser 10 into a cup or by closing of the normally-open contact PA for off-cycle agitations at time intervals set by a user/(2) the agitator board TR1 has a built-in feature that provides a timed agitation every time the agitator board is powered up; (3) an ice agitation to replenish ice on the cold plate 34 is initiated every time the carbonator motor 198 is energized in response to a sensed low level of water in the carbonator tank 186; and (4) during times when the carbonator motor 198 is energized to refill the carbonator tank, dispensing of ice and attendant agitation of ice in the hopper are accommodated.
It is understood that other techniques can be used to sense the drawing of drinks at the remote tower in order to initiate an ice agitation event at the ice/beverage dispenser. For example, for the case where there is no separate carbonator pump for the remote tower, as in
The invention therefore advantageously provides flexibility for use of the cold plate in the ice/beverage dispenser 10, in that when the dispenser is used as a stand-alone unit, two or more cold plate circuits may be used to provide a surplus of cooling for water delivered to the dispenser carbonator tank to improve the carbonation process and better ensure that cold drinks will be served. However, should the need arise, the ability to conveniently use the dispenser to deliver chilled product to or to chill product at a remote location is readily available, which adds value to ice/beverage dispenser delivered to customers. Additional value resides in the ability, by virtue of the auxiliary cold plate chilling circuit(s), to expand the variety or quantity of drinks available without need to invest in a new ice/beverage dispenser (base unit) constructed for the purpose. Also, the plug-and-play feature of the valves or adapter blocks coupled to the cold plate makes switchover fast and easy when expanding use of the ice/beverage dispenser to support delivery of a chilled product to or chilling of a product at a remote location. At the same time, cold plate performance is ensured during periods when the ice/beverage dispenser is idle but drinks are being dispensed at the remote tower, by providing for ice agitation in response to the drawing of drinks at the tower.
While embodiments of the invention have been described in detail, various modifications and other embodiments thereof may be devised by one skilled in the art without departing from the spirit and scope of the invention, as defined in the appended claims.
This application claims benefit of provisional application Ser. No. 60/559,240, filed Apr. 3, 2004, and of provisional application Ser. No. 60/573,882, filed May 24, 2004.
Number | Date | Country | |
---|---|---|---|
60559240 | Apr 2004 | US | |
60573882 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11590719 | Oct 2006 | US |
Child | 11998906 | US | |
Parent | 11091327 | Mar 2005 | US |
Child | 11590719 | US |