1. Field of the Invention
The present invention relates to a cold cathode lamp.
2. Description of the Related Art
A schematic sectional view of a conventional cold-cathode lamp is shown in
When the lamp voltage (the voltage between the internal electrodes) reaches the discharge start voltage VS, electric discharge starts. The electric discharge causes the mercury or xenon to generate ultraviolet rays, which cause the fluorescent material coating the inner wall surface of the glass tube 1 to glow.
In terms of its equivalent circuit, the conventional cold-cathode lamp shown in
One use of the conventional cold-cathode lamp shown in
Now we will consider parallel driving of a plurality of (for example, three) cold-cathode lamps. The V-I characteristic of the cold-cathode lamp varies from one individual to another, a first to a third cold-cathode lamp exhibiting different V-I characteristics as represented by the V-I characteristic curves T1 to T3 in
As a solution to the inconveniences mentioned above, there have been developed external-electrode fluorescent lamps (see, for example, Patent Documents 1 and 2 listed below). A schematic sectional view of an external-electrode fluorescent lamp is shown in
In the external-electrode fluorescent lamp shown in
The interior of the glass tube 1 has a nonlinear negative impedance characteristic, and is insulated by the glass from the external electrodes 4 and 5. Thus, in terms of its equivalent circuit, the external-electrode fluorescent lamp shown in
Now we will consider parallel driving of a plurality of (for example, three) external-electrode fluorescent lamps. The V-I characteristic of the external-electrode fluorescent lamp varies from one individual to another, a first to a third external-electrode fluorescent lamps exhibiting different V-I characteristics as represented by the V-I characteristic curves T1′ to T3′ in
On the other hand, thanks to the external electrodes provided on the exterior surface of the glass tube, in illumination devices and the like employing external-electrode fluorescent lamps, these can be held by the resilience of holding members formed of a resilient metal material (for example, spring steel), with the holding members pinching in them the external electrodes of the external-electrode fluorescent lamps. This permits the external-electrode fluorescent lamps to be supplied with electric power via the holding members. Conveniently, this structure makes the fitting and removal of external-electrode fluorescent lamps easy.
Patent Document 1: JP-A-2004-31338
Patent Document 2: JP-A-2004-39264
Patent Document 3: JP-A-H7-220888 (FIG. 4)
Patent Document 4: JP-A-2004-39336
Patent Document 5: JP-A-H5-121049
Patent Document 6: JP-A-S64-82452
Patent Document 7: JP-A-2003-100482
Patent Document 8: JP-A-H11-40109
Patent Document 9: JP-U-H2-41362
Patent Document 10: JP-A-H6-84499
Inconveniently, however, in an external-electrode fluorescent lamp, since the glass between the external electrodes and the interior space of the glass tube acts as the dielectric between the electrodes of the capacitor as one component of the equivalent circuit of the external-electrode fluorescent lamp, charged particles collide with the part of the inner wall surface of the glass tube facing away from the external electrodes, wearing (sputtering) off the inner wall surface of the glass tube locally. As the inner wall surface of the glass tube wears off, the capacitance of its worn part grows, causing charged particles collide with that part in an increasingly concentrated fashion, eventually forming pinholes and making it impossible to keep the interior of the glass tube air-tight. Thus external-electrode fluorescent lamps are unsatisfactorily reliable.
To overcome the inconveniences and problems discussed above, preferred embodiments of the present invention provide a cold-cathode lamp that can be lit in parallel by being driven in parallel and that in addition offers high reliability, and provide a display illumination device (an illumination device for a display device) and a display device incorporating such a cold-cathode
According to a preferred embodiment of the present invention, a cold-cathode lamp that, when mounted for actual use, is supplied with electric power via first and second conductive members provided externally includes: an insulating tube formed of a light-transmitting (so long as enough light is transmitted to enable the lamp to function as such, light may be partly shielded or may be partly or completely attenuated), electrically insulating material; a first internal electrode disposed inside the insulating tube; a second internal electrode disposed inside the insulating tube; a first external electrode disposed outside the insulating tube and connected to the first internal electrode so as to be at the same potential as the first internal electrode; a first insulating member; a first counter electrode disposed to face the first external electrode across the first insulating member. Here, the first counter electrode has a non-facing portion not facing the first external electrode. Moreover, the gap between the non-facing portion of the first counter electrode and the insulating tube is filled by part of the first insulating member. Furthermore, when the cold-cathode lamp is mounted for actual use, the first conductive member and the first counter electrode are electrically connected together. (This structure will hereinafter be referred to as the first structure.) The insulating tube formed of a light-transmitting, electrically insulating material is, for example, a glass tube, a resin tube, or the like. The internal and external electrodes are connected together, for example, with part of the internal electrode leading out of the insulating tube through its wall and connecting to the external electrode, or with part of the external electrode leading into the insulating tube through its wall and connecting to the internal electrode, or with a conductive member penetrating the wall of the insulating tube and leading into and out of it, connecting to the internal and external electrodes. In any of these cases, the interior of the insulating tube is air-tight.
With this, first, structure, the cold-cathode lamp acts, in terms of its equivalent circuit, as a serial circuit including a resistor whose resistance decreases nonlinearly as the current through it increases and a capacitor (hereinafter also referred to as a ballast capacitor) connected to at least one of the terminals of the resistor, exhibiting a nonlinear positive impedance characteristic. This permits a plurality of cold-cathode lamps of the first structure to be lit in parallel. Moreover, the first counter electrode remains in a fixed position relative to the first external electrode. This stabilizes the capacitor formed by the first external electrode and the first counter electrode. Furthermore, the first counter electrode has a non-facing portion not facing the first external electrode, and the gap between the non-facing portion of the first counter electrode and the insulating tube is filled by part of the first insulating member. This prevents corona discharge near the non-facing portion of the first counter electrode, and thus suppresses corona discharge near the edge of the first counter electrode, leading to higher reliability of the cold-cathode lamp.
The cold-cathode lamp of the first structure described above may further include: a second external electrode disposed outside the insulating tube and connected to the second internal electrode so as to be at the same potential as the second internal electrode; a second insulating member; a second counter electrode disposed to face the second external electrode across the second insulating member. Here, the second counter electrode has a non-facing portion not facing the second external electrode. Moreover, the gap between the non-facing portion of the second counter electrode and the insulating tube is filled by part of the second insulating member. Furthermore, when the cold-cathode lamp is mounted for actual use, the second conductive member and the second counter electrode are electrically connected together. (This structure will hereinafter be referred to as the second structure.)
With this, second, structure, the cold-cathode lamp acts, in terms of its equivalent circuit, as a serial circuit including a resistor whose resistance decreases nonlinearly as the current through it increases and capacitors (hereinafter also referred to as ballast capacitors) connected one to each terminal of the resistor, exhibiting a nonlinear positive impedance characteristic. This permits a plurality of cold-cathode lamps of the second structure to be lit in parallel. Moreover, the first counter electrode remains in a fixed position relative to the first external electrode, and the second counter electrode remains in a fixed position relative to the second external electrode. This stabilizes the capacitor formed by the first external electrode and the first counter electrode and the capacitor formed by the second external electrode and the second counter electrode. Furthermore, the first counter electrode has a non-facing portion not facing the first external electrode, and the gap between the non-facing portion of the first counter electrode and the insulating tube is filled by part of the first insulating member; likewise, the second counter electrode has a non-facing portion not facing the second external electrode, and the gap between the non-facing portion of the second counter electrode and the insulating tube is filled by part of the second insulating member. This prevents corona discharge near the non-facing portions of the first and second counter electrodes, and thus suppresses corona discharge near the edges of the first and second counter electrodes, leading to higher reliability of the cold-cathode lamp.
In the cold-cathode lamp of the first structure described above, the first external electrode may not have a non-facing portion not facing the first counter electrode. (This structure will hereinafter be referred to as the third structure.)
With this structure, the first counter electrode has no edge corresponding to the border between the non-facing and facing portions of the first external electrode. This surely prevents corona discharge that may occur near the edge of the first counter electrode corresponding to the border between the non-facing and facing portions of the first external electrode. It is thus possible to further suppress corona discharge near the edge of the first counter electrode, leading to even higher reliability of the cold-cathode lamp.
In the cold-cathode lamp of the second structure described above, the first external electrode may not have a non-facing portion not facing the first counter electrode, and the second external electrode may not have a non-facing portion not facing the second counter
With this structure, the first counter electrode has no edge corresponding to the border between the non-facing and facing portions of the first external electrode, and the second counter electrode has no edge corresponding to the border between the non-facing and facing portions of the second external electrode. This surely prevents corona discharge that may occur near the edge of the first counter electrode corresponding to the border between the non-facing and facing portions of the first external electrode and near the edge of the second counter electrode corresponding to the border between the non-facing and facing portions of the second external electrode. It is thus possible to further suppress corona discharge near the edges of the first and second counter electrodes, leading to even higher reliability of the cold-cathode lamp.
In the cold-cathode lamp of the first or third structure described above, the first counter electrode may have a projection, and, when the cold-cathode lamp is mounted for actual use, the first conductive member and the projection of the first counter electrode may make contact with each other. (This structure will hereinafter be referred to as the fifth structure.)
This structure ensures that, in the actually mounted state, the first conductive member and the first counter electrode are electrically connected together.
In the cold-cathode lamp of the second or fourth structure described above, the first counter electrode may have a projection, and, when the cold-cathode lamp is mounted for actual use, the first conductive member and the projection of the first counter electrode may make contact with each other; moreover the second counter electrode may have a projection, and, when the cold-cathode lamp is mounted for actual use, the second conductive member and the projection of the second counter electrode may make contact with each other. (This structure will hereinafter be referred to as the sixth structure.)
This structure ensures that, in the actually mounted state, the first conductive member and the first counter electrode are electrically connected together and the second conductive member and the second counter electrode are electrically connected together.
According to another preferred embodiment of the present invention, a display illumination device includes: the cold-cathode lamp of any one of the first to sixth structures described above; first and second conductive members; and a power supply supplying electric power to the cold-cathode lamp via the first and second conductive members. (This structure will hereinafter be referred to as the seventh structure.)
With this structure, it is possible to drive a plurality of cold-cathode lamps in parallel and light them in parallel, contributing to size reduction, weight reduction, and cost reduction. It is also possible to suppress corona discharge near the edge of the counter electrode of the cold-cathode lamp, contributing to higher reliability.
In the display illumination device of the seventh structure described above, the cold-cathode lamp may include a plurality of like cold-cathode lamps, and all or part of the cold-cathode lamps may be electrically connected in parallel. (This structure will hereinafter be referred to as the eighth structure.)
With this structure, it is possible to reduce the number of power supplies needed, contributing to size reduction, weight reduction, and cost reduction.
In the display illumination device of the eighth structure described above, among the cold-cathode lamps electrically connected in parallel, the phase of the voltage fed to the first internal electrode and the phase of the voltage fed to the second internal electrode may be approximately 180 degrees out of phase with, so as to be inverted with respect to, each other. (This structure will hereinafter be referred to as the ninth structure.)
This structure makes laterally symmetric the brightness slope attributable to the leak current through a conductor (for example, the metal casing of a display illumination device) located near the power lines for parallel connection, contributing to enhanced illumination quality. Moreover, this structure, when the display illumination device described above is incorporated in a display device, makes practically zero the voltage that affects the display device (for example, the display device of a liquid crystal display panel) located near the power lines for parallel connection, making it possible to cancel the noise in the display device originating from the display illumination device.
According to yet another preferred embodiment of the present invention, a display device includes the display illumination device of any one of the seventh to ninth structures described above.
With this structure, it is possible to drive a plurality of cold-cathode lamps in parallel and light them in parallel, contributing to size reduction, weight reduction, and cost reduction. It is also possible to suppress corona discharge near the edge of the counter electrode of the cold-cathode lamp, contributing to higher reliability.
According to various preferred embodiments of the present invention, a cold-cathode lamp acts, in terms of its equivalent circuit, as a serial circuit including a resistor whose resistance decreases nonlinearly as the current through it increases and a capacitor connected to at least one of the terminals of the resistor, exhibiting a nonlinear positive impedance characteristic. This makes it possible to drive a plurality of cold-cathode lamps in parallel and light them in parallel. Moreover, according to preferred embodiments of the present invention, it is possible suppress corona discharge near the edge of the counter electrode of the cold-cathode lamp, contributing to higher reliability.
Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In a cold-cathode lamp according to a preferred embodiment of the present invention, its internal structure (including what is sealed in) does not involve any feature unique to the present invention, allowing application of various known technologies directed to cold-cathode lamps; in this respect, therefore, no detailed description will be given.
A schematic sectional view of a cold-cathode lamp according to a preferred embodiment of the present invention is shown in
A display illumination device (an illumination device for a display device) according to a preferred embodiment of the present invention includes the cold-cathode lamp shown in
How the cold-cathode lamp shown in
A plurality of pairs of holding members are provided on the front surface of the illumination unit, and one power supply (not illustrated) is provided on the rear surface of the illumination unit. The power supply outputs an alternating-current voltage of several tens of kHz. The holding members 14 provided in a front left-edge portion 15 of the illumination unit are connected together to one end of the power supply. The holding members 14 provided in a front right-edge portion 16 of the illumination unit are connected together to the other end of the power supply. The holding members 14 are formed of a resilient metal material (for example, spring steel), of which the resilience enables the holding members 14 to pinch in them the counter electrodes of the cold-cathode lamp shown in
In the cold-cathode lamp 17 structured as shown in
Moreover, in the cold-cathode lamp 17, charged particles do not collide with the portion of the inner wall surface of the glass tube facing away from the external electrodes, and thus there is no risk of pinholes being formed in the glass tube as in an external-electrode fluorescent lamp. In the cold-cathode lamp 17, charged particles do collide with and thereby wear (sputter) off the internal electrode, but, since the internal electrode is at an equal potential all over, charged particles reach, as on a lightning rod, a portion of the internal electrode near the discharge region on it, wearing it off there. As wear progresses, the portion of the internal electrode near the discharge region moves, preventing concentration of wear as in the external-electrode fluorescent lamp shown in
Furthermore, in the cold-cathode lamp 17, a capacitor is formed by the external electrode 4 and the counter electrode 10 of the cold-cathode lamp 17, another capacitor is formed by the external electrode 5 and the counter electrode 11 of the cold-cathode lamp 17, and the counter electrodes 10 and 11 remain in fixed positions relative to the external electrodes 4 and 5. This stabilizes the capacitor formed by the external electrode 4 and the counter electrode 10 of the cold-cathode lamp 17 and the capacitor formed by the external electrode 5 and the counter electrode 11 of the cold-cathode lamp 17.
Now we will consider a cold-cathode lamp having counter electrodes 10 and 11 shaped differently from the cold-cathode lamp 17. A schematic sectional view of a cold-cathode lamp having counter electrodes 10 and 11 shaped differently from the cold-cathode lamp 17 is shown in
In the cold-cathode lamp shown in
In contrast, in the cold-cathode lamp 17, the counter electrode 10 has a non-facing portion not facing the external electrode 4; the counter electrode 11 has a non-facing portion not facing the external electrode 5; the gap between the non-facing portion of the counter electrode 10 and the glass tube 1 is filled by a portion of the insulating layer 8; the gap between the non-facing portion of the counter electrode 11 and the glass tube 1 is filled by a portion of the insulating layer 9; the external electrode 4 does not have a non-facing portion not facing the counter electrode 10; and the external electrode 5 does not have a non-facing portion not facing the counter electrode 11. This structure suppresses the lines of electric force taking roundabout paths to reach the edge of the counter electrodes 10 and 11, and thereby suppresses corona discharge near the edge of the counter electrodes 10 and 11, leading to higher reliability.
The shape of the counter electrodes 10 and 11 in the cold-cathode lamp 17 may be modified as in the cold-cathode lamp shown in
The counter electrodes 10 and 11 of the cold-cathode lamp 17 simply need to be electrically connected to the holding members 14. Preferably, to ensure electrical connection between the counter electrodes 10 and 11 of the cold-cathode lamp 17 and the holding members 14, ring-shaped projections 10A and 11A may be provided on the counter electrodes 10 and 11 respectively so that, in the actually mounted state, the projections 10A and 11A make contact with the corresponding holding members 14.
Next, examples of arrangement of a power supply in a display illumination device according to a preferred embodiment of the present invention will be described. In the example of power supply arrangement shown in
In a display illumination device according to a preferred embodiment of the present invention, from the perspective of reducing the number of power supplies needed, it is preferable that all its cold-cathode lamps be driven in parallel by a single power supply. Depending on the capacity of the power supply and the number of cold-cathode lamps, however, it is also possible, instead of driving all the cold-cathode lamps in parallel by a single power supply, to divide the cold-cathode lamps into a plurality of groups and provide as many power supplies, each driving the cold-cathode lamps within a group in parallel.
With respect to cold-cathode lamps electrically connected in parallel, the phase of the voltage fed to their internal electrodes at one side and the phase of the voltage fed to their internal electrodes at the other side may be made approximately 180 degrees out of phase with, so as to be inverted with respect to, each other. This structure makes laterally symmetric the brightness slope attributable to the leak current through a conductor (for example, the metal casing of the display illumination device) located near the power lines for parallel connection, contributing to enhanced illumination quality. Moreover, this structure, when the display illumination device described above is incorporated in a display device, makes practically zero the voltage that affects the display device (for example, the display device of a liquid crystal display panel) located near the power lines for parallel connection, making it possible to cancel the noise in the display device originating from the display illumination device.
In a case where a display illumination device according to a preferred embodiment of the present invention is applied to a display device with a display screen size over “37V”, to hold the discharge start voltage of cold-cathode lamps low, it is preferable that, in the display illumination device according to a preferred embodiment of the present invention, the cold-cathode lamps and the holding members be arranged, for example, as shown in
In the example of cold-cathode lamp/holding member arrangement shown in
In the example of cold-cathode lamp/holding member arrangement shown in
In the examples of cold-cathode lamp/holding member arrangement shown in
Next, examples of arrangement of a power supply in the examples of cold-cathode lamp/holding member arrangement shown in
In the example of power supply arrangement shown in
In the example of power supply arrangement shown in
In the example of power supply arrangement shown in
The examples of power supply arrangement shown in
As shown in
The preferred embodiments described above deal with cases where a cold-cathode lamp according to the present invention is preferably provided with two external electrodes. Providing only one external electrode, however, suffices to obtain a nonlinear positive impedance characteristic. Thus, a cold-cathode lamp according to a preferred embodiment of the present invention may be provided with only one external electrode. For example, modifying the cold-cathode lamp according to a preferred embodiment of the present invention shown in
A display device according to another preferred embodiment of the present invention includes a display illumination device according to various preferred embodiments of the present invention as described above and a display panel. Among specific examples of display devices according to preferred embodiments of the present invention are transmissive liquid crystal display devices including as a backlight a display illumination device and having, on its front surface, a liquid crystal display panel.
Cold-cathode lamps according to various preferred embodiments of the present invention can be used as illumination sources provided in display illumination devices and as illumination sources provided in other various devices.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-133636 | May 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/323550 | 11/27/2006 | WO | 00 | 9/30/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/132543 | 11/22/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4912368 | Nishiyama et al. | Mar 1990 | A |
5387837 | Roelevink et al. | Feb 1995 | A |
5705879 | Abe et al. | Jan 1998 | A |
5982089 | Wesselink et al. | Nov 1999 | A |
7638945 | Takata | Dec 2009 | B2 |
20030214478 | Yoo et al. | Nov 2003 | A1 |
20040239260 | Nakano | Dec 2004 | A1 |
20060001386 | Kim et al. | Jan 2006 | A1 |
20060197424 | Takata | Sep 2006 | A1 |
20090096958 | Matsuura et al. | Apr 2009 | A1 |
20100084977 | Iwamoto | Apr 2010 | A1 |
20100109544 | Hayashi | May 2010 | A1 |
20100220462 | Nakanishi et al. | Sep 2010 | A1 |
20100225254 | Takata | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
63-098163 | Apr 1988 | JP |
02-041362 | Mar 1990 | JP |
02-057539 | Apr 1990 | JP |
03-261067 | Nov 1991 | JP |
05-121049 | May 1993 | JP |
05-275060 | Oct 1993 | JP |
09-017329 | Jan 1997 | JP |
11-040109 | Feb 1999 | JP |
2003-257377 | Sep 2003 | JP |
2004-039264 | Feb 2004 | JP |
2004-039336 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20100225253 A1 | Sep 2010 | US |