Cold electron number amplifier

Information

  • Patent Grant
  • 8750458
  • Patent Number
    8,750,458
  • Date Filed
    Wednesday, November 30, 2011
    12 years ago
  • Date Issued
    Tuesday, June 10, 2014
    9 years ago
Abstract
A cold electron number amplifier device can provide a greater number of electrons at lower electron emitter temperature. The cold electron number amplifier device can comprise an evacuated enclosure 11, a first electron emitter 12 attached to the evacuated enclosure 11, and an electrically conductive second electron emitter 13 also attached to the evacuated enclosure. The first electron emitter 12 can be configured to emit electrons 14 within the evacuated enclosure 11. The second electron emitter 13 can have a voltage V2 greater than a voltage V1 of the first electron emitter 12 (V2>V1). The second electron emitter 13 can be positioned to receive impinging electrons 14 from the first electron emitter 12. Electrons 14 from the first electron emitter 12 can impart energy to electrons in the second electron emitter 13 and cause the second electron emitter 13 to emit more electrons 15.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to x-ray tubes and cold electron number amplifiers.


2. Related Art


Many devices require generation of electrons. For example an x-ray tube can include a cathode attached to one end of an evacuated tube and an anode attached at an opposing end. The cathode can include an electron emitter, such as a filament. The filament can be heated, such as by a laser or an alternating current flowing through the filament. Due to the heat of the filament (1500-2000° C. for example) and a very large voltage differential between the filament and the anode (10 kV-100 kV for example) electrons can leave the filament and accelerate towards the anode. The anode can include a material that will emit x-rays in response to impinging electrons. Other examples of devices that require generation of electrons are cathode-ray tubes, electron microscopes, gas electron tubes or gas discharge tubes, and travelling wave tubes.


Electrons in the above devices can be generated by electron emitters, such as a filament. Due to the high required electron emitter temperature for the desired rate of electron emission, the electron emitter can fail at an undesirably low life. For example, in x-ray tubes, filament failure can be one of the most common failures and limiting factors in extending x-ray tube life. It would be desirable to be able to operate electron emitters at a lower temperature than is presently used while maintaining the same electron generation rate.


SUMMARY

It has been recognized that it would be advantageous to be able to operate electron emitters at a lower temperature than is presently used while maintaining the same electron generation rate. The present invention is directed to a cold electron number amplifier that satisfies the need for producing the same rate of electrons while allowing the electron emitter to operate at a lower temperature.


The apparatus comprises an evacuated enclosure, a first electron emitter attached to the evacuated enclosure and configured to emit electrons within the evacuated enclosure, and an electrically conductive second electron emitter, also attached to the evacuated enclosure. The electrically conductive second electron emitter is configured to have a voltage greater than a voltage of the first electron emitter and is positioned to receive impinging electrons from the first electron emitter. Electrons from the first electron emitter impart energy to electrons in the second electron emitter and cause the second electron emitter to emit more electrons.


Due to additional electrons produced by the second electron emitter, the same rate of total electrons may be produced with less electrons produced by the first electron emitter. Due to lower required electron generation rate of the first electron emitter, it can be operated at a lower temperature, which can result in longer first electron emitter life.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional side view of a cold electron number amplifier in accordance with an embodiment of the present invention;



FIG. 2 is a schematic cross-sectional side view of a cold electron number amplifier in which the second electron emitter is disposed between the first electron emitter and the electrode and the second electron emitter has a hole allowing electrons from the second electron emitter to be propelled therethrough towards the electrode, in accordance with an embodiment of the present invention;



FIG. 3 is a schematic cross-sectional side view of a cold electron number amplifier wherein the second electron emitter comprises at least two second electron emitters including one disposed between the first electron emitter and the electrode and containing a hole and another disposed on an opposite side of the first electron emitter from the electrode, in accordance with an embodiment of the present invention;



FIG. 4 is a schematic cross-sectional side view of an x-ray tube with second electron emitters in accordance with an embodiment of the present invention;



FIG. 5 is a schematic cross-sectional side view of a cold electron number amplifier wherein the second electron emitter has protrusions facing the first electron emitter to provide greater surface area for electrons from the first electron emitter to impinge upon the protrusions of the second electron emitter, in accordance with an embodiment of the present invention;



FIG. 6 is a schematic cross-sectional side view of a first electron emitter which is heated by alternating current, in accordance with an embodiment of the present invention;



FIG. 7 is a schematic cross-sectional side view of a first electron emitter which is heated by photons, in accordance with an embodiment of the present invention;





DEFINITIONS





    • As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.

    • As used herein, the term “evacuated enclosure” means a sealed enclosure that has an internal pressure less than atmospheric pressure. The actual internal pressure will depend on the application. For example, the internal pressure may be less than 0.1 atm, less than 0.001 atm, less than 0−8 atm, less than 10−6 atm, or less than 10−8 atm.

    • As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.





DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.


As illustrated in FIG. 1, a cold electron number amplifier 10 is shown comprising an evacuated enclosure 11, a first electron emitter 12 attached to the evacuated enclosure 11, and an electrically conductive second electron emitter 13 also attached to the evacuated enclosure. The first electron emitter 12 is configured to emit electrons 14 within the evacuated enclosure 11.


The second electron emitter 13 is configured to have a voltage V2 greater than a voltage V1 of the first electron emitter 12 (V2>V1). In the various embodiments described herein, a voltage differential between the first electron emitter 12 and the second electron emitter 13 can be sufficiently high so that electrons in the second electron emitter 13 will have enough energy to exit the second electron emitter 13. For example, the voltage V2 of the second electron emitter 13 can be greater than a voltage V1 of the first electron emitter by more than a work function of the second electron emitter 13.


The second electron emitter 13 is positioned to receive impinging electrons 14 from the first electron emitter 12. Electrons 14 from the first electron emitter 12 impart energy to electrons in the second electron emitter 13 and cause the second electron emitter 13 to emit more electrons 15. A larger voltage differential (V2-V1) between the first electron emitter 12 and the second electron emitter 13, can result in an increased rate of electron generation at the second electron emitter. Such large voltage differential (V2-V1) can be in one embodiment, 10 times the work function of the second electron emitter 13, in another embodiment 100 times the work function of the second electron emitter 13, and in another embodiment 1000 times the work function of the second electron emitter 13.


Due to additional electrons produced by the second electron emitter, the same rate of total electrons may be produced with less electrons produced by the first electron emitter. Due to lower required electron generation rate of the first electron emitter, it can be operated at a lower temperature, which can result in longer first electron emitter life.


In the various embodiments described herein, many more electrons 15 can be emitted from the second electron emitter 13 than are emitted from the first electron emitter 12. In one embodiment, at least ten times more electrons 15 are emitted from the second electron emitter 13 than are emitted from the first electron emitter 12. In another embodiment, at least 50 times more electrons 15 are emitted from the second electron emitter 13 than are emitted from the first electron emitter 12. In another embodiment, at least 500 times more electrons 15 are emitted from the second electron emitter 13 than are emitted from the first electron emitter 12.


The above described cold electron number amplifier 10 can be used in many devices that require generation of electrons, such as x-ray tubes, cathode-ray tubes. electron microscopes, gas electron tubes or gas discharge tubes, and travelling wave tubes. Such devices can be operated at very large voltage differentials. For example, a voltage differential between the first electron emitter 12 and the electrode 23 can be at least 9 kilovolts. A configuration that may be used in such devices is shown in FIG. 2, wherein cold electron number amplifier 20 includes an electrode 23 attached to the evacuated enclosure, configured to have a voltage V3 greater than the voltage V2 of the second electron emitter 13 and positioned to cause electrons 15 from the second electron emitter 13 to accelerate within the evacuated enclosure 11 towards the electrode 23.


Also shown in FIG. 2, the second electron emitter 13 can be disposed between the first electron emitter 12 and the electrode 23 and the second electron emitter 12 can have a hole 21 allowing electrons from the second electron emitter 13 to be propelled therethrough towards the electrode 23.


Also shown in FIG. 2, the second electron emitter 13 can have a slanted surface 22 facing the first electron emitter 12 to provide greater surface area for electrons 14 from the first electron emitter 12 to impinge upon. Having greater surface area for electrons to impinge upon can result in increased emission of electrons 15 from the second electron emitter 13.


As shown in FIG. 3, the first electron emitter 12 can be disposed between the second electron emitter 13a and the electrode 23. This configuration may be preferred for manufacturability. Also, in this design, electrons 14a emitted from the first electron emitter 12 in a direction not directly towards the electrode 23 can impinge upon the second electron emitter 13a and result in more electrons 15a emitted from the second electron emitter 13a. The first electron emitter 12 can be disposed in a cavity 33 in the second electron emitter 13a.


In one embodiment of the present invention, the second electron emitter 13b can be disposed between the first electron emitter 12 and the electrode 23 and the second electron emitter 12 can have a hole 21 allowing electrons from the second electron emitter 13b to be propelled therethrough towards the electrode 23. In another embodiment of the present invention, the first electron emitter 12 can be disposed between the second electron emitter 13a and the electrode 23. As shown in FIG. 3, in another embodiment of the present invention, multiple second electron emitters 13a-b may be used.


For example, the cold electron number amplifier 30 of FIG. 3 includes one second electron emitter 13b disposed between the first electron emitter 12 and the electrode 23 and another of the second electron emitters 13a disposed on an opposite side of the first electron emitter 12 from the electrode 23. This design can result in more electrons from the first electron emitter 12 impinging upon a second electron emitter 13. Not shown in FIG. 3, the second electron emitters 13a-b could connect and surround the first electron emitter 12 with the exception of an insulated channel 31 for providing voltage to the first electron emitter 12, means of attaching the first electron emitter 12, and a hole 21 for allowing electrons 15b to move towards the anode.


Voltages V2a-b attached to the second electron emitters 13a-b can be the same (V2a=V2b) or different from (V2a≠V2b) each other. Whether the two voltages V2a and V2b are the same or different is dependent upon the desired electric field produced between the first electron emitter 12 and the second electron emitters 13a-b and the difficulty of providing an extra voltage.


Shown in FIG. 4 is an x-ray tube 40 comprising an evacuated enclosure 11, a first electron emitter 12 can be attached to the evacuated enclosure 11 and configured to emit electrons 14 within the evacuated enclosure 11 and an anode 43 can be attached to the evacuated enclosure 11 and configured to emit x-rays 41 in response to impinging electrons 15. The x-ray tube 40 also includes at least one electrically conductive second electron emitter 13. The second electron emitter(s) can include a second electron emitter 13b disposed between the first electron emitter 12 and the anode 43 with a hole 21 for allowing passage of electrons 15 and/or a second electron emitter 13a disposed on an opposite side of the first electron emitter 12 from the anode 43.


Voltage(s) V2a-b of the second electron emitter(s) 13a-b can be greater than a voltage V1 of the first electron emitter 13a. A voltage V3 of the anode 43 can be greater than a voltage V2a-b of the second electron emitter(s) 13a-b. A voltage differential between the first electron emitter 12 and the anode 43 can be at least 9 kilovolts (V3-V1>9 kV). A voltage differential between the first electron emitter 12 and the second electron emitter(s) 13a-b can be greater than a work function of the second electron emitter(s) 13a-b. For example, a voltage of the first electron emitter 12 can be less than about −20 kilovolts (kV), a voltage of the anode can be about 0 volts, and voltage(s) of the second electron emitter(s) can be between about −20 kV and 0 volts.


Impinging electrons 14 from the first electron emitter 12 on the second electron emitter(s) 13a-b impart energy to electrons in the second electron emitter(s) 13a-b, thus causing additional electrons 15 to be emitted from the second electron emitter(s) 13a-b. Electrons 15 from the second electron emitter(s) 13a-b can accelerate towards and impinge upon the anode 43. Electrons 15 impinging upon the anode 43 can cause the anode to emit x-rays 41.


A method of producing x-rays 41 in an x-ray tube 40 can include:

    • 1. providing a voltage differential between a first electron emitter 12 and an anode 43, both within the x-ray tube 40, of at least 1 kilovolt;
    • 2. providing an electrically conductive second electron emitter 13 with a voltage that is between a voltage of the first electron emitter 12 and a voltage of the anode 43;
    • 3. providing a voltage differential between the first electron emitter 12 and the second electron emitter 13 that is greater than a work function of the second electron emitter 13;
    • 4. emitting electrons 14 from the first electron emitter 12 and propelling the electrons 14 from the first electron emitter 12 to impinge upon the second electron emitter 13;
    • 5. multiplying a total number of electrons by emitting at least 10 electrons 15 from the second electron emitter 13 for every electron 14 impinging upon the second electron emitter 13;
    • 6. propelling the electrons 15 from the second electron emitter 13 towards the anode 43 and impinging upon the anode 43; and
    • 7. emitting x-rays 41 from the anode 43 as a result of the electrons 15 which impinged upon the anode 43.


In one embodiment, shown in FIG. 5, second electron emitters 13c-d can have protrusions 51a-b facing the first electron emitter 12 to provide greater surface area for electrons 14 from the first electron emitter 12 to impinge upon. Having greater surface area for electrons 14 to impinge upon can result in increased emission of electrons 15 from the second electron emitter 13. The protrusions 51a-b in this embodiment may be used in various embodiments described herein.


As shown in FIG. 6, a first electron emitter 12 can be heated by alternating current passing through first electron emitter 12. The alternating current can be supplied by an alternating current source 61. The first electron emitter 12 can be a filament. As shown in FIG. 7, a first electron emitter 12 can be heated by electromagnetic energy or photons 72 from a supply 71, such as a laser.


The second electron emitter 13 can be electrically conductive and can be is metallic, such as tungsten for example.


For the various embodiments described herein, the second electron emitter 13 can be manufactured by machining. The second electron emitter 13 can be attached to the evacuated enclosure 11 by an adhesive or by welding.


It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.

Claims
  • 1. A method of producing x-rays in an x-ray tube, the method comprising: a) providing a voltage differential between a first electron emitter and an anode, both within the x-ray tube, of at least 1 kilovolt;b) providing an electrically conductive second electron emitter with a voltage that is between a voltage of the first electron emitter and a voltage of the anode;c) providing a voltage differential between the first electron emitter and the second electron emitter that is greater than a work function of the second electron emitter;d) emitting electrons from the first electron emitter and propelling the electrons from the first electron emitter to impinge upon the second electron emitter;e) multiplying a total number of electrons by emitting at least 10 electrons from the second electron emitter for every electron impinging upon the second electron emitter;f) propelling the electrons from the second electron emitter towards the anode and impinging upon the anode; andg) emitting x-rays from the anode as a result of the electrons which impinged upon the anode.
  • 2. The method of claim 1, wherein at least 500 electrons are emitted from the second electron emitter for every electron impinging upon the second electron emitter.
  • 3. An x-ray tube comprising: a) an evacuated enclosure having an internal pressure of less than 10−6 atm;b) a first electron emitter attached to the evacuated enclosure and configured to emit electrons;c) an anode attached to the evacuated enclosure and configured to emit x-rays in response to impinging electrons;e) an electrically conductive second electron emitter disposed within the evacuated enclosure between the first electron emitter and the anode;e) a voltage of the second electron emitter is greater than a voltage of the first electron emitter;f) a voltage of the anode is greater than a voltage of the second electron emitter;g) a voltage differential between the first electron emitter and the anode of at least 9 kilovolts;h) a voltage differential between the first electron emitter and the second electron emitter that is greater than a work function of the second electron emitter;i) the second electron emitter having a hole between the first electron emitter and the anode;j) impinging electrons on the second electron emitter, from the first electron emitter, impart energy to electrons in the second electron emitter, thus causing additional electrons to be emitted from the second electron emitter;k) at least ten times more electrons are emitted from the second electron emitter than are emitted from the first electron emitter;l) electrons from the second electron emitter accelerate towards and impinge upon the anode; andm) electrons impinging upon the anode cause the anode to emit x-rays.
  • 4. The x-ray tube of claim 3 wherein the voltage differential between the first electron emitter and the second electron emitter is greater than 100 times a work function of the second electron emitter.
CLAIM OF PRIORITY

Priority is claimed to U.S. Provisional Patent Application Ser. No. 61/443,822, filed Feb. 17, 2011; which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (264)
Number Name Date Kind
1276706 Aydelotte Aug 1918 A
1881448 Forde et al. Oct 1932 A
1946288 Kearsley Feb 1934 A
2291948 Cassen Aug 1942 A
2316214 Atlee et al. Apr 1943 A
2329318 Atlee et al. Sep 1943 A
2340363 Atlee et al. Feb 1944 A
2502070 Atlee et al. Mar 1950 A
2663812 Jamison et al. Mar 1950 A
2683223 Hosemann Jul 1954 A
2952790 Steen Sep 1960 A
3356559 Juras Dec 1967 A
3358368 Kuhnl Dec 1967 A
3397337 Denholm Aug 1968 A
3434062 Cox Mar 1969 A
3665236 Gaines et al. May 1972 A
3679927 Kirkendall Jul 1972 A
3691417 Gralenski Sep 1972 A
3741797 Chavasse, Jr. et al. Jun 1973 A
3751701 Gralenski et al. Aug 1973 A
3801847 Dietz Apr 1974 A
3828190 Dahlin et al. Aug 1974 A
3851266 Conway Nov 1974 A
3872287 Koeman Mar 1975 A
3882339 Rate et al. May 1975 A
3894219 Weigel Jul 1975 A
3962583 Holland et al. Jun 1976 A
3970884 Golden Jul 1976 A
4007375 Albert Feb 1977 A
4075526 Grubis Feb 1978 A
4160311 Ronde et al. Jul 1979 A
4163900 Warren et al. Aug 1979 A
4178509 More et al. Dec 1979 A
4184097 Auge Jan 1980 A
4250127 Warren et al. Feb 1981 A
4293373 Greenwood Oct 1981 A
4368538 McCorkle Jan 1983 A
4393127 Greschner et al. Jul 1983 A
4400822 Kuhnke et al. Aug 1983 A
4421986 Friauf et al. Dec 1983 A
4443293 Mallon et al. Apr 1984 A
4463338 Utner et al. Jul 1984 A
4521902 Peugeot Jun 1985 A
4532150 Endo et al. Jul 1985 A
4573186 Reinhold Feb 1986 A
4576679 White Mar 1986 A
4584056 Perret et al. Apr 1986 A
4591756 Avnery May 1986 A
4608326 Neukermans et al. Aug 1986 A
4645977 Kurokawa et al. Feb 1987 A
4675525 Amingual et al. Jun 1987 A
4679219 Ozaki Jul 1987 A
4688241 Peugeot Aug 1987 A
4696994 Nakajima et al. Sep 1987 A
4705540 Hayes Nov 1987 A
4734924 Yahata et al. Mar 1988 A
4761804 Yahata Aug 1988 A
4777642 Ono Oct 1988 A
4797907 Anderton Jan 1989 A
4818806 Kunimune et al. Apr 1989 A
4819260 Haberrecker Apr 1989 A
4862490 Karnezos et al. Aug 1989 A
4870671 Hershyn Sep 1989 A
4876330 Higashi et al. Oct 1989 A
4878866 Mori et al. Nov 1989 A
4885055 Woodbury et al. Dec 1989 A
4891831 Tanaka et al. Jan 1990 A
4933557 Perkins et al. Jun 1990 A
4939763 Pinneo et al. Jul 1990 A
4957773 Spencer et al. Sep 1990 A
4960486 Perkins et al. Oct 1990 A
4969173 Valkonet Nov 1990 A
4979198 Malcolm et al. Dec 1990 A
4979199 Cueman et al. Dec 1990 A
4995069 Tanaka Feb 1991 A
5010562 Hernandez et al. Apr 1991 A
5063324 Grunwald Nov 1991 A
5066300 Isaacson et al. Nov 1991 A
5077771 Skillicorn et al. Dec 1991 A
5077777 Daly Dec 1991 A
5090046 Friel Feb 1992 A
5105456 Rand et al. Apr 1992 A
5117829 Miller et al. Jun 1992 A
5153900 Nomikos et al. Oct 1992 A
5161179 Suzuki et al. Nov 1992 A
5173612 Imai et al. Dec 1992 A
5178140 Ibrahim Jan 1993 A
5187737 Watanabe Feb 1993 A
5196283 Ikeda et al. Mar 1993 A
5200984 Laeuffer Apr 1993 A
5217817 Verspui et al. Jun 1993 A
5226067 Allred et al. Jul 1993 A
RE34421 Parker et al. Oct 1993 E
5258091 Imai et al. Nov 1993 A
5267294 Kuroda et al. Nov 1993 A
5302523 Coffee et al. Apr 1994 A
5343112 Wegmann et al. Aug 1994 A
5347571 Furbee et al. Sep 1994 A
5391958 Kelly Feb 1995 A
5400385 Blake et al. Mar 1995 A
5422926 Smith et al. Jun 1995 A
5428658 Oettinger et al. Jun 1995 A
5432003 Plano et al. Jul 1995 A
5469429 Yamazaki et al. Nov 1995 A
5469490 Golden et al. Nov 1995 A
5478266 Kelly Dec 1995 A
5521851 Wei et al. May 1996 A
5524133 Neale et al. Jun 1996 A
5532003 Wong et al. Jul 1996 A
RE35383 Miller et al. Nov 1996 E
5571616 Phillips et al. Nov 1996 A
5578360 Viitanen Nov 1996 A
5592042 Takuchi et al. Jan 1997 A
5602507 Suzuki Feb 1997 A
5607723 Plano et al. Mar 1997 A
5621780 Smith et al. Apr 1997 A
5627871 Wang May 1997 A
5631943 Miles May 1997 A
5673044 Pellon Sep 1997 A
5680433 Jensen Oct 1997 A
5682412 Skillicorn et al. Oct 1997 A
5696808 Lenz Dec 1997 A
5706354 Stroehlein Jan 1998 A
5729583 Tang et al. Mar 1998 A
5774522 Warburton Jun 1998 A
5812632 Schardt et al. Sep 1998 A
5835561 Moorman et al. Nov 1998 A
5870051 Warburton et al. Feb 1999 A
5898754 Gorzen Apr 1999 A
5907595 Sommerer May 1999 A
5978446 Resnick Nov 1999 A
6002202 Meyer et al. Dec 1999 A
6005918 Harris et al. Dec 1999 A
6044130 Inazura et al. Mar 2000 A
6062931 Chung et al. May 2000 A
6063629 Knoblauch May 2000 A
6069278 Chuang May 2000 A
6073484 Miller et al. Jun 2000 A
6075839 Treseder Jun 2000 A
6097790 Hasegawa et al. Aug 2000 A
6129901 Moskovits et al. Oct 2000 A
6133401 Jensen Oct 2000 A
6134300 Trebes et al. Oct 2000 A
6184333 Gray Feb 2001 B1
6205200 Boyer et al. Mar 2001 B1
6277318 Bower et al. Aug 2001 B1
6282263 Arndt et al. Aug 2001 B1
6288209 Jensen Sep 2001 B1
6307008 Lee et al. Oct 2001 B1
6320019 Lee et al. Nov 2001 B1
6351520 Inazaru Feb 2002 B1
6385294 Suzuki et al. May 2002 B2
6388359 Duelli et al. May 2002 B1
6438207 Chidester et al. Aug 2002 B1
6477235 Chornenky et al. Nov 2002 B2
6487272 Kutsuzawa Nov 2002 B1
6487273 Takenaka et al. Nov 2002 B1
6494618 Moulton Dec 2002 B1
6546077 Chornenky et al. Apr 2003 B2
6567500 Rother May 2003 B2
6645757 Okandan et al. Nov 2003 B1
6646366 Hell et al. Nov 2003 B2
6658085 Sklebitz Dec 2003 B2
6661876 Turner et al. Dec 2003 B2
6740874 Doring May 2004 B2
6778633 Loxley et al. Aug 2004 B1
6799075 Chornenky et al. Sep 2004 B1
6803570 Bryson, III et al. Oct 2004 B1
6803571 Mankos et al. Oct 2004 B1
6816573 Hirano et al. Nov 2004 B2
6819741 Chidester Nov 2004 B2
6838297 Iwasaki et al. Jan 2005 B2
6852365 Smart et al. Feb 2005 B2
6866801 Mau et al. Mar 2005 B1
6876724 Zhou et al. Apr 2005 B2
6900580 Dai et al. May 2005 B2
6956706 Brandon Oct 2005 B2
6962782 Livache et al. Nov 2005 B1
6976953 Pelc Dec 2005 B1
6987835 Lovoi Jan 2006 B2
7035379 Turner et al. Apr 2006 B2
7046767 Okada et al. May 2006 B2
7049735 Ohkubo et al. May 2006 B2
7050539 Loef et al. May 2006 B2
7075699 Oldham et al. Jul 2006 B2
7085354 Kanagami Aug 2006 B2
7108841 Smalley et al. Sep 2006 B2
7110498 Yamada Sep 2006 B2
7130380 Lovoi et al. Oct 2006 B2
7130381 Lovoi et al. Oct 2006 B2
7189430 Ajayan et al. Mar 2007 B2
7203283 Puusaari Apr 2007 B1
7206381 Shimono et al. Apr 2007 B2
7215741 Ukita May 2007 B2
7224769 Turner May 2007 B2
7233071 Furukawa et al. Jun 2007 B2
7233647 Turner et al. Jun 2007 B2
7286642 Ishikawa et al. Oct 2007 B2
7305066 Ukita Dec 2007 B2
7317784 Durst et al. Jan 2008 B2
7358593 Smith et al. Apr 2008 B2
7382862 Bard et al. Jun 2008 B2
7399794 Harmon et al. Jul 2008 B2
7410601 Sato et al. Aug 2008 B2
7428298 Bard et al. Sep 2008 B2
7448801 Oettinger et al. Nov 2008 B2
7448802 Oettinger et al. Nov 2008 B2
7486774 Cain Feb 2009 B2
7526068 Dinsmore Apr 2009 B2
7529345 Bard et al. May 2009 B2
7618906 Meilahti Nov 2009 B2
7634052 Grodzins et al. Dec 2009 B2
7649980 Aoki et al. Jan 2010 B2
7650050 Haffner et al. Jan 2010 B2
7657002 Burke et al. Feb 2010 B2
7675444 Smith et al. Mar 2010 B1
7680652 Giesbrecht et al. Mar 2010 B2
7693265 Hauttmann et al. Apr 2010 B2
7709820 Decker et al. May 2010 B2
7737424 Xu et al. Jun 2010 B2
7756251 Davis et al. Jul 2010 B2
7915800 Kim et al. Mar 2011 B2
20020075999 Rother Jun 2002 A1
20020094064 Zhou et al. Jul 2002 A1
20030096104 Tobita et al. May 2003 A1
20030152700 Asmussen et al. Aug 2003 A1
20030165418 Ajayan et al. Sep 2003 A1
20040076260 Charles Jr et al. Apr 2004 A1
20050018817 Oettinger et al. Jan 2005 A1
20050141669 Shimono et al. Jun 2005 A1
20050207537 Ukita Sep 2005 A1
20060073682 Furukawa et al. Apr 2006 A1
20060098778 Oettinger et al. May 2006 A1
20060210020 Takahashi et al. Sep 2006 A1
20060233307 Dinsmore Oct 2006 A1
20060269048 Cain Nov 2006 A1
20060280289 Hanington et al. Dec 2006 A1
20070025516 Bard et al. Feb 2007 A1
20070087436 Miyawaki et al. Apr 2007 A1
20070111617 Meilahti May 2007 A1
20070133921 Haffner et al. Jun 2007 A1
20070142781 Sayre Jun 2007 A1
20070165780 Durst et al. Jul 2007 A1
20070176319 Thostenson et al. Aug 2007 A1
20070183576 Burke et al. Aug 2007 A1
20070217574 Beyerlein Sep 2007 A1
20080199399 Chen et al. Aug 2008 A1
20080296479 Anderson et al. Dec 2008 A1
20080296518 Xu et al. Dec 2008 A1
20080317982 Hecht et al. Dec 2008 A1
20090085426 Davis et al. Apr 2009 A1
20090086923 Davis et al. Apr 2009 A1
20090213914 Dong et al. Aug 2009 A1
20090243028 Dong et al. Oct 2009 A1
20100096595 Prud'Homme et al. Apr 2010 A1
20100098216 Dobson Apr 2010 A1
20100126660 O'Hara May 2010 A1
20100140497 Damiano, Jr. et al. Jun 2010 A1
20100239828 Cornaby et al. Sep 2010 A1
20100243895 Xu et al. Sep 2010 A1
20100248343 Aten et al. Sep 2010 A1
20100285271 Davis et al. Nov 2010 A1
20100323419 Aten et al. Dec 2010 A1
20110017921 Jiang et al. Jan 2011 A1
Foreign Referenced Citations (35)
Number Date Country
1030936 May 1958 DE
4430623 Mar 1996 DE
19818057 Nov 1999 DE
0297808 Jan 1989 EP
0330456 Aug 1989 EP
0400655 May 1990 EP
0676772 Mar 1995 EP
1252290 Nov 1971 GB
57 082954 Aug 1982 JP
3170673 Jul 1991 JP
4171700 Jun 1992 JP
05066300 Mar 1993 JP
5066300 Mar 1993 JP
5135722 Jun 1993 JP
06119893 Jul 1994 JP
6289145 Oct 1994 JP
6343478 Dec 1994 JP
8315783 Nov 1996 JP
08315783 Nov 1996 JP
2003007237 Jan 2003 JP
2003088383 Mar 2003 JP
2003510236 Mar 2003 JP
2003211396 Jul 2003 JP
2006297549 Nov 2006 JP
1020050107094 Nov 2005 KR
WO 9965821 Dec 1999 WO
WO 0009443 Feb 2000 WO
WO 0017102 Mar 2000 WO
WO 03076951 Sep 2003 WO
WO2008052002 May 2008 WO
WO 2008052002 May 2008 WO
WO 2009009610 Jan 2009 WO
WO 2009045915 Apr 2009 WO
WO 2009085351 Jul 2009 WO
WO 2010107600 Sep 2010 WO
Non-Patent Literature Citations (55)
Entry
Chakrapani et al.; Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams; PNAS; Mar. 23, 2004; pp. 4009-4012; vol. 101; No. 12.
Chen, Xiaohua et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 2000, pp. 301-306, vol. 60.
Coleman, et al.; “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”; Adv. Mater. 2006, 18, 689-706.
Coleman, et al.; “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites”; Carbon 44 (2006) 1624-1652.
Flahaut, E. et al, “Carbon Nanotube-metal-oxide nanocomposites; microstructure, electrical conductivity and mechanical properties,” Acta mater., 2000, pp. 3803-3812.Vo. 48.
Gevin et al., “IDeF-X V1.0: performances of a new CMOS multi channel analogue readout ASIC for Cd(Zn)Te detectors”, IDDD, Oct. 2005, 433-437, vol. 1.
Grybos et al., “Measurements of matching and high count rate performance of mulitchannel ASIC for digital x-ray imaging systems”, IEEE, Aug. 2007, 1207-1215, vol. 54, Issue 4.
Grybos et al., “Pole-Zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers”, Feb. 2008, 583-590, vol. 55, Issue 1.
http://www.orau.org/ptp/collectio/xraytubescollidge/MachlettCW250T.htm, 1999, 2 pages.
Hu, et al.; “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications”; 2010 American Chemical Society Jul. 22, 2010.
Hutchison, “Vertically aligned carbon nanotubes as a framework for microfabrication of high aspect ration mems,” 2008, pp. 1-50.
Jiang, Linquin et al., “Carbon nanotubes-metal nitride composites; a new class of nanocomposites with enhanced electrical properties,” J. Mater. Chem., 2005, pp. 260-266, vol. 15.
Li, Jun et al., “Bottom-up approach for carbon nanotube interconnects,” Applied Physics Letters, Apr. 14, 2003, pp. 2491-2493, vol. 82 No. 15.
Ma. R.Z., et al., “Processing and properties of carbon nanotubes-nano-SIC ceramic”, Journal of Materials Science 1998, pp. 5243-5246, vol. 33.
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages.
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989).
Najafi, et al.; “Radiation resistant polymer-carbon nanotube nanocomposite thin films”; Department of Materials Science and Engineering . . . Nov. 21, 2004.
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7.
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985).
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159.
Peigney, et al., “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, 2000, pp. 677-683, vol. 26.
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991).
Rankov et al., “A novel correlated double sampling poly-Si circuit for readout systems in large area x-ray sensors”, IEEE, May 2005, 728-731, vol. 1.
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989).
Satishkumar B.C., et al. “Synthesis of metal oxide nanorods using carbon nanotubes as templates,” Journal of Materials Chemistry, 2000, pp. 2115-2119, vol. 10.
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476.
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4.
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990).
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No, 5, Oct. 2005.
Tien-Hui Lin et al., “An investigation on the films used as the windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only.
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009, Krzysztof Kozaczek.
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010, Michael Lines.
U.S. Appl. No. 12/783,707, filed May 20, 2010, Steven D. Liddiard.
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010, Steven Liddiard.
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011, Robert C. Davis.
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011, Lei Pei.
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011, Dongbing Wang.
Vajtai et al.; Building Carbon Nanotubes and Their Smart Architectures; Smart Mater. Struct.; 2002; vol. 11; pp. 691-698.
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985).
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190.
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3.
Wang, et al.; “Highly oriented carbon nanotube papers made of aligned carbon nanotubes”; Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics; Published Jan. 31, 2008.
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991).
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006.
www.moxtek,com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages.
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages.
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages.
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages.
Xie, et al.; “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”; Center for Advanced Materials Technology; Apr. 20, 2005.
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III.
Zhang, et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; 2008 American Chemical Society.
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010, Dongbing Wang; office action dated Sep. 7, 2012.
PCT Application No. PCT/US2011/044168; filed Mar. 28, 2012; Kang Hyun II; report mailed Mar. 28, 2012.
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010, Steven Liddiard; notice of allowance dated Jun. 4, 2013.
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010, Dongbing Wang; notice of allowance dated Jul. 16, 2013.
Provisional Applications (1)
Number Date Country
61443822 Feb 2011 US