The present invention relates to a cold-molding process for loading a stent onto a stent delivery system. More specifically, the present invention relates to a method of loading a stent onto a balloon having creases that extend non-uniformly into the interstices of the stent without the use of a heating step.
A stent is commonly used alone or in conjunction with angioplasty to ensure patency through a patient's stenosed vessel. Stents overcome the natural tendency of the vessel walls of some patients to restenose after angioplasty. A stent is typically inserted into a vessel, positioned across a lesion, and then expanded to create or maintain a passageway through the vessel, thereby restoring near-normal blood flow through the vessel.
A variety of stents are known in the art, including self-expandable and expandable stents, as well as wire braid stents. One such stent is described, for example, in U.S. Pat. No. 4,733,665 to Palmaz. Expandable stents are typically delivered to treatment sites on delivery devices, such as balloon catheters or other expandable devices. Balloon catheters may comprise a balloon having a collapsed delivery configuration with wings that are wrapped and folded about the catheter. An expandable stent is then disposed in a collapsed delivery configuration about the balloon by compressing the stent onto the balloon. The stent and balloon assembly may then be delivered, using well-known percutaneous techniques, to a treatment site within the patient's vasculature, for example, within the patient's coronary arteries. Once the stent is positioned across a lesion at the treatment site, it is expanded to a deployed configuration by inflating the balloon. The stent contacts the vessel wall and maintains a path for blood flow through the vessel.
Significant difficulties have been encountered during stent delivery and deployment, including difficulty in maintaining the stent on the balloon and in achieving symmetrical expansion of the stent when deployed. Several techniques have been developed to more securely anchor the stent to the balloon and to ensure more symmetrical expansion. These include plastically deforming the stent so that it is crimped onto the balloon, and sizing the stent such that its internal diameter provides an interference fit with the outside diameter of the balloon catheter. Such techniques have several drawbacks, including less than optimal securement of the stent to the balloon. Consequently, the stent may become prematurely dislodged from the balloon during advancement of the stent delivery system to the treatment site.
Stent delivery systems utilizing a removable sheath disposed over the exterior surface of the stent, which is removed once the stent is positioned at the treatment site, have also been proposed, for example, in U.S. Pat. No. 5,690,644 to Yurek et al. Such systems may be used with or without retainer rings and are intended to protect the stent during delivery and to provide a smooth surface for easier passage through the patient's vasculature. However, the exterior sheath increases the crossing profile of the delivery system while decreasing flexibility, thereby decreasing the ability of the device to track through narrowed and tortuous anatomy.
U.S. Pat. No. 6,106,530 to Harada describes a stent delivery device comprising a balloon catheter having stoppers disposed proximal and distal of a balloon on to which a stent is affixed for delivery. The stoppers are separate from the balloon and maintain the stent's position in relation to the balloon during delivery. As with the removable sheaths discussed previously, the stoppers are expected to increase delivery profile and decrease flexibility of the stent/balloon system.
U.S. Pat. No. 6,110,180 to Foreman et al. provides a catheter with a balloon having pre-formed, outwardly-extending protrusions on the exterior of the balloon. A stent may be crimped onto the balloon such that the protrusions extend into the gaps of the stent, thereby securing the stent about the balloon for delivery. A drawback to this device is the added complexity involved in manufacturing a balloon with pre-formed protrusions. Additionally, if the protrusions are not formed integrally with the balloon, there is a risk that one or more of the protrusions may detach during deployment of the stent. The protrusions may also reduce flexibility in the delivery configuration, thereby reducing ability to track through tortuous anatomy.
U.S. Pat. No. 5,836,965 to Jendersee et al. describes a hot-molding process for encapsulating a stent on a delivery system. Encapsulation entails placement of the stent over a balloon, placement of a sheath over the stent on the balloon, and heating the pressurized balloon to cause it to expand around the stent within the sheath. The assembly is then cooled while under pressure to cause the balloon to adhere to the stent and to set the shape of the expanded balloon, thereby providing substantially uniform contact between the balloon and the stent. This method also provides a substantially uniform delivery profile along the surface of the encapsulated balloon/stent assembly.
A significant drawback of Jendersee's encapsulation method is the need to heat the balloon in order to achieve encapsulation. Such heating while under pressure may lead to localized plastic flows resulting in inhomogeneities along the length of the balloon including, for example, varying wall thickness. Varying wall thickness may, in turn, yield areas of decreased strength that are susceptible to rupture upon inflation of the balloon during deployment of the stent. Additionally, heating and cooling increases the complexity, time, and cost associated with affixing the stent to the balloon.
U.S. Pat. No. 5,976,181 to Whelan et al. provides an alternative technique for stent fixation involving the use of solvents to soften the balloon material. In this method, the stent is disposed over an evacuated and wrapped balloon while in its compact delivery configuration. A rigid tube is then placed over the stent and balloon assembly, and the balloon is pressurized while the balloon is softened by application of a solvent and/or heating. The rigid tube prevents the stent from expanding but allows the balloon to deform so that its surface projects through either or both of the interstices and ends of the stent. Softening under pressure molds the balloon material such that it takes a permanent set into the stent. Once pressure is removed, the stent is interlocked with the surface of the balloon, providing substantially uniform contact between the balloon and the stent and a substantially uniform delivery profile.
As with the technique in the Jendersee patent, the technique in the Whelan patent has several drawbacks. Chemically softening the balloon material under pressure is expected to introduce inhomogeneities along the length of the balloon, such as varying wall thickness, which again may lead to failure of the balloon. Additionally, chemical alteration of the balloon, via application of a solvent to the surface of the balloon, may unpredictably degrade the mechanical characteristics of the balloon, thereby making accurate and controlled deployment of a stent difficult. Softening also adds cost, complexity, and time to the manufacturing process.
In view of the drawbacks associated with previously known methods and apparatus for loading a stent onto a stent delivery system, it would be desirable to provide methods and apparatus that overcome those drawbacks.
It would be desirable to provide methods and apparatus for loading a stent onto a stent delivery system that enhance positional stability of the stent during delivery.
It would further be desirable to provide methods and apparatus for loading a stent onto a stent delivery system wherein the delivery system comprises a crossing profile and flexibility suitable for use in tortuous and narrowed anatomy.
It would still further be desirable to provide methods and apparatus for loading a stent onto a stent delivery system that provide a substantially symmetrical expansion of the stent at deployment.
It would also be desirable to provide methods and apparatus for loading a stent onto a stent delivery system that do not unpredictably modify the mechanical characteristics of the balloon during fixation of the stent to the balloon.
In view of the foregoing, it is an object of the present invention to provide methods and apparatus for loading a stent onto a stent delivery system and deployment that overcome drawbacks associated with previously known methods and apparatus.
It is an object to provide methods and apparatus for loading a stent onto a stent delivery system that enhance positional stability of the stent during delivery.
It is an object to provide methods and apparatus for loading a stent onto a stent delivery system wherein the delivery system comprises a crossing profile and flexibility suitable for use in tortuous and narrowed anatomy.
It is also an object to provide methods and apparatus for loading a stent onto a stent delivery system that provide a substantially symmetrical expansion of the stent at deployment.
It is an object to provide methods and apparatus for loading a stent onto a stent delivery system that do not unpredictably modify the mechanical characteristics of the balloon during fixation of the stent to the balloon.
These and other objects of the present invention are achieved by providing methods and apparatus for cold-molding a stent to the balloon of a stent delivery system so that the balloon extends non-uniformly into the interstices of the stent. In a preferred embodiment, the stent is a balloon expandable stent and is manufactured in a fully-expanded state or in an intermediate-expanded state (i.e., having a diameter smaller than its fully-expanded, deployed diameter, but larger than its compressed delivery diameter).
The stent is disposed on the balloon of a delivery catheter, and the balloon and stent are placed within an elastic crimping tube. The balloon/stent/crimping tube assembly is then placed in a crimping tool, and the balloon is inflated, preferably only partially. The crimping tool is actuated to compress the stent on the outside of the partially inflated balloon and to cause creases of the balloon to extend non-uniformly into the interstices of the stent. Crimping occurs at a substantially constant temperature, without the use of chemicals. The balloon is then deflated, and the elastic crimping tube is removed.
Optionally, pillows or bumpers may be formed in the proximal and/or distal regions of the balloon during crimping that, in conjunction with the non-uniform creases of the balloon, prevent longitudinal movement of the stent with respect to the balloon during intravascular delivery.
Furthermore, one or more additional, secondary crimping steps may be performed to achieve a smoother delivery profile, in which a semi-rigid crimping tube is disposed over the stent delivery system, and the assembly is again disposed within the crimping tool. During secondary crimping, the crimping tool is actuated to further compress the stent onto the unpressurized balloon. Secondary-crimping may alternatively be performed with the balloon partially or completely pressurized/inflated.
Apparatus of the present invention may be used with a variety of prior art stents, such as balloon expandable stents, and may include tubular slotted stents, connected stents, articulated stents, multiple connected or non-connected stents, and bi-stable stents. In addition to methods of production, methods of using the apparatus of the present invention are provided.
Further features of the invention, its nature and various advantages will be more apparent from the following detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout, and in which:
The present invention comprises methods and apparatus for cold-molding a stent onto a stent delivery system. More specifically, the present invention provides methods and apparatus for obtaining a balloon having creases that extend non-uniformly into the interstices of a stent loaded onto the exterior of the balloon, without the use of a heating or chemical process.
With reference to
In
Delivery catheter 12 preferably includes markers 17 disposed distal of and proximal to stent 20 that facilitate placement of stent 20 on balloon 14, and that facilitate positioning of stent delivery system 10 at a treatment site within a patient's vasculature. Markers 17 are preferably radiopaque and fabricated from a radiopaque material, such as platinum or gold. Catheter 12 preferably also comprises guide wire lumen 13 and inflation lumen 15, which is coupled to balloon 14. As described hereinbelow, during the cold-molding process of the present invention, proximal and/or distal pillows 19 optionally may be formed in balloon 14 during pressurized crimping. As with creases 16, pillows 19 act to reduce or prevent longitudinal movement of the stent on the balloon during intravascular delivery.
Balloon 14 is expandable by injection of a suitable medium, such as air or saline, via inflation lumen 15. Balloon 14 preferably expands stent 20 to a deployed configuration under application of pressure in the range of about 6-9 atm. Additionally, balloon 14 preferably has a rated burst pressure above 10 atm, and even more preferably between about 12-14 atm. Balloon 14 may be fabricated from a variety of materials, including Nylon, polyethylene terephalate, polyethylene, and polyether/polyamide block copolymers, such as PEBAX.
Additionally, balloon 14 may be fabricated from an elastomeric polyester block copolymer having an aromatic polyester hard segment and an aliphatic polyester soft segment, such as “Pelprene,” which is marketed by the Toyobo Corporation of Osaka, Japan. Balloon 14 also may be fabricated from a copolymer having a polybutylene terephalate hard segment and a long chain of polyether glycol soft segment, such as “Hytrel” from the DuPont Corporation of Wilmington, Del.
Illustrative stent 20 may be fabricated from a variety of materials, including polymers and metals, and may comprise any of a variety of prior art stents, such as balloon expandable stents, including tubular slotted stents, connected stents, articulated stents, multiple connected or non-connected stents, and bi-stable stents. Stent 20 also may include external coating C configured to retard restenosis or thrombus formation in the vessel region surrounding the stent. Alternatively, coating C may deliver therapeutic agents into-the-patient's blood stream or vessel wall.
Referring now to
As depicted in
As described hereinbelow, this step causes the balloon to bulge into the interstices of the stent, and in addition, to form pillows 19, proximal of, and distal to, the ends of the stent to retain the stent in place during transluminal delivery. At step 108, the balloon is depressurized, and the elastic sleeve is removed to complete the stent loading process.
If desired, a semi-rigid sleeve optionally may be disposed over the stent/balloon assembly, and one or more additional crimping steps may be performed, steps 109 and 110 of
Referring now to
With reference to
Referring to
As depicted in
In
The inflation medium is preferably delivered at a pressure in the range of about 6-8 atm. This pressure range is below the preferred rated burst pressure of balloon 14, which is above 10 atm, and even more preferably between about 12-14 atm, and thus ensures that the balloon does not puncture. The elasticity of crimping tube 30 allows the tube to expand slightly upon application of pressure, and to contract slightly during crimping. Tube 30 may be fabricated from any suitable elastic material, for example, a polymer, such as PEBAX. Elastic crimping tube 30 preferably has a hardness of between about 30 and 40 Shore Hardness, and more preferably a hardness of about 35 Shore Hardness.
With reference to
Balloon 14 is then depressurized, allowing crimping tool 40 to further compress stent 20 onto balloon 14, as seen in
Stent delivery system 10 is removed from elastic crimping tube 30 and crimping tool 40 (step 108,
In contrast to prior art techniques described hereinabove, crimping in accordance with the present invention occurs at a substantially constant temperature, without the use of chemicals. In the context of the present invention, substantially constant temperature during crimping should be understood to include minor fluctuations in the actual temperature due to frictional losses, etc.
Importantly, the system of the present invention is not actively heated to thermally remodel the balloon, as described in U.S. Pat. No. 5,836,965 to Jendersee et al. Likewise, no solvents are added to soften and mold the balloon, as described in U.S. Pat. No. 5,976,181 to Whelan et al. As described previously, both heating and solvents have significant potential drawbacks, including inhomogeneities along the length of the balloon, such as varying wall thickness. Varying wall thickness may yield areas of decreased strength that are susceptible to rupture upon inflation of the balloon during deployment of the stent. Additionally, heating and cooling, as well as addition of solvents, increases the complexity, time, and cost associated with affixing the stent to the balloon.
Theoretical bounds for the radial stress that may be applied to balloon 14 during crimping, while the balloon is pressurized, may be estimated by modeling balloon 14 as an idealized tube and assuming crimping tool 40 applies an evenly distributed, inwardly-directed radial stress, σcrimp. Stent 20 and elastic crimping tool 30, meanwhile, theoretically resist the crimping stress with an outwardly-directed radial stress, σresistance. Thus, the composite inwardly-directed radial stress, σin, applied to balloon 14 may be idealized as:
σin=σcrimp−σresistance (1)
Pressurization/inflation of balloon 14 similarly may be modeled as an evenly distributed, outwardly-directed radial stress, σo and it may be assumed that the rated burst pressure of balloon 14 is the yield stress of the balloon, σy. A stress balance provides:
σin−σout<σy (2)
Thus, a theoretical upper bound for the radial stress, σin, that may be applied to balloon 14 is:
σin<σy+σout (3)
A theoretical lower bound for σin also may be found by observing that, in order to compress stent 20 onto the exterior of balloon 14, crimping tool 40 must apply a radial stress, σcrimp, that is greater than the net stress provided by resistance of stent 20 and crimping tube 30, σresistance, and by the inflation of balloon 14, σout:
σcrimp>σout+σresistance (4)
Combining Equation (1) and (4) provides a lower bound for σin:
σin>σout (5)
Finally, combining Equations (3) and (5) provides a range for σin:
σout<σin<σy+σout (6)
As an example, assuming a burst pressure, σy, of 12 atm and a balloon pressurization, σout, of 8 atm, the balloon will theoretically withstand an inwardly-directed stress, σin, of up to 20 atm. Furthermore, in order to ensure that stent 20 is crimped onto balloon 14, σin must be greater than 8 atm. Thus, the inwardly-directed radial stress must be between 8 and 20 atm. Assuming, for example, a resistance stress, σresistance, of 2 atm, crimping tool 40 must apply a crimping stress, σcrimp, between 10 and 22 atm. As one of ordinary skill will readily understand, the actual radial stress applied should be further optimized within this range to provide a safety factor, optimal crimping, etc. Since balloon 14 is not in reality an idealized tube, stresses applied to the balloon will have a longitudinal component in addition to the radial component, which may be, for example, accounted for in the safety factor.
With reference now to
Referring to
With stent delivery system 10 disposed within semi-rigid tube 50 and crimping tool 40, tool 40 is actuated to compress individual struts 21 against balloon 14 and to give delivery system 10 the substantially cylindrical delivery profile of
Referring now to
In
Stent 20 remains in place within vessel V in the deployed configuration in order to reduce restenosis and recoil of the vessel. Stent 20 also may comprise external coating C configured to retard restenosis or thrombus formation around the stent. Alternatively, coating C may deliver therapeutic agents into the patient's blood stream or a portion of the vessel wall adjacent to the stent.
Although preferred illustrative embodiments of the present invention are described hereinabove, it will be evident to those skilled in the art that various changes and modifications may be made therein without departing from the invention.
For example, stent delivery system 10 may be produced without using elastic crimping tube 30. In this case, the stent/balloon assembly would be loaded directly into crimping tool 40, which would limit expansion of balloon 14 during pressurization. Likewise, semi-rigid crimping tube 50 may be eliminated from the secondary crimping procedure. If crimping tubes are not used, crimping tool 40 preferably applies an inwardly-directed stress that is substantially evenly distributed about the circumference of the stent/balloon assembly.
Additionally, balloon 14 may be depressurized prior to crimping stent 20 onto the balloon. This may be particularly beneficial when crimping long stents, for example, stents longer than about 50 mm. Pressurization of balloon 14 may cause the balloon to increase in longitudinal length. When crimping a long stent 20 onto a correspondingly long balloon 14, this increase in balloon length is expected to be more significant, for example, greater than about 1 mm.
If stent 20 is crimped onto balloon 14 while the balloon is pressured, significant stresses may be encountered along creases 16 after balloon 14 is depressurized, due to contraction of the balloon back to its shorter, un-inflated longitudinal length. These stresses may, in turn, lead to pinhole perforations of balloon 14. Thus, since pressurization of balloon 14 causes the balloon to extend at least partially within interstices 22 of stent 20 in a non-uniform manner, as seen in
It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 09/957,216, filed Sep. 19, 2001, now U.S. Pat. No. 6,863,683, the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3687135 | Stroganov et al. | Aug 1972 | A |
3839743 | Schwarcz | Oct 1974 | A |
3900632 | Robinson | Aug 1975 | A |
4104410 | Malecki | Aug 1978 | A |
4110497 | Hoel | Aug 1978 | A |
4321711 | Mano | Mar 1982 | A |
4346028 | Griffith | Aug 1982 | A |
4596574 | Urist | Jun 1986 | A |
4599085 | Riess et al. | Jul 1986 | A |
4612009 | Drobnik et al. | Sep 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4656083 | Hoffman et al. | Apr 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722335 | Vilasi | Feb 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4743252 | Martin, Jr. et al. | May 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816339 | Tu et al. | Mar 1989 | A |
4818559 | Hama et al. | Apr 1989 | A |
4850999 | Planck | Jul 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4902289 | Yannas | Feb 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4990151 | Wallsten | Feb 1991 | A |
4994298 | Yasuda | Feb 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5104410 | Chowdhary | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5123917 | Lee | Jun 1992 | A |
5147385 | Beck et al. | Sep 1992 | A |
5156623 | Hakamatsuka et al. | Oct 1992 | A |
5163951 | Pinchuk et al. | Nov 1992 | A |
5163952 | Froix | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5192311 | King et al. | Mar 1993 | A |
5197977 | Hoffman, Jr. et al. | Mar 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5279594 | Jackson | Jan 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292321 | Lee | Mar 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5383925 | Schmitt | Jan 1995 | A |
5385580 | Schmitt | Jan 1995 | A |
5389106 | Tower | Feb 1995 | A |
5399666 | Ford | Mar 1995 | A |
5423885 | Williams | Jun 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443458 | Eury et al. | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5502158 | Sinclair et al. | Mar 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5514154 | Lau et al. | May 1996 | A |
5514379 | Weissieder et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5545408 | Trigg et al. | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5554120 | Chen et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5569295 | Lam | Oct 1996 | A |
5578046 | Liu et al. | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5591199 | Porter et al. | Jan 1997 | A |
5591607 | Gryaznov et al. | Jan 1997 | A |
5593403 | Buscemi | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5599922 | Gryaznov et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5628784 | Strecker | May 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5631135 | Gryaznov et al. | May 1997 | A |
5632771 | Boatman et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5667796 | Otten | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5690644 | Yurek et al. | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5707385 | Williams | Jan 1998 | A |
5711763 | Nonami et al. | Jan 1998 | A |
5716393 | Lindenberg et al. | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5725549 | Lam | Mar 1998 | A |
5726297 | Gryaznov et al. | Mar 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728751 | Patnaik | Mar 1998 | A |
5733326 | Tomonto et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733564 | Lehtinen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741881 | Patnaik | Apr 1998 | A |
5756457 | Wang et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5759474 | Rupp et al. | Jun 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5766204 | Porter et al. | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5776140 | Cottone | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5782839 | Hart et al. | Jul 1998 | A |
5792144 | Fischell et al. | Aug 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830461 | Billiar | Nov 1998 | A |
5830879 | Isner | Nov 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5834582 | Sinclair et al. | Nov 1998 | A |
5836962 | Gianotti | Nov 1998 | A |
5836965 | Jendersee et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5837835 | Gryaznov et al. | Nov 1998 | A |
5840083 | Braach-Maksvytis | Nov 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5853408 | Muni | Dec 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5855612 | Ohthuki et al. | Jan 1999 | A |
5855618 | Patnaik et al. | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5860966 | Tower | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5871468 | Kramer et al. | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874101 | Zhong et al. | Feb 1999 | A |
5874109 | Ducheyne et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5876743 | Ibsen et al. | Mar 1999 | A |
5877263 | Patnaik et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5893852 | Morales | Apr 1999 | A |
5897955 | Drumheller | Apr 1999 | A |
5906759 | Richter | May 1999 | A |
5913871 | Werneth et al. | Jun 1999 | A |
5914182 | Drumheller | Jun 1999 | A |
5916870 | Lee et al. | Jun 1999 | A |
5920975 | Morales | Jul 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5948428 | Lee et al. | Sep 1999 | A |
5954744 | Phan et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5965720 | Gryaznov et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5976181 | Whelan et al. | Nov 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980530 | Willard et al. | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
5997468 | Wolff et al. | Dec 1999 | A |
6010445 | Armini et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6048964 | Lee et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6063092 | Shin | May 2000 | A |
6066156 | Yan | May 2000 | A |
6071266 | Kelley | Jun 2000 | A |
6074381 | Dinh et al. | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6080177 | Igaki et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6082990 | Jackson et al. | Jul 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6093463 | Thakrar | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096525 | Patnaik | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6103230 | Billiar et al. | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
6107416 | Patnaik et al. | Aug 2000 | A |
6110180 | Foreman et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6125523 | Brown et al. | Oct 2000 | A |
6127173 | Eckstein et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6129928 | Sarangapani et al. | Oct 2000 | A |
6141855 | Morales | Nov 2000 | A |
6150630 | Perry et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6159227 | Di Caprio et al. | Dec 2000 | A |
6159951 | Karpeisky et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6169170 | Gryaznov et al. | Jan 2001 | B1 |
6171609 | Kunz | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6187045 | Fehring et al. | Feb 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6228845 | Donovan et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245076 | Yan | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6248344 | Yianen et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251142 | Bernacca et al. | Jun 2001 | B1 |
6264683 | Stack et al. | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6280412 | Pederson et al. | Aug 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6284333 | Wang et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6296655 | Gaudoin et al. | Oct 2001 | B1 |
6303901 | Perry et al. | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6352547 | Brown et al. | Mar 2002 | B1 |
6375660 | Fischell et al. | Apr 2002 | B1 |
6375826 | Wang et al. | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6409761 | Jang | Jun 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6461632 | Gogolewski | Oct 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6479565 | Stanley | Nov 2002 | B1 |
6481262 | Ching et al. | Nov 2002 | B2 |
6485512 | Cheng | Nov 2002 | B1 |
6492615 | Flanagan | Dec 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6510722 | Ching et al. | Jan 2003 | B1 |
6511748 | Barrows | Jan 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6537589 | Chae et al. | Mar 2003 | B1 |
6539607 | Fehring et al. | Apr 2003 | B1 |
6540777 | Stenzel | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6554854 | Flanagan | Apr 2003 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6574851 | Mirizzi | Jun 2003 | B1 |
6579305 | Lashinski | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6592617 | Thompson | Jul 2003 | B2 |
6613072 | Lau et al. | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6635269 | Jennissen | Oct 2003 | B1 |
6645243 | Vallana et al. | Nov 2003 | B2 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6664335 | Krishnan | Dec 2003 | B2 |
6666214 | Canham | Dec 2003 | B2 |
6667049 | Janas et al. | Dec 2003 | B2 |
6669723 | Killion et al. | Dec 2003 | B2 |
6676697 | Richter | Jan 2004 | B1 |
6679980 | Andreacchi | Jan 2004 | B1 |
6689375 | Wahlig et al. | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6706273 | Roessier | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6720402 | Langer et al. | Apr 2004 | B2 |
6745445 | Spilka | Jun 2004 | B2 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6764504 | Wang et al. | Jul 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6769161 | Brown et al. | Aug 2004 | B2 |
6818063 | Kerrigan | Nov 2004 | B1 |
6846323 | Yip et al. | Jan 2005 | B2 |
6863683 | Schwager et al. | Mar 2005 | B2 |
7008446 | Amis et al. | Mar 2006 | B1 |
7347869 | Hojeibane et al. | Mar 2008 | B2 |
7470281 | Tedeschi | Dec 2008 | B2 |
7563400 | Wilson et al. | Jul 2009 | B2 |
7722663 | Austin | May 2010 | B1 |
7731740 | LaFont et al. | Jun 2010 | B2 |
7763198 | Knott et al. | Jul 2010 | B2 |
7776926 | Hossainy et al. | Aug 2010 | B1 |
7947207 | Mcniven et al. | May 2011 | B2 |
8236039 | Mackiewicz et al. | Aug 2012 | B2 |
8309023 | Ramzipoor | Nov 2012 | B2 |
8333000 | Huang et al. | Dec 2012 | B2 |
8925177 | Huang et al. | Jan 2015 | B2 |
20010001128 | Holman et al. | May 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20020002399 | Huxel et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020004101 | Ding et al. | Jan 2002 | A1 |
20020007207 | Shin et al. | Jan 2002 | A1 |
20020035774 | Austin | Mar 2002 | A1 |
20020062148 | Hart | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020068967 | Drasler et al. | Jun 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020116050 | Kocur | Aug 2002 | A1 |
20020138127 | Stiger et al. | Sep 2002 | A1 |
20020138133 | Lenz et al. | Sep 2002 | A1 |
20020161114 | Gunatillake et al. | Oct 2002 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030055482 | Schwager et al. | Mar 2003 | A1 |
20030056360 | Brown et al. | Mar 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030097172 | Shalev et al. | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030105530 | Pirhonen et al. | Jun 2003 | A1 |
20030171053 | Sanders | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030208227 | Thomas | Nov 2003 | A1 |
20030208259 | Penhasi | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030212450 | Schlick | Nov 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20030236565 | DiMatteo et al. | Dec 2003 | A1 |
20040073155 | Laufer et al. | Apr 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098095 | Burnside et al. | May 2004 | A1 |
20040111149 | Stinson | Jun 2004 | A1 |
20040127970 | Saunders et al. | Jul 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040138731 | Johnson | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040167610 | Fleming, III | Aug 2004 | A1 |
20040199246 | Chu et al. | Oct 2004 | A1 |
20050096735 | Hojeibane et al. | May 2005 | A1 |
20050118344 | Pacetti | Jun 2005 | A1 |
20050143752 | Schwager et al. | Jun 2005 | A1 |
20050154450 | Larson et al. | Jul 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050267408 | Grandt et al. | Dec 2005 | A1 |
20050283962 | Boudjemline | Dec 2005 | A1 |
20060004328 | Joergensen et al. | Jan 2006 | A1 |
20060020285 | Niermann | Jan 2006 | A1 |
20060030923 | Gunderson | Feb 2006 | A1 |
20060041271 | Bosma et al. | Feb 2006 | A1 |
20060047336 | Gale et al. | Mar 2006 | A1 |
20060058863 | LaFont et al. | Mar 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060229712 | Wilson et al. | Oct 2006 | A1 |
20060287708 | Ricci et al. | Dec 2006 | A1 |
20060288561 | Roach et al. | Dec 2006 | A1 |
20070006441 | Mcniven et al. | Jan 2007 | A1 |
20070204455 | Knott et al. | Sep 2007 | A1 |
20070208370 | Hauser et al. | Sep 2007 | A1 |
20070255388 | Rudakov et al. | Nov 2007 | A1 |
20080097570 | Thornton et al. | Apr 2008 | A1 |
20080208118 | Goldman | Aug 2008 | A1 |
20090076448 | Consigny et al. | Mar 2009 | A1 |
20090105747 | Chanduszko et al. | Apr 2009 | A1 |
20090187210 | Mackiewicz | Jul 2009 | A1 |
20090187211 | Mackiewicz | Jul 2009 | A1 |
20090292347 | Asmus et al. | Nov 2009 | A1 |
20100152765 | Haley | Jun 2010 | A1 |
20110106234 | Grandt | May 2011 | A1 |
20110257675 | Mackiewicz | Oct 2011 | A1 |
20120035704 | Grandt | Feb 2012 | A1 |
20120259402 | Grandt | Oct 2012 | A1 |
20120283814 | Huang et al. | Nov 2012 | A1 |
20130239396 | Schwager et al. | Sep 2013 | A1 |
20130269168 | Huang et al. | Oct 2013 | A1 |
20150074975 | Huang et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
44 07 079 | Sep 1994 | DE |
19509464 | Jun 1996 | DE |
197 31 021 | Jan 1999 | DE |
198 56 983 | Dec 1999 | DE |
0 108 171 | May 1984 | EP |
0 144 534 | Jun 1985 | EP |
0 364 787 | Apr 1990 | EP |
0 397 500 | Nov 1990 | EP |
0 464 755 | Jan 1992 | EP |
0 493 788 | Jul 1992 | EP |
0 554 082 | Aug 1993 | EP |
0 578 998 | Jan 1994 | EP |
0 604 022 | Jun 1994 | EP |
0 621 017 | Oct 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 665 023 | Aug 1995 | EP |
0 709 068 | May 1996 | EP |
0716836 | Jun 1996 | EP |
0 787 020 | Aug 1997 | EP |
0935952 | Aug 1999 | EP |
0 970 711 | Jan 2000 | EP |
1 000 591 | May 2000 | EP |
1 226 798 | Jul 2002 | EP |
1 295 570 | Mar 2003 | EP |
1637177 | Mar 2006 | EP |
2 029 052 | Mar 2009 | EP |
2196174 | Jun 2010 | EP |
2322118 | May 2011 | EP |
2 247 696 | Mar 1992 | GB |
WO 8903232 | Apr 1989 | WO |
WO 9001969 | Mar 1990 | WO |
WO 9004982 | May 1990 | WO |
WO 9006094 | Jun 1990 | WO |
WO9117744 | Nov 1991 | WO |
WO9117789 | Nov 1991 | WO |
WO 9210218 | Jun 1992 | WO |
WO 9306792 | Apr 1993 | WO |
WO 9421196 | Sep 1994 | WO |
WO 9529647 | Nov 1995 | WO |
WO 9804415 | Feb 1998 | WO |
WO 9903515 | Jan 1999 | WO |
WO 9916382 | Apr 1999 | WO |
WO 9916386 | Apr 1999 | WO |
WO 9942147 | Aug 1999 | WO |
WO 9955255 | Nov 1999 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0078249 | Dec 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0105462 | Jan 2001 | WO |
WO 0121110 | Mar 2001 | WO |
WO 02102283 | Dec 2002 | WO |
WO 2004023985 | Mar 2004 | WO |
WO 2004047681 | Jun 2004 | WO |
WO 2005053937 | Jun 2005 | WO |
WO 2006110861 | Oct 2006 | WO |
WO 2007061927 | May 2007 | WO |
WO 2008024491 | Feb 2008 | WO |
WO 2008024621 | Feb 2008 | WO |
WO 2008033621 | Mar 2008 | WO |
WO 2009066330 | May 2009 | WO |
WO 2009086205 | Jul 2009 | WO |
WO 2010066446 | Jun 2010 | WO |
WO 2011050979 | May 2011 | WO |
Entry |
---|
U.S. Appl. No, 09/957,216, Jun. 10, 2003, Restriction Requirement. |
U.S. Appl. No. 09/957,216, Sep. 26, 2003, Office Action. |
U.S. Appl. No. 09/957,216, Jun. 14, 2004, Office Action. |
U.S. Appl. No. 09/957,216, Feb. 16, 2005, Issue Notification. |
U.S. Appl. No. 13/133,930, Mar. 27, 2013, Office Action. |
U.S. Appl. No. 12/338,980, Jul. 18, 2012, Issue Notification. |
U.S. Appl. No. 12/609,513, Aug. 24, 2012, Office Action. |
U.S. Appl. No. 61/016,266, filed Dec. 21, 2007, Mackiewicz. |
U.S. Appl. No. 61/138,455, filed Dec. 17, 2008, Haley. |
U.S. Appl. No. 13/502,084, filed Oct. 29, 2010, Grandt. |
U.S. Appl. No. 12/338,980, Aug. 2, 2010, Office Action. |
U.S. Appl. No. 12/338,980, Oct. 27, 2010, Office Action. |
U.S. Appl. No. 12/338,980, Mar. 1, 2011, Office Action. |
U.S. Appl. No. 12/338,980, Apr. 3, 2012, Notice of Allowance. |
U.S. Appl. No. 12/338,980, May 25, 2012, Notice of Allowance. |
U.S. Appl. No. 12/338,981, Aug. 2, 2010, Office Action. |
U.S. Appl. No. 12/338,981, Oct. 27, 2010, Office Action. |
U.S. Appl. No. 12/338,981, Mar. 2, 2011, Office Action. |
U.S. Appl. No. 12/537,097, Dec. 15, 2011, Office Action. |
U.S. Appl. No. 12/537,097, Feb. 3, 2012, Office Action. |
U.S. Appl. No. 12/609,513, Mar. 12, 2012, Office Action. |
U.S. Appl. No. 13/151,893, Jan. 27, 2012, Office Action. |
U.S. Appl. No. 13/151,893, Apr. 3, 2012, Office Action. |
U.S. Appl. No. 12/609,513, Feb. 1, 2013, Office Action. |
U.S. Appl. No. 12/537,097, Jun. 27, 2012, Office Action. |
U.S. Appl. No. 09/957,216, Jan. 31, 2005, Issue Fee payment. |
U.S. Appl. No. 09/957,216, Nov. 4, 2004, Notice of Allowance. |
U.S. Appl. No. 09/957,216, Sep. 17, 2004, Response to Non-Final Office Action. |
U.S. Appl. No. 09/957,216, Jun. 14, 2004, Non-Final Office Action. |
U.S. Appl. No. 09/957,216, Mar. 8, 2004, Response to Non-Final Office Action. |
U.S. Appl. No. 09/957,216, Sep. 26, 2003, Non-Final Office Action. |
U.S. Appl. No. 09/957,216, Aug. 4, 2003, Response to Restriction Requirement. |
U.S. Appl. No. 09/957,216, Jun. 10, 2003, Restriction Requirement. |
U.S. Appl. No. 11/471,375, Nov. 14, 2012, Issue Fee payment. |
U.S. Appl. No. 11/471,375, Aug. 17, 2012, Notice of Allowance. |
U.S. Appl. No. 11/471,375, Jun. 12, 2012, Response to Final Office Action. |
U.S. Appl. No. 11/471,375, Apr. 13, 2012, Final Office Action. |
U.S. Appl. No. 11/471,375, Mar. 8, 2012, Response to Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Dec. 8, 2011, Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Jun. 16, 2011, Response to Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Mar. 16, 2011, Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Jan. 18, 2011, Amendment and Request for Continued Examination (RCE). |
U.S. Appl. No. 11/471,375, Sep. 15, 2010, Final Office Action. |
U.S. Appl. No. 11/471,375, Aug. 20, 2010, Response to Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Aug. 5, 2010, Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Mar. 29, 2010, Response to Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Feb. 2, 2010, Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Oct. 6, 2009, Response to Non-Final Office Action. |
U.S. Appl. No. 11/471,375, Jul. 6, 2009, Non-Final Office Action. |
U.S. Appl. No. 13/551,538, Nov. 13, 2013, Final Office Action. |
U.S. Appl. No. 13/551,538, Sep. 10, 2013, Response to Non-Final Office Action. |
U.S. Appl. No. 13/551,538, Jun. 10, 2013, Non-Final Office Action. |
U.S. Appl. No. 13/779,636, Dec. 18, 2013, Non-Final Office Action. |
Anonymous, “Bioabsorbable stent mounted on a catheter having optical coherence tomography capabilities”, Research Disclosure, pp. 1159-1162, (2004). |
Ansari, “End-to-end tubal anastomosis using an absorbable stent”, Fertility and Sterility, 32(2):197-201 (1979). |
Ansari, “Tubal Reanastomosis Using Absorbable Stent”, International Journal of Fertility, 23(4):242-243 (1978). |
Bull, “Parylene Coating for Medical Applications”, Medical Product Manufacturing News, 18:1 (1993). |
Casper, et al., “Fiber-Reinforced Absorbable Composite for Orthopedic Surgery”, Polymeric Materials Science and Engineering, 53:497-501 (1985). |
Detweiler, et al., “Gastrointestinal Sutureless Anastomosis Using Fibrin Glue: Reinforcement of the Sliding Absorbable Intraluminal Nontoxic Stent and Development of a Stent Placement Device”, Journal of Investigative Surgery, 9(2):111-130 (1996). |
Detweiler, et al., “Sliding, Absorbable, Reinforced Ring and an Axially Driven Stent Placement Device for Sutureless Fibrin Glue Gastrointestinal Anastomisis”, Journal of Investigative Surgery, 9(6):495-504 (1996). |
Detweiler, et al., “Sutureless Anastomosis of the Small Intestine and the Colon in Pigs Using an Absorbable Intraluminal Stent and Fibrin Glue”, Journal of Investigative Surgery, 8(2):129-140 (1995). |
Detweiler, et al., “Sutureless Cholecystojejunostomu in Pigs Using an Absorbable Intraluminal Stent and Fibrin Glue”, Journal of Investigative Surgery, 9(1):13-26 (1996). |
Devanathan, et al., “Polymeric Conformal Coatings for Implantable Electronic Devices”, IEEE Transactions on Biomedical Engineering, BME-27(11):671-675 (1980). |
Elbert, et al., “Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering”, Biomacromolecules, 2(2):430-441 (2001). |
Hahn, et al., “Bioeompatibility of Glow-Discharge-Polymerized Films and Vacuum-Deposited Parylene”, J Applied Polymer Sci, 38:55-64 (1984). |
Hahn, et al., “Glow Discharge Polymers as Coatings for Implanted Devices”, ISA, pp. 109-111 (1981). |
He, et al., “Assessment of Tissue Blood Flow Following Small Artery Welding with a Intraluminal Dissolvable Stent”, Microsurgery, 19(3):148-152 (1999). |
Kelley, et al., “Totally Resorbable High-Strength Composite Material”, Advances in Biomedical Polymers, 35:75-85 (1987). |
Kubies, et al., “Microdomain Structure in polylactide-block-poly(ethylene oxide) copolymer films”, Biomaterials, 21(5):529-536 (2000). |
Kutryk, et al., “Coronary Stenting: Current Perspectives”, A companion to the Handbook of Coronary Stents, pp. 1-16 (1999). |
Martin, et al., “Enhancing the biological activity of immobilized osteopontin using a type-1 collagen affinity coating”, J. Biomed. Mater Res, 70A:10-19 (2004). |
Mauduit, et al., “Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s”, J. Biomed. Mater. Res., 30(2):201-207 (1996). |
Middleton, et al., “Synthetic biodegradable polymers as orthopedic devices”, Biomaterials, 21(23):2335-2346 (2000). |
Muller, et al., “Advances in Coronary Angioplasty: Endovascular Stents”, Coron. Arter. Dis., 1(4):438-448 (1990). |
Nichols, et al., “Electrical Insulation of Implantable Devices by Composite Polymer Coatings”, ISA Transactions, 26(4):15-18 (1987). |
Peuster, et al., “A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits”, Heart, 86(5):563-569 (2001). |
Pietrzak, et al., “Bioabsorbable Fixation Devices: Status for the Craniomaxillofacial Surgeon”, J. Craniofaxial Surg., 8(2):92-96 (1997). |
Pietrzak, et al., “Bioresorbable implants—practical considerations”, Bone, 19(1): 109S-119S (Supplement Jul. 1996). |
Redman, “Clinical Experience with Vasovasostomy Utilizing Absorbable Intravasal Stent”, Urology, 20(1):59-61 (1982). |
Rust, et al., “The Effect of Absorbable Stenting on Postoperative Stenosis of the Surgically Enlarged Maxillary Sinus Ostia in a Rabbit Animal Model”, Archives of Otolaryngology, 122(12):1395-1397 (1996). |
Schatz, “A View of Vascular Stants”, Circulation, 79(2):445-457 (1989). |
Schmidt, et al., “Long-Term Implants of Parylene-C Coated Microelectrodes”, Med & Biol Eng & Comp, 26(1):96-101 (1988). |
Spagnuolo, et al., “Gas 1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis”, Blood, 103(8):3005-3012 (2004). |
Tamai, et al., “Initial and 6-Month Results of Biodegradable Poly-I-Lactic Acid Coronary Stents in Humans”, Circulation, 102(4):399-404 (2000). |
Tsuji, et al., “Biodegradable Polymeric Stents”, Current Interventional Cardiology Reports, 3(1):10-17 (2001). |
Volkel, et al., “Targeting of immunoliposomes to endothelial cells using a single-chain Fv fragment directed against human endoglin(CD105)”, Biochimica et Biophysica Acta, 1663(1-2):158-166 (2004). |
Von Recum, et al., “Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release”, Biomaterials, 16(6):441-445 (1995). |
Yau, et al., “Modern Size-Exclusion Liquid Chromatography”, Wiley-Interscience Publication, Table of Contents IX-XV (1979). |
European Search Report for EP Application No. 07809699.7, dated Jun. 12, 2004. |
International Search Report for PCT/US2007/014331, dated Dec. 28, 2007. |
U.S. Appl. No. 13/551,538, Apr. 15, 2014 Non-Final Office Action. |
U.S. Appl. No. 13/779,636, Nov. 24, 2014 Amendment and Request for Continued. |
U.S. Appl. No. 13/779,636, Dec. 29, 2014 Non-Final Office Action. |
U.S. Appl. No. 13/779,636, Mar. 30, 2015 Response to Non-Final Office Action. |
U.S. Appl. No. 13/779,636, Jun. 5, 2015 Final Office Action. |
U.S. Appl. No. 13/551,538, Jun. 19, 2014 Applicant Initiated Interview Summary. |
U.S. Appl. No. 13/551,538, Sep. 19, 2014 Notice of Allowance. |
U.S. Appl. No. 13/551,538, Nov. 24, 2014 Issue Fee Payment. |
U.S. Appl. No. 14/552,066, Jul. 29, 2015 Non-Final Office Action. |
European Opposition dated Feb. 7, 2015 against European Patent EP 2066263. |
Number | Date | Country | |
---|---|---|---|
20050143752 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09957216 | Sep 2001 | US |
Child | 11064692 | US |