Gasoline Direct-injection Compression-Ignition (GDCI) is an engine operating mode that shows promise in improving engine emissions performance and efficiency. GDCI provides low-temperature combustion for high efficiency, low NOx, and low particulate emissions over the complete engine operating range. Low-temperature combustion of gasoline may be achieved using multiple late injection (MLI), intake boost, and moderate EGR. GDCI engine operation is described in detail in U.S. Patent Application Publication 2013/0213349A1, the entire contents of which are hereby incorporated herein by reference.
The autoignition properties of gasoline fuels require higher in-cylinder pressure and temperature compared to diesel fuel to achieve compression ignition. This is especially a concern when cold starting an engine.
As a result of the autoignition properties of gasoline fuels, improvements in the ability to cold start a GDCI engine are desired.
In a first aspect of the invention, a method for starting a GDCI engine is provided. The method includes cranking the engine, conditioning intake air provided at the intake port of an engine cylinder to raise the temperature and/or pressure of air in the cylinder, and controlling valve timing to allow compression of air in the cylinder to additionally increase the temperature and/or pressure in the cylinder. When in-cylinder conditions are sufficient to support compression ignition of a gasoline and air mixture within the cylinder, fueling of that cylinder is commenced.
In a second aspect of the invention, a system for starting a GDCI engine is provided. The system includes means for cranking the engine, means for increasing the temperature and/or pressure of intake air provided at the intake port of an engine cylinder, means for controlling the timing of opening and closing of engine intake and exhaust valves, and means for injecting fuel into the cylinder. The system also includes a controller configured to enable engine control hardware to perform the method steps according to the first aspect of the invention.
As used herein, the term “cold start” refers to starting the engine when the temperature of the components of the engine and the fluids within the engine are below their respective temperatures when the engine has been operating long enough to reach thermal equilibrium at temperatures above ambient temperature. A “cold start event” refers to the act of performing a cold start of the engine, including the time when an engine start is predicted but before the actual initiation of engine cranking, the time when the engine is cranked, and the transition to a running state where the cranking means is disengaged and the engine rotational speed remains above a minimum threshold.
The engine control system 10 may also include a controller 20, such as an engine control module (ECM), configured to determine a crank angle and a crank speed based on the crank signal 18. The controller 20 may include a processor 22 or other control circuitry as should be evident to those in the art. The controller 20 or processor 22 may include memory, including non-volatile memory, such as electrically erasable programmable read-only memory (EEPROM) for storing one or more routines, thresholds and captured data. The one or more routines may be executed by the processor 22 to perform steps for determining a prior engine control parameter and scheduling a future engine control signal such that a future engine control parameter corresponds to a desired engine control parameter.
Continuing to refer to
The engine control system 10 includes one or more engine control devices operable to control an engine control parameter in response to an engine control signal, wherein the engine control parameter influences when autoignition occurs. One example of an engine control device is a fuel injector 30 adapted to dispense fuel 68 in accordance with an injector control signal 32 output by an injector driver 34 in response to an injection signal 36 output by the processor 22. The fuel injection profile may include a plurality of injection events. Controllable aspects of the fuel injection profile may include how quickly or slowly the fuel injector 30 is turned on and/or turned off, a fuel rate of fuel 68 dispensed by the fuel injector 30 while the fuel injector 30 is on, or the number of fuel injections dispensed to achieve a combustion event. Varying one or more of these aspects of the fuel injections profile may be effective to control autoignition.
The exemplary engine control system 10 includes an exhaust gas recirculation (EGR) valve 42. While not explicitly shown, it is understood by those familiar with the art of engine control that the EGR valve regulates a rate or amount of engine exhaust gas that is mixed with fresh air being supplied to the engine to dilute the percentage of oxygen and/or nitrogen in the air mixture received into the combustion chamber 28. The controller 20 may include an EGR driver 44 that outputs an EGR control signal 46 to control the position of the EGR valve 42. The EGR driver may, for example, pulse width modulate a voltage to generate an EGR control signal 46 effective to control the EGR valve to regulate the flow rate of exhaust gases received by the engine 12.
Referring again to
Still with reference to
Although not specifically indicated in
Continuing to refer to
Still with reference to
It will be appreciated from the foregoing description of
Referring to
Continuing to refer to
The embodiment depicted in
Continuing to refer to
Coolant communication between the first coolant loop 202 and the second coolant loop 204 is enabled by the three-way coolant valve 224 and a conduit 240. Control of the four-way coolant valve 216 and the three-way coolant valve 224 may be employed to achieve desired temperature conditioning of intake air. Operation of a similar system is disclosed in U.S. patent application Ser. No. 13/469,404 titled “SYSTEM AND METHOD FOR CONDITIONING INTAKE AIR TO AN INTERNAL COMBUSTION ENGINE” filed May 11, 2012, the entire disclosure of which is hereby incorporated herein by reference.
The GDCI combustion process has demonstrated very high thermal efficiency and very low NOx and particulate matter emissions. The GDCI combustion process includes injecting gasoline fuel into the cylinder with appropriate injection timing to create a stratified mixture with varying propensity for autoignition. Heat and pressure from the compression process produces autoignition of the air/fuel mixture in the cylinder with burn duration long enough to keep combustion noise low, but with combustion fast enough to achieve high expansion ratio for all fuel that is burned.
A particular challenge in GDCI combustion is cold starting the engine. Gasoline fuel has characteristics such that it is resistant to autoignition. As a result, the in-cylinder pressure and temperature for gasoline need to be relatively high compared to diesel fuel to achieve compression ignition. In order to achieve robust combustion in a GDCI engine that has not yet warmed up, a cold start strategy and associated hardware are required.
A method for starting a GDCI engine includes cranking the engine 12. Engine cranking may be achieved by conventional means, such a starter motor or a belt-alternator-starter (BAS) system.
The method for starting the GDCI engine 12 further includes conditioning the intake air provided at the intake port of the cylinder to raise the temperature of the air in the cylinder. Conditioning the intake air may be achieved by providing supplemental heat, for example by using an electric heater 80 disposed in an intake manifold of the engine. Advantageously, the electric heater 80 may be energized to preheat the heater 80 prior to cranking the engine 12 when the controller 20 determines that a cold start may occur soon. For example, a signal indicating a vehicle door unlocking, opening, or closing, or a signal indicating the presence of an occupant in the vehicle driver seat, may trigger preheating the electric heater 80.
Advantageously, in a multiple cylinder engine, each of the cylinders 64 may be provided with an individual heater 80, with each heater 80 individually controllable to provide an appropriate amount of heat to the intake air to its corresponding cylinder 64. By way of non-limiting example, a four cylinder engine may be equipped with four individual heaters 80, with the heaters 80 configured so that each heater 80 heats intake air to one of the four engine cylinders 64. Mounting means for the heaters 80 is advantageously provided downstream of the charge air cooler 152 and upstream of the intake port of the cylinder 64. Combustion quality may be monitored in each individual cylinder 64, for example by combustion detection means 24. Each individual heater 80 may be controlled based on the combustion quality in its corresponding cylinder 64. Control of each heater 80 may be achieved, for example, by using solid state relays (not shown) to control current through each heater 80. The heat delivered by each heater 80 may be controlled, for example, by pulse width modulation of the current through the heater 80.
Application of electrical power to each heater 80 may advantageously be controlled based on various times and/or events within the cold start event. For example, the power applied to the heater 80 while preheating the heater 80 may be controlled to provide a controlled ramp-up to achieve rapid heating while avoiding thermal shock. Application of power to the heater 80 may be suspended for a time interval corresponding to the maximum current draw of the cranking means in order to allow more rapid increase in engine rotational speed. Electrical power to the heater 80 may be controlled to achieve a predetermined temperature of the heater 80, or alternatively to achieve a predetermined intake air temperature to the cylinder 64.
For extremely cold ambient conditions, the heaters 80 may be powered by an energy source external to the engine/vehicle system, for example by electricity provided by an electric utility. Application of electrical power to the heaters 80 may be at a constant rate as long as the external power is available, scheduled at a predetermined duty cycle, or controlled to achieve a predetermined temperature of the heater 80 or a predetermined air temperature at the intake port of a cylinder 64.
It is known that all cylinders of a multi-cylinder internal combustion engine do not operate at precisely the same conditions. Sources of variability may include variation in compression ratio due, for example, to geometric differences, leakage, or deposits within a combustion chamber 28. Other sources of variability may include differences in fuel delivery due to tolerances associated with the fuel injector 30, cylinder-to-cylinder temperature differences, and the like. For GDCI cold starts using a plurality of intake air heaters 80 to condition intake air to the combustion chambers 28, part-to-part variability between individual heaters 80 may contribute to further cylinder-to-cylinder variability. In an embodiment of the present invention, the control parameters associated with each individual heater 80 that produce the desired combustion characteristics, as described above, may be retained in non-volatile memory, for example in the controller 20. These “learned” values may then be used as initial values in determining heater control parameters to be used to control that individual heater 80 during a subsequent cold start event.
Additionally or alternatively, the engine supercharger 134 may be engaged to compress air provided to the cylinder 64, with the compression process contributing heat to the air. Simulation was performed to evaluate the effectiveness of using the supercharger 134 to preheat the air to achieve a temperature of 800 degrees K in the cylinder after compression and before initiation of combustion. Over a range of ambient temperatures ranging from −25° C. to +25° C., the simulation results indicate that using the supercharger 134 to boost the temperature and pressure of the intake air stream results in a reduction of approximately 70 watts per engine cylinder 64 in electrical power required to be provided by the electric heater 80, at any ambient temperature.
In an embodiment of the method of the invention, the supercharger clutch 140 may be engaged throughout the duration of the cranking of the engine 12. In an alternative embodiment, engagement of the supercharger clutch may be delayed, for example for a predetermined time after initiation of cranking or until engine cranking has achieved a predetermined engine speed.
The method for starting the GDCI engine 12 further includes injecting fuel into the cylinder when the air within the cylinder has been heated to a temperature sufficient to support compression ignition of the gasoline and air mixture within the cylinder 64. Determination of when the air has been sufficiently heated may be based on a time duration, wherein the time duration is based on ambient temperature and/or on a temperature measured at the engine 12. A non-limiting example of a temperature measured at the engine 12 is a coolant temperature measurement.
In an embodiment of the invention, if the engine is equipped with a second charge air cooler bypass valve 144, the second charge air cooler bypass valve 144 is controlled so that the air exiting the supercharger 134 bypasses the second charge air cooler 152, to prevent cooling of the supercharger flow during an engine cold start.
In an embodiment of the invention, the first coolant pump 210 is controlled so as not to circulate coolant to cool the cylinder 64 during an engine cold start.
In an embodiment of the invention, the second coolant pump 220 and/or the three-way valve 224 is controlled so as not to circulate coolant to cool the second charge air cooler 152 during an engine cold start.
In an embodiment of the invention, fuel pressure in the fuel supply line that feeds the injector 30 is measured, with the fuel pressure required to reach a predetermined threshold value before fuel is first injected into the cylinder. The threshold value may be based on ambient temperature and/or on a temperature measured at the engine 12.
In an embodiment of the invention, timing of the intake valve 62A and/or the exhaust valve 62B is controlled to effectively eliminate compression of the air in the cylinder 64 when engine cranking is initially commenced, to reduce the load on the starter and allow more rapid increase of engine speed during cranking. Valve timing of the intake valve 62A and the exhaust valve 62B may then be controlled to achieve a maximum effective compression ratio for the engine 12 to provide the highest compression heating before initiation of fuel injection.
In an embodiment of the invention, the backpressure control valve 168 and/or a variable geometry turbocharger 118 are used to increase exhaust backpressure after combustion is initially achieved within the cylinder 64. Timing of the exhaust valve 62B can then be controlled to increase exhaust rebreathing into the cylinder 64 to increase temperature of the air/fuel charge in the cylinder 64 and promote robust autoignition for subsequent engine cycles.
In a further aspect of the invention, a system is provided for starting a GDCI engine. The system includes means for performing the steps of the method as described above. The system also includes a controller configured to control engine control hardware to perform the steps of the method as described above.
While this invention has been described in terms of preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
This application is a divisional application of U.S. patent application Ser. No. 14/068,278 filed on Oct. 31, 2013, the entire disclosure of which is hereby incorporated herein by reference in its entirety.
This invention was made with government support under Contract No. DE-EE0003258 awarded by the Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3795231 | Brille | Mar 1974 | A |
4463721 | Hayashi | Aug 1984 | A |
4518268 | Swis et al. | May 1985 | A |
4730593 | Regar | Mar 1988 | A |
5440880 | Ceynow et al. | Aug 1995 | A |
5482013 | Andrews et al. | Jan 1996 | A |
5715777 | Wada et al. | Feb 1998 | A |
5823170 | Sienicki | Oct 1998 | A |
5890468 | Ozawa | Apr 1999 | A |
5992399 | Anderson et al. | Nov 1999 | A |
6131553 | Suzuki | Oct 2000 | A |
6230683 | zur Loye et al. | May 2001 | B1 |
6276334 | Flynn | Aug 2001 | B1 |
6349708 | Horlacher et al. | Feb 2002 | B1 |
6666194 | Wildner | Dec 2003 | B2 |
6971365 | Najt et al. | Dec 2005 | B1 |
7079935 | Lewis et al. | Jul 2006 | B2 |
20020056444 | Chou et al. | May 2002 | A1 |
20020129604 | Wildner | Sep 2002 | A1 |
20030183185 | Sun et al. | Oct 2003 | A1 |
20050016486 | Hayman | Jan 2005 | A1 |
20060016422 | Kuo et al. | Jan 2006 | A1 |
20060272608 | Hara et al. | Dec 2006 | A1 |
20070062178 | Yang | Mar 2007 | A1 |
20070107692 | Kuo et al. | May 2007 | A1 |
20090259388 | Vetrovec | Oct 2009 | A1 |
20100186725 | Barker | Jul 2010 | A1 |
20110168688 | Rankin et al. | Jul 2011 | A1 |
20110203258 | Makartchouk et al. | Aug 2011 | A1 |
20110320104 | Sellnau et al. | Dec 2011 | A1 |
20120222639 | Knauf et al. | Sep 2012 | A1 |
20130213349 | Sellnau et al. | Aug 2013 | A1 |
20130298554 | Sellnau | Nov 2013 | A1 |
20150114339 | Sellnau et al. | Apr 2015 | A1 |
20150152817 | Roth et al. | Jun 2015 | A1 |
20160053714 | Sellnau | Feb 2016 | A1 |
20160153407 | Ursic | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1305052 | Jul 2001 | CN |
H09151771 | Jun 1997 | JP |
WO2012058280 | May 2012 | WO |
Entry |
---|
170215 NASA Isentropic Compression or Expansion.PDF. |
Harisankar Bendu, S. Murugan, Homogeneous charge compression ignition (HCCI) combustion; Mixture preparation and control strategies in diesel engines, Department of Mechanical Engineering, National Institute of Technology Rourkela, India Received Sep. 26, 2013, Revised May 7, 2014, Accepted Jul. 6, 2014, Available online Jul. 24, 2014. |
Number | Date | Country | |
---|---|---|---|
20180180013 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14068278 | Oct 2013 | US |
Child | 15902050 | US |