The present invention relates generally to a vehicle vision system and, more particularly, to a vehicle vision system that utilizes one or more cameras at the vehicle.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
The present invention provides a collision avoidance system or vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an alert to the driver of the vehicle and/or controls one or more functions or systems of the vehicle responsive to a determination that a rearward approaching vehicle is likely to impact or collide with the subject vehicle.
According to an aspect of the present invention, a collision avoidance system of a vehicle comprises a camera disposed at the equipped vehicle, with the camera having a field of view exterior of and rearward of the equipped vehicle. An image processor is operable to process image data captured by the camera. Responsive to image processing of captured image data, the collision avoidance system is operable to determine an approach of another vehicle rearward of the equipped vehicle and to determine an excitation level depending on (i) a difference between the speed of the approaching vehicle and the speed of the equipped vehicle and (ii) a distance between the approaching vehicle and the equipped vehicle. Responsive to a determined excitation level, the collision avoidance system is operable to at least one of (a) provide an alert to the driver of the equipped vehicle (such as a visible and/or audible alert), (b) provide an alert to the driver of the approaching vehicle (such as via control of one or more exterior lights of the equipped vehicle), (c) prepare the equipped vehicle for impact (such as via pretensioning of the seatbelts worn by the occupant or occupants of the equipped vehicle or via adjusting of the seats or headrests of the equipped vehicle), (d) control a braking system of the equipped vehicle, (e) control a steering system of the equipped vehicle and (f) control an acceleration system of the equipped vehicle. Responsive to a determined excitation level, the collision avoidance system is operable to at least one of (i) provide or transmit or communicate an alert to the driver of the approaching vehicle via a telematics system and (ii) communicate information to the approaching vehicle via a telematics system (such as sharing relative speed and distance information or data and determining respective collision avoidance paths for the equipped vehicle and approaching vehicle).
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14b at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (
Common systems utilize forward directed sensors to detect vehicles driving in front of the subject or host or equipped vehicle in the same direction and lane. The systems are set up to target a certain distance from the leading vehicle at which they stay during acceleration and deceleration maneuvers of the leading vehicle ahead of the subject vehicle. With such systems, the driver can focus on keeping the host vehicle in its lane. This function is typically referred to as Adaptive Cruise Control (ACC).
Similar systems are provided to interact by warning and braking of the subject or host or equipped vehicle when the driver is driving the vehicle (without following another vehicle in front) towards and closing to a leading vehicle or traffic ahead of the subject vehicle, where the traffic may be standing still or moving much slower than the subject vehicle (such as in a traffic jam or the like). This function is typically referred to as Brake Assist.
These known systems do not provide assistance to a driver of a vehicle that is at the back end of a traffic jam with other vehicles behind the subject vehicle and possibly closing at high speed. In such situations, the driver of the subject vehicle may not notice the rearward approach of another vehicle or may have to hope that the following drivers (or their Brake Assist systems) will brake early enough to come to a stop before a collision or impact with the subject vehicle occurs.
The present invention provides a rear collision warning and assist system that utilizes a rearward facing sensor or camera (and optionally a surround vision system or front and rear vision system, optionally including rear depth and front depth sensors), and optionally utilizing a car2car (v2v) communication system or equipment or the like. Such car2car (v2v)/car2X (v2x) communication systems utilize telematics to enable wireless transmission of data from the equipped host vehicle to another vehicle or car and/or to an infrastructural system (such as a traffic light control system or a traffic management system or the like). Correspondingly, data may be telematically communicated to the host equipped vehicle from other vehicles and/or from an infrastructural system or the like. Such data may comprise the likes of traffic condition data, traffic density data, weather data, road condition data (such as, for example, black ice ahead on the road being travelled) and/or the like.
In accordance with the present invention, the host equipped vehicle may transmit an alert or warning that an immediately following other vehicle is tailgating and/or is in hazard of colliding with the host vehicle, and that warning may be transmitted via a car2car/car2x telematics system to the immediately following (tailgating) other vehicle, in order to (i) alert the driver of that other vehicle to the tailgating/hazardous existing condition and/or (ii) control that other vehicle to mitigate or reduce the tailgating/hazardous condition.
The rear collision warning and assist system of the present invention is operable to determine the difference in speed of the subject vehicle to a closing vehicle that is closing in on or approaching the subject vehicle from rearward of the subject vehicle, and also determines the distance from the subject vehicle to the rearward approaching vehicle. Based on such determinations, the rear collision warning and assist system tracks the incoming or rearward approaching vehicle, and may calculate the deceleration ratio, and estimates whether the incoming or approaching vehicle is likely to be able to come to a stop before reaching the subject vehicle. If, based on such determinations, the system determines that an impact is likely or imminent or unavoidable, the system also determines how high the remaining difference speed at impact would be and how much additional space the rearward approaching vehicle would need for stopping without impacting the subject vehicle. Responsive to such determinations, the rear collision warning and assist system may warn the driver of the subject vehicle of the potentially hazardous situation so that the driver may take appropriate action, or the system may undertake pre-impact measures, such as seat belt pretension and/or adjusting the vehicle seats (such as the occupied seats) to their upright position, and/or the like, and/or the system may control the subject vehicle to accelerate the vehicle automatically to reduce or lower the impact speed and to give the rearward approaching vehicle additional space for braking and slowing/stopping, particularly when there is clearance in front of the subject vehicle.
Optionally, the rear collision warning and assist system may additionally sense or determine the situation at or in neighboring or adjacent lanes at or adjacent to the subject vehicle. The system may intervene and control the subject vehicle (not just via the accelerator) by controlling a steering system or mechanism of the subject vehicle to pull over or move the subject vehicle to another free or unoccupied lane (such as the breakdown lane or the like), such as in situations where the system determines that a rear impact by a rearward approaching vehicle is imminent or otherwise unavoidable. In such situations, the rear collision warning and assist system may utilize collision avoidance path planning methods based on influence mapping, such as by utilizing aspects of the systems described in U.S. patent application Ser. No. 14/016,790, filed Sep. 9, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014-0067206, which is hereby incorporated herein by reference in its entirety.
For improving the system's prediction abilities, the rear collision warning and assist system of the present invention may optionally set up and utilize a communication channel that both vehicles (the subject vehicle and the rearward approaching vehicle) may seek and use to exchange vehicle speed and direction data and to determine and agree on collision avoidance paths for both vehicles, such as discussed below.
As shown in Table 1 (
For example, the columns ‘Display’, ‘Acoustical warning’ and ‘Optical signaling’ in Table 2 may be the basic realization in response to a determination of a rearward approaching vehicle that may be likely to impact the subject or equipped vehicle. For example, a visual alert or display and/or an audible alert or acoustical warning may be provided to alert the driver of the subject vehicle that another vehicle is approaching from the rear, and the degree of the warning may increase (such as more rapid flashing or louder tone or audible signal) as the determined excitation level increases (or as the approaching vehicle gets closer to the subject vehicle and is more likely to impact the subject vehicle). Optionally, an optical signal or alert may be provided to alert drivers of other vehicles (including the driver of the determined rearward approaching vehicle) that the other vehicle is approaching the subject vehicle from the rear and in a potentially unsafe manner, with the degree of the warning (such as different exterior lights of the subject vehicle being activated or flashed, such as activation or flashing of the braking lights, the turn signal indicators, the fog lights, the reversing or backup lights, the headlights and/or the like) increasing as the determined excitation level increases.
Optionally, a ‘pre-crash intervention’ process may be provided, where the rear collision warning and assist system may, when the excitation level is determined to be relatively high, prepare the vehicle and passengers for impact. For example, and as shown in Table 2, when the excitation level is at 3, the system may bring the seats of the vehicle to an upright position, and when the excitation level is at 4 (which may be indicative of an imminent collision or impact), the system may pretension the seat belt or seat belts and/or may adjust or deploy the headrest or headrests, and/or may deploy a roll over bar or the like.
Optionally, and as also shown in Table 2, the rear collision warning and assist system of the present invention may include a ‘speed intervention’ process, where the system controls an accelerator or engine/transmission of the subject vehicle to start the engine and/or accelerate moderately or quickly and/or to downshift to a lower gear to enhance acceleration, responsive to the determined excitation level or the degree of the determined hazard. Optionally, and as also shown in Table 2, the rear collision warning and assist system may include a ‘steering intervention’ process, such as in addition to the ‘speed intervention’ function, where the system determines the clearance ahead of the subject vehicle and sidewards of the subject vehicle and may determine evasion paths for the subject vehicle, and may control the steering of the subject vehicle to follow a determined avoidance path or evasion path to avoid the rearward collision, responsive to the determined excitation level or the degree of the determined hazard. Such speed and steering intervention may be implemented when the excitation level reaches a threshold level, such as at level 2 or higher in Table 2.
Optionally, and as also shown in Table 2, the rear collision warning and assist system of the present invention may provide a remote signaling function to signal or communicate with a system or systems of the rearward approaching vehicle. For example, the rear collision warning and assist system may have or utilize a car-to-car or v2v communication system (such as by utilizing aspects of the systems described in U.S. provisional applications, Ser. No. 61/912,146, filed Dec. 5, 2013; Ser. No. 61/947,638, filed Mar. 4, 2014; and/or Ser. No. 61/947,053, filed Mar. 3, 2014, which are hereby incorporated herein by reference in their entireties), whereby subject vehicle information or data and approaching vehicle information or data may be exchanged and appropriate measures may be taken to avoid or mitigate the collision or impact. For example, the system may, upon detection of a rearward approaching vehicle, seek a “hand shake” with a system of the approaching vehicle and exchange speed and deceleration rates with the system of the approaching vehicle. As the excitation level (or degree of hazard or potential collision) increases (such as to a threshold level, such as at level 2 or higher in Table 2), the system may request a brake intervention to the approaching vehicle's system to activate or control the brake system of the approaching vehicle, with the requested degree of braking of the approaching vehicle increasing as the hazard or likelihood of impact increases.
Optionally, the systems of the respective vehicles may communicate to determine and agree upon respective collision avoidance paths (where the approaching vehicle may follow a path to one side or the other of the equipped vehicle or where the equipped vehicle may follow a path to one side or the other, such as responsive to a determination of which path or paths for the respective vehicles best avoids the collision of the vehicles), again depending on the determined excitation level or the degree of the determined hazard and depending on the determined available collision avoidance or collision mitigation paths of the vehicles. The systems thus may communicate or transfer vehicle inherent data and intervention coordination strategies via the optional ‘remote signaling’ function. Optionally, the system or systems may utilize aspects of the systems described in U.S. patent application Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986, which is hereby incorporated herein by reference in its entirety.
Therefore, the present invention provides a collision avoidance system that is operable to determine the presence of or approach of a rearward vehicle and determine a degree of hazard or likelihood of rear impact of the determined rearward vehicle with respect to the subject or host vehicle. The system may provide a visible and/or audible alert to the driver of the subject vehicle and/or to the driver of the approaching vehicle responsive to a determined degree of hazard or excitation level, and may control one or more systems (such as a braking system and/or steering system and/or acceleration system) of the subject vehicle to avoid or minimize or mitigate the collision or impact, depending on the determined degree of hazard or excitation level. Optionally, the system may communicate with the rearward approaching vehicle to control one or more systems of the approaching vehicle to avoid or minimize or mitigate the collision or impact, depending on the determined degree of hazard or excitation level.
The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EYEQ2 or EYEQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592, and/or U.S. patent application Ser. No. 14/242,038, filed Apr. 1, 2014 and published Aug. 14, 2014 as U.S. Publication No. US-2014-0226012; Ser. No. 14/229,061, filed Mar. 28, 2014 and published Oct. 2, 2014 as U.S. Publication No. US-2014-0293042; Ser. No. 14/343,937, filed Mar. 10, 2014 and published Aug. 21, 2014 as U.S. Publication No. US-2014-0232872; Ser. No. 14/343,936, filed Mar. 10, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218535; Ser. No. 14/195,135, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247354; Ser. No. 14/195,136, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247355; Ser. No. 14/191,512, filed Feb. 27, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247352; Ser. No. 14/183,613, filed Feb. 19, 2014 and published Aug. 21, 2014 as U.S. Publication No. US-2014-0232869; Ser. No. 14/169,329, filed Jan. 31, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218529; Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986; Ser. No. 14/163,325, filed Jan. 24, 2014 and published Jul. 31, 2014 as U.S. Publication No. US-2014-0211009; Ser. No. 14/159,772, filed Jan. 21, 2014, now U.S. Pat. No. 9,068,390; Ser. No. 14/107,624, filed Dec. 16, 2013, now U.S. Pat. No. 9,140,789; Ser. No. 14/102,981, filed Dec. 11, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160276; Ser. No. 14/102,980, filed Dec. 11, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168437; Ser. No. 14/098,817, filed Dec. 6, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168415; Ser. No. 14/097,581, filed Dec. 5, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160291; Ser. No. 14/093,981, filed Dec. 2, 2013, now U.S. Pat. No. 8,917,169; Ser. No. 14/093,980, filed Dec. 2, 2013 and published Jun. 5, 2014 as U.S. Publication No. US-2014-0152825; Ser. No. 14/082,573, filed Nov. 18, 2013 and published May 22, 2014 as U.S. Publication No. US-2014-0139676; Ser. No. 14/082,574, filed Nov. 18, 2013, now U.S. Pat. No. 9,307,640; Ser. No. 14/082,575, filed Nov. 18, 2013, now U.S. Pat. No. 9,090,234; Ser. No. 14/082,577, filed Nov. 18, 2013, now U.S. Pat. No. 8,818,042; Ser. No. 14/071,086, filed Nov. 4, 2013, now U.S. Pat. No. 8,886,401; Ser. No. 14/076,524, filed Nov. 11, 2013, now U.S. Pat. No. 9,077,962; Ser. No. 14/052,945, filed Oct. 14, 2013 and published Apr. 17, 2014 as U.S. Publication No. US-2014/0104426; Ser. No. 14/046,174, filed Oct. 4, 2013 and published Apr. 10, 2014 as U.S. Publication No. US-2014/0098229; Ser. No. 14/036,723, filed Sep. 25, 2013 and published Mar. 27, 2014 as U.S. Publication No. US-2014/0085472; Ser. No. 14/016,790, filed Sep. 3, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014/0067206; Ser. No. 14/001,272, filed Aug. 23, 2013, now U.S. Pat. No. 9,233,641; Ser. No. 13/970,868, filed Aug. 20, 2013 and published Feb. 20, 2014 as U.S. Publication No. US-2014/0049646; Ser. No. 13/964,134, filed Aug. 12, 2013 and published Feb. 20, 2014 as U.S. Publication No. US-2014/0052340; Ser. No. 13/942,758, filed Jul. 16, 2013 and published Jan. 23, 2014 as U.S. Publication No. 2014/0025240; Ser. No. 13/942,753, filed Jul. 16, 2013 and published Jan. 30, 2014 as U.S. Publication No. 2014/0028852; Ser. No. 13/927,680, filed Jun. 26, 2013 and published Jan. 2, 2014 as U.S. Publication No. 2014/0005907; Ser. No. 13/916,051, filed Jun. 12, 2013 and published Dec. 26, 2013 as U.S. Publication No. 2013/0344736; Ser. No. 13/894,870, filed May 15, 2013 and published Nov. 28, 2013 as U.S. Publication No. 2013/0314503; Ser. No. 13/887,724, filed May 6, 2013 and published Nov. 14, 2013 as U.S. Publication No. 2013/0298866; Ser. No. 13/852,190, filed Mar. 28, 2013 and published Aug. 29, 2013 as U.S. Publication No. US-2013/022593; Ser. No. 13/851,378, filed Mar. 27, 2013 and published Nov. 14, 2013 as U.S. Publication No. 2013/0300869; Ser. No. 13/848,796, filed Mar. 22, 2012 and published Oct. 24, 2013 as U.S. Publication No. 2013/0278769; Ser. No. 13/847,815, filed Mar. 20, 2013 and published Oct. 31, 2013 as U.S. Publication No. 2013/0286193; Ser. No. 13/800,697, filed Mar. 13, 2013 and published Oct. 3, 2013 as U.S. Publication No. 2013/0258077; Ser. No. 13/785,099, filed Mar. 5, 2013 and published Sep. 19, 2013 as U.S. Publication No. 2013/0242099; Ser. No. 13/779,881, filed Feb. 28, 2013 and published Sep. 5, 2013 as U.S. Publication No. 2013/0231825; Ser. No. 13/774,317, filed Feb. 22, 2013 and published Aug. 29, 2013 as U.S. Publication No. 2013/0222592; Ser. No. 13/774,315, filed Feb. 22, 2013 and published Aug. 22, 2013 as U.S. Publication No. 2013/0215271; Ser. No. 13/681,963, filed Nov. 20, 2012 and published Jun. 6, 2013 as U.S. Publication No. 2013/0141578; Ser. No. 13/660,306, filed Oct. 25, 2012 and published May 9, 2013 as U.S. Publication No. 2013/0116859; Ser. No. 13/653,577, filed Oct. 17, 2012 and published Apr. 25, 2013 as U.S. Publication No. 2013/0099908; and/or Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, and/or U.S. provisional application Ser. No. 61/973,922, filed Apr. 2, 2014; Ser. No. 61/972,708, filed Mar. 31, 2014; Ser. No. 61/972,707, filed Mar. 31, 2014; Ser. No. 61/969,474, filed Mar. 24, 2014; Ser. No. 61/955,831, filed Mar. 20, 2014; Ser. No. 61/952,335, filed Mar. 13, 2014; Ser. No. 61/952,334, filed Mar. 13, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/947,638, filed Mar. 4, 2014; Ser. No. 61/947,053, filed Mar. 3, 2014; Ser. No. 61/942,568, filed Feb. 19, 2014; Ser. No. 61/935,485, filed Feb. 4, 2014; Ser. No. 61/935,057, filed Feb. 3, 2014; Ser. No. 61/935,056, filed Feb. 3, 2014; Ser. No. 61/935,055, filed Feb. 3, 2014; Ser. 61/931,811, filed Jan. 27, 2014; Ser. No. 61/919,129, filed Dec. 20, 2013; Ser. No. 61/919,130, filed Dec. 20, 2013; Ser. No. 61/919,131, filed Dec. 20, 2013; Ser. No. 61/919,147, filed Dec. 20, 2013; Ser. No. 61/919,138, filed Dec. 20, 2013, Ser. No. 61/919,133, filed Dec. 20, 2013; Ser. No. 61/918,290, filed Dec. 19, 2013; Ser. No. 61/915,218, filed Dec. 12, 2013; Ser. No. 61/912,146, filed Dec. 5, 2013; Ser. No. 61/911,666, filed Dec. 4, 2013; Ser. No. 61/911,665, filed Dec. 4, 2013; Ser. No. 61/905,461, filed Nov. 18, 2013; Ser. No. 61/905,462, filed Nov. 18, 2013; Ser. No. 61/901,127, filed Nov. 7, 2013; Ser. No. 61/895,610, filed Oct. 25, 2013; Ser. No. 61/895,609, filed Oct. 25, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/879,835, filed Sep. 19, 2013; Ser. No. 61/878,877, filed Sep. 17, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,835, filed Aug. 12, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,837, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013; Ser. No. 61/856,843, filed Jul. 22, 2013, Ser. No. 61/845,061, filed Jul. 11, 2013; Ser. No. 61/844,630, filed Jul. 10, 2013; Ser. No. 61/844,173, filed Jul. 9, 2013; Ser. No. 61/844,171, filed Jul. 9, 2013; Ser. No. 61/842,644, filed Jul. 3, 2013; Ser. No. 61/840,542, filed Jun. 28, 2013; Ser. No. 61/838,619, filed Jun. 24, 2013; Ser. No. 61/838,621, filed Jun. 24, 2013; Ser. No. 61/837,955, filed Jun. 21, 2013; Ser. No. 61/836,900, filed Jun. 19, 2013; Ser. No. 61/836,380, filed Jun. 18, 2013; Ser. No. 61/833,080, filed Jun. 10, 2013; Ser. No. 61/830,375, filed Jun. 3, 2013; Ser. No. 61/830,377, filed Jun. 3, 2013; Ser. No. 61/825,752, filed May 21, 2013; Ser. No. 61/825,753, filed May 21, 2013; Ser. No. 61/823,648, filed May 15, 2013; Ser. No. 61/823,644, filed May 15, 2013; Ser. No. 61/821,922, filed May 10, 2013; Ser. No. 61/819,835, filed May 6, 2013; Ser. No. 61/819,033, filed May 3, 2013; Ser. No. 61/816,956, filed Apr. 29, 2013; Ser. No. 61/815,044, filed Apr. 23, 2013; Ser. No. 61/814,533, filed Apr. 22, 2013; and/or Ser. No. 61/813,361, filed Apr. 18, 2013, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO 2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009 and published Jan. 28, 2010 as U.S. Pat. Publication No. US-2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent applications, Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361; and/or Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. No. 8,542,451, and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO 2009/036176 and/or WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. pat. application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. No. 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009 and published Apr. 22, 2010 as U.S. Publication No. US-2010-0097469, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.
Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application is a continuation of U.S. patent application Ser. No. 15/793,132, filed Oct. 25, 2017, now U.S. Pat. No. 10,207,705, which is a continuation of U.S. patent application Ser. No. 15/406,861, filed Jan. 16, 2017, now U.S. Pat. No. 9,802,609, which is a continuation of U.S. patent application Ser. No. 15/144,114, filed May 2, 2016, now U.S. Pat. No. 9,545,921, which is a continuation of U.S. patent application Ser. No. 14/248,602, filed Apr. 9, 2014, now U.S. Pat. No. 9,327,693, which claims the filing benefits of U.S. provisional application Ser. No. 61/810,407, filed Apr. 10, 2013, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4720790 | Miki et al. | Jan 1988 | A |
4987357 | Masaki | Jan 1991 | A |
4991054 | Walters | Feb 1991 | A |
5001558 | Burley et al. | Mar 1991 | A |
5003288 | Wilhelm | Mar 1991 | A |
5012082 | Watanabe | Apr 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5027001 | Torbert | Jun 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5044706 | Chen | Sep 1991 | A |
5055668 | French | Oct 1991 | A |
5059877 | Teder | Oct 1991 | A |
5064274 | Alten | Nov 1991 | A |
5072154 | Chen | Dec 1991 | A |
5073012 | Lynam | Dec 1991 | A |
5076673 | Lynam et al. | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5097362 | Lynas | Mar 1992 | A |
5115346 | Lynam | May 1992 | A |
5121200 | Choi | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5130709 | Toyama et al. | Jul 1992 | A |
5148014 | Lynam et al. | Sep 1992 | A |
5151816 | Varaprasad et al. | Sep 1992 | A |
5168378 | Black | Dec 1992 | A |
5170374 | Shimohigashi et al. | Dec 1992 | A |
5172235 | Wilm et al. | Dec 1992 | A |
5177685 | Davis et al. | Jan 1993 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5184956 | Langlais et al. | Feb 1993 | A |
5189561 | Hong | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5193029 | Schofield et al. | Mar 1993 | A |
5204778 | Bechtel | Apr 1993 | A |
5208701 | Maeda | May 1993 | A |
5245422 | Borcherts et al. | Sep 1993 | A |
5253109 | O'Farrell et al. | Oct 1993 | A |
5255442 | Schierbeek et al. | Oct 1993 | A |
5276389 | Levers | Jan 1994 | A |
5285060 | Larson et al. | Feb 1994 | A |
5289182 | Brillard et al. | Feb 1994 | A |
5289321 | Secor | Feb 1994 | A |
5305012 | Faris | Apr 1994 | A |
5307136 | Saneyoshi | Apr 1994 | A |
5309137 | Kajiwara | May 1994 | A |
5313072 | Vachss | May 1994 | A |
5325096 | Pakett | Jun 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5331312 | Kudoh | Jul 1994 | A |
5336980 | Levers | Aug 1994 | A |
5341437 | Nakayama | Aug 1994 | A |
5351044 | Mathur et al. | Sep 1994 | A |
5355118 | Fukuhara | Oct 1994 | A |
5374852 | Parkes | Dec 1994 | A |
5386285 | Asayama | Jan 1995 | A |
5394333 | Kao | Feb 1995 | A |
5406395 | Wilson et al. | Apr 1995 | A |
5406414 | O'Farrell et al. | Apr 1995 | A |
5410346 | Saneyoshi et al. | Apr 1995 | A |
5414257 | Stanton | May 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416313 | Larson et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5416478 | Morinaga | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5440428 | Hegg et al. | Aug 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5461361 | Moore | Oct 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5497306 | Pastrick | Mar 1996 | A |
5498866 | Bendicks et al. | Mar 1996 | A |
5500766 | Stonecypher | Mar 1996 | A |
5510983 | Lino | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5521633 | Nakajima et al. | May 1996 | A |
5528698 | Kamei et al. | Jun 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5530240 | Larson et al. | Jun 1996 | A |
5530420 | Tsuchiya et al. | Jun 1996 | A |
5535314 | Alves et al. | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5539397 | Asanuma et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5555555 | Sato et al. | Sep 1996 | A |
5568027 | Teder | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5581464 | Woll et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5610756 | Lynam et al. | Mar 1997 | A |
5614788 | Mullins | Mar 1997 | A |
5619370 | Guinosso | Apr 1997 | A |
5632092 | Blank et al. | May 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642093 | Kinoshita et al. | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5648835 | Uzawa | Jul 1997 | A |
5650944 | Kise | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5661303 | Teder | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5760962 | Schofield et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5765118 | Fukatani | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5786772 | Schofield et al. | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker et al. | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5835255 | Miles | Nov 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5844682 | Kiyomoto et al. | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5848802 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5850254 | Takano et al. | Dec 1998 | A |
5867591 | Onda | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5915800 | Hiwatashi et al. | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5924212 | Domanski | Jul 1999 | A |
5929786 | Schofield et al. | Jul 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5963247 | Banitt | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5990649 | Nagao et al. | Nov 1999 | A |
6014601 | Gustafson | Jan 2000 | A |
6020704 | Buschur | Feb 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6066933 | Ponziana | May 2000 | A |
6084519 | Coulling et al. | Jul 2000 | A |
6097023 | Schofield et al. | Aug 2000 | A |
6097024 | Stam et al. | Aug 2000 | A |
6100799 | Fenk | Aug 2000 | A |
6144022 | Tenenbaum et al. | Nov 2000 | A |
6151539 | Bergholz et al. | Nov 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6178034 | Allemand et al. | Jan 2001 | B1 |
6198409 | Schofield et al. | Mar 2001 | B1 |
6201642 | Bos | Mar 2001 | B1 |
6222447 | Schofield et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6227689 | Miller | May 2001 | B1 |
6250148 | Lynam | Jun 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6294989 | Schofield et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6302545 | Schofield et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6313454 | Bos et al. | Nov 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320176 | Schofield et al. | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6341523 | Lynam | Jan 2002 | B2 |
6353392 | Schofield et al. | Mar 2002 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6392315 | Jones et al. | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6411204 | Bloomfield et al. | Jun 2002 | B1 |
6420975 | DeLine et al. | Jul 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6477464 | McCarthy et al. | Nov 2002 | B2 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6516664 | Lynam | Feb 2003 | B2 |
6523964 | Schofield et al. | Feb 2003 | B2 |
6534884 | Marcus et al. | Mar 2003 | B2 |
6539306 | Turnbull | Mar 2003 | B2 |
6547133 | Devries, Jr. et al. | Apr 2003 | B1 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6559435 | Schofield et al. | May 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6636258 | Strumolo | Oct 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6678614 | McCarthy et al. | Jan 2004 | B2 |
6680792 | Miles | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6704621 | Stein et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6735506 | Breed et al. | May 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6744353 | Sjonell | Jun 2004 | B2 |
6757109 | Bos | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6802617 | Schofield et al. | Oct 2004 | B2 |
6806452 | Bos et al. | Oct 2004 | B2 |
6819231 | Berberich et al. | Nov 2004 | B2 |
6822563 | Bos et al. | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6831261 | Schofield et al. | Dec 2004 | B2 |
6850156 | Bloomfield et al. | Feb 2005 | B2 |
6882287 | Schofield | Apr 2005 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6891563 | Schofield et al. | May 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6953253 | Schofield et al. | Oct 2005 | B2 |
6968736 | Lynam | Nov 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7004606 | Schofield | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7079017 | Lang et al. | Jul 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7111968 | Bauer et al. | Sep 2006 | B2 |
7116246 | Winter et al. | Oct 2006 | B2 |
7123168 | Schofield | Oct 2006 | B2 |
7136753 | Samukawa et al. | Nov 2006 | B2 |
7145519 | Takahashi et al. | Dec 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7167796 | Taylor et al. | Jan 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7205904 | Schofield | Apr 2007 | B2 |
7227459 | Bos et al. | Jun 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7311406 | Schofield et al. | Dec 2007 | B2 |
7325934 | Schofield et al. | Feb 2008 | B2 |
7325935 | Schofield et al. | Feb 2008 | B2 |
7338177 | Lynam | Mar 2008 | B2 |
7339149 | Schofield et al. | Mar 2008 | B1 |
7344261 | Schofield et al. | Mar 2008 | B2 |
7355524 | Schofield | Apr 2008 | B2 |
7365769 | Mager | Apr 2008 | B1 |
7370983 | DeWind et al. | May 2008 | B2 |
7380948 | Schofield et al. | Jun 2008 | B2 |
7388182 | Schofield et al. | Jun 2008 | B2 |
7402786 | Schofield et al. | Jul 2008 | B2 |
7423248 | Schofield et al. | Sep 2008 | B2 |
7425076 | Schofield et al. | Sep 2008 | B2 |
7446650 | Scholfield et al. | Nov 2008 | B2 |
7459664 | Schofield et al. | Dec 2008 | B2 |
7460951 | Altan | Dec 2008 | B2 |
7480149 | DeWard et al. | Jan 2009 | B2 |
7490007 | Taylor et al. | Feb 2009 | B2 |
7492281 | Lynam et al. | Feb 2009 | B2 |
7495550 | Huang et al. | Feb 2009 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7561181 | Schofield et al. | Jul 2009 | B2 |
7581859 | Lynam | Sep 2009 | B2 |
7592928 | Chinomi et al. | Sep 2009 | B2 |
7616781 | Schofield et al. | Nov 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7681960 | Wanke et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7724962 | Zhu et al. | May 2010 | B2 |
7777611 | Desai | Aug 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
7859565 | Schofield et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7914187 | Higgins-Luthman et al. | Mar 2011 | B2 |
7952490 | Fechner et al. | May 2011 | B2 |
7965336 | Bingle et al. | Jun 2011 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8058977 | Lynam | Nov 2011 | B2 |
8340866 | Hanzawa et al. | Dec 2012 | B2 |
8520695 | Rubin et al. | Aug 2013 | B1 |
8694224 | Chundrlik, Jr. et al. | Apr 2014 | B2 |
8775064 | Zeng et al. | Jul 2014 | B2 |
8849495 | Chundrik, Jr. et al. | Sep 2014 | B2 |
8861792 | Stein et al. | Oct 2014 | B2 |
9327693 | Wolf | May 2016 | B2 |
9545921 | Wolf | Jan 2017 | B2 |
9802609 | Wolf | Oct 2017 | B2 |
10207705 | Wolf | Feb 2019 | B2 |
20020015153 | Downs | Feb 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20020159270 | Lynam et al. | Oct 2002 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030191568 | Breed | Oct 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20030227777 | Schofield | Dec 2003 | A1 |
20040012488 | Schofield | Jan 2004 | A1 |
20040016870 | Pawlicki et al. | Jan 2004 | A1 |
20040032321 | McMahon et al. | Feb 2004 | A1 |
20040051634 | Schofield et al. | Mar 2004 | A1 |
20040114381 | Salmeen et al. | Jun 2004 | A1 |
20040128065 | Taylor et al. | Jul 2004 | A1 |
20040200948 | Bos et al. | Oct 2004 | A1 |
20050060069 | Breed | Mar 2005 | A1 |
20050078389 | Kulas et al. | Apr 2005 | A1 |
20050134966 | Burgner | Jun 2005 | A1 |
20050134983 | Lynam | Jun 2005 | A1 |
20050146792 | Schofield et al. | Jul 2005 | A1 |
20050169003 | Lindahl et al. | Aug 2005 | A1 |
20050195488 | McCabe et al. | Sep 2005 | A1 |
20050200700 | Schofield et al. | Sep 2005 | A1 |
20050232469 | Schofield et al. | Oct 2005 | A1 |
20050258977 | Kiefer et al. | Nov 2005 | A1 |
20050264891 | Uken et al. | Dec 2005 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060028731 | Schofield et al. | Feb 2006 | A1 |
20060050018 | Hutzel et al. | Mar 2006 | A1 |
20060061008 | Kamer et al. | Mar 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060164221 | Jensen | Jul 2006 | A1 |
20060164230 | DeWind et al. | Jul 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20060290479 | Akatsuka et al. | Dec 2006 | A1 |
20070005609 | Breed | Jan 2007 | A1 |
20070023613 | Schofield et al. | Feb 2007 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20070109406 | Schofield et al. | May 2007 | A1 |
20070109651 | Schofield et al. | May 2007 | A1 |
20070109652 | Schofield et al. | May 2007 | A1 |
20070109653 | Schofield et al. | May 2007 | A1 |
20070109654 | Schofield et al. | May 2007 | A1 |
20070120657 | Schofield et al. | May 2007 | A1 |
20070152803 | Huang et al. | Jul 2007 | A1 |
20070176080 | Schofield et al. | Aug 2007 | A1 |
20080077328 | Simmons et al. | Mar 2008 | A1 |
20080180529 | Taylor et al. | Jul 2008 | A1 |
20090093938 | Isaji et al. | Apr 2009 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20090177347 | Breuer et al. | Jul 2009 | A1 |
20090243824 | Peterson et al. | Oct 2009 | A1 |
20090244361 | Gebauer et al. | Oct 2009 | A1 |
20090265069 | Desbrunes | Oct 2009 | A1 |
20090295181 | Lawlor et al. | Dec 2009 | A1 |
20100020170 | Higgins-Luthman et al. | Jan 2010 | A1 |
20100045797 | Schofield et al. | Feb 2010 | A1 |
20100097469 | Blank et al. | Apr 2010 | A1 |
20100228437 | Hanzawa et al. | Sep 2010 | A1 |
20110190972 | Timmons | Aug 2011 | A1 |
20120044066 | Mauderer et al. | Feb 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120101701 | Moshchuk et al. | Apr 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20120245817 | Cooprider et al. | Sep 2012 | A1 |
20120262340 | Hassan et al. | Oct 2012 | A1 |
20120290169 | Zeng et al. | Nov 2012 | A1 |
20120303222 | Cooprider et al. | Nov 2012 | A1 |
20120316725 | Trepagnier et al. | Dec 2012 | A1 |
20130124052 | Hahne | May 2013 | A1 |
20130129150 | Saito | May 2013 | A1 |
20130131918 | Hahne | May 2013 | A1 |
20130166150 | Han et al. | Jun 2013 | A1 |
20130231825 | Chundrlik, Jr. et al. | Sep 2013 | A1 |
20130278769 | Nix et al. | Oct 2013 | A1 |
20130279491 | Rubin et al. | Oct 2013 | A1 |
20130321615 | Schofield | Dec 2013 | A1 |
20140067206 | Pflug | Mar 2014 | A1 |
20140093132 | Stein et al. | Apr 2014 | A1 |
20140156157 | Johnson et al. | Jun 2014 | A1 |
20140222280 | Salomonsson et al. | Aug 2014 | A1 |
20140313339 | Diessner | Oct 2014 | A1 |
20140379233 | Chundrlik, Jr. et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
0927983 | Jul 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20190176819 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61810407 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15793132 | Oct 2017 | US |
Child | 16278300 | US | |
Parent | 15406861 | Jan 2017 | US |
Child | 15793132 | US | |
Parent | 15144114 | May 2016 | US |
Child | 15406861 | US | |
Parent | 14248602 | Apr 2014 | US |
Child | 15144114 | US |