The present invention relates to display devices, and more specifically, the invention relates to a display device, such as an organic EL display, which includes light-emitting display elements driven by a current, and a method for driving the same.
Organic EL (electroluminescent) displays are conventionally known as being thin display devices featuring high image quality and low power consumption. The organic EL display has a plurality of pixel circuits arranged in a matrix, each circuit including an organic EL element, which is a light-emitting display element driven by a current, and a drive transistor for driving the element.
The method for controlling the amount of current to be applied to current-driven display elements such as organic EL elements as above are generally classified into: a constant-current control mode (or a current-programmed drive mode) in which the current that is to be applied to display elements is controlled by data signal currents flowing through data signal line electrodes of the display elements; and a constant-voltage control mode (or a voltage-programmed drive mode) in which the current that is to be applied to display elements is controlled by voltages corresponding to data signal voltages. Among these modes, when the constant-voltage control mode is used for display on an organic EL display, it is necessary to compensate for current reduction (luminance decay) due to variations in the threshold voltage among drive transistors and increased resistance caused by deterioration of organic EL elements over time. On the other hand, in the case of the constant-current control mode, the values for data signal currents are controlled such that constant currents are applied to organic EL elements regardless of the threshold voltages and internal resistance of the organic EL elements, and therefore, the compensation as mentioned above is normally unnecessary. However, the constant-current control mode is known to require more drive transistors and more wiring lines than the constant-voltage control mode, which leads to a lower aperture ratio, and therefore, the constant-voltage control mode is widely employed.
Here, various configurations of pixel circuits that are employed with the constant-voltage control mode and perform compensation operations as above are conventionally known. Japanese Laid-Open Patent Publication No. 2005-31630 describes a pixel circuit 91 shown in
Furthermore, US Patent Application Publication No. 2006/103322 describes a pixel circuit 92 shown in
Furthermore, Japanese Laid-Open Patent Publication No. 2003-202833 describes a pixel circuit 93 shown in
Furthermore, Japanese Laid-Open Patent Publication No. 2011-34039 describes a pixel circuit 94 shown in
Note that Japanese Laid-Open Patent Publication No. 2007-79580 describes a pixel circuit 95 shown in
Patent Document 1: Japanese Laid-Open Patent Publication No. 2005-31630
Patent Document 2: US Patent Application Publication No. 2006/103322
Patent Document 3: Japanese Laid-Open Patent Publication No. 2003-202833
Patent Document 4: Japanese Laid-Open Patent Publication No. 2011-34039
Patent Document 5: Japanese Laid-Open Patent Publication No. 2007-79580
All of the pixel circuits 91 to 95 shown in
However, if the dynamic range of the data driver circuit is to be reduced in such a manner, data driver circuits having a typical configuration (with a large dynamic range) cannot be used, leading to increased production cost. Moreover, in the case of data driver circuits with a small dynamic range, the output deviation for each grayscale level becomes relatively high, resulting in increased output error.
Furthermore, if the channel length L of the drive transistor is increased, instead of changing the dynamic range of the data driver circuit, in order to reduce the current to be applied to the organic EL element, the pixel circuit is increased in area. As a result, the aperture ratio of the pixel decreases, and further, it becomes difficult to achieve a higher-definition display device.
Therefore, an objective of the present invention is to provide a pixel circuit capable of providing a nonexcessive current (microcurrent) to an organic EL element without reducing the dynamic range of a data driver circuit and increasing the channel length L of a drive transistor, and also to provide a display device including the pixel circuit.
A first aspect of the present invention is directed to an active-matrix color display device comprising:
a plurality of video signal lines for transmitting signals representing an image to be displayed;
a plurality of scanning signal lines and control lines crossing the video signal lines;
pixel circuits arranged in a matrix corresponding to respective intersections of the video signal lines and the scanning signal lines, each pixel circuit displaying a pixel in one of a plurality of primary colors for forming the image to be displayed;
a plurality of power lines for supplying a power-supply voltage to the pixel circuits;
a scanning signal line driver circuit for selectively or collectively driving the scanning signal lines and the control lines;
a video signal line driver circuit for driving the video signal lines by applying the signals representing the image to be displayed; and
a power control circuit for driving the power lines, wherein,
the pixel circuit includes:
the write control transistor included in each of the pixel circuits for displaying said at least one of the primary colors is connected to the data holding capacitor such that a voltage is provided to the threshold holding capacitor when the write control transistor is on, and the provided voltage is held in the threshold holding capacitor when the write control transistor is off, the provided voltage being the threshold voltage or having a value changed by a predetermined value from the threshold voltage.
In a second aspect of the present invention, based on the first aspect of the invention, each of pixel circuits display one of the primary colors including first to third primary colors, and the pixel circuits include a first pixel circuit displaying the first primary color and including the threshold holding capacitor.
In a third aspect of the present invention, based on the second aspect of the invention, the pixel circuits include a second pixel circuit displaying the second primary color and including the threshold holding capacitor.
In a fourth aspect of the present invention, based on the third aspect of the invention, a capacitance ratio a of the threshold holding capacitor to the data holding capacitor in the first pixel circuit is lower than a capacitance ratio b of the threshold holding capacitor to the data holding capacitor in the second pixel circuit.
In a fifth aspect of the present invention, based on the fourth aspect of the invention, each of the pixel circuits display one of the first to third primary colors, and the pixel circuits include a third pixel circuit displaying the third primary color and not including the threshold holding capacitor.
In a sixth aspect of the present invention, based on the third aspect of the invention, the pixel circuits include a third pixel circuit displaying the third primary color and including the threshold holding capacitor.
In a seventh aspect of the present invention, based on the sixth aspect of the invention, a capacitance ratio a of the threshold holding capacitor to the data holding capacitor in the first pixel circuit is lower than a capacitance ratio b of the threshold holding capacitor to the data holding capacitor in the second pixel circuit, and the ratio b is lower than a capacitance ratio c of the threshold holding capacitor to the data holding capacitor in the third pixel circuit.
In an eighth aspect of the present invention, based on the second aspect of the invention, the pixel circuits are equal in storage capacitance, the storage capacitance being either combined capacitance of the data holding capacitor and the threshold holding capacitor included in the pixel circuit or capacitance of the data holding capacitor where no threshold holding capacitor is included in the pixel circuit.
In a ninth aspect of the present invention, based on the third aspect of the invention, combined capacitance of the data holding capacitor and the threshold holding capacitor is higher in the first pixel circuit than in the second pixel circuit.
In a tenth aspect of the present invention, based on the ninth aspect of the invention, the pixel circuits include a third pixel circuit displaying the third primary color and including the threshold holding capacitor, and the combined capacitance of the data holding capacitor and the threshold holding capacitor is higher in the second pixel circuit than in the third pixel circuit.
In an eleventh aspect of the present invention, based on the ninth aspect of the invention, the first primary color is blue, the second primary color is green, and the third primary color is red.
In a twelfth aspect of the present invention, based on the second aspect of the invention, the first primary color is red, the second primary color is green, and the third primary color is blue.
In a thirteenth aspect of the present invention, based on the first aspect of the invention, each of pixel circuits display one of the first, second, third, and fourth primary colors being red, green, blue, and white, respectively, the pixel circuits include first and fourth pixel circuits displaying the first and fourth primary colors, respectively, each of the first and fourth pixel circuits including the threshold holding capacitor, and a capacitance ratio d of the threshold holding capacitor to the data holding capacitor in the fourth pixel circuit is lower than a capacitance ratio a of the threshold holding capacitor to the data holding capacitor in the first pixel circuit.
In a fourteenth aspect of the present invention, based on the first aspect of the invention, each of pixel circuits display one of the first, second, third, and fourth primary colors being red, green, blue, and yellow, respectively, the pixel circuits include first and fourth pixel circuits displaying the first and fourth primary colors, respectively, each of the first and fourth pixel circuits including the threshold holding capacitor, and a capacitance ratio d of the threshold holding capacitor to the data holding capacitor in the fourth pixel circuit is higher than a capacitance ratio a of the threshold holding capacitor to the data holding capacitor in the first pixel circuit.
In the first aspect of the present invention, the pixel circuits corresponding to one or more colors include threshold holding capacitors, so that the dynamic range of the voltage provided to the control terminal of the drive transistor can be reduced by c1/(c1+c2) where c1 is the capacitance value of the data holding capacitor, and c2 is the capacitance value of the threshold holding capacitor, whereby it is possible to provide an appropriate, not excessive, amount of current to an electro-optic element included in a pixel circuit for a color with higher luminous efficiency than other colors, such as a red-emitting organic EL element, without changing the dynamic range of the data driver circuit itself (for each color). Moreover, by providing the threshold holding capacitor in an appropriate position, it is possible to achieve a voltage-following effect to deal with an IR drop caused by the locations of the pixel circuits, so that the difference in luminance due to an IR drop can be reduced significantly, and reduction in display quality can be suppressed.
Furthermore, the circuit area of the pixel circuit can be kept from becoming larger than conventional, and by using the (typical) data driver circuit having a large dynamic range, it is possible to further reduce the error in data potential, so that variations in pixel luminance due to output deviation of the data driver circuit can be suppressed. In addition, it is possible to control the electro-optic element with a smaller amount of current without changing the size of the drive transistor, which does not involve the need to change design conditions, production processes, etc., resulting in higher flexibility of design.
In the second aspect of the present invention, the first pixel circuit for displaying the first primary color includes the threshold holding capacitor, and therefore, for example, in the case where the first primary color is red, it is possible to provide an appropriate, not excessive, amount of current to an electro-optic element included in a pixel circuit for a color with higher luminous efficiency than other colors, such as a red-emitting organic EL element.
In the third aspect of the present invention, the second pixel circuit for displaying the second primary color includes the threshold holding capacitor, and therefore, for example, in the case where the second primary color is green, it is possible to provide an appropriate, not excessive, amount of current to an electro-optic element included in a pixel circuit for a color with higher luminous efficiency than other colors, excluding the first primary color, such as a green-emitting organic EL element.
In the fourth aspect of the present invention, a capacitance ratio a in the first pixel circuit is lower than a capacitance ratio bin the second pixel circuit, and therefore, in the case where the electro-optic element for the first primary color (e.g., red) has higher luminous efficiency than the electro-optic element for the second primary color (e.g., green), it is possible to provide a smaller current to the more efficient element, so that an appropriate, not excessive, amount of current can be provided to each electro-optic element.
In the fifth aspect of the present invention, the third pixel circuit for displaying the third primary color (e.g., blue) does not include the threshold holding capacitor, and therefore, it is possible to provide a large current to an electro-optic element with low luminous efficiency (e.g., blue), and a small current to the pixel circuits for displaying the first and second primary colors, so that an appropriate, not excessive, amount of current can be provided to each electro-optic element. Particularly in the case where it is desirable that the colors be rendered equal in emission luminance without changing the dynamic range of the data driver circuit itself (for each color), it is possible to readily set the ratios a and b with reference to the third pixel circuit.
In the sixth aspect of the present invention, the third pixel circuit for displaying the third primary color includes the threshold holding capacitor, and therefore, for example, in the case where the third primary color is blue, (in some cases, the amount of current provided might be excessive depending on the configuration of the data driver circuit, but still) it is possible to provide an appropriate, not excessive, amount of current even to an electro-optic element with low luminous efficiency, e.g., a green-emitting organic EL element.
In the seventh aspect of the present invention, the capacitance ratio a in the first pixel circuit is lower than the capacitance ratio b in the second pixel circuit, and the capacitance ratio b in the second pixel circuit is lower than the capacitance ratio c in the third pixel circuit, so that a weaker current can be provided to an element with good luminous efficiency, and an appropriate, not excessive, amount of current can be provided to each electro-optic element.
The eighth aspect of the present invention allows the pixel circuits to be approximately equal in layout area for capacitance, and therefore, it is possible to provide an appropriate, not excessive, amount of current to each electro-optic element while maintaining the circuit configuration that can be readily designed and produced.
In the ninth aspect of the present invention, the combined capacitance is higher in the first pixel circuit than in the second pixel circuit, and therefore, for example, in the case where more capacitance is required to be stored for the reason that the ratio a in the first pixel circuit is high, it is possible to ensure a sufficient amount of storage capacitance, thereby preventing grayscale error, flicker, etc. Moreover, on the other hand, in the case where the luminous efficiency of an electro-optic element is lower in the second pixel circuit than in the first pixel circuit, it is possible to increase the combined capacitance to increase the aperture ratio, thereby increasing the layout area for capacitance.
In the tenth aspect of the present invention, the combined capacitance is higher in the second pixel circuit than in the third pixel circuit, and therefore, for example, in the case where more capacitance is required to be stored for the reason that the ratio b in the second pixel circuit is high, it is possible to ensure a sufficient amount of storage capacitance, thereby preventing grayscale error, flicker, etc. Moreover, on the other hand, in the case where the luminous efficiency of an electro-optic element is lower in the third pixel circuit than in the second pixel circuit, it is possible to increase the combined capacitance to increases the aperture ratio, thereby increasing the layout area for capacitance.
In the eleventh aspect of the present invention, the first primary color is blue, the second primary color is green, the third primary color is red, and therefore, since the blue and red electro-optic elements have the lowest and highest luminous efficiency, respectively, among typical electro-optic elements such as organic EL elements, the combined capacitance value is increased more for the pixel circuits with higher capacitance ratios, thereby ensuring the storage capacitance.
In the twelfth aspect of the present invention, the first primary color is red, the second primary color is green, the third primary color is blue, and therefore, since the blue and red electro-optic elements have the lowest and highest luminous efficiency, respectively, among typical electro-optic elements such as organic EL elements, an appropriate, not excessive, amount of current can be provided to each electro-optic element.
In the thirteenth aspect of the present invention, the first primary color is red, the second primary color is green, the third primary color is blue, the fourth primary color is white, the capacitance ratio d is lower than the capacitance ratio a, and therefore, the white pixel circuit typically having the highest luminous efficiency (for example, because there is no loss due to a color filter) has the lowest capacitance ratio, so that an appropriate, not excessive, amount of current can be provided to an electro-optic element included in the white pixel circuit with higher luminous efficiency than the other colors.
In the fourteenth aspect of the present invention, the first primary color is red, the second primary color is green, the third primary color is blue, the fourth primary color is yellow, the capacitance ratio d is higher than the capacitance ratio a, and therefore, the capacitance ratio in the yellow pixel circuit typically having lower luminous efficiency than the red pixel circuit is at least higher than that in the red pixel circuit, so that an appropriate, not excessive, amount of current can be provided to an electro-optic element included in the red pixel circuit with the highest luminous efficiency, and also to an electro-optic element included in the yellow pixel circuit with relatively high luminous efficiency.
The display device 110 is provided with n parallel scanning signal lines Gi and m parallel data lines Sj perpendicular thereto. Although omitted in the figure, there are further provided scanning signal lines G0 for initialization control to be described later. The (m×n) pixel circuits 10 are arranged in a matrix corresponding to the intersections of the scanning signal lines Gi and the data lines Sj, and display pixels in respective colors to constitute a display image. Moreover, n control lines Ei are provided parallel to the scanning signal lines Gi, and n pairs of power lines VPi are provided parallel to the data lines Sj. In addition, there is also provided a common power line 9, which is a current-supply trunk line for connecting the power control circuit 4 and the power lines VPi. The common power line 9 consists of a pair of wiring portions for providing two potentials to be described later. The scanning signal lines Gi and the control lines Ei are connected to the gate driver circuit 2, and the data lines Sj are connected to the data driver circuit 3. Each pair of the power lines VPi provides two potentials to be described later, and is connected to the power control circuit 4 via its corresponding portion of the common power line 9. The pixel circuit 10 is supplied with a common potential Vcom by an unillustrated common electrode. Here, each pair of power lines VPi is connected at one end to the paired portions of the common power line 9, but each pair of power lines VPi may be connected at both ends (or at three or more connecting points).
The display control circuit 1 outputs control signals to the gate driver circuit 2, the data driver circuit 3, and the power control circuit 4. More specifically, the display control circuit 1 outputs a timing signal OE, a start pulse YI, and a clock YCK to the gate driver circuit 2, a start pulse SP, a clock CLK, display data DA, and a latch pulse LP to the data driver circuit 3, and a control signal CS to the power control circuit 4.
The gate driver circuit 2 includes a shift register circuit, a logical operation circuit, and a buffer (none of the above is shown in the figure). The shift register circuit sequentially transfers the start pulses YI in synchronization with the clock YCK. The logical operation circuit performs a logical operation between the timing signal OE and a pulse outputted from each stage of the shift register circuit. Outputs from the logical operation circuit are provided through the buffer to their corresponding scanning signal lines Gi and control lines Ei. Each scanning signal line Gi is connected to m pixel circuits 10, and the m pixel circuits 10 are collectively selected through the scanning signal line Gi.
The data driver circuit 3 includes an m-bit shift register 5, a register 6, a latch circuit 7, and m D/A converters 8. The shift register 5 has m cascaded registers, such that a start pulse SP supplied to the register in the first stage is transferred in synchronization with a clock CLK, and the register in each stage outputs a timing pulse DLP. The register 6 is supplied with display data DA in accordance with the output timing of the timing pulses DLP. The register 6 stores the display data DA in accordance with the timing pulses DLP. When the register 6 has stored display data DA for one row, the display control circuit 1 outputs a latch pulse LP to the latch circuit 7. Upon reception of the latch pulse LP, the latch circuit 7 holds the display data stored in the register 6. The D/A converters 8 are provided corresponding to the data lines Sj. The D/A converters 8 convert the display data held in the latch circuit 7 into analog voltages, and apply the resultant analog voltages to the data lines Sj.
In accordance with the control signal CS, the power control circuit 4 applies a power supply potential VDD to one of the paired portions of the common power line 9 and an initialization potential Vini to the other portion. Since each pair of power lines VPi is connected to the common power line 9, as shown in
For example, in the case where n-channel transistors are used, similar operations to the above case can be readily realized by inverting, for example, the power supply potential and the level of the control lines, without changing the connection relationships between the TFTs and the capacitors. This will be described below and can be applied similarly to embodiments to be described later, and therefore, the following description will be omitted in the embodiments.
Each of the six TFTs 11 to 16 functions as an initialization control transistor, a write control transistor, a drive transistor, or a light-emission control transistor. Note that the functions listed above are simply major functions, and other functions may be provided. The details of the above functions will be described later. Moreover, the organic EL element 17 functions as an electro-optic element.
Note that in addition to the organic EL element, the term “electro-optic element” herein refers to any element whose optical properties change upon application of electricity, e.g., an FED (field emission display) element, an LED, a charge-driven element, a liquid crystal, or E Ink (Electronic Ink). Moreover, although the following description takes the organic EL element as an example of the electro-optic element, the description can be applied similarly to any light-emitting elements for which the amount of light emission is controlled in accordance with the amount of current.
The pixel circuit 10 is connected to two scanning signal lines Gi and G(i-1), a control line Ei, a data line Sj, a pair of power lines VPj, and an electrode having a common potential Vcom, as shown in
The other conductive terminal of the TFT 13 is connected to one of the power lines VPj, which provides a power supply potential VDD. The other conductive terminal of the TFT 15 is connected to the data line Sj. The other conductive terminal of the TFT 14 is connected to an anode terminal of the organic EL element 17.
Furthermore, the aforementioned conductive terminal of the TFT 12 is connected to a gate terminal (control terminal) of the TFT 11, and the other conductive terminal of the TFT 12 is connected to the drain terminal of the TFT 11. Such connections allow the TFT 11 to be diode-connected.
Furthermore, the TFT 16 is connected at one conductive terminal to the power line VPj, which provides an initialization potential Vini, and at the other conductive terminal to the gate terminal of the TFT 11. The data holding capacitor 18 is also connected at one terminal to the gate terminal of the TFT 11 and at the other terminal to the power line VPj that provides the power supply potential VDD. Moreover, the threshold holding capacitor 19 is positioned between the source terminal and the gate terminal of the TFT 11. The organic EL element 17 has the common potential Vcom applied at its cathode terminal.
The scanning signal line Gi, is connected to a gate terminal (control terminal) of each of the TFTs 12 and 15. The TFTs 12 and 15 function as write control transistors. The scanning signal line G(i-1) is connected to a gate terminal (control terminal) of the TFT 16. The TFT 16 functions as an initialization control transistor. The control line Ei is connected to a gate terminal (control terminal) of each of the TFTs 13 and 14. The TFTs 13 and 14 function as light-emission control transistors.
At time t2, the scanning signal line G(i-1) is deactivated, and the scanning signal line Gi is activated, so that the TFTs 12 and 15 are turned on. Moreover, the potential of the data line Sj is set to a level that accords with display data. Such a potential will be referred to below as a “data potential Vdata”. Accordingly, the potential of node B shown at the source terminal of the TFT 11 changes to Vdata+Vth (where Vth is the threshold voltage of the TFT 11) as a result of the TFT 11 being diode-connected, and the potential of node B is stabilized at that voltage. Note that at this time, the TFT 14 is off, and therefore no current is applied to the organic EL element 17.
At time t3, the scanning signal line Gi is deactivated, so that the TFTs 12 and 15 are turned off, the threshold holding capacitor 19 holds the threshold voltage Vth, and the data holding capacitor 18 holds a voltage having the value (Vdata+Vth−VDD) because its terminal is connected to the power supply potential VDD. The above operation is referred to as a writing operation.
Here, assuming that the capacitance value of the data holding capacitor 18 is c1, and the capacitance value of the threshold holding capacitor 19 is c2, the stored charge Q1 of the data holding capacitor 18 and the stored charge Q2 of the threshold holding capacitor 19 are represented by the following equations (1) and (2), respectively.
Q1=c1×(Vdata+Vth−(VDD) (1)
Q2=c2×Vth (2)
At time t4, the control line Ei is activated, so that the TFTs 13 and 14 are turned on. As a result, a current flows through the organic EL element 17, so that light emission is started. At this time, the potential of node B is set to the power supply potential VDD, and the data holding capacitor 18 and the threshold holding capacitor 19 become equal in the value of their terminal-to-terminal voltages (i.e., the difference in potential between nodes A and B shown in the figure). The voltage will be denoted by Vgs below. After completion of the write period, no charges escape from node A, which is obvious from the connection relationships of the TFTs, and charge redistribution occurs, so that the combined stored charge (Q1+Q2) of the data holding capacitor 18 and the threshold holding capacitor 19 is held. Accordingly, the voltage Vgs can be represented by the following equation (3).
During the light emission period (from time t4) as described above, the power supply potential VDD is set at a value allowing the TFT 11 to operate in the saturation region, and therefore, if the channel-length modulation effect is not taken into consideration, the current I that flows through the TFT 11 during the light emission period can be obtained by the following equation (4).
I=1/2·W/L·μ·Cox(Vgs−Vth)2 (4).
In equation (4), W is the gate width, L is the gate length, p is the carrier mobility, and Cox is the gate oxide capacitance.
Further, the following equation (5) can be derived from equations (3) and (4).
I=1/2·W/L·μ·Cox·K2(Vdata−VDD)2 (5)
In equation (5), K=c1/(c1+c2).
The current I shown in equation (5) changes in accordance with the data potential Vdata, but does not depend on the threshold voltage Vth of the TFT 11. Accordingly, even in the case where there are variations in the threshold voltage Vth, or the threshold voltage Vth changes over time, it is possible to apply the current to the organic EL element 17 in accordance with the data potential Vdata, thereby allowing the organic EL element 17 to emit light with a desired luminance.
Here, the overdrive voltage Vov of the TFT 11, which is of a p-channel type, is defined as a value obtained by subtracting the threshold voltage Vth from the gate-source voltage Vgs of the TFT 11, and therefore, can be represented by the following equation (6).
Vov=Vgs−Vth=c1/(c1+c2)×(Vdata−VDD) (6)
Accordingly, as can be appreciated by applying equation (6) to equation (5), the current I flowing through the TFT 11 during the light emission period is proportional to the square of the overdrive voltage Vov. Therefore, application of a current to the organic EL element 17 in accordance with the data potential Vdata will also be described below as application of a current in accordance with the overdrive voltage Vov for the sake of convenience.
In this manner, the current is applied continuously to the organic EL element 17 while the potential of the control line Ei is active, and therefore, the pixel circuits 10 in the i'th row emit light with a luminance in accordance with the data potential provided thereto. At this time, pixel circuits 10 in the (i+1)'th and subsequent rows might be in the middle of the write period. That is, when a pixel circuit is in the middle of the write period, pixel circuits in previous rows are lit up. Accordingly, the power supply potential VDD might experience a voltage drop (i.e., an IR drop), and a change of the power supply potential VDD results in a change of the overdrive voltage Vov, so that the luminance might vary depending on the location of the pixel circuit.
Here, as in the case of the conventional pixel circuit 91 described earlier and shown in
Furthermore, the charges in the data holding capacitor 18 and the threshold holding capacitor 19 are added during the light emission period, as described above, and therefore, both of them function as storage capacitance. As a result, storage capacitance can be increased without increasing the size of the data holding capacitor 18 more than in the conventional case. Moreover, by setting the combined capacitance value of the data holding capacitor 18 and the threshold holding capacitor 19 so as to be equal to the capacitance value of the conventional data holding capacitor 18, it is rendered possible to create the same storage capacitance with the same area as in the conventional pixel circuit, so that the threshold holding capacitor 19 can be added without increasing the circuit area of the pixel circuit.
Furthermore, the dynamic range (the difference between the maximum and the minimum) of the data potential Vdata required for defining the emission luminance of the organic EL element 17 (proportional to the amount of current) can be decreased by c1/(c1+c2) compared to the conventional dynamic range. For example, in the case where the proportion of c2 to c1 is 1, when the data driver circuit 3 having a dynamic range of 4V is used, the dynamic range of the overdrive voltage Vov applied to the pixel circuit is 2V. Accordingly, even in the case where the dynamic range of, for example, 4V is excessively large for the amount of current to be applied to the organic EL element 17, an appropriate, not excessive, amount of current can be applied to the organic EL element 17 without changing the dynamic range of the data driver circuit 3.
This is effective in practical use; the reason for this is that in the case where a typical data driver circuit 3 is used, the amount of current is often excessive to drive a typical organic EL element, and it is often preferable to control the element with a smaller amount of current.
Furthermore, the error in data potential due to an output deviation of the data driver circuit 3 does not necessarily decrease in proportion as the dynamic range decreases, and in general, the rate of error per grayscale level decreases relatively as the dynamic range increases. Accordingly, by using the (typical) data driver circuit 3 having a large dynamic range, it is possible to further reduce the error in data potential. Thus, it is possible to suppress variations in pixel luminance due to output deviations of the data driver circuit 3.
Furthermore, in a conceivable method for reducing the amount of current for driving the organic EL element while keeping a large dynamic range of the data driver circuit 3, the channel length L of the TFT 11 that drives the organic EL element is increased. However, high-definition display devices with a high aperture ratio are recently required, and therefore, pixel circuits with smaller areas are preferable. Accordingly, it is not preferable to increase the channel length L of the TFT 11. The present embodiment allows the organic EL element to be controlled with a smaller amount of current without changing the size of the TFT 11.
Further, such a change in the configuration of the TFT included in the pixel circuit necessitates mobility adjustments, hence changes in design conditions, production processes, etc. The present embodiment allows use of the TFT 11 having the same configuration as in the conventional embodiment, resulting in higher flexibility of design.
Next, a variant on the configuration of the pixel circuit 10 shown in
Here, the data holding capacitor 18 is connected at one terminal to the gate terminal of the TFT 11 as in the case shown in
Furthermore, the pixel circuit 10a shown in
Therefore, unlike in the first embodiment, the potential at the gate terminal of the TFT 11 is not affected by a change of the power supply potential VDD. Accordingly, the luminance of a pixel circuit is not affected by a drop of the power supply potential VDD (an IR drop) due to other pixel circuits being lit up. Thus, higher-quality display can be provided. Note that in the case where a constant potential other than the initialization potential Vini can be provided, such a constant potential may be used in place of the initialization potential Vini.
In this manner, the data potential cannot be held if the data holding capacitor 18 is connected at the terminal to a constant-potential point. The same can be said of the threshold holding capacitor 19, as will be described later, and in this regard, the threshold holding capacitor 19 differs in function from the auxiliary capacitor Caux of the pixel circuit 95 described in Japanese Laid-Open Patent Publication No. 2007-79580 and shown in
In the first embodiment, all pixel circuits 10 are provided with respective threshold holding capacitors 19, but only the pixel circuits for emitting red (R) as shown in
In this case, only the pixel circuits for emitting red (R) achieve the same effect as in the first embodiment, and such an effect does not reach the pixel circuits for emitting either green (G) or blue (B). The reason that this configuration has the effect on the entire display device is because the red-emitting organic EL elements of the pixel circuits for emitting red (R) generally have high luminous efficiency.
Specifically, the red luminescent material for organic EL elements currently in general use has higher luminous efficiency than the green and blue luminescent materials, and therefore, upon application of a large current, the emission luminance of the red luminescent material becomes higher than that of the luminescent materials for the other colors, so that the white balance (color balance) of a display image becomes abnormal. Therefore, the threshold holding capacitor 19 is provided in the pixel circuit for emitting red (R), such that a more appropriate current, i.e., a microcurrent, flows, thereby consequently decreasing the dynamic range of the voltage provided to the gate terminal of the drive transistor by c1/(c1+c2). Thus, it is possible to provide an appropriate, not excessive, amount of current to the red-emitting organic EL element 17 without changing the dynamic range of the data driver circuit 3 itself (for each color).
Furthermore, the green luminescent material for organic EL elements currently in general use has higher luminous efficiency than the blue luminescent material. Accordingly, similar to the above, it is conceivable to provide the threshold holding capacitor 19 not only in the pixel circuit for emitting red (R) but also in the pixel circuit for emitting green (G), such that a weaker current flows, thereby consequently decreasing the dynamic range by c1/(c1+c2). With this configuration also, it is possible to provide an appropriate, not excessive, amount of current to both the red-emitting organic EL element 17 and the green-emitting organic EL element 17 without changing the dynamic range of the data driver circuit 3 itself (for each color).
In addition, the blue luminescent material for organic EL elements currently in general use has the lowest luminous efficiency of all of the colors, but similar to the above, the threshold holding capacitor 19 may also be provided in the pixel circuit for emitting blue (B) either when the dynamic range of the typical data driver circuit 3 is excessively large or in order to reduce the influence of a decrease in the power supply potential (due to an IR drop).
Here, by suitably adjusting the value c1/(c1+c2) of the pixel circuit for each color, the need to change the dynamic range of the data driver circuit 3 for each color can be eliminated. In such a case, among the pixel circuits for all of the colors, the pixel circuit for emitting red (R) has the lowest ratio (c1/c2) of the threshold holding capacitor 19 to the data holding capacitor 18, and the pixel circuit for emitting blue (B) has the highest ratio.
Furthermore, setting the ratio can be facilitated by allowing the pixel circuit for emitting blue (B) to have the highest ratio among the pixel circuits for all of the colors, i.e., typically by not providing the threshold holding capacitor 19 in the pixel circuit for emitting blue (B) (hence c2=0). This will be described below using specific numerical values with reference to
R:G:B=1:2:4 (7)
Here, assuming that the grayscale voltage amplitude, which is a voltage range from the minimum to maximum grayscale level, is 4V where it corresponds to the dynamic range of the pixel circuit for emitting blue (B), it can be appreciated with reference to equation (5) that the grayscale voltage amplitude is about 2.8V for the pixel circuit for emitting blue (B), and also 2V for the pixel circuit for emitting red (R). Assuming that the capacitance of the data holding capacitor 18 in the pixel circuit is 1 for all of the colors where the threshold holding capacitor 19 is not provided in the pixel circuit for emitting blue (B) (i.e., c2=0), in order to achieve the aforementioned ratio among the pixel circuits for the colors where such dynamic ranges as those mentioned above are realized, the capacitance of the data holding capacitor 18 may be set at 1 for the pixel circuit for emitting red (R) and also about 0.41 for the pixel circuit for emitting green (G). This makes it easy to suitably set the pixel current of the pixel circuit for each color while fixing the grayscale voltage amplitude at 4V for all of the pixel circuits, i.e., without changing the dynamic range of the data driver circuit 3 from 4V.
Furthermore, it is conceivable to set the combined capacitance value (c1+c2) of the data holding capacitor 18 and the threshold holding capacitor 19 in the pixel circuit for each color either while maintaining the aforementioned ratio or without taking the ratio into consideration, in a manner as will be described below.
First, it is conceivable to equalize the pixel circuits for all of the colors in terms of the combined capacitance value (c1+c2). This allows the dynamic range to be set freely while keeping the same layout area to be occupied by the capacitance element in each pixel circuit.
Furthermore, it is conceivable to set the combined capacitance value (c1+c2) of the pixel circuit for red (R) lower than that of the pixel circuit for green (G), which is set lower than the combined capacitance value (c1+c2) of the pixel circuit for blue (B). In general, among the organic EL elements used in the pixel circuits for all of the colors, the element for blue (B) has the shortest service life, and the element for red (R) has the longest service life. Accordingly, to make the service life of an organic EL element last long, it is preferable to reduce the density of current flowing therethrough, and to this end, it is preferable to increase the layout area for that element, i.e., the portion that emits light (that is, it is preferable to increase the aperture ratio). Therefore, the combined capacitance value is set as described above, whereby the layout area occupied by the capacitance element increases as the service life of the organic EL element included in the pixel circuit becomes shorter, so that the layout area for the light-emitting portion can be increased.
Given the aforementioned ratio, it is conceivable to set the combined capacitance value (c1+c2) of the pixel circuit for red (R) higher than that of the pixel circuit for green (G), which is set higher than the combined capacitance value (c1+c2) of the pixel circuit for blue (B). Such settings render it possible to prevent deviations of grayscale levels and occurrence of flicker. Specifically, when the capacitance of the data holding capacitor 18 and the threshold holding capacitor 19 is set such that the dynamic range is taken into consideration in the ratio between their capacitance values in a manner as described above, the pixel circuit for red (R) has the lowest charge held in the capacitors during the light emission period, and the pixel circuit for blue (B) has the highest charge. As the held charge decreases, the influence on the held charge by leakage currents in the TFTs 12 and 16 increases, which might result in display grayscale error, flicker, etc. Therefore, the combined capacitance value (c1+c2) of the pixel circuit is set for each color in the above manner, thereby eliminating or reducing the aforementioned influence on the pixel circuits for red (R) and green (G), which respectively have the highest and the second highest charge held in the capacitors.
The primary colors displayed by the pixel circuits have been described above as being red (R), green (G), and blue (B), but other primary colors may be displayed. Moreover, the aforementioned ratio or combined capacitance has been described above on the premise that the organic EL element that emits red light has the highest efficiency and the organic EL element that emits blue light has the lowest efficiency, but in the case where the efficiency, characteristics, etc., of the organic EL elements for the colors change as a result of, for example, development of a new material, the primary colors may be changed suitably depending on the details of such changes.
Furthermore, the pixel circuits may include those that emit white (W) in addition to red (R), green (G), and blue (B). It is often the case that when such a pixel configuration is employed, all pixel circuits typically include white light-emitting elements, and color filters for emitting the colors R, G, and B are provided. In such a configuration, only the pixel circuit for white (W) is not provided with a color filter, and therefore, the luminous efficiency thereof is the highest. Accordingly, it is preferable that the aforementioned ratio of the pixel circuit for white (W) be set lower than that of another pixel circuit (e.g., the pixel circuit for red). As a result, it is possible to readily set a suitable pixel current of the pixel circuit for each color without changing the dynamic range of the data driver circuit 3.
Still further, the pixel circuits may include those that emit yellow (Y) in addition to red (R), green (G), and blue (B). Currently, the luminous efficiency of the organic EL element for emitting yellow (Y) is similar to that of the organic EL element for emitting green (G). Accordingly, the aforementioned ratio of the organic EL element for emitting yellow (Y) is set higher than that of the pixel circuit for emitting red (R) but lower than that of the pixel circuit for emitting blue (B). As a result, it is possible to readily set a suitable pixel current of the pixel circuit for each color without changing the dynamic range of the data driver circuit 3. While the foregoing has been given as a variant of the first embodiment, similar effects can be achieved by similar configurations in other embodiments and variants thereof.
The pixel circuit 20 is connected to a scanning signal line Gi, a control line Ei, an initialization control line Ii, a data line Sj, a pair of power lines VPj, and an electrode having a common potential Vcom, as shown in
Furthermore, the TFT 25 is connected at one conductive terminal to the drain terminal of the TFT 22 and at the other conductive terminal to an anode terminal of the organic EL element 17.
Furthermore, the TFT 21 is connected at one conductive terminal to the data line S and at the other conductive terminal to one terminal of the data holding capacitor 28. Both of the TFTs 24 and 26 are connected at one conductive terminal to the power line VPj that provides an initialization potential Vini. The TFT 24 is connected at the other conductive terminal to the other terminal of the data holding capacitor 28, and the TFT 26 is connected at the other conductive terminal to the opposite terminal of the data holding capacitor 28.
The data holding capacitor 28 is connected at the other terminal to the gate terminal of the TFT 22. Moreover, the threshold holding capacitor 29 is positioned between the source and gate terminals of the TFT 22. The organic EL element 17 has the common potential Vcom applied at its cathode terminal.
The scanning signal line Gi is connected to a gate terminal of each of the TFTs 21 and 23. The TFTs 21 and 23 function as write control transistors. The initialization control line Ii is connected to a gate terminal of the TFT 24. The TFT 24 functions as an initialization control transistor. The control line Ei is connected to a gate terminal of each of the TFTs 25 and 26. The TFTs 25 and 26 function as light-emission control transistors. Moreover, the TFT 26 provides a constant potential, such as the initialization potential Vini (or the power supply potential VDD as described above), to the terminal of the data holding capacitor 28 during light emission, and therefore, also functions as a constant-potential supply transistor.
More specifically, at time t22, the scanning signal line Gi is activated, and the initialization control line Ii is kept active, though the scanning signal line G(i-1) is deactivated. Accordingly, once the initialization control line Ii is activated at time t21, the gate terminal of the TFT 22 and the power line VPj that provides the initialization potential Vini are electrically connected, so that the initialization potential Vini is written to the data holding capacitor 28 (an initialization operation), and thereafter, the initialization operation is still continued at time t22. Note that the initialization potential Vini is assumed to be a voltage lower than VDD+Vth but at a sufficient level to turn on the TFT 22.
In this manner, the scanning signal line Gi is activated at time t22 during the initialization operation, so that the TFTs 21 and 23 are turned on, whereby it is ensured that the initialization potential Vini is written to the data holding capacitor 28. This process is the same as conventional, but in the present embodiment, it can be performed in a different manner from the conventional manner.
More specifically, the pixel circuit of the present embodiment can be driven (with the waveforms shown in
Thereafter, at time t23, the initialization control line Ii is deactivated, so that as in the first embodiment, the potential of node B changes to Vdata+Vth (where Vth is the threshold voltage of the TFT 22) as a result of the TFT 22 being diode-connected, and the potential of node B is stabilized at that voltage. Note that at this time, the TFT 25 is off, and therefore no current is applied to the organic EL element 17.
Here, assuming that the capacitance value of the data holding capacitor 28 is c1, and the capacitance value of the threshold holding capacitor 29 is c2, the stored charge Q1 of the data holding capacitor 28 and the stored charge Q2 of the threshold holding capacitor 29 can be represented by the following equations (8) and (9), respectively.
Q1=c1×(VDD+Vth−Vdata) (8)
Q2=c2×Vth (9)
Once the control line Ei is activated at time t25, the TFTs 25 and 26 are turned on. As a result, a current is applied to the organic EL element 17, so that the organic EL element 17 starts emitting light. Here, no charges escape from node A, as described earlier, and therefore, the combined stored charge (Q1+Q2) of the data holding capacitor 18 and the threshold holding capacitor 19 is the same between the time of writing and the time of light emission. Accordingly, assuming that the potential of node A (the gate potential of the TFT 22) is Vx, the equality as shown in the following equation (10) is established.
Solving equation (10) in terms of Vx results in the following equation (11).
Vx=−c1/(c1+c2)×(Vdata−Vini)+VDD+Vth (11)
Furthermore, the overdrive voltage Vov of the TFT 22 can be defined as a value obtained by subtracting the threshold voltage Vth from the gate-source voltage Vgs of the TFT 22, and therefore, can be represented by the following equation (12) based on equation (11).
Accordingly, as can be appreciated with reference to equation (12), the current flowing through the organic EL element is not affected by variations in the threshold voltage Vth and even by changes of the power supply potential VDD, as in the first embodiment.
Furthermore, in the case where the power supply potential VDD fluctuates during the light emission period, the gate potential Vx of the TFT 22 changes so as to follow the changes of the power supply potential VDD, as can be appreciated with reference to equation (11). Therefore, during the light emission period, the emission luminance decreases with the power supply potential VDD, and the smaller the capacitance value c1 of the data holding capacitor 28 is than the capacitance value c2 of the threshold holding capacitor 29, the closer the potentials are in terms of the amount of change (the more readily the changes can be followed). In this manner, the difference in luminance due to an IR drop caused by the locations of the pixel circuits can be reduced significantly, so that reduction in display quality can be suppressed sufficiently.
In this manner, when compared to the first embodiment, the configuration of the present embodiment renders it possible to further reduce the difference in luminance due to an IR drop caused by the locations of the pixel circuits, thereby suppressing reduction in display quality.
Furthermore, in spite of the threshold holding capacitor 29 being provided additionally, it is still possible to keep the circuit area of the pixel circuit from becoming larger than conventional, as in the first embodiment. Moreover, it is possible to provide an appropriate, not excessive, amount of current to the organic EL element 17 without changing the dynamic range of the data driver circuit 3. In addition, by using the (typical) data driver circuit 3 having a large dynamic range, it is rendered possible to further reduce the error in data potential and thereby suppress variations in pixel luminance due to output deviation of the data driver circuit 3. Further, it is possible to control the organic EL element with a smaller amount of current without changing the size of the TFT 22, which does not involve the need to change design conditions, production processes, etc., resulting in higher flexibility of design. Still further, employing the same drive as in the first embodiment allows the initialization control line Ii to be omitted, so that the configuration of the pixel circuit can be simplified, making it possible to increase the aperture ratio.
Next, a first variant on the configuration of the pixel circuit 20 shown in
Here, the threshold holding capacitor 29 is connected at one terminal to the gate terminal of the TFT 22 as in the case shown in
The potential cannot be held unless the threshold holding capacitor 29 is connected at the terminal to a constant-potential point in the above manner. Accordingly, the threshold holding capacitor 29 differs in function from the auxiliary capacitor Caux, which is included in the pixel circuit 95 shown in
Here, the potential being held in the data holding capacitor 28 during the write operation is the same as in the second embodiment, but the potential being held in the threshold holding capacitor 29 is (VDD+Vth−Vini), which is different compared to the second embodiment. Accordingly, the stored charge Q1 of the data holding capacitor 28 and the stored charge Q2 of the threshold holding capacitor 29 can be represented by the following equations (13) and (14), respectively.
Q1=c1×(VDD+Vth−Vdata) (13)
Q2=c2×(VDD+Vth−Vini) (14)
Therefore, the potential Vx of node A (the gate potential of the TFT 22) can be represented by the following equation (15) based on equation (11).
Vx=−c2/(c1+c2)×Vini−c1/(c1+c2)×Vdata+Vth (15)
Furthermore, the overdrive voltage Vov of the TFT 22 can be represented by the following equation (16) based on equation (15).
Vov=−c2/(c1+c2)×Vini−c1/(c1+c2)×Vdata (16)
Accordingly, as can be appreciated with reference to equation (16), the current flowing through the organic EL element is not affected by variations in the threshold voltage Vth and is not affected at all even by changes of the power supply potential VDD both at the time of writing and at the time of light emission, as in the first embodiment. Therefore, the difference in luminance due to an IR drop at the time of writing can be eliminated completely. In this manner, the difference in luminance due to an IR drop caused by the locations of the pixel circuits can be significantly reduced, so that reduction in display quality can be sufficiently suppressed.
However, in the case where the power supply potential VDD fluctuates during the light emission period, the gate potential Vx of the TFT 22 does not follow the changes of the power supply potential VDD at all. Accordingly, during the light emission period, the emission luminance decreases with the power supply potential VDD, resulting in a luminance difference due to an IR drop. In this regard, the configuration of the second embodiment is preferable.
Next, a second variant on the configuration of the pixel circuit 20 shown in
Here, unlike in the second embodiment, the TFT 26 is connected at one conductive terminal to the power line VP that provides the power supply potential VDD, though the other conductive terminal of the TFT 26 is connected to one terminal of the data holding capacitor 28, as in the second embodiment shown in
Here, the potentials being held in the data holding capacitor 28 and the threshold holding capacitor 29 during the write operation are the same as those given by equations (8) and (9) (in the second embodiment), but as can be appreciated with reference to
Q1+Q2=(c1×(VDD+Vth−Vdata)+c2×Vth)=(c1×(Vx−VDD)+c2×(Vx−VDD) (17)
Solving equation (17) in terms of Vx results in the following equation (18).
Vx=c1/(c1+c2)×Vdata+(2×c1+c2)/(c1+c2)×VDD+Vth (18)
Furthermore, the overdrive voltage Vov of the TFT 22 can be represented by the following equation (19) based on equation (18).
Vov=−c1/(c1+c2)×Vdata+c1/(c1+c 2)×VDD=c1/(c1+c2)×(VDD−Vdata) (19)
Accordingly, as can be appreciated with reference to equation (19), the current flowing through the organic EL element is not affected by variations in the threshold voltage Vth and is not affected at all even by changes of the power supply potential VDD at the time of writing, as in the first embodiment.
Furthermore, in the case where the power supply potential VDD fluctuates during the light emission period, the gate potential Vx of the TFT 22 changes so as to completely follow the changes of the power supply potential VDD. Therefore, during the light emission period, the emission luminance also is not affected by the changes of the power supply potential VDD at all.
Therefore, it is possible to completely eliminate the difference in luminance due to an IR drop both at the time of writing and at the time of light emission. In this manner, the difference in luminance due to an IR drop caused by the locations of the pixel circuits can be completely eliminated, so that the problem with reduction in display quality due to an IR drop can be completely solved.
The pixel circuit 30 is connected to a scanning signal line Gi the control lines Eai to Edi a data line Sj, the power line VPj, and an electrode having a common potential Vcom, as shown in
The TFT 36 is connected at one conductive terminal to the drain terminal of the TFT 31 and at the other conductive terminal to a gate terminal of the TFT 31. This allows the TFT 31 to be diode-connected.
Furthermore, the TFT 34 is connected at one conductive terminal to the data line Sj and at the other conductive terminal to one terminal of the threshold holding capacitor 39 and the source terminal of the TFT 31. The other terminal of the threshold holding capacitor 39 is connected to the gate terminal of the TFT 31.
Furthermore, the data holding capacitor 38 is connected at one terminal to the electrode having the common potential Vcom via the TFT 33. Note that it may be connected to a line that provides a potential significantly lower than the power supply potential VDD, rather than the electrode. Further, the data holding capacitor 38 is connected at another terminal to the source terminal of the TFT 31 via the TFT 32. The organic EL element 17 has the common potential Vcom applied at the anode terminal.
The scanning signal line Gi is connected to a gate terminal of the TFT 34. Moreover, the control line Edi is connected to a gate terminal of the TFT 33. In addition, the control line Eai is connected to a gate terminal of the TFT 36. The TFTs 33, 34, and 6 function as write control transistors. Further, the TFT 33 also functions as a constant-potential supply transistor in order to provide the common potential Vcom or another constant potential to the terminal of the data holding capacitor 38.
The control line Eci is connected to a gate terminal of the TFT 32. Moreover, the control line Ebi is connected to a gate terminal of the TFT 35. The TFTs 32 and 35 function as light-emission control transistors. Note that the TFT 35 also functions as a write control transistor because it is turned on when a data potential Vdata is written.
Next, the operation of the pixel circuit 30 will be described. Initially, at the time of the operation of writing the data potential Vdata, the TFTs 33 to 36 are turned on, so that the data potential Vdata is provided to the other terminal of the data holding capacitor 38. At this time, the TFT 32 is turned off, so that the organic EL element 17 does not emit light.
Thereafter, the TFT 35 is turned off, so that the threshold voltage Vth of the TFT 31 is obtained, and when the source-drain voltage of the TFT 31 is equalized with the threshold voltage Vth, the TFT 31 is turned off, thereby completing the operation of obtaining the threshold voltage. At this time, the potential at the gate terminal of the TFT 31 (node A in
Next, at the time of a light-emitting operation, the TFTs 32 and 35 are turned on, and the TFTs 33, 34, and 36 are turned off, so that a current flows from the power line VPi to the organic EL element 17 in accordance with the gate potential of the TFT 31. Here, the data holding capacitor 38 and the threshold holding capacitor 39 are connected at both terminals, so that these two capacitors function as storage capacitance at the time of light emission.
Here, the combined stored charge (Q1+Q2) in the data holding capacitor 38 and the threshold holding capacitor 39 during the writing operation is the same between the time of writing and the time of light emission, as in the first or second embodiment, so that charge redistribution occurs; also when comparing the overdrive voltage Vov of the TFT 31 included in the pixel circuit 30 of the present embodiment with the conventional case, the configuration of the present embodiment renders it possible to suppress the change of the overdrive voltage Vov caused by the change of the power supply potential VDD to c1/(c1+c2), which is more than can be suppressed with the conventional configuration. In this manner, the difference in luminance due to an IR drop caused by the locations of the pixel circuits can be reduced, so that reduction in display quality can be suppressed.
Furthermore, in spite of the threshold holding capacitor 39 being provided additionally, it is still possible to keep the circuit area of the pixel circuit from becoming larger than conventional, as in the first embodiment. Moreover, it is possible to provide an appropriate, not excessive, amount of current to the organic EL element 17 without changing the dynamic range of the data driver circuit 3. In addition, by using the (typical) data driver circuit 3 having a large dynamic range, it is possible to further reduce the error in data potential and thereby suppress variations in pixel luminance due to output deviation of the data driver circuit 3. Further, it is possible to control the organic EL element with a smaller amount of current without changing the size of the TFT 31, which does not involve the need to change design conditions, production processes, etc., resulting in higher flexibility of design.
The pixel circuit 40 is connected to a scanning signal line Gi, the control line Ei, a data line Sj, the power line VPi, and an electrode having a common potential Vcom, as shown in
The TFT 42 has a drain terminal connected to the power line VPi and a source terminal connected to an anode terminal of the organic EL element 17. The organic EL element 17 has a common potential Vcom applied at its cathode terminal. The TFT 43 is connected at one conductive terminal to the gate terminal of the TFT 42 and at the other conductive terminal to the source terminal of the TFT 42. Such connections allow the TFT 42 to be diode-connected.
The scanning signal line Gi is connected to a gate terminal of the TFT 41. The TFT 41 functions as a write control transistor, and also functions as an initialization control transistor because it is turned on during an initialization operation as well. The control line Ei is connected to a gate terminal of the TFT 43. The TFT 43 functions as a light-emission control transistor.
The operation of the pixel circuits in the first row will be described below with reference to
Thereafter, up until immediately before time t12, the potentials of the scanning signal lines G1, G2, and so on, are kept at low level, but the potential of the control line E1 changes to high level (i.e., nonactive), and the potential of the power line VP1 changes to a second low-potential VP_L2 lower than the common potential Vcom. As a result, assuming that the capacitance value of the data holding capacitor 48a is c1a, and the capacitance value of the data holding capacitor 48b is c1b, the gate potential of the TFT 42 decreases by (Vref1−Vref2)×c1a/(c1a+c2), so that the TFT 42 is turned on, and the charge held at the anode terminal of the organic EL element 17 is released toward the power line VPi, as can be appreciated with reference to
At time t12, the potential of the power line VP1 changes to the first low-potential VP_L1, and the potential of the control line E1 changes to low level (i.e., active). Note that the potentials of the scanning signal lines G1, G2, and so on, are maintained at low level. In this manner, the TFT 43 is turned on, so that the TFT 42 is diode-connected, a current flows from the power line VPi to the gate terminal of the TFT 42, and the potential of the gate terminal rises to the value (VP_L1+Vth) and is maintained at that value. At this time, the threshold voltage Vth is written to and held in the threshold holding capacitor 49. Here, since the TFT 41 is on, the first reference potential Vref1 is provided to one terminal of each of the two data holding capacitors 48a and 48b. As a result, the gate potential of the TFT 42 is caused to fluctuate by the data holding capacitor 48a, but in actuality, the parasitic capacitance of the organic EL element is relatively significant, and therefore, the amount of potential fluctuations is small. The above operation is a threshold detection operation.
At time t13, the potentials of the control line E1 and the scanning signal lines G1, G2, and so on, change to high level (i.e., nonactive), and thereafter, until their corresponding pixel circuits start a writing operation, the lines are set in standby mode, so that the gate potential of the TFT 42 is maintained at (VP_L1+Vth).
At time t14, the potential of the scanning signal line G1 is set to high level, so that the TFT 41 is turned on. At this time, a data potential Vdata, which represents an image to be displayed, is applied to the data line Sj. Here, the gate potential of the TFT 42 is set to c1a/(c1a+c2)×Vdata, and held in the two data holding capacitors 48a and 48b, as can be appreciated with reference to
At time t15, the potential of the scanning signal line G1 is set to high level, so that the TFT 41 is turned off, and the gate potential of the TFT 42 is maintained approximately constant at (VP_L1+Vth) even if the potential of the data line Sj changes. Thereafter, at time t16, similar operations are performed on the pixel circuits in the next row, so that potentials including the data potential Vdata are written to all pixel circuits.
Here, the combined stored charge (Q1+Q2) of the data holding capacitors 48a and 48b and the threshold holding capacitor 49 during the writing operation is the same between the time of writing and the time of light emission, as in the above embodiment, so that charge redistribution occurs; also when comparing the overdrive voltage Vov of the TFT 42 included in the pixel circuit 40 of the present embodiment with the conventional case, the configuration of the present embodiment renders it possible to suppress the change of the overdrive voltage Vov caused by the change of the power supply potential VDD to c1a/(c1a+c2), which is more than can be suppressed with the conventional configuration. In this manner, the difference in luminance due to an IR drop caused by the locations of the pixel circuits can be reduced, so that reduction in display quality can be suppressed.
Once the potential applied to the power line VPi is set to high level at time t17, the organic EL element 17 starts emitting light. The high-level potential is determined such that the TFT 42 can operate in the saturation region during the light-emission period, as described earlier. Accordingly, the current I that flows through the organic EL element 17 changes in accordance with the data potential Vdata, as shown in equation (4), but does not depend on the threshold voltage Vth of the TFT 42. Therefore, even in the case where there are variations in the threshold voltage Vth or the threshold voltage Vth changes over time, it is possible to apply the current to the organic EL element 17 in accordance with the data potential Vdata, thereby allowing the organic EL element 17 to emit light with a desired luminance.
At time t18, the voltage of the power line VPi changes to the first low-potential VP_L1, and therefore, the TFT 42 is kept in off state after time t17. As a result, no current is applied to the organic EL element 17, so that the pixel circuit 40 stops emitting light.
In this manner, the pixel circuits in the first row perform initialization during the period from time t11 to time t12, threshold detection during the period from time t12 to time t13, writing during the period from time t14 to time t15, and light emission during the period from time t17 to time t18, so that they do not emit light except during the period from time t17 to time t18. The pixel circuits in the second row, as with the pixel circuits in the first row, perform initialization during the period from time t11 to time t12 and threshold detection during the period from time t12 to time t13, and thereafter, they perform writing a predetermined period of time Ta after the pixel circuits in the first row, and start and stop emitting light in the same manner as the pixel circuits in the first row. Typically, the pixel circuits in the i'th row perform initialization and threshold detection during the same periods as the pixel circuits in the other rows, and then perform writing a period of time Ta after the pixel circuits in the (i−1)'th row, and they are turned off after emitting light for the same period as the pixel circuits in the other rows.
Accordingly, the initialization period can be set to an appropriate duration, typically, a duration longer than a selection period, and therefore, drive can be performed properly even if the current capability of an output buffer included in a power control circuit 4a is low. Moreover, the threshold detection period can also be set to an appropriate duration, typically, a duration longer than a selection period, and therefore, threshold detection can be reliably performed, resulting in enhanced accuracy in threshold compensation. In addition, when compared to the configuration in which threshold detection is performed during the selection period, it is possible to spare sufficient time for writing pixel data. Therefore, the configuration of the present invention can be readily applied to configurations with shorter write periods, i.e., high-speed drive, such as three-dimensional image display devices (3D televisions).
Next, the connection configuration of the power lines in the present embodiment and the operations of the pixel circuits 40 driven by currents provided through the power lines will be described with reference to
Note that the common power line 9b is a trunk line for current supply, but in the present embodiment, it does not have to be a trunk line so long as all of the power lines VPi can be connected commonly to the power control circuit 4a, and further, any well-known configuration can be applied in terms of the number of lines and the positions of connections with the power lines VPi.
The pixel circuits in each row does not emit light for a period after the threshold detection until immediately before writing, and also kept off for a different period of time for each row after the writing, and thereafter, the pixel circuits in all rows emit light at the same time (collectively) for a predetermined period of time T1, and cease to emit light at the same time at the end of the frame period (i.e., immediately before initialization in the next frame). In this manner, the period from the end of the threshold detection to the start of the light emission is set to the same duration among all rows, thereby making it possible to suppress uneven display. Specifically, by setting the period from the end of the threshold detection (at the same point of time among all rows) to the start of the light emission to the same duration among all rows, leakage current in the TFT 42 can be approximately equalized among the pixel circuits 40 in all rows, so that the amount of luminance decay due to leakage current is approximately equalized among the pixel circuits 40 in all rows, resulting in suppression of uneven display.
Note that in the case where the initialization, the threshold detection, and the light emission are performed as described above, their timing is the same among all rows, and therefore, all signals for activating (and deactivating) the control lines Ei are the same. Accordingly, the common control line 9a connecting all of the control lines is provided.
Furthermore, the power lines may be divided into two or more groups, such that each group is driven with different timing.
This configuration requires the pixel circuits in all rows to emit light for the same period of time, but unlike in the case shown in
This configuration renders it possible to reduce the difference in luminance on a screen. Specifically, in the case where the amount of current flow varies significantly between the common power lines 121 and 122 in the configuration shown in
In this manner, the threshold holding capacitor 49 is provided additionally, thereby suppressing the change of the overdrive voltage Vov to c1a/(c1a+c2) and reducing the difference in luminance due to an IR drop caused by the locations of the pixel circuits, so that reduction in display quality can be suppressed. Moreover, the threshold holding capacitor 49 functions as storage capacitance from the time of writing to the time of light emission and also during the light emission period, as described earlier, and therefore, in spite of the threshold holding capacitor 49 being provided additionally, it is still possible to keep the circuit area of the pixel circuit from becoming larger than conventional.
Note that by providing the two data holding capacitors 48a and 48b, series capacitance c12 can be freely set therebetween. As a result, the capacitance value of the data holding capacitor 48b (and the capacitance value of the threshold holding capacitor 49) can be set appropriately. In this regard, the data holding capacitor 48b has the function of an adjustment capacitor.
Furthermore, as in the first embodiment, it is possible to provide an appropriate, not excessive, amount of current to the organic EL element 17 without changing the dynamic range of the data driver circuit 3. Moreover, by using the (typical) data driver circuit 3 having a large dynamic range, it is possible to further reduce the error in data potential and thereby suppress variations in pixel luminance due to output deviation of the data driver circuit 3. Further, it is possible to control a smaller amount of current to the organic EL element without changing the size of the TFT 42, which does not involve the need to change design conditions, production processes, etc., resulting in higher flexibility of design.
The present invention can be applied to active-matrix display devices provided with light-emitting display elements driven by a current, particularly to display devices such as organic EL displays.
Number | Date | Country | Kind |
---|---|---|---|
2011-241327 | Nov 2011 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 14/355,573, filed internationally on Oct. 26, 2012, which is a U.S. National Phase patent application of PCT/JP2012/077721, filed Oct. 26, 2012, which claims priority to Japanese patent application no. 2011-241327, filed Nov. 2, 2011, each one of which is hereby incorporated by reference in the present disclosure in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6441560 | Hunter | Aug 2002 | B1 |
20030132931 | Kimura et al. | Jul 2003 | A1 |
20040196239 | Kwon | Oct 2004 | A1 |
20050017934 | Chung et al. | Jan 2005 | A1 |
20050156515 | Fukase | Jul 2005 | A1 |
20060103322 | Chung et al. | May 2006 | A1 |
20070085847 | Shishido | Apr 2007 | A1 |
20070118781 | Kim | May 2007 | A1 |
20080111804 | Choi | May 2008 | A1 |
20080158114 | Kim | Jul 2008 | A1 |
20080316150 | Lee | Dec 2008 | A1 |
20090066615 | Kawasaki | Mar 2009 | A1 |
20100013748 | Cok | Jan 2010 | A1 |
20100289830 | Yamamoto et al. | Nov 2010 | A1 |
20110025671 | Lee | Feb 2011 | A1 |
20120249602 | Liu | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2003-202833 | Jul 2003 | JP |
2004-310006 | Nov 2004 | JP |
2005-31630 | Feb 2005 | JP |
2007-79580 | Mar 2007 | JP |
2008-165166 | Jul 2008 | JP |
2009-86654 | Apr 2009 | JP |
2009-198761 | Sep 2009 | JP |
2010-266494 | Nov 2010 | JP |
2011-34039 | Feb 2011 | JP |
Entry |
---|
International Search Report received for PCT Patent Application No. PCT/JP2012/077721, dated Jan. 29, 2013, 4 pages (2 pages of English translation and 2 pages of ISR). |
Non-Final Office Action received for U.S. Appl. No. 14/355,573, dated Oct. 21, 2015, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/355,573, dated Apr. 29, 2016, 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/355,573, dated Mar. 29, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170316741 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14355573 | US | |
Child | 15639242 | US |