The present invention relates to the field of semiconductor devices and, in particular, to high quantum efficiency CMOS image sensors having an anti-blooming structure.
Imagers typically consist of an array of pixel cells containing photosensors, where each pixel produces a signal corresponding to the intensity of light impinging on that element when an image is focused on the array. These signals may then be stored, for example, to display a corresponding image on a monitor or otherwise used to provide information about the optical image. The photosensors are typically phototransistors, photoconductors, photogates or photodiodes. The magnitude of the signal produced by each pixel, therefore, is proportional to the amount of light impinging on the photosensor.
To allow the photosensors to capture a color image, the photosensors must be able to separately detect red (R) photons, green (G) photons and blue (B) photons. Accordingly, each pixel must be sensitive only to one color or spectral band. For this, a color filter array (CFA) is typically placed in front of the pixels so that each pixel measures the light of the color of its associated filter.
Color imaging requires three pixel cells for the formation of a single color pixel. For example, a conventional color pixel sensor 50 is illustrated in
A brief description of the structural and functional elements of each of the red, blue and green active pixel sensor cells 52, 54, 56 is provided below. Each of the pixel sensor cells 52, 54, 56 is shown in part as a cross-sectional view of a semiconductor substrate 16, which may be a p-type silicon epitaxial layer 16 provided over a p-type substrate 51 and having a well of p-type material 20. An n+ type region 26 is formed as part of a photosensor formed as a photodiode with a p-type layer 53 above it, and laterally displaced from p-well 20. A transfer gate 28 is formed between the n+ type region 26 and a second n+ type region 30 formed in p-well 20. The n+regions 26 and 30 and transfer gate 28 form a charge transfer transistor 29 which is controlled by a transfer signal TX. The n+ region 30 is typically called a floating diffusion region. The n+ region 30 is also a storage node for receiving charge from the n+ type region 26 and for passing charge accumulated there at to the gate of a source follower transistor 36 described below.
A reset gate 32 is also formed adjacent and between the n+ type region 30 and another n+ region 34 which is also formed in p-well 20. The reset gate 32 and n+ regions 30 and 34 form a reset transistor 31 which is controlled by a reset signal RST. The n+ type region 34 is coupled to voltage source Vaa pix. The transfer and reset transistors 29, 31 are n-channel transistors as described in this implementation of a CMOS imager circuit in a p-well. As known in the art, it is also possible to implement a CMOS imager in an n-well, in which case each of the transistors would be p-channel transistors. It should also be noted that, while
Each of the pixel sensor cells 52, 54, 56 also includes two additional n-channel transistors, a source follower transistor 36 and a row select transistor 38. Transistors 36, 38 are coupled in series, source to drain, with the source of transistor 36 also coupled to voltage source Vaa pix and the drain of transistor 38 coupled to a column line 39. The drain of the row select transistor 38 is connected via a conductor to the drains of similar row select transistors for other pixels in a given pixel column. Thus, the red, blue and green active pixel sensor cells 52, 54, 56 operate in a similar way, except that the information provided by each of the red, blue and green active pixel sensor cells 52, 54, 56 is limited by the intensities of the red, blue and green light, respectively.
One of the drawbacks of using a color pixel sensor, such as the color pixel sensor 50 of
Another problem often associated with photodiodes is that of blooming. That is, under illumination, electrons can fill up an n-type region 26. Under saturation light conditions, the n-type region 26 can completely fill with electrons, and the electrons will then bloom to adjacent pixels. Blooming is undesirable because it can lead, for example, to the presence of a bright spot on the image.
The above-noted drawbacks of color photosensors have been addressed partially in the prior art. For example, U.S. application Ser. No. 10/648,378 to Rhodes et al., entitled Method of Forming Well for CMOS Imagers (filed Aug. 27, 2003), describes the formation of a well region that is totally masked from a photodiode region of a pixel sensor cell, improving therefore the charge transfer between the photodiode and a transistor gate. U.S. application Ser. No. 10/740,599 to Rhodes et al., entitled Image Sensor for reduced Dark Current (filed Dec. 22, 2003), addresses the reduction of dark current by proving a peripheral sidewall formed in a substrate region underlying a pixel array region, to separate the pixel array region from a peripheral circuitry region of an image sensor. U.S. Pat. No. 6,878,568 issued Apr. 12, 2005 to Rhodes et al. teaches a deep implanted region formed below a transistor array of a pixel sensor cell and adjacent a charge collection region of a photodiode.
An improved pixel sensor cell for use in an imager that exhibits improved color separation, reduced cross talk and blooming, as well as increased photodiode capacitance, is needed. A method of fabricating a pixel sensor cell exhibiting these improvements is also needed.
In one aspect, the invention provides multiple implant regions of a first conductivity type formed below respective photosensors of an imager. A first implant region is formed under at least a portion of a first color photosensor to limit the depth of first collection/depletion in the substrate for the first color photosensor. A second implant region is formed under at least a portion of a second color photosensor to limit the depth of a second collection/depletion in the substrate for the second color photosensor. In an exemplary embodiment, the first and second color photosensors are blue and green, respectively, and the implants for each are at different depths.
To further reduce cross-talk between adjacent pixels and to decrease blooming, an anti-blooming region of a second conductivity type is formed in the substrate and below the multiple implant regions of the first conductivity type.
In another aspect, the invention provides a method of forming pixels having the implant regions and/or the anti-blooming region described above.
These and other features and advantages of the invention will be more apparent from the following detailed description that is provided in connection with the accompanying drawings and illustrated exemplary embodiments of the invention.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized, and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention.
The terms “wafer” and “substrate” are to be understood as a semiconductor-based material including silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technology, doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. Furthermore, when reference is made to a “wafer” or “substrate” in the following description, previous process steps may have been utilized to form regions or junctions in or over the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but could be based on silicon-germanium, silicon-on-insulator, silicon-on-sapphire, germanium, or gallium arsenide, or other semiconductor materials.
The term “pixel” or “pixel cell” refers to a picture element unit cell containing a photosensor and transistors for converting electromagnetic radiation to an electrical signal. For purposes of illustration, portions of representative pixels are illustrated in the figures and description herein and, typically, fabrication of all imager pixels in an imager array will proceed simultaneously in a similar fashion.
Referring now to the drawings, where like elements are designated by like reference numerals,
It should be noted that, although the invention will be described below in connection with use in a four-transistor (4T) pixel cell, the invention also has applicability to any CMOS imager including, for example, a five-transistor (5T) pixel cell, a six-transistor (6T) pixel cell, or a three-transistor (3T) pixel cell, among others. The invention also has application to other solid state photosensor arrays and is not limited to CMOS photosensor arrays. In addition, although the invention will be described below with reference to implant regions 100, 100a formed below photosensors of exemplary blue and green pixel sensor cells 300, 300a, the invention is not limited to this illustrative embodiment, and has applicability to any color pixel sensor cell or to a combination of such color pixel sensor cells. Further, although the invention is described with reference to red, blue and green photosensors, the invention is not limited to this combination of photosensor colors and it can be used with YCMK color pixel arrays, and others as well.
The trenches are then filled with an insulating material, for example, silicon dioxide, silicon nitride, ON (oxide-nitride), NO (nitride-oxide), or ONO (oxide-nitride-oxide). The insulating materials may be formed by various chemical vapor deposition (CVD) techniques such as low pressure chemical vapor deposition (LPCVD), high density plasma (HDP) deposition, or any other suitable method for depositing an insulating material within a trench. After the trenches are filled with an insulating material, a planarizing process such as chemical mechanical polishing is used to planarize the structure.
Multi-layered transfer gate stacks 130, 130a and reset gate stacks 230, 230a, each corresponding to exemplary four-transistor (4T) blue and green pixel sensor cells, respectively, are formed over the p-type epitaxial layer 110a after the STI trenches are formed and filled. Although
The elements of the gate stack 130 are similar to those of the gate stack 130a, 230 and 230a, and thus, for simplicity, a description of only the elements of the gate stack 130 is provided below. The transfer gate stack 130 comprises a first gate oxide layer 131 of grown or deposited silicon oxide on the p-type epitaxial layer 110a, a conductive layer 132 of doped polysilicon or other suitable conductor material, and a second insulating layer 133, which may be formed of, for example, silicon oxide (silicon dioxide), nitride (silicon nitride), oxynitride (silicon oxynitride), ON (oxide-nitride), NO (nitride-oxide), or ONO (oxide-nitride-oxide). The first and second insulating layers 131, 133 and the conductive layer 132 may be formed by conventional deposition and etching methods, for example, blanket chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD), followed by a patterned etch, among many others. Sidewall spacers 135, 235, 135a and 235a are formed by depositing and etching an insulating layer. The order of these process steps may be varied as is required or convenient for a particular process flow.
Reference is now made to
According to an exemplary embodiment of the invention, each of the photosensors 188, 188a is a p-n-p photodiode formed by regions 124, 124a, p-type epitaxial layer 110a, and regions 126, 126a, respectively. The n-type region 126, 126a (
Another dopant implantation with a dopant of a first conductivity type, which for exemplary purposes is p-type, is subsequently conducted so that p-type ions are implanted into the area of the substrate over the implanted n-type region 126, 126a, to form a p-type pinned surface layer 124, 124a of the now completed photodiode 188, 188a (
Subsequent to the formation of the photodiode 188, 188a, and using the same patterned photoresist 167 as a mask, p-type ions are implanted through openings 168 and into areas of the p-type epitaxial layer 110a to form a first implant region 100 (or a blue stop implant region 100), as illustrated in
The first implant region 100 (
Subsequent to the formation of the first implant region 100, and preferably using the same patterned photoresist 167, p-type ions are implanted through opening 168a and into the p-type epitaxial layer 110a to form a second implant region 100a (or a green stop implant region 100a), as illustrated in
The second implant region 100a (
Subsequent to the formation of the second implant region 100a shown in
Although the embodiment above has been described with reference to the formation of the first implant region 100, employing a first resist mask, followed by the formation of the second implant region 100a employing the same first resist mask, the invention is not limited to this embodiment. Accordingly, the invention also contemplates the formation of the second implant region 100a first, followed by the subsequent formation of the first implant region 100, employing the same or different masks. In addition, the invention also contemplates embodiments in which the implant regions may be at least partially formed simultaneously. Further, the invention also contemplates embodiments in which the implant regions are first formed in the substrate, followed by the subsequent formation of the elements of the gate and/or photosensor structures, employing the same or different masks.
By providing the p-type first implant region 100 below the n-type region 126 of photodiode 188 of a first pixel sensor cell (for example, a blue pixel cell), as well as the p-type second implant region 100a below the n-type region 126a of photodiode 188a of a second pixel sensor cell (for example, a green pixel cell), color separation of the photodiodes corresponding to individual pixel sensor cells is improved and cross-talk between adjacent pixel sensor cells is reduced. Color separated photodiodes allow, in turn, to use thinner color filter array (CFA) (which is typically placed in front of the pixels so that each pixel measures the light of the color of its associated filter) and increase the light transmission by the CFA.
Although the embodiment below will be described with reference to the formation of the isolation region 200 in connection with the multiple implant regions 100, 100a, the invention is not limited to this embodiment and contemplates the formation of the isolation region 200 without the multiple implant regions 100, 100a.
The isolation region 200 illustrated in
In a preferred embodiment, the anti-blooming isolation region 200 may be connected to Vaa (positive power supply) outside the imager array, via, for example, N well and N+ diffusions, to bias the anti-blooming isolation region 200 positively and, therefore, to allow it to drain excess charge during anti-blooming operation.
Subsequent to the formation of the anti-blooming isolation region 200, all elements of the blue and green photosensors formed as blue and green photodiodes 188, 188a, and of the implanted regions 100, 100a of pixel sensor cells 300, 300a of color pixel cell group 500, are formed by the steps described above and illustrated in conjunction with
The p-type implant regions 100, 100a located adjacent and below the n-type region 126, 126a, and the n-type anti-blooming isolation region 200 located below the p-type stop implant regions 100, 100a act, as a reflective barrier to electrons generated by light in the n-doped regions 126, 126a of the p-n-p photodiodes 188, 188a. When light radiation in the form of photons strikes the photosite regions 126, 126a, photo-energy is converted to electrons which are stored in the n-doped region 126, 126a. The absorption of light creates electron-hole pairs. For the case of an n-doped photosite in a p-well or a p-type epitaxial layer, it is the electrons that are stored. For the case of a p-doped photosite in an n-well, it is the holes that are stored. Thus, in the exemplary embodiment described above having n-channel devices formed in the p-type epitaxial layer 110a, the carriers stored in the n-doped photosite region 126, 126a are electrons. The p-type implant regions 100, 100a of the blue and green pixels and the n-type anti-blooming isolation region 200 located below these implanted regions act as stop regions that reduce carrier loss to the substrate 110, by forming a concentration gradient that modifies the silicon potential and serves to reflect electrons back towards the n-doped photosite region 126, 126a, thereby reducing cross-talk between adjacent blue and green pixel sensor cells of a row or column. The n-type anti-blooming isolation region 200 also attracts the stray electrons generated or available in the bulk below it, and carries them away from photosite regions 126, 126a to the power supply.
The remaining devices of the pixel sensor cell 300, 300a, including the reset transistor, the source follower transistor and row select transistor shown in
A typical processor based system 600, which has a connected CMOS imager 642 having pixel arrays constructed according to the invention is illustrated in
A processor based system, such as a camera system, for example generally comprises a central processing unit (CPU) 644, for example, a microprocessor, that communicates with an input/output (I/O) device 646 over a bus 652. The CMOS image sensor 642 also communicates with the system over bus 652. The computer system 600 also includes random access memory (RAM) 648, and, in the case of a computer system may include peripheral devices such as a floppy disk drive 654, and a compact disk (CD) ROM drive 656 or a flash memory card 657 which also communicate with CPU 644 over the bus 652. It may also be desirable to integrate the processor 654, CMOS image sensor 642 and memory 648 on a single IC chip.
Although the above embodiments have been described with reference to the formation of photosensors as p-n-p photodiodes of adjacent blue and green pixel cells, such as the p-n-p photodiode as photosensor 188, 188a (
In addition and as noted above, although the invention has been described with reference to the formation of only one anti-blooming region 200 running below the stop implant regions and the charge collection regions of photosensitive elements of adjacent pixel sensor cells, the invention also contemplates the formation of a multitude of such stripe implant regions located under various pixel rows on the substrate. Further, although the invention has been described above with reference to a transfer gate of a transfer transistor connection for use in a four-transistor (4T) pixel cell, the invention also has applicability to a five-transistor (5T) pixel cell, a six-transistor (6T) pixel cell, or a three-transistor (3T) cell, among others.
The above description and drawings are only to be considered illustrative of exemplary embodiments, which achieve the features and advantages of the invention. Modification and substitutions to specific process conditions and structures can be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be considered as being limited by the foregoing description and drawings, but is only limited by the scope of the appended claims.