The present application generally relates to medical devices. More particularly, the present application relates to stents and delivery systems for stents.
Stents of different construction have been used to treat a variety of conditions. When stiffness is desired, a balloon-expandable (BX) stent is sometimes selected, as its shape can be set during deployment by application of an inflation force from a balloon of the delivery system. In applications for treatment more tortuous anatomy, a self-expanding (SX) stent may be desired for its relative flexibility.
Hybrid stents combining balloon-expandable and self-expanding sections have been contemplated in the art, but none are available in the market owing to the fact that construction of a hybrid stent which performs as desired is a major challenge. First, the materials used to construct balloon-expandable and self-expanding sections are generally dissimilar, and conventional joining methods are likely to fail. Second, during deployment, a stent is subjected to various forces from the delivery system. The forces experienced by a balloon-expandable stent are different from those experienced by an self-expanding stent, which can endanger the survival of the joint between the two sections, assuming the two can be joined in the first place.
Certain medical implants include balloon-expandable and self-expanding stents in a single device. Among these are fenestrated stent grafts, in which a balloon-expandable stent is disposed through the fenestration of the main body of the stent graft, and an self-expanding stent extends as the body of a side branch, extending away from the main body into a branch vessel. In such an instance, the self-expanding stent is joined to the balloon-expandable stent via graft material.
Because of the varied forces that need to be applied to and withstood by the device, it may be beneficial to develop delivery systems which are capable of delivering a hybrid stent having a balloon-expandable portion and an self-expanding portion. Such a device would allow for the expansion of the self-expanding portion while providing a balloon for expansion of the balloon-expandable portion. Additionally, such a device may be useful in the delivery of standard self-expanding stents, as current methods involve delivery and implantation with a first system which carries the device within the vasculature, the withdrawal of that delivery system, and the provision of a second system to the implantation site, which carries a balloon to affect a dilatation step in which the implant is patent with the vessel wall.
It has been a challenge to develop a hybrid stent which has a balloon-expandable portion and an self-expanding portion which can withstand delivery intact, and a delivery system capable of delivering such a stent. It has likewise been a challenge to provide a single delivery system and delivery method capable of delivering an self-expanding stent and dilating the self-expanding stent such that it is seated patent against the wall of the body vessel to which it has been delivered.
In one aspect, the present disclosure provides a stent. The stent includes a tubular body which extends from a first end to a second end and defines a lumen therethrough. The tubular body may include a first portion extending from the first end to a third end. The first portion may be a self-expanding tubular body. The stent may include a second portion extending from the second end to a fourth end. The second portion may be a balloon-expandable tubular body. The stent may include an attachment selected from one of a rivet and a solder joint comprising at least two solders, the attachment joining the first portion to the second portion. The attachment may be capable of withstanding a total shearing force of about 20 newtons (N) applied during deployment from a delivery system, or a shearing force of about 0.1 N to about 0.5 N at each joint between the balloon-expandable portion and the self-expanding portion.
In another aspect, the present disclosure provides a method of making a stent. The method includes disposing a first solder comprising a first flux onto an end of a self-expanding tubular body to form a first coated portion. The method includes disposing a second solder comprising a second flux onto an end of a balloon-expandable tubular body to form a second coated portion. The second solder and the second flux are distinct from the first solder and the first flux, respectively. The method may include contacting the first coated portion with the second coated portion. The method may further include heating the first coated portion and the second coated portion to join the self-expanding tubular body to the balloon-expandable tubular body, thereby forming the stent.
In another aspect, the present disclosure provides a medical device assembly. The medical device assembly includes a balloon catheter having a catheter body extending from a proximal end to a distal end and defining a lumen therethrough, and at least one inflatable balloon disposed circumferentially about a portion of the catheter body. The at least one inflatable balloon has an interior in fluid communication with the lumen of the catheter body. The medical device assembly includes a stent which may have a tubular body extending from a first end to a second end and defining a lumen therethrough. The tubular body may include a first portion extending from the first end to a third end. The first portion may be a self-expanding tubular body. The tubular body may include a second portion extending from the second end to a fourth end. The second portion may be a balloon-expandable tubular body. An attachment may join the first portion to the second portion. In the medical device assembly, at least the second portion of the stent being disposed over at least one inflatable balloon of the balloon catheter.
In another aspect, a medical device assembly is described. The medical device assembly may include an outer sheath and a balloon catheter disposed within the outer sheath. The balloon catheter may include a catheter body extending from a proximal end to a distal end and defining a lumen therethrough, and an inflatable balloon disposed circumferentially about a portion of the catheter body and extending from a first proximal end to a first distal end, the inflatable balloon having an interior in fluid communication with the lumen of the catheter body. The medical device assembly may include a self-expanding stent extending from a second proximal end to a second distal end and disposed about the inflatable balloon such that the first proximal end of the inflatable balloon contacts and at least partially abuts the second proximal end of the self-expanding stent.
In another aspect, the present disclosure provides a method of making a medical device assembly. The method may include loading a self-expanding stent into an outer sheath, the self-expanding stent extending from a stent proximal end to a stent distal end and having a first length, the self-expanding stent expanding to an inner diameter of the outer sheath after loading. The method also may include loading a balloon catheter into the outer sheath, the balloon catheter including an inflatable balloon extending from a balloon proximal end to a balloon distal end and having a second length greater than the first length, the inflatable balloon being positioned such that the balloon proximal end lies proximal of the stent proximal end and the balloon distal end lies distal of the stent distal end. The method may also include pressurizing the inflatable balloon such that the balloon proximal end contacts and at least partially abuts the stent proximal end.
In another aspect, the present disclosure provides a method of delivering a stent. The method may include delivering a medical device assembly in a compressed configuration to a site of treatment within a body lumen of a patient. The medical device assembly may include a balloon catheter. The balloon catheter may include an inflatable balloon, the inflatable balloon including a balloon proximal end and extending to a balloon distal end. The medical device assembly may include a self-expanding stent. The self-expanding stent may include a stent proximal end and extend to a stent distal end. The self-expanding stent may be disposed over the inflatable balloon such that the balloon proximal end at least partially abuts the stent proximal end such that the inflatable balloon reduces longitudinal movement of the stent during deployment. The medical device assembly may include an outer sheath surrounding the balloon catheter and self-expanding stent, such that the inflatable balloon acts to retain the stent against longitudinal movement during deployment. The method may include withdrawing the outer sheath proximally to deploy the self-expanding stent to the site of treatment. The method may include inflating the inflatable balloon of the balloon catheter to seat the self-expanding stent against a wall of the body lumen at the treatment site.
Further objects, features and advantages of this system will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.
The drawings are purely schematic illustrations of various aspects of the invention and are not necessarily to scale, unless expressly stated.
The terms “substantially” or “about” used herein with reference to a quantity includes variations in the recited quantity that are equivalent to the quantity recited, such as an amount that is equivalent to the quantity recited for an intended purpose or function. “Substantially” or derivatives thereof will be understood to mean significantly or in large part.
A hybrid stent may be made by joining a balloon-expandable stent to a self-expanding stent. As shown in
Numerous designs are known in the art for a variety of balloon expandable and self-expanding stents. Although any known design of a stent is contemplated as being compatible as a stent portion with the principles of the present disclosure, those balloon expandable and self-expanding stent portions which are cut from a precursor cannula are particularly suited for such a purpose. Materials appropriate for precursor cannulas will be known by those of skill in the art.
For example, in one embodiment, the balloon expandable stent portion may be cut from a stainless steel cannula or one made of a cobalt chromium alloy, and the self-expanding stent portion 20 may be made from a shape memory metal, such as a nickel titanium alloy.
As shown in
However, in other embodiments, it will be suitable to have connectors 26 arranged in a different relationship; that is, out of axial alignment.
The balloon-expandable stent portion 10 can be joined to the self-expanding stent 20 to create a hybrid stent 30 as is shown in
In order to be delivered to the body vessel to be treated and to be an effective treatment, the hybrid stent 30 will ideally remain intact during and after delivery. The development of a hybrid stent has been difficult for this reason. The nature of the delivery system and the delivery procedure means that a number of forces will be applied to the stent; a compressive force from the outer sheath of the delivery system, for example, and axial forces of elongation (wherein the hybrid stent is stretched longer than its natural length, and the halves may be pulled apart) and an axial shearing force (wherein the balloon-expandable and self-expanding portions of the hybrid stent are compressed axially toward one another.) This shearing force is capable of breaking connections at the joints if the means of joining the balloon-expandable portion to the self-expanding portion is not sufficiently strong.
In some embodiments, the hybrid stent 30 is capable of withstanding a total shearing force of about 20 newtons (N) about the circumference of the device at the junction between the self-expanding and balloon-expandable portion. In some embodiments, each joint (such as each individual solder joint, or each rivet) at the junction between the self-expanding portion and the balloon-expandable portion is capable of withstanding about 0.1N to about 0.5N of shearing force, which is a local shearing force. The shearing force may be about applied locally to a unit of 0.03 mm2 to any given portion of the hybrid stent. The shearing force is a translation of forces from the overall compressive forces measured in the stent for deployment that each element (including the joints at the junction of the balloon-expandable and self-expanding portions) is exposed to due to resistance associated with sliding the sheath over the stent for deployment.
The diameters of the self-expanding stent portion and the balloon expandable stent portion are substantially equal to one another in one embodiment. In another embodiment, one of the diameters may be slightly smaller than the other. For example, a balloon-expandable stent portion may have a smaller diameter in the expanded state than does the self-expanding stent portion, and an end of the balloon-expandable stent portion may be placed within the lumen of the self-expanding stent portion, thereby providing a contact point for joining the two and forming the hybrid stent. Moreover, the balloon-expandable stent and the hybrid stent may have different lengths. For instance, a longer self-expanding portion can be employed to create a longer overall stent.
In certain embodiments, the balloon-expandable stent portion 10 may be manufactured with a plurality of first eyelets 15 at at least one end, and likewise the self-expanding stent portion 20 may be manufactured with a plurality of second eyelets 25. If eyelets are provided, these may provide a suitable component at which the balloon-expandable stent portion 10 may be joined to the self-expanding stent portion 20. One or both of the devices may have eyelets, or, in another embodiment, neither device may have a plurality of eyelets. In the hybrid stent 30 depicted in
As mentioned previously, the balloon-expandable stent portion 10 may be made of a different material than the self-expanding stent portion 20. It can be challenging to join two dissimilar materials. In particular, if one of the two precursor stent portions is made of a shape memory alloy, it is known that these materials are difficult to manipulate, even without the additional complication of attempting to join to a dissimilar material.
One joining method is illustrated in
Similarly, in step 102, a second flux 44 is applied to a joining portion of a self-expanding stent portion 20, in the illustrated case eyelets 25. The second flux 44 is then covered with solder. Therefore the material of the balloon-expandable stent portion 10 and of the self-expanding stent portion 20 are selected such that the first flux 42 and the second flux 44 are compatible with the materials of the two stent portions.
The first flux 42 may be used with a first solder, and the second flux 44 may be used with a second solder. The first solder may be different from the second solder, or the first solder may be the same as the second solder. The first flux 42 may be different from the second flux 44.
In a third step 103, the solder deposited on the balloon-expandable stent portion 10 is brought into contact with the solder deposited on the self-expanding stent portion 20.
In step 104, heat is applied to at least partially liquefy the solders of both stent portion. After a time, the heat is removed, and step 105 yields the hybrid stent 30 which is joined at the eyelets 15 and 25 by a single solder joint, making use of the two different fluxes.
In one example, the balloon expandable stent portion 10 may be made of stainless steel, and the self-expanding stent portion 20 may be made of a nickel-titanium alloy, such as NITINOL. A steel-compatible flux, such as STAY-CLEAN zinc chloride flux, may be used to cover a portion of the stainless steel stent portion, such as a stainless steel eyelet, and a titanium-compatible flux such as an acid-based solder not containing zinc or chlorine, and which can remove titanium and nickel oxides, may be used to cover a portion of the self-expanding stent portion, such as an eyelet. A solder compatible with both fluxes may then be used, such as ALLSTATE 430 soft silver solder. As mentioned, the solder and respective flux may be applied separately, or the solder and flux may be provided together.
If applied to two stents with a standard thickness along their entire lengths, the method of
In another embodiment, illustrated in
The self-expanding stent portion 20 may be joined to the balloon-expandable stent portion 10 by a number of different mechanisms. As already described, one such method includes using a flux compatible with the material of each stent, and then reheating such that two solders flowed over the flux can be joined. In some embodiments, the solders may be applied to eyelets of the stent portions, and may flow into the eyelets, as though to form a rivet made of solder through both eyelets of both stent portions of the hybrid stent.
Other methods may be used to attach the self-expanding and balloon-expandable portions of the hybrid stent, beyond soldering and rivets. For example, the two halves may be attached via a sonic weld, or a friction stir weld, or another joining method
A hybrid stent may provide better sizing to a vessel in which it is implanted than a stent which is only balloon-expandable or self-expanding. A hybrid stent may have a controllable radial force profile, may ease positioning of the implant, and may minimize or eliminate stent jumping during deployment. The hybrid stent design may minimize jumping and increase accuracy in positioning because one portion of the device is delivered while the other remains within the delivery system.
A hybrid stent as disclosed herein may be of particular assistance in bridging a relatively straight vessel (using a balloon-expandable portion as an anchor) to a more tortuous vessel (taking advantage of the self-expanding portion). Such hybrid stents may be constructed with varying amounts of covering along their length. In one embodiment, both the balloon-expandable portion and the self-expanding portion may be completely covered by graft material. In another embodiment, only portions the balloon-expandable and self-expanding portions may be covered. In another embodiment, the hybrid stent may be a bare metal stent. In one example, treatment of a calcified ostial lesion may benefit from a balloon-expandable portion to hold open the lesion, and the flexibility of the self-expanding portion may provide a transition to the healthy part of the vessel.
The present disclosure is not limited to hybrid stents derived from the joining of a single balloon-expandable stent portion 10 to a single self-expanding stent portion 20. As shown in
Hybrid stents constructed in accordance with the principles of the present invention are useful for a number of applications. Turning now to
The two stent portions of the hybrid stent 72 of side branch 70 serve different purposes. balloon-expandable portion 74 serves as a flaring portion, imparting stiffness to the construct and interacting with the fenestration 64. The self-expanding portion 76 extends away from the main body 61 and allows for more flexibility and conformation to the natural curvature of vessel into which the side branch 70 is to be deployed.
Various procedures may dictate how much covering or graft material is used in a variety of portions of a stent graft in embodiments of the present disclosure. In some instances, the hybrid stent may be utilized as a bare metal stent. In other embodiments, the hybrid stent may be fully covered with a graft material. In still other embodiments, the hybrid stent may be partially covered, with covering over a portion of the stent and exposed metal at other portions along its length. The balloon-expandable and self-expanding stents making up such a hybrid stent for use in a stent graft may also be constructed at a variety of diameters, and may have a variety of coverings along their lengths.
The graft material 66 used in a stent graft 60 may be a tubular graft material, and may be non-porous so that it does not leak or sweat under physiologic forces. The graft material may be made of a biocompatible material, including but not limited to a DACRON® polyester, another polyester fabric, polytetrafluoroethylene (PTFE), expanded PTFE, THORALON®, a polyamide, and other synthetic materials known to those of skill in the art. Naturally occurring biomaterials, such as collagen, particularly a derived collagen material known as extracellular matrix (ECM), such as small intestinal submucosa (SIS), may also be employed. In some embodiments, the graft material may be constructed as a preshaped tube. In some embodiments, the graft material may be a woven material.
In some embodiments, a stent graft including a hybrid stent in accordance with the principles of the present disclosure may be constructed to have a smooth covering, such as one which is described in U.S. patent application Ser. No. 15/224,101, the entire contents of which are incorporated herein by reference.
A stent graft (or hybrid stent) constructed in accordance with the principles of the present invention may be suitable for number of applications. One such application is the transjugular intrahepatic portosystemic shunt (TIPS) procedure. In TIPS, an artificial channel within the liver is created to establish communication between the inflow portal vein and the outflow hepatic vein in order to treat, among other conditions, portal hypertension. This procedure is currently conducted with multiple devices, or a single non-hybrid stent. A hybrid stent or a stent graft including a hybrid stent may be delivered to the liver, in some embodiments over a wire guide, such that the distal end of the hybrid stent protruding from the liver and into portal vein would be a self-expanding portion, and the proximal section spanning the tract newly formed in the liver would be the balloon-expandable portion.
The use of a hybrid stent in a TIPS procedure may provide a number of advantages over present methodologies. First, the use of preselected precursor devices provides zoned diameter targets, and allow for a tunable gradient of pressure by selecting appropriate precursor stent portions from which to make the hybrid device. Moreover, the combination of a balloon-expandable portion and an self-expanding portion into a single hybrid device facilitates easy deployment of the hybrid device, while leaving a stiff device in place to shunt across the diseased liver. In addition, because the balloon-expandable portion can be manipulated by multiple balloon dilatations, the hybrid stent would have an adjustable character, allowing for a better fit within the anatomy.
As mentioned, both balloon expandable and self-expanding stents are delivered to an implantation site in the lumen of a body vessel by specialized equipment which is tailored to the particular type of stent to be used.
Delivery system 110a, as shown in
The inner catheter 130a likewise has at its distal end a soft tip 132a. At least one of soft tip 132a and flexible section 152a may further be embedded with radiopaque particles, or made of a radiopaque polymer, such that the delivery system may be tracked through the vasculature by known visualization methods, such as fluoroscopy. In the illustrated embodiment, the inner catheter 130a may have a smaller diameter in a distal section over which the stent is to be compressed and delivered, and may have a larger diameter in a portion proximal of this.
As shown in
In other embodiments, the delivery system 110a may not include a pusher element 140, as the crimped down section of the balloon-expandable stent portion 10 may provide sufficient anchoring such that the implant does not slide when the inner catheter 130a or the outer sheath 150a is moved, thereby further allowing for a decrease in profile of the delivery assembly 110a.
In another related embodiment, shown in
In some embodiments, the balloon-expandable portion 10 may be crimped over the balloon 120b/120e. In embodiments where the balloon expandable portion 10 is crimped over the balloon 120b/120e, the delivery assembly 110b/110e may be provided without a pusher band 140b/140e, as the crimped balloon-expandable stent portion 10 may provide axial stability for the device to be delivered within the delivery assembly 110b/110e.
In
In some embodiments, a multiballoon delivery system may have two different expanded diameters. For instance, in one example the balloon-expandable portion of the hybrid stent may be an 8 millimeter (mm) diameter stent, and may be crimped over a 3 mm balloon. In this case, the 3 mm balloon may be inflated to slightly expand the balloon-expandable portion, and the delivery system may also provide an 8 mm balloon. After the initial expansion, the 8 mm balloon may be moved within the balloon-expandable portion of the stent and fully expanded to deploy the hybrid device. If a hybrid stent has multiple balloon-expandable portions, a delivery system of this design may have multiple 3 mm balloons, corresponding to the number of balloon-expandable portions.
Alternatively, having a balloon expandable segment 10 at each end and a self-expanding segment bridging the middle of the device may be delivered with the delivery system 120d as depicted in
In an alternative to the embodiments in which multiple balloons are employed, a single balloon having a plurality of different folded and/or expanded diameters along its length may instead be substituted, thereby offering the ability to have differing final diameters of the crimped and/or expanded stent portions associated with these portions. These teachings may be applied to the embodiments illustrated in
In the embodiment illustrated in
In one delivery method with a wedge element, and in which the balloon-expandable portion is deployed to the vessel first, the self-expanding portion may be contained within the sheath 150 to act as an anchor to prevent the entire hybrid stent from moving out of the proper location for deployment. The outer sheath can then be retracted in steps in which the balloon-expandable portion can be exposed one to two segments or cells at a time, and the inner balloon catheter and the wedge (in one embodiment, a 3 mm wedge) located proximal to the balloon can be pulled proximally into the exposed cells. This can be repeated 1-2 cells at a time until the balloon-expandable portion is completely exposed and slightly expanded. Following this, an 8 mm balloon positioned proximal of the wedge could be placed into the slightly-expanded stent for inflation to 8 mm. This process can be repeated for each balloon-expandable portion of a hybrid stent having multiple balloon-expandable portions. One of skill in the art will appreciate that the dimensions of a delivery system and a device as described herein can vary based on the application.
Likewise, in the embodiment illustrated in
As mentioned above, with relation to the use of a pusher element in a delivery system for a hybrid stent, delivery of a self-expanding stent with a balloon catheter may be achieved.
Self-expanding stents are not typically deployed over a balloon catheter, as in general a pusher element is useful to provide resistance against the tendency of the self-expanding stent to track proximally as the outer sheath which constrains the self-expanding stent in its delivery configuration is withdrawn. However, in many procedures involving the delivery of a self-expanding stent, a balloon catheter is used after the self-expanding stent has been deployed. When the self-expanding stent has attained its expanded configuration at the desired location, the delivery system, except in some cases the wire guide over which the delivery system components are delivered, is withdrawn from the body of the patient, and a new system including a balloon catheter is introduced. The inflatable balloon of the balloon catheter is then disposed within the interior of the self-expanding stent, and a post-dilatation step is affected by the inflation of the balloon of the balloon catheter. Because this workflow involves introduction of multiple delivery systems, and because during delivery and withdrawal of a delivery system, wire guides need to be managed by the physician, eliminating the need for a second delivery system to permit for post-dilatation is desirable.
A method of delivery in which a single assembly can be used for delivery and post dilatation of a self-expanding stent is described in this embodiment. A self-expanding stent 210 is delivered over the balloon 240 of a balloon catheter 220, which has a catheter body 230 which runs through the balloon 240.
Step 201 in
In step 202, the outer sheath 250 is withdrawn proximally 254. The distal end of self-expanding stent 210 exits the distal end 252 of the outer sheath 250. The distal end of the self-expanding stent 210 then expands and contacts the inner wall of the vessel V. The folded proximal end 241 of the balloon 240 is still disposed about the proximal end of the self-expanding stent 210. This gives rise to partially expanded configuration 214 of the self-expanding stent 210.
When the outer sheath 250 is fully withdrawn, the entire self-expanding stent 210 is delivered to the vessel, and the self-expanding stent 210 adopts its fully expanded configuration 216. The balloon 240 is still in a deflated state but is positioned within the interior of the self-expanding stent 210.
Finally, in step 204, fluid is introduced through an inflation lumen to inflate the balloon 240 which adopts its inflated configuration 244. This then further dilates the self-expanding stent 210 such that it is seated against the inner wall of the vessel consistently along its length. This leads to the generation of fully expanded and placed configuration 218 of the self-expanding stent 210. The balloon may then be deflated, and the delivery assembly withdrawn.
A delivery assembly in accordance with the principles of the present disclosure may be equipped with a handle 300 at its proximal end as shown in
As a person skilled in the art will readily appreciate, the above description is only meant as an illustration of implementation of the principles this application. This description is not intended to limit the scope of this application in that the system is susceptible to modification, variation and change, without departing from the spirit of this application, as defined in the following claims.
The present patent document is a continuation of application Ser. No. 16/393,242, filed Apr. 24, 2019, which claims the benefit of the filing date under 35 U.S.C. § 119(e) of Provisional U.S. Patent Application Ser. No. 62/663,417, filed Apr. 27, 2018. All of the foregoing applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62663417 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16393242 | Apr 2019 | US |
Child | 17347963 | US |