1. Field of the Invention
The present invention relates to a braking system for a vehicle having one or more road wheels with both friction and regenerative braking capability.
2. Disclosure Information
The design and implementation of braking systems for vehicles having regenerative braking capability presents special challenges because road wheels which are braked regeneratively generally require the availability of friction brakes as well. Both regenerative and friction brakes must be used on wheels which are braked regeneratively because regenerative braking is not available from time to time. For example, when an energy storage device incorporated within the regenerative braking system, such as a traction battery or pumped storage accumulator, is fully charged, regenerative capability may not be available. Moreover, regenerative braking capability is usually less than the capability commonly associated with friction braking. Thus, regenerative braked wheels must have friction brakes as well to assure that the vehicle has adequate brake power capability under foreseeable operating conditions.
Another issue with respect to regenerative braking rises from the need to achieve brake application transparency. Because wheels being braked regeneratively require less braking power from the hydraulic master cylinders commonly associated with friction braking systems, it is necessary to provide high pressure brake fluid by means of an active booster master cylinder. This is motivated by the desire to achieve, with respect to the driver, a transparency in brake operation. In other words, equivalent brake pedal travel and effort are sought, regardless of whether regenerative braking is being applied. This transparency assures that the vehicle's operator will be presented with a consistent brake pedal response characteristic.
As noted above, active booster master cylinders are known to be used in regenerative braking systems of hybrid vehicles. In order to properly achieve the transparency described above, the hydraulic pressure which would normally be transmitted to the friction brakes could be limited by the use of solenoid valves employed in a hydraulic or electronic antilock braking or stability control, or traction control unit (HECU). However, such units utilize valves which are typically required to operate at high frequency for very short periods of time, thereby rendering them generally unsatisfactory for use with the type of combined regenerative and friction braking system described in this specification.
It would be desirable to provide a combination regenerative and friction braking system including not only a conventional HECU, but also one or more pressure limiting valves permitting coordinated use of friction and regenerative braking on common road wheels, without the expense and complexity associated with modified HECU hardware.
According to an aspect of the present invention, a combination regenerative and friction braking system for an automotive vehicle includes an active booster master cylinder connected with a number of wheel cylinders by means of brake pipes extending from the master cylinder to the wheel cylinders. A brake control unit is connected to the brake pipes. At least one pressure reducing valve is positioned in one of the brake pipes extending from the master cylinder to at least one wheel cylinder servicing a regeneratively breakable wheel.
According to another aspect of the present invention, the pressure reducing valve may be positioned either upstream or downstream from the brake control unit. The brake control unit may itself be configured as an electronic anti-lock braking unit, or a hydraulically actuated anti-lock braking unit, or as an electronic vehicle stability control unit, or an electronic traction control unit.
According to another aspect of the present invention, a braking system may further include a bypass valve mounted in a parallel flow relationship with the pressure reducing valve.
According to another aspect of the present invention, the pressure reducing valve is calibrated to prevent brake fluid from flowing from the master cylinder to a wheel cylinder servicing a regeneratively breakable wheel, at a pressure less than a predetermined pressure corresponding to the braking force produced during maximum regenerative braking. Alternatively, the pressure reducing valve may be calibrated to allow brake fluid to flow from the master cylinder to the wheel cylinder of the regeneratively braked wheel, at a pressure which is proportional to the upstream fluid pressure within the brake pipe to which the pressure reducing valve is attached.
According to another aspect of the present invention, the pressure reducing valve may be configured either as a mechanically actuated valve, or an electronically actuated valve operated by a controller.
According to another aspect of the present invention, an active booster master cylinder according to the present invention may be configured either as a dual master cylinder having a diagonal output, or as a dual master cylinder having front and rear wheel outputs.
According to another aspect of the present invention, the pressure reducing valve may be operated electronically so as to place the valve in a minimal flow restriction configuration if the brake control unit is operating in a stability or traction control mode.
According to another aspect of the present invention, an automotive vehicle includes an internal combustion engine, and a regenerative powertrain driven by the engine, with the regenerative powertrain being operatively connected with a number of road wheels. An energy storage device is coupled to the regenerative powertrain. An active booster master cylinder is connected with a number of wheel cylinders through brake pipes which are also connected with a brake control unit. A pressure reducing valve is operatively associated with one of the brake wheel cylinders servicing a road wheel connected to the regenerative braking device.
According to another aspect of the present invention, the pressure reducing valve operates to prevent the flow of brake fluid to at least one wheel cylinder operatively associated with a regeneratively braked wheel whenever the output pressure of the active booster master cylinder is less than a predetermined output pressure which would be required to produce an amount of braking equivalent to a maximum amount of regenerative braking.
It is an advantage of a system according to the present invention that standard design solenoid valves may be employed in a hydraulic/electronic control unit (HECU), thereby reducing the cost of implementing a regenerative braking system in a hybrid vehicle.
It is another advantage of a system according to the present invention that braking effort produced by an active booster master cylinder may easily be controlled without the need for extensive additional electronics in the vehicle system.
Other advantages, as well as features of the present invention, will become apparent to the reader of this specification.
As shown in
The braking system installed in vehicle 10 includes brake pedal, 33, attached to an active booster master cylinder, 32. Master cylinder 32 provides consistent brake pedal effort and travel regardless of whether vehicle 10 is being braked regeneratively or by friction braking. The brake system further includes a hydraulic or electronic control unit (HECU), 38, which is connected between active booster master cylinder 32 and wheel cylinders 20 and 18. A number of brake pipes, shown at 48, 52, and 54, extend from master cylinder 32 to HECU 38 and ultimately to wheel cylinders 18 and 20. HECU 38 may be configured as an electronic anti-lock braking unit, or a hydraulically actuated anti-lock braking unit, or an electronic vehicle stability control unit, or an electronic traction control unit. Moreover, HECU 38 may be configured as a single unit to perform not only vehicle stability control but also electronic traction control and anti-lock braking as well. This detail is committed to those wishing to employ the system according to the present invention.
According to another aspect of the present invention, pressure reducing valves 34 may be calibrated so as to allow brake fluid to flow from master cylinder 32 to wheel cylinders 18, servicing regeneratively braked wheels 14b, at a pressure which is proportional to the upstream fluid pressure generated by master cylinder 32.
Although the present invention has been described in connection with particular embodiments thereof, it is to be understood that various modifications, alterations, and adaptations may be made by those skilled in the art without departing from the spirit and scope of the invention set forth in the following claims.