Combination solenoid operated flow control and shut-off valve with pressure transducer

Information

  • Patent Grant
  • 6742537
  • Patent Number
    6,742,537
  • Date Filed
    Tuesday, July 16, 2002
    22 years ago
  • Date Issued
    Tuesday, June 1, 2004
    20 years ago
Abstract
A combination solenoid operated flow control valve and solenoid operated by-pass valve and pressure transducer are disposed in a common housing with a common electrical receptacle for connection thereto. The pressure transducer senses differential pressure across a metering orifice. The pressure transducer measures flow through the metering orifice during leak testing. A vacuum is drawn in the system for leak testing. The by-pass valve is opened to bypass the metering orifice and permit full flow to the flow control valve during normal engine operation.
Description




BACKGROUND OF THE INVENTION




The present invention relates to electrically operated valves and particularly to such valves employed in low voltage operation as, for example, the 12 volt supply employed in on-board motor vehicle applications. More particularly, the invention relates to solenoid operated valves employed in controlling fuel tank vapor emission in motor vehicles and in such applications where it is required to provide the diagnostic leak test of the vapor emission control system. Present systems of this type commonly employ a canister filled with adsorbent such as granulated carbonaceous material for storing fuel vapor during engine shutdown.




Recent legislation has mandated on-board leak testing of fuel vapor emission control systems and this has resulted in the requirement to close the atmospheric air inlet to the fuel vapor storage device or charcoal canister during the leak test cycle. Typically, in motor vehicles having such a canister, an electrically operated valve is employed to control the flow of fuel vapor from the canister to the engine air inlet during engine operation, which flow control is particularly critical during engine idle.




In order to comply with requirements for on-board leak detection diagnostic systems, it has been proposed to measure the flow rate of vapor when the vapor pressure in the tank is equal to the atmospheric pressure or in other words the ΔP across the tank wall is zero and compare with a flow measurement taken when a vacuum is pulled upon the tank with the canister vent valve closed. An example of such a known system for on-board leak detection of the fuel vapor emission control system is that shown and described in U.S. Pat. No. 5,637,788 issued to D. J. Remboski, et al. The diagnostic system in the aforesaid patent utilizes a pressure sensor mounted through the upper tank wall end a separate electrically operated flow regulation valve controls the flow of vapor to the engine during engine operation and for measuring the flow during the diagnostic test. The aforesaid diagnostic system employs a pressure sensor and an electrically operated flow control valve which are in addition to a separate electrically operated atmospheric vent valve controlling air flow into the vapor storage canister. In the aforesaid known fuel vapor emission control diagnostic system the pressure sensor and electrically operated valves are controlled by an electronic controller. This arrangement requires separate wiring to each of the valves and the sensor from the controller and thus increases the cost of assembly of the vehicle and complicates the assembly and creates additional sources of potential failure due to the complexity of routing separate wires around the tank at installation on the vehicle.




It has thus been desired to provide a way or means of on-board diagnostic testing of the fuel tank vapor emission control system in a manner which is simple, easy to install, low in cost and sufficiently robust to withstand continued exposure to the in service environment of the vehicle.




BRIEF SUMMARY OF THE INVENTION




The present invention provides an electrically operated set of valves including a flow control orifice and differential pressure sensing transducer combined as a single unit in a common housing for use in controlling flow of fuel tank vapor emission to an engine air inlet and for use in on-board vehicle diagnostic testing for leakage in the vapor emission control system. The combination valve and pressure transducer assembly of the present invention includes electrical terminals for attachment of a single electrical connector thereto for simplifying the wiring harness in the vehicle and provides for a single location of mounting the valve assembly for connection to the fuel vapor storage canister and to the engine air inlet. The combination valve and pressure transducer of the present invention thus reduces the number of wires and hoses and simplifies installation. During engine operation one valve is opened to bypass a metering orifice across which the pressure transducer measures flow during leak testing under vacuum. The present invention thus combines the functions of fuel vapor flow control and diagnostic testing including flow measurement into a single unit which may be mounted remotely from the fuel tank. The combination valve and transducer assembly of the present invention utilizes a robust common housing for all of the components and provides for improved reliability and resistance to harsh environments encountered during vehicle service.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an axonometric view of the assembly of the present invention;





FIG. 2

is a section view taken along section indicating lines


2





2


of

FIG. 1

;





FIG. 3

is a section view taken along section indicating lines


3





3


of

FIG. 1 and

,





FIG. 4

is an exploded view of the assembly of FIG.


1


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to the drawings, assembly of the present invention is indicated generally at


10


and includes a housing or body


12


preferably formed integrally as one piece having an elongated hollow configuration with an inlet fitting


14


formed at one end thereof having an inlet passage


16


therethrough and an outlet fitting


18


spaced from the inlet fitting and having an outlet passage


20


formed therethrough. Inlet passage


16


communicates with a first valving chamber


22


formed in the interior of the housing


12


and has a solenoid operator indicated generally at


24


disposed therein which has a preferably encapsulated coil


26


with a moveable armature


28


disposed therein having an operating member or rod


30


extending therefrom which has a valve obturator or poppet member


32


provided on the end thereof for movement therewith.




A valve seat member


34


is provided in the chamber


22


and has an annular valve seat


36


formed thereon which surrounds a passage


38


which communicates with a passage


40


formed in a second valve seat member


42


which has an annular valve seat


44


formed in the end thereof remote from valve seat


36


.




Solenoid operator


24


is retained in the valving cavity


22


in the body


12


by a cap


46


which may be sealingly attached over the lower end of the body by any suitable expedient as, for example weldment by sonic welding or spin welding.




Referring to

FIG. 3

, a differential pressure transducer


48


is disposed in the body


12


with the casing or housing therefor formed integrally with the valve seat member


34


; and, the transducer has a pressure tap or port


50


(see

FIGS. 2 and 3

) communicating with the passage


38


; and, passage


50


communicates with chamber


22


through metering orifice


59


. The pressure transducer is ported to the chamber


22


through port


52


provided thereon and has two electrical terminals


54


extending therefrom into the space reserved for an electrical receptacle indicated generally at


56


provided on the housing


12


.




The coil


26


in valve


24


has two electrical terminals


58


provided therewith which also extends into the space reserved for receptacle


56


as shown in FIG.


3


.




The valve seat


44


has a moveable obturator in the form of a spherical member


60


disposed for seating thereagainst; and, the valve housing


12


has a second solenoid operator indicated generally at


62


disposed therein. Solenoid operator


62


includes a coil


64


and moveable armature


66


which is operatively connected to an operating member or rod


68


which has an end thereof contacting the obturator


60


. A spring


70


is disposed within the coil and serves to bias the armature


66


in a direction tending to urge the obturator


60


in contact with valve seat


44


.




Housing


12


also defines therein a second valving chamber


72


which communicates the passage


40


and thus with the outlet passage


18


in the fitting


20


. The solenoid operator


62


is retained and sealed in the cavity


72


by a collar


74


threadedly engaged over the upper end of body


12


and sealed by endcap


76


secured thereon preferably by weldment.




In operation, for canister purge flow of vapor to the engine air inlet, solenoid valve


24


is opened to permit full flow to valve


62


which controls flow to the outlet passage


20


which is connected to the engine air inlet. During leak testing valve


24


is closed and the pressure transducer senses flow due to leakage.




Optionally, a test fitting


78


may be formed on the lower end of the body


12


with a test port or passage


80


formed therein and for communicating with the valving chamber


22


. A one-way check valve indicated generally at


82


may be disposed in the passage


80


to permit pressure testing. The test port


80


and check valve are preferably covered by a dust cap


84


threadedly received in the end of fitting


78


.




Coil


64


has two electrical terminals


86


extending into the space reserved for receptacle


56


as the solenoid operator


62


is assembled in the body


12


. It will be understood that in a similar manner as solenoid operator


24


is received in the body two electrical terminals


58


extend into the space reserved for receptacle


56


. The receptacle


56


is then installed with terminals


87


,


88


,


89


engaging the terminals


58


,


54


,


86


in plug in arrangement to provide electrical connection from the receptacle pins


90


to the coils and transducer.




The present invention thus provides a combination assembly of a flow control valve, on/off valve and pressure transducer in a single body or housing for remotely controlling the venting and the leak testing of fuel vapor emission systems and is particularly suitable for being located remotely from the fuel tank of the motor vehicle.




Although the invention has hereinabove been described with respect to the illustrated embodiments, it will be understood that the invention is capable of modification and variation and is limited only by the following claims.



Claims
  • 1. A method of making an electrically operated valve assembly with an integral pressure transducer comprising:(a) forming a valve housing with a valving chamber having an inlet port with a passage communicating said chamber with a second valving chamber having an outlet port; (b) disposing a pressure transducer in the housing and forming a first valve seat in said passage and porting the pressure transducer to said passage; (c) disposing a first solenoid operated valve with a moveable obturator in said first chamber and disposing the obturator for movement with respect to said first valve seat; and, (d) forming a second valve seat in said passage downstream of said first passage and disposing a second solenoid operated valve in said second passage with an obturator for movement with respect to said second valve seat.
  • 2. The method defined in claim 1, wherein said step of disposing said first valve seat in said passage includes inserting a valve seat member with a seal ring in said passage.
  • 3. The method defined in claim 1, wherein said step of connecting said first and second solenoid valves and said transducer to said connector includes plugging in.
  • 4. The method defined in claim 1, wherein said step of forming a housing includes forming a test port therein.
  • 5. The method defined in claim 4, wherein said step of forming a test port includes disposing a one-way valve in the test port.
  • 6. The method defined in claim 1, wherein said step of forming a housing and forming a connector includes molding plastic material.
  • 7. The method defined in claim 1, wherein said step of disposing a first and second solenoid valve includes encapsulating a coil with plastic material.
  • 8. The method defined in claim 1, wherein said step of porting said transducer to said passage includes forming said valve first seat in the inlet of said transducer.
  • 9. The method defined in claim 1, further comprising forming a connector for external electrical connection on said housing and connecting said transducer and said first and second solenoid operated valves to said connector.
  • 10. The method defined in claim 1, wherein said step of forming a valve housing includes forming the housing integrally as one-piece.
  • 11. An electrically operated valve assembly with integral pressure transducer comprising:(a) a valve housing defining a first valving chamber with an inlet port and a second valving chamber with an outlet port and a valving passage having a first valve seat controlling flow from said first chamber to said passage and a second valve seat controlling flow from said passage to said second chamber; (b) a first solenoid operated valve disposed for movement with respect to said first valve seat for controlling flow thereover and a second solenoid operated valve disposed for movement with respect to said second valve seat; and (c) a pressure transducer disposed in said housing and ported to said passage for sensing pressure therein; (d) means for effecting common external electrical connection to said first solenoid and said transducer.
  • 12. The method defined in claim 11, wherein said valve housing is formed integrally as one-piece.
  • 13. The assembly defined in claim 11, wherein said pressure transducer has a portion of said passage and said second valve seat formed integrally therewith.
  • 14. The assembly defined in claim 11, wherein said pressure transducer includes said second valve seat formed integrally therewith and has a plug-in connection with said passage.
  • 15. The assembly defined in claim 11, wherein said first and second solenoid operated valve includes an encapsulated coil each connected with a plug-in connection to said means for external electrical connection.
  • 16. The assembly defined in claim 11, wherein said pressure transducer has a plug-in connection with said means for external electrical connection.
  • 17. The assembly defined in claim 11, wherein said first and second solenoid operated valves are disposed in axially aligned arrangement and said means for external electrical connection is disposed at right angles to said solenoid axis.
  • 18. The valve assembly defined in claim 11, wherein said housing includes a pressure test port communicating with said chamber.
  • 19. The valve assembly defined in claim 18, wherein said pressure test port includes a one-way valve.
  • 20. The valve assembly defined in claim 11, wherein said means for effecting common electrical connection is integrally formed therewith.
US Referenced Citations (7)
Number Name Date Kind
4703737 Cook et al. Nov 1987 A
5146902 Cook et al. Sep 1992 A
5297529 Cook et al. Mar 1994 A
5411004 Busato et al. May 1995 A
5637788 Remboski et al. Jun 1997 A
6158270 Garman et al. Dec 2000 A
6247456 Everingham et al. Jun 2001 B1