Combined multi-coupler for top drive

Information

  • Patent Grant
  • 10544631
  • Patent Number
    10,544,631
  • Date Filed
    Monday, June 19, 2017
    7 years ago
  • Date Issued
    Tuesday, January 28, 2020
    4 years ago
Abstract
In one embodiment, a coupling system for a top drive and a tool includes a housing of the top drive having a bore therethrough, an adapter of the tool, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter, and a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.


Description of the Related Art

A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.


Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, pneumatic, data, and/or power lines, between conventional top drives and the tool to complete the connection. The threaded connection between top conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.


SUMMARY OF THE INVENTION

The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.


In one embodiment, a coupling system for a top drive and a tool includes a housing of the top drive having a bore therethrough, an adapter of the tool, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter, and a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions.


In one embodiment, a coupling system for a top drive includes a housing having a bore therethrough, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to a tool, and a lock member longitudinally movable relative to the housing and configured to move the latch member between the extended and the retracted positions.


In another embodiment, a coupling system for coupling a top drive to a tool includes a housing having a bore therethrough, a sleeve disposed on an outer surface of the housing, a latch member disposed on an outer surface of the sleeve, wherein the latch member is configured to longitudinally couple the housing to the tool, and a tool dock integrally formed with the tool and configured to receive the latch member.


In another embodiment, a coupling system for coupling a top drive includes a housing having a bore therethrough, a latch member at least partially disposed through a wall of the housing and rotatable relative to the housing, wherein the latch member is configured to longitudinally couple the housing to a tool, and an actuator disposed on an outer surface of the housing and configured to rotate the latch member.


In another embodiment, a method of coupling a top drive and a tool includes moving a top drive adjacent a tool, the top drive including a housing, a lock member at least partially disposed within the housing, and a latch member at least partially disposed within the housing and the tool including an adapter. The method further includes inserting the adapter into the housing, shifting the lock member longitudinally relative to the housing, and moving the latch member radially between an extended position and a retracted position to couple the top drive and the tool.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 illustrates an isometric view of a combined multi-coupler system according to a first embodiment.



FIG. 2 illustrates a partial cross-sectional view of the combined multi-coupler system according to the first embodiment.



FIGS. 3A and 3B illustrate operation of the combined multi-coupler system according to the first embodiment.



FIG. 4 illustrates an isometric view of a combined multi-coupler system according to a second embodiment.



FIG. 5 illustrates a cross-sectional view of the combined multi-coupler system according to a second embodiment.



FIG. 6 illustrates a tool dock according to the second embodiment.



FIGS. 7A and 7B illustrate operation of the combined multi-coupler system according to the second embodiment.



FIG. 8 illustrates an isometric view of a combined multi-coupler system according to a third embodiment.



FIG. 9 illustrates a cross-sectional view of the combined multi-coupler system according to the third embodiment.



FIGS. 10A-10C illustrate operation of the combined multi-coupler system according to the third embodiment.



FIG. 11 illustrates an isometric view of the combined multi-coupler system according to a fourth embodiment.



FIG. 12 illustrates a cross-sectional view of the combined multi-coupler system according to the fourth embodiment.



FIGS. 13 and 14 illustrate operation of an actuator assembly of the fourth embodiment.



FIGS. 15A and 15B illustrate operation of the combined multi-coupler system according to the fourth embodiment.



FIG. 16 illustrates an isometric view of the combined multi-coupler system according to a fifth embodiment.



FIG. 17 illustrates a cross-sectional view of the combined multi-coupler system according to the fifth embodiment.



FIGS. 18 and 19 illustrate operation of the combined multi-coupler system according to a sixth embodiment.





DETAILED DESCRIPTION


FIGS. 1 and 2 illustrate a combined multi-coupler system (CMC) 100, according to a first embodiment. The CMC 100 includes a drive member 110, a tool dock 120, and latch assembly 130. The drive member 110 may be integrally formed with the top drive. The drive member 110 may include a housing 111. The housing 111 may be tubular having a bore therethrough. The housing 111 may include a connector section, a torque transfer section, and a cone section. The connector section may be disposed at an upper longitudinal end of the housing 111. An upper longitudinal end of the connector section may be integrally formed with the top drive. The connector section may be tubular having a bore therethrough. The torque transfer section may be disposed beneath the connector section and include drive keys 112. Drive keys 112 may be formed on an outer surface of the housing 111. The drive keys 112 may be trapezoidal in shape. The drive keys 112 may have a recess formed therein for receiving adapter keys 122 of the tool dock 120. An actuator assembly, such as piston and cylinder 113, may be disposed on the outer surface of the housing 111. A port 114 may be formed through a wall of the housing 111 adjacent the actuator assembly. A U-shaped groove may be formed through the drive keys 112 and around the port 114. The cone section may be disposed beneath the torque transfer section. A plurality of ports 115 may be formed through a wall of the housing 111. The ports 115 may be disposed through the housing 111 below the drive keys 112.


The tool dock 120 may include the adapter 121. The adapter 121 may be integrally formed with the tool dock 120. The adapter 121 may be tubular having a bore therethrough. The adapter 121 may be configured to receive the cone section of the housing 111 therein. The adapter 121 may have adapter keys 122 formed at a longitudinal end thereof. The adapter keys 122 may be trapezoidal in shape. Recesses in the adapter keys 122 may be configured to receive the drive keys 112. The drive keys 112 may engage the adapter keys 122 and transfer torque between the top drive and the tool dock 120. A plurality of recesses 123 may be formed in an inner surface of the adapter 121. The recesses 123 may be partially formed through a wall of the adapter 121. The recesses 123 may be configured to align with the ports 115 of the housing 111. The adapter keys 122 may assist in aligning the ports 115 with the recesses 123. A seal 137 may be disposed at a lower longitudinal end of the adapter. The seal 137 may be disposed in a groove of the adapter 121. The seal 137 may prevent fluids from entering any gap between the adapter 121 and the drive member housing 111.


The latch assembly 130 may include a latch member, such as connection pins 131, and a lock member, such as shift wedge 132. Connection pins 131 may be cylindrical in shape. A first set of connection pins 131 may be spaced ninety degrees apart around the circumference of the shift wedge 132. A second set of connection pins 131 may be located around the circumference of the shift wedge 132 beneath the first set. Ports 115 and recesses 123 may be configured to receive the connection pins 131. Connection pins 131 may have a channel 134 formed therethrough. The connection pins 131 may have a tapered groove formed along an outer surface thereof. Corresponding tapered surfaces 135 may be formed on the shift wedge 132. The connection pins 131 may be radially movable between a retracted position, shown in FIGS. 2 and 3A, and an extended position, shown in FIG. 3B. The recesses 123 may be configured to receive the connection pins 131 in the extended position. The connection pins 131 may be at least partially disposed in the recesses 123 in the extended position. The shift wedge 132 may be tubular having a bore therethrough. The shift wedge 132 may be disposed in the bore of the housing 111. Seals 133 may be disposed at opposite longitudinal ends of the shift wedge 132. The piston and cylinder assembly 113 may be at least partially disposed through the port 114. Piston and cylinder assembly 113 may be connected to the shift wedge 132 through the port 114. The shift wedge 132 may be longitudinally movable relative to the housing 111 and the adapter 121. The shift wedge 132 may be longitudinally movable within the bore of the housing 111. The piston and cylinder assembly 113 may be configured to longitudinally move the shift wedge 132 within the bore of the housing 111. The shift wedge 132 may include tapered surfaces 135. The tapered surfaces 135 may correspond to the tapered grooves formed in the connection pins 131. The tapered surfaces 135 and tapered grooves may function as a tongue-and-groove connection. The connection pins 131 may be configured to move longitudinally relative to the shift wedge 132 and along the tapered surfaces 135. The tapered surfaces 135 may be configured to engage and extend the connection pins 131 through the ports 115 and into the recesses 123 of the adapter 121. A projection 136 may extend from the tapered surfaces 135. The projection 136 may be circular. The channel 134 may be configured to receive the projection 136. The projection 136 may be configured to move through the channel 134.


Alternatively, the drive keys 112 and adapter keys 122 may be omitted and the connection pins 131 may provide the longitudinal and the torsional coupling between the drive member 110 and the tool dock 120. The connection pins 131 support the axial load of the tool dock 120 and attached tool and transfer torque between the drive member 110 and the tool dock 120.



FIGS. 3A and 3B illustrate operation of the CMC 100. The CMC 100 is operable to torsionally and longitudinally couple the top drive to the tool. First, the housing 111 is inserted into the bore of the adapter 121. The tool dock 120 may be raised or the drive member 110 lowered to begin the process. As the housing 111 is inserted into the bore of the adapter 121, the drive keys 112 assist in aligning the connection pins 133 with the recesses 123. Recesses in the drive keys 112 receive the adapter keys 122. Likewise, the recesses in the adapter keys 122 receive the drive keys 112. As shown in FIG. 3A, the housing 111 has been inserted into the bore of the adapter 121. The engaged drive keys 112 and adapter keys 122 transfer torque between the tool and the top drive. Next, the piston and cylinder assembly 113 is actuated to longitudinally move the shift wedge 132 within the bore of the housing 111. The connection pins 133 are restrained from longitudinal movement relative to the housing 111 by walls of the holes 115. The channel 134 and projection 136 permit longitudinal movement of the shift wedge 132 relative to the connection pins 131. The projection 136 moves through the channel 134 as the shift wedge 132 longitudinally moves relative to the housing 111. As the shift wedge 132 longitudinally moves towards a lower end of the housing 111, the connection pins 131 slide along the tapered surfaces 135 to the extended position, shown in FIG. 3B. In the extended position, the connection pins 133 are received in the recesses 123 of the adapter 121. Reception of the connection pins 131 in the recesses 123 longitudinally couples the drive member 110 to the tool dock 120. In addition, the reception of the connection pins 131 may torsionally couple the drive member 110 to the tool dock 120 and compensate for the axial load hanging beneath the tool dock 120. Reception of the connection pins 131 in the recesses 123 rotationally couples the top drive to the tool bidirectionally. The shift wedge 132 retains the connection pins 131 in the extended position.


In order to decouple the top drive and the tool, the piston and cylinder assembly 113 is actuated to longitudinally move the shift wedge 132 towards the upper end of the housing 111. The connection pins 131 slide along the tapered surfaces 135 to the retracted position, shown in FIG. 3A. Movement of the connection pins 131 out of the recesses 123 longitudinally decouples the drive member 110 and the tool dock 120. The drive member 110 is then lifted or the tool dock 120 lowered to disengage the drive keys 112 and the adapter keys 122, thereby rotationally decoupling the drive member 110 and the tool dock 120.



FIGS. 4 and 5 illustrate a CMC system 200, according to a second embodiment. The CMC 200 may include a drive member 210, a tool dock 220, and a latch assembly 230. The drive member 210 may include a housing 211. The housing 211 may have a bore therethrough. The housing 211 may be integrally formed with the top drive. The housing 211 may include one or more sections 211a,b. An upper tubular section 211a of the housing 211 may be integrally formed with the top drive at an upper longitudinal end thereof. The tubular section 211a may include a coupling, such as a threaded coupling, formed at a lower longitudinal end thereof for connection to a lower housing section 211b. Alternatively, the housing 211 may be a single piece. The lower housing section 211b may have a bore therethrough. The lower housing section 211b may be configured to receive an adapter 221 of the tool dock 220. The lower housing section 211b may have a flange 212 formed at an upper longitudinal end thereof. The flange 212 may be integrally formed with the housing section 211b. A recess may be disposed between an outer surface of the housing section 211b and the flange 212. A port 213 (FIG. 7A) may be formed through a wall of the housing section 211b. The port 213 may be disposed through a wall adjacent the recess. Splines may be formed along an inner surface of the housing section 211b. The splines may extend radially inward from the inner surface of the housing section 211b. The splines may assist in alignment during insertion of the adapter 221 of the tool dock 220.


The latch assembly 230 may include a piston 231 and cylinder 232 assembly, a bracket 233, a lock member, such as thrust sleeve 234, a first biasing member, such as main spring 235, and a latch member, such as pin 236. The bracket 233 may be an annular ring. The bracket 233 may be disposed on an outer surface of the housing 211. The bracket 233 may be supported by the flange 212 of the housing 211. The cylinder 232 may be connected to the bracket. A fluid line may be connected to the cylinder 232 to operate the piston 231 and cylinder 232 assembly. A longitudinal end of the piston 231 may be disposed in the cylinder 232 and longitudinally movable relative thereto. A longitudinal end of the piston opposite the cylinder 232 may be connected to the thrust sleeve 234. The piston 231 and cylinder 232 assembly may be configured to longitudinally move the thrust sleeve 234 relative to the housing 211. The thrust sleeve 234 may be an annular ring. The thrust sleeve 234 may be disposed on an outer surface of the housing 211. The thrust sleeve 234 may be at least partially disposed in the recess between the flange 212 and the housing section 211b. The thrust sleeve 234 may be longitudinally movable relative to the housing 211 between an extended position, shown in FIG. 7A, and a retracted position, shown in FIG. 7B. The main spring 235 may be disposed in the recess between the flange 212 and the housing section 211b. The main spring 235 may be an annular ring. The main spring 235 may be an elastomer, such as rubber. The main spring 235 may be supported by an upper longitudinal end of the thrust sleeve 234. The main spring 235 may be longitudinally constrained in the recess between the thrust sleeve 234 and the flange 212. The thrust sleeve 234 may be configured to compress the main spring 235. The main spring 235 may be configured to radially expand within the recess when subjected to longitudinal compression by the thrust sleeve 234. The main spring 235 may be configured to engage the pin 236 during radial expansion. The thrust sleeve 234 may be configured to engage the main spring 235. The pin 236 may be at least partially disposed in the recess between the flange 212 and the housing section 211b. The pin 236 may be radially movable between a retracted position, shown in FIG. 7A, and an extended position, shown in FIG. 7B. The thrust sleeve 234 may be configured to retain the pin 236 in the extended position. The pin 236 may have a lip configured to prevent the pin from falling into the bore of the housing section 211b. A biasing member, such as circular spring 237 (FIG. 7A), may be disposed around the pin 236. The circular spring 237 may be disposed between the shoulder of the pin and the outer surface of the housing section 211b. The circular spring 237 may be disposed in a recess of the housing section 211b. The circular spring 237 may be an elastomer. The circular spring 237 may bias the pin 236 towards the retracted position.



FIG. 6 illustrates the tool dock 220 of the CMC 200. The tool dock 220 includes an adapter 221. The adapter 221 may be tubular having a bore therethrough. Splines 222 may be formed along an outer surface of the adapter 221. Splines 222 may be configured to engage corresponding splines on the inner surface of the housing section 211b. The adapter 221 may include quick connection pins 223 disposed at a longitudinal end thereof. The quick connection pins 223 may stab into receivers formed in an inner surface of the housing section 211a. The quick connection pins 223 may be configured to transfer power, data, electronics, hydraulics, and/or pneumatics between the top drive and the tool. A lip 224 may be formed at a longitudinal end of the adapter 221. An annular recess may be formed between the lip 224 and the splines 222 of the adapter 221.



FIGS. 7A and 7B illustrate operation of the CMC 200. The CMC 200 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 221 is inserted into the bore of the housing 211. The tool dock 220 may be raised or the drive member 210 lowered to begin the process. The splines on the adapter 221 and housing section 211b facilitate alignment. In addition, the splines on the adapter 221 and the housing section 211b torsionally couple the housing 211 of the drive member 210 and the adapter 221 the tool dock 220. Reception of the splines of the adapter within the recesses between the splines on the housing section 211b rotationally couples the top drive to the tool bidirectionally. As shown in FIG. 7A, the adapter 221 has been inserted into the housing section 211b. Recesses on the adapter 221 are in alignment with the pin 236. Next, the piston and cylinder assembly is actuated to longitudinally move the thrust sleeve 234. The thrust sleeve 234 moves longitudinally upwards relative to the housing 211. Movement of the thrust sleeve 234 longitudinally compresses the main spring 235 between the flange 212 and an outer surface of the thrust sleeve 234. As a result, the main spring 235 expands radially inward toward the housing section 211b and the pin 236. The main spring 235 expands radially to engage the pin 236 and push the pin 236 into the extended position. The main spring 235 engages and pushes the pin 236 inwards through the port 213 formed in the housing 211. The pin 236 acts against the biasing force of the circular spring 237 and at least a portion of the pin 236 moves into the recess formed in the adapter. In the extended position shown in FIG. 7B, the pin 236 longitudinally couples the housing drive member 210 and the tool dock 220. The thrust sleeve 234 may be held in this position by the piston and cylinder assembly 231, 232 to retain the pin 236 in the extended position.


In order to decouple the drive member 210 and the tool dock 220, the piston and cylinder assembly is actuated to longitudinally lower the thrust sleeve 234. The main spring 235 returns to a relaxed position, shown in FIG. 7A. The circular spring 237 biases the pin 236 towards the retracted position to longitudinally decouple the drive member 210 and the tool dock 220. The drive member 210 is then lifted or the tool dock 220 lowered to disengage the splines, thereby rotationally decoupling the drive member 210 from the tool dock 220.



FIGS. 8 and 9 illustrate a CMC 300, according to a third embodiment. The CMC 300 includes a drive member 310, a tool dock 320, and a latch assembly 330. The drive member 310 may include a housing 311. The housing 311 may have a bore therethrough. The housing 311 may include one or more sections 311a-c. The housing section 311a may include an upper tubular portion and a lower disc portion. The housing section 311b may be an L-shaped flange. Splines may be formed along an inner surface of the housing section 311b. The splines may extend radially inward from the inner surface of the housing section 311b. The splines may facilitate alignment of housing section 311c and an adapter 321 of the tool dock 320. Corresponding splines may be formed on an outer surface of the adapter 321. The splines of the housing section 311c and corresponding splines of the adapter 321 may be configured to torsionally couple the housing section 311c and the adapter 321. The splines of the housing section 311c and corresponding splines of the adapter 321 may permit longitudinal movement of the adapter 321 relative to the housing section 311c. Splines may be formed on an outer surface of the flange 312. The splines of the flange 312 may extend radially outward. The splines of the flange 312 may facilitate alignment of housing section 311b and housing section 311c. Corresponding splines may be formed on an inner surface of housing section 311b. The splines of flange 312 and corresponding splines of the housing section 311b may be configured to torsionally couple the housing section 311c and the housing section 311b. The splines of flange 312 and corresponding splines of the housing section 311b may permit longitudinal movement of the housing section 311b relative to the flange 312 and housing section 311c. A recess may be formed between the housing section 311b and housing section 311a. A counter spring 313 may be disposed in the recess. The counter spring 313 may be an elastomer. The counter spring 313 may be an annular ring. The housing section 311c may have a bore therethrough. The housing section 311c may be configured to receive the tool dock 320. The housing section 311c may have a flange 312 formed at an upper longitudinal end thereof. The flange 312 may be integrally formed with the housing section 311c. A recess may be disposed between an outer surface of the housing section 311c and the flange 312. A port 314 may be formed through a wall of the housing section 311c. The port 314 may be disposed through a wall adjacent the recess. Splines may be formed along an inner surface of the housing section 311c. The splines may extend radially inward from the inner surface of the housing section 311c. The splines may assist in alignment during insertion of the tool dock 320.


The latch assembly 330 may include a piston 331 and cylinder 332 assembly, a lock member, such as thrust sleeve 334, a first biasing member, such as main spring 335, and a latch member, such as pin 336. The cylinder 332 may be connected to the outer surface of the housing section 311a. A fluid line may be connected to the cylinder 332 to operate the piston 331 and cylinder 332 assembly. A longitudinal end of the piston 331 may be disposed in the cylinder 332 and longitudinally movable relative thereto. A longitudinal end of the piston opposite the cylinder 332 may be connected to the thrust sleeve 334. The piston 331 and cylinder 332 assembly may be configured to longitudinally move the thrust sleeve 334 relative to the housing 311. The thrust sleeve 334 may be an annular ring. The thrust sleeve 334 may be disposed on an outer surface of the housing 311. The thrust sleeve 334 may be at least partially disposed in the recess between the flange 312 and the housing section 311c. The thrust sleeve 334 may be longitudinally movable relative to the housing 311 between an extended position, shown in FIG. 10A, a coupled position, shown in FIG. 10B, and a seal position, shown in FIG. 10C. The main spring 335 may be disposed in the recess between the flange 312 and the housing section 311b. The main spring 335 may be an annular ring. The main spring 335 may be an elastomer, such as rubber. The main spring 335 may be supported by an upper longitudinal end of the thrust sleeve 334. The main spring 335 may be longitudinally constrained in the recess between the thrust sleeve 334 and the flange 312. The thrust sleeve 334 may be configured to compress the main spring 335. The main spring 335 may be configured to engage the pin 336 during radial expansion. The thrust sleeve 334 may be configured to engage the main spring 335. The main spring 335 may be configured to radially expand within the recess when subjected to longitudinal compression. The pin 336 may be at least partially disposed in the recess between the flange 312 and the housing section 311c. The pin 336 may be at least partially disposed in the port 314. The pin 336 may be radially movable between a retracted position, shown in FIG. 10A, and an extended position, shown in FIGS. 10B and 10C. The thrust sleeve 334 may be configured to retain the pin 336 in the extended position. The pin 336 may have a lip configured to prevent the pin from falling into the bore of the housing section 311c. A circular spring 337 may be disposed around the pin 336. The circular spring 336 may be disposed between the shoulder of the pin and the outer surface of the housing section 311c. The circular spring 337 may be disposed in a recess of the housing section 311c. The circular spring 337 may be an elastomer. The circular spring 337 may bias the pin 336 towards the retracted position.


The tool dock 320 may include an adapter 321. The adapter 321 may be similar to the adapter 221. The adapter 321 may include quick connection pins disposed at a longitudinal end thereof. The quick connection pins may stab into receivers formed in an inner surface of the housing section 311a. The quick connection pins may be configured to transfer electricity, data, hydraulics, and/or pneumatics between the top drive and the tool. A seal 322 may be disposed at an upper longitudinal end of the adapter 321. The seal 322 may be disposed around an upper end of the bore of the adapter 321. The seal 322 may engage the housing section 311a. The seal 322 may prevent fluid from entering an annulus between the tool dock 320 and the housing section 311c. The seal 322 may be an elastomer.



FIGS. 10A-C illustrate operation of the CMC 300. The CMC 300 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 321 is inserted into the bore of the housing 311. The tool dock 320 may be raised or the drive member 310 lowered to begin the process. The splines on the adapter 321 and housing section 311c facilitate alignment. In addition, the splines on the adapter 321 and the housing section 311c torsionally couple the drive member 310 and the tool dock 320. Reception of the splines of the adapter 321 within the recesses between the splines on the housing section 311c rotationally couples the top drive to the tool bidirectionally. As shown in FIG. 10A, the adapter 321 has been inserted into the housing section 311c. Recesses on the adapter 321 are in alignment with the pin 336. Next, the piston and cylinder assembly is actuated to longitudinally move the thrust sleeve 334. The thrust sleeve 334 moves longitudinally upwards relative to the housing 311. Movement of the thrust sleeve 334 longitudinally compresses the main spring 335 between the flange 312 and an outer surface of the thrust sleeve 334. As a result, the main spring 335 expands radially inward toward the housing section 311c and the pin 336. The main spring 335 expands radially and engages the pin 336 to move the pin 336 to the extended position. The main spring 335 engages and pushes the pin 336 inwards through the port 314 formed in the housing 311. The pin 336 acts against the biasing force of the circular spring 337 and at least a portion of the pin 336 moves into the recess formed in the adapter 321. In the extended position shown in FIG. 7B, the pin 336 longitudinally couples the housing drive member 310 and the tool dock 320.


Next, the piston and cylinder assembly is further actuated to seal a gap between the housing section 311a and the adapter 321. The piston and cylinder assembly longitudinally move the thrust sleeve 334. When the main spring 335 has fully expanded, the longitudinal force of the piston and cylinder assembly is transferred to the housing section 311c. The piston and cylinder assembly longitudinally moves the housing section 311c relative to the housing sections 311a,b. The longitudinal force is also transferred from the pin 336 to the adapter 321. As a result, the adapter 321 and housing section 311c longitudinally move relative to the housing sections 311a,b. The counter spring 313 is compressed within the recess between the housing sections 311a,c. Longitudinal movement of the adapter 321 and housing section 311c causes the seal 322 to engage the housing section 311a. The engaged seal 322 prevents fluid passing through the bore of the housing section 311a from entering the annulus between the housing section 311c and the adapter 321. The thrust sleeve 334 may be held in this position by the piston and cylinder assembly 331, 332 to retain the pin 336 in the extended position.


In order to decouple the drive member 310 and the tool dock 320, the piston and cylinder assembly is actuated to longitudinally lower the thrust sleeve 334. The counter spring 313 biases the housing section 311c away from the housing section 311a. The seal 322 disengages from the housing section 311a. Next, the thrust sleeve 334 moves longitudinally relative to the housing section 311c. The main spring 335 returns to a relaxed position, shown in FIG. 10A. The circular spring 337 biases the pin 336 towards the retracted position, shown in FIG. 10A, to longitudinally decouple the drive member 310 and the tool dock 320. The drive member 310 is then lifted or the tool dock 320 lowered to disengage the splines, thereby rotationally decoupling the drive member 310 from the tool dock 320.



FIGS. 11 and 12 illustrate a CMC system 400, according to a fourth embodiment. The CMC 400 includes a drive member 410 and a tool dock 420. The drive member 410 includes a housing 411. The housing 411 may be tubular having a bore therethrough. The housing 411 may be configured to receive an adapter 421 of the tool dock 420. The housing 411 may have splines formed longitudinally along an inner surface thereof. The housing 411 may have a window formed through an outer wall thereof. The window may be circular. The window may extend at least partially through the bore of the housing 411. The window may be formed at least partially off-center from a radial axis of the housing 411. A second window may be formed on an opposite side and at the same height through the housing 411 as the window. A seal 414 may be disposed in the bore of the housing 411. The seal 414 may be an elastomer. The seal 414 may be configured to prevent fluid entering an annulus between the housing 411 and the adapter 421.


The tool dock 420 may include an adapter 421. The adapter 421 may be similar to the adapter 221. The adapter 421 may include quick connection pins disposed at a longitudinal end thereof. The quick connection pins may stab into receivers formed in an inner surface of the housing section 411. The quick connection pins may be configured to transfer electricity, data, hydraulics, and/or pneumatics between the top drive and the tool. The adapter 421 may be tubular having a bore therethrough. The adapter 421 may have splines 422 formed on an outer surface thereof. A lip 423 may be formed at an upper longitudinal end of the adapter 421. A recess 424 may be formed between the lip 423 and the splines 422.



FIGS. 13 and 14 illustrate the latch assembly 430 of the CMC 400. The latch assembly 430 may include an actuator, such as piston and cylinder assembly 431, levers 432a,b, and crankshafts 433, 434. The piston and cylinder assembly 431 may be longitudinally coupled to the housing 411 at an upper longitudinal end. The piston may be coupled to the levers 432a,b an opposite end. The piston and cylinder assembly 431 may be configured to actuate the levers 432a,b. The piston and cylinder assembly 431 may be configured to turn the crankshafts 433, 434 between a locked position, shown in FIG. 13, and an unlocked position, shown in FIG. 14. The lever 432a may be a straight metal arm. The lever 432a may be coupled to an arm 433a of the crankshaft 433. The lever 432b may be coupled to an arm 434a of the crankshaft 434. The crankshafts 433, 434 may be cylindrical in shape. The windows may be configured to receive the crankshafts 433, 434. The crankshafts 433, 434 may include eccentric middle portions 433b, 434b (FIG. 15A) having a smaller cross-sectional area than the remainder of the crankshafts 433, 434. The middle portions 433b, 434b may be disposed off-center from a longitudinal axis of the crankshafts 433, 434.



FIGS. 15A and 15B illustrate operation of the CMC 400. The CMC 400 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 421 is inserted into the bore of the housing 411. The tool dock 420 may be raised or the drive member 410 lowered to begin the process. The splines 422 on the adapter 421 and housing 411 facilitate alignment. In addition, the splines 422 on the adapter 421 and the housing 411 torsionally couple the drive member 410 and the tool dock 420. Reception of the splines 422 of the adapter 421 within the recesses between the splines on the housing 411 rotationally couples the top drive to the tool bidirectionally. As shown in FIG. 15A, the adapter 421 has been inserted into the housing 411. The adapter 421 is inserted into the housing 411 until the recess 424 is positioned adjacent the crankshafts 433, 434. The seal 414 engages an upper longitudinal end of the adapter 421. Next, the piston and cylinder assembly 431 actuates the levers 432a,b. Actuation of the levers 432a,b rotates the crankshafts 433, 434. The rotation of the crankshafts 433, 434 moves the middle portions 433b, 434b into the recess 424, as shown in FIG. 15B. The eccentric middle portions 433b, 434b engage the lip 423 to longitudinally couple the adapter 421 and the housing 411.


In order to decouple the drive member 410 and the tool dock 420, the piston and cylinder assembly 431 is actuated to shift the levers 432a,b back to the position shown in FIG. 14. The crankshafts 433, 434 rotate within the windows. The middle portions 433b, 434b rotate and disengage from the lip 423. The middle portions 433b, 434b continue to rotate out of recess 424 to longitudinally decouple the adapter 421 and the housing 411. The drive member 410 is then lifted or the tool dock 420 lowered to disengage the splines, thereby rotationally decoupling the drive member 410 from the tool dock 420.



FIGS. 16 and 17 illustrate a CMC 500, according to a fifth embodiment. The CMC 500 includes a drive member 510, tool dock 520, and latch assembly 530. The drive member 510 may be integrally formed with the top drive. The drive member 510 may include a housing 511. The housing 511 may be bell-shaped having an upper tubular section 511a and a lower bell section 511b. The housing sections 511a,b may have a bore therethrough. An upper end of the housing section 511a may be integrally formed with the top drive. The bell section 511b may have connections 512 formed at an upper end thereof. The connections 512 may be hooks configured to connect to an actuator. The actuator may be a piston and cylinder assembly. The bell section 511b may have a groove 513 formed along an outer surface thereof. The groove 513 may be longitudinally aligned. The groove 513 may have a tapered surface. A hole may be formed through the bell section 511b at a lower end of the groove 513. The bell section 511b may have a shoulder 515 formed at a lower end thereof. An inner recess may be formed through a lower end of the bell section 511b, adjacent the shoulder 515. The inner recess may extend longitudinally through the bell section 511b towards the tubular section 511a of the housing 511. The inner recess may be configured to receive an adapter 521 of the tool dock 520. A cone 516 may be formed in the inner recess of the bell section 511b. The cone 516 may extend longitudinally through the inner recess towards a lower end of the bell housing 511b. The bore of the housing 511 may extend through the cone 516. The cone 516 may have a lip formed at a lower end thereof.


The tool dock 520 may include the adapter 521. The adapter 521 may be integrally formed with the tool dock 520. The adapter 521 may have a bore therethrough. The adapter 521 may have an upper pin section and a lower tubular section. The pin section may have a cone 522 formed at an upper end thereof. The cone 522 may be configured to receive the cone 516 of the bell section 511b. A seat may be formed along an inner surface of the cone 522. The seat may be configured to receive the lip of the cone 516. The inner recess of the bell section 511b may be configured to receive the pin section. A window may be formed in an outer wall of the cone 522. The window may be aligned with the hole of the bell section 511b. A shoulder 525 may be formed at a lower end of the pin section. The shoulder 525 may be configured to engage the shoulder 515 of the bell section 511b.


The latch assembly 530 may include a lever 531, a latch member, such as block 532, and a lock member, such as locking ring 533. The lever 531 may be disposed in the groove 513 of the bell section 511b. The lever 531 may be substantially L-shaped. The lever 531 may be pivotally movable relative to the bell section 511b. A pin may couple a lower end of the lever 531 to the block 532. The block 532 may be disposed in the hole of the bell section 511b. The window may be configured to receive the block 532 in a locked position of the latch assembly 530. The locking ring 533 may be an annular ring. The locking ring 533 may be disposed on an outer surface of the bell section 511b. The locking ring 533 may have a hook 535 formed on an outer surface thereof. Hook 535 may be configured to longitudinally couple the locking ring 533 to an actuator. The locking ring 533 may be longitudinally movable relative to the bell section 511b.


The CMC 500 is operable to longitudinally and torsionally couple the top drive to the tool. The locking ring 533 is in a first position, engaging an upper longitudinal end of the lever 531. The force applied to the lever 531 by the locking ring 533 retains the block 532 in a retracted position. The block 532 may be partially disposed in the hole of the bell section 511b in the retracted position. First, the adapter 521 is stabbed into the inner recess of the bell section 511b. The tool dock 520 may be raised into the drive member 510 or the drive member 510 lowered onto the tool dock 520 to begin the stabbing process. The cone 516 of the bell section 511b is stabbed into the cone 522 of the pin section. The lip of the cone 516 engages and seals against the seat of the cone 522. The hole of the bell section 511b moves into alignment with the window of the cone 522. Once the pin section has been stabbed into the inner recess of the bell section 511b, the actuators longitudinally move the locking ring 533 relative to the housing 511 and tool dock 520. The locking ring 533 is lowered around the outside of the bell section 511b. As the locking ring 533 moves longitudinally towards the tool dock 520, the locking ring 533 engages a lower end of the lever 531. The lever 531 pivots relative to the housing 511, moving the block 532 into the locked position, disposed in the window of the cone 522. In the locked position, the block 532 serves to longitudinally and torsionally couple the tool dock 520 to the drive member 510. Reception of the block 532 within the window of the cone 522 rotationally couples the top drive to the tool bidirectionally. The locking ring 533 retains the block 532 in the locked position.


In order to unlock the tool dock 520 and the drive member 510, the actuators move the locking ring 533 longitudinally away from the tool dock 520. The locking ring 533 engages the upper end of the lever 531, causing the lever 531 to pivot relative to the housing 511. The pivotal motion of the lever 531 causes the block 532 to move radially out of the window to the retracted position.



FIGS. 18 and 19 illustrate a CMC 600, according to a sixth embodiment. The CMC 600 includes a drive member 610, a tool dock 620, and a latch assembly 630. The drive member 610 may be integrally formed with the top drive. Alternatively, the drive member 610 may have a coupling, such as a threaded coupling, formed at an upper longitudinal end thereof for connection to the top drive. The drive member 610 may include a housing 611. The housing 611 may be tubular having a bore therethrough.


The tool dock 620 may be integrally formed with the tool. Alternatively, the tool dock may have a coupling at a lower longitudinal end thereof for connection to the tool. The tool dock 620 may include the adapter 621. The adapter 621 may be tubular having a bore therethrough. The adapter 621 may have a protrusion 622 formed on an outer surface thereof. The protrusion 622 may have a cylindrical shape. The protrusion 622 may be configured to receive an arm of a lever. A second protrusion may be formed on the outer surface of the adapter 621. The second protrusion may be formed 180 degrees apart from the protrusion 622. A signal connector 623 may be formed on the outer surface of the adapter 621. The signal connector 623 may be configured to receive and transmit power, electrical, data, hydraulic, pneumatic and/or other connections between the top drive and the tool.


The latch assembly 630 may include a sleeve 631, a latch member, such as lever 632, an actuator, and a signal pin 633. The sleeve 631 may be tubular having a bore therethrough. The sleeve 631 may be disposed on an outer surface of the housing 611. The sleeve 631 may at least partially extend past a lower longitudinal end of the housing 611. The sleeve 631 may have a notch 634 formed at a lower end thereof. The notch 634 may be configured to receive the protrusion 622. A second notch may be formed at a lower end of the sleeve 631 and may be configured to receive the second protrusion. The lever 632 may be pivotally coupled by the sleeve. The lever 632 may be pivotally movable relative to the sleeve 631 between an unlocked position, shown in FIG. 18, and a locked position, shown in FIG. 19. The actuator (not shown) may be a piston and cylinder assembly. The actuator may be coupled to the lever 632. The actuator may be operable to actuate the lever 632 between the positions. The signal pin 633 may be disposed on an outer surface of the sleeve 631. The signal pin 633 may be configured to connect to the signal connector 623.


In operation, the CMC 600 torsionally and longitudinally couples the tool dock and the top drive. The adapter 621 is inserted into the bore of the sleeve 631. The tool dock 620 may be raised or the drive member 610 lowered to begin the process. The protrusion 622 is aligned and enters the notch 634. The protrusion 622 continues moving through the notch 634 until reaching an upper longitudinal end of the notch 634. The protrusion 622 and notch 634 provide torsional coupling between the drive member 610 and the tool dock 620. Reception of the protrusion 622 within the notch 634 rotationally couples the top drive to the tool bidirectionally. The signal pin 633 and signal connector 623 engage and provide power, electrical, data, hydraulic, pneumatic and/or other connections between the drive member 610 and the tool dock 620. Next, the actuator is operated to shift the lever 632 to the locked position, shown in FIG. 19. The lever 632 pivots relative to the sleeve 631. An arm of the lever 632 hooks underneath the protrusion 622 to support the adapter 621. The lever 632 and protrusion 622 longitudinally couple the drive member 610 and the tool dock 620.


In order to decouple the drive member 610 and the tool dock 620, the actuator returns the lever 632 to the unlocked position, shown in FIG. 18. The drive member 610 is then lifted or the tool dock 620 lowered to disengage the protrusion 622 from the notch 634, thereby torsionally decoupling the tool dock 620 from the drive member 610.


In one embodiment, a coupling system for a top drive includes a housing having a bore therethrough, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to a tool, and a lock member longitudinally movable relative to the housing and configured to move the latch member between the extended and the retracted positions.


In one or more of the embodiments described herein, the lock member is at least partially disposed within the housing.


In one or more of the embodiments described herein, the coupling system includes an actuator configured to longitudinally move the lock member.


In one or more of the embodiments described herein, the actuator is disposed on an outer surface of the housing.


In one or more of the embodiments described herein, the actuator is a piston and cylinder assembly.


In one or more of the embodiments described herein, the housing has a port formed through a wall thereof.


In one or more of the embodiments described herein, the coupling system includes a tool dock.


In one or more of the embodiments described herein, the tool dock includes an adapter having a bore therethrough and longitudinally movable relative to the housing.


In one or more of the embodiments described herein, the adapter further includes quick connection pins located at a longitudinal end thereof.


In one or more of the embodiments described herein, the housing is configured to receive the adapter.


In one or more of the embodiments described herein, the latch member is at least partially disposed in a recess of the adapter in the extended position.


In one or more of the embodiments described herein, the lock member engages the latch member to retain the latch member in the extended position.


In another embodiment, a coupling system for coupling a top drive to a tool includes a housing having a bore therethrough, a sleeve disposed on an outer surface of the housing, a latch member disposed on an outer surface of the sleeve, wherein the latch member is configured to longitudinally couple the housing to the tool, and a tool dock integrally formed with the tool and configured to receive the latch member.


In one or more of the embodiments described herein, the coupling system includes a signal pin disposed on an outer surface of the sleeve.


In one or more of the embodiments described herein, the coupling system includes a signal connector disposed on an outer surface of the tool dock, wherein the signal connector is configured to receive the signal pin.


In one or more of the embodiments described herein, the coupling system includes a protrusion formed on an outer surface of the housing and configured to receive the latch member.


In one or more of the embodiments described herein, the coupling system includes a notch formed at a longitudinal end of the sleeve and configured to receive the protrusion.


In one or more of the embodiments described herein, the latch member is a lever pivotally coupled to the sleeve.


In another embodiment, a coupling system for coupling a top drive includes a housing having a bore therethrough, a latch member at least partially disposed through a wall of the housing and rotatable relative to the housing, wherein the latch member is configured to longitudinally couple the housing to a tool, and an actuator disposed on an outer surface of the housing and configured to rotate the latch member.


In one or more of the embodiments described herein, the latch member comprises at least one crankshaft including an eccentric middle portion.


In one or more of the embodiments described herein, the coupling system includes a linkage coupling the actuator to the at least one crankshaft.


In one or more of the embodiments described herein, the actuator is a piston and cylinder assembly.


In one or more of the embodiments described herein, a coupling system for a top drive and a tool includes a housing of the top drive having a bore therethrough, an adapter of the tool, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter, a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions, and an actuator configured to longitudinally move the lock member.


In one or more of the embodiments described herein, the lock member is configured to retain the latch member in the extended position.


In one or more of the embodiments described herein, the adapter includes a bore configured to receive the housing.


In one or more of the embodiments described herein, wherein the lock member includes a tapered surface configured to engage the latch member.


In one or more of the embodiments described herein, wherein the actuator is a piston and cylinder assembly.


In one or more of the embodiments described herein, wherein the housing has a port formed therethrough.


In one or more of the embodiments described herein, wherein the actuator is at least partially disposed through the port.


In one or more of the embodiments described herein, the adapter further includes a recess disposed therein.


In one or more of the embodiments described herein, the adapter further comprising quick connection pins located at a longitudinal end thereof, wherein the quick connection pins are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.


In one or more of the embodiments described herein, further including a biasing member, the biasing member configured to bias the latch member towards the retracted position.


In one or more of the embodiments described herein, wherein the latch member is at least partially disposed in the recess in the extended position.


In one or more of the embodiments described herein, wherein the lock member engages the latch member to retain the latch member in the extended position.


In one or more of the embodiments described herein, wherein the bore of the housing is configured to receive the adapter.


In one or more of the embodiments described herein, a method of coupling a top drive and a tool includes moving a top drive adjacent a tool, the top drive including a housing, a lock member at least partially disposed within the housing, and a latch member at least partially disposed within the housing and the tool including an adapter. The method further includes inserting the adapter into the housing, shifting the lock member longitudinally relative to the housing, and moving the latch member radially between an extended position and a retracted position to couple the top drive and the tool.


In one or more of the embodiments described herein, the method includes retaining the latch member in the extended position using the lock member.


In one or more of the embodiments described herein, the method includes biasing the latch member towards the retracted position.


In one or more of the embodiments described herein, the method includes engaging a biasing member using the lock member.


In one or more of the embodiments described herein, the method includes expanding the biasing member radially to move the latch member to the extended position.


In one or more of the embodiments described herein, the method includes transferring at least one of power, data, electronics, hydraulics, and pneumatics between the adapter and the housing using quick connection pins.


In one or more of the embodiments described herein, the method includes engaging splines of the housing with splines of the adapter, thereby transferring torque between the housing and the adapter.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A coupling system for a top drive and a tool, comprising: a housing of the top drive having a bore therethrough;an adapter of the tool, the adapter having a recess;a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member, in the extended position, is at least partially disposed in the recess to longitudinally couple the housing to the adapter; anda lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions.
  • 2. The coupling system of claim 1, wherein the lock member is configured to retain the latch member in the extended position.
  • 3. The coupling system of claim 1, wherein the adapter includes a bore configured to receive the housing.
  • 4. The coupling system of claim 1, wherein the lock member includes a tapered surface configured to engage the latch member.
  • 5. The coupling system of claim 1, further comprising an actuator configured to longitudinally move the lock member.
  • 6. The coupling system of claim 1, wherein the housing has a port formed therethrough.
  • 7. The coupling system of claim 6, wherein an actuator is at least partially disposed through the port.
  • 8. The coupling system of claim 6, wherein the latch member is at least partially disposed in the port.
  • 9. The coupling system of claim 1, the adapter further comprising quick connection pins located at a longitudinal end thereof, wherein the quick connection pins are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
  • 10. The coupling system of claim 1, further including a biasing member, the biasing member configured to bias the latch member towards the retracted position.
  • 11. A method of coupling a top drive and a tool, comprising: moving a top drive adjacent to a tool, the top drive including a housing, a lock member at least partially disposed within the housing, and a latch member at least partially disposed within the housing;engaging the housing to an adapter of the tool;shifting the lock member longitudinally relative to the housing; andextending the latch member radially into a recess of the adapter, thereby coupling the tool to the top drive.
  • 12. The method of claim 11, further comprising retaining the latch member in the extended position using the lock member.
  • 13. The method of claim 11, further comprising biasing the latch member towards the retracted position.
  • 14. The method of claim 11, further comprising engaging a biasing member using the lock member.
  • 15. The method of claim 14, further comprising expanding the biasing member radially to move the latch member to the extended position.
  • 16. The method of claim 11, further comprising transferring at least one of power, data, electronics, hydraulics, and pneumatics between the adapter and the housing using quick connection pins.
  • 17. The method of claim 11, further comprising engaging splines of the housing with splines of the adapter, thereby transferring torque between the housing and the adapter.
  • 18. The method of claim 11, wherein the latch member is at least partially disposed within a port of the housing.
  • 19. A coupling system for a top drive and a tool, comprising: a housing of the top drive having a bore therethrough;an adapter of the tool;a latch member at least partially disposed in a port of the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter;a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions;a plurality of drive keys formed on the housing; anda plurality of adapter keys formed on the adapter, wherein the plurality of drive keys engage the plurality of adapter keys for transferring torque from the housing to the adapter.
  • 20. The coupling system of claim 19, wherein the adapter includes a bore configured to receive the housing.
  • 21. The coupling system of claim 20, wherein the lock member includes a tapered surface configured to engage the latch member.
  • 22. The coupling system of claim 21, further comprising an actuator configured to longitudinally move the lock member.
  • 23. The coupling system of claim 22, wherein the latch member in the extended position, is at least partially disposed in a recess to longitudinally couple the housing to the adapter.
  • 24. The coupling system of claim 23, further including a biasing member, the biasing member configured to bias the latch member towards the retracted position.
  • 25. The coupling system of claim 24, wherein the adapter further comprises quick connection pins located at a longitudinal end thereof, wherein the quick connection pins are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
US Referenced Citations (441)
Number Name Date Kind
1367156 McAlvay et al. Feb 1921 A
1610977 Scott Dec 1926 A
1822444 MacClatchie Sep 1931 A
2370354 Hurst Feb 1945 A
2683379 Strandgren Jul 1954 A
2863638 Thornburg Dec 1958 A
3147992 Haeber et al. Sep 1964 A
3354951 Savage et al. Nov 1967 A
3385370 Knox et al. May 1968 A
3662842 Bromell May 1972 A
3698426 Litchfield et al. Oct 1972 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3774697 Brown Nov 1973 A
3776320 Brown Dec 1973 A
3808916 Porter May 1974 A
3842619 Bychurch, Sr. Oct 1974 A
3888318 Brown Jun 1975 A
3899024 Tonnelli et al. Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3917092 McGinnis Nov 1975 A
3964552 Slator Jun 1976 A
4022284 Crow May 1977 A
4051587 Boyadjieff Oct 1977 A
4100968 Delano Jul 1978 A
4192155 Gray Mar 1980 A
4199847 Owens Apr 1980 A
4235469 Denny et al. Nov 1980 A
4364407 Hilliard Dec 1982 A
4377179 Giebeler Mar 1983 A
4402239 Mooney Sep 1983 A
4422794 Deken Dec 1983 A
4449596 Boyadjieff May 1984 A
4478244 Garrett Oct 1984 A
4497224 Jürgens Feb 1985 A
4593773 Skeie Jun 1986 A
4647050 Johnson Mar 1987 A
4762187 Haney Aug 1988 A
4776617 Sato Oct 1988 A
4779688 Baugh Oct 1988 A
4791997 Krasnov Dec 1988 A
4813493 Shaw et al. Mar 1989 A
4815546 Haney et al. Mar 1989 A
4821814 Willis et al. Apr 1989 A
4844181 Bassinger Jul 1989 A
4867236 Haney et al. Sep 1989 A
4916959 Lively Apr 1990 A
4932253 McCoy Jun 1990 A
4955949 Bailey et al. Sep 1990 A
4962819 Bailey et al. Oct 1990 A
4972741 Sibille Nov 1990 A
4981180 Price Jan 1991 A
4997042 Jordan et al. Mar 1991 A
5018350 Bender May 1991 A
5020640 Nederbragt Jun 1991 A
5036927 Willis Aug 1991 A
5099725 Bouligny, Jr. et al. Mar 1992 A
5152554 LaFleur et al. Oct 1992 A
5172940 Usui et al. Dec 1992 A
5191939 Stokley Mar 1993 A
5196770 Champs et al. Mar 1993 A
5215153 Younes Jun 1993 A
5245877 Ruark Sep 1993 A
5282653 LaFleur et al. Feb 1994 A
5297833 Willis et al. Mar 1994 A
5348351 LaFleur et al. Sep 1994 A
5385514 Dawe Jan 1995 A
5404767 Sutherland Apr 1995 A
5433279 Tessari et al. Jul 1995 A
5440183 Denne Aug 1995 A
5441310 Barrett et al. Aug 1995 A
5456320 Baker Oct 1995 A
5479988 Appleton Jan 1996 A
5486223 Carden Jan 1996 A
5501280 Brisco Mar 1996 A
5509442 Claycomb Apr 1996 A
5540095 Sherman et al. Jul 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5645131 Trevisani Jul 1997 A
5664310 Penisson Sep 1997 A
5682952 Stokley Nov 1997 A
5735348 Hawkins, III Apr 1998 A
5778742 Stuart Jul 1998 A
5839330 Stokka Nov 1998 A
5909768 Castille et al. Jun 1999 A
5918673 Hawkins et al. Jul 1999 A
5950724 Giebeler Sep 1999 A
5971079 Mullins Oct 1999 A
5992520 Schultz et al. Nov 1999 A
6003412 Dlask et al. Dec 1999 A
6011508 Perreault et al. Jan 2000 A
6053191 Hussey Apr 2000 A
6101952 Thornton et al. Aug 2000 A
6102116 Giovanni Aug 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6173777 Mullins Jan 2001 B1
6276450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6289911 Majkovic Sep 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6328343 Hosie et al. Dec 2001 B1
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6401811 Coone Jun 2002 B1
6415862 Mullins Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6499701 Thornton et al. Dec 2002 B1
6508132 Lohr et al. Jan 2003 B1
6527047 Pietras Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6571876 Szarka Jun 2003 B2
6578495 Yitts et al. Jun 2003 B1
6578632 Mullins Jun 2003 B2
6595288 Mosing et al. Jul 2003 B2
6604578 Mullins Aug 2003 B2
6606569 Potts Aug 2003 B1
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
6640824 Majkovic Nov 2003 B2
6666273 Laurel Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6679333 York et al. Jan 2004 B2
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
6705405 Pietras Mar 2004 B1
6715542 Mullins Apr 2004 B2
6719046 Mullins Apr 2004 B2
6722425 Mullins et al. Apr 2004 B2
6725938 Pietras Apr 2004 B1
6732819 Wenzel May 2004 B2
6732822 Slack May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6770004 Lofgren et al. Aug 2004 B1
6779599 Mullins et al. Aug 2004 B2
6832656 Fournier, Jr. et al. Dec 2004 B2
6851476 Gray et al. Feb 2005 B2
6883605 Arceneaux et al. Apr 2005 B2
6892835 Shahin et al. May 2005 B2
6908121 Hirth et al. Jun 2005 B2
6925807 Jones et al. Aug 2005 B2
6938697 Haugen Sep 2005 B2
6976298 Pietras Dec 2005 B1
6983701 Thornton et al. Jan 2006 B2
6994176 Shahin et al. Feb 2006 B2
7000503 Dagenais et al. Feb 2006 B2
7001065 Dishaw et al. Feb 2006 B2
7004259 Pietras Feb 2006 B2
7007753 Robichaux et al. Mar 2006 B2
7017671 Williford Mar 2006 B2
7021374 Pietras Apr 2006 B2
7025130 Bailey et al. Apr 2006 B2
7073598 Haugen Jul 2006 B2
7090021 Pietras Aug 2006 B2
7096948 Mosing et al. Aug 2006 B2
7114235 Jansch et al. Oct 2006 B2
7128161 Pietras Oct 2006 B2
7137454 Pietras Nov 2006 B2
7140443 Beierbach et al. Nov 2006 B2
7143849 Shahin et al. Dec 2006 B2
7147254 Niven et al. Dec 2006 B2
7159654 Ellison et al. Jan 2007 B2
7178600 Luke et al. Feb 2007 B2
7178612 Belik Feb 2007 B2
7213656 Pietras May 2007 B2
7219744 Pietras May 2007 B2
7231969 Folk et al. Jun 2007 B2
7270189 Brown et al. Sep 2007 B2
7281451 Schulze Beckinghausen Oct 2007 B2
7281587 Haugen Oct 2007 B2
7290476 Glasson Nov 2007 B1
7303022 Tilton et al. Dec 2007 B2
7325610 Giroux et al. Feb 2008 B2
7353880 Pietras Apr 2008 B2
7373971 Montgomery May 2008 B2
7448456 Shahin et al. Nov 2008 B2
7451826 Pietras Nov 2008 B2
7490677 Buytaert et al. Feb 2009 B2
7503397 Giroux et al. Mar 2009 B2
7509722 Shahin et al. Mar 2009 B2
7513300 Pietras et al. Apr 2009 B2
7530799 Smith May 2009 B2
7579941 Cleveland et al. Aug 2009 B2
7591304 Juhasz et al. Sep 2009 B2
7617866 Pietras Nov 2009 B2
7635026 Mosing et al. Dec 2009 B2
7665515 Mullins Feb 2010 B2
7665530 Wells et al. Feb 2010 B2
7665531 Pietras Feb 2010 B2
7669662 Pietras Mar 2010 B2
7690422 Swietlik et al. Apr 2010 B2
7694730 Angman Apr 2010 B2
7694744 Shahin Apr 2010 B2
7699121 Juhasz et al. Apr 2010 B2
7712523 Snider et al. May 2010 B2
7730698 Montano et al. Jun 2010 B1
7757759 Jahn et al. Jul 2010 B2
7779922 Harris et al. Aug 2010 B1
7793719 Snider et al. Sep 2010 B2
7817062 Li et al. Oct 2010 B1
7828085 Kuttel et al. Nov 2010 B2
7841415 Winter Nov 2010 B2
7854265 Zimmermann Dec 2010 B2
7857043 Ali-zada Dec 2010 B2
7866390 Latiolais, Jr. et al. Jan 2011 B2
7874352 Odell, II et al. Jan 2011 B2
7874361 Mosing et al. Jan 2011 B2
7878237 Angman Feb 2011 B2
7878254 Abdollahi et al. Feb 2011 B2
7882902 Boutwell, Jr. Feb 2011 B2
7896084 Haugen Mar 2011 B2
7918273 Snider et al. Apr 2011 B2
7958787 Hunter Jun 2011 B2
7971637 Duhon et al. Jul 2011 B2
7975768 Fraser et al. Jul 2011 B2
8036829 Gibbs et al. Oct 2011 B2
8118106 Wiens et al. Feb 2012 B2
8141642 Olstad et al. Mar 2012 B2
8210268 Heidecke et al. Jul 2012 B2
8256579 Jia Sep 2012 B2
8281856 Jahn et al. Oct 2012 B2
8307903 Redlinger et al. Nov 2012 B2
8328527 Ehimeakhe Dec 2012 B2
8365834 Liess et al. Feb 2013 B2
8459361 Leuchtenberg Jun 2013 B2
8505984 Henderson et al. Aug 2013 B2
8567512 Odell, II et al. Oct 2013 B2
8601910 Begnaud Dec 2013 B2
8616134 King et al. Dec 2013 B2
8624699 Hunter et al. Jan 2014 B2
8636067 Robichaux et al. Jan 2014 B2
8651175 Fallen Feb 2014 B2
8668003 Osmundsen et al. Mar 2014 B2
8708055 Liess et al. Apr 2014 B2
8727021 Heidecke et al. May 2014 B2
8776898 Liess et al. Jul 2014 B2
8783339 Sinclair et al. Jul 2014 B2
8839884 Kuttel et al. Sep 2014 B2
8849954 Kim Sep 2014 B2
8851860 Mail Oct 2014 B1
8858187 Lane Oct 2014 B2
8893772 Henderson et al. Nov 2014 B2
9068406 Clasen et al. Jun 2015 B2
9206851 Slaughter, Jr. et al. Dec 2015 B2
9359835 Leman Jun 2016 B2
9528326 Heidecke et al. Dec 2016 B2
9631438 McKay Apr 2017 B2
9772608 Spacek Sep 2017 B2
20020043403 Juhasz et al. Apr 2002 A1
20020074132 Juhasz et al. Jun 2002 A1
20020084069 Mosing et al. Jul 2002 A1
20020129934 Mullins et al. Sep 2002 A1
20020170720 Haugen Nov 2002 A1
20030098150 Andreychuk May 2003 A1
20030107260 Ording et al. Jun 2003 A1
20030221519 Haugen Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069497 Jones et al. Apr 2004 A1
20040163822 Zhang et al. Aug 2004 A1
20040216924 Pietras Nov 2004 A1
20040222901 Dodge et al. Nov 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050087368 Boyle et al. Apr 2005 A1
20050173154 Lesko Aug 2005 A1
20050206163 Guesnon et al. Sep 2005 A1
20050257933 Pietras Nov 2005 A1
20050269072 Folk et al. Dec 2005 A1
20050269104 Folk et al. Dec 2005 A1
20050269105 Pietras Dec 2005 A1
20050274508 Folk et al. Dec 2005 A1
20060001549 Shah et al. Jan 2006 A1
20060037784 Walter et al. Feb 2006 A1
20060124353 Juhasz et al. Jun 2006 A1
20060151181 Shahin Jul 2006 A1
20060180315 Shahin et al. Aug 2006 A1
20060290528 MacPherson et al. Dec 2006 A1
20070017671 Clark et al. Jan 2007 A1
20070029112 Li et al. Feb 2007 A1
20070030167 Li et al. Feb 2007 A1
20070044973 Fraser et al. Mar 2007 A1
20070074588 Harata et al. Apr 2007 A1
20070074874 Richardson Apr 2007 A1
20070102992 Jager May 2007 A1
20070131416 Odell, II et al. Jun 2007 A1
20070137853 Zhang et al. Jun 2007 A1
20070140801 Kuttel et al. Jun 2007 A1
20070144730 Shahin et al. Jun 2007 A1
20070158076 Hollingsworth, Jr. et al. Jul 2007 A1
20070188344 Hache et al. Aug 2007 A1
20070251699 Wells et al. Nov 2007 A1
20070251701 Jahn et al. Nov 2007 A1
20070257811 Hall et al. Nov 2007 A1
20070263488 Clark Nov 2007 A1
20080006401 Buytaert et al. Jan 2008 A1
20080007421 Liu et al. Jan 2008 A1
20080018603 Baraz et al. Jan 2008 A1
20080059073 Giroux et al. Mar 2008 A1
20080093127 Angman Apr 2008 A1
20080099196 Latiolais et al. May 2008 A1
20080125876 Boutwell May 2008 A1
20080202812 Childers et al. Aug 2008 A1
20080210063 Slack Sep 2008 A1
20080308281 Boutwell, Jr. et al. Dec 2008 A1
20090115623 Macpherson et al. May 2009 A1
20090146836 Santoso et al. Jun 2009 A1
20090151934 Heidecke Jun 2009 A1
20090159294 Abdollahi et al. Jun 2009 A1
20090173493 Hutin et al. Jul 2009 A1
20090200038 Swietlik et al. Aug 2009 A1
20090205820 Koederitz et al. Aug 2009 A1
20090205827 Swietlik et al. Aug 2009 A1
20090205836 Swietlik et al. Aug 2009 A1
20090205837 Swietlik et al. Aug 2009 A1
20090229837 Wiens et al. Sep 2009 A1
20090266532 Revheim et al. Oct 2009 A1
20090272537 Alikin et al. Nov 2009 A1
20090274544 Liess Nov 2009 A1
20090274545 Liess et al. Nov 2009 A1
20090289808 Prammer Nov 2009 A1
20090316528 Ramshaw et al. Dec 2009 A1
20090321086 Zimmermann Dec 2009 A1
20100032162 Olstad et al. Feb 2010 A1
20100097890 Sullivan et al. Apr 2010 A1
20100101805 Angelle et al. Apr 2010 A1
20100116550 Hutin et al. May 2010 A1
20100171638 Clark Jul 2010 A1
20100171639 Clark Jul 2010 A1
20100172210 Clark Jul 2010 A1
20100182161 Robbins et al. Jul 2010 A1
20100200222 Robichaux et al. Aug 2010 A1
20100206583 Swietlik et al. Aug 2010 A1
20100206584 Clubb et al. Aug 2010 A1
20100213942 Lazarev Aug 2010 A1
20100236777 Partouche et al. Sep 2010 A1
20100271233 Li et al. Oct 2010 A1
20100328096 Hache et al. Dec 2010 A1
20110017512 Codazzi Jan 2011 A1
20110018734 Varveropoulos et al. Jan 2011 A1
20110036563 Brække Feb 2011 A1
20110036586 Hart et al. Feb 2011 A1
20110039086 Graham et al. Feb 2011 A1
20110048739 Blair Mar 2011 A1
20110088495 Buck et al. Apr 2011 A1
20110198076 Villreal et al. Aug 2011 A1
20110214919 McClung, III Sep 2011 A1
20110280104 McClung, III Nov 2011 A1
20120013481 Clark Jan 2012 A1
20120014219 Clark Jan 2012 A1
20120020808 Lawson et al. Jan 2012 A1
20120048574 Wiens Mar 2012 A1
20120126992 Rodney et al. May 2012 A1
20120152530 Wiedecke et al. Jun 2012 A1
20120153609 McMiles Jun 2012 A1
20120160517 Bouligny et al. Jun 2012 A1
20120166089 Ramshaw et al. Jun 2012 A1
20120212326 Christiansen et al. Aug 2012 A1
20120234107 Pindiprolu et al. Sep 2012 A1
20120274477 Prammer Nov 2012 A1
20120298376 Twardowski Nov 2012 A1
20130045116 Wang et al. Feb 2013 A1
20130055858 Richardson Mar 2013 A1
20130056977 Henderson et al. Mar 2013 A1
20130062074 Angelle et al. Mar 2013 A1
20130075077 Henderson et al. Mar 2013 A1
20130075106 Tran et al. Mar 2013 A1
20130105178 Pietras May 2013 A1
20130186638 Filippov et al. Jul 2013 A1
20130192357 Ramshaw et al. Aug 2013 A1
20130207382 Robichaux Aug 2013 A1
20130207388 Jansson et al. Aug 2013 A1
20130233624 In Sep 2013 A1
20130269926 Liess et al. Oct 2013 A1
20130271576 Elllis Oct 2013 A1
20130275100 Ellis et al. Oct 2013 A1
20130278432 Shashoua et al. Oct 2013 A1
20130299247 Kottel et al. Nov 2013 A1
20140069720 Gray Mar 2014 A1
20140083768 Moriarty et al. Mar 2014 A1
20140083769 Moriarty et al. Mar 2014 A1
20140090856 Pratt et al. Apr 2014 A1
20140116686 Odell, II et al. May 2014 A1
20140131052 Richardson May 2014 A1
20140202767 Feasey Jul 2014 A1
20140233804 Gustavsson et al. Aug 2014 A1
20140246237 Prammer Sep 2014 A1
20140262521 Bradley et al. Sep 2014 A1
20140305662 Giroux et al. Oct 2014 A1
20140312716 Hunter et al. Oct 2014 A1
20140326468 Heidecke et al. Nov 2014 A1
20140352944 Devarajan et al. Dec 2014 A1
20140360780 Moss et al. Dec 2014 A1
20150014063 Simanjuntak et al. Jan 2015 A1
20150053424 Wiens et al. Feb 2015 A1
20150075770 Fripp Mar 2015 A1
20150083391 Bangert et al. Mar 2015 A1
20150090444 Partouche et al. Apr 2015 A1
20150107385 Mullins et al. Apr 2015 A1
20150131410 Clark May 2015 A1
20150218894 Slack Aug 2015 A1
20150275657 Deffenbaugh et al. Oct 2015 A1
20150285066 Keller et al. Oct 2015 A1
20150292319 Disko et al. Oct 2015 A1
20150300112 Hered Oct 2015 A1
20150337648 Zippel et al. Nov 2015 A1
20150337651 Prammer Nov 2015 A1
20160024862 Wilson et al. Jan 2016 A1
20160032715 Mueller et al. Feb 2016 A1
20160053610 Switzer et al. Feb 2016 A1
20160138348 Kunec May 2016 A1
20160145954 Helms et al. May 2016 A1
20160177639 McIntosh et al. Jun 2016 A1
20160215592 Helms et al. Jul 2016 A1
20160230481 Misson et al. Aug 2016 A1
20160291188 Lim Oct 2016 A1
20160326867 Prammer Nov 2016 A1
20160333682 Griffing et al. Nov 2016 A1
20170037683 Heidecke et al. Feb 2017 A1
20170044854 Hebebrand et al. Feb 2017 A1
20170044875 Hebebrand et al. Feb 2017 A1
20170051568 Wern et al. Feb 2017 A1
20170067303 Thiemann et al. Mar 2017 A1
20170067320 Zouhair et al. Mar 2017 A1
20170074075 Liess Mar 2017 A1
20170211327 Wern et al. Jul 2017 A1
20170211343 Thiemann Jul 2017 A1
20170234083 Tavakoli Aug 2017 A1
20170248009 Fripp Aug 2017 A1
20170248012 Donderici et al. Aug 2017 A1
20170284164 Holmes et al. Oct 2017 A1
20170335681 Nguyen et al. Nov 2017 A1
20170356288 Switzer et al. Dec 2017 A1
20180087374 Robson et al. Mar 2018 A1
20180087375 Segura Dominguez Mar 2018 A1
20180135409 Wilson et al. May 2018 A1
20180252095 Pridat et al. Sep 2018 A1
Foreign Referenced Citations (60)
Number Date Country
2012201644 Apr 2012 AU
2013205714 May 2013 AU
2014215938 Sep 2014 AU
2 707 050 Jun 2009 CA
2707050 Jun 2009 CA
2 841 654 Aug 2015 CA
2841654 Aug 2015 CA
2944327 Oct 2015 CA
2412105 Dec 2000 CN
201810278 Apr 2011 CN
102007016822 Oct 2008 DE
0 250 072 Dec 1987 EP
0 250 072 Apr 1991 EP
1 619 349 Jan 2006 EP
1619349 Jan 2006 EP
1 772 715 Apr 2007 EP
1772715 Apr 2007 EP
1 961 912 Aug 2008 EP
1 961 913 Aug 2008 EP
1961912 Aug 2008 EP
1961913 Aug 2008 EP
2085566 Aug 2009 EP
2 322 357 May 2011 EP
3032025 Jun 2016 EP
1487948 Oct 1977 GB
2 077 812 Dec 1981 GB
2077812 Dec 1981 GB
2 180 027 Mar 1987 GB
2180027 Mar 1987 GB
2 228 025 Aug 1990 GB
2228025 Aug 1990 GB
2 314 391 Dec 1997 GB
2314391 Dec 1997 GB
02068788 Sep 2002 WO
2004079153 Sep 2004 WO
2004079153 Sep 2004 WO
2004101417 Nov 2004 WO
2004101417 Nov 2004 WO
2007001887 Jan 2007 WO
2007001887 Jan 2007 WO
2007070805 Jun 2007 WO
2007127737 Nov 2007 WO
2008005767 Jan 2008 WO
2009076648 Jun 2009 WO
200976648 Jun 2009 WO
2009076648 Jun 2009 WO
2012100019 Jul 2012 WO
2012115717 Aug 2012 WO
2012115717 Aug 2012 WO
2014056092 Apr 2014 WO
2014182272 Nov 2014 WO
2015000023 Jan 2015 WO
2015000023 Jan 2015 WO
2015119509 Aug 2015 WO
2015127433 Aug 2015 WO
2015119509 Aug 2015 WO
2015127433 Aug 2015 WO
2015176121 Nov 2015 WO
2016197255 Dec 2016 WO
2017044384 Mar 2017 WO
Non-Patent Literature Citations (114)
Entry
European Patent Office; Extended Search Report for Application No. 18160808.4; dated Sep. 20, 2018; 8 total pages.
EPO Partial European Search Report dated Oct. 4, 2018, for European Patent Application No. 18159598.4.
EPO Extended European Search Report dated Oct. 5, 2018, for European Patent Application No. 18173275.1.
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6.
International Search Report and Written Opinion in PCT/US2018/042812 dated Oct. 17, 2018.
Extended Search Report in application EP18177312.8 dated Nov. 6, 2018.
Balltec Lifting Solutions, CoilLOK™, Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages.
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018.
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0.
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 18158050.7.
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages.
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41.
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages.
Peters; Tool Coupler for Use With a Top Drive; U.S. Appl. No. 15/656,508, filed Jul. 21, 2017. (Application not attached to IDS.).
Fuehring et al.; Tool Coupler With Rotating Coupling Method for Top Drive; U.S. Appl. No. 15/445,758, filed Feb. 28, 2017. (Application not attached to IDS.).
Bell; Interchangeable Swivel Combined Multicoupler; U.S. Appl. No. 15/607,159, filed May 26, 2017 (Application not attached to IDS.).
Amezaga; Dual Torque Transfer for Top Drive System; U.S. Appl. No. 15/447,881, filed Mar. 2, 2017. (Application not attached to IDS.).
Zouhair; Coupler With Threaded Connection for Pipe Handler; U.S. Appl. No. 15/444,016, filed Feb. 27, 2017. (Application not attached to IDS.).
Liess; Downhole Tool Coupling System; U.S. Appl. No. 15/670,897, filed Aug. 7, 2017. (Application not attached to IDS.).
Muller et al; Combined Multi-Coupler With Rotating Locking Method for Top Drive; U.S. Appl. No. 15/721,216, filed Sep. 29, 2017. (Application not attached to IDS.).
Amezaga et al; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/457,572, filed Mar. 13, 2017. (Application not attached to IDS.).
Wiens; Combined Multi-Coupler With Locking Clamp Connection for Top Drive; U.S. Appl. No. 15/627,428, filed Jun. 19, 2017. (Application not attached to IDS.).
Henke et al.; Tool Coupler With Sliding Coupling Members for Top Drive; U.S. Appl. No. 15/448,297, filed Mar. 2, 2017. (Application not attached to IDS.).
Schoknecht et al.; Combined Multi-Coupler With Rotating Fixations for Top Drive; U.S. Appl. No. 15/447,926, filed Mar. 2, 2017. (Application not attached to IDS.).
Metzlaff et al.; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/627,237, filed Jun. 19, 2017 (Application not attached to IDS.).
Liess; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/656,914, filed Jul. 21, 2017. Application not attached to IDS.).
Liess et al.; Combined Multi-Coupler; U.S. Appl. No. 15/656,684, filed Jul. 21, 2017. (Application not attached to IDS).
Amezaga et al.; Tool Coupler With Data and Signal Transfer Methods for Top Drive; U.S. Appl. No. 15/730,305, filed Oct. 11, 2017. (Application not attached to IDS).
Liess; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/806,560, filed Nov. 8, 2017. (Application not attached to IDS).
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6.
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page.
Streicher Load/Torque Cell Systems; date unknown; 1 page.
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages.
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages.
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages.
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages.
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages.
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages.
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages.
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages.
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages.
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages.
Warrior; 250E Electric Top Drive (250-TON); 250H Hydraulic Top Drive (250-TON); dated Apr. 2014; 4 total pages.
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages.
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton-1000 hp); dated May 2015; 4 total pages.
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages.
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages.
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages.
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages.
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages.
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages.
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages.
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages.
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages.
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages.
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages.
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages.
EPO Extended European Search Report dated Jun. 6, 2018, for European Application No. 18157915.2.
Australian Examination Report dated May 15, 2013, Australian Patent Applicatin No. 2012201644.
PCT Search Report for International Application No. PCT/US2008/086699 dated Nov. 9, 2009.
Australian Examination Report for Application No. 2008334992 dated Apr. 5, 2011.
EP Office Action for Application No. 08860261.0-2315 dated Apr. 12, 2011.
EP Search Report for Application No. 12153779.9-2315 dated Apr. 5, 2012.
PCT Search Report for International Application No. PCT/US2008/086699 dated Sep. 9, 2009.
Canadian Office Action dated Aug. 24, 2015, for corresponding Application No. 2,837,581.
EPO Extended European Search Report dated Nov. 23, 2015, for EPO Patent Application No. 15166062.8.
Australian Patent Examination Report dated Feb. 4, 2016, for Australian Patent Application No. 2014215938.
Canadian Office Action dated Apr. 25, 2016, for Canadian Patent Application No. 2,837,581.
PCT International Search Report and Written Opinion dated Jul. 25, 2016, for International Patent Application No. PCT/US2015/061960.
EPO Extended European Search Report dated Dec. 4, 2017, for European Application No. 17195552.9.
PCT International Search Report and Written Opinion dated Feb. 20, 2017 for International Application No. PCT/US2016/050139.
PCT International Search Report and Written Opinion dated Dec. 14, 2016, for International Patent Application No. PCT/US2016/046458.
PCT International Search Report and Written Opinion dated Nov. 11, 2016, for International Application No. PCT/US2016/046445.
“Fundamentals of Hydraulic Motors,” Staff Report, Hydraulics and Pneumatics, Jun. 26, 2014, http://hydraulicspneumatics.com/hydraulic-pumps-motors/fundamentals-hydraulic-motors, accessed Aug. 12, 2015 (6 total pages).
A123 Systems, 14Ah Prismatic Pouch Cell, Product Specification, www.a123systems.com.
Eaton Low Speed High Torque Motors E-MOLO-MC001-E6 Brochure, Sep. 2011 (16 total pages).
Warrior, 250E Electric Top Drive (250-TON), 25011 Hydraulic Top Drive (250-TON), Brochure, Apr. 2014, Rev. 1, www.warriorrig.com.
Warrior, 500E Electric Top Drive (500 ton-1000hp), Brochure, Document No. EC 009, May 2015, Rev. 3, www.warriorrig.com.
Weatherford, TorkSub™ Stand-Alone Torque Measuring System, Product Specification, Document No. 11368.00, Copyright 2011-2014, www.weatherford.com.
PCT International Search Report and Written Opinion dated Nov. 25, 2016, for International Patent Application No. PCT/US2016/050542.
Streicher Load/Torque Cell System Brochure, Streicher Group, 1 Page.
Enchanced Torque & Tension Sub With Integrated Turns Brochure, 3PS, Inc.,, 2 Pages.
PCT International Search Report and Written Opinion dated Jan. 12, 2017, for International Patent Application No. PCT/US2016/047813.
PCT International Search Report and Written Opinion dated Nov. 22, 2016, for International Patent Application No. PCT/US2016/049462.
PCT International Search Report and Written Opinion dated Apr. 4, 2017, for International Application No. PCT/US2017/014646.
Warrior, 250E Electric Top Drive (250-TON), 250H Hydraulic Top Drive (250-TON), Brochure, Apr. 2014, Rev. 1.
Warrior, 500E Electric Top Drive (500 ton-1000hp), Brochure, Document No. EC 009, May 2015, Rev. 3.
Weatherford, TorkSub™ Stand-Alone Torque Measuring System, Product Specification, Document No. 11368.00, www.weatherford.com.
EPO Extended Europeam Search RPT dated Jun. 8, 2017 for European Pat. Application No. 17152458.0.
EPO Extended European Search Report dated Jun. 8, 2017, for European Patent Application No. 17152458.0.
Australian Examination Report dated Sep. 19, 2017, for Australian Patent Application No. 2017200371.
Australian Examination Report dated Feb. 8, 2018 for Australian Patent Application No. 2017200371.
PCT International Search Report and Written Opinion dated Jun. 8, 2017, for Internaitonal Application No. PCT/US2017/014224.
Lefevre,Bruno et al., “Deeper, more deviated wells push development of smart drill stem rotary shouldered connections,” Drilling Technology, (2008), pp. 130-132.
Rotary Sholder Handbook, 2010 National Oilwell Varco, D392002466-MKT-001 Rev.02,116 pages.
Weatherford; Rotaflex Long-Stroke Pumping Units; Artificial Lift Systems; date unknown; 17 total pages.
Analog Devices; Data Sheet; Precision ±1.7 g, ±5 g, ±18 g Single-/Dual-Axis iMEMSÒ Accelerometer; 2004-2014; 16 total pages.
Dr. Richard Thornton; Elevator World; Linear Synchronous Motors for Elevators; dated Sep. 2006; 2 total pages.
Weatherford; Production Optimization; Stainless Steel Polished-Rod Load Cell dated 2008; 2 total pages.
Wieler, et al.; Elevator World; Linear Synchronous Motor Elevators Become a Reality; dated May 2012; 4 total pages.
MagneMotion; LSM Elevators; White Paper dated 2013; 2 total pages.
Weatherford; Rotaflex Long-Stroke Pumping Units; Proven Technology for Deep, Challenging, and High-Volume Wells; dated 2014; 24 total pages.
U.S. Appl. No. 14/717,441 entitled Dart Detector for Wellbore Tubular Cementation in the name of Zippel, et al; 35 total pages; filed May 20, 2015.
PCT International Search Report and Written Opinion dated Aug. 24, 2016, for International Application No. PCT/ US2016/015838.
Bosch Rexroth AG, Electric Drives and Controls, Brochure, “Asynchronous high-speed motors 1MB for high speeds,” 6 pages.
Related Publications (1)
Number Date Country
20180363386 A1 Dec 2018 US