The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.
A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.
Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, pneumatic, data, and/or power lines, between conventional top drives and the tool to complete the connection. The threaded connection between top conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.
The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.
In one embodiment, a coupling system for a top drive and a tool includes a housing of the top drive having a bore therethrough, an adapter of the tool, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter, and a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions.
In one embodiment, a coupling system for a top drive includes a housing having a bore therethrough, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to a tool, and a lock member longitudinally movable relative to the housing and configured to move the latch member between the extended and the retracted positions.
In another embodiment, a coupling system for coupling a top drive to a tool includes a housing having a bore therethrough, a sleeve disposed on an outer surface of the housing, a latch member disposed on an outer surface of the sleeve, wherein the latch member is configured to longitudinally couple the housing to the tool, and a tool dock integrally formed with the tool and configured to receive the latch member.
In another embodiment, a coupling system for coupling a top drive includes a housing having a bore therethrough, a latch member at least partially disposed through a wall of the housing and rotatable relative to the housing, wherein the latch member is configured to longitudinally couple the housing to a tool, and an actuator disposed on an outer surface of the housing and configured to rotate the latch member.
In another embodiment, a method of coupling a top drive and a tool includes moving a top drive adjacent a tool, the top drive including a housing, a lock member at least partially disposed within the housing, and a latch member at least partially disposed within the housing and the tool including an adapter. The method further includes inserting the adapter into the housing, shifting the lock member longitudinally relative to the housing, and moving the latch member radially between an extended position and a retracted position to couple the top drive and the tool.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The tool dock 120 may include the adapter 121. The adapter 121 may be integrally formed with the tool dock 120. The adapter 121 may be tubular having a bore therethrough. The adapter 121 may be configured to receive the cone section of the housing 111 therein. The adapter 121 may have adapter keys 122 formed at a longitudinal end thereof. The adapter keys 122 may be trapezoidal in shape. Recesses in the adapter keys 122 may be configured to receive the drive keys 112. The drive keys 112 may engage the adapter keys 122 and transfer torque between the top drive and the tool dock 120. A plurality of recesses 123 may be formed in an inner surface of the adapter 121. The recesses 123 may be partially formed through a wall of the adapter 121. The recesses 123 may be configured to align with the ports 115 of the housing 111. The adapter keys 122 may assist in aligning the ports 115 with the recesses 123. A seal 137 may be disposed at a lower longitudinal end of the adapter. The seal 137 may be disposed in a groove of the adapter 121. The seal 137 may prevent fluids from entering any gap between the adapter 121 and the drive member housing 111.
The latch assembly 130 may include a latch member, such as connection pins 131, and a lock member, such as shift wedge 132. Connection pins 131 may be cylindrical in shape. A first set of connection pins 131 may be spaced ninety degrees apart around the circumference of the shift wedge 132. A second set of connection pins 131 may be located around the circumference of the shift wedge 132 beneath the first set. Ports 115 and recesses 123 may be configured to receive the connection pins 131. Connection pins 131 may have a channel 134 formed therethrough. The connection pins 131 may have a tapered groove formed along an outer surface thereof. Corresponding tapered surfaces 135 may be formed on the shift wedge 132. The connection pins 131 may be radially movable between a retracted position, shown in
Alternatively, the drive keys 112 and adapter keys 122 may be omitted and the connection pins 131 may provide the longitudinal and the torsional coupling between the drive member 110 and the tool dock 120. The connection pins 131 support the axial load of the tool dock 120 and attached tool and transfer torque between the drive member 110 and the tool dock 120.
In order to decouple the top drive and the tool, the piston and cylinder assembly 113 is actuated to longitudinally move the shift wedge 132 towards the upper end of the housing 111. The connection pins 131 slide along the tapered surfaces 135 to the retracted position, shown in
The latch assembly 230 may include a piston 231 and cylinder 232 assembly, a bracket 233, a lock member, such as thrust sleeve 234, a first biasing member, such as main spring 235, and a latch member, such as pin 236. The bracket 233 may be an annular ring. The bracket 233 may be disposed on an outer surface of the housing 211. The bracket 233 may be supported by the flange 212 of the housing 211. The cylinder 232 may be connected to the bracket. A fluid line may be connected to the cylinder 232 to operate the piston 231 and cylinder 232 assembly. A longitudinal end of the piston 231 may be disposed in the cylinder 232 and longitudinally movable relative thereto. A longitudinal end of the piston opposite the cylinder 232 may be connected to the thrust sleeve 234. The piston 231 and cylinder 232 assembly may be configured to longitudinally move the thrust sleeve 234 relative to the housing 211. The thrust sleeve 234 may be an annular ring. The thrust sleeve 234 may be disposed on an outer surface of the housing 211. The thrust sleeve 234 may be at least partially disposed in the recess between the flange 212 and the housing section 211b. The thrust sleeve 234 may be longitudinally movable relative to the housing 211 between an extended position, shown in
In order to decouple the drive member 210 and the tool dock 220, the piston and cylinder assembly is actuated to longitudinally lower the thrust sleeve 234. The main spring 235 returns to a relaxed position, shown in
The latch assembly 330 may include a piston 331 and cylinder 332 assembly, a lock member, such as thrust sleeve 334, a first biasing member, such as main spring 335, and a latch member, such as pin 336. The cylinder 332 may be connected to the outer surface of the housing section 311a. A fluid line may be connected to the cylinder 332 to operate the piston 331 and cylinder 332 assembly. A longitudinal end of the piston 331 may be disposed in the cylinder 332 and longitudinally movable relative thereto. A longitudinal end of the piston opposite the cylinder 332 may be connected to the thrust sleeve 334. The piston 331 and cylinder 332 assembly may be configured to longitudinally move the thrust sleeve 334 relative to the housing 311. The thrust sleeve 334 may be an annular ring. The thrust sleeve 334 may be disposed on an outer surface of the housing 311. The thrust sleeve 334 may be at least partially disposed in the recess between the flange 312 and the housing section 311c. The thrust sleeve 334 may be longitudinally movable relative to the housing 311 between an extended position, shown in
The tool dock 320 may include an adapter 321. The adapter 321 may be similar to the adapter 221. The adapter 321 may include quick connection pins disposed at a longitudinal end thereof. The quick connection pins may stab into receivers formed in an inner surface of the housing section 311a. The quick connection pins may be configured to transfer electricity, data, hydraulics, and/or pneumatics between the top drive and the tool. A seal 322 may be disposed at an upper longitudinal end of the adapter 321. The seal 322 may be disposed around an upper end of the bore of the adapter 321. The seal 322 may engage the housing section 311a. The seal 322 may prevent fluid from entering an annulus between the tool dock 320 and the housing section 311c. The seal 322 may be an elastomer.
Next, the piston and cylinder assembly is further actuated to seal a gap between the housing section 311a and the adapter 321. The piston and cylinder assembly longitudinally move the thrust sleeve 334. When the main spring 335 has fully expanded, the longitudinal force of the piston and cylinder assembly is transferred to the housing section 311c. The piston and cylinder assembly longitudinally moves the housing section 311c relative to the housing sections 311a,b. The longitudinal force is also transferred from the pin 336 to the adapter 321. As a result, the adapter 321 and housing section 311c longitudinally move relative to the housing sections 311a,b. The counter spring 313 is compressed within the recess between the housing sections 311a,c. Longitudinal movement of the adapter 321 and housing section 311c causes the seal 322 to engage the housing section 311a. The engaged seal 322 prevents fluid passing through the bore of the housing section 311a from entering the annulus between the housing section 311c and the adapter 321. The thrust sleeve 334 may be held in this position by the piston and cylinder assembly 331, 332 to retain the pin 336 in the extended position.
In order to decouple the drive member 310 and the tool dock 320, the piston and cylinder assembly is actuated to longitudinally lower the thrust sleeve 334. The counter spring 313 biases the housing section 311c away from the housing section 311a. The seal 322 disengages from the housing section 311a. Next, the thrust sleeve 334 moves longitudinally relative to the housing section 311c. The main spring 335 returns to a relaxed position, shown in
The tool dock 420 may include an adapter 421. The adapter 421 may be similar to the adapter 221. The adapter 421 may include quick connection pins disposed at a longitudinal end thereof. The quick connection pins may stab into receivers formed in an inner surface of the housing section 411. The quick connection pins may be configured to transfer electricity, data, hydraulics, and/or pneumatics between the top drive and the tool. The adapter 421 may be tubular having a bore therethrough. The adapter 421 may have splines 422 formed on an outer surface thereof. A lip 423 may be formed at an upper longitudinal end of the adapter 421. A recess 424 may be formed between the lip 423 and the splines 422.
In order to decouple the drive member 410 and the tool dock 420, the piston and cylinder assembly 431 is actuated to shift the levers 432a,b back to the position shown in
The tool dock 520 may include the adapter 521. The adapter 521 may be integrally formed with the tool dock 520. The adapter 521 may have a bore therethrough. The adapter 521 may have an upper pin section and a lower tubular section. The pin section may have a cone 522 formed at an upper end thereof. The cone 522 may be configured to receive the cone 516 of the bell section 511b. A seat may be formed along an inner surface of the cone 522. The seat may be configured to receive the lip of the cone 516. The inner recess of the bell section 511b may be configured to receive the pin section. A window may be formed in an outer wall of the cone 522. The window may be aligned with the hole of the bell section 511b. A shoulder 525 may be formed at a lower end of the pin section. The shoulder 525 may be configured to engage the shoulder 515 of the bell section 511b.
The latch assembly 530 may include a lever 531, a latch member, such as block 532, and a lock member, such as locking ring 533. The lever 531 may be disposed in the groove 513 of the bell section 511b. The lever 531 may be substantially L-shaped. The lever 531 may be pivotally movable relative to the bell section 511b. A pin may couple a lower end of the lever 531 to the block 532. The block 532 may be disposed in the hole of the bell section 511b. The window may be configured to receive the block 532 in a locked position of the latch assembly 530. The locking ring 533 may be an annular ring. The locking ring 533 may be disposed on an outer surface of the bell section 511b. The locking ring 533 may have a hook 535 formed on an outer surface thereof. Hook 535 may be configured to longitudinally couple the locking ring 533 to an actuator. The locking ring 533 may be longitudinally movable relative to the bell section 511b.
The CMC 500 is operable to longitudinally and torsionally couple the top drive to the tool. The locking ring 533 is in a first position, engaging an upper longitudinal end of the lever 531. The force applied to the lever 531 by the locking ring 533 retains the block 532 in a retracted position. The block 532 may be partially disposed in the hole of the bell section 511b in the retracted position. First, the adapter 521 is stabbed into the inner recess of the bell section 511b. The tool dock 520 may be raised into the drive member 510 or the drive member 510 lowered onto the tool dock 520 to begin the stabbing process. The cone 516 of the bell section 511b is stabbed into the cone 522 of the pin section. The lip of the cone 516 engages and seals against the seat of the cone 522. The hole of the bell section 511b moves into alignment with the window of the cone 522. Once the pin section has been stabbed into the inner recess of the bell section 511b, the actuators longitudinally move the locking ring 533 relative to the housing 511 and tool dock 520. The locking ring 533 is lowered around the outside of the bell section 511b. As the locking ring 533 moves longitudinally towards the tool dock 520, the locking ring 533 engages a lower end of the lever 531. The lever 531 pivots relative to the housing 511, moving the block 532 into the locked position, disposed in the window of the cone 522. In the locked position, the block 532 serves to longitudinally and torsionally couple the tool dock 520 to the drive member 510. Reception of the block 532 within the window of the cone 522 rotationally couples the top drive to the tool bidirectionally. The locking ring 533 retains the block 532 in the locked position.
In order to unlock the tool dock 520 and the drive member 510, the actuators move the locking ring 533 longitudinally away from the tool dock 520. The locking ring 533 engages the upper end of the lever 531, causing the lever 531 to pivot relative to the housing 511. The pivotal motion of the lever 531 causes the block 532 to move radially out of the window to the retracted position.
The tool dock 620 may be integrally formed with the tool. Alternatively, the tool dock may have a coupling at a lower longitudinal end thereof for connection to the tool. The tool dock 620 may include the adapter 621. The adapter 621 may be tubular having a bore therethrough. The adapter 621 may have a protrusion 622 formed on an outer surface thereof. The protrusion 622 may have a cylindrical shape. The protrusion 622 may be configured to receive an arm of a lever. A second protrusion may be formed on the outer surface of the adapter 621. The second protrusion may be formed 180 degrees apart from the protrusion 622. A signal connector 623 may be formed on the outer surface of the adapter 621. The signal connector 623 may be configured to receive and transmit power, electrical, data, hydraulic, pneumatic and/or other connections between the top drive and the tool.
The latch assembly 630 may include a sleeve 631, a latch member, such as lever 632, an actuator, and a signal pin 633. The sleeve 631 may be tubular having a bore therethrough. The sleeve 631 may be disposed on an outer surface of the housing 611. The sleeve 631 may at least partially extend past a lower longitudinal end of the housing 611. The sleeve 631 may have a notch 634 formed at a lower end thereof. The notch 634 may be configured to receive the protrusion 622. A second notch may be formed at a lower end of the sleeve 631 and may be configured to receive the second protrusion. The lever 632 may be pivotally coupled by the sleeve. The lever 632 may be pivotally movable relative to the sleeve 631 between an unlocked position, shown in
In operation, the CMC 600 torsionally and longitudinally couples the tool dock and the top drive. The adapter 621 is inserted into the bore of the sleeve 631. The tool dock 620 may be raised or the drive member 610 lowered to begin the process. The protrusion 622 is aligned and enters the notch 634. The protrusion 622 continues moving through the notch 634 until reaching an upper longitudinal end of the notch 634. The protrusion 622 and notch 634 provide torsional coupling between the drive member 610 and the tool dock 620. Reception of the protrusion 622 within the notch 634 rotationally couples the top drive to the tool bidirectionally. The signal pin 633 and signal connector 623 engage and provide power, electrical, data, hydraulic, pneumatic and/or other connections between the drive member 610 and the tool dock 620. Next, the actuator is operated to shift the lever 632 to the locked position, shown in
In order to decouple the drive member 610 and the tool dock 620, the actuator returns the lever 632 to the unlocked position, shown in
In one embodiment, a coupling system for a top drive includes a housing having a bore therethrough, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to a tool, and a lock member longitudinally movable relative to the housing and configured to move the latch member between the extended and the retracted positions.
In one or more of the embodiments described herein, the lock member is at least partially disposed within the housing.
In one or more of the embodiments described herein, the coupling system includes an actuator configured to longitudinally move the lock member.
In one or more of the embodiments described herein, the actuator is disposed on an outer surface of the housing.
In one or more of the embodiments described herein, the actuator is a piston and cylinder assembly.
In one or more of the embodiments described herein, the housing has a port formed through a wall thereof.
In one or more of the embodiments described herein, the coupling system includes a tool dock.
In one or more of the embodiments described herein, the tool dock includes an adapter having a bore therethrough and longitudinally movable relative to the housing.
In one or more of the embodiments described herein, the adapter further includes quick connection pins located at a longitudinal end thereof.
In one or more of the embodiments described herein, the housing is configured to receive the adapter.
In one or more of the embodiments described herein, the latch member is at least partially disposed in a recess of the adapter in the extended position.
In one or more of the embodiments described herein, the lock member engages the latch member to retain the latch member in the extended position.
In another embodiment, a coupling system for coupling a top drive to a tool includes a housing having a bore therethrough, a sleeve disposed on an outer surface of the housing, a latch member disposed on an outer surface of the sleeve, wherein the latch member is configured to longitudinally couple the housing to the tool, and a tool dock integrally formed with the tool and configured to receive the latch member.
In one or more of the embodiments described herein, the coupling system includes a signal pin disposed on an outer surface of the sleeve.
In one or more of the embodiments described herein, the coupling system includes a signal connector disposed on an outer surface of the tool dock, wherein the signal connector is configured to receive the signal pin.
In one or more of the embodiments described herein, the coupling system includes a protrusion formed on an outer surface of the housing and configured to receive the latch member.
In one or more of the embodiments described herein, the coupling system includes a notch formed at a longitudinal end of the sleeve and configured to receive the protrusion.
In one or more of the embodiments described herein, the latch member is a lever pivotally coupled to the sleeve.
In another embodiment, a coupling system for coupling a top drive includes a housing having a bore therethrough, a latch member at least partially disposed through a wall of the housing and rotatable relative to the housing, wherein the latch member is configured to longitudinally couple the housing to a tool, and an actuator disposed on an outer surface of the housing and configured to rotate the latch member.
In one or more of the embodiments described herein, the latch member comprises at least one crankshaft including an eccentric middle portion.
In one or more of the embodiments described herein, the coupling system includes a linkage coupling the actuator to the at least one crankshaft.
In one or more of the embodiments described herein, the actuator is a piston and cylinder assembly.
In one or more of the embodiments described herein, a coupling system for a top drive and a tool includes a housing of the top drive having a bore therethrough, an adapter of the tool, a latch member at least partially disposed within the housing and radially movable between an extended position and a retracted position, wherein the latch member is configured to longitudinally couple the housing to the adapter, a lock member at least partially disposed within the housing and longitudinally movable relative to the housing, wherein the lock member is configured to move the latch member between the extended and the retracted positions, and an actuator configured to longitudinally move the lock member.
In one or more of the embodiments described herein, the lock member is configured to retain the latch member in the extended position.
In one or more of the embodiments described herein, the adapter includes a bore configured to receive the housing.
In one or more of the embodiments described herein, wherein the lock member includes a tapered surface configured to engage the latch member.
In one or more of the embodiments described herein, wherein the actuator is a piston and cylinder assembly.
In one or more of the embodiments described herein, wherein the housing has a port formed therethrough.
In one or more of the embodiments described herein, wherein the actuator is at least partially disposed through the port.
In one or more of the embodiments described herein, the adapter further includes a recess disposed therein.
In one or more of the embodiments described herein, the adapter further comprising quick connection pins located at a longitudinal end thereof, wherein the quick connection pins are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
In one or more of the embodiments described herein, further including a biasing member, the biasing member configured to bias the latch member towards the retracted position.
In one or more of the embodiments described herein, wherein the latch member is at least partially disposed in the recess in the extended position.
In one or more of the embodiments described herein, wherein the lock member engages the latch member to retain the latch member in the extended position.
In one or more of the embodiments described herein, wherein the bore of the housing is configured to receive the adapter.
In one or more of the embodiments described herein, a method of coupling a top drive and a tool includes moving a top drive adjacent a tool, the top drive including a housing, a lock member at least partially disposed within the housing, and a latch member at least partially disposed within the housing and the tool including an adapter. The method further includes inserting the adapter into the housing, shifting the lock member longitudinally relative to the housing, and moving the latch member radially between an extended position and a retracted position to couple the top drive and the tool.
In one or more of the embodiments described herein, the method includes retaining the latch member in the extended position using the lock member.
In one or more of the embodiments described herein, the method includes biasing the latch member towards the retracted position.
In one or more of the embodiments described herein, the method includes engaging a biasing member using the lock member.
In one or more of the embodiments described herein, the method includes expanding the biasing member radially to move the latch member to the extended position.
In one or more of the embodiments described herein, the method includes transferring at least one of power, data, electronics, hydraulics, and pneumatics between the adapter and the housing using quick connection pins.
In one or more of the embodiments described herein, the method includes engaging splines of the housing with splines of the adapter, thereby transferring torque between the housing and the adapter.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
1367156 | McAlvay et al. | Feb 1921 | A |
1610977 | Scott | Dec 1926 | A |
1822444 | MacClatchie | Sep 1931 | A |
2370354 | Hurst | Feb 1945 | A |
2683379 | Strandgren | Jul 1954 | A |
2863638 | Thornburg | Dec 1958 | A |
3147992 | Haeber et al. | Sep 1964 | A |
3354951 | Savage et al. | Nov 1967 | A |
3385370 | Knox et al. | May 1968 | A |
3662842 | Bromell | May 1972 | A |
3698426 | Litchfield et al. | Oct 1972 | A |
3747675 | Brown | Jul 1973 | A |
3766991 | Brown | Oct 1973 | A |
3774697 | Brown | Nov 1973 | A |
3776320 | Brown | Dec 1973 | A |
3808916 | Porter | May 1974 | A |
3842619 | Bychurch, Sr. | Oct 1974 | A |
3888318 | Brown | Jun 1975 | A |
3899024 | Tonnelli et al. | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3917092 | McGinnis | Nov 1975 | A |
3964552 | Slator | Jun 1976 | A |
4022284 | Crow | May 1977 | A |
4051587 | Boyadjieff | Oct 1977 | A |
4100968 | Delano | Jul 1978 | A |
4192155 | Gray | Mar 1980 | A |
4199847 | Owens | Apr 1980 | A |
4235469 | Denny et al. | Nov 1980 | A |
4364407 | Hilliard | Dec 1982 | A |
4377179 | Giebeler | Mar 1983 | A |
4402239 | Mooney | Sep 1983 | A |
4422794 | Deken | Dec 1983 | A |
4449596 | Boyadjieff | May 1984 | A |
4478244 | Garrett | Oct 1984 | A |
4497224 | Jürgens | Feb 1985 | A |
4593773 | Skeie | Jun 1986 | A |
4647050 | Johnson | Mar 1987 | A |
4762187 | Haney | Aug 1988 | A |
4776617 | Sato | Oct 1988 | A |
4779688 | Baugh | Oct 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4815546 | Haney et al. | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4844181 | Bassinger | Jul 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4916959 | Lively | Apr 1990 | A |
4932253 | McCoy | Jun 1990 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4972741 | Sibille | Nov 1990 | A |
4981180 | Price | Jan 1991 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5018350 | Bender | May 1991 | A |
5020640 | Nederbragt | Jun 1991 | A |
5036927 | Willis | Aug 1991 | A |
5099725 | Bouligny, Jr. et al. | Mar 1992 | A |
5152554 | LaFleur et al. | Oct 1992 | A |
5172940 | Usui et al. | Dec 1992 | A |
5191939 | Stokley | Mar 1993 | A |
5196770 | Champs et al. | Mar 1993 | A |
5215153 | Younes | Jun 1993 | A |
5245877 | Ruark | Sep 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5348351 | LaFleur et al. | Sep 1994 | A |
5385514 | Dawe | Jan 1995 | A |
5404767 | Sutherland | Apr 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5440183 | Denne | Aug 1995 | A |
5441310 | Barrett et al. | Aug 1995 | A |
5456320 | Baker | Oct 1995 | A |
5479988 | Appleton | Jan 1996 | A |
5486223 | Carden | Jan 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5509442 | Claycomb | Apr 1996 | A |
5540095 | Sherman et al. | Jul 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5584343 | Coone | Dec 1996 | A |
5645131 | Trevisani | Jul 1997 | A |
5664310 | Penisson | Sep 1997 | A |
5682952 | Stokley | Nov 1997 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5778742 | Stuart | Jul 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5909768 | Castille et al. | Jun 1999 | A |
5918673 | Hawkins et al. | Jul 1999 | A |
5950724 | Giebeler | Sep 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5992520 | Schultz et al. | Nov 1999 | A |
6003412 | Dlask et al. | Dec 1999 | A |
6011508 | Perreault et al. | Jan 2000 | A |
6053191 | Hussey | Apr 2000 | A |
6101952 | Thornton et al. | Aug 2000 | A |
6102116 | Giovanni | Aug 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6173777 | Mullins | Jan 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6289911 | Majkovic | Sep 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6328343 | Hosie et al. | Dec 2001 | B1 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6401811 | Coone | Jun 2002 | B1 |
6415862 | Mullins | Jul 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6460620 | LaFleur | Oct 2002 | B1 |
6499701 | Thornton et al. | Dec 2002 | B1 |
6508132 | Lohr et al. | Jan 2003 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6571876 | Szarka | Jun 2003 | B2 |
6578495 | Yitts et al. | Jun 2003 | B1 |
6578632 | Mullins | Jun 2003 | B2 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6604578 | Mullins | Aug 2003 | B2 |
6606569 | Potts | Aug 2003 | B1 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6640824 | Majkovic | Nov 2003 | B2 |
6666273 | Laurel | Dec 2003 | B2 |
6675889 | Mullins et al. | Jan 2004 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6705405 | Pietras | Mar 2004 | B1 |
6715542 | Mullins | Apr 2004 | B2 |
6719046 | Mullins | Apr 2004 | B2 |
6722425 | Mullins et al. | Apr 2004 | B2 |
6725938 | Pietras | Apr 2004 | B1 |
6732819 | Wenzel | May 2004 | B2 |
6732822 | Slack | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6770004 | Lofgren et al. | Aug 2004 | B1 |
6779599 | Mullins et al. | Aug 2004 | B2 |
6832656 | Fournier, Jr. et al. | Dec 2004 | B2 |
6851476 | Gray et al. | Feb 2005 | B2 |
6883605 | Arceneaux et al. | Apr 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6908121 | Hirth et al. | Jun 2005 | B2 |
6925807 | Jones et al. | Aug 2005 | B2 |
6938697 | Haugen | Sep 2005 | B2 |
6976298 | Pietras | Dec 2005 | B1 |
6983701 | Thornton et al. | Jan 2006 | B2 |
6994176 | Shahin et al. | Feb 2006 | B2 |
7000503 | Dagenais et al. | Feb 2006 | B2 |
7001065 | Dishaw et al. | Feb 2006 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7007753 | Robichaux et al. | Mar 2006 | B2 |
7017671 | Williford | Mar 2006 | B2 |
7021374 | Pietras | Apr 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7073598 | Haugen | Jul 2006 | B2 |
7090021 | Pietras | Aug 2006 | B2 |
7096948 | Mosing et al. | Aug 2006 | B2 |
7114235 | Jansch et al. | Oct 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7137454 | Pietras | Nov 2006 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7143849 | Shahin et al. | Dec 2006 | B2 |
7147254 | Niven et al. | Dec 2006 | B2 |
7159654 | Ellison et al. | Jan 2007 | B2 |
7178600 | Luke et al. | Feb 2007 | B2 |
7178612 | Belik | Feb 2007 | B2 |
7213656 | Pietras | May 2007 | B2 |
7219744 | Pietras | May 2007 | B2 |
7231969 | Folk et al. | Jun 2007 | B2 |
7270189 | Brown et al. | Sep 2007 | B2 |
7281451 | Schulze Beckinghausen | Oct 2007 | B2 |
7281587 | Haugen | Oct 2007 | B2 |
7290476 | Glasson | Nov 2007 | B1 |
7303022 | Tilton et al. | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7353880 | Pietras | Apr 2008 | B2 |
7373971 | Montgomery | May 2008 | B2 |
7448456 | Shahin et al. | Nov 2008 | B2 |
7451826 | Pietras | Nov 2008 | B2 |
7490677 | Buytaert et al. | Feb 2009 | B2 |
7503397 | Giroux et al. | Mar 2009 | B2 |
7509722 | Shahin et al. | Mar 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7530799 | Smith | May 2009 | B2 |
7579941 | Cleveland et al. | Aug 2009 | B2 |
7591304 | Juhasz et al. | Sep 2009 | B2 |
7617866 | Pietras | Nov 2009 | B2 |
7635026 | Mosing et al. | Dec 2009 | B2 |
7665515 | Mullins | Feb 2010 | B2 |
7665530 | Wells et al. | Feb 2010 | B2 |
7665531 | Pietras | Feb 2010 | B2 |
7669662 | Pietras | Mar 2010 | B2 |
7690422 | Swietlik et al. | Apr 2010 | B2 |
7694730 | Angman | Apr 2010 | B2 |
7694744 | Shahin | Apr 2010 | B2 |
7699121 | Juhasz et al. | Apr 2010 | B2 |
7712523 | Snider et al. | May 2010 | B2 |
7730698 | Montano et al. | Jun 2010 | B1 |
7757759 | Jahn et al. | Jul 2010 | B2 |
7779922 | Harris et al. | Aug 2010 | B1 |
7793719 | Snider et al. | Sep 2010 | B2 |
7817062 | Li et al. | Oct 2010 | B1 |
7828085 | Kuttel et al. | Nov 2010 | B2 |
7841415 | Winter | Nov 2010 | B2 |
7854265 | Zimmermann | Dec 2010 | B2 |
7857043 | Ali-zada | Dec 2010 | B2 |
7866390 | Latiolais, Jr. et al. | Jan 2011 | B2 |
7874352 | Odell, II et al. | Jan 2011 | B2 |
7874361 | Mosing et al. | Jan 2011 | B2 |
7878237 | Angman | Feb 2011 | B2 |
7878254 | Abdollahi et al. | Feb 2011 | B2 |
7882902 | Boutwell, Jr. | Feb 2011 | B2 |
7896084 | Haugen | Mar 2011 | B2 |
7918273 | Snider et al. | Apr 2011 | B2 |
7958787 | Hunter | Jun 2011 | B2 |
7971637 | Duhon et al. | Jul 2011 | B2 |
7975768 | Fraser et al. | Jul 2011 | B2 |
8036829 | Gibbs et al. | Oct 2011 | B2 |
8118106 | Wiens et al. | Feb 2012 | B2 |
8141642 | Olstad et al. | Mar 2012 | B2 |
8210268 | Heidecke et al. | Jul 2012 | B2 |
8256579 | Jia | Sep 2012 | B2 |
8281856 | Jahn et al. | Oct 2012 | B2 |
8307903 | Redlinger et al. | Nov 2012 | B2 |
8328527 | Ehimeakhe | Dec 2012 | B2 |
8365834 | Liess et al. | Feb 2013 | B2 |
8459361 | Leuchtenberg | Jun 2013 | B2 |
8505984 | Henderson et al. | Aug 2013 | B2 |
8567512 | Odell, II et al. | Oct 2013 | B2 |
8601910 | Begnaud | Dec 2013 | B2 |
8616134 | King et al. | Dec 2013 | B2 |
8624699 | Hunter et al. | Jan 2014 | B2 |
8636067 | Robichaux et al. | Jan 2014 | B2 |
8651175 | Fallen | Feb 2014 | B2 |
8668003 | Osmundsen et al. | Mar 2014 | B2 |
8708055 | Liess et al. | Apr 2014 | B2 |
8727021 | Heidecke et al. | May 2014 | B2 |
8776898 | Liess et al. | Jul 2014 | B2 |
8783339 | Sinclair et al. | Jul 2014 | B2 |
8839884 | Kuttel et al. | Sep 2014 | B2 |
8849954 | Kim | Sep 2014 | B2 |
8851860 | Oct 2014 | B1 | |
8858187 | Lane | Oct 2014 | B2 |
8893772 | Henderson et al. | Nov 2014 | B2 |
9068406 | Clasen et al. | Jun 2015 | B2 |
9206851 | Slaughter, Jr. et al. | Dec 2015 | B2 |
9359835 | Leman | Jun 2016 | B2 |
9528326 | Heidecke et al. | Dec 2016 | B2 |
9631438 | McKay | Apr 2017 | B2 |
9772608 | Spacek | Sep 2017 | B2 |
20020043403 | Juhasz et al. | Apr 2002 | A1 |
20020074132 | Juhasz et al. | Jun 2002 | A1 |
20020084069 | Mosing et al. | Jul 2002 | A1 |
20020129934 | Mullins et al. | Sep 2002 | A1 |
20020170720 | Haugen | Nov 2002 | A1 |
20030098150 | Andreychuk | May 2003 | A1 |
20030107260 | Ording et al. | Jun 2003 | A1 |
20030221519 | Haugen | Dec 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20040069497 | Jones et al. | Apr 2004 | A1 |
20040163822 | Zhang et al. | Aug 2004 | A1 |
20040216924 | Pietras | Nov 2004 | A1 |
20040222901 | Dodge et al. | Nov 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050087368 | Boyle et al. | Apr 2005 | A1 |
20050173154 | Lesko | Aug 2005 | A1 |
20050206163 | Guesnon et al. | Sep 2005 | A1 |
20050257933 | Pietras | Nov 2005 | A1 |
20050269072 | Folk et al. | Dec 2005 | A1 |
20050269104 | Folk et al. | Dec 2005 | A1 |
20050269105 | Pietras | Dec 2005 | A1 |
20050274508 | Folk et al. | Dec 2005 | A1 |
20060001549 | Shah et al. | Jan 2006 | A1 |
20060037784 | Walter et al. | Feb 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20060151181 | Shahin | Jul 2006 | A1 |
20060180315 | Shahin et al. | Aug 2006 | A1 |
20060290528 | MacPherson et al. | Dec 2006 | A1 |
20070017671 | Clark et al. | Jan 2007 | A1 |
20070029112 | Li et al. | Feb 2007 | A1 |
20070030167 | Li et al. | Feb 2007 | A1 |
20070044973 | Fraser et al. | Mar 2007 | A1 |
20070074588 | Harata et al. | Apr 2007 | A1 |
20070074874 | Richardson | Apr 2007 | A1 |
20070102992 | Jager | May 2007 | A1 |
20070131416 | Odell, II et al. | Jun 2007 | A1 |
20070137853 | Zhang et al. | Jun 2007 | A1 |
20070140801 | Kuttel et al. | Jun 2007 | A1 |
20070144730 | Shahin et al. | Jun 2007 | A1 |
20070158076 | Hollingsworth, Jr. et al. | Jul 2007 | A1 |
20070188344 | Hache et al. | Aug 2007 | A1 |
20070251699 | Wells et al. | Nov 2007 | A1 |
20070251701 | Jahn et al. | Nov 2007 | A1 |
20070257811 | Hall et al. | Nov 2007 | A1 |
20070263488 | Clark | Nov 2007 | A1 |
20080006401 | Buytaert et al. | Jan 2008 | A1 |
20080007421 | Liu et al. | Jan 2008 | A1 |
20080018603 | Baraz et al. | Jan 2008 | A1 |
20080059073 | Giroux et al. | Mar 2008 | A1 |
20080093127 | Angman | Apr 2008 | A1 |
20080099196 | Latiolais et al. | May 2008 | A1 |
20080125876 | Boutwell | May 2008 | A1 |
20080202812 | Childers et al. | Aug 2008 | A1 |
20080210063 | Slack | Sep 2008 | A1 |
20080308281 | Boutwell, Jr. et al. | Dec 2008 | A1 |
20090115623 | Macpherson et al. | May 2009 | A1 |
20090146836 | Santoso et al. | Jun 2009 | A1 |
20090151934 | Heidecke | Jun 2009 | A1 |
20090159294 | Abdollahi et al. | Jun 2009 | A1 |
20090173493 | Hutin et al. | Jul 2009 | A1 |
20090200038 | Swietlik et al. | Aug 2009 | A1 |
20090205820 | Koederitz et al. | Aug 2009 | A1 |
20090205827 | Swietlik et al. | Aug 2009 | A1 |
20090205836 | Swietlik et al. | Aug 2009 | A1 |
20090205837 | Swietlik et al. | Aug 2009 | A1 |
20090229837 | Wiens et al. | Sep 2009 | A1 |
20090266532 | Revheim et al. | Oct 2009 | A1 |
20090272537 | Alikin et al. | Nov 2009 | A1 |
20090274544 | Liess | Nov 2009 | A1 |
20090274545 | Liess et al. | Nov 2009 | A1 |
20090289808 | Prammer | Nov 2009 | A1 |
20090316528 | Ramshaw et al. | Dec 2009 | A1 |
20090321086 | Zimmermann | Dec 2009 | A1 |
20100032162 | Olstad et al. | Feb 2010 | A1 |
20100097890 | Sullivan et al. | Apr 2010 | A1 |
20100101805 | Angelle et al. | Apr 2010 | A1 |
20100116550 | Hutin et al. | May 2010 | A1 |
20100171638 | Clark | Jul 2010 | A1 |
20100171639 | Clark | Jul 2010 | A1 |
20100172210 | Clark | Jul 2010 | A1 |
20100182161 | Robbins et al. | Jul 2010 | A1 |
20100200222 | Robichaux et al. | Aug 2010 | A1 |
20100206583 | Swietlik et al. | Aug 2010 | A1 |
20100206584 | Clubb et al. | Aug 2010 | A1 |
20100213942 | Lazarev | Aug 2010 | A1 |
20100236777 | Partouche et al. | Sep 2010 | A1 |
20100271233 | Li et al. | Oct 2010 | A1 |
20100328096 | Hache et al. | Dec 2010 | A1 |
20110017512 | Codazzi | Jan 2011 | A1 |
20110018734 | Varveropoulos et al. | Jan 2011 | A1 |
20110036563 | Brække | Feb 2011 | A1 |
20110036586 | Hart et al. | Feb 2011 | A1 |
20110039086 | Graham et al. | Feb 2011 | A1 |
20110048739 | Blair | Mar 2011 | A1 |
20110088495 | Buck et al. | Apr 2011 | A1 |
20110198076 | Villreal et al. | Aug 2011 | A1 |
20110214919 | McClung, III | Sep 2011 | A1 |
20110280104 | McClung, III | Nov 2011 | A1 |
20120013481 | Clark | Jan 2012 | A1 |
20120014219 | Clark | Jan 2012 | A1 |
20120020808 | Lawson et al. | Jan 2012 | A1 |
20120048574 | Wiens | Mar 2012 | A1 |
20120126992 | Rodney et al. | May 2012 | A1 |
20120152530 | Wiedecke et al. | Jun 2012 | A1 |
20120153609 | McMiles | Jun 2012 | A1 |
20120160517 | Bouligny et al. | Jun 2012 | A1 |
20120166089 | Ramshaw et al. | Jun 2012 | A1 |
20120212326 | Christiansen et al. | Aug 2012 | A1 |
20120234107 | Pindiprolu et al. | Sep 2012 | A1 |
20120274477 | Prammer | Nov 2012 | A1 |
20120298376 | Twardowski | Nov 2012 | A1 |
20130045116 | Wang et al. | Feb 2013 | A1 |
20130055858 | Richardson | Mar 2013 | A1 |
20130056977 | Henderson et al. | Mar 2013 | A1 |
20130062074 | Angelle et al. | Mar 2013 | A1 |
20130075077 | Henderson et al. | Mar 2013 | A1 |
20130075106 | Tran et al. | Mar 2013 | A1 |
20130105178 | Pietras | May 2013 | A1 |
20130186638 | Filippov et al. | Jul 2013 | A1 |
20130192357 | Ramshaw et al. | Aug 2013 | A1 |
20130207382 | Robichaux | Aug 2013 | A1 |
20130207388 | Jansson et al. | Aug 2013 | A1 |
20130233624 | In | Sep 2013 | A1 |
20130269926 | Liess et al. | Oct 2013 | A1 |
20130271576 | Elllis | Oct 2013 | A1 |
20130275100 | Ellis et al. | Oct 2013 | A1 |
20130278432 | Shashoua et al. | Oct 2013 | A1 |
20130299247 | Kottel et al. | Nov 2013 | A1 |
20140069720 | Gray | Mar 2014 | A1 |
20140083768 | Moriarty et al. | Mar 2014 | A1 |
20140083769 | Moriarty et al. | Mar 2014 | A1 |
20140090856 | Pratt et al. | Apr 2014 | A1 |
20140116686 | Odell, II et al. | May 2014 | A1 |
20140131052 | Richardson | May 2014 | A1 |
20140202767 | Feasey | Jul 2014 | A1 |
20140233804 | Gustavsson et al. | Aug 2014 | A1 |
20140246237 | Prammer | Sep 2014 | A1 |
20140262521 | Bradley et al. | Sep 2014 | A1 |
20140305662 | Giroux et al. | Oct 2014 | A1 |
20140312716 | Hunter et al. | Oct 2014 | A1 |
20140326468 | Heidecke et al. | Nov 2014 | A1 |
20140352944 | Devarajan et al. | Dec 2014 | A1 |
20140360780 | Moss et al. | Dec 2014 | A1 |
20150014063 | Simanjuntak et al. | Jan 2015 | A1 |
20150053424 | Wiens et al. | Feb 2015 | A1 |
20150075770 | Fripp | Mar 2015 | A1 |
20150083391 | Bangert et al. | Mar 2015 | A1 |
20150090444 | Partouche et al. | Apr 2015 | A1 |
20150107385 | Mullins et al. | Apr 2015 | A1 |
20150131410 | Clark | May 2015 | A1 |
20150218894 | Slack | Aug 2015 | A1 |
20150275657 | Deffenbaugh et al. | Oct 2015 | A1 |
20150285066 | Keller et al. | Oct 2015 | A1 |
20150292319 | Disko et al. | Oct 2015 | A1 |
20150300112 | Hered | Oct 2015 | A1 |
20150337648 | Zippel et al. | Nov 2015 | A1 |
20150337651 | Prammer | Nov 2015 | A1 |
20160024862 | Wilson et al. | Jan 2016 | A1 |
20160032715 | Mueller et al. | Feb 2016 | A1 |
20160053610 | Switzer et al. | Feb 2016 | A1 |
20160138348 | Kunec | May 2016 | A1 |
20160145954 | Helms et al. | May 2016 | A1 |
20160177639 | McIntosh et al. | Jun 2016 | A1 |
20160215592 | Helms et al. | Jul 2016 | A1 |
20160230481 | Misson et al. | Aug 2016 | A1 |
20160291188 | Lim | Oct 2016 | A1 |
20160326867 | Prammer | Nov 2016 | A1 |
20160333682 | Griffing et al. | Nov 2016 | A1 |
20170037683 | Heidecke et al. | Feb 2017 | A1 |
20170044854 | Hebebrand et al. | Feb 2017 | A1 |
20170044875 | Hebebrand et al. | Feb 2017 | A1 |
20170051568 | Wern et al. | Feb 2017 | A1 |
20170067303 | Thiemann et al. | Mar 2017 | A1 |
20170067320 | Zouhair et al. | Mar 2017 | A1 |
20170074075 | Liess | Mar 2017 | A1 |
20170211327 | Wern et al. | Jul 2017 | A1 |
20170211343 | Thiemann | Jul 2017 | A1 |
20170234083 | Tavakoli | Aug 2017 | A1 |
20170248009 | Fripp | Aug 2017 | A1 |
20170248012 | Donderici et al. | Aug 2017 | A1 |
20170284164 | Holmes et al. | Oct 2017 | A1 |
20170335681 | Nguyen et al. | Nov 2017 | A1 |
20170356288 | Switzer et al. | Dec 2017 | A1 |
20180087374 | Robson et al. | Mar 2018 | A1 |
20180087375 | Segura Dominguez | Mar 2018 | A1 |
20180135409 | Wilson et al. | May 2018 | A1 |
20180252095 | Pridat et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2012201644 | Apr 2012 | AU |
2013205714 | May 2013 | AU |
2014215938 | Sep 2014 | AU |
2 707 050 | Jun 2009 | CA |
2707050 | Jun 2009 | CA |
2 841 654 | Aug 2015 | CA |
2841654 | Aug 2015 | CA |
2944327 | Oct 2015 | CA |
2412105 | Dec 2000 | CN |
201810278 | Apr 2011 | CN |
102007016822 | Oct 2008 | DE |
0 250 072 | Dec 1987 | EP |
0 250 072 | Apr 1991 | EP |
1 619 349 | Jan 2006 | EP |
1619349 | Jan 2006 | EP |
1 772 715 | Apr 2007 | EP |
1772715 | Apr 2007 | EP |
1 961 912 | Aug 2008 | EP |
1 961 913 | Aug 2008 | EP |
1961912 | Aug 2008 | EP |
1961913 | Aug 2008 | EP |
2085566 | Aug 2009 | EP |
2 322 357 | May 2011 | EP |
3032025 | Jun 2016 | EP |
1487948 | Oct 1977 | GB |
2 077 812 | Dec 1981 | GB |
2077812 | Dec 1981 | GB |
2 180 027 | Mar 1987 | GB |
2180027 | Mar 1987 | GB |
2 228 025 | Aug 1990 | GB |
2228025 | Aug 1990 | GB |
2 314 391 | Dec 1997 | GB |
2314391 | Dec 1997 | GB |
02068788 | Sep 2002 | WO |
2004079153 | Sep 2004 | WO |
2004079153 | Sep 2004 | WO |
2004101417 | Nov 2004 | WO |
2004101417 | Nov 2004 | WO |
2007001887 | Jan 2007 | WO |
2007001887 | Jan 2007 | WO |
2007070805 | Jun 2007 | WO |
2007127737 | Nov 2007 | WO |
2008005767 | Jan 2008 | WO |
2009076648 | Jun 2009 | WO |
200976648 | Jun 2009 | WO |
2009076648 | Jun 2009 | WO |
2012100019 | Jul 2012 | WO |
2012115717 | Aug 2012 | WO |
2012115717 | Aug 2012 | WO |
2014056092 | Apr 2014 | WO |
2014182272 | Nov 2014 | WO |
2015000023 | Jan 2015 | WO |
2015000023 | Jan 2015 | WO |
2015119509 | Aug 2015 | WO |
2015127433 | Aug 2015 | WO |
2015119509 | Aug 2015 | WO |
2015127433 | Aug 2015 | WO |
2015176121 | Nov 2015 | WO |
2016197255 | Dec 2016 | WO |
2017044384 | Mar 2017 | WO |
Entry |
---|
European Patent Office; Extended Search Report for Application No. 18160808.4; dated Sep. 20, 2018; 8 total pages. |
EPO Partial European Search Report dated Oct. 4, 2018, for European Patent Application No. 18159598.4. |
EPO Extended European Search Report dated Oct. 5, 2018, for European Patent Application No. 18173275.1. |
EPO Extended European Search Report dated Nov. 6, 2018, for European Application No. 18159597.6. |
International Search Report and Written Opinion in PCT/US2018/042812 dated Oct. 17, 2018. |
Extended Search Report in application EP18177312.8 dated Nov. 6, 2018. |
Balltec Lifting Solutions, CoilLOK™, Brochure, “Highest integrity hand-held coiled tubing handling tools,” 2 pages. |
Canadian Office Action in related application CA 2,955,754 dated Jul. 17, 2018. |
EPO Extended European Search Report dated Jul. 19, 2018, for European Application No. 18159595.0. |
EPO Extended European Search Report dated Jul. 17, 2018, for European Application No. 18158050.7. |
Cookson, Colter, “Inventions Speed Drilling, Cut Costs,” The American Oil & Gas Reporter, Sep. 2015, 2 pages. |
Ennaifer, Amine et al. , “Step Change in Well Testing Operations,” Oilfield Review, Autumn 2014: 26, No. 3, pp. 32-41. |
Balltec Lifting Solutions, LiftLOK™ Brochure, “Highest integrity lifting tools for the harshest environments,” 2 pages. |
Peters; Tool Coupler for Use With a Top Drive; U.S. Appl. No. 15/656,508, filed Jul. 21, 2017. (Application not attached to IDS.). |
Fuehring et al.; Tool Coupler With Rotating Coupling Method for Top Drive; U.S. Appl. No. 15/445,758, filed Feb. 28, 2017. (Application not attached to IDS.). |
Bell; Interchangeable Swivel Combined Multicoupler; U.S. Appl. No. 15/607,159, filed May 26, 2017 (Application not attached to IDS.). |
Amezaga; Dual Torque Transfer for Top Drive System; U.S. Appl. No. 15/447,881, filed Mar. 2, 2017. (Application not attached to IDS.). |
Zouhair; Coupler With Threaded Connection for Pipe Handler; U.S. Appl. No. 15/444,016, filed Feb. 27, 2017. (Application not attached to IDS.). |
Liess; Downhole Tool Coupling System; U.S. Appl. No. 15/670,897, filed Aug. 7, 2017. (Application not attached to IDS.). |
Muller et al; Combined Multi-Coupler With Rotating Locking Method for Top Drive; U.S. Appl. No. 15/721,216, filed Sep. 29, 2017. (Application not attached to IDS.). |
Amezaga et al; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/457,572, filed Mar. 13, 2017. (Application not attached to IDS.). |
Wiens; Combined Multi-Coupler With Locking Clamp Connection for Top Drive; U.S. Appl. No. 15/627,428, filed Jun. 19, 2017. (Application not attached to IDS.). |
Henke et al.; Tool Coupler With Sliding Coupling Members for Top Drive; U.S. Appl. No. 15/448,297, filed Mar. 2, 2017. (Application not attached to IDS.). |
Schoknecht et al.; Combined Multi-Coupler With Rotating Fixations for Top Drive; U.S. Appl. No. 15/447,926, filed Mar. 2, 2017. (Application not attached to IDS.). |
Metzlaff et al.; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/627,237, filed Jun. 19, 2017 (Application not attached to IDS.). |
Liess; Combined Multi-Coupler for Top Drive; U.S. Appl. No. 15/656,914, filed Jul. 21, 2017. Application not attached to IDS.). |
Liess et al.; Combined Multi-Coupler; U.S. Appl. No. 15/656,684, filed Jul. 21, 2017. (Application not attached to IDS). |
Amezaga et al.; Tool Coupler With Data and Signal Transfer Methods for Top Drive; U.S. Appl. No. 15/730,305, filed Oct. 11, 2017. (Application not attached to IDS). |
Liess; Tool Coupler With Threaded Connection for Top Drive; U.S. Appl. No. 15/806,560, filed Nov. 8, 2017. (Application not attached to IDS). |
EPO Partial European Search Report dated Jul. 31, 2018, for European Application No. 18159597.6. |
A123 System; 14Ah Prismatic Pouch Cell; Nanophosphate® Lithium-Ion; www.a123systems.com; date unknown; 1 page. |
Streicher Load/Torque Cell Systems; date unknown; 1 page. |
3PS, Inc.; Enhanced Torque and Tension Sub with Integrated Turns; date unknown; 2 total pages. |
Lefevre, et al.; Drilling Technology; Deeper, more deviated wells push development of smart drill stem rotary shouldered connections; dated 2008; 2 total pages. |
PCT Invitaiton to Pay Additional Fees for International Application No. PCT/US2008/086699; dated Sep. 9, 2009; 7 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2008/086699; dated Sep. 11, 2009; 19 total pages. |
National Oilwell Varco; Rotary Shoulder Handbook; dated 2010; 116 total pages. |
Weatherford; TorkSub™ Stand-Alone Torque Measuring System; dated 2011-2014; 4 total pages. |
Australian Examination Report for Application No. 2008334992; dated Apr. 5, 2011; 2 total pages. |
European Search Report for Application No. 08 860 261.0-2315; dated Apr. 12, 2011; 4 total pages. |
Eaton; Spool Valve Hydraulic Motors; dated Sep. 2011; 16 total pages. |
European Extended Search Report for Application No. 12153779.9-2315; dated Apr. 5, 2012; 4 total pages. |
Australian Examination Report for Application No. 2012201644; dated May 15, 2013; 3 total pages. |
Warrior; 250E Electric Top Drive (250-TON); 250H Hydraulic Top Drive (250-TON); dated Apr. 2014; 4 total pages. |
Hydraulic Pumps & Motors; Fundamentals of Hydraulic Motors; dated Jun. 26, 2014; 6 total pages. |
Warrior; Move Pipe Better; 500E Electric Top Drive (500 ton-1000 hp); dated May 2015; 4 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Aug. 24, 2015; 3 total pages. |
European Extended Search Report for Application No. 15166062.8-1610; dated Nov. 23, 2015; 6 total pages. |
Australian Examination Report for Application No. 2014215938; dated Feb. 4, 2016; 3 total pages. |
Rexroth; Bosch Group; Motors and Gearboxes; Asynchronous high-speed motors 1 MB for high speeds; dated Apr. 13, 2016; 6 total pages. |
Canadian Office Action for Application No. 2,837,581; dated Apr. 25, 2016; 3 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/061960; dated Jul. 25, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049462; dated Nov. 22, 2016; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050542; dated Nov. 25, 2016; 13 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/046458; dated Dec. 14, 2016; 16 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/047813; dated Jan. 12, 2017; 15 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2016/050139; dated Feb. 20, 2017; 20 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014646; dated Apr. 4, 2017; 14 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/014224; dated Jun. 8, 2017; 15 total pages. |
European Extended Search Report for Application No. 17152458.0-1609; dated Jun. 8, 2017; 7 total pages. |
Australian Examination Report for Application No. 2017200371; dated Sep. 19, 2017; 5 total pages. |
European Extended Search Report for Application No. 17195552.9-1614; dated Dec. 4, 2017; 6 total pages. |
Australian Examination Report for Application No. 2017200371; dated Feb. 8, 2018; 6 total pages. |
Canadian Office Action for Application No. 2,955,754; dated Mar. 28, 2018; 3 total pages. |
Australian Examination Report for Application No. 2017200371; dated May 2, 2018; 4 total pages. |
Canadian Office Action for Application No. 2,974,298; dated May 16, 2018; 3 total pages. |
EPO Extended European Search Report dated Jun. 6, 2018, for European Application No. 18157915.2. |
Australian Examination Report dated May 15, 2013, Australian Patent Applicatin No. 2012201644. |
PCT Search Report for International Application No. PCT/US2008/086699 dated Nov. 9, 2009. |
Australian Examination Report for Application No. 2008334992 dated Apr. 5, 2011. |
EP Office Action for Application No. 08860261.0-2315 dated Apr. 12, 2011. |
EP Search Report for Application No. 12153779.9-2315 dated Apr. 5, 2012. |
PCT Search Report for International Application No. PCT/US2008/086699 dated Sep. 9, 2009. |
Canadian Office Action dated Aug. 24, 2015, for corresponding Application No. 2,837,581. |
EPO Extended European Search Report dated Nov. 23, 2015, for EPO Patent Application No. 15166062.8. |
Australian Patent Examination Report dated Feb. 4, 2016, for Australian Patent Application No. 2014215938. |
Canadian Office Action dated Apr. 25, 2016, for Canadian Patent Application No. 2,837,581. |
PCT International Search Report and Written Opinion dated Jul. 25, 2016, for International Patent Application No. PCT/US2015/061960. |
EPO Extended European Search Report dated Dec. 4, 2017, for European Application No. 17195552.9. |
PCT International Search Report and Written Opinion dated Feb. 20, 2017 for International Application No. PCT/US2016/050139. |
PCT International Search Report and Written Opinion dated Dec. 14, 2016, for International Patent Application No. PCT/US2016/046458. |
PCT International Search Report and Written Opinion dated Nov. 11, 2016, for International Application No. PCT/US2016/046445. |
“Fundamentals of Hydraulic Motors,” Staff Report, Hydraulics and Pneumatics, Jun. 26, 2014, http://hydraulicspneumatics.com/hydraulic-pumps-motors/fundamentals-hydraulic-motors, accessed Aug. 12, 2015 (6 total pages). |
A123 Systems, 14Ah Prismatic Pouch Cell, Product Specification, www.a123systems.com. |
Eaton Low Speed High Torque Motors E-MOLO-MC001-E6 Brochure, Sep. 2011 (16 total pages). |
Warrior, 250E Electric Top Drive (250-TON), 25011 Hydraulic Top Drive (250-TON), Brochure, Apr. 2014, Rev. 1, www.warriorrig.com. |
Warrior, 500E Electric Top Drive (500 ton-1000hp), Brochure, Document No. EC 009, May 2015, Rev. 3, www.warriorrig.com. |
Weatherford, TorkSub™ Stand-Alone Torque Measuring System, Product Specification, Document No. 11368.00, Copyright 2011-2014, www.weatherford.com. |
PCT International Search Report and Written Opinion dated Nov. 25, 2016, for International Patent Application No. PCT/US2016/050542. |
Streicher Load/Torque Cell System Brochure, Streicher Group, 1 Page. |
Enchanced Torque & Tension Sub With Integrated Turns Brochure, 3PS, Inc.,, 2 Pages. |
PCT International Search Report and Written Opinion dated Jan. 12, 2017, for International Patent Application No. PCT/US2016/047813. |
PCT International Search Report and Written Opinion dated Nov. 22, 2016, for International Patent Application No. PCT/US2016/049462. |
PCT International Search Report and Written Opinion dated Apr. 4, 2017, for International Application No. PCT/US2017/014646. |
Warrior, 250E Electric Top Drive (250-TON), 250H Hydraulic Top Drive (250-TON), Brochure, Apr. 2014, Rev. 1. |
Warrior, 500E Electric Top Drive (500 ton-1000hp), Brochure, Document No. EC 009, May 2015, Rev. 3. |
Weatherford, TorkSub™ Stand-Alone Torque Measuring System, Product Specification, Document No. 11368.00, www.weatherford.com. |
EPO Extended Europeam Search RPT dated Jun. 8, 2017 for European Pat. Application No. 17152458.0. |
EPO Extended European Search Report dated Jun. 8, 2017, for European Patent Application No. 17152458.0. |
Australian Examination Report dated Sep. 19, 2017, for Australian Patent Application No. 2017200371. |
Australian Examination Report dated Feb. 8, 2018 for Australian Patent Application No. 2017200371. |
PCT International Search Report and Written Opinion dated Jun. 8, 2017, for Internaitonal Application No. PCT/US2017/014224. |
Lefevre,Bruno et al., “Deeper, more deviated wells push development of smart drill stem rotary shouldered connections,” Drilling Technology, (2008), pp. 130-132. |
Rotary Sholder Handbook, 2010 National Oilwell Varco, D392002466-MKT-001 Rev.02,116 pages. |
Weatherford; Rotaflex Long-Stroke Pumping Units; Artificial Lift Systems; date unknown; 17 total pages. |
Analog Devices; Data Sheet; Precision ±1.7 g, ±5 g, ±18 g Single-/Dual-Axis iMEMSÒ Accelerometer; 2004-2014; 16 total pages. |
Dr. Richard Thornton; Elevator World; Linear Synchronous Motors for Elevators; dated Sep. 2006; 2 total pages. |
Weatherford; Production Optimization; Stainless Steel Polished-Rod Load Cell dated 2008; 2 total pages. |
Wieler, et al.; Elevator World; Linear Synchronous Motor Elevators Become a Reality; dated May 2012; 4 total pages. |
MagneMotion; LSM Elevators; White Paper dated 2013; 2 total pages. |
Weatherford; Rotaflex Long-Stroke Pumping Units; Proven Technology for Deep, Challenging, and High-Volume Wells; dated 2014; 24 total pages. |
U.S. Appl. No. 14/717,441 entitled Dart Detector for Wellbore Tubular Cementation in the name of Zippel, et al; 35 total pages; filed May 20, 2015. |
PCT International Search Report and Written Opinion dated Aug. 24, 2016, for International Application No. PCT/ US2016/015838. |
Bosch Rexroth AG, Electric Drives and Controls, Brochure, “Asynchronous high-speed motors 1MB for high speeds,” 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180363386 A1 | Dec 2018 | US |