RFID stands for Radio-Frequency IDentification. An RFID transponder, or ‘tag’, serves a similar purpose as a bar code or a magnetic strip on the back of a credit card; it provides an identifier for a particular object, although, unlike a barcode or magnetic strip, some tags support being written to. An RFID system carries data in these tags, and retrieves data from the tags wirelessly. Data within a tag may provide identification for an item in manufacture, goods in transit, a location, the identity of a vehicle, an animal, or an individual. By including additional data, the ability is provided for supporting applications through item-specific information or instructions available upon reading the tag.
A basic RFID system includes a reader or ‘interrogator’ and a transponder (RFID tag) electronically programmed with unique identifying information. Both the transceiver and transponder have antennas, which respectively emit and receive radio signals to activate the tag, read data from the tag, and write data to it. An antenna is a feature that is present in both readers and tags, and is essential for the communication between the two. An RFID system requires, in addition to tags, a mechanism for reading or interrogating the tags and usually requires some means of communicating RFID data to a host device, e.g., a computer or information management system. Often the antenna is packaged with the transceiver and decoder to become a reader (an ‘interrogator’), which can be configured either as a handheld or a fixed-mount device. The reader emits radio waves in ranges of anywhere from one inch to 100 feet or more, depending upon its power output and the radio frequency used. When an RFID tag passes through the electromagnetic zone (its ‘field’) created by the reader, it detects the reader's activation signal upon which it conveys its stored information data. The reader decodes the data encoded in the tag's integrated circuit and the decoded data is often passed to a device (e.g., a computer) for processing.
The word transponder, derived from TRANSmitter/resPONDER, indicates the function of an RFID tag. A tag responds to a transmitted or communicated request for the data it carries, the communication between the reader and the tag being wireless across the space between the two. The essential components that form an RFID system are one or more tags and a reader or interrogator. The basic components of a transponder are, generally speaking, fabricated as low power integrated circuit suitable for interfacing to an external coil, or utilizing ‘coil-on-chip’ technology, for data transfer and power generation, where the coil acts as a tag antenna matched to the frequency supported.
In operation, RFID tags require power, even though the power levels required for operation are invariably very small (microwatts to milliwatts). RFID tags are categorized as active, passive, or semi-active/semi-passive, the designation being determined by the manner in which a particular device derives its power. Active RFID tags are powered by an internal battery and are typically read/write devices. Passive tags operate without an internal battery source, deriving the power to operate from the field generated by the reader. Passive tags are consequently much lighter than active tags, less expensive, and offer a virtually unlimited operational lifetime. However, a passive tag must be powered without interruption during communication with the reader. Passive tags offer advantages in terms of cost and longevity, as they have an almost infinite lifetime and are generally less expensive than active tags.
RFID radio module 110 is shown utilizing a circulator 138 (which can, alternatively, be a directional coupler or a diode detector circuit) to selectively direct the received signal to the receiver 118, allowing the transmitted signal from transmitter 116 to pass through to antenna 131, while blocking the received signal from the output of transmitter 116, and while blocking the transmit signal from the input of the receiver 118. Backhaul RF radio module 120 is shown utilizing a transmit/receive (T/R) switch 139 to direct the received signal either to the receiver 138, or to output the transmitted signal from transmitter 136 to antenna 132. Radio module 120 could alternatively employ a circulator (or equivalent device) 138.
Problem to be Solved
In order to read passive RFID tags, an RFID reader's radio transmitter is required to be turned on while the receiver is receiving. Previously existing RFID readers have accommodated this requirement by the use of directional couplers or the like. However, these previous RFID readers nevertheless employ redundant circuitry, including redundant radio modules, one module for communication with RFID tags and another module for communication with a host computer or server, via a backhaul RF transceiver.
In addition, each of the radio modules employed by previous RFID readers typically uses its own radio processor. Furthermore, each of these radio modules employs a separate antenna, thus necessitating the use of at least two antennas for communication with both a tag and a backhaul transceiver. Elimination of these redundant components is thus desirable, to minimize power consumption, and to reduce the number of components and circuit size, thereby also reducing the cost of the reader.
A system and method are disclosed for providing the capability for an RFID reader to communicate with RFID tags and with a remote RF transceiver. A single transceiver is employed for communicating with both the RFID tags and with the remote RF transceiver. A single antenna is coupled to the transceiver. In a first mode, the transceiver communicates with the RFID tags via the antenna, on a first frequency. In a second mode, the transceiver communicates with the remote RF transceiver via the same antenna, on the same frequency or on a second frequency.
In an exemplary embodiment, an IEEE 802.15.4 compliant (‘ZigBee’) radio, operating at approximately 900 MHz is used by the present system to achieve standard ZigBee communication to a host and/or passive UHF RFID communication with EPC (Electronic Product Code) transponders (RFID tags). Alternatively, the present system may employ RF frequencies other than 900 MHz, as well as communication protocols other than IEEE 802.15.4.
Radio transmitter 305 and radio receiver 306 are connected to switching device 307, which is connected to combined RF backhaul/RFID antenna 203, and controlled by device processor 201. In an exemplary embodiment, switching device 307 includes a double pole, single throw transmit/receive (‘T/R’) switch 309 and a circulator 308. Circulator 308 is a signal directing (and isolating) device having a junction of three ports in which the ports can be accessed in such an order that when a signal is fed into any port it is transferred to the next port.
In RFID communication mode, switch 309 is set to the closed (‘C’) position, and circulator 308 allows the signal from the output OP of transmitter 305 to flow to antenna 203, while allowing the signal from the antenna to flow through switch 309 to the input IP of receiver 306, while effectively blocking the signal from the antenna from reaching the transmitter output and effectively blocking the output signal from the transmitter 305 from reaching the receiver 306 input.
The function provided by circulator 308 may, alternatively, be provided by other signal directing devices including a directional coupler, a diode detector, a mixer, or the like.
Similarly, with respect to
The configuration of the components (e.g., signal directing/isolating device 308 and switch 309) shown in switching device 307 is one of a number of possible component configurations that may be employed to allow the shared use of combined RFID/RF radio backhaul module 202/402 with a single antenna 203. Switching device 307 may alternatively include a directional coupler, a diode detector circuit, a mixer, or the like, to provide the functionality of circulator 308. In an alternative embodiment, switch 309 may be eliminated in switching device 307, in which case input IP of receiver 306 is connected directly to port 333 of device 308, to provide full-duplex operation for RF backhaul mode.
As shown in
In RF backhaul receiving mode 511, at step 515, RF transmitter 305 is shut off, and at step 520, T/R switch 309 closes the connection from antenna 203 to receiver input IP, as indicated by the switch connection to position “C”, so that the antenna is directly connected to the RF receiver input. This allows the RF signal to be received from RF Transceiver 104, at step 525.
As shown in
At step 615, the CW transmit signal from transmitter 305 flows through circulator 308 and out through antenna 203. At step 620, while transmitter 305 remains on, the T/R switch remains open and circulator 308 blocks the large transmitted signal and passes the signal received from the RFID tag to the input IP of receiver 306. At step 625, the RFID receiver 306 receives the modulated continuous wave (CW) RF signal from RFID tag 105. During communication with RFID tag 105, transmitter 305 remains broadcasting the CW signal to keep the tag energized, as indicated in block 615. At step 625, RFID tag 105 sends its data to the reader 200/300/400 by load modulating the backscattered CW wave that is being transmitted by RFID tag 105.
Certain changes may be made in the above methods and systems without departing from the scope of that which is described herein. It is to be noted that all matter contained in the above description or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense. For example, the methods shown in
This application claims priority to provisional patent application Ser. No. 60/673,692, filed Apr. 21, 2006 and 60/712,957, filed Aug. 31, 2005. The disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60673692 | Apr 2005 | US | |
60712957 | Aug 2005 | US |