The present disclosure relates to an air cleaner scavenge system for drawing a low flow of air from a precleaner of an engine combustion air filter assembly by connecting the pre-cleaner to the low pressure side of an axial flow cooling fan used with a tool carrier, such as a compact loader.
Aspirators have been utilized for increasing the efficiency of air intake filters for engines by aspirating a selected amount of air from the precleaner section of the filter. However, in the prior art, special aspiration arrangements have been utilized for providing a vacuum or aspiration flow for the precleaner. Aspirators require several components.
Other systems used include engine exhaust aspirators that will supply a vacuum to the precleaner portion of an engine air filter. These create restrictions in the engine exhaust, raise noise levels and raise the cost of the exhaust system components.
The present disclosure relates to a scavenged precleaner section of an engine combustion intake air filter which is fluidly connected to a low pressure side of a cooling fan used for cooling engine components such as a radiator, oil cooler or the like. The cooling fan as shown is an axial flow fan mounted in a shroud, and forming a low pressure region on one side of the axial flow fan and a high pressure region on the other side. The scavenged air for the air precleaner is provided by a duct open to the low pressure side of the shroud, without any additional components. The duct bleeds a small amount of air through the precleaner to scavenge dust and dirt particles that are deposited in the bottom of the precleaner.
The present scavenge system is easy to install, highly effective, and does not adversely affect the flow of cooling air used for cooling other engine components or the engine combustion air.
A work vehicle, shown as a compact loader indicated generally at 10 in
The cooling system includes an axial flow fan assembly 46 that includes a first fan shroud 40, which is an annular shroud that has a first or inlet throat 42 and a second or exhaust throat 44. It should be noted that the throats 42 and 44 form openings to the interior of the first fan shroud 40 and comprise intake and exhaust openings. The throats are substantially the same size. The inlet throat 42 may form a venturi as shown to create a low pressure at the inlet. The axial flow fan assembly 46, has a drive motor 52 with an output shaft that drives fan blades 55.
The fan shroud is supported on a support wall 38 with suitable brackets 48, that also are used for supporting the fan drive motor 52. The axial flow fan blades 55, when rotated by a motor 52 will generate a flow of air in axial direction, and in this instance will direct air through an engine cooling radiator 58 which is shown fragmentarily on top of the throat 42, and an oil cooler 56 which is mounted on top of the radiator 58 in a normal manner. Also an air conditioning condenser and/or an intercooler or charge air cooler for cooling incoming combustion air can be provided above the first fan shroud 40.
A reversing valve 59 can be used for driving the hydraulic motor 52, in either direction of rotation. As shown, the fan blades 55 are rotated to generate an air flow into the throat 42, which is under a negative (low) pressure, and exhaust air into a second shroud or plenum 60 that receives the air flow from the fan assembly 46 when the blades 55 are rotating. Air that has passed through the radiator and other coolers provided is then discharged out through lateral side openings 62, which are covered with grates 63. One opening 62 is shown in
The engine 18 has an engine air combustion filter 66 which, is mounted with brackets 67 in a suitable manner to a wall of the compact loader 10. The intake air filter 66 is conventional and has a precleaner housing 68, and a filter section 70. The filter section 70 has replaceable filter element 71 for filtering out fine particles. Combustion air is taken in through an end intake opening 72 of the filter 66 and after passing through the precleaner section 68 and the filter section 70, the air is discharged through a large duct or conduit 74 into the combustion air intake or turbocharger inlet of the engine, as illustrated schematically.
In order to improve the efficiency of the precleaner, a small volume of air is withdrawn from the precleaner housing or section 68. A port 76 is open through the fan shroud 40 on the low or negative pressure side of the fan blades 55 of axial flow fan assembly 46 in the throat 42, as shown in
The precleaner section 68 can be designed as desired, but generally will include some baffles that will cause turbulence of the incoming air to tend to separate out larger particles of dust.
The amount of air flow that is drawn from the precleaner section 68 through the scavenged air tube 80 can range as desired, and typically can be between 5% and 15% of the total air flow through the filter 66. The dirt and debris drawn from the precleaner section is discharged into second shroud 60 and out the side openings 62.
It should be noted that there is no need for any separate vacuum pump, vacuum fitting, or aspirator. The scavenge air tube 80 opens directly to the low or negative pressure side of the fan. The tube 80 is on the exterior of the fan shroud 40 and does not pass through the cooling system duct or any other ducts. The tube 80 connects easily to the negative pressure side of the axial flow fan assembly 46. Only a short length of hose is necessary for the tube 80, and the outlet tube 74 to the intake of the engine is also a short conduit.
Connecting a duct to the cooling fan negative pressure side for withdrawing scavenging air from the combustion air filter increases the life of the filter elements, by improving the precleaner efficiency and function. Increased filter life reduces machine operating cost. There only is minimal cost involved in making the connections, and in addition the present arrangement does not add to the noise from intake air flow.
All that is necessary is providing a port in the fan shroud for the axial flow fan, and connecting the port to a fitting on the precleaner section of the combustion air filter with a tube or duct 80.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.