Communication jack that withstands insertion of a communication plug that the jack is not specifically configured to mate with without being damage

Information

  • Patent Grant
  • 6767257
  • Patent Number
    6,767,257
  • Date Filed
    Monday, November 4, 2002
    22 years ago
  • Date Issued
    Tuesday, July 27, 2004
    20 years ago
Abstract
A communication jack that withstands insertion of a communication plug with which the jack is not configured to mate without being damaged. The communication jack comprises a wire board and a number of contact wires that extend above the wire board and that are electrically coupled to respective contact regions on the wire board at first ends of the contact wires. The contact wires having second ends that are freely disposed for making electrical connections with corresponding contact wires of a mating communication plug. Each of the freely disposed ends of the contact wires are cantilevered from respective fist ends of the contact wires such that the contact wires are capable of being deflected when the freely disposed ends wipe against respective contact wires of the mating communication plug. Some of the freely disposed ends are deflected to a lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. The freely disposed ends that are deflected to a lesser degree than the opposing, outer freely disposed ends abut a surface of the wire board. The configuration of the wire board is such that the opposing, outer freely disposed ends avoid abutting the surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
Description




TECHNICAL FIELD OF THE INVENTION




The present invention generally relates to communication connector assemblies. More particularly, the present invention relates to a data jack, such as a RJ-45 data jack, that is configured to prevent it from being damaged by insertion of a communication plug that the jack is not specifically configured to work with, such as an RJ-11 telephone plug.




BACKGROUND OF THE INVENTION




Registered Jack-11 (RJ-11) is a wiring standard that describes wiring specifications for a four-or six-wire connector that is used primarily to connect telephone equipment in the United States. Telephones and facsimile machines are sometimes connected using local area network (LAN) wiring and jacks because an RJ-11 6-wire telephone-type plug will fit into the 8-wire RJ-45 wall jack and a telephone line can be connected to that circuit in the telecommunications closet. Registered Jack-45 (RJ-45) is a wiring standard that describes wiring specifications for an eight-wire connector that is commonly used to connect computers to a local-area networks (LAN), particularly Ethernet networks.





FIGS. 1A and 1B

illustrate perspective and top views, respectively, of the jack


2


and plug


3


of an RJ-11 connector assembly.

FIGS. 2A and 2B

illustrate perspective and top views, respectively, of the jack


4


and plug


5


of an RJ-45 connector assembly. As is evident from

FIGS. 1A-2B

, RJ-45 connector assemblies look very similar to RJ-11 connector assemblies, except they are somewhat wider than RJ-11 connector assemblies. The jack


2


and plug


3


of the RJ-11 connector assembly have three respective pairs of contact wires, which define three different signal paths. The jack


4


and plug


5


of the RJ-45 connector assembly each have four respective pairs of contact wires, which define four different signal paths.




Due to the visual similarities between the RJ-11 and RJ-45 connector assemblies, and due to the fact that the associated jacks are often located near each other in buildings, people sometimes accidentally insert RJ-11 plugs into RJ-45 jacks. Because the RJ-11 plug is narrower than the RJ-45 plug, the RJ-11 plug can be inserted into the RJ-45 jack. Also, although the RJ-45 jack is not intended to work with an RJ-11 plug, it is possible to wire an RJ-45 jack to work with an RJ-11 plug. Regardless of whether insertion is accidental or intentional, when an RJ-11 plug is inserted into an RJ-45 jack, the RJ-45 jack can be damaged. Specifically, the RJ-11 plug has raised plastic surfaces (

FIGS. 1B

,


7


and


8


) on both sides of the contacts, and when it is inserted into an RJ-45 data jack, the raised plastic surfaces


7


and


8


press against contact wires


1


and


8


and cause them to be deflected beyond their normal limit of deflection when an RJ-45 plug is inserted into the RJ-45 jack. As a result, the contacts become permanently set in this over-deflected position at times. Then, when an RJ-45 plug is coupled to the RJ-45 jack, the contact force needed to keep the contacts of the RJ-45 plug in abutment with the respective contacts of the RJ-45 jack is no longer present or is insufficient, which may result in poor performance.




Accordingly, a need exists for an RJ-45 jack that can withstand insertion of an RJ-11 plug and avoid damage to the RJ-45 jack.




SUMMARY OF THE INVENTION




In accordance with the present invention, a communication jack is provided that withstands insertion of a communication plug with which the jack is not configured to mate without being damaged. The communication jack comprises a wire board and a number of contact wires that extend above a surface of the wire board and that are electrically coupled to respective contact regions on the wire board at first ends of the contact wires. The contact wires have second ends that are freely disposed for making electrical connections with corresponding contact wires of a mating communication plug. Each of the freely disposed ends of the contact wires are cantilevered from respective first ends of the contact wires such that the contact wires are capable of being deflected toward a particular surface of the wire board when the freely disposed ends wipe against respective contact wires of the mating communication plug.




Some of the freely disposed ends are deflected toward a certain surface of the wire board to a, lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. The freely disposed ends that are deflected to a lesser degree than the opposing, outer freely disposed ends abut the particular surface of the wire board and thus are constrained from further deflection. The configuration of the wire board is such that the opposing, outer freely disposed ends avoid abutting the particular surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.




In accordance with the preferred embodiment of the present invention, the configuration of the wire board includes two openings formed in the front edge region of the wire board below the opposing, outer freely-disposed ends. The openings allow the opposing, outer freely disposed ends of the contact wires (contact wires


1


and


8


) of the jack to be deflected below the particular surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. Thus, the opposing, outer freely disposed ends of the contact wires do not come into contact with respective conductive pads on the wire board until the are deflected below the particular surface of the wire board.




The present invention also provides a method for preventing a communication jack from being damaged when it is mated with a communication plug with which the jack is not configured to mate. The method comprises the step of configuring a front edge region of the wire board of the communication jack so that freely disposed ends of at least two opposing, outer contact wires of the jack avoid abutment with a particular surface of the wire board when the freely disposed ends wipe against respective contact wires of a mating communication plug. When the freely disposed ends wipe against and are deflected by respective contact wires of the mating communication plug, all of the freely disposed ends other than the opposing, outer freely disposed ends abut the particular surface of the wire board. The opposing, outer freely disposed ends are deflected through openings formed in the wire board, thereby avoiding abutment with the particular surface of the wire board. Thus, damage to the opposing, outer freely disposed ends is avoided.




These and other features and advantages of the present invention will become apparent from the following description, drawings and claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A and 1B

illustrate perspective and top views, respectively, of the jack and plug of an RJ-11 connector assembly.





FIGS. 2A and 2B

illustrate perspective and top views, respectively, of the jack and plug of an RJ-45 connector assembly.





FIG. 3

is a perspective view of a known jack that meets the RJ-45 requirements.





FIG. 4

is a side view of the wire board of the RJ-45 jack shown in

FIG. 3

that illustrates the free ends of the contact wires


1


and


8


when they are in their deflected positions and in electrical contact with respective contact pads on the wiring board.





FIG. 5

is a side view of the wiring board of the RJ-45 jack in accordance with the present invention that illustrates the deflected positions of contact wires


1


and


8


when an RJ-11 plug is inserted into the RJ-45 jack.





FIG. 6

is a top view of the wiring board of the present invention in accordance with the preferred embodiment wherein portions of the wire board have been removed to allow increased travel of contact wires


1


and


8


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference again to

FIGS. 1A-2A

, when the RJ-11 plug shown in

FIG. 1B

is inserted into the RJ-45 jack shown in

FIG. 2A

, the top side portions


7


and


8


of the molded plastic housing of the plug


3


, which are slightly raised in comparison to the height of the contacts


1


-


6


of plug


3


, press up on contacts


1


and


8


, respectively, of jack


4


and deflect contacts


1


and


8


of jack


4


beyond their normal deflected positions (i.e., beyond their deflected positions when the RJ-45 plug


5


is inserted into the RJ-45 jack


4


). The contacts


1


-


6


of the RJ-11 plug


3


make normal contact with contacts


1


-


6


, respectively, of the RJ-45 jack


4


. As indicated above, contacts


1


and


8


of the RJ-45 jack


4


may remain permanently bent as a result of this abnormal deflection after the RJ-11 plug


3


has been removed.





FIG. 3

is a perspective view of a known jack that meets the RJ-45 requirements and will be referred to hereinafter as the “RJ-45 jack”. This communication jack is disclosed in U.S. Pat. No. 6,186,834, which is incorporated by reference herein in its entirety. This jack is an example of the type of jack with which the present invention may be implemented. This jack will be described herein to demonstrate an example of the manner in which the present invention may be implemented. However, those skilled in the art will understand, in view of the discussion provided herein, that the present invention is not limited to use with any particular jack.




The RJ-45 jack


20


comprises a frame or housing


12


configured to receive a wiring assembly


10


, which is then mounted to the housing


12


. The housing


12


has a front face in which a plug opening


13


is formed for receiving an RJ-45 plug


5


(FIG.


2


B). To couple the plug


5


with the jack


20


, the plug


5


is inserted into the plug opening


13


along axis P and latches into a coupling position at which it is electrically connected with the wiring assembly


10


. The wiring assembly


10


has an associated, generally rectangular printed wire board (PWB)


30


. The wire board


30


may comprise, for example, a single or a multi-layer dielectric substrate. Eight elongated terminal contact wires


18




a


-


18




h


emerge from a central portion of the printed wire board


30


. The contact wires


18




a


-


18




h


extend substantially parallel to one another, and are generally uniformly spaced from a top surface


15


of a two-part contact wire guide structure


16


. A first support part


17


of the guide structure


16


is fixed on a front portion of the wire board


30


.




A second support part


19


is fixed to a front end of the first support part


17


, and projects in a forward direction from the wire board


30


. The second support part


19


of the guide structure has a number of parallel channels opening in the top surface


15


thereof for pre-loading and for guiding the free end portions (not shown) of corresponding contact wires


18




a


-


18




h


. Contact wires


18




a


-


18




h


of the jack


20


correspond to contact wires


8


-


1


, respectively, of the plug


5


shown in FIG.


2


B.




The contact wires


18




a


-


18




h


are formed and arranged to deflect resiliently toward the top surface


15


of the guide structure


16


when free end portions (not shown) of contact wires


18




a


-


18




h


are engaged by the wire contacts


8


-


1


, respectively, of a mating RJ-45 plug


5


. The material forming the contact wires


18




a


-


18




h


may be, for example, a copper alloy, such as, spring-tempered phosphor bronze, beryllium copper, or the like.




The wire board


30


may incorporate conductive traces, electrical circuit components or other devices, such as devices designed to compensate for connector-induced crosstalk. The terminal contact wires


18




a


-


18




h


have upstanding base portions that are electrically connected to conductors associated with the wire board


30


at the end of the wire board


30


opposite the housing


12


. The wire board


30


has a wire connection terminal region at which outside, insulated wire leads (not shown) are connected to an array of contact terminals (not shown) located in the terminal region. Such terminals may be so-called insulation displacing connector (IDC) terminals having respective leg parts connected to respective conductive traces on the board


30


, each trace being associated with one of the terminal contact wires


18




a


-


18




h


. The wire connection terminal region may be enclosed by a terminal housing (not shown) on the top side of the board


30


, and a cover (not shown) on the bottom side of the board


30


.




The free end portions of contact wires


18




a


-


18




h


are disposed beneath the surface


15


of the wire board


30


and are supported in cantilevered fashion by the connections between the contact wires


18




a


-


18




h


and the wire board


30


at the ends of the contact wires


18




a


-


18




h


opposite the face


13


of the housing


12


. The free end portions of the contact wires


18




a


-


18




h


are deflected by pins


8


-


1


of the plug


5


(FIG.


2


B), respectively, and make electrical contact with electrical contacts (not shown) on the wiring board


30


when the plug


5


(

FIG. 2B

) is inserted into the opening


13


in the housing


12


. The manner in which this occurs will now be described with reference to FIG.


4


.





FIG. 4

is a side view of a portion of the jack


20


shown in

FIG. 3

that illustrates the free ends of the contact wires


18




a


and


18




h


when they are in their deflected positions and in electrical contact with respective contact pads on the wire board


30


. Only the free end of contact wire


18




a


can be seen in

FIG. 4

at location


37


. Certain pairs of the terminal contact wires cross over at location


31


. The manner in which the contact wires


18




a


-


18




h


cross over can also be seen from the top perspective view of FIG.


3


. As seen in

FIG. 2

, the terminal contact wires


18




a


-


18




h


curve arcuately. When in the undeflected position, the free ends of the terminal contact wires


18




a


-


18




h


abut an upper inside surface


32


of the guideway


33


. A predetermined pre-load force is thus established, which is applied against the wire contacts of the plug


4


(

FIG. 2B

) when the wire contacts of the plug


5


wipe against the free ends


37


of the contact wires


18




a


-


18




h


at position


34


and urge them downward into the deflected position


37


shown in

FIG. 4

at which the free end is immediately adjacent the surface


15


of the wire board


30


.




The deflected position shown in

FIG. 4

is the normal deflected position when an RJ-45 plug is inserted into the RJ-45 jack


20


. However, as stated above, when an RJ-11 plug (

FIG. 1B

) is inserted into RJ-45 jack


20


, the raised plastic on the RJ-11 housing deflects contact wires


18




a


and


18




h


more than they are supposed to be deflected, which may result in permanent damage to contact wires


18




a


and


18




h


. In accordance with the present invention, the wire board


30


is configured to allow more deflection of the contact wires


18




a


and


18




h


so that the contact wires


18




a


and


18




h


will not be bent out of shape when an RJ-11 plug is inserted into the jack


20


. However, the configuration is also such that when an RJ-45 plug is inserted into the RJ-45 jack


20


, the contact wires


18




a


and


18




h


are deflected to the proper position


37


shown in FIG.


4


.





FIG. 5

is a side view of a portion of the RJ-45 jack


20


that illustrates the deflected positions of contact wires


18




a


and


18




h


when an RJ-11 plug is inserted into the jack


20


. In accordance with the preferred embodiment of the present invention, a portion of the wire board


30


has been removed at the locations


37


on each side of the wire board


30


where the contact wires


18




a


and


18




h


would normally abut when an RJ-45 plug is inserted into the jack


20


. By removing portions of the wire board


30


at these locations, the contact wires


18




a


and


18




h


are allowed to travel farther in the direction indicated by arrow


36


before they come into contact with respective contact pads on the wire board


30


when an RJ-11 plug is inserted into the jack


20


. This prevents the contact wires


18




a


and


18




h


from being damaged.




As seen in

FIG. 5

, the free end


37


of contact wire


18




a


is deflected below the surface


15


of the wire board


30


. This is also the case with the free end of contact wire


18




h


, but only contact wire


18




a


can be seen in the view provided by FIG.


5


.

FIG. 6

is a top view of the wire board


30


of the present invention in accordance with the preferred embodiment wherein portions


40


and


50


have been removed therefrom to allow increased travel of the free ends of contact wires


18




a


and


18




h


, respectively.

FIG. 6

also illustrates the contact pads


41


on the surface


15


of the wire board


30


, which contact wires


18




b


-


1




g


abut when a plug is inserted into the jack


20


. At the locations at which the contact pads


41


would normally be for connecting with contact wires


18




a


and


18




h


, openings


40


and


50


have been formed in the wire board


30


. Therefore, when contact wires


18




a


and


18




h


are deflected, they will move a distance through these openings such that they are deflected beyond their normal deflected positions before they come into contact with respective contact pads (not shown) on the wire board


30


. Because the contact wires


18




a


and


18




h


move through these openings


40


and


50


instead of impinging on the surface


15


of the wire board


30


, over-deflection of the contact wires


18




a


and


18




h


is prevented, and damage to contact wires


18




a


and


18




h


is avoided.




Although the openings are shown as being breakout holes


40


and


50


at the front edge of the wire board


30


where contacts


18




a


and


18




h


would normally touch the board when deflected, this is merely one of many possible configurations for achieving the goals of the present invention. For example, rather than forming breakout holes


40


and


50


in the wire board


30


, indentations could be formed in the wire board


30


that would serve the same purpose. Those skilled in the art will understand, in view of the discussion provided herein, that a variety of configurations are suitable for this purpose. Essentially, the present invention provides for increased travel of the contact wires


18




a


and


18




h


in order to avoid bending of contact wires


18




a


and


18




h


. The scope of the present invention covers any and all techniques and/or mechanisms for achieving this goal.




It should also be noted that the present invention is not limited to being implemented only in connection with an RJ-45 communication jack to prevent damage thereto when an RJ-11 communication plug is inserted into the jack. The present invention applies equally to other types of jacks that may be susceptible to damage caused by insertion of a plug with which the jack is not configured to mate.




It should be noted that the present invention has been described with reference to the preferred embodiments and that it is not limited to these embodiments. Modifications, additions and/or deletions can be made to the embodiments described herein without deviating from the spirit and scope of the present invention. Those skilled in the art will understand in view of the discussion provided herein that all such modifications, deletions and additions are within the scope of the present invention.



Claims
  • 1. A communication jack comprising:a wire board having a front edge region; and a number of contact wires extending above the wire board and electrically coupled to respective contact regions on the wire board at first ends of the contact wires, the contact wires having second ends that are freely disposed for making electrical connections with respective contact wires of a first mating communication plug, each of the second ends of the contact wires being cantilevered from respective first ends of the contact wires such that the contact wires are capable of being deflected toward a surface of the wire board when the second ends wipe against the respective contact wires of the first mating communication plug, and wherein the wire board is configured such that all inner ends of the second ends are deflected to a lesser degree than two opposing, outer freely disposed ends of the second ends when the second ends wipe against and are deflected toward said surface of the wire board by respective contact wires of a second mating communication plug, and wherein all inner ends of the second ends that are deflected to a lesser degree than said two opposing, outer freely disposed ends end abut said surface of the wire board, and wherein the configuration of the wire board is such that said at least two opposing, outer freely disposed ends avoid abutting said surface of the wire board when all the inner ends of the second ends wipe against and are deflected by the respective contact wires of the second mating communication plug; wherein the configuration of the wire board includes at least two openings formed in the front edge region of the wire board below said two opposing, outer freely disposed ends, said openings preventing said two opposing, outer freely disposed ends from abutting said surface of the wire board when all the inner ends of the second ends wipe against and are deflected by the respective contact wires of the second mating communication plug.
  • 2. The communication jack of claim 1, wherein the communication jack is an RJ-45 communication jack, the first communication plug is an RJ-45 communication plug, and the second communication plug is an RJ-11 communication plug.
  • 3. The communication jack of claim 2, wherein when the RJ-45 communication jack is coupled to the RJ-45 communication plug, all of the second ends wipe against and are deflected to approximately the same degree by the respective contact wires of the RJ-45 communication plug, and wherein when the RJ-45 communication jack is mated with the RJ-11 communication plug, all of the inner ends of the second ends are deflected to a lesser degree than the two opposing, outer freely disposed ends when all the inner ends of the second ends wipe against and are deflected by the respective contact wires of the RJ-11 communication plug.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to copending U.S. provisional application entitled, “High Performance RJ45 Data Jack That Withstands Insertion of RJ11 Telephone Plug,” having ser. No. 60/346,223, filed Jan. 4, 2002, which is entirely incorporated herein by reference.

US Referenced Citations (1)
Number Name Date Kind
6116964 Goodrich et al. Sep 2000 A
Provisional Applications (1)
Number Date Country
60/346223 Jan 2002 US