The present invention relates to Electron Beam (Ebeam) apparatus and methods.
Ebeam systems are used to cure or cross-link polymers in manufacturing electrical insulation on wire and cable, heat-shrink tubing, paints or other surface coatings, tires, etc. In a typical curing application, the target material is exposed to the electron beam radiation which initiates free radical or cationic polymerization. The Ebeam radiation may also volatize the material. With Ebeam curing, no chemical initiators are needed in the coating, and the curing is also unaffected by opacity, color or pigmentation of the material. Release of pollution causing volatile organic compounds or hazardous vapors can also be better reduced with Ebeam curing. Ebeam systems can also be used to sterilize medical equipment and products, process food items, and to harden or cure various types of coatings, liquid resins, composites and other materials.
An Ebeam system typically includes a DC high voltage power supply connected to an electron gun within an accelerating tube. A vacuum is provided in the tube to avoid beam scattering by air molecules. The Ebeam generated by the electron gun passes out of the accelerating tube through an irradiation window. The window is sealed with a thin foil to maintain the vacuum in the accelerating tube, with the Ebeam passing through the foil.
The electron gun generally has one or more filaments which burn out over time. This requires that the system be dismantled at least in part, to access and repair the electron gun. The foil window is subject to constant pressure forces resulting from the ambient pressure on one side of the foil and the vacuum on the other side. The foil window also absorbs a certain fraction of the Ebeam. This heats the foil resulting in thermal stress. The pressure and thermal stresses fatigue the foil. As a result, the foil must be replaced periodically, for example every few months.
Historically Ebeam sources have been built as self enclosed systems having a single fixed window and a fixed output power. These characteristics limit their flexibility. These Ebeam systems are also typically large and bulky systems that are not user friendly. Indeed, because they are not easily moved, typical Ebeam systems are generally mounted in place, which limits their uses.
Another problem with existing Ebeam systems is that they can be difficult to maintain. Not only are these systems complex, they are designed in ways that can make access to internal components difficult. Consequently, existing Ebeam systems generally require significant time and effort to maintain. For example, failures often require that the system be returned to the manufacturer for repair, or that specially trained maintenance persons be deployed to do on-site repairs. Accordingly, improved Ebeam systems and methods are needed.
In one aspect, the electron source of the Ebeam system, such as a cathode assembly, may be relatively quickly and easily replaced or exchanged, without disassembly of the entire system, and without the need for any special tools or training. The cathode assembly may be provided as a replaceable module Replacement may then advantageously be made by the user on site, without returning the system to the manufacturer for service, and without the need for any manufacturer's service representative at the user's site. In a second aspect, the window of the Ebeam system may similarly be provided as an easily replaceable module.
With the cathode assembly and/or the window designed as a substantially self-contained module, it can be removed and replaced with a new module with minimum tools, time and skill. This allows the user to replace these components as may be needed due to wear and aging. In addition, apart from just maintaining the system, the system may be easily upgraded or modified by changing over a cathode assembly module and/or a window module. For example, by installing a selected cathode assembly module and/or a selected window module, the output energy and power of the system can be varied to match a variety of scientific and industrial applications. In another separate aspect, Ebeam systems including these features may be provided as a compact and portable apparatus
Other objects and advantages will become apparent from the following detailed description. The invention resides as well in sub-combinations of the features and method steps described.
An Ebeam system includes a cathode assembly or other electron source, within a tube having a window assembly. An electrical power source is connected to the cathode assembly. The cathode assembly and the window assembly are provided as modules. They are attached to the tube in a way that allows them to be easily removed for service, replacement, or changeover. For example, the modules are attached to the tube via bolts that easily accessible. Removing the bolts then allows the cathode assembly, or the window assembly, to be removed as a whole module or unit, and replaced with a new unit. The need for making in-situ repairs is eliminated as the worn or damaged cathode assembly module or window assembly module is simply replaced with a new factory-supplied module. The worm or damaged modules may be returned to the factory for refurbishment. The modules may be optionally be provided as a kit, with the user selecting specific modules from the kit for use in specific applications.
The present Ebeam system typically operates with a vacuum inside the sealed tube. Where a window assembly is provided on the tube to maintain a vacuum seal, the exposure area irradiated by the electron beam can have any desired atmosphere. Alternatively the system can be operated without any window, with the exposure chamber and the tube both maintained under vacuum conditions.
The system may be provided with multiple window assemblies, each including a different window foil permanently pre-attached to a central grid or lattice structure of a window flange. This provides a modular design and allows the user to switch between windows as desired to better match the size and shape of the window, and the material and thickness of the window foil (and supporting grid).
A method of making an electron permeable window is provided in U.S. Pat. No. 4,494,036 incorporated herein by reference. The window assembly module can be connected to the sealable tube in a variety of ways, e.g., using any suitable connecting mechanism, such as, for example, a flange system such as KF or CF design, with or without the use of knife edges, metallic gasket(s) or O-rings.
The window foil is made of a material suitable for electron transmission. These materials are generally materials with low electron density in the body of the material, to allow electrons to easily pass through. These include metals such as aluminum, titanium, silicon, tantalum, havar alloy and the like. Non-metals such as carbon, graphite, diamond, diamond-like carbon, and the like may also be used. Organic polymers including Mylar polyester and Vespel or Kapton polyimide, and inorganic materials such as mica, boron nitride, silicon carbide, alumina, garnet, sapphire, ruby, magnesium fluoride, calcium fluoride, synthetic fused silica, silicon dioxide, doped synthetic fused silica, and the like, as well as metalized versions of these materials, may also be used. Another class of materials that may be used is conducting polymers such as polythiophene, polyaniline, polyacetylene, and the like, as well as substituted analogues thereof. To reduce energy losses, thin layer semiconductor materials may also be used. Polyether ether ketone (PEEK) may also be advantageously used.
Depending on the material used, the thickness of the window foil may vary to produce optimal electron transparency. Generally the window foil thickness ranges from about 0.05 microns to about 20 microns or about 0.5 to about 10 microns can be used. Typically, the thickness of the window foil material is in the range of about 2-8 microns, depending on the density of the material to the electron transmission. Materials in these ranges may appear as translucent or completely opaque
The window foil or film material is typically mounted onto a window flange using standard foil or film mounting technologies. The window flange is designed to allow electron transmission and to support the window film, and it may have various geometric shapes. For example, the window can be round, square, rectangular, triangular, slotted, bifurcated slots, etc. The window geometry is determined based on the film thickness, desired electron pattern and the desired open area of the window. A central grid or lattice structure may be attached to the window flange, for supporting the window film.
The electron source may be field emission, thermionic, plasma, nanotube, or a similar type of source. The thermionic system typically has a cathode assembly as the electron source. Thermionic emission sources include tungsten and tantalum wires and alloys of these materials. The emission source is typically connected to a high voltage DC power supply. The emission source, which is sealed inside of the tube and the high voltage supply, can be electrically connected through a flange using e.g., KF and CF flange designs. High voltage feed through devices include spark plugs or other ceramic (such as alumina) or plastic (such as PEEK) devices.
The output energy of the present Ebeam systems may range from about 0.1 up to about 500,000 electron volts, with ranges of 1.0 to about 150,000 electron volts or 25,000 to about 75,000 electron volts typically used. For portable versions of the invention, output energies may generally be less than 50,000 electron volts, to reduce the amount of x-rays generated and/or the amount of shielding necessary.
The vacuum system can have one or more stages and can include a roughing pump and a high vacuum pump. Exemplary types of high vacuum pumps include a diffusion pump, a turbo-molecular pump, an ion gauge pump, a cryogenic vacuum pump or a combination of vacuum pumps that will maintain the vacuum in the system below the glow discharge pressure. The vacuum pump(s) may be connected to the tube via connectors such as KF and CF flanges, hose nipples, and the like. The resulting connections can be bolted or externally clamped. A simple way to attach the system to the vacuum pump is using a flange (either KF or CF) and attaching the flange via screws or bolts to an identical flange on the pump system. This allows for alignment of the flange and maintaining a seal even at high vacuum levels.
A system controller may be used to control the applied voltage and current to the electron source. The controller may be a touch screen controller or a computer controller. For the touch screen control system an off the shelf system from EZ Automation (Bettendorf, Iowa, USA) can be used. For the computer controlled system an off the shelf program such as Labview (National Instruments, Austin, Tex., USA) can be used and customized to operate the Ebeam system. The computer control can combine the ability to control the output with feedback information about the performance of the system not available with the free standing control system.
Turning now in detail to the drawings, as shown In
The length of the tube 2 is usually less than about 36 inches, with a preferred length of about 6-24 inches or about 8-12 inches. The diameter of the tube may vary from about 1 up to about 24 inches, with typical diameters ranging from about 2-12 inches or 4-8 inches. One or more window assemblies are located along the long axis of the tube.
As shown in
Referring to
Referring to
As shown in
In
For example, referring to
The window open access space may be a three dimensional rectangular prism of open space extending outwardly in a direction perpendicular to the window foil by at least 25 cm. Similarly, the cathode assembly open access space may be a three dimensional cylindrical prism of open space extending outwardly from the outer section of the cathode assembly by a dimension greater than the length of the inner section of the cathode assembly, to allow the inner section of the cathode assembly to be withdrawn and removed from the tube, without removing substantially any other system components.
The Ebeam system in
Thus, novel systems and methods have been shown and described. Various changes and substitutions may of course be made without departing from the spirit and scope of the invention. The invention, therefore, should not be limited, except to the following claims and their equivalents.
This application claims priority to U.S. Provisional Patent Application No. 61/431,628 filed Jan. 11, 2011, incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61431628 | Jan 2011 | US |