Immersive virtual reality (VR) and augmented reality (AR) systems typically utilize a head mounted display (HMD) device that presents stereoscopic imagery to the user so as to give a sense of presence in a three-dimensional (3D) scene. Conventional HMD devices implement either a single flat display that is separated into two independent display regions, one for the left eye and one for the right eye of the user, or a pair of independent flat displays, one for each eye of the user. The conventional HMD also includes an optical system that focuses the entire image of the display into the user's eyes. The optical system includes singlet lenses, such as aspheric lenses or Fresnel lenses, which have focal lengths of about 35 millimeters (mm) or more. Neither type of lens provides the level of optical performance required for a high-quality VR or AR experience. Singlet aspheric lenses generate a relatively large amount of chromatic aberration, field curvature, and astigmatism. Fresnel lenses generate a relatively large amount of chromatic aberration and they produce Fresnel artifacts, such as stray light from total internal reflection on the Fresnel facets and ghost images due to manufacturing errors at the Fresnel facets.
Furthermore, singlet lenses such as aspheric lenses and Fresnel lenses have a relatively long back focal distance, which increases the distance between the lens and the display. Long back focal distances result in a bulky, front-heavy HMD that has a high moment of inertia. The singlet lens can be constructed with a shorter lens focal length. However, the lens magnification is inversely proportional to the lens focal length. The lens magnification therefore increases as the lens focal length decreases. Depending on the pixel resolution of the display, increasing the lens magnification can cause the viewer to perceive pixelation in the magnified image of the display. Furthermore, short focal length magnifiers are more difficult to design, typically require more optical elements to manage increasing optical aberrations, and are sensitive to optical/mechanical tolerances and eye positioning.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference symbols in different drawings indicates similar or identical items.
Polarization-dependent beam splitters can be used to fold the light path and reduce the dimensions of a near-eye optical system implemented in an HMD. For example, an inline, or “pancake,” viewer includes a linear polarizer to receive light from a display, a quarter wave plate to convert the light to right circular polarization, a spherical reflective beam splitter (which is implemented as, for example, a focusing concave mirror having a half silvered surface), a quarter wave plate to convert the right circular polarization to vertical linear polarization, a polarization-dependent beam splitter to reflect vertical polarization and pass horizontal polarization, and a linear polarizer to pass the horizontal polarization. The in-line viewer concentrates optical power at the spherical reflective beam splitter to improve management of optical aberrations including coma, astigmatism, and chromatic aberration. However, the in-line viewer is optimized for micro displays (e.g., displays having a diagonal of approximately one inch) and it is difficult to scale the design directly to larger displays (e.g., displays having a diagonal of approximately 1.5-3 inches per channel). The challenges include correcting for strong field curvature produced by the spherical reflective beam splitter and the larger size of the spherical reflective beam splitter that is needed to correct for aberration in images produced by the larger displays.
Replacing the conventional spherical reflective beam splitter with a refractive beam splitting convex lens provides a number of improvements to the optical system. Embodiments of the optical system including the refractive beam splitting convex lens typically produce lower optical aberration, which allows the user to resolve smaller display pixels and supports a larger eyebox. The optical system also produces lower levels of spherical and chromatic aberration, astigmatism, and coma. The refractive portion of the refractive beam splitting convex lens balances the field curvature of the reflective portion, thereby reducing the overall field curvature produced by the optical system. Furthermore, the additional refractive power of the refractive beam splitting convex lens can be varied to enhance, optimize, or tune the optical performance of the optical system. In some embodiments, the second quarter wave plate is bonded to the planar surface of a plano-convex lens used to implement the refractive beam splitting convex lens, thereby reducing the number of air gaps that can produce ghost images due to internal reflections.
The optical system 100 also includes a refractive beam splitting convex lens 115 that is formed of a material having a first refractive index and a beam splitting coating. For example, the refractive beam splitting convex lens 115 can be formed of glass or plastic and a convex surface 118 of the refractive beam splitting convex lens 115 can be a half-silvered surface. Some embodiments of the refractive beam splitting convex lens 115 have a focal length in the range of 150 mm to 300 mm. For example, the focal length of the refractive beam splitting convex lens 115 can be within the range of 180 mm to 280 mm. Some embodiments of the refractive beam splitting convex lens 115 are separated from the filter stack 110 by an air gap. In some embodiments, the optical system 100 also includes another refractive element 120 that includes a concave surface that matches the curvature of the convex surface 118 and has a second refractive index that differs from the first refractive index. Incorporating the additional refractive element 120 provides additional optical parameters that can be tuned to improve the optical performance of the optical system 100.
The optical system 100 includes a second filter stack 125 that transmits light having a first polarization and reflects light having a second polarization that is orthogonal to the first polarization. For example, the second filter stack 125 can be configured to transmit light having left circular polarization and reflect light having right circular polarization. Some embodiments of the second filter stack 125 include a quarter wave plate 127 that converts circularly polarized light into linearly polarized light. For example, the quarter wave plate 127 can convert right circularly polarized light into light that is polarized in the y-direction and the quarter wave plate 127 can convert left circularly polarized light into light that is polarized in a direction perpendicular to the plane of the drawing, which is referred to herein as the x-direction and which is orthogonal or transverse to the y-direction. The second filter stack 125 also includes a polarization-dependent beam splitter 128 that transmits light polarized in a first direction and reflects light polarized in a second direction that is orthogonal or transverse to the first direction. For example, the polarization dependent beam splitter 128 can reflect light polarized in the y-direction and transmit light polarized in the x-direction. Some embodiments of the second filter stack 125 also include a linear polarizer 129 that transmits linearly polarized light. For example, the linear polarizer 129 can transmit light polarized in the x-direction.
Some embodiments of the second filter stack 125 are bonded to a planar surface 130 of the refractive beam splitting convex lens 115. For example, the quarter wave plate 127 can be laminated to the planar surface 130. Bonding the second filter stack 125 to the refractive beam splitting convex lens 115 as a number of advantages, including reduced size of the optical system 100, a larger field-of-view, a reduced number of Fresnel reflections (or ghost images) produced at optical surfaces in the optical system 100, and the like. In other embodiments, the second filter stack 125 is separated from the refractive beam splitting convex lens 115 by an air gap.
Folding of the optical path in the optical system 100 is illustrated by following the propagation of a light ray 135 that is generated by the display 105. Initially, the light ray 135 that emerges from the display 105 is unpolarized or partially polarized. The linear polarizer 112 converts the light ray 135 into a linearly polarized light ray 136. For example, the light ray 136 can be polarized in the y-direction. The quarter wave plate 114 converts the linearly polarized light ray 136 into a light ray 137 having a first circular polarization. For example, the quarter wave plate 114 can convert the light ray 136 from a linear polarization in the y-direction to the light ray 137 that is right circularly polarized. The convex surface 118 transmits a portion of the circularly polarized light ray 137, which is then refracted within the refractive beam splitting convex lens 115 before being provided to the quarter wave plate 127. The circularly polarized light ray 137 is converted to a linearly polarized light ray 138 by the quarter wave plate 127. For example, the quarter wave plate 127 can convert a right circularly polarized light ray 137 into a light ray 138 that is linearly polarized in the y-direction. The light ray 138 is reflected by the polarization dependent beam splitter 128 and converted to a circularly polarized light ray 139 by the quarter wave plate 127. For example, the light ray 139 can be right circularly polarized. The light ray 139 is refracted by the refractive beam splitting convex lens 115 and a portion of the light ray 139 reflects from the convex surface 118. Reflection reverses the circular polarization of the light ray 139, e.g., reflection converts the light ray 139 to a left circularly polarized light ray 140. The quarter wave plate 127 converts the circularly polarized light ray 140 into a linearly polarized light ray 141. For example, the left circular polarization of the light ray 140 is converted into linear polarization of the light ray 141 in the x-direction. The polarization dependent beam splitter 128 and the linear polarizer 129 transmit the linearly polarized light ray 141.
The optical system 100 including the refractive beam splitting convex lens 115 has a number of advantages over conventional optical systems. The optical system 100 generates fewer optical aberrations because the convex surface 118 provides reflecting optical power and refraction power as light rays propagate from the display 105 to the eye 112 of the user, which allows the user to resolve smaller display pixels. The optical system 100 also provides a larger eye box, which reduces “pupil swimming.” Spherical aberration, chromatic aberration, astigmatism, and coma are all reduced relative to optical systems that include reflective beam splitters. Moreover, the positive refractive power in the refractive beam splitting convex lens 115 balances the field curvature of the convex surface 118. In some embodiments, the optical system only implements a single optical element, e.g., the refractive beam splitting convex lens 115, which simplifies fabrication of the optical system 100.
Light rays that emanate from the same point on the display 205 are collimated by the optical system 200 to emerge substantially parallel to each other. For example, light rays 245, 250 emerge from the same pixel in the display 205. As discussed herein, the light rays 245, 250 are transmitted by the first filter stack and the curved surface of the refractive beam splitting convex lens 210, refracted in the refractive beam splitting convex lens 210, reflected by the second filter stack, refracted in the refractive beam splitting convex lens 210, reflected by the curved surface of the refractive beam splitting convex lens 210, and then transmitted by the second filter stack. The light rays 245, 250 are substantially parallel when they emerge from the optical system 200 and arrive at a detection plane 255, which corresponds to an eye of the user in some cases.
Light rays that emanate from the same point on the display 305 are collimated by the optical system 300 to emerge substantially parallel to each other. For example, light rays 325, 330 emerge from the same pixel in the display 305. As discussed herein, the light rays 325, 330 are transmitted by the first filter stack 315 and the curved surface of the refractive beam splitting convex lens 310, refracted in the refractive beam splitting convex lens 310, reflected by the second filter stack 320, refracted in the refractive beam splitting convex lens 310, reflected by the curved surface of the refractive beam splitting convex lens 310, and then transmitted by the second filter stack 320. The light rays 325, 330 are substantially parallel when they emerge from the optical system 300 and arrive at a detection plane 335, which corresponds to an eye of the user in some cases.
Separating the second filter stack 320 from the planar surface of the refractive beam splitting convex lens 310 has a number of advantages relative to other embodiments that dispose the second filter stack on the planar surface. Splitting the second filter stack 320 from the planar surface creates a telecentric display space that allows better focus adjustment of the optical system 300. Image magnification and distortion remains constant when the display 305 is shifted axially for focus adjustment while still providing a wide field of view. Furthermore, the total length of the optical path can be reduced because the light path is folded between the first and second filter stacks 315, 320.
The electronic device 505 is shown in
The electronic device 505 also includes eyepiece optical systems 525, 530 disposed in corresponding apertures or other openings in a user-facing surface 535 of the housing 515. In the illustrated embodiment, the eyepiece optical systems 525, 530 include first filter stacks 540, 545, which can be formed using a linear polarizer and a quarter wave plate, as discussed herein. The eyepiece optical systems 525, 530 also include refractive beam splitting convex lenses 550, 555, which can be plano-convex or bi-convex, as discussed herein. The eyepiece optical systems 525, 530 further include second filter stacks 560, 565, which can be formed using a quarter wave plate, a polarization dependent beam splitter, and a linear polarizer, as discussed herein. The display 520 is disposed distal to the eyepiece optical systems 525, 530 within the housing 515. The eyepiece optical system 525 is aligned with the left eye display 521 and the eyepiece optical system 530 is aligned with the right eye display 522.
In a stereoscopic display mode, imagery is displayed by the left eye display 521 and viewed by the user's left eye via the eyepiece optical system 525. Imagery is concurrently displayed by the right eye display 522 and viewed by the user's right eye via the eyepiece optical system 530. The imagery viewed by the left and right eyes is configured to create a stereoscopic view for the user. Some embodiments of the displays 520, 521, 522 are fabricated to include a bezel (not shown in
Note that not all of the activities or elements described above in the general description are required, that a portion of a specific activity or device may not be required, and that one or more further activities may be performed, or elements included, in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are performed. Also, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims. Moreover, the particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. No limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the disclosed subject matter. Accordingly, the protection sought herein is as set forth in the claims below.
This application claims priority to U.S. Provisional Patent Application 62/531,225 entitled “A Compact Near-Eye Optical System Including A Refractive Beam-Splitting Convex Lens,” which was filed on Jul. 11, 2017 and is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62531225 | Jul 2017 | US |