This invention relates to systems for, and methods of, irradiating products including food products to make them safe to use or eat. More particularly, the invention relates in a first embodiment to electronic systems for, and methods of, compensating for differences in the intensity of the radiation applied to an article as a result of differences in the speed of the article past an accelerator at different positions in the article. In a second embodiment, the invention relates to electronic systems for, and methods of, compensating for differences in the article characteristics (e.g. thickness) in a direction substantially perpendicular to the directions in which radiation is applied to the article and in which the article is conveyed past the radiation from the beam.
It has been known for some time that drugs and medical instruments and implements have to be irradiated so that they will not cause patients to become ill from harmful bacteria when they are applied to the patients. Systems have accordingly been provided for irradiating drugs and medical instruments and implements. The drugs and the medical instruments and implements have then been stored in sterilized packages until they have been ready to be used.
In recent years, it has been discovered that foods can carry harmful bacteria if they are not processed properly or, even if they are processed properly, that the foods can harbor and foster the proliferation of such harmful bacteria if they are not stored properly or retained under proper environmental conditions such as temperature. Some of the harmful bacteria can even be deadly.
For example, harmful bacteria have been discovered in recent years in hamburgers prepared by one of the large hamburger chains. Such harmful bacteria have caused a number of purchasers of hamburgers at stores in the chain to become sick. As a result of this incident and several other similar incidents, it is now recommended that hamburgers should be cooked to a well done, or at least a medium, state rather than a medium rare or rare state. Similarly, harmful bacteria have been found to exist in many chickens that are sold to the public. As a result of a number of incidents which have recently occurred, it is now recommended that all chickens should be cooked until no blood is visible in the cooked chickens.
To prevent incidents such as discussed in the previous paragraphs from occurring, various industries have now started to irradiate foods before the foods are sold to the public. This is true, for example, of hamburgers and chickens. It is also true of fruits, particularly fruits which are imported into the United States from foreign countries.
In previous years, gamma rays have generally been the preferred medium for irradiating various articles. The gamma rays have been obtained from a suitable material such as cobalt and have been directed to the articles to be irradiated. The use of gamma rays has had certain disadvantages. One disadvantage is that irradiation by gamma rays is slow. Another disadvantage is that irradiation by gamma rays is not precise. This results in part from the fact that the strength of the source (e.g. cobalt) of the gamma rays decreases over a period of time. It also results in part from the fact that the gamma rays cannot be directed in a sharp beam to the articles to be irradiated. This prevents all of the gamma rays from being useful in irradiating the articles.
In recent years, electron beams have been directed to articles to irradiate the articles. Electron beams have certain advantages over the use of gamma rays to irradiate articles. One advantage is that irradiation by electron beams is fast. For example, a hamburger patty having a square cross section can be instantaneously irradiated by a passage of an electron beam of a particular intensity through the hamburger patty. Another advantage is that irradiation by an electron beam is relatively precise because the strength of the electron beam remains substantially constant even when the electron beam continues to be generated over a long period of time.
X-rays have also been used to irradiate articles. The x-rays may be formed from electron beams. An advantage in irradiating articles with x-rays is that the articles can be relatively thick. For example, x-rays can irradiate articles which are thicker than the articles which are irradiated by electron beams. A disadvantage is that the x-rays cannot be focused in a sharply defined beam.
The systems now in use are relatively complicated and relatively expensive and occupy a considerable amount of space. These systems are particularly effective when used at companies requiring radiation of large volumes of products at a particular location. These companies are generally large and have considerable assets. No system apparently exists for irradiating reduced volumes of products at a particular location. No system also apparently exists for use by companies of small or medium size.
Co-pending application Ser. No. 09/971,986, filed on Oct. 4, 2001 by Gary K. Loda for a Compact Self-Shielded Irradiation System and Method and assigned of record to the assignee of record of this application discloses and claims a system for, and method of, providing a simplified system operative in a minimal space, and having a minimal cost, for irradiating products without any significant sacrifice in the quality of the radiation of the products compared to the irradiation provided in the prior art. The invention disclosed and claimed in co-pending application Ser. No. 09/971,986 is particularly effective for use by companies of small or medium size or where the irradiation of products is only sporadic.
An accelerator in the system disclosed and claimed in co-pending application Ser. No. 09/971,986 provides radiant energy in a first direction. A carousel and first and second members have a common axis in the first direction. The carousel, preferably having a hollow cylindrical configuration, has a ring-shaped configuration defined by inner and outer diameters. The first member has an outer diameter preferably contiguous to the inner diameter of the carousel.
The second member has an inner diameter preferably contiguous to the outer diameter of the carousel. The first and second members provide shielding against the radiant energy from the accelerator.
A single motor (e.g., a stepping member) rotates the carousel past the radiant energy in co-pending application Ser. No. 09/971,986 continuously at a substantially constant speed in successive revolutions. Vanes made from a shielding material are disposed at spaced positions in the carousel to divide the carousel into compartments for receiving the articles and to isolate each compartment against the radiant energy in other compartments.
A loader in co-pending application Ser. No. 09/971,986 loads the articles into compartments before the movement of the articles in the compartments past the radiant energy. An unloader in co-pending application Ser. No. 09/971,986 unloads the articles from the compartments after the movement of the articles in the compartments past the radiant energy.
Another system exists in the prior art for irradiating articles. The system includes a conveyor movable in a first direction past an article which receives radiation in a second direction substantially perpendicular to the first direction. The article has variable characteristics in a third direction substantially perpendicular to the first and second directions. A system has been disclosed in co-pending application Ser. No. 09/912,576 filed on Jul. 24, 2001 by John Thomas Allen, George M. Sullivan and Colin Brian Williams for Fixtures For Providing An Irradiation Within Acceptable Limits and assigned of record to the assignee of record of this application. Co-pending application Ser. No. 09/912,576 discloses a non-electronic system for, and method of, compensating for differences in the characteristics of the article in the third direction to obtain a substantially constant irradiation at the different positions in the article regardless of the differences in the characteristics of the article in the third direction.
In a first embodiment, an article is conveyed in a first direction at different speeds at different positions in the article in a second direction perpendicular to the first direction. For example, when the article is conveyed in a rotary direction, the positions on the radially outer side of the article rotate at higher speeds than the positions at the radially inner side of the article. Such a system is disclosed and claimed in co-pending application Ser. No. 09/971,986.
Radiant energy directed against the conveyed article is scanned in a second direction substantially perpendicular to the first direction. During the scanning, the intensity of the radiant energy is varied at each position in the second direction to direct a constant intensity of radiant energy against the article at every position in the article.
In a second embodiment, the article scanning in the second direction is varied according to the article characteristics (e.g. thickness) in the second direction.
In the drawings:
A system shown in
The system 10 includes a carousel 14. The carousel 14 has a ring shape, preferably cylindrical, defined by an axis of rotation and by an inner diameter 16 and an outer diameter 18. The inner and outer diameters 16 and 18 of the carousel 14 are coaxial with the carousel axis of rotation. The carousel is rotatable as by a motor 20, preferably at a substantially constant speed. The motor 20 may be a stepping motor which drives a pinion gear 21 along a rack gear 23 provided in the carousel 14. The rotary movement of the carousel 14 is past radiation from a source or accelerator 22. The radiation from the source or accelerator 22 is in a direction corresponding to the axis of rotation of the carousel 14.
In the system disclosed and claimed in co-pending application Ser. No. 09/971,986, vanes 24 are disposed in the carousel 14, preferably at spaced intervals in the annular direction around the carousel. The vanes 24 divide the carousel 14 into compartments 26 for receiving the articles 12. The vanes 24 may be made from a suitable material such as a steel or other metal having properties of providing radiation shielding to prevent radiation in one compartment from entering into other compartments. The vanes 24 extend within the carousel 14 preferably between the inner diameter 16 and the outer diameter 18 of the carousel. The vanes 20 particularly provide shielding in each compartment 26 against x-rays.
A radiation shielding member 28 is disposed within the inner diameter 16 of the carousel 14. The shielding member 28 is stationary and preferably cylindrical and is provided with the same axis as the carousel 14. The radiation shielding member 28 is preferably made from a suitable material such as concrete. A radiation shielding member 30 is provided with a hole 32, preferably cylindrical and preferably having an axis corresponding to the axis of rotation of the carousel 14. Preferably the shielding member 30 is contiguous to the outer diameter 18 of the carousel 14. The shielding member 30 may be made from a suitable material such as steel or any suitable metal or from concrete or from a combination of steel and concrete.
Walls 34 and 36 in the system disclosed and claimed in co-pending application Ser. No. 09/971,986 define an opening 38 in the shielding member 30. Preferably the walls 34 and 36 are separated from each other to provide the opening 38 with an angle of approximately 45 degrees. A loading area 40 is provided adjacent the wall 34 to provide for the loading of the articles 12 on the carousel 14. Mechanisms 41 well known in the art may be provided for loading the articles 12 into the compartments 26 from the loading area 40. An unloading area 42 is provided adjacent the wall 36 to provide for the unloading of the articles 12 from the carousel 14 after the articles have been irradiated by the source or accelerator 22. Mechanisms 43 well known in the art may be provided for unloading the articles 12 from the compartments 26 into the unloading area 42.
The articles 12 are loaded into the compartments 26 at the loading area 40 while the carousel 14 is moved at a substantially constant speed by the stepping member 20. The articles 12 then move at the substantially constant speed past the radiation from the source or accelerator 22. This causes progressive positions in the articles 12 in the direction of movement of the carousel 10 to be irradiated with a substantially constant dosage of radiation. After being irradiated, the articles 12 move at the substantially constant speed to the unloading area 42 where the articles are unloaded from the carousel 14.
The articles 12 may have irregular shapes. This causes the radiation dosage at progressive positions in the articles 12 to vary dependent upon the thickness of the articles at these positions. Application Ser. No. 09/912,576 assigned of record to the assignee of record of this application discloses a system for providing fixtures complementary to the irregular configuration of the articles at the progressive positions. These fixtures cause the radiation dosage of the articles at progressive positions in the articles to be substantially constant, within acceptable limits, even with irregularities in the configuration of the articles at the progressive positions.
The system 10 disclosed above and also disclosed and claimed in co-pending application Ser. No. 09/971,986 irradiates the articles 12 from only one side of the articles. If it is desired to irradiate the articles 12 from two (2) opposite sides of the articles, the articles may be rotated through an angle of 180 degrees to expose the second side of the articles to radiation from the source or accelerator 22. Alternatively, a second source or accelerator may be disposed on the opposite side of the articles from the source or accelerator 22 to irradiate the second side of the articles. These arrangements are well known in the art.
The system and method described above and disclosed and claimed in co-pending application Ser. No. 09/971,986 have certain important advantages over the prior art. For example, the manufacturing cost and the floor space required by the system is considerably less than is presently being provided. This difference may be by as much as a factor of four (4). Furthermore, the system and method disclosed and claimed in co-pending application Ser. No. 09/971,986 extend the market to customers who cannot afford the systems now being offered in the market. Novel and patentable features of this invention include the closed loop ring-shaped carousel, the single motor for driving the carousel at a substantially constant speed, the radiation shielding within the carousel and outside of the carousel and the vanes for dividing the carousel into compartments and for shielding the articles in the compartments against extraneous radiation, particularly x-rays.
The accelerator 22 is standard and is well known in the art. It provides a beam of electrons which flow downwardly in FIG. 1. It includes a scan magnet 50 which is shown in FIG. 5 and which provides for a scan of the beam in a direction extending into and out of the plane of the paper as the carousel 14 rotates in a direction 50 in FIG. 1. This scan is shown at 52 in
The rotational speed of the carousel 14 may be sensed at each instant and the speed may be adjusted in a servo loop so that the speed remains substantially constant. Furthermore, the magnitude of the voltage applied to the scan magnet 50 increases linearly in each cycle at a substantially constant rate. In this way, the position at each instant of the radiant energy beam in the scan direction may be precisely determined.
As will be seen in
The output from the counter 68 passes to an input terminal of a look-up table 74. The output from the look-up table 74 is introduced to the accelerator 22. The output from the counter 70 is also introduced to the scan magnet 50 in the accelerator 22. The scan magnet 50 in the accelerator 22 also receives the output of an adder 76, the output of the adder also being introduced to a second input terminal in the look-up table 74. Input terminals of the adder 74 are respectively connected to the output terminal of the counter 70 and to a source 78 of an offset voltage.
The counters 68 and 70 count the clock signals from the source 62 and produce at each instant a voltage proportional to the count at that instant. However, only one of the counters 68 and 70 is activated at any time. Assume that the counter 68 is initially activated. The voltage from the counter 68 is accordingly introduced to the scan magnet 50 which produces a scan of the radiant energy beam from the accelerator 22 in a scan direction transverse, preferably perpendicular, to the direction of movement of the carousel 14 and the direction of the beam of radiation from the accelerator. The positioning of the radiant energy beam in the scan direction at each instant is dependent upon the voltage from the counter 68 at that instant.
When the count in the counter 68 reaches a particular value corresponding substantially to the width of the article 12, it causes the toggle 72 to be activated. A signal then passes from the toggle 72 to an input terminal of the AND network 64 to close the AND network against the passage of the signals. At the same time, an internal connection in the counter 68 causes the counter to be reset to a value of zero (0) so that the counter is ready to initiate a new count to the particular value.
At the same time that the toggle 72 closes the AND network 64 against the passage of clock signals through the AND network, the toggle 72 opens the AND network 66 to pass the clock signals to the counter 70. The counter 70 then counts the clock signals from the source 62 to the particular value. The toggle 72 then closes the AND network 66 and opens the AND network 64. In this way, the counter 68 counts to the particular value in alternate cycles and the counter 70 counts to the particular value in the other cycles.
During the alternate cycles in which the counter 68 is activated, the voltage from the counter is introduced to the scan magnet 50 to obtain a scan of the radiant energy beam in a direction corresponding to the width of the articles 12. At the same time, the voltage from the counter 68 is introduced to the look-up table 74. The look-up table 74 provides voltages which are introduced to the accelerator 22 to produce radiant energy with an intensity for compensating for the differences in the speed of movement of the carousel 14 in the annular direction. In other words, the look-up table 74 produces a higher voltage when the scan is at the radially outer end of the carousel 14 than when the scan is at the radially inner end of the carousel. Specifically, the voltage from the look-up table 74 increases with progressive positionings of the radiant energy beam from a radially interior position to a radially exterior position. In this way, the intensity of the radiant energy applied at each position in the article 12 in the scan direction is regulated so as to be substantially constant at each position in the article.
In the alternate scan cycles in which the counter 70 is activated, the voltage from the counter 70 is introduced at each instant to the adder 70. The adder 70 also receive an offset voltage from the source 78. The adder 76 adds at each instant the offset voltage to the voltage from the counter 70. The resultant voltage from the adder 70 is offset from the voltage from the counter 68 in the alternate cycles in which the counter 68 is activated.
The offset relationship between the voltage from the counter 70 and the voltage from the adder 76 in alternate scan cycles is illustrated at 79 in FIG. 6. As will be appreciated and as will be seen in
The embodiment shown in
The system shown in
In the system 98 in
Since the article 100 constitutes a chub having a cylindrical configuration, the thickness of the article at each position in the scan direction 110 will be different from the thickness of the article at adjacent positions in the scan direction. If every position in the article 100 in the scan direction 110 received the same intensity of radiant energy regardless of the thickness of the article at that position, the intensity of the irradiation applied to the article at the different positions in the article would vary considerably at different positions in the scan direction 110.
The system 60 shown in
It will be appreciated that the values in the look-up table 74 may be adjusted to compensate for any variation in the configuration of the article 100 in the scan direction 110. It will also be appreciated that offsets such as shown in
In like manner, the output from the counter 170 is introduced to a second input terminal of the toggle 172 and to the scan magnet 156. A second output terminal of the toggle 172 is connected to a second input terminal of the AND network 166. The output from the counter 170 is introduced to a multiplier 178 which converts the positive number from the counter 170 to a corresponding negative number. The output from the multiplier 178 passes to a second input terminal of the look-up table 174, a second output terminal of which is connected to the accelerator 153. The accelerator 153 is disposed on the opposite side of the article 152 from the accelerator 151. The accelerator 153 may be displaced from the accelerometer 151 in the direction 182 of movement of the article 152 by a conveyor generally indicated at 184 in FIG. 9.
The counters 168 and 170 count the clock signals from the source 162 to a particular value. Assume that the counter 168 is initially activated. When the counter 168 counts the clock signals from the source 162 to the particular value, the toggle 172 de-activates the counter 168 and activates the counter 170. The counter 170 then counts the clock signals from the source 162 to the particular value. The counter 170 then becomes de-activated and the counter 168 becomes activated. When the counter 168 is activated, the digital signals produced in the counter are converted to an analog voltage representative of the digital signals and this analog voltage is introduced to the scan magnet 154 to scan the article 152 in the scan direction 155 from a first side of the article.
The digital signals from the counter 168 are also introduced to the look-up table 174 which produces a voltage that is introduced to the accelerator 151. This voltage causes the accelerator 151 to provide at each instant in the scan direction 155 a radiant energy intensity which compensates for the thickness of the article 152 at that instant. For example, the operations of the scan magnet 154 and the accelerator 151 at each instant cause the intensity of the irradiation from the accelerator 153 to have an intensity pattern indicated at 190. This pattern is inverse to the pattern defined by the thickness of the article 152 at the progressive positions in the scan direction 155. This intensity pattern causes the intensity of the radiant energy in the article 152 in the scan direction 155 to be substantially constant even though the thickness of the article 152 is not uniform at the successive positions in the scan direction.
In like manner, when the counter 170 is activated, the digital signals produced in the counter are converted to an analog voltage representative of the digital signals. The analog voltage is introduced to the scan magnet 156 to scan the article 152 in the scan direction 155 from a second side of the article opposite to the first side. The digital signals from the counter 170 are also converted to a negative value by the multiplier 178. The signals from the multiplier 178 are introduced to the lookup table 174 which produces a voltage that is introduced to the accelerator 153. This voltage causes the accelerator 153 to provide at each instant a radiant energy intensity which compensates for the thickness of the article 152 in the scan direction 155 at that instant. For example, the operations of the scan magnet 156 and the accelerator 153 at each instant cause the intensity of the irradiation from the accelerator to have an intensity pattern indicated at 192. This pattern is inverse to the pattern defined by the thickness of the article 152 at the progressive positions in the scan direction 155. This intensity pattern causes the intensity of the radiant energy in the article 152 to be substantially constant at each position in the scan direction even though the thickness of the article 152 is not uniform at every position in the scan direction.
In this way, the conveyor shown in FIG. 9 and the electronic system 160 shown in
Although this invention has been disclosed and illustrated with reference to particular embodiments, the principles involved are susceptible for use in numerous other embodiments which will be apparent to persons of ordinary skill in the art. The invention is, therefore, to be limited only as indicated by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3755672 | Edholm et al. | Aug 1973 | A |
5396074 | Peck et al. | Mar 1995 | A |
6215847 | Perrins et al. | Apr 2001 | B1 |
6583423 | Rose | Jun 2003 | B2 |
6690020 | Loda | Feb 2004 | B2 |
6713773 | Lyons et al. | Mar 2004 | B1 |
6777689 | Nelson | Aug 2004 | B2 |
20030021722 | Allen et al. | Jan 2003 | A1 |
20040109532 | Ford et al. | Jun 2004 | A1 |
20040217301 | Loda | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0125754 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040217300 A1 | Nov 2004 | US |