This invention relates generally to aerospace components and more particularly to manufacturing methods for holes in aerospace components.
Aerospace components such as gas turbine engines include numerous metallic components having bores and/or holes formed therein to accept fasteners or for other purposes. In operation these components are subject to vibration and cyclically reversed loadings which can lead to crack initiation and component failure. Of particular interest in these components is low cycle fatigue life (generally defined as approximately less than 50,000 cycles).
Low cycle fatigue life can be increased by improving material capability, reducing component local stresses, or introducing compressive residual stresses. Reducing local stresses is possible with component geometry changes, but this approach can be impractical or add component weight making it undesirable for aircraft engine applications.
Introduction of compressive residual stresses in components improves low cycle fatigue life. There are a number of known methods to introduce compressive residual stresses. Split sleeve cold expansion and/or shot peening introduce compressive surface stresses to improve fatigue life, but these approaches alone may not improve fatigue crack initiation life for elevated temperature applications. Roller burnishing introduces compressive residual stresses, but the current process may not be well controlled with a reduced benefit at elevated temperatures. Low plasticity roller burnishing or laser shock peening introduce compressive residual stresses that are retained up to elevated temperatures, but these approaches require specialized tooling and/or monitoring software to ensure proper amounts of residual stress is introduced in the components.
Accordingly, there is a need for a hole treatment process which can use conventional manufacturing tools and which is well controlled.
This need is addressed by the present invention, which provides a method of hole treatment including split sleeve cold expansion combined with subsequent material removal, shot peening, and post-peening material removal to a finished hole diameter.
According to one aspect of the invention, a method of treating a hole in a metallic component includes the following steps in sequence: forming a hole having a first diameter in the component; expanding the hole to a second diameter using a cold expansion process so as to induce residual compressive stresses in the material surrounding the hole; shot peening the hole; and final machining the hole to a finished diameter.
According to another aspect of the invention, an aerospace component includes at least one hole formed therein, the hole formed by the following steps in sequence: forming a hole having a first diameter in the component; expanding the hole to a second diameter using a cold expansion process so as to induce residual compressive stresses in the material surrounding the hole; shot peening the hole; and final machining the hole to a finished diameter.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
The engine 10 includes numerous metallic components having bores and/or holes formed therein to accept fasteners or for other purposes. Nonlimiting examples of such components include the fan frame 28 and struts 30, compressor casing 32, combustor casing 34, LPT casing 38, turbine rear frame 40, and HP rotor (i.e. the shaft 26 and other components rotating with it). Those components may be manufactured from known aerospace materials such as steel, cobalt, titanium alloys, and nickel based alloys including “superalloys.” An example of a specific alloy that several of the components described above may be made from is a nickel-based precipitation-hardenable alloy commercially known as INCONEL 718 (IN718) or direct aged 718 (DA718). The invention will be further described below with respect to a generic component “C”, with the understanding that the component “C” is representative of the above-listed components or any other metallic component having bores or holes formed therein.
One or more holes are formed in the component C and subsequently treated as follows: Initially, (see
Next, (see
The SSCE process expands the hole 50 to a larger diameter “D2” and cold-works the material around the hole 50 to induce residual compressive stresses therein. An exemplary increase in the hole diameter from D1 to D2 is about 4%. As used herein, the term “CE” is intended to refer to any mechanical process which cold-works the hole 50 and would also encompass processes using sleeves with two or more splits, shape-memory-type sleeves lacking any splits, or adjustable expanding mandrels. This step significantly improves the crack propagation life of the hole 50.
The plastic strains of the SSCE process with a split sleeve creates a small extruded ridge 62 of “bulged material” in the hole 50 at the location of the sleeve split line as seen in
Next, the hole 50 is subjected to shot peening, as seen in
Subsequent to peening, a final machining step is performed on the hole 50, as seen in
The finished hole 50, after being subjected to the specific combination of processes described above, has a significantly improved low-cycle fatigue life, considering both crack initiation and crack propagation. Testing has shown that the method described herein can improve crack initiation life by a factor of two and crack propagation life by factor of five, compared to component with an untreated hole. This is possible without adding component weight or changing the component material.
The foregoing has described a method of forming and treating holes in metallic components. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation.