This is a U.S. National Phase Application Under 35 USC 371 and applicant herewith claims the benefit of priority of PCT/IT03/00099 filed on Feb. 20, 2003, which was published Under PCT Article 21(2) in English, and of Application No. TO2002A000144 filed in Italy on Feb. 20, 2002. The contents of the applications are incorporated by reference herein.
This invention relates to a composite ink jet printhead and to the printhead manufacturing process, particularly for a “top-shooter” type ink jet printhead, i.e. the type in which the droplets of ink are ejected perpendicularly to the substrate containing the heating elements and the ejection chambers.
As is known in the art, for instance from the Italian patent No. 1234800 and from the U.S. Pat. No. 5,387,314, printheads of the type mentioned above are made using as the support a thin wafer of crystalline silicon approx. 0.6 mm. thick and with a diameter of approx. 150 mm., from which the single heads will be separated after they have been manufactured, while a plurality of overlapping layers is deposited on the silicon disc with known vacuum processes. Produced on these layers are the NMOS active devices for each head, made using integrated circuit technology, the heating elements, or resistors, and the relative electrical connections to the outside, protected and separated by corresponding isolating layers; the resistors are housed inside chambers built into the thickness of a further overlapping layer of photosensitive material, for example VACREL™, and obtained in a photolithographic process together with the lateral ink feeding channels; the channels of the chambers communicate with a narrow, oblong ink feeding duct, in the shape of a slot, which crosses through the silicon support and the layers already deposited and is arranged between two parallel rows of chambers, disposed on both long sides of the slots.
Before being separated, each of the heads still on the wafer has a metallic or plastic lamina, bearing the ejection nozzles, applied to it and attached by gluing on top of the layer of the chambers, and positioned precisely so that each nozzle coincides with a corresponding chamber.
The wafer thus completed is cut according to a rectangular mesh grid to separate the single heads, each of which is completed by being connected to a flat cable, the ends of which are soldered to corresponding contact pads made along an edge of each single head and connected by way of internal connections to the resistors.
In the current art, machining of the slots is performed after the active semiconductor devices have been made, and the layers of the resistors, the layer of the relative electrical connections and the protection layers above have been deposited on the silicon wafer. The two-step machining work starts on the surface opposite that bearing the resistors with a partial sand-blasting process, or chemical etching process on the silicon wafer and is completed with an erosion performed by sand blasting, or with a laser beam. Alternatively the slots can be made in a single, total sand blasting operation.
Machining of the slots in the ways mentioned above often results in geometrical irregularities, or an offsetting of the edge of the slots with respect to the resistors, or even damage to the layers that are crossed through, on account of splintering on the edge of the slot facing the chambers, with a resultant high level of production rejects, specially for slots that are long (>½″) and narrow (<250 μm), in addition to being a lengthy, complex and expensive process.
The main object of this invention consists in producing printheads without the drawbacks mentioned above and in particular in producing the printheads in lesser time and at lower cost with respect to the known art, and in which the machining of the ink feeding ducts (slots) does not interfere with the integrity of the layers in the area of the resistors and of the ejection chambers and channels leading to the chambers.
A further object of the invention consists in manufacturing ink jet printheads in which the extent of the surface of the silicon wafer used by the printhead is reduced to the minimum.
A further object of the invention is that of defining an innovative process for manufacturing ink jet printheads, in which machining of the ink feeding ducts does not interfere with the integrity of the resistors and of the relative protective layers and in which each head is made using a silicon wafer of very low dimensions, to increase the printhead production yield and permit the production of multiple colour heads, namely with various independent groups of nozzles, capable of ejecting very small droplets (<5 pl), particularly suitable for the printing of images of photographic resolution.
In accordance with the predefined objects, according to this invention, a composite, ink jet printhead and innovative head manufacturing process are presented, characterized in the way defined in the corresponding main claims.
This and other characteristics of the invention will appear more clearly from the following description of a preferred embodiment of the printhead and of its manufacturing process, provided by way of non-restrictive example, with reference to the figures of the accompanying drawings.
The fundamental idea, at the basis of the solution provided by this invention, is that of making an ink jet printhead 1 (
A second element, called active module 7, consists of a plate of crystalline silicon 8, upon which, with processes known in the art and separately from the base 3, the NMOS active devices are made. These constitute the driving and selecting circuits 12. Layers are then deposited of heating elements, or resistors 10, and of relative interconnections, followed by a photosensitive resin film 15, in which the ink ejection chambers 14, aligned with the corresponding resistors 10, are made.
At this point, each active module 7 is fastened on a pre-prepared corresponding base 3, by means of gluing and pressing. Subsequently a frame 16 of resin having the same thickness as the module 7 and surrounding the module, is glued on the base 3 to improve hydraulic sealing.
Finally each active module 7 is completed with the application on the photosensitive film 15 and partially above the frame 16, of a metallic or plastic lamina 17 bearing the ejection nozzles 18, disposed with precision in correspondence with the chambers 14 and facing the respective resistors 10, in such a way that the ink droplets are ejected in a direction perpendicular to the plane of extension of the resistors 10 (top shooter).
A more detailed description will follow of the structure and the manufacturing process of a non-restrictive, preferred embodiment of a composite printhead, according to the invention, and in particular of a head with a single line of nozzles.
It remains understood that the solution idea set forth in this invention is also applicable to so-called multiple heads, having more than one active module and different geometries.
Preparation of the Base 3
The head 1, as already anticipated with reference to
As an example, the choice for use in production of the bases 3 falls on a plate 22 (
The preparation of the bases 3 proceeds according to the following steps (
Step 1) on a face 20 of the plate 22, a metallic film 24, for example Al or Cr, of thickness 1000–3000 A°, is deposited, and on this is applied a layer of photosensitive material (photoresist) 26, in turn exposed with a mask for defining the following positioning references:
1
a) reference and alignment marks 29, for high precision positioning, that is to say with a tolerance of +/−1 μm of the active module 7 on its base 3;
1
b) outline 30 of the slot 5;
1
c) separation lines 32, along which the single support bases 3 will subsequently be cut;
1
d) outlines of areas 33 of dispensation of the adhesives, for gluing the active module 7 on the base 3;
1
e) outline of the area of dispensation 34 of the adhesive for gluing the resin frame 16, which laterally seals the module 7 on its base 3.
Step 2) exposure of the photoresist 26 to a light source through a mask and subsequent development; removal of the superfluous portions of the metallic film 24, not protected by the mask used.
Step 3) deposition of an “adhesion promotion” type film to facilitate adhesion of the glues.
Step 4) etching of the slot 5, without particular restrictions of precision, since there are no delicate components, such as resistors, or NMOS circuits on the base 3. The etching may be performed with one of methods known in the art, such as sand blasting, laser beam, vacuum plasma, anisotropic chemical etching, etc. Where alumina, or ceramic, is used, the slot is obtained by pressing before to baking.
Production of the slots 5 concludes preparation of the bases 3, which are provisionally deposited in a temporary store.
Preparation of the Active Modules 7.
To produce the active modules 7 a crystalline silicon disc or wafer is used. Not depicted in any of the drawings, the wafer is between 400 and 600 μm thick; initially, both the outer, opposite surfaces are passivated with an isolating layer of silicon oxide, SiO2; supposing that each active module 7 has plan dimensions of 10.5 mm×1.6 mm, roughly 700 silicon wafers may be made, without considering the inevitable production rejects.
Then on one of the passivated surfaces, using the known semiconductor technologies, for each active module 7, the NMOS circuits for driving the resistors 10, the logic circuits for selecting are made, and the resistors 10, the protective layers, the internal interconnections and the external contact pads are produced with a deposition of conducting, isolating and resistive layers; finally a layer of photosensitive polymer is laminated, in which, following exposure and development, the ink ejection chambers are built, according to the manufacturing processes known in the art, for instance as described in detail in the above-mentioned Italian patent No. 1.234.800, or in the Italian patent application No. TO 2001 A001019 filed in the name of the applicant, which are recalled for reference.
Following the preparation process described, according to the invention, at least two types of active modules may be produced by way of non-restrictive example:
a first type called “Module A” (
a second type called “Module B” (
Once construction of all the active modules contained in the silicon disc has been completed, after the customary sight and electrical test inspections, the single modules are separated by cutting of the disc according to a rectangular grid of dimensions in line with the dimensions of the single modules.
Production of the Composite Printhead
Composition of the printhead according to the invention is completed with an operation of mounting of each of the active modules 7 on each of the bases 3 still joined on the plate 22, and is conducted in the following steps:
step 5) dispensation of an polymerizable adhesive in the areas 33 where the active modules 7 will be mounted on the plate 22;
step 6) positioning and alignment of the active modules with precision of +/−1 μm on the bases 3 of the plate 22, taking reference between the marks 29 of the base 3 and corresponding marks 29′ made on each module 7;
step 7) application on the bases 3 of spots of UV ray hardened bonder to keep the single active modules in place during the subsequent phase of polymerization of the polymerizable adhesive;
step 8) polymerization of the polymerizable adhesive after completing the positioning and alignment of the individual active modules in the relative positions on the plate 22;
step 9) dispensation of adhesive in the areas 34 where the frames 16 are bonded;
step 10) assembly of the resin frames 16 on the bases 3, according to the references of the separation lines 32 of the plate 22; the frames 16 are made from a substantially rectangular shaped resin plate (
step 11) polymerization of the adhesive in order to block the frames on the plate 22;
step 12) application of an adhesive on the upper surface of the frames 16, for subsequent mounting of the laminas 17 bearing the ink-ejecting nozzles; the nozzle-bearing laminas 17 adhere to the layer 15 of photopolymer by thermal effect; alternatively a film of thermoplastic, or thermohardening material may be applied on the frame, deposited by tampography, rolling, silk screen printing, or more simply through a layer of semi-liquid bonding agent, dispensed flat in a groove, not represented in the drawings, prepared in the frames;
step 13) assembly of the nozzle-bearing lamina 17 and its temporary alignment with respect to the resistors 10 and fastening of said lamina with a number of spots of bonding agent 19, 86 (
step 14) pressing at controlled temperature and duration of all the laminas 17 of all the active modules 7 assembled on the plate 22, for gluing of the laminas on the layer of photosensitive polymer 15 of each of the active modules 7 and on the frames 16; at the end of this operation, the nozzle-bearing laminas 17 constitute an upper closing wall of both the ejection chambers 14, and of the store chambers 5a, communicating with the slots 5;
step 15) cutting of the plate 22 along the separation lines 32 to produce the individual composite printheads.
The composite heads thus produced have a flat cable 45 connected to them, through the soldering of its ends to the contact pads 37, 42, made on the edges of each active module 7; the soldering may be performed with the standard process, known in the sector art, called “Tape Automatic Bonding” or T.A.B. (
The A.C.F. or A.C.P. technique comes with the advantage that the contact conductors 46 of the flat cable 45 (
The A.C.F. or A.C.P. type connection is feasible with high definition heads; in fact, the ejected ink droplets may drop in volume to about 4–6 pl., with energies in play of 1–2 μJ, so that the electrical currents traversing the contact pads are in the order of 100 mA, or less.
The low level of consumed current means that the area occupied by the NMOS driving circuits (
With a step of 1/300″ between the resistors, that is to say between the nozzles, a module of height “H” up to 1″ may be built, without encountering the problems of manufacturing the ink feeding slots 5, as these are made apart on the support plate 22.
The printhead preparation process described above is also suitable, without any particular amendments, for the preparation of multiple printheads, in which at least two, and possibly more active modules 7, are mounted on a single base, arranged in different configurations, according to the required level of printing performance.
The modules 7 are set one beside the other, in parallel in the horizontal direction, i.e. parallel to the printing direction, indicated by the arrow “F”, and with a pitch of the nozzles that gives a print resolution of 300, or 600 D.P.I.; designated with the numeral 60 is the outer edge of the support base 55, numeral 61 is that of the frame 16 on top, 62 the three nozzle-bearing laminas, designated with 63 are the three, different colour ink feeding slots; designated with 63a are the ink chambers, similar to those designated 5a in
The numeral 64 designates the nozzles aligned in the vicinity of the long side “d” of each module 7, facing the corresponding slot 63, and 65 the external connection pads to which the flat cable 45 is connected. In this version, the flat cable 45 is provided with three apertures 67 of a width that does not cover the nozzle-bearing laminas 62; the contact ends 68 of the flat cable 45 are disposed on a long internal side of each aperture 67.
In the version of
The flat cable 45 is provided with a single rectangular aperture 75, and the connection pads 76 are situated on the two long sides of the aperture 75.
A single ink feeding slot 77 is made on the base 55. It is longer than other similar ones because it has to feed two consecutive rows of nozzles 18. Likewise the nozzle-bearing lamina 78 is made in a single piece and covers both the modules 7.
Finally,
Again in
Depicted in an exploded, perspective view in
A resin frame 81 of the same thickness as the modules 7 is glued on to the base 55, in such a way as to partially surround each module and thereby improve hydraulic sealing. The frame 81 is provided with opposing protrusions 82, of dimensions suitable for insertion between the modules 7, close to their ends 82, and for delimiting feeding chambers 83, communicating both with the corresponding slot 80 and with one of the groups of ejection chambers 14.
Glued to the frame 81 and to the three active modules 7 is a metallic or resin lamina 85, normally of Kapton™, provided with three parallel lines of nozzles 18. The nozzles 18 are set facing their corresponding resistors contained inside the chambers 14, so that the ink droplets are ejected in a direction perpendicular to the surface of the resistors themselves; the lamina 85 also constitutes the upper closing wall of the chambers 83.
During assembly of the heads on the plate 22 (
The flat cable 45 has a single aperture 87, and the connection pads 88 of the flat cable 45 are connected to corresponding pads 88′, made on the edge of the short sides 89 of the modules 7. With this geometry, even more than three modules may be used, for example four modules (three colours plus black), with obvious advantages, e.g. the nozzle-bearing lamina 85 may be made of a single piece, the head occupies less space on the horizontal, and the hydraulic sealing between the modules 7 and with the environment is more secure.
The configuration of the head depicted in
For simplicity of presentation and by way of example, it is supposed that each active module 7 of the head of
Therefore, with the pre-settings selected for the example described above, in which the number of primitives P=8, the number of addresses per primitive is A=7 and the number of selections SW=2, the following are required:
The 19 pads 88′ are subdivided (+one for back-up) ten per side 94, spaced apart by 20 μm, each pad having width 140 μm.
The circuit of
the staggered lines 95 represent the sixteen groups of resistors RN, each pair of groups being connected to a primitive line (PM);
the squares 96 with vertical lines represent the transistors TN corresponding to each group of resistors RN, which receive the address signals AA from an array 97 of conductors, which also includes two conductors for the pulses SW, which go to drive the selection transistors 91, represented by strike-through rectangles 98, below which runs a large ground return conductor 99.
The pads 88′ on the short side 94′ (on the left in
P1, P2, P3, P4; A1, A2, A3, A4; GRN;
whereas the pads 88′ on the short side 94 (on the right in
P5, P6, P7, P8; A4, A5, A6, A7; SW1, SW2;
It is clear from the description that the composite printheads, produced according to the invention, have numerous advantages with respect to the heads of the prior art. Their construction is in fact simpler because, as the ink feeding slots are built separately, they do not have any of the precision and high quality finishing constraints required by the traditional construction techniques. Furthermore the new heads are also less expensive because the active modules may be built of lesser dimensions than in the previous techniques, saving considerable quantities of silicon and the noble metals used for the resistors and for the internal interconnections, and also the labour required for manufacture of each single chip.
A further advantage obtained with the heads according to the invention lies in the fact that, by using addressing circuits in 3D mode integrated in the active modules, the number of external connections is greatly reduced. This makes it possible to connect the conductors of the flat cable to contact pads, preferably arranged on the short sides of the active modules, so that a greater compacting can also be achieved of multiple printheads.
Number | Date | Country | Kind |
---|---|---|---|
TO2002A0144 | Feb 2002 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT03/00099 | 2/20/2003 | WO | 00 | 8/17/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/070471 | 8/28/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5565900 | Cowger et al. | Oct 1996 | A |
5818482 | Ohta et al. | Oct 1998 | A |
5900894 | Masahiko et al. | May 1999 | A |
Number | Date | Country |
---|---|---|
0 659 573 | Jun 1995 | EP |
0 666 174 | Aug 1995 | EP |
0970812 | Dec 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20050104936 A1 | May 2005 | US |