This Application claims priority of Taiwan Patent Application No. 98104804, filed on Feb. 16, 2009, the entirety of which is incorporated by reference herein.
1. Field of the Invention
The present invention relates to atomic layer deposition process techniques, particularly to a method for forming a composite layer having various inorganic oxide single layers by the atomic layer deposition process technique.
2. Description of the Related Art
There are three types of conventional methods for forming gas barrier membranes: (1) sputtering methods, except for the atomic layer deposition process (ALD) method, for inorganic gas barrier membranes; (2) methods that alternately arrange organic layers and inorganic layers for multi-layered gas barrier membranes; and (3) ALD methods for inorganic gas barrier membranes. The disadvantages of the conventional methods are described below.
For the sputtering methods disclosed in U.S. Pat. No. 6,198,220 B1 or U.S. Pat. No. 5,771,562, except for the atomic layer deposition process (ALD) method, gas barrier efficiency is insufficient for organic photoelectric device gas-barrier layers fabricated thereby (oxygen transmission rate below 1*10−3-1*10−5 mol/m2 day and water transmission rate below 1*10−6 mol/m2 day). The insufficiency is due to the plurality of cavities formed therein, during fabrication.
For the methods that alternately arrange organic layers and inorganic layers disclosed in U.S. Pat. No. 5,952,778, U.S. Pat. No. 6,522,067 B1, U.S. Pat. No. 6,573,652 B1, U.S. Pat. No. 6,614,057 B2, U.S. Pat. No. 6,624,568 B2, U.S. Pat. No. 6,198,217 B2, U.S. Pat. No. 5,811,177, U.S. Pat. No. 6,911,667 B2, U.S. Pat. No. 7,317,280 B2, U.S. Pat. No. 6,146,225, and U.S. Pat. No. 6,949,825 B2, gas barrier efficiency is sufficient for organic photoelectric device gas-barrier layers fabricated thereby. However, the method is complex, time-consuming and not feasible.
For the ALD methods disclosed in US 2002/0003403 A1, US 2006/0246811 A1, US 2006/0250084 A1, and US 2007/0114925 A1, gas barrier efficiency of is sufficient for organic photoelectric device with organic/inorganic multiple-layer gas-barrier membrane fabricated thereby. However, this technique has disadvantages of complicated and time-consuming process for forming alternate organic/inorganic films and extremely low practicality.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention provides a method for forming a composite membrane, comprising: (a) loading a substrate into a chamber; (b) performing a first cycle step in the chamber to form a single aluminum oxide (Al2O3) layer; and (c) performing a second cycle step in the chamber to form a single hafnium oxide (HfO2) layer. The steps comprise: (1) introducing an Al element containing a first reactant into the chamber; (2) removing the first reactant from the chamber; (3) introducing an O element containing a second reactant into the chamber; (4) removing the second reactant from the chamber; (5) introducing an Hf element containing a third reactant into the chamber; and (6) removing the third reactant from the chamber. The first cycle step is composed of steps (1) to (4), and the second cycle step is composed of steps (3) to (6).
The invention also provides a composite membrane formed on a substrate by an atomic layer deposition process, comprising: a plurality of single aluminum oxide (Al2O3) layers; and a plurality of single hafnium oxide (HfO2) layers, wherein the single aluminum oxide layers and single hafnium oxide layers are alternately arranged.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The present invention provides a method for forming an inorganic oxide composite membrane by and atomic layer deposition (ALD) process. In the composite membrane, each single layer is ultra-thin, having an atomic scale with minimal defects. Therefore, the ultra-thin composite membrane is suitable to be applied as a gas barrier membrane.
The present invention utilizes a single atomic layer deposition process.
The composite membrane of the present invention may be a multi-layered membrane composed of two or various kinds of alternately stacked inorganic oxide layers. In a preferred embodiment, the composite membrane is composed of an Al2O3 single layer and HfO2 single layer alternately arranged.
The composite membrane of the present invention can be used for isolating gases (such as moisture or oxygen) in applications including packaging membranes for displays solar cells, and integrated circuits (IC), and particular, packaging membranes for soft displays, soft solar cells, and soft integrated circuits.
The cycle step S100 for forming the aluminum oxide single layer is composed of steps S10, S12, S14, and S16. In the step S10, an Al element containing reactant is introduced into the reactor. In the embodiments, the Al element containing reactant includes, but is not limited to, precursors such as trimethylaluminium (TMA), dimethylaluminum isopropoxide, tert-butoxy dimethylaluminum, dimethylaluminum isopropoxide, or sec-butoxy dimethylaluminum. The reactant, with a flow rate of 5 sccm to 100 sccm, is introduced into the reactor for 0.02 seconds to 1 second. The pressure of the reactor is controlled to be 0.1 Torr to 10 Torrs. Next, the Al element containing reactant is removed from the reactor (S12). The removal step S12 may be implemented by a pumping vacuum or introducing an inert gas into the reactor. The amount of time for the removal step is 1 second to 100 seconds. In one example, wherein pumping for vacuum is implemented, pumping is continuously performed with a vacuum pump and with no gas introduced into the reactor. In the step S14, an O element containing reactant is introduced into the reactor. The O element containing reactant includes, but is not limited to, water, oxygen, or ozone. The reactant, with a flow rate of 5 sccm to 100 sccm, is introduced into the reactor for 0.02 seconds to 1 second. The pressure of the reactor is controlled to be 0.1 Torr to 10 Torrs. Next, the O element containing reactant is removed from the reactor (S16). Similarly with the step S12, the removal step S16 may be implemented by a pumping vacuum or introducing an inert gas into the reactor. The amount of time for the removal step is 1 second to 100 seconds.
It should be understood that the step sequence in the cycle step S100 for forming the aluminum oxide single layer is not limited to be steps S10, S12, S14, and S16 as shown in
In the step S24, an O element containing reactant is introduced into the reactor. The O element containing reactant includes, but is not limited to, water, oxygen, or ozone. The reactant, with a flow rate of 5 sccm to 100 sccm, is introduced into the reactor for 0.02 seconds to 1 second. The pressure of the reactor is controlled to be 0.1 Torr to 10 Torrs. Next, similarly with the removal step S12, the O element containing reactant is removed from the reactor (S26).
It should be understood that the step sequence in the cycle step S200 for forming the hafnium oxide single layer is not limited to be steps S20, S22, S24, and S26 as shown in
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
The polyimide substrate 100 as shown in
First, the organic solar cell structure, as shown in
A composite membrane 30 composed of 50 alternating Al2O3 layers and HfO2 layers, covering the solar cell as shown in
A non-encapsulated solar cell device packaged by the conventional packing method (Comparative Example—glass lid attachment by UV curable resin), and an encapsulated solar cell device packaged by the composite laminate of Example 1, were tested for stability. For the stability tests, environment temperature was 29° C. and relative humidity (RH) was 60% for the solar cell devices. Current-voltage characteristics with illumination of AM 1.5 at 24-hour intervals were measured to observe decay of photoelectric conversion efficiency over time. As shown in
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
TW98104804 | Feb 2009 | TW | national |