This application is based on Japanese Patent Application No. 2015-2444 filed on Jan. 8, 2015, the disclosure of which is incorporated herein by reference.
The present disclosure relates to a composite material containing a metal material, a method for forming the composite material, an electrode plated with the composite material, and a connection structure having the composite material.
A composite material including a metal matrix and a reducing agent dispersed in the metal matrix has been known, for example, as disclosed in JP 2013-79429 A, which corresponds to US 2013/0081855 A1. The composite material forms an electrode of an electric contact and a film on an electric contact.
The electric contact film made of the composite material of JP 2013-79429 A can be employed as a plating film of a surface electrode formed on a surface of a substrate. For example, a terminal electrode having resiliency is pressed against the surface electrode due to its reaction force to ensure electric conduction between the terminal electrode and the surface electrode.
The terminal electrode and the surface electrode repeatedly expand and contract according to a change of ambient temperature when in use, and finely slide with each other. When heat and stress occurs in a contact point between the electric contact film plating the surface electrode and the terminal electrode due to the fine sliding, the metal material in a surface layer of the electric contact film is oxidized, resulting in degradation of the conductivity. However, the electric contact film contains the reducing agent dispersed in the metal matrix. Therefore, even if the metal material is oxidized, the reducing agent causes an oxidation-reduction reaction to reduce the oxidized metal material to the original metal material. As such, the degradation of the conductivity is restricted.
In fact, the amount of the reducing agent existing in the surface layer of the electric contact film is limited. After the reducing agent existing in the surface layer is fully used for the oxidation-reduction reaction, the oxidation of the metal material progresses, resulting in the degradation of the conductivity. When the composite material forming the surface layer of the electric contact film is worn due to the fine sliding, the reducing agent, which has not been contributed to the oxidation-reduction reaction, newly exposes on the surface layer. Accordingly, the degradation of the conductivity is restricted by the oxidation-reduction reaction by the reducing agent newly exposing on the surface layer. Also in such a case, however, after the reducing agent newly exposing on the surface layer is fully used for the oxidation-reduction reaction, the oxidation of the metal material ultimately progresses, resulting in the degradation of the conductivity. As such, the conductivity of the electric contact film is likely to change due to the fine sliding.
It is an object of the present disclosure to provide a composite material which is capable of restricting the change in conductivity due to fine sliding, a method for forming the composite material, an electrode plated with the composite material, and a connection structure having the composite material.
According to an aspect of the present disclosure, a composite material includes a metal material having conductivity and an oxidation inhibitor that forms a complex with the metal material to exert a resistance to oxidation of the metal material.
For example, the composite material is employed as a plating material. The composite material is formed on a surface of a base material as the plating material.
For example, a method for forming the composite material as a plating material on a surface of a base material includes: immersing the base material in a mixture containing metal atoms of the metal material and oxidation inhibitor molecules of the oxidation inhibitor; and applying a voltage to the base material and the mixture so that the metal material and the oxidation inhibitor molecules are eutectoid on the surface of the base material, to thereby form the composite material on the surface of the base material.
For example, the composite material is employed in a connection structure. The composite material is formed on a surface of at least one of a first electrode and a second electrode, which form electric connection in the connection structure.
For example, the composite material is employed in a surface layer of at least one of electrodes. In such a case, an effect of oxidation inhibitor will not be reduced according to fine sliding between the electrodes, differently from a structure in which a reducing agent is dispersed in a metal matrix to reduce a metal material with the reducing agent. Also, the oxidation inhibition of the metal material will not be limited. As a result, it is less likely that the conductivity of the composite material will be changed, i.e., reduced due to the fine sliding.
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description made with reference to the accompanying drawings, in which like parts are designated by like reference numbers and in which:
In an embodiment, a composite material includes a metal material having conductivity and an oxidation inhibitor that forms a complex with the metal material to exert a resistance to oxidation of the metal material. In a case where the composite material is employed in a surface layer of at least one of electrodes, an effect of oxidation inhibitor will not be reduced according to fine sliding between the electrodes, differently from a structure in which a reducing agent is dispersed in a metal matrix to reduce a metal material with the reducing agent. Also, the oxidation inhibition of the metal material will not be limited. As a result, it is less likely that the conductivity of the composite material will be changed, i.e., reduced due to the fine sliding.
For example, the oxidation inhibitor is selected from chemical species that improve an activation energy of oxidation when forming the complex with the metal material to be higher than that of a simple substance of the metal material, thereby to exert the resistance to oxidation.
For example, the metal material includes a plurality of metal atoms, and the oxidation inhibitor includes a plurality of oxidation inhibitor molecules. A metal bonding between the metal atoms and a coordinate bonding between the metal atom and the oxidation inhibitor molecule are stronger than an intermolecular interaction between the oxidation inhibitor molecules.
In such a case, the intermolecular interaction between the oxidation inhibitor molecules is likely to be easily separated than the metal bonding between the metal atoms and the coordinate bonding between the metal atom and the oxidation inhibitor molecule, when the composite material is stressed. Therefore, even if a part of the composite material is worn due to the stress of the composite material, the metal atoms of the worn part of the composite material are still bonded with the oxidation inhibitor molecules. As a result, the oxidation of the metal atoms contained in the worn part is restricted by the oxidation inhibitor molecule, and the degradation of the conductivity is reduced. For example, even if the worn part of the composite material is interposed between electrodes, which form electric connection, the degradation of the conductivity between the electrodes can be restricted.
For example, the metal atoms are bonded to form a metal mass. The oxidation inhibitor molecules are bonded to the metal mass to surround the metal mass. Each of a plurality of unit components is made of the metal mass and the oxidation inhibitor molecules bonded to the metal mass, and the plurality of unit components are uniformly distributed in the composite material. In such a case, the surface layer of the worn part is made of the oxidation inhibitor molecules. Therefore, as compared with a case where the metal atoms are located in the surface layer, it is less likely that the metal atoms of the metal mass will come close to oxygen molecules, and thus oxidation of the metal atoms of the metal mass is restricted.
Hereinafter, embodiments of the present disclosure will be described more in detail with reference to the drawings. In the embodiments, a composite material is exemplarily employed to a plating material for an electrode of an electronic device.
An electronic device 100 according to an embodiment will be described with reference to
As shown in
The terminal electrode 30 is electrically connected to a wire harness, for example. The surface electrode 20 is electrically connected to a wire that is formed on the surface of the substrate 10 or inside of the substrate 10. For example, the surface electrode 20 corresponds to a first electrode, and the terminal electrode 30 corresponds to a second electrode. The electronic device 100 includes a connection structure.
As shown in
As shown in
The plurality of metal atoms 23 are bonded to each other by mutual interaction between them, and the metal atoms 23 and the oxidation inhibitor molecules 24 are bonded to each other by mutual interaction between them. The metal atoms 23 are boned to each other through a metallic bonding. The metal atom 23 and the oxidation inhibitor molecule 24 are bonded to each other through a coordinate bonding or an electrostatic interaction.
As shown in
The bonding between the oxidation inhibitor molecules 24 is made by an intermolecular interaction, such as Van der Waals' force. The intermolecular interaction is weaker than each of the metal bonding and the coordinate bonding. Therefore, the bonding between the unit components 25 is easily separated due to the stress applied to the plating 22.
If a part of the plating 22 is worn due to the stress applied, the part worn (hereinafter referred to as the abrasion powder) is likely to be made of the unit components 25, and the surface of the part is likely to be covered with the oxidation inhibitor molecules 24.
Next, a method of forming the plating 22 will be described with reference to
Firstly, a solution (mixture) in which the metal atoms 23 and the oxidation inhibitor molecules 24 are mixed is prepared. In the mixture, the metal atoms 23 and the oxidation inhibitor molecules 24 exist as ions, or as molecules MOR, which are complexes made by coordinate bonding of the oxidation inhibitor molecules 24 and the metal atoms 23.
In the mixture, a positive electrode 101 and a negative electrode 102 are inserted, and are applied with voltage. The electrode 101 serving as an anode is made of the same material as the metal atom 23 (e.g., copper), and the electrode 102 serving as a cathode contains the base material 21.
When the voltage is applied between the positive electrode 101 and the negative electrode 102, the ionized metal atoms 23 and oxidation inhibitor molecules 24, and the molecules MOR are attracted to the negative electrode 102 (base material 21), and form eutectoid on the surface of the negative electrode 102. As a result, the plating 22 is formed on the surface of the base material 21.
The positive electrode 101 is not limited to the example described above. For example, the positive electrode 101 may be provided by an insoluble anode, such as by platinum (Pt) or graphite (C).
Specifically, the plating 22 does not necessarily contain only the unit components 25. The plating 22 may include a structure in which the oxidation inhibitor molecules 24 are contained inside of the metal mass of the unit component 25, or a structure in which the metal atoms 23 are partly contained in the surface layer of the unit component 25. Since the plating 22 is mainly made of the unit components 25, the formation of the unit component 25 is schematically illustrated as a main component.
In
In the electronic device 100, as described above, as the part of the terminal electrode 30 is pressed against the surface electrode 20 due to the reaction force of the terminal electrode 30, the electric conduction between the terminal electrode 30 and the surface electrode 20 is ensured. The terminal electrode 30 and the surface electrode 20 repeatedly expand and contract according to a temperature change in an environment when in use, and finely slide relative to each other. When heat and stress are caused at the contact point between the plating 22 of the surface electrode 20 and the terminal electrode 30 due to the fine sliding, the metal atoms 23 in the surface layer of the plating 22 are oxidized, resulting in degradation of conductivity.
As shown in
As shown in
When the mass percentage of the carbon atoms C is approximately equal to or greater than 0.5 and equal to or less than 5.5, the number of times of sliding exceeds the specified number of times of sliding. In the present embodiment, when the mass percentage of the carbon atoms C is 2.2, the durability is the highest. In this case, the diameter of the unit component 25 is approximately 20 nm, as shown in
Next, advantageous effects of the electronic device 100 according to the present embodiment will be described.
The plating 22 is made of mixture of the metal atoms 23 and the oxidation inhibitor molecules 24, as described above. The activation energy Ea of the metal atom 23 of the molecule MOR, which is made of the metal atom 23 and the oxidation inhibitor molecule 24 bonded with each other, is higher than the activation energy Eb of the simple substance metal M, and is less oxidized than the simple substance metal M. Differently from a case in which the reducing agent is dispersed in the metal matrix to reduce the metal material, the effect of oxidation inhibition of the oxidation inhibitor molecule 24 is not reduced by the fine sliding, and the oxidation inhibition of the metal material is not limited. Therefore, it is less likely that the conductivity of the plating 22 will be changed (reduced) by the fine sliding in the electronic device 100.
The intermolecular interaction between the oxidation inhibitor molecules 24 is weaker than the metal bonding between the metal atoms 23, and the coordinate bonding between the metal atom 23 and the oxidation inhibitor molecule 24. Therefore, the intermolecular interaction of the oxidation inhibitor molecules 24 exerted between the unit components 25 is likely to be easily separated due to the stress applied to the plating 22. When the part of the plating 22 is worn due to the stress, the metal atoms 23 contained in the part worn (abrasion powder) are still bonded with the oxidation inhibitor molecules 24. Therefore, the oxidation of the metal atoms 23 contained in the abrasion powder is restricted by the oxidation inhibitor molecules 24, and the degradation of the conductivity is restricted. Accordingly, even if the abrasion powder is interposed between the terminal electrode 30 and the surface electrode 20, it is less likely that the conductivity between the terminal electrode 30 and the surface electrode 20 will be reduced.
In the unit component 25 of the plating 22, the oxidation inhibitor molecules 24 are bonded to the surface of the metal mass, which is made by the plurality of the metal atoms 23 bonded to each other, to cover the periphery of the metal mass. The plating 22 is formed by the plurality of the unit components 25 uniformly distributed. In this case, the abrasion powder, which is made due to the plating 22 being stressed, is likely to be made only by the unit components 25, and the surface layer of the abrasion powder is likely to be made only by the oxidation inhibitor molecules 24. Therefore, as compared with the structure where the metal material is likely to easily exist in the surface layer of the unit component, it is less likely that the metal atoms 23 forming the metal mass will come close to the oxygen molecules. As such, the oxidation of the metal atoms 23 forming the metal mass is restricted.
The mass percentage of the carbon atoms of the oxidation inhibitor molecules 24 contained in the plating 22 is in the range from 0.5 to 5.5 of the mass percentage of the plating 22. In such a case, since the durability of the plating 22 exceeds the specified number of times of the sliding (hardness of the degradation of the conductivity) shown in
The embodiment of the present disclosure is described hereinabove. The present disclosure is not limited to the embodiment described hereinabove, but may be implemented in various other ways without departing from the gist of the present disclosure.
In the embodiment described above, the plating 22 is employed as the plating film covering the base material 21 of the surface electrode 20 of the electronic device 100. As another example, the plating 22 may be employed to the terminal electrode 30. Namely, the terminal electrode 30 may be coated with the plating 22. As further another example, the base material 21 and the terminal electrode 30 may be respectively coated with the plating 22.
Moreover, the plating 22 of the embodiment may be employed to any electric devices which need to reduce the oxidation of a metal material. For example, the plating 22 may be employed to a press-fitting portion or member connecting between a circuit board and an eternal terminal. The plating 22 may be suitably employed in in-vehicle devices which are subjected to fine sliding caused by the temperature change from −40 degrees Celsius to 150 degree Celsius according to the ambient temperature and driving of an engine.
In the embodiment described above, 1,10-phenanthroline shown in
In the embodiment described above, copper is exemplarily employed as the metal atom 23 forming the metal material. The metal atom 23 is not limited to copper, but may be tin (Sn), nickel (Ni), an alloy containing tin or nickel as a main component, an alloy containing copper as a main component, or the like. Namely, as the metal atom 23, a metal the conductivity of which reduces when being oxidized may be employed.
In the above description of the production methods of the plating with reference to
In the embodiment described above, the mass percentage of the carbon atoms 23 of the oxidation inhibitor molecules 24 is exemplarily 2.2. The mass percentage of the carbon atoms 23 of the oxidation inhibitor molecules 24 is at least in the range from 0.5 to 5.5.
In the embodiment described above, the base material 21 is exemplarily coated only with the plating 22. As another example, as shown in
While only the selected exemplary embodiment and examples have been chosen to illustrate the present disclosure, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made therein without departing from the scope of the disclosure as defined in the appended claims. Furthermore, the foregoing description of the exemplary embodiment and examples according to the present disclosure is provided for illustration only, and not for the purpose of limiting the disclosure as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2015-2444 | Jan 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030159938 | Hradil | Aug 2003 | A1 |
20040137162 | Kikui | Jul 2004 | A1 |
20040149587 | Hradil | Aug 2004 | A1 |
20040181114 | Hainfeld | Sep 2004 | A1 |
20080230394 | Inbe | Sep 2008 | A1 |
20080237065 | Kimata | Oct 2008 | A1 |
20130081855 | Miyake | Apr 2013 | A1 |
20140045061 | Suzuki | Feb 2014 | A1 |
20170012377 | Ochi | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2008-240902 | Oct 2008 | JP |
2014-065949 | Apr 2014 | JP |
Entry |
---|
Leventis et al. (N. Leventis, X. Gao, Nd—Fe—B Permanent Magnet Electrodes. Theoretical evaluation and experimental demonstration of the paramagnetic body forces, J. Am. Chem. Soc. 124(6) (2002) 1079-1088. |
Number | Date | Country | |
---|---|---|---|
20160201211 A1 | Jul 2016 | US |