Composites made from multidimensional oligomers

Information

  • Patent Grant
  • 5573854
  • Patent Number
    5,573,854
  • Date Filed
    Monday, June 5, 1995
    29 years ago
  • Date Issued
    Tuesday, November 12, 1996
    27 years ago
Abstract
Multidimensional oligomers of the present invention are surprisingly useful for advanced composites because each generally has a use temperature greatly in excess of its curing temperature. The oligomers have essentially no arms, and comprise crosslinking phenylimide end caps condensed directly onto an aromatic hub (preferably, phenyl) through "commodity" polymeric linkages, such as amide, diimide, ether, or ester. For example, p-nadicimidobenzoylchloride can be condensed with triaminobenzene to yield a multidimensional, crosslinking amide oligomer. Short chains of ether/carbonyl aromatic chains can be included, if desired. Methods for making these high-performance oligomers with ether/carbonyl aromatic chains use an Uhlman ether synthesis followed by a Friedel-Crafts reaction.
Description

TECHNICAL FIELD
The present invention relates to multidimensional oligomers that include a hub and a plurality of radiating arms, each arm terminating at the periphery in a crosslinking end cap moiety. Such compounds have relatively low molecular weight, but cure to high performance composites useful at high temperatures.
BACKGROUND ART
Epoxies dominate the composite industry today primarily because they are relatively low-cost and are easy to use. Epoxies, however, have low thermal stabilitites and tend to be brittle. There is a need for high performance, temperature-resistant composites made curing inexpensive, "commodity" starting materials that will be useful in conditions where epoxies cannot be used. The present invention describes oligomers that fulfill these requirements and present great promise for engineering composites, particularly for aerospace applications.
SUMMARY OF THE INVENTION
Composites possessing glass transition temperatures greatly in excess of their curing temperatures can be prepared from multidimensional oligomers formed by the condensation of "commodity" starting materials. The oligomers have the general formula: ##STR1## wherein w=an integer greater than 2 and not greater than the available number of substitutable hydrogens on the Ar group;
Ar=an aromatic moiety;
P=amide, ether, ester, or ##STR2## Y= ##STR3## n=1 or 2; Z= ##STR4## R=an organic radical having a valence of four; R.sub.1 =any of lower alkyl, lower alkoxy, aryl, phenyl, or substituted aryl (including hydroxyl or halo-substituents);
j=0, 1, or 2;
E=allyl or methallyl;
G=--CH.sub.2 --, --S--, --O--, or --SO.sub.2 --;
Q=an organic radical of valence two, and preferably a compound selected from the group consisting of: ##STR5## q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--, and preferable --SO.sub.2 -- or --CO--.
As will be explained, these oligomers are prepared by the condensation of an aromatic hub and a suitable end cap moeity with or without a chain-extending group (Q) to provide short-armed, multidimensional oligomers of high thermal stability.





BEST MODE CONTEMPLATED FOR MAKING AND USING THE INVENTION
Multidensional morphologies in crosslinking oligomers produce composites having solvent resistance, high glass transition temperatures, and toughness upon curing. The resins and prepregs are readily processed prior to curing. The cured composites have glass transition temperatures (melt temperatures) in excess of their curing temperatures. Such compounds can be readily made from "commodity" starting materials that are readily available at relatively low cost. The composites are cost competitive with epoxies, but possess better physical properties for aerospace applications (especially higher use temperatures).
Particularly perferred oligomers of the present invention have the general formula: ##STR6## wherein Ar=an aromatic radial;
Y=a crosslinking end cap;
w=an integer greater than 2 and not greater than the available number of substitutable hydrogens on the Ar group;
P=--CONH--, --NHCO--, --O--, ##STR7## and R=an organic radical having a valency of four, and, preferably, a residue of pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, or 5-(2,4-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride
The crosslinking end cap (Y) is preferably a phenylimide having a formula: ##STR8## wherein n=1 or 2: ##STR9## R.sub.1 =any of lower alkyl, lower alkoxy, aryl, or substituted aryl (including hydroxyl or halo- on any replaceable hydrogen);
j=0, 1, or 2; and
G=--CH.sub.2 --, --S--, --O--, or --SO.sub.2 --.
The most preferred end caps include: ##STR10## wherein n=1 of 2 (preferably 2);
j=0, 1, or 2 (preferably 1);
G and R.sub.1 are as previously defined (with R.sub.1 preferably being ##STR11##
These multidimensional oligomers are made by the condensation of aromatic hub monomers with the end cap reactants in an inert atmosphere. For example, the hub might be ##STR12## and the end cap, a radical as illustrated above terminated with an acid halide to form an amide linkage (NHCO) between the hub and the end cap. Alternatively, the hub might include the acid halide and the end cap the amine so that the condensation will yield an amide of opposite orientation (CONH). Ester or ether multidimensional oligomers of this general type are made in accordance with Examples I through VII of our application U.S. Ser. No. 810,817, now abandoned, by reacting an acid halide and a phenol. Diimide linkages are formed by reacting an amine-terminated hub with a dianhydride and an amine-terminated end cap.
The hub (Ar) precursor preferably is selected from the group consisting of phenyl, naphthyl, biphenyl, azalinyl (including melamine radicals) amines or acid halides, or triazine derivatives described in U.S. Pat. No. 4,574,154 (incorporated by reference) to Okamoto of the general formula: ##STR13## wherein R.sub.2 is a divalent hydrocarbon residue containing 1-12 carbon atoms (and, preferably, ethylene).
Substantially stoichiometric amounts of the reactants are usually mixed together in a suitable solvent under an inert atmosphere to achieve the condensation. The reaction mixture may be heated, as necessary, to complete the reaction. Any of the oligomers can be used to form prepregs by application of the oligomers in a suitable solvent to suitable prepregging materials, and the prepregs can be cured in conventional vacuum bagging techniques at elevated temperatures to produce composites that have use temperatures in excess of their cure temperatures. The crosslinking end caps apparently bind the composites into a complex, 3-dimensional network upon curing by chemical induction or heating to yield a product having high thermal stability than the core temperature.
Compounds of the formulae: ##STR14## can also be synthesized with an Ullmann ether synthesis followed by a Friedel-Crafts reaction, as will be further explained.
Here, Q= ##STR15## wherein q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--, and preferably --SO.sub.2 -- or --CO--.
To form the ##STR16## compounds, preferably a halo-substituted hub is reacted with phenol in DMAC with a base (NaOH) over a Cu Ullmann catalyst to produce an ether "star" with active hydrogens para- to the either linkages. End caps terminated with acid halide functionalities can react with these active aryl groups in a Friedel-Crafts reaction to yield the desired product. For example, 1 mole of trichlorobenzene can be reacted with about 3 moles of phenol in the Ullmann ether reaction to yield an intermediate of the general formula: ##STR17## This intermediate can, then, be reacted with about 3 moles of (Y)-COCl to produce the final, crosslinkable, ether/carbonyl oligomer.
Similarly, to form the ##STR18## compounds, the hub is extended preferably by reacting a halo-substituted hub with phenol in the Ullmann ether synthesis to yield the ether intermediate of the ##STR19## compounds. This intermediate is mixed with the appropriate stoichiometric amounts of a diacid halide of the formula XOC-Q-COX and an end cap of the formula ##STR20## in the Friedel-Crafts reaction to yield the desired, chain-extended ether/carbonyl star and star-burst oligomers.
The end caps (Z) crosslink at different temperatures (i.e., their unsaturation is activated at different curing temperatures), so the cap should be selected to provide cured composites of the desired thermal stability. That is the backbone of the oligomer should be stable to at least the cure temperature of the caps. The multidimensional morphology allows the oligomers to be cured at a temperature far below the use temperature of the resulting composite, so completely aromatic backbones connected by heteroatoms are preferred to enhance the thermal stability.
U.S. Pat. No. 4,604,437 is incorporated by reference. That patent describes a polymer made from substituted, unsaturated, bicyclic imides having end caps of the formula: ##STR21## wherein E=allyl or methallyl, and
n=1 or 2.
These bicyclic imide end caps are prepared from the analogous anhydride by condensation with an amine, and provide oligomers that cure in a temperature range between DONA (dimethyloxynadic) and nadic caps.
While essentially any dianhydride (aliphatic or aromatic can be used to form the diimide oligomers of the present invention, aromatic dianhydrides, such as pyromellitic dianhydride or benzophenonetetracarboxylic dianhydride, are preferred for cost, convenience, and thermal stability in the cured composite. If an aliphatic dianhydride is used, preferably the dianhydride is 5-(2,4-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (MCTC).
End caps of the formula ##STR22## are prepared by reacting an amine-substituted benzene, such as aniline, with an anhydride in the manner outlined in U.S. Pat. No. 4,604,437. One process for making the precursor anhydrides is described in U.S. Pat. No. 3,105,839.
While preferred embodiments have been shown and described, those of oridinary skill in the art will recognize variation, modifications, or alterations that might be made to the embodiments that are described without departing from the inventive concept. Accordingly, the description should be interpreted liberally, and the claims should not be limited to the described embodiments, unless such limitation is necessary to avoid the pertinent prior art.
Claims
  • 1. A composite comprising fiber reinforcement and a matrix being a cured oligomer having a multidimensional morphology, the oligomer being selected form the group consisting of: ##STR23## wherein W=an integer greater than 2 and not greater than the available number of substitutable hydrogens on the Ar group;
  • Ar=phenylene, biphenylene, azalinylene, naphthylene, or a triazine derivative of the formula: ##STR24## wherein R.sub.2 =a divalent hydrocarbon residue containing 1-12 carbon atoms, and wherein, if Ar is a triazine derivative, P=NHCO--.
  • P=--NHCO--,--CONH--, --O--, --COO--, --OOC--, or ##STR25## Y= ##STR26## n=1 or 2; Z= ##STR27## R.sub.1 =any of lower alkyl, lower alkoxy, aryl, or substituted aryl; j=0, 1, or 2;
  • G=--CH.sub.2 --, --S--, --O--, or --SO.sub.2 --;
  • E=allyl or methallyl;
  • Q=a radical selected from the group consisting of: ##STR28## q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--; and R=a residue of a dianhydride, the dianhydride being selected from the group consisting of: pyromellitic dianhydride; benzophenonetetracarboxylic dianhydride; and 5-(2,4-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride.
  • 2. The composite of claim 1 wherein the compound is selected from the group consisting of: ##STR29##
  • 3. The composite of claim 1 wherein Ar is selected from the group consisting of phenylene, biphenylene, or azalinylene.
  • 4. The composite of claim 1 wherein Ar is phenylene and w=3 or 4.
  • 5. The composite of claim 5 wherein n=2.
  • 6. The composite of claim 1 wherein the fiber reinforcement is a suitable fiber cloth.
  • 7. The composite of claim 1 wherein Y includes a nadic functionality.
  • 8. The composite of claim 1 wherein Y is ##STR30##
  • 9. The composite of claim 1 wherein the oligomer has the formula: ##STR31## wherein .O slashed. is phenylene.
  • 10. The composite of claim 1 wherein the oligomer has the formula: ##STR32## wherein .O slashed. is phenylene.
REFERENCE TO RELATED APPLICATIONS

The present invention is a divisional of Ser. No. 08/038,750, filed Mar. 26, 1993, now U.S. Pat. No. 5,463,076, which is a division of Ser. No. 07/000,605, filed Jan. 5, 1987, now U.S. Pat. No. 5,210,213 and a continuation-in-part application of U.S. patent application Ser. No. 810,817, filed Dec. 17, 1985, abandoned; which itself was a continuation-in-part application of U.S. Ser. No. 726,258, filed Apr. 23, 1985, abandoned; which itself was a continuation-in-part of the following five United States Patent Applications: (a) U.S. Ser. No. 519,394, filed Aug. 1, 1983, now abandoned; and (b) U.S. Ser. No. 673,229, filed Nov. 20, 1984 (now U.S. Pat. No. 4,584,364, issued Apr. 22, 1986), which itself was a continuation of U.S. Ser. No. 576,790, filed Feb. 6, 1984, now abandoned, which itself was a continuation-in-part application of U.S. Ser. No. 321,119, filed Nov. 13, 1981, now abandoned; and (c) U.S. Ser. No. 536,350, filed Sep. 27, 1983, now abandoned, which itself was a continuation-in-part application of U.S. Ser. No. 519,394, filed Aug. 1, 1983, now abandoned; and (d) U.S. Ser. No. 505,348, filed Jun. 17, 1983, now U.S. Pat. No. 4,536,559; and (e) U.S. Ser. No. 651,826, filed Sep. 18, 1984, abandoned, which is a continuation-in-part application of the following three U.S. patent applications: U.S. patent application Ser. No. 536,350, filed Sep. 27, 1983, abandoned, which itself was a continuation-in-part application of U.S. patent application Ser. No. 519,394, filed Aug. 1, 1983, abandoned; U.S. patent application Ser. No. 576,790, filed Feb. 6, 1984, abandoned, which itself was a continuation-in-part application of U.S. patent application Ser. No. 321,119, filed Nov. 13, 1981, abandoned; and U.S. patent application Ser. No. 505,348, filed Jun. 17, 1983, now U.S. Pat. No. 4,536,559.

US Referenced Citations (449)
Number Name Date Kind
H183 Karasz Jan 1987
RE29316 Bargain et al. Jul 1977
RE30922 Heilman et al. May 1982
3105839 Renner Oct 1963
3236705 Gilman et al. Feb 1966
3236808 Goldberg et al. Feb 1966
3262914 Goldberg et al. Jul 1966
3265708 Stiteler Aug 1966
3267081 Rudner et al. Aug 1966
3313783 Iwakura et al. Apr 1967
3354129 Edmonds et al. Nov 1967
3355272 D'Alessandro Nov 1967
3386969 Levine Jun 1968
3408349 Matsunaga Oct 1968
3431235 Lubowitz Mar 1969
3435003 Craven Mar 1969
3449442 Williams et al. Jun 1969
3450711 Megna et al. Jun 1969
3453236 Culbertson Jul 1969
3454673 Schmidt Jul 1969
3458486 Ray et al. Jul 1969
3461461 Anthony et al. Aug 1969
3528950 Lubowitz Sep 1970
3530087 Hayes et al. Sep 1970
3536670 Aeiony et al. Oct 1970
3562223 Bargain et al. Feb 1971
3563951 Dormagen et al. Feb 1971
3565549 Lubowitz et al. Feb 1971
3592841 Broadhead Jul 1971
3598768 Bach Aug 1971
3609181 Lubowitz et al. Sep 1971
3616193 Lubowitz et al. Oct 1971
3624042 Lubowitz et al. Nov 1971
3631222 Vogel Dec 1971
3632428 Lubowitz et al. Jan 1972
3635891 Lubowitz et al. Jan 1972
3641207 Lauchlan Feb 1972
3647529 Lubowitz et al. Mar 1972
3652710 Holub Mar 1972
3658764 Bargain et al. Apr 1972
3658938 Kwiatkowski et al. Apr 1972
3663507 Vogel May 1972
3689464 Holub et al. Sep 1972
3697308 Lubowitz Oct 1972
3697345 Lubowitz et al. Oct 1972
3699074 Lubowitz et al. Oct 1972
3699075 Lubowitz et al. Oct 1972
3708370 Lubowitz et al. Jan 1973
3708439 Sayigh et al. Jan 1973
3708459 Lubowitz Jan 1973
3729446 Holub et al. Apr 1973
3745149 Serafini et al. Jul 1973
3748311 Burns et al. Jul 1973
3748312 Burns et al. Jul 1973
3749735 Loria Jul 1973
3757088 Osborn Sep 1973
3759777 Lubowitz Sep 1973
3761441 D'Alessandra et al. Sep 1973
3763101 Jones et al. Oct 1973
3770697 Holub et al. Nov 1973
3772250 Economy et al. Nov 1973
3773718 Klebe et al. Nov 1973
3781240 Lubowitz et al. Dec 1973
3781249 Lubowitz Dec 1973
3803081 Lubowitz Apr 1974
3812159 Lubowitz May 1974
3827927 Lubowitz et al. Aug 1974
3839287 Kwiatkowski et al. Oct 1974
3843593 Shell et al. Oct 1974
3847867 Heath et al. Nov 1974
3847869 Williams, III Nov 1974
3853815 Lubowitz Dec 1974
3859252 Cho Jan 1975
3879349 Bilow et al. Apr 1975
3879393 Havera Apr 1975
3879428 Heath et al. Apr 1975
3887582 Holub et al. Jun 1975
3890272 D'Alelio Jun 1975
3895064 Brode et al. Jul 1975
3896147 Stephen Jul 1975
3897395 D'Alelio Jul 1975
3909507 Betts et al. Sep 1975
3914334 Lubowitz et al. Oct 1975
3919177 Campbell Nov 1975
3920768 Kwiatkowski Nov 1975
3925324 Gerard Dec 1975
3933862 Williams, III Jan 1976
3935167 Marvel et al. Jan 1976
3935320 Chiu et al. Jan 1976
3941746 Stephen Mar 1976
3956320 Heath et al. May 1976
3957732 Hirooka et al. May 1976
3957862 Heath et al. May 1976
3966678 Gruffaz et al. Jun 1976
3966726 Toth et al. Jun 1976
3966987 Suzuki et al. Jun 1976
3970714 Bargain Jul 1976
3972902 Heath et al. Aug 1976
3988374 Brode et al. Oct 1976
3993630 Darmory et al. Nov 1976
3998786 D'Alelio Dec 1976
4000146 Gerber Dec 1976
4005134 Markezich Jan 1977
4013600 Cassat Mar 1977
4020069 Johnson et al. Apr 1977
4026871 D'Alelio May 1977
4038261 Crouch et al. Jul 1977
4051177 Braden et al. Sep 1977
4055543 D'Alelio Oct 1977
4058505 D'Alelio Nov 1977
4060515 D'Alelio Nov 1977
4064289 Yokoyama et al. Dec 1977
4075171 D'Alelio Feb 1978
4097456 Barie Jun 1978
4100137 Lemieux et al. Jul 1978
4100138 Bilow et al. Jul 1978
4101488 Ishizuka et al. Jul 1978
4107147 Williams, III et al. Aug 1978
4107153 Akijama et al. Aug 1978
4107174 Baumann et al. Aug 1978
4108837 Johnson et al. Aug 1978
4108926 Arnold et al. Aug 1978
4111879 Mori et al. Sep 1978
4115231 Darms et al. Sep 1978
4115362 Inata et al. Sep 1978
4116937 Jones et al. Sep 1978
4124593 Gschwend et al. Nov 1978
4126619 Darms et al. Nov 1978
4128574 Markezich et al. Dec 1978
4132715 Roth Jan 1979
4132716 Kvita et al. Jan 1979
4134895 Roth et al. Jan 1979
4142870 Lovejoy Mar 1979
4158731 Baumann et al. Jun 1979
4166168 D'Alelio Aug 1979
4167663 Granzow et al. Sep 1979
4168366 D'Alelio et al. Sep 1979
4172836 Baumann et al. Oct 1979
4174326 Baumann et al. Nov 1979
4175175 Johnson et al. Nov 1979
4176223 Irwin Nov 1979
4179551 Jones et al. Dec 1979
4183839 Gagliani Jan 1980
4187364 Darms et al. Feb 1980
4189560 Roth et al. Feb 1980
4193927 Baumann et al. Mar 1980
4197397 D'Alelio et al. Apr 1980
4200731 Massey et al. Apr 1980
4206106 Heilman et al. Jun 1980
4218555 Antonoplos et al. Aug 1980
4221895 Woo Sep 1980
4225497 Baudouin et al. Sep 1980
4225498 Baudouin et al. Sep 1980
4231934 Oba et al. Nov 1980
4234712 Keller et al. Nov 1980
4237262 Jones Dec 1980
4239883 Stenzenberger Dec 1980
4244853 Serafini et al. Jan 1981
4250096 Kvita et al. Feb 1981
4251417 Chow et al. Feb 1981
4251418 Chow et al. Feb 1981
4251419 Heilman et al. Feb 1981
4251420 Antonoplos et al. Feb 1981
4255313 Antonoplos et al. Mar 1981
4266047 Jablonski et al. May 1981
4269961 Jones et al. May 1981
4271079 Maeda et al. Jun 1981
4273916 Jones Jun 1981
4276407 Bilow et al. Jun 1981
4288583 Zahir et al. Sep 1981
4288607 Bier et al. Sep 1981
4289699 Oba et al. Sep 1981
4293670 Robeson et al. Oct 1981
4297472 Heiss Oct 1981
4297474 Williams et al. Oct 1981
4298720 Yamazaki et al. Nov 1981
4299750 Antonoplos et al. Nov 1981
4299946 Balme et al. Nov 1981
4302575 Takekoshi Nov 1981
4323662 Oba et al. Apr 1982
4338222 Limburg et al. Jul 1982
4338225 Sheppard Jul 1982
4344869 Blinne et al. Aug 1982
4344870 Blinne et al. Aug 1982
4351932 Street et al. Sep 1982
4358561 Keske et al. Nov 1982
4360644 Naarmann et al. Nov 1982
4365068 Darms et al. Dec 1982
4375427 Miller et al. Mar 1983
4376710 Gardos et al. Mar 1983
4381363 Reinhart Apr 1983
4389504 St. Clair et al. Jun 1983
4393188 Takahashi et al. Jul 1983
4395497 Naarmann et al. Jul 1983
4400613 Popelish Aug 1983
4405770 Schoenberg et al. Sep 1983
4407739 Naarmann et al. Oct 1983
4409382 Keller Oct 1983
4410686 Hefner, Jr. et al. Oct 1983
4414269 Lubowitz et al. Nov 1983
4417039 Reinhardt et al. Nov 1983
4417044 Parekh Nov 1983
4418181 Monacelli Nov 1983
4423202 Choe Dec 1983
4429108 Stephens Jan 1984
4438273 Landis Mar 1984
4438280 Monacelli Mar 1984
4446191 Miyadera et al. May 1984
4448925 Hanson May 1984
4460783 Nishikawa et al. Jul 1984
4465809 Smith Aug 1984
4467011 Brooks et al. Aug 1984
4476184 Lubowitz et al. Oct 1984
4476295 Stephens Oct 1984
4482683 Quella et al. Nov 1984
4485140 Gannett et al. Nov 1984
4485231 Landis Nov 1984
4489027 St. Clair et al. Dec 1984
4504632 Holub et al. Mar 1985
4507466 Tomalia et al. Mar 1985
4510272 Loszewski Apr 1985
4515962 Renner May 1985
4519926 Basalay et al. May 1985
4520198 D'Alelio et al. May 1985
4526838 Fujioka et al. Jul 1985
4533692 Wolfe et al. Aug 1985
4533693 Wolfe et al. Aug 1985
4533724 Wolfe et al. Aug 1985
4535117 Mathis et al. Aug 1985
4536559 Lubowitz et al. Aug 1985
4547553 Lubowitz et al. Oct 1985
4555563 Hefner et al. Nov 1985
4556697 Curatolo et al. Dec 1985
4556705 McCready Dec 1985
4558120 Tomalia et al. Dec 1985
4562231 Dean Dec 1985
4562232 Smith Dec 1985
4563498 Lucas Jan 1986
4563514 Liu et al. Jan 1986
4564553 Pellegrini et al. Jan 1986
4567216 Qureshi et al. Jan 1986
4567240 Hergenrother et al. Jan 1986
4568737 Tomalia et al. Feb 1986
4574144 Yates et al. Mar 1986
4574148 Wicker, Jr. et al. Mar 1986
4574154 Okamoto et al. Mar 1986
4576857 Gannett et al. Mar 1986
4577034 Durvasula Mar 1986
4578433 Muenstedt et al. Mar 1986
4578470 Webb Mar 1986
4584364 Lubowitz et al. Apr 1986
4587329 Tomalia et al. May 1986
4590363 Bernard May 1986
4599383 Satoji Jul 1986
4600769 Kumar et al. Jul 1986
4604437 Renner Aug 1986
4608414 Kitsunai et al. Aug 1986
4608426 Stern Aug 1986
4611022 Hefner, Jr. Sep 1986
4611048 Peters Sep 1986
4614767 Dean Sep 1986
4615832 Kress et al. Oct 1986
4616070 Zeiner et al. Oct 1986
4616071 Holubka Oct 1986
4617390 Hoppe et al. Oct 1986
4624888 St. Clair et al. Nov 1986
4628067 Chen, Sr. et al. Dec 1986
4628079 Zecher et al. Dec 1986
4629777 Pfeifer Dec 1986
4631337 Tomalia et al. Dec 1986
4638027 Mark et al. Jan 1987
4640944 Brooks Feb 1987
4649080 Fischer et al. Mar 1987
4654410 Kashiwame et al. Mar 1987
4657973 Endo et al. Apr 1987
4657977 Peters Apr 1987
4657987 Rock et al. Apr 1987
4657990 Daoust et al. Apr 1987
4660057 Watanabe et al. Apr 1987
4661604 Lubowitz et al. Apr 1987
4663378 Allen May 1987
4663399 Peters May 1987
4663423 Yamada et al. May 1987
4663424 Stix et al. May 1987
4663425 Evers et al. May 1987
4680326 Leland et al. Jul 1987
4680377 Matsumura et al. Jul 1987
4684714 Lubowitz et al. Aug 1987
4690972 Johnson et al. Sep 1987
4691025 Domeier et al. Sep 1987
4694064 Tomalia et al. Sep 1987
4695610 Egli et al. Sep 1987
4699975 Katto et al. Oct 1987
4703081 Blackwell et al. Oct 1987
4708983 Liang Nov 1987
4709004 Dai Nov 1987
4709006 Tsai et al. Nov 1987
4709008 Shimp Nov 1987
4714768 Hemkielm et al. Dec 1987
4716212 Gaughan Dec 1987
4719283 Bartmann Jan 1988
4727118 Egami Feb 1988
4728742 Renner Mar 1988
4730030 Hahn et al. Mar 1988
4737550 Tomalia Apr 1988
4739030 Lubowitz et al. Apr 1988
4739075 Odagiri et al. Apr 1988
4739115 Byrd et al. Apr 1988
4740563 McCready et al. Apr 1988
4740564 McCready et al. Apr 1988
4740584 Shimp Apr 1988
4742166 Renner May 1988
4748227 Matzner et al. May 1988
4755584 Hanson et al. Jul 1988
4755585 Hanson et al. Jul 1988
4757118 Das et al. Jul 1988
4757128 Domb et al. Jul 1988
4757150 Guggenheim et al. Jul 1988
4759986 Marikar et al. Jul 1988
4760106 Gardner et al. Jul 1988
4764427 Hara et al. Aug 1988
4766180 Wong Aug 1988
4766197 Clendinning et al. Aug 1988
4769424 Takekoshi et al. Sep 1988
4769426 Iwasaki et al. Sep 1988
4769436 Beck et al. Sep 1988
4774282 Qureshi Sep 1988
4777208 Hefner, Jr. Oct 1988
4778830 Streu et al. Oct 1988
4778859 Ai et al. Oct 1988
4778898 Vonlanthen et al. Oct 1988
4786669 Dewhirst Nov 1988
4786685 Takida et al. Nov 1988
4786713 Rule et al. Nov 1988
4798685 Yaniger Jan 1989
4798686 Hocker et al. Jan 1989
4798882 Petri Jan 1989
4801676 Hisgen et al. Jan 1989
4801677 Eckhardt et al. Jan 1989
4804722 Hesse et al. Feb 1989
4804724 Harris et al. Feb 1989
4806407 Skinner et al. Feb 1989
4808717 Saito et al. Feb 1989
4812518 Haubennestel et al. Mar 1989
4812534 Blakely Mar 1989
4812552 Cliffton et al. Mar 1989
4812588 Schrock Mar 1989
4814416 Poll Mar 1989
4814417 Sugimori Mar 1989
4814421 Rosenquist Mar 1989
4814472 Lau Mar 1989
4816503 Cunningham et al. Mar 1989
4816526 Bristowe et al. Mar 1989
4816527 Rock Mar 1989
4816556 Gay et al. Mar 1989
4820770 Schleifstein Apr 1989
4826927 Schmid et al. May 1989
4826997 Kirchhoff May 1989
4827000 Schwartz May 1989
4829138 Barthelemy May 1989
4835197 Mercer May 1989
4837256 Gardner et al. Jun 1989
4839378 Koyama et al. Jun 1989
4845150 Kovak et al. Jul 1989
4845167 Alston et al. Jul 1989
4845185 Teramoto et al. Jul 1989
4845278 Erhan Jul 1989
4847333 Lubowitz et al. Jul 1989
4851280 Gupta Jul 1989
4851287 Hartsing, Jr. Jul 1989
4851494 Eldin et al. Jul 1989
4851495 Sheppard et al. Jul 1989
4851496 Poll et al. Jul 1989
4851501 Lubowitz et al. Jul 1989
4851505 Hayes Jul 1989
4861855 Bockrath et al. Aug 1989
4861882 Hergenrother et al. Aug 1989
4861915 Clendinning et al. Aug 1989
4861924 Riggs Aug 1989
4868270 Lubowitz et al. Sep 1989
4871475 Lubowitz et al. Oct 1989
4874834 Higashi et al. Oct 1989
4876325 Olson et al. Oct 1989
4876328 Lubowitz et al. Oct 1989
4876330 Higashi et al. Oct 1989
4891167 Clendinning et al. Jan 1990
4891408 Newman-Evans Jan 1990
4891460 Ishii et al. Jan 1990
4895892 Satake et al. Jan 1990
4895924 Satake et al. Jan 1990
4897527 Cripps et al. Jan 1990
4902335 Kume et al. Feb 1990
4902440 Takeyama et al. Feb 1990
4902769 Cassidy et al. Feb 1990
4902773 Bodnar et al. Feb 1990
4916210 Jackson Apr 1990
4916235 Tan et al. Apr 1990
4919992 Blundell et al. Apr 1990
4923752 Cornelia May 1990
4927899 Michaud et al. May 1990
4927900 Michaud et al. May 1990
4931531 Tamai et al. Jun 1990
4931540 Mueller et al. Jun 1990
4935523 Lubowitz et al. Jun 1990
4958031 Sheppard et al. Sep 1990
4965336 Lubowitz et al. Oct 1990
4973662 Odagiri et al. Nov 1990
4980481 Lubowitz et al. Dec 1990
4981922 Sheppard et al. Jan 1991
4985568 Lubowitz et al. Jan 1991
4990624 Sheppard et al. Feb 1991
4996101 Landis et al. Feb 1991
5003035 Tsai et al. Mar 1991
5011905 Lubowitz et al. Apr 1991
5066541 Lubowitz et al. Nov 1991
5066776 Russeler et al. Nov 1991
5071941 Lubowitz et al. Dec 1991
5075537 Lorenzen et al. Dec 1991
5082905 Lubowitz et al. Jan 1992
5086154 Camberlin et al. Feb 1992
5087701 Lubowitz et al. Feb 1992
5104967 Sheppard et al. Apr 1992
5109105 Lubowitz et al. Apr 1992
5111026 Ma May 1992
5112936 Okamoto May 1992
5112939 Lubowitz et al. May 1992
5115087 Sheppard et al. May 1992
5116935 Lubowitz et al. May 1992
5120819 Lubowitz et al. Jun 1992
5126410 Lubowitz et al. Jun 1992
5144000 Sheppard et al. Sep 1992
5151487 Lubowitz et al. Sep 1992
5155206 Lubowitz et al. Oct 1992
5159055 Sheppard et al. Oct 1992
5175233 Lubowitz et al. Dec 1992
5175234 Lubowitz et al. Dec 1992
5175304 Sheppard Dec 1992
5198526 Lubowitz et al. Mar 1993
5210213 Sheppard et al. May 1993
5216117 Sheppard et al. Jun 1993
5227461 Lubowitz et al. Jul 1993
5230956 Cole et al. Jul 1993
5239046 Lubowitz et al. Aug 1993
5254605 Kim et al. Oct 1993
5268519 Sheppard et al. Dec 1993
5286811 Lubowitz et al. Feb 1994
5338532 Tomalia et al. Aug 1994
5344894 Lubowitz Sep 1994
5403666 Lubowitz et al. Apr 1995
Foreign Referenced Citations (42)
Number Date Country
1175998 Sep 1984 CAX
1269576 May 1990 CAX
0152372 Jan 1985 EPX
0175484 Mar 1986 EPX
0067976 Mar 1987 EPX
0289695 Jan 1988 EPX
0283636 Jan 1988 EPX
0277476 Aug 1988 EPX
0292434 Nov 1988 EPX
0289798 Nov 1988 EPX
0292677 Nov 1988 EPX
0266662 Nov 1988 EPX
0294555 Dec 1988 EPX
0132547 Feb 1989 EPX
0305882 Mar 1989 EPX
0309649 Apr 1989 EPX
0310735 Apr 1989 EPX
0311735 Apr 1989 EPX
0317754 May 1989 EPX
0323540 Jul 1989 EPX
0336856 Oct 1989 EPX
0405128 Jan 1991 EPX
0418406 Mar 1991 EPX
0334778 Apr 1992 EPX
7100975 Jan 1971 FRX
2166209 Aug 1973 FRX
2210635 Jul 1974 FRX
2272119 Dec 1975 FRX
2303818 Oct 1976 FRX
1951632 May 1971 DEX
1453625 Dec 1973 JPX
58059-219 Oct 1981 JPX
57-10011-1 Jun 1982 JPX
1210-408-A Feb 1988 JPX
1210408 Aug 1989 JPX
907105 Oct 1962 GBX
1069061 May 1967 GBX
1099096 Jan 1968 GBX
2002378 Feb 1977 GBX
2002378B Mar 1982 GBX
8101855 Jul 1981 WOX
8404313 Nov 1984 WOX
Non-Patent Literature Citations (35)
Entry
St. Clair, et al., Additives Lower Pickup of Moisture by Polyimides NASA Tech Briefs, 80-81 Apr., 1989.
Heidemann, "Oligomers" Encyclopedia of Polymer Science and Technology vol. 9 Molding to Petroleum Resins 485-506 1968.
Second-generation polyimide raises continuous-use temperatures Advanced Composites May/Jun., 1988.
Vanucci et al., 700.degree. F. Properties of Autoclave Cured PMR-II Composites NASA Tech. Memo 100923 Sep., 1988.
Vanucci, PMR Polyimide Compositions for Improved Performance at 371.degree. C. NTIS N87-16071 Apr., 1987.
Elsenbaumer et al., Highly Conductive Meta Derivatives of Poly (phenylene Sulfide) J. Polymer Sci: Polymer Phys. Ed., vol. 20, 1781-1787 1982.
Patel et al., Poly-Schiff Bases, I. Preparation of Poly-Schiff Bases from 4,4'-Diacetyl Diphenyl Ether (DDE) with Various Diamines J. of Polymer Sci: Polymer Chem. Ed., vol. 20, 1985-1992 1982.
Walton, A New Conjugated Network Polymer as an Electrical Conductor and Thermally Stable Plastic Am. Chem., Soc. Org. Coat Plast. Chem., vol. 42, 595-599 1980.
Lubowitz et al., Novel High Temperature Matrix Materials 1986.
Serafini et al., Thermally Stable Polyimides from Solutions of Monomeric Reactants Journal of Applied Polymer Science, vol. 16, pp. 905-915 1972.
Spillman et al., Copolymers of Poly(Para-Phenylene Terephthalamide) Containing a Thermally Activated Cross-Linking PMSE vol. 68, Spring Meetings 139-140 1993.
Radlmann, et al., New Synthesis of Poly (ether Ketones). (44195h) Chem. Abstracts vol. 72, 1970, p. 44187 1970.
Bryant, et al., Synthesis and Properties of Phenylethynyl-Terminated Polyimides Polymer PrePrints, vol. 34, No. 1, 566-567 Mar. 1993.
Crivello et al., Polyimidothioether-Polysulfide Block Polymers Polymer Sci., Polymer Chem. Ed., vol. 13, pp. 1819-1842 1975.
Frazer, High Temperature Resistant Polymers Interscience Publishers, John Wiley & Sons, Inc., 139-213 1968.
Mittal (ed), Polyimides Plenum Press, NY, vol. 1 & 2 (selected pages) 1984.
St. Clair et al., The Development of Aerospace Polyimide Adhesives Mittal (ed), Polyimides-Synthesis Characterization and Applications, Plenum Press, NY, vol. 2, pp. 977-1041 1973.
Serafini, et al., A Review of Processable High Temperature Resistant Addition-type Laminating Resins Mittal (ed), Polyimides-Synthesis, Characterization and Applications, Plenum Press, NY, vol. 1, pp. 89-95 1973.
Stenson, Polycyanurates Find Applications; Their Chemistry Remains Puzzling Science/Technology, 208 ACS National Meeting, Washington, D.C., C&EN Northeast News Bureau 30-31 Sep. 1984.
Sutter, et al., Easily Processable High-Temperature Polyimide NASA Tech. Briefs (two pages) 1986.
Stoakley, et al., Low-Dielectric-Constant Polyimide/Glass Composites NASA Tech. Briefs p. 24 Apr. 1994.
Bartolotta, Predicting Fatigue Lives of Metal-Matrix/Fiber Composites NASA Tech Briefs pp. 28, 30 Apr. 1994.
Vannucci, et al., Improved PMR Polyimides for Heat-Stable Laminates NASA Tech Briefs pp. 30-31 Apr. 1994.
Bryant, et al., Phenylethynyl End-Capping Reagents and Reactive Diluents NASA Tech Briefs pp. 36-37 Apr. 1994.
Jensen, et al., Phenylethynyl-Terminated Ploy(Arylene Ethers) NASA Tech Briefs p. 37 Apr. 1994.
Buckley, et al., Processable Polyimides for High Temperature Applications 36th International SAMPE Symposium pp. 1172-1181 Apr. 1991.
Edwards, et al. Constituents of the Higher Fungi. Part XIII..sup.1 2-Arly-3-methoxymaleic Anhydrides from Pulvinic Acid Derivatives. A Convenient Method for Determination of Structure of Fungaland Lichen Pulvinic Acid Derivatives Journal of the Chemical Society pp. 1538-1542 1973.
Morrison, et al., "Reactions" and Hofmann degradation of amides Organic Chemistry Second Edition pp. 591 and 735 1966.
Kwiatkowski, et al., Thermosetting Diphenyl Sulfone-Based Malcimides Journal of Polymer Science, vol. 13, pp. 961-972 1975.
Lyle, et al., Polyarylene Ethers: Maleimides, Nadimides and Blends The Interdisciplinary Symposium on Recent Advances in Polyimides and Other High Performance Polymers, San Diego, Calif. pp. K-1-K-7 Jan. 1990.
Roberts, et al., Effect of Solution Concentration and Aging Conditions on PMR-15 Resin SAMPE Journal, pp. 24-28, 213 Mar./Apr 1986.
Southcott, et al., "The Development of Processable, Fully Imidized, Polyimides for High-Temperature Applications" High Perform. Polym. 6, pp. 1-12, Printed in UK 1994.
March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, McGraw-Hill, N.Y. (1968) pp. 413, 414, & 500.
Worthy et al., Chem. & Eng'g News, Feb. 22, 1988, pp. 19-21.
Tomalia et al., Polymer J., vol. 17, No. 1 (1988).
Divisions (2)
Number Date Country
Parent 38750 Mar 1993
Parent 000605 Jan 1987
Continuations (1)
Number Date Country
Parent 576790 Feb 1984
Continuation in Parts (5)
Number Date Country
Parent 726258 Apr 1985
Parent 519394 Aug 1983
Parent 321119 Nov 1981
Parent 519394 Aug 1983
Parent 536350 Sep 1983