This application is a national stage application from International Application No. PCT/FR2003/002848, filed Sep. 26, 2003, which claims priority to French Application No. FR 02/11949, filed on Sep. 26, 2002; French Application No. FR 02/16437, filed on Dec. 20, 2002; and French Application No. FR 03/06121, filed on May 21, 2003, the contents of all of which are herein incorporated by reference.
The present invention relates to a cosmetic composition for making up or caring for human bodily and facial skin, the scalp included, the lips or epidermal derivatives of human beings, such as the hair, eyebrows, eyelashes or nails, which comprises a particular block polymer.
The composition may be a loose or compact powder, a foundation, a rouge, an eyeshadow, a concealer, a blusher, a lipstick, a lip balm, a lipgloss, a lip pencil, an eye pencil, a mascara, an eyeliner, a nail varnish or even a body makeup product or a skin colouring product.
Known compositions exhibit poor staying power over time, particularly as regards the colour. This poor staying power is characterized by an alteration in colour (colour change, fading), generally as a result of interaction with the sebum and/or perspiration secreted by the skin, in the case of foundation and of rouge or eyeshadow, or of interaction with the saliva, in the case of lipsticks. This alteration obliges the user to apply fresh makeup at frequent intervals, which may constitute a loss of time.
So-called “non-transfer” makeup compositions for the lips and skin are compositions which have the advantage of forming a deposit which at least in part is not deposited on the supports with which they are brought into contact (glass, clothing, cigarette, fabrics).
Known non-transfer compositions are generally based on silicone resins and volatile silicone oils and, although exhibiting improved staying properties, have the drawback of leaving on the skin and lips, following evaporation of the volatile silicone oils, a film which over time becomes uncomfortable (giving sensations of drying and tightening), thereby distancing a certain number of women from this type of lipstick.
Known non-transfer compositions contain volatile oils in association with film-forming polymers, which may be soluble in the oils, so as to limit the transfer of colour. The introduction of these polymers in solution in volatile solvents, however, has the disadvantage of leading to formulas which are sometimes of low viscosity, owing in particular to the use of oil of very low viscosity and, in particular, of volatile oils. This low rheology goes hand in hand with awkward and unattractive application, with the added factor that the drying due to the presence of the volatiles may fix these inhomogeneities of deposition.
There continues to be a need for a cosmetic product which should at one and the same time be a non-transfer product with good staying power and good texture which is easy to apply and leads to a homogeneous deposit.
The composition of the invention may in particular constitute a product for making up the body, the lips or the epidermal derivatives of human beings which has, in particular, non-therapeutic treatment and/or care properties. It constitutes in particular a lipstick or a lipgloss, a rouge or eyeshadow, a tattooing product, a mascara, an eyeliner, a nail varnish, an artificial skin-tanning product or a hair colouring or haircare product.
Surprisingly the inventors have found that a composition comprising a cosmetically acceptable organic liquid medium, at least one particular block polymer and a gelling agent for the said medium exhibits good spreading and lubricity properties and allows a homogeneous makeup result to be obtained. Moreover, the composition is glossy, does not transfer and has good staying power.
More specifically the invention provides first a cosmetic composition comprising, in a cosmetically acceptable organic liquid medium, at least one non-elastomeric film-forming ethylenic linear block polymer and a gelling agent for the said organic liquid medium.
The present invention likewise provides a cosmetic composition comprising, in a cosmetically acceptable organic liquid medium, at least one film-forming ethylenic linear block polymer free from styrene units, and a gelling agent for the said organic liquid medium.
The invention also relates to a method of making up the skin and/or the lips and/or the epidermal derivatives which consists in applying to the skin and/or the lips and/or the epidermal derivatives the composition as defined above.
The composition according to the invention may be applied to the skin of the face, the scalp and the body, the mucosae such as the lips, the inside of the lower eyelids, and the epidermal derivatives such as the nails, eyebrows, hair, eyelashes, and even body hair.
Preferably the composition according to the invention is not a rinse-off composition.
The invention likewise relates to the cosmetic use of the composition defined above for enhancing the homogeneity of makeup on the skin and/or the lips and/or the epidermal derivatives.
The invention provides finally for the use of a gelling agent in a composition comprising a block polymer as described above for the purpose of obtaining a composition which has good texture, is easy to apply and leads to a deposit which is glossy, does not migrate and/or has good staying power and/or is homogeneous.
Block Polymer:
The composition according to the present invention comprises at least one block polymer. By “block” polymer is meant a polymer comprising at least 2 distinct blocks, preferably at least 3 distinct blocks.
According to one embodiment the block polymer of the composition according to the invention is an ethylenic polymer. By “ethylenic” polymer is meant a polymer obtained by polymerizing monomers comprising an ethylenic unsaturation.
According to one embodiment the block polymer of the composition according to the invention is a linear polymer. By opposition, a polymer having a non-linear structure is, for example, a polymer having a branched, starburst, graft or other structure.
According to one embodiment the block polymer of the composition according to the invention is a film-forming polymer. By “film-forming” polymer is meant a polymer capable of forming, by itself or in the presence of an auxiliary film-forming agent, a continuous and adherent film on a support, particularly on keratin materials.
According to one embodiment the block polymer of the composition according to the invention is a non-elastomeric polymer.
By “non-elastomeric polymer” is meant a polymer which, when subjected to a stress intended to stretch it (for example by 30% relative to its initial length), does not return to a length substantially identical to its initial length when the stress ceases.
More specifically the term “non-elastomeric polymer” denotes a polymer having an instantaneous recovery Ri<50% and a retarded recovery R2h<70% after having undergone 30% elongation. Preferably Ri is <30% and R2his <50%.
More specifically the non-elastomeric character of the polymer is determined in accordance with the following protocol:
A polymer film is prepared by pouring a solution of the polymer into a Teflon-coated mould and then drying it for 7 days in an environment controlled at 23±5° C. and 50±10% relative humidity.
This gives a film approximately 100 μm thick, from which rectangular specimens are cut (using a punch, for example) 15 mm wide and 80 mm long.
This sample is subjected to a tensile stress by means of an apparatus sold under the reference Zwick, under the same temperature and humidity conditions as for drying.
The specimens are stretched at a speed of 50 mm/min, and the distance between the jaws is 50 mm, corresponding to the initial length (l0) of the specimen.
The instantaneous recovery Ri is determined as follows:
The instantaneous recovery in % (Ri) is given by the formula below:
Ri=(εmax−εi)/εmax)×100
To determine the retarded recovery the residual elongation of the specimen is measured as a percentage (ε2h) 2 hours after return to zero stress.
The retarded recovery in % (R2h) is given by the formula below:
R2h=(εmax−ε2h)/εmax)×100
Purely by way of indication, a polymer according to one embodiment of the invention possesses an instantaneous recovery Ri of 10% and a retarded recovery R2h of 30%.
According to another embodiment the block polymer of the composition according to the invention does not include a styrene unit. By polymer free from styrene units is meant a polymer containing less than 10%, preferably less than 5%, preferably less than 2%, more preferably less than 1% by weight i) of styrene unit of formula —CH(C6H5)—CH2— or ii) of substituted styrene unit, for example methylstyrene, chlorostyrene or chloromethylstyrene.
According to one embodiment the block polymer of the composition according to the invention is obtained from aliphatic ethylenic monomers. By aliphatic monomer is meant a monomer containing no aromatic group.
According to one embodiment the block polymer is an ethylenic polymer obtained from aliphatic ethylenic monomers comprising a carbon-carbon double bond and at least one ester group —COO— or amide group —CON—. The ester group may be bonded to one of the two unsaturated carbons via the carbon atom or the oxygen atom. The amide group may be bonded to one of the two unsaturated carbons via the carbon atom or the nitrogen atom.
According to one mode of implementation the block polymer comprises at least one first block and at least one second block.
By “at least” one block is meant one or more blocks.
It is specified that, in the text above and below, the terms “first” and “second” blocks in no way condition the order of the said blocks (or sequences) in the structure of the polymer.
According to one mode of implementation the block polymer comprises at least one first block and at least one second block which have different glass transition temperatures (Tgs).
In this mode of implementation the first and second blocks may be connected to one another by an intermediate segment having a glass transition temperature between the glass transition temperatures of the first and second blocks.
According to one mode of implementation the block polymer comprises at least one first block and at least one second block connected to one another by an intermediate segment comprising at least one constituent monomer of the first block and at least one constituent monomer of the second block.
Preferably the intermediate block is obtained essentially from constituent monomers of the first block and of the second block.
By “essentially” is meant to an extent of at least 85%, preferably at least 90%, more preferably 95% and more preferably still 100%.
Advantageously the intermediate segment comprising at least one constituent monomer of the first block and at least one constituent monomer of the second block of the polymer is a random polymer.
According to one mode of implementation the block polymer comprises at least one first block and at least one second block which are incompatible in the organic liquid medium of the composition of the invention.
By “blocks incompatible with one another” is meant that the mixture formed from the polymer corresponding to the first block and from the polymer corresponding to the second block is not miscible in the liquid that is in a majority by weight in the organic liquid medium of the composition, at ambient temperature (25° C.) and atmospheric pressure (105 Pa), for a polymers mixture content greater than or equal to 5% by weight, relative to the total weight of the mixture (polymers and majority organic liquid), with the provisos that
i) the said polymers are present in the mixture in an amount such that the respective weight ratio ranges from 10/90 to 90/10, and that
ii) each of the polymers corresponding to the first and second blocks has an average molecular mass (by weight or by number) equal to that of the block polymer+/−15%.
In the case where the organic liquid medium comprises a mixture of organic liquids, should two or more liquids be present in identical mass proportions, the said polymers mixture is not miscible in at least one of them.
In the case where the organic liquid medium comprises a single organic liquid, the said liquid, quite obviously, constitutes the liquid that is in a majority by weight.
By “organic liquid medium” is meant a medium comprising at least one organic liquid, in other words at least one organic compound which is liquid at ambient temperature (25° C.) and atmospheric pressure (105 Pa). According to one mode of implementation the majority liquid of the organic liquid medium is a volatile or non-volatile oil (fat). Preferably the organic liquid is cosmetically acceptable (acceptable tolerance, toxicology and feel). The organic liquid medium is cosmetically acceptable in the sense that it is compatible with keratin materials, such as the oils or organic solvents commonly employed in cosmetic compositions.
According to one mode of implementation the majority liquid of the organic liquid medium is the polymerization solvent or one of the polymerization solvents of the block polymer, as are described below.
By polymerization solvent is meant a solvent or a mixture of solvents. The polymerization solvent may be selected in particular from ethyl acetate, butyl acetate, alcohols such as isopropanol and ethanol, aliphatic alkanes such as isododecane, and mixtures thereof. Preferably the polymerization solvent is a mixture of butyl acetate and isopropanol, or isododecane.
Generally speaking, the block polymer may be incorporated into the composition at a high solids content, typically more than 10%, more than 20% and more preferably more than 30% and more preferably still more than 45% by weight relative to the total weight of the composition, while being easy to formulate.
Preferentially the block polymer does not include silicon atoms in its skeleton. By “skeleton” is meant the main chain of the polymer, as opposed to the pendent side chains.
Preferably the polymer according to the invention is not water-soluble, which is to say that the polymer is not soluble in water or in a mixture of water and linear or branched lower monoalcohols having 2 to 5 carbon atoms, such as ethanol, isopropanol or n-propanol, without a change in pH, at an active substance content of at least 1% by weight, at ambient temperature (25° C.).
According to one mode of implementation the block polymer has a polydispersity index I of greater than 2.
Advantageously the block polymer used in the compositions according to the invention has a polydispersity index I of greater than 2, ranging for example from 2 to 9, preferably greater than or equal to 2.5, ranging for example from 2.5 to 8, and better still greater than or equal to 2.8, and in particular ranging from 2.8 to 6.
The polydispersity index I of the polymer is equal to the ratio of the weight-average mass Mw to the number-average mass Mn.
The weight-average (Mw) and number-average (Mn) molar masses are determined by liquid chromatography by gel permeation (THF solvent, calibration curve established with standards of linear polystyrene, refractometric detector).
The weight-average mass (Mw) of the block polymer is preferably less than or equal to 300 000, and ranges for example from 35 000 to 200 000, better still from 45 000 to 150 000.
The number-average mass (Mn) of the block polymer is preferably less than or equal to 70 000, and ranges for example from 10 000 to 60 000, better still from 12 000 to 50 000.
Each block or sequence of the block polymer is obtained from one type of monomer or from two or more different types of monomers.
This signifies that each block may be composed of a homopolymer or of a copolymer; this copolymer, constituting the block, may in turn be random or alternating.
The glass transition temperatures indicated for the first and second blocks may be theoretical Tgs determined from the theoretical Tgs of the constituent monomers of each of the blocks, which can be found in a reference manual such as the Polymer Handbook, 3rd ed., 1989, John Wiley, according to the following relationship , called Fox's Law:
1/Tg=Σ(
Unless indicated otherwise, the Tgs indicated for the first and second blocks in the present specification are theoretical Tgs.
The difference between the glass transition temperatures of the first and second blocks is generally greater than 10° C., preferably greater than 20° C. and more preferably greater than 30° C.
In particular the block polymer comprises at least one first block and at least one second block such that the first block may be selected from:
In the present invention, the expression “between . . . and . . . ” is intended to denote a range of values for which the limits mentioned are excluded, and the expression “from . . . to . . . ” and “ranging from . . . to . . . ” is intended to denote a range of values for which the limits are included.
a) Block with a Tg of Greater than or Equal to 40° C.
The block with a Tg of greater than or equal to 40° C. has, for example, a Tg ranging from 40 to 150° C., preferably greater than or equal to 50° C., ranging for example from 50° C. to 120° C., and better still greater than or equal to 60° C., ranging for example from 60° C. to 120° C.
The block with a Tg of greater than or equal to 40° C. may be a homopolymer or a copolymer.
The block with a Tg of greater than or equal to 40° C. may be obtained totally or partly from one or more monomers which are such that the homopolymer prepared from these monomers has a glass transition temperature of greater than or equal to 40° C.
In the case where this block is a homopolymer, it is obtained from monomers which are such that the homopolymers prepared from these monomers have glass transition temperatures of greater than or equal to 40° C. This first block may be a homopolymer composed of a single type of monomer (for which the Tg of the corresponding homopolymer is greater than or equal to 40° C.).
In the case where the first block is a copolymer, it may be obtained totally or partly from one or more monomers, the nature and concentration of which are selected such that the Tg of the resulting copolymer is greater than or equal to 40° C. The copolymer may comprise, for example:
The monomers whose homopolymers have a glass transition temperature of greater than or equal to 40° C. are selected, preferably, from the following monomers, also known as principal monomers:
where R7 and R8, which are identical or different, each represent a hydrogen atom or a linear or branched C1 to C12 alkyl group, such as an n-butyl, t-butyl, isopropyl, isohexyl, isooctyl or isononyl group; or R7 represents H and R8 represents a 1,1-dimethyl-3-oxobutyl group and R′ denotes H or methyl. Examples of monomers that may be mentioned include N-butylacrylamide, N-t-butylacrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide and N,N-dibutylacrylamide;
Principal monomers that are particularly preferred are methyl methacrylate, isobutyl (meth)acrylate and isobornyl (meth)acrylate, and mixtures thereof.
b) Block with a Tg of Less than or Equal to 20° C.
The block with a Tg of less than or equal to 20° C. has, for example, a Tg ranging from −100 to 20° C., preferably less than or equal to 15° C., especially ranging from −80° C. to 15° C. and better still less than or equal to 10° C., for example ranging from −50° C. to 0° C.
The block with a Tg of less than or equal to 20° C. may be a homopolymer or a copolymer.
The block with a Tg of less than or equal to 20° C. may be obtained totally or partly from one or more monomers which are such that the homopolymer prepared from these monomers has a glass transition temperature of less than or equal to 20° C.
In the case where this block is a homopolymer, it is obtained from monomers which are such that the homopolymers prepared from these monomers have glass transition temperatures of less than or equal to 20° C. This second block may be a homopolymer composed of a single type of monomer (for which the Tg of the corresponding homopolymer is less than or equal to 20° C.)
In the case where the block with a Tg of less than or equal to 20° C. is a copolymer, it may be obtained totally or partly from one or more monomers, the nature and concentration of which are selected such that the Tg of the resulting copolymer is less than or equal to 20° C.
It may comprise, for example
Preferably the block with a Tg of less than or equal to 20° C. is a homopolymer.
The monomers whose homopolymer has a Tg of less than or equal to 20° C. are selected, preferably, from the following monomers, or principal monomer:
The principal monomers that are particularly preferred for the block with a Tg of less than or equal to 20° C. are alkyl acrylates in which the alkyl chain contains from 1 to 10 carbon atoms, with the exception of the tert-butyl group, such as methyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate, and mixtures thereof.
c) Block with a Tg of between 20 and 40° C.
The block which has a Tg of between 20 and 40° C. may be a homopolymer or a copolymer.
The block with a Tg of between 20 and 40° C. may be obtained totally or partly from one or more monomers which are such that the homopolymer prepared from these monomers has a glass transition temperature of between 20 and 40° C.
The block with a Tg of between 20 and 40° C. may be obtained totally or partly from monomers which are such that the corresponding homopolymer has a Tg of greater than or equal to 40° C. and from monomers which are such that the corresponding homopolymer has a Tg of less than or equal to 20° C.
In the case where this block is a homopolymer, it is obtained from monomers (or principal monomers) which are such that the homopolymers prepared from these monomers have glass transition temperatures of between 20 and 40° C. This first block may be a homopolymer composed of a single type of monomer (for which the Tg of the corresponding homopolymer ranges from 20° C. to 40° C.).
The monomers whose homopolymer has a glass transition temperature of between 20 and 40° C. are selected, preferably, from n-butyl methacrylate, cyclodecyl acrylate, neopentyl acrylate and isodecylacrylamide, and mixtures thereof.
In the case where the block with a Tg of between 20 and 40° C. is a copolymer, it is obtained totally or partly from one or more monomers (or principal monomers) the nature and concentration of which are selected such that the Tg of the resulting copolymer is between 20 and 40° C.
Advantageously the block with a Tg of between 20 and 40° C. is a copolymer obtained totally or partly from:
Such principal monomers are selected, for example, from methyl methacrylate, isobornyl acrylate and methacrylate, butyl acrylate and 2-ethylhexyl acrylate, and mixtures thereof.
Preferably the proportion of the second block with a Tg of less than or equal to 20° C. ranges from 10% to 85%, better still from 20% to 70% and even better still from 20% to 50% by weight of the polymer.
Preferably each of the first and second blocks comprises at least one monomer selected from acrylic acid, the esters of acrylic acid, (meth)acrylic acid, the esters of (meth)acrylic acid, and mixtures thereof.
Advantageously each of the first and second blocks is obtained totally from at least one monomer selected from acrylic acid, the esters of acrylic acid, (meth)acrylic acid, the esters of (meth)acrylic acid, and mixtures thereof.
However, each of the blocks may contain in minority proportion at least one constituent monomer of the other block.
Thus the first block may contain at least one constituent monomer of the second block, and vice versa.
Each of the first and/or second blocks may comprise, in addition to the monomers indicated above, one or more other monomers known as additional monomers, which are different from the principal monomers mentioned above.
The nature and amount of this or these additional monomer(s) are selected such that the block in which they are present has the desired glass transition temperature.
This additional monomer is selected, for example, from:
b) ethylenically unsaturated monomers comprising one or more silicon atoms, such as methacryloxypropyltrimethoxysilane and methacryloxypropyltris(trimethylsiloxy)silane;
Additional monomers that are particularly preferred are acrylic acid, methacrylic acid and trifluoroethyl methacrylate, and mixtures thereof.
According to one embodiment, each of the first and second blocks of the block polymer comprises at least one monomer selected from esters of (meth)acrylic acid and optionally at least one additional monomer such as (meth)acrylic acid, and mixtures thereof.
According to another embodiment, each of the first and second blocks of the block polymer is obtained totally from at least one monomer selected from esters of (meth)acrylic acid and optionally at least one additional monomer such as (meth)acrylic acid, and mixtures thereof.
According to one preferred embodiment, the block polymer is a non-silicone polymer, i.e. a polymer free of silicon atoms.
This or these additional monomer(s) generally represent(s) an amount of less than or equal to 30% by weight, for example from 1% to 30% by weight, preferably from 5% to 20% by weight and more preferably from 7% to 15% by weight, relative to the total weight of the first and/or second blocks.
The block polymer may be obtained by free-radical solution polymerization according to the following preparation process:
According to a first embodiment, the block polymer comprises a first block with a Tg of greater than or equal to 40° C., as described above in a), and a second block with a Tg of less than or equal to 20° C., as described above in b).
Preferably the first block with a Tg of greater than or equal to 40° C. is a copolymer obtained from monomers which are such that the homopolymer prepared from these monomers has a glass transition temperature of greater than or equal to 40° C., such as the monomers described above.
Advantageously the second block with a Tg of less than or equal to 20° C. is a homopolymer obtained from monomers which are such that the homopolymer prepared from these monomers has a glass transition temperature of less than or equal to 20° C., such as the monomers described above.
Preferably the proportion of the block with a Tg of greater than or equal to 40° C. ranges from 20% to 90%, better still from 30% to 80% and even better still from 50% to 70% by weight of the polymer.
Preferably the proportion of the block with a Tg of less than or equal to 20° C. ranges from 5% to 75%, preferably from 15% to 50% and better still from 25% to 45% by weight of the polymer.
Thus, according to a first variant, the polymer according to the invention may comprise:
According to a second variant, the polymer according to the invention may comprise:
According to a third variant, the polymer according to the invention may comprise:
According to a fourth variant, the polymer according to the invention may comprise:
According to a fifth variant, the polymer according to the invention may comprise:
According to a sixth variant, the polymer according to the invention may comprise:
According to a seventh variant, the polymer according to the invention may comprise:
According to an eighth variant, the polymer according to the invention may comprise:
The examples which follow illustrate, non-limitatively, polymers corresponding to this first embodiment.
The amounts are expressed in grams.
100 g of butyl acetate are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 180 g of methyl methacrylate, 30 g of acrylic acid, 40 g of butyl acetate, 70 g of isopropanol and 1.8 g of 2,5-bis(2-ethylhexanoyl-peroxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1 hour.
Subsequently there are introduced into the above mixture, still at 90° C. and over 1 hour, 90 g of methyl acrylate, 70 g of butyl acetate, 20 g of isopropanol and 1.2 g of 2,5-bis(2-ethylhexanoyl-peroxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours, then diluted in 105 g of butyl acetate and 45 g of isopropanol, and then the whole is cooled.
This gives a solution containing 40% polymer active substance in the butyl acetate/isopropanol mixture.
A polymer is obtained which comprises a first, poly(methyl methacrylate/acrylic acid) block with a Tg of 100° C., a second, polymethyl acrylate block with a Tg of 10° C., and an intermediate block which is a methyl methacrylate/acrylic acid/polymethyl acrylate random polymer.
This polymer has a weight-average mass of 52 000 and a number-average mass of 18 000, giving a polydispersity index I of 2.89.
100 g of isododecane are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 120 g of isobornyl acrylate, 90 g of isobutyl methacrylate, 110 g of isododecane and 1.8 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1.5 h.
Subsequently there are introduced into the above mixture, still at 90° C. and over 30 minutes, 90 g of 2-ethylhexyl acrylate, 90 g of isododecane and 1.2 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours and then the whole is cooled.
This gives a solution containing 50% polymer active substance in isododecane.
A polymer is obtained which comprises a first, poly(isobornyl acrylate/isobutyl methacrylate) block with a Tg of 80° C., a second, poly-2-ethylhexyl acrylate block with a Tg of −70° C., and an intermediate block which is an isobornyl acrylate/isobutyl methacrylate/2-ethylhexyl acrylate random polymer.
This polymer has a weight-average mass of 77 000 and a number-average mass of 19 000, giving a polydispersity index I of 4.05.
100 g of isododecane are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 150 g of isobornyl acrylate, 60 g of methyl methacrylate, 110 g of isododecane and 1.8 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1.5 h.
Subsequently there are introduced into the above mixture, still at 90° C. and over 30 minutes, 90 g of 2-ethylhexyl acrylate, 90 g of isododecane and 1.2 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours and then the whole is cooled.
This gives a solution containing 50% polymer active substance in isododecane.
A polymer is obtained which comprises a first, poly(isobornyl acrylate/methyl methacrylate) block with a Tg of 100° C., a second, poly-2-ethylhexyl acrylate block with a Tg of −70° C., and an intermediate block which is an isobornyl acrylate/methyl methacrylate/2-ethylhexyl acrylate random polymer.
This polymer has a weight-average mass of 76 500 and a number-average mass of 22 000, giving a polydispersity index I of 3.48.
100 g of isododecane are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 105 g of isobornyl acrylate, 105 g of isobornyl methacrylate, 110 g of isododecane and 1.8 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1.5 h.
Subsequently there are introduced into the above mixture, still at 90° C. and over 30 minutes, 90 g of 2-ethylhexyl acrylate, 90 g of isododecane and 1.2 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours and then the whole is cooled.
This gives a solution containing 50% polymer active substance in isododecane.
A polymer is obtained which comprises a first, poly(isobornyl acrylate/isobornyl methacrylate) block or sequence with a Tg of 110° C., a second, poly-2-ethylhexyl acrylate block with a Tg of −70° C., and an intermediate block which is an isobornyl acrylate/isobornyl methacrylate/2-ethylhexyl acrylate random polymer.
This polymer has a weight-average mass of 103 900 and a number-average mass of 21 300, giving a polydispersity index I of 4.89.
Second Embodiment
According to a second embodiment, the block polymer comprises a first block with a glass transition temperature (Tg) of between 20 and 40° C., in accordance with the blocks described in c), and a second block with a glass transition temperature of less than or equal to 20° C., as described above in b), or a glass transition temperature of greater than or equal to 40° C., as described in a) above.
Preferably the proportion of the first block with a Tg of between 20 and 40° C. ranges from 10% to 85%, better still from 30% to 80% and even better still from 50% to 70% by weight of the polymer.
When the second block is a block with a Tg of greater than or equal to 40° C., it is preferably present in a proportion ranging from 10% to 85% by weight, better still from 20% to 70% and even better still from 30% to 70% by weight of the polymer.
When the second block is a block with a Tg of less than or equal to 20° C., it is preferably present in a proportion ranging from 10% to 85% by weight, better still from 20% to 70% and even better still from 20% to 50% by weight of the polymer.
Preferably the first block with a Tg of between 20 and 40° C. is a copolymer obtained from monomers which are such that the corresponding homopolymer has a Tg of greater than or equal to 40° C., and from monomers which are such that the corresponding homopolymer has a Tg of less than or equal to 20° C.
Advantageously the second block with a Tg of less than or equal to 20° C. or with a Tg of greater than or equal to 40° C. is a homopolymer.
Thus, according to a first variant of this second embodiment, the block polymer may comprise:
According to a second variant of this second embodiment, the block polymer may comprise:
According to a third variant of this second embodiment, the block polymer may comprise:
By way of illustration, but without limitation, the polymers corresponding to this second embodiment may be realised as follows.
100 g of butyl acetate are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 50.4 g of methyl methacrylate, 21 g of acrylic acid, 138.6 g of methyl acrylate, 40 g of butyl acetate, 70 g of isopropanol and 1.8 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1 hour.
Subsequently there are introduced into the above mixture, still at 90° C. and over 1 hour, 90 g of methyl methacrylate, 70 g of butyl acetate, 20 g of isopropanol and 1.2 g of 2,5-bis(2-ethylhexanoyl-peroxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours and then diluted with 105 g of butyl acetate and 45 g of isopropanol, and the whole is then cooled.
This gives a solution containing 40% polymer active substance in the butyl acetate/isopropanol mixture.
The polymer obtained comprises a first poly(methyl acrylate/methyl methacrylate/acrylic acid) block having a Tg of 35° C., a second poly(methyl methacrylate) block having a Tg of 100° C. and an intermediate block which is a methyl methacrylate/acrylic acid/polymethyl acrylate random polymer.
100 g of isododecane are introduced into a 1 litre reactor and then the temperature is raised so as to go from ambient temperature (25° C.) to 90° C. over 1 hour.
Subsequently there are added, at 90° C. and over 1 hour, 54 g of isobornyl acrylate, 75.6 g of isobutyl methacrylate, 50.4 g of 2-ethylhexyl acrylate, 110 g of isododecane and 1.8 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane (Trigonox® 141 from Akzo Nobel).
The mixture is held at 90° C. for 1.5 h.
Subsequently there are introduced into the above mixture, still at 90° C. and over 1 hour, 120 g of 2-ethylhexyl acrylate, 90 g of isododecane and 1.2 g of 2,5-bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane.
The mixture is held at 90° C. for 3 hours and then diluted and the whole is then cooled.
This gives a solution containing 50% of polymer active substance in isododecane.
A polymer is obtained which comprises a first poly(isobornyl acrylate/isobutyl methacrylate/2-ethyl-hexyl acrylate) block having a Tg of 25° C., a second poly-2-ethylhexyl acrylate block having a Tg of −50° C. and an intermediate block which is an isobornyl acrylate/isobutyl methacrylate/2-ethylhexyl acrylate random polymer.
The composition according to the invention contains preferably from 0.1% to 60% by weight of active substance (or solids) of the polymer, preferably from 0.5% to 50% by weight and more preferably from 1% to 40% by weight.
Gelling Agent
The composition of the invention also comprises at least one agent for gelling the organic liquid medium of the composition. The gelling agent may increase the viscosity of the organic liquid medium and may lead to a solid or flowable composition when introduced into the said organic liquid medium.
The gelling agent may be selected from gelling agents in polymeric form and gelling agents in mineral form.
In one embodiment the gelling agent is not soluble in an aqueous phase or in water.
The gelling agent according to the present invention is selected preferably from the group consisting of agents which gel via chemical crosslinking and agents which gel via physical crosslinking.
Gelling Agents which Gel Via Chemical Crosslinking
According to one embodiment, preference is given to crosslinked elastomeric polyorganosiloxanes of three-dimensional structure, such as MQ silicone resins, polyalkylsesquioxanes, especially polymethyl-sesquioxanes, and resins crosslinked via hydro-silylation. These silicone resins may carry hydrophilic groups, such as polyoxyethylene or copoly(oxyethylene/oxypropylene).
As polyorganosiloxanes which can be used in the invention, mention may be made of the crosslinked elastomeric polyorganosiloxanes described in application EP-A-0 295 886, the disclosure of which is incorporated in this text by reference. According to that application they are obtained by addition reaction and crosslinking, in the presence of a platinum-type catalyst, of at least:
As examples of polyorganosiloxanes which can be used according to the invention, mention may be made of those sold or made under the names KSG6 from Shin-Etsu, Trefil E-505C or Trefil E-506C from Dow Corning, Gransil from Grant Industries (SR-CYC, SR DMF10, SR-DC556) or those sold in the form of preconstituted gels (KSG15, KSG17, KSG16, KSG18 and KSG21 from Shin-Etsu, Gransil SR 5CYC gel, Gransil SR DMF 10 gel, Gransil SR DC556 gel, SF 1204 and JK 113 from General Electric. A mixture of these commercial products may also be used.
Gelling Agents which Gel Via Physical Crosslinking
Gelling agents which gel via physical crosslinking, particularly by molecular agitation, hydrogen interactions or dipolar interactions, and also fat-soluble polymers having liquid crystal groups, are preferred.
Gelling agents which gel via molecular agitation are polymers having high molecular weights, preferably greater than 500 000, such as silicone gums.
The silicone gum may correspond to the formula:
in which:
Among the silicone gums which can be used as a gelling agent according to the invention, mention may be made of those for which:
Gelling agents which gel the organic liquid medium via hydrogen interactions are selected preferably from the group consisting of:
Gelling agents may also be selected from the group consisting of:
In one embodiment a copolymer comprising at least one styrene block is used as gelling agent. A triblock copolymer, and in particular those of the polystyrene/polyisoprene or polystyrene/polybutadiene type, such as those sold or made under the name “Luvitol HSB” by BASF and those of the polystyrene/copoly(ethylene-propylene) type or, alternatively, those of the polystyrene/copoly(ethylene/butylene) type, such as those sold or made under the brand name “Kraton” by Shell Chemical Co. or Gelled Permethyl 99A by Penreco, may be used. Styrene-methacrylate copolymers may also be used.
As an ethylenic gelling agent which can be used in the composition of the invention, mention may be made, for example, of Kraton G1650 (SEBS), Kraton G1651 (SEBS), Kraton G1652 (SEBS), Kraton G1657X (SEBS), Kraton G1701X (SEP), Kraton G1702X (SEP), Kraton G1726X (SEB), Kraton D-1101 (SBS), Kraton D-1102 (SBS), Kraton D-1107 (SIS), Gelled Permethyl 99A-750, Gelled Permethyl 99A-753-58, Gelled Permethyl 99A-753-59, Versagel 5970 and Versagel 5960 from Penreco, and OS 129880, OS 129881 and OS 84383 from Lubrizol (styrene-methacrylate copolymer).
Diblocks or triblocks such as polystyrene-copoly(ethylene/propylene) or polystyrene-copoly(ethylene/butylene), such as those described in patent applications WO 98/38981 and US 2002/0055562 are also included in the present invention.
Gelling agents which gel via dipolar interactions are selected preferably from the compounds described in documents WO 01/30886 and U.S. Pat. No. 6,228,967, the disclosures of which are incorporated in this text by reference. The ionized groups in the said compounds, for example the zwitterionic groups, create the said dipolar interactions.
Gelling agents such as the fat-soluble polymers having liquid crystal groups are also preferred according to the present invention, particularly fat-soluble polymers whose skeleton is of silicone, vinyl and/or (meth)acrylic type, and which possess liquid crystal side groups, especially the compounds described in patent application FR 2 816 503, the disclosure of which is incorporated in this text by reference.
In another embodiment the gelling agent may be in mineral form.
The gelling agent may be a modified clay. As modified clays which can be used, mention may be made of hectorites modified with an ammonium chloride of a C10 to C22 fatty acid, such as a hectorite modified with distearyldimethylammonium chloride, also known as bentonite of quaternium-18, such as the products sold or made under the names Bentone 34 by the company Rheox, Claytone XL, Claytone 34 and Claytone 40 sold or made by the company Southern Clay, modified clays known under the name quaternium-18 bentonites and benzalkonium bentonites and sold or made under the names Claytone HT, Claytone GR and Claytone PS by the company Southern Clay, clays modified with stearyldi-methylbenzoylammonium chloride, known as stearalkonium bentonites, such as the products sold or made under the names Claytone APA and Claytone AF by the company Southern Clay, and Baragel 24, sold or made by the company Rheox.
As other mineral gelling agents which can be used in the invention, mention may be made of silica, such as fumed silica. The fumed silica may have a particle size which may be nanometric or micrometric, for example ranging from approximately 5 nm to 200 nm.
Fumed silicas may be obtained by high-temperature hydrolysis of a volatile silicon compound in an oxyhydrogen flame, producing a finely divided silica. This process allows hydrophilic silicas to be obtained which possess a large number of silanol groups on their surface. The silanol groups may be replaced, for example, by hydrophobic groups: this then gives a hydrophobic silica. The hydrophobic groups may be:
According to the invention a hydrophobic silica, such as a fumed silica, may be used as gelling agent.
The gelling agent may be used, for example, in concentrations ranging from 0.05% to 35% of the total weight of the composition, for example from 0.5% to 20% or from 1% to 10%.
The composition according to the invention may comprise a hydrophilic medium comprising water or a mixture of water and hydrophilic organic solvent(s) such as alcohols and especially linear or branched lower monoalcohols having from 2 to 5 carbon atoms such as ethanol, isopropanol or n-propanol, and polyols such as glycerol, diglycerol, propylene glycol, sorbitol, pentylene glycol, and polyethylene glycols, or else C2 ethers and C2-C4 aldehydes which are hydrophilic.
The water or the mixture of water and hydrophilic organic solvents may be present in the composition according to the invention in an amount ranging from 0.1% to 99% by weight, relative to the total weight of the composition, and preferably from 10% to 80% by weight.
The composition according to the invention comprises an organic liquid medium which is cosmetically acceptable (acceptable tolerance, toxicology and feel).
According to one particularly preferred embodiment the organic liquid medium of the composition comprises at least one organic solvent, which is the, or one of the, polymerization solvent(s) of the block polymer as described above. Advantageously the said organic solvent is the majority liquid by weight in the organic liquid medium of the cosmetic composition.
According to one embodiment, the organic liquid medium comprises fatty substances which are liquid at ambient temperature (25° C. in general). These liquid fatty substances may be animal, vegetable, mineral or synthetic in origin.
As fatty substances which are liquid at ambient temperature, often called oils, which can be used in the invention mention may be made of: hydrocarbon oils of animal origin, such as perhydrosqualene; vegetable hydrocarbon oils, such as liquid triglycerides of fatty acids of 4 to 10 carbon atoms, such as heptanoic or octanoic acid triglycerides, or else sunflower oil, corn oil, soya oil, grape seed oil, sesame oil, apricot oil, macadamia oil, castor oil, avocado oil, caprylic/capric acid triglycerides, jojoba oil, karite butter; linear or branched hydrocarbons, of mineral or synthetic origin, such as liquid paraffins and derivatives thereof, Vaseline, polydecenes, hydrogenated polyisobutene such as parleam; the synthetic esters and ethers particularly of fatty acids, such as, for example, purcellin oil, isopropyl myristate, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl erucate, isostearyl isostearate; hydroxylated esters such as isostearyl lactate, octyl hydroxystearate, octyldodecyl hydroxystearate, diisostearyl malate, triisocetyl citrate, and heptanoates, octanoates and decanoates of fatty alcohols; polyol esters such as propylene glycol dioctanoate, neopentyl glycol diheptanoate and diethylene glycol diisononanoate; and pentaerythritol esters; fatty alcohols having 12 to 26 carbon atoms, such as octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol, and oleyl alcohol; partially hydrocarbon-based and/or silicone-based fluoro oils; silicone oils, such as volatile or non-volatile polydimethylsiloxanes (PDMS) that are linear or cyclic, such as cyclomethicones, dimethicones, optionally including a phenyl group, such as phenyl trimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenylmethyldimethyltrisiloxanes, diphenyldimethicones, phenyldimethicones and polymethylphenylsiloxanes; and mixtures thereof.
These oils may be present in an amount ranging from 0.01% to 90%, and better still from 0.1% to 85% by weight, relative to the total weight of the composition.
The organic liquid medium of the composition according to the invention may also comprise one or more organic solvents which are cosmetically acceptable (acceptable tolerance, toxicology and feel).
These solvents may be generally present in an amount ranging from 0.1% to 90%, more preferably from 10% to 90% by weight, relative to the total weight of the composition, and better still from 30% to 90%.
As solvents which can be used in the composition of the invention mention may be made, besides the aforementioned hydrophilic organic solvents, of ketones which are liquid at ambient temperature, such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, isophorone, cyclohexanone and acetone; propylene glycol ethers which are liquid at ambient temperature, such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and dipropylene glycol mono-n-butyl ether; short-chain esters (having 3 to 8 carbon atoms in total), such as ethyl acetate, methyl acetate, propyl acetate, n-butyl acetate and isopentyl acetate; ethers which are liquid at ambient temperature, such as diethyl ether, dimethyl ether or dichlorodiethyl ether; alkanes which are liquid at ambient temperature, such as decane, heptane, dodecane, isododecane and cyclohexane; aromatic cyclic compounds which are liquid at ambient temperature, such as toluene and xylene; and aldehydes which are liquid at ambient temperature, such as benzaldehyde and acetaldehyde, and mixtures thereof.
Besides the block polymer described above, the composition may comprise an additional polymer such as a film-forming polymer. According to the present invention a “film-forming polymer” is a polymer capable of forming, by itself or in the presence of an auxiliary film-forming agent, a continuous and adherent film on a support, particularly on keratin materials.
Among the film-forming polymers which can be used in the composition of the present invention, mention may be made of synthetic polymers, of free-radical type or polycondensate type, and of polymers of natural origin, and mixtures thereof. As film-forming polymer, mention may be made in particular of acrylic polymers, polyurethanes, polyesters, polyamides, polyureas and cellulosic polymers such as nitro-cellulose.
The polymer may be combined with one or more auxiliary film-forming agents. A film-forming agent of this kind may be selected from all of the compounds known to the person skilled in the art as being capable of fulfilling the desired function, and in particular may be selected from plasticizers and coalescers.
The composition according to the invention may include at least one wax. By wax in the sense of the present invention is meant a lipophilic compound which is solid at ambient temperature (25° C.), exhibits a reversible solid/liquid state change and has a melting point greater than or equal to 30° C. and possibly up to 120° C.
The melting point of the wax can be measured by means of a differential scanning calorimeter (DSC), an example being the calorimeter sold under the name DSC 30 by the company Mettler.
The waxes may be hydrocarbon waxes, fluoro waxes and/or silicone waxes and may be vegetable, mineral, animal and/or synthetic in origin. In particular the waxes have a melting point of more than 25° C. and better still more than 45° C.
As wax which can be used in the composition of the invention mention may be made of beeswax, carnauba wax or candelilla wax, paraffin, microcrystalline waxes, ceresin or ozokerite; synthetic waxes such as polyethylene waxes or Fischer-Tropsch waxes, and silicone waxes such as the alkyl- or alkoxydimethicones having 16 to 45 carbon atoms.
The nature and amount of the solid fatty substances are a function of the desired mechanical properties and textures. By way of indication the composition may contain from 0% to 50% by weight of waxes, relative to the total weight of the composition, and better still from 1% to 30% by weight.
The composition according to the invention may further comprise one or more colorants selected from water-soluble dyes and pulverulent colorants such as pigments, nacres and flakes, which are well known to the person skilled in the art. The colorants may be present in the composition in an amount ranging from 0.01% to 50% by weight, relative to the weight of the composition, preferably from 0.01% to 30% by weight.
By pigments are meant particles of any form, white or coloured, organic or inorganic, which are insoluble in the physiological medium and are intended for colouring the composition.
By nacres are meant iridescent particles of any form that are produced in particular by certain molluscs in their shell, or else are synthesized.
The pigments may be white or coloured, organic and/or inorganic. Among inorganic pigments mention may be made of titanium dioxide, optionally in surface-treated form, zirconium oxide or cerium oxide, and also zinc oxide, iron oxides (black, yellow or red) or chromium oxide, manganese violet, ultramarine blue, chromium hydrate and ferric blue, and metal powders such as aluminium powder and copper powder.
Among organic pigments mention may be made of carbon black, D & C pigments, and the cochineal carmine-based lakes of barium, strontium, calcium and aluminium.
Mention may also be made of effect pigments, such as particles comprising an organic or inorganic, natural or synthetic substrate, for example glass, acrylic resins, polyester, polyurethane, polyethylene terephthalate, ceramics or aluminas, the said substrate being uncovered or covered with metallic substances such as aluminium, gold, silver, platinum, copper or bronze, or with metal oxides such as titanium dioxide, iron oxide or chromium oxide, and mixtures thereof.
The nacreous pigments may be selected from white nacreous pigments such as titanium-covered mica, or bismuth oxychloride, coloured nacreous pigments such as titanium mica covered with iron oxides, titanium mica covered with, in particular, ferric blue or chromium oxide, titanium mica covered with an organic pigment of the aforementioned type, and also nacreous pigments based on bismuth oxychloride. It is also possible to use interference pigments, especially those which are liquid-crystal pigments or multi-layer pigments.
The water-soluble dyes are, for example, beetroot juice and methylene blue.
The composition according to the invention may further comprise one or more fillers, particularly in an amount ranging from 0.01% to 50% by weight, relative to the total weight of the composition, preferably ranging from 0.01% to 30% by weight. By fillers are meant particles of any form, colourless or white, mineral or synthetic, which are insoluble in the medium of the composition irrespective of the temperature at which the composition is manufactured. These fillers serve in particular to modify the rheology or texture of the composition.
The fillers may be organic or inorganic and may be in any form, platelet-shaped, spherical or oblong, irrespective of the crystallographic form (for example leaf, cubic, hexagonal, orthorhombic, etc.). Mention may be made of talc, mica, silica, kaolin, polyamide (Nylon®) powders (Orgasol® from Atochem), poly-β-alanine and polyethylene, the powders of polymers of tetrafluoroethylene (Teflon®), lauroyl-lysine, starch, boron nitride, hollow polymeric microspheres such as those of polyvinylidene chloride/acrylonitrile, for instance Expancel® (Nobel Industrie), acrylic acid copolymers (Polytrap® from the company Dow Corning) and silicone resin microbeads (Tospearls® from Toshiba, for example), elastomeric polyorganosiloxane particles, precipitated calcium carbonate, magnesium carbonate and magnesium hydrocarbonate, hydroxyapatite, hollow silica microspheres (Silica Beads® from Maprecos), ceramic or glass microcapsules, metal soaps derived from organic carboxylic acids having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms, for example zinc stearate, magnesium stearate or lithium stearate, zinc laurate and magnesium myristate.
The composition according to the invention may be in the form in particular of a stick, suspension, dispersion, solution, gel, emulsion, especially oil-in-water (O/W) or water-in-oil (W/O), or multiple (O/W/O or polyol/O/W or W/O/W), emulsion, or in the form of a cream, paste or mousse, or a vesicle dispersion, particularly of ionic or nonionic lipids, or a two-phase or multi-phase lotion, a spray, powder or paste, especially a flexible paste (in particular a paste having a dynamic viscosity at 25° C. of the order of 0.1 to 40 Pa·s at a shear rate of 200 s−1, after 10 minutes of measurement in cone/plate geometry). The composition may be anhydrous: for example, it may be an anhydrous paste.
The person skilled in the art will be able to select the appropriate type of formulation, and the method of preparing it, on the basis of his or her general knowledge, taking into account, on the one hand, the nature of the constituents used, and especially their solubility in the vehicle, and, on the other hand, the application envisaged for the composition.
The composition according to the invention may be a makeup composition such as products for the complexion (foundations), rouges, eyeshadows, lipsticks, concealers, blushers, mascaras, eyeliners, eyebrow makeup products, lip pencils, eye pencils, nail products, such as nail varnishes, body makeup products or hair makeup products (hair lacquer or mascara).
The composition according to the invention may also be a facial or bodily skincare product, in particular a sun product or skin colouring product (such as a self-tanning product).
The present invention likewise provides a cosmetic kit comprising:
The container may be in any appropriate form. It may in particular be in the form of a bottle, tube, jar, case, box, sachet or carton.
The closing element may be in the form of a removable stopper, a lid, a cap, a tear-off strip or a capsule, particularly of the type comprising a body attached to the container and a cover cap articulated on the body. It may also be in the form of an element for selectively closing the container, particularly a pump, valve or valve flap.
The container may be combined with an applicator, particularly in the form of a brush comprising an arrangement of bristles held by a twisted wire. A twisted brush of this kind is described in particular in patent U.S. Pat. No. 4,887,622. It may also be in the form of a comb comprising a plurality of application elements, obtained in particular from moulding. Combs of this kind are described, for example, in patent FR 2 796 529. The applicator may be in the form of a fine brush, as described, for example, in patent FR 2 722 380. The applicator may be in the form of a block of foam or elastomer, a felt or a spatula. The applicator may be free (tuft or sponge) or of one piece with a rod carried by the closing element, as described, for example, in patent U.S. Pat. No. 5,492,426. The applicator may be of one piece with the container, as described, for example, by patent FR 2 761 959.
The product may be accommodated directly in the container, or indirectly. By way of example, the product may be arranged on an impregnated support, particularly in the form of a wipe or pad, and arranged (in unitary or plural form) in a box or in a sachet. A support of this kind, incorporating the product, is described for example in patent application WO 01/03538.
The closing element may be coupled to the container by screwing. Alternatively the coupling between the closing element and the container is performed other than by screwing, in particular via a bayonet mechanism, by snap-fastening, gripping, welding, adhesive bonding, or by magnetic attraction. By “snap-fastening” is meant, in particular, any system involving the traversal of a bead or cord of material by elastic deformation of a portion, particularly of the closing element, followed by return to the elastically unstressed position of the said portion after the traversal of the bead or cord.
The container may be at least partly made of thermoplastic material. Examples that may be mentioned of thermoplastic materials include polypropylene and polyethylene.
Alternatively the container is made of a non-thermoplastic material, particularly of glass or of metal (or alloy).
The container may be one with rigid walls or may have deformable walls, particularly in the form of a tube or tubular bottle.
The container may include means intended for distributing, or facilitating the distribution of, the composition. By way of example, the container may have walls which are deformable so as to allow the composition to exit in response to a positive pressure inside the container, this positive pressure being brought about by elastic (or non-elastic) squeezing of the container's walls. Alternatively, and particularly when the product is in the form of a stick, the product may be driven by a piston mechanism. Still in the case of a stick, particularly a makeup product stick (lipstick, foundation, etc.), the container may include a mechanism, especially a rack mechanism, or one with a threaded rod, or with a helical groove, which is capable of displacing a stick in the direction of the said opening. A mechanism of this kind is described for example in patent FR 2 806 273 or in patent FR 2 775 566. A mechanism of this kind for a liquid product is described in patent FR 2 727 609.
The container may be composed of a carton with a base delimiting at least one housing accommodating the composition, and a lid, particularly a lid articulated on the base, which is capable of covering the said base, at least in part. A carton of this kind is described for example in patent application WO 03/018423 or in patent FR 2 791 042.
The container may be equipped with a drainer arranged in the region of the opening of the container. A drainer of this kind allows the applicator to be wiped and optionally allows the rod, which may be of one piece with it, to be wiped. A drainer of this kind is described for example in patent FR 2 792 618.
The composition may be at the atmospheric pressure inside the container (at ambient temperature) or may be in pressurized form, particularly by means of a propellent gas (aerosol). In the latter case the container is equipped with a valve (of the type used for aerosols).
The content of the patents or patent applications cited above is incorporated by reference into the present application.
The examples which follow illustrate, without limitation, the compositions according to the invention.
The formula exhibits a much greater viscosity than the reference without gelling agent. It can also be applied without difficulty using a foam applicator, and leads to a homogeneous deposit.
Number | Date | Country | Kind |
---|---|---|---|
02 11949 | Sep 2002 | FR | national |
02 16437 | Dec 2002 | FR | national |
03 06121 | May 2003 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR03/02848 | 9/26/2003 | WO | 00 | 10/4/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/028486 | 4/8/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2047398 | Voss et al. | Jul 1936 | A |
2528378 | Mannheimer et al. | Oct 1950 | A |
2723248 | Wright | Nov 1955 | A |
2781354 | Mannheimer et al. | Feb 1957 | A |
3673160 | Buisson et al. | Jun 1972 | A |
3716633 | Viout et al. | Feb 1973 | A |
3802841 | Robin | Apr 1974 | A |
3836537 | Boerwinkle et al. | Sep 1974 | A |
3910862 | Barabas et al. | Oct 1975 | A |
3915921 | Schlatzer et al. | Oct 1975 | A |
3925542 | Viout et al. | Dec 1975 | A |
3937811 | Papantoniou et al. | Feb 1976 | A |
3946749 | Papantoniou | Mar 1976 | A |
3966403 | Papantoniou et al. | Jun 1976 | A |
3966404 | Papantoniou et al. | Jun 1976 | A |
3990459 | Papantoniou | Nov 1976 | A |
4030512 | Papantoniou et al. | Jun 1977 | A |
4031307 | DeMartino et al. | Jun 1977 | A |
4032628 | Papantoniou et al. | Jun 1977 | A |
4070533 | Papantoniou et al. | Jan 1978 | A |
4076912 | Papantoniou et al. | Feb 1978 | A |
RE29871 | Papantoniou et al. | Dec 1978 | E |
4128631 | Lundmark et al. | Dec 1978 | A |
4129711 | Viout et al. | Dec 1978 | A |
4131576 | Iovine | Dec 1978 | A |
4137208 | Elliott | Jan 1979 | A |
4152416 | Spitzer et al. | May 1979 | A |
4165367 | Chakrabarti | Aug 1979 | A |
4223009 | Chakrabarti | Sep 1980 | A |
4282203 | Jacquet et al. | Aug 1981 | A |
4289752 | Mahieu et al. | Sep 1981 | A |
4425326 | Guillon et al. | Jan 1984 | A |
4509949 | Huang et al. | Apr 1985 | A |
4693935 | Mazurek | Sep 1987 | A |
4728571 | Clemens et al. | Mar 1988 | A |
4887622 | Gueret | Dec 1989 | A |
4972037 | Garbe et al. | Nov 1990 | A |
4981902 | Mitra et al. | Jan 1991 | A |
4981903 | Garbe et al. | Jan 1991 | A |
5000937 | Grollier et al. | Mar 1991 | A |
5061481 | Suzuki et al. | Oct 1991 | A |
5110582 | Hungerbuhler et al. | May 1992 | A |
5156911 | Stewart | Oct 1992 | A |
5209924 | Garbe et al. | May 1993 | A |
5219560 | Suzuki et al. | Jun 1993 | A |
5266321 | Shukuzaki et al. | Nov 1993 | A |
5362485 | Hayama et al. | Nov 1994 | A |
5391631 | Porsch et al. | Feb 1995 | A |
5468477 | Kumar et al. | Nov 1995 | A |
5472798 | Kumazawa et al. | Dec 1995 | A |
5492426 | Gueret | Feb 1996 | A |
5519063 | Mondet et al. | May 1996 | A |
5538717 | De La Poterie | Jul 1996 | A |
5681877 | Hosotte-Filbert et al. | Oct 1997 | A |
5686067 | Shih et al. | Nov 1997 | A |
5690918 | Jacks et al. | Nov 1997 | A |
5711940 | Kuentz et al. | Jan 1998 | A |
5725882 | Kumar et al. | Mar 1998 | A |
5736125 | Morawsky et al. | Apr 1998 | A |
5747013 | Mougin et al. | May 1998 | A |
5756635 | Michaud et al. | May 1998 | A |
5772347 | Gueret | Jun 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5807540 | Junino et al. | Sep 1998 | A |
5843407 | El-Nokaly et al. | Dec 1998 | A |
5849275 | Calello et al. | Dec 1998 | A |
5849318 | Imai et al. | Dec 1998 | A |
5879095 | Gueret | Mar 1999 | A |
5897870 | Schehlmann et al. | Apr 1999 | A |
5948393 | Tomomasa et al. | Sep 1999 | A |
5994446 | Graulus et al. | Nov 1999 | A |
6001367 | Bazin et al. | Dec 1999 | A |
6001374 | Nichols | Dec 1999 | A |
6027739 | Nichols | Feb 2000 | A |
6033650 | Calello et al. | Mar 2000 | A |
6059473 | Gueret | May 2000 | A |
6074654 | Drechsler et al. | Jun 2000 | A |
6083516 | Curtis et al. | Jul 2000 | A |
6106813 | Mondet et al. | Aug 2000 | A |
6106820 | Morrissey et al. | Aug 2000 | A |
6120781 | Le Bras et al. | Sep 2000 | A |
6126929 | Mougin | Oct 2000 | A |
6132742 | Le Bras et al. | Oct 2000 | A |
6139849 | Lesaulnier et al. | Oct 2000 | A |
6140431 | Kinker et al. | Oct 2000 | A |
6153206 | Anton et al. | Nov 2000 | A |
6156804 | Chevalier et al. | Dec 2000 | A |
6160054 | Schwindeman et al. | Dec 2000 | A |
6165457 | Midha et al. | Dec 2000 | A |
6166093 | Mougin et al. | Dec 2000 | A |
6174968 | Hoxmeier | Jan 2001 | B1 |
6180123 | Mondet | Jan 2001 | B1 |
6197883 | Schimmel et al. | Mar 2001 | B1 |
6225390 | Hoxmeier | May 2001 | B1 |
6228946 | Kitayama et al. | May 2001 | B1 |
6228967 | Fost et al. | May 2001 | B1 |
6238679 | De La Poterie et al. | May 2001 | B1 |
6254878 | Bednarek et al. | Jul 2001 | B1 |
6258916 | Michaud et al. | Jul 2001 | B1 |
6267951 | Shah et al. | Jul 2001 | B1 |
6268466 | MacQueen et al. | Jul 2001 | B1 |
6280713 | Tranchant et al. | Aug 2001 | B1 |
6303105 | Shah et al. | Oct 2001 | B1 |
6319959 | Mougin et al. | Nov 2001 | B1 |
6326011 | Miyazawa et al. | Dec 2001 | B1 |
6328495 | Gueret | Dec 2001 | B1 |
6342237 | Bara | Jan 2002 | B1 |
6372876 | Kim et al. | Apr 2002 | B1 |
6386781 | Gueret | May 2002 | B1 |
6395265 | Mougin et al. | May 2002 | B1 |
6399691 | Melchiors et al. | Jun 2002 | B1 |
6410005 | Galleguillos et al. | Jun 2002 | B1 |
6410666 | Grubbs et al. | Jun 2002 | B1 |
6412496 | Gueret | Jul 2002 | B1 |
6423306 | Caes et al. | Jul 2002 | B2 |
6464969 | De La Poterie et al. | Oct 2002 | B2 |
6484731 | Lacout | Nov 2002 | B1 |
6491927 | Arnaud et al. | Dec 2002 | B1 |
6518364 | Charmot et al. | Feb 2003 | B2 |
6531535 | Melchiors et al. | Mar 2003 | B2 |
6552146 | Mougin | Apr 2003 | B1 |
6581610 | Gueret | Jun 2003 | B1 |
6649173 | Arnaud et al. | Nov 2003 | B1 |
6663855 | Frechet et al. | Dec 2003 | B2 |
6663885 | Hager et al. | Dec 2003 | B1 |
6685925 | Frechet et al. | Feb 2004 | B2 |
6692173 | Gueret | Feb 2004 | B2 |
6692733 | Mougin | Feb 2004 | B1 |
6770271 | Mondet et al. | Aug 2004 | B2 |
6805872 | Mougin | Oct 2004 | B2 |
6833419 | Morschhauser et al. | Dec 2004 | B2 |
6843611 | Blondeel et al. | Jan 2005 | B2 |
6866046 | Gueret | Mar 2005 | B2 |
6881780 | Bryant et al. | Apr 2005 | B2 |
6890522 | Frechet et al. | May 2005 | B2 |
6891011 | Morschhauser et al. | May 2005 | B2 |
6905696 | Marotta et al. | Jun 2005 | B2 |
6946518 | De La Poterie | Sep 2005 | B2 |
6960339 | Ferrari | Nov 2005 | B1 |
6964995 | Morschhauser et al. | Nov 2005 | B2 |
7022791 | Loffler et al. | Apr 2006 | B2 |
7025973 | Loffler et al. | Apr 2006 | B2 |
7053146 | Morschhauser et al. | May 2006 | B2 |
7081507 | Morschhauser et al. | Jul 2006 | B2 |
7144171 | Blondeel et al. | Dec 2006 | B2 |
7151137 | Morschhauser et al. | Dec 2006 | B2 |
7176170 | Dubief et al. | Feb 2007 | B2 |
7186405 | Loffler et al. | Mar 2007 | B2 |
7186774 | Morschhauser et al. | Mar 2007 | B2 |
7244421 | Loffler et al. | Jul 2007 | B2 |
7279154 | Loffler et al. | Oct 2007 | B2 |
7297328 | Loffler et al. | Nov 2007 | B2 |
7332155 | Loffler et al. | Feb 2008 | B2 |
7358303 | De La Poterie | Apr 2008 | B2 |
7393520 | Loffler et al. | Jul 2008 | B2 |
7399478 | Loffler et al. | Jul 2008 | B2 |
7875265 | Blin et al. | Jan 2011 | B2 |
8119110 | Blin et al. | Feb 2012 | B2 |
20020015611 | Blondeel et al. | Feb 2002 | A1 |
20020018759 | Pagano et al. | Feb 2002 | A1 |
20020020424 | Gueret | Feb 2002 | A1 |
20020035237 | Lawson et al. | Mar 2002 | A1 |
20020054783 | Gueret | May 2002 | A1 |
20020055562 | Butuc | May 2002 | A1 |
20020061319 | Bernard et al. | May 2002 | A1 |
20020064539 | Philippe et al. | May 2002 | A1 |
20020076390 | Kantner et al. | Jun 2002 | A1 |
20020076425 | Mondet et al. | Jun 2002 | A1 |
20020098217 | Piot et al. | Jul 2002 | A1 |
20020115780 | Mougin | Aug 2002 | A1 |
20020150546 | Mougin et al. | Oct 2002 | A1 |
20020151638 | Melchiors et al. | Oct 2002 | A1 |
20020159965 | Frechet et al. | Oct 2002 | A1 |
20020160026 | Frechet et al. | Oct 2002 | A1 |
20030003154 | De La Poterie | Jan 2003 | A1 |
20030017124 | Agostini et al. | Jan 2003 | A1 |
20030017182 | Tournilhac | Jan 2003 | A1 |
20030021815 | Mondet et al. | Jan 2003 | A9 |
20030024074 | Hartman | Feb 2003 | A1 |
20030039621 | Arnaud et al. | Feb 2003 | A1 |
20030059392 | L'Alloret | Mar 2003 | A1 |
20030113285 | Meffert et al. | Jun 2003 | A1 |
20030124074 | Mougin et al. | Jul 2003 | A1 |
20030124079 | Mougin et al. | Jul 2003 | A1 |
20030185774 | Dobbs et al. | Oct 2003 | A1 |
20030191271 | Mondet et al. | Oct 2003 | A1 |
20040009136 | Dubief et al. | Jan 2004 | A1 |
20040013625 | Kanji | Jan 2004 | A1 |
20040014872 | Raether | Jan 2004 | A1 |
20040039101 | Dubief et al. | Feb 2004 | A1 |
20040052745 | Bernard et al. | Mar 2004 | A1 |
20040052752 | Samain et al. | Mar 2004 | A1 |
20040077788 | Guerra et al. | Apr 2004 | A1 |
20040091444 | Loffler et al. | May 2004 | A1 |
20040093676 | Vidal et al. | May 2004 | A1 |
20040096409 | Loeffler et al. | May 2004 | A1 |
20040096411 | Frechet et al. | May 2004 | A1 |
20040097657 | Morschhaeuser et al. | May 2004 | A1 |
20040109835 | Loffler et al. | Jun 2004 | A1 |
20040109836 | Loffler et al. | Jun 2004 | A1 |
20040109838 | Morschhauser et al. | Jun 2004 | A1 |
20040115148 | Loffler et al. | Jun 2004 | A1 |
20040115149 | Loffler et al. | Jun 2004 | A1 |
20040115157 | Loffler et al. | Jun 2004 | A1 |
20040116628 | Morschhauser et al. | Jun 2004 | A1 |
20040116634 | Morschhaeuser et al. | Jun 2004 | A1 |
20040120906 | Toumi et al. | Jun 2004 | A1 |
20040120920 | Lion et al. | Jun 2004 | A1 |
20040137020 | De La Poterie et al. | Jul 2004 | A1 |
20040137021 | De La Poterie et al. | Jul 2004 | A1 |
20040141937 | Loffler et al. | Jul 2004 | A1 |
20040141943 | Mougin et al. | Jul 2004 | A1 |
20040142831 | Jager Lezer | Jul 2004 | A1 |
20040167304 | Morschhauser et al. | Aug 2004 | A1 |
20040223933 | Hiwatashi et al. | Nov 2004 | A1 |
20040241118 | Simon et al. | Dec 2004 | A1 |
20050002724 | Blondeel et al. | Jan 2005 | A1 |
20050020779 | Mougin et al. | Jan 2005 | A1 |
20050032998 | Morschhaeuser et al. | Feb 2005 | A1 |
20050089536 | Loffler et al. | Apr 2005 | A1 |
20050095213 | Blin et al. | May 2005 | A1 |
20050106197 | Blin et al. | May 2005 | A1 |
20050129641 | Arnaud et al. | Jun 2005 | A1 |
20050201958 | De La Poterie | Sep 2005 | A1 |
20050220747 | Lion et al. | Oct 2005 | A1 |
20050232887 | Morschhauser et al. | Oct 2005 | A1 |
20050287103 | Filippi et al. | Dec 2005 | A1 |
20060093568 | Blin et al. | May 2006 | A1 |
20060099164 | De La Poterie et al. | May 2006 | A1 |
20060099231 | De La Poterie et al. | May 2006 | A1 |
20060115444 | Blin et al. | Jun 2006 | A1 |
20060127334 | Ferrari et al. | Jun 2006 | A1 |
20060134032 | Ilekti et al. | Jun 2006 | A1 |
20060134038 | De La Poterie et al. | Jun 2006 | A1 |
20060134044 | Blin et al. | Jun 2006 | A1 |
20060134051 | Blin et al. | Jun 2006 | A1 |
20060147402 | Blin et al. | Jul 2006 | A1 |
20060147403 | Ferrari et al. | Jul 2006 | A1 |
20070003506 | Mougin et al. | Jan 2007 | A1 |
20070003507 | Mougin et al. | Jan 2007 | A1 |
20070134181 | Shimizu et al. | Jun 2007 | A1 |
20070166259 | Vicic et al. | Jul 2007 | A1 |
20080014232 | Arnaud et al. | Jan 2008 | A1 |
20080025934 | Lebre et al. | Jan 2008 | A1 |
20080050329 | De La Poterie | Feb 2008 | A1 |
20080069793 | Loffler et al. | Mar 2008 | A1 |
20080107617 | Loffler et al. | May 2008 | A1 |
20080159965 | Mougin et al. | Jul 2008 | A1 |
20080207773 | Loffler et al. | Aug 2008 | A1 |
20080219943 | De La Poterie | Sep 2008 | A1 |
20090130037 | Thevenet et al. | May 2009 | A1 |
20100310489 | Barba | Dec 2010 | A1 |
20110020263 | Ilekti et al. | Jan 2011 | A1 |
20110280817 | Ramadan et al. | Nov 2011 | A1 |
20120171137 | Bradsaw et al. | Jul 2012 | A1 |
20120171139 | Bradshaw et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2 330 956 | Jan 1974 | DE |
100 22 247 | Nov 2001 | DE |
100 29 697 | Dec 2001 | DE |
1 279 398 | Sep 1971 | EP |
0 080 976 | Jun 1983 | EP |
0 295 886 | Dec 1988 | EP |
0 320 218 | Jun 1989 | EP |
0 173 109 | Oct 1989 | EP |
0 388 582 | Sep 1990 | EP |
0 412 704 | Feb 1991 | EP |
0 412 707 | Feb 1991 | EP |
0 549 494 | Jun 1993 | EP |
0 582 152 | Feb 1994 | EP |
0 216 479 | Aug 1994 | EP |
0 619 111 | Oct 1994 | EP |
0 637 600 | Feb 1995 | EP |
0 656 021 | Jun 1995 | EP |
0 667 146 | Aug 1995 | EP |
0 550 745 | Sep 1995 | EP |
0 686 858 | Dec 1995 | EP |
0 750 031 | Dec 1996 | EP |
0 751 162 | Jan 1997 | EP |
0 751 170 | Jan 1997 | EP |
0 815 836 | Jan 1998 | EP |
0 847 752 | Jun 1998 | EP |
0 861 859 | Sep 1998 | EP |
0 951 897 | Oct 1999 | EP |
1 018 311 | Jul 2000 | EP |
1 024 184 | Aug 2000 | EP |
1 043 345 | Oct 2000 | EP |
1 066 817 | Jan 2001 | EP |
1 068 856 | Jan 2001 | EP |
1 201 221 | May 2002 | EP |
1 356 799 | Oct 2003 | EP |
1 366 741 | Dec 2003 | EP |
1 366 744 | Dec 2003 | EP |
1 366 746 | Dec 2003 | EP |
1 411 069 | Apr 2004 | EP |
1 421 928 | May 2004 | EP |
1 440 680 | Jul 2004 | EP |
1 518 534 | Mar 2005 | EP |
1 518 535 | Mar 2005 | EP |
1 604 634 | Dec 2005 | EP |
1 222 944 | Jun 1960 | FR |
1 400 366 | Apr 1965 | FR |
1 564 110 | Mar 1969 | FR |
1 580 545 | Sep 1969 | FR |
2 077 143 | Sep 1971 | FR |
2 079 785 | Nov 1971 | FR |
2 140 977 | Jan 1973 | FR |
2 232 303 | Jan 1975 | FR |
2 265 781 | Oct 1975 | FR |
2 265 782 | Oct 1975 | FR |
2 350 384 | Dec 1977 | FR |
2 357 241 | Feb 1978 | FR |
2 393 573 | Jan 1979 | FR |
2 439 798 | May 1980 | FR |
2 710 646 | Apr 1995 | FR |
2 722 380 | Jan 1996 | FR |
2 727 609 | Jun 1996 | FR |
2 743 297 | Jul 1997 | FR |
2 761 959 | Oct 1998 | FR |
2 796 529 | Jul 1999 | FR |
2 775 566 | Sep 1999 | FR |
2 791 042 | Sep 2000 | FR |
2 791 988 | Oct 2000 | FR |
2 792 190 | Oct 2000 | FR |
2 792 618 | Oct 2000 | FR |
2 798 061 | Mar 2001 | FR |
2 806 273 | Sep 2001 | FR |
2 809 306 | Nov 2001 | FR |
2 811 993 | Jan 2002 | FR |
2 814 365 | Mar 2002 | FR |
2 816 503 | May 2002 | FR |
2 823 101 | Oct 2002 | FR |
2 823 103 | Oct 2002 | FR |
2 827 514 | Jan 2003 | FR |
2 831 430 | May 2003 | FR |
2 834 458 | Jul 2003 | FR |
2 840 205 | Dec 2003 | FR |
2 840 209 | Dec 2003 | FR |
2 842 417 | Jan 2004 | FR |
2 844 709 | Mar 2004 | FR |
2 860 143 | Apr 2005 | FR |
2 860 156 | Apr 2005 | FR |
2 880 268 | Jul 2006 | FR |
0 839 805 | Jun 1960 | GB |
0 922 457 | Apr 1963 | GB |
1 021 400 | Mar 1966 | GB |
1 169 862 | Nov 1969 | GB |
1 324 745 | Jul 1973 | GB |
1 331 819 | Sep 1973 | GB |
1 407 659 | Sep 1975 | GB |
1 572 626 | Jul 1980 | GB |
5-221829 | Aug 1993 | JP |
06-279323 | Oct 1994 | JP |
07-196450 | Aug 1995 | JP |
07-309721 | Nov 1995 | JP |
07-324017 | Dec 1995 | JP |
08-119836 | May 1996 | JP |
09-263518 | Oct 1997 | JP |
10-506404 | Jun 1998 | JP |
H11-100307 | Apr 1999 | JP |
11-124312 | May 1999 | JP |
2000-83728 | Mar 2000 | JP |
2000-319325 | Nov 2000 | JP |
2000-319326 | Nov 2000 | JP |
2001-348553 | Dec 2001 | JP |
2001-527559 | Dec 2001 | JP |
2002-201110 | Jul 2002 | JP |
2002-201244 | Jul 2002 | JP |
2003-40336 | Feb 2003 | JP |
2003-73222 | Mar 2003 | JP |
2003-081742 | Mar 2003 | JP |
2003-286142 | Oct 2003 | JP |
2004-2432 | Jan 2004 | JP |
2004-2435 | Jan 2004 | JP |
2004-149772 | May 2004 | JP |
2004-269497 | Sep 2004 | JP |
2005104979 | Apr 2005 | JP |
2006-503921 | Feb 2006 | JP |
2006-507355 | Mar 2006 | JP |
2006-507365 | Mar 2006 | JP |
2006-507366 | Mar 2006 | JP |
2006-507367 | Mar 2006 | JP |
2006-151867 | Jun 2006 | JP |
75370 | Jul 1976 | LU |
75371 | Jul 1976 | LU |
WO 9301797 | Feb 1993 | WO |
WO 9323009 | Nov 1993 | WO |
WO 9323446 | Nov 1993 | WO |
WO 9403510 | Feb 1994 | WO |
WO 9500578 | Jan 1995 | WO |
WO 9503776 | Feb 1995 | WO |
WO 9506078 | Mar 1995 | WO |
WO 9610044 | Apr 1996 | WO |
WO 9717057 | May 1997 | WO |
WO 9831329 | Jul 1998 | WO |
WO 9838981 | Sep 1998 | WO |
WO 9842298 | Oct 1998 | WO |
WO 9844012 | Oct 1998 | WO |
WO 9851276 | Nov 1998 | WO |
WO 0026285 | May 2000 | WO |
WO 0028948 | May 2000 | WO |
WO 0040216 | Jul 2000 | WO |
WO 0049997 | Aug 2000 | WO |
WO 0103538 | Jan 2001 | WO |
WO 0113863 | Mar 2001 | WO |
WO 0119333 | Mar 2001 | WO |
WO 0130886 | May 2001 | WO |
WO 0143703 | Jun 2001 | WO |
WO 0151018 | Jul 2001 | WO |
WO 0189470 | Nov 2001 | WO |
WO 0195871 | Dec 2001 | WO |
WO 0205762 | Jan 2002 | WO |
WO 0228358 | Apr 2002 | WO |
WO 0234218 | May 2002 | WO |
WO 02067877 | Sep 2002 | WO |
WO 03018423 | Mar 2003 | WO |
WO 03046032 | Jun 2003 | WO |
WO 03046033 | Jun 2003 | WO |
WO 2004022009 | Mar 2004 | WO |
WO 2004022010 | Mar 2004 | WO |
WO 2004024700 | Mar 2004 | WO |
WO 2004028485 | Apr 2004 | WO |
WO 2004028487 | Apr 2004 | WO |
WO 2004028491 | Apr 2004 | WO |
WO 2005030158 | Apr 2005 | WO |
Entry |
---|
Cortazer et al., Polymer Bulletin 1, 149-154 (1987). |
Co-pending U.S. Appl. No. 10/528,698, filed Mar. 22, 2005; Inventors: Veronique Ferrari et al. |
Co-pending U.S. Appl. No. 10/528,699, filed Mar. 22, 2005; Inventors: Philippe Ilekti et al. |
Co-pending U.S. Appl. No. 10/529,218, filed Mar. 25, 2005; Inventors: Xavier Blin et al. |
Co-pending U.S. Appl. No. 10/529,264, filed Mar. 25, 2005; Inventors: Veronique Ferrari et al. |
Co-pending U.S. Appl. No. 10/529,266, filed Mar. 25, 2005; Inventors: Xavier Blin et al. |
Co-pending U.S. Appl. No. 10/529,318, filed Mar. 25, 2005; Inventors: Xavier Blin et al. |
English Derwent Abstract for EP 1 082 953. |
English Derwent Abstract for EP 1 159 950. |
English Derwent Abstract for FR 2 832 719. |
English Derwent Abstract for FR 2 803 743. |
English Derwent Abstract for WO 04/028489. |
International Search Report for PCT/FR03/002844 (Priority Application for U.S. Appl. No. 10/529,318), dated May 14, 2005. |
International Search Report for PCT/FR03/002847 (Priority Application for U.S. Appl. No. 10/529,266), dated May 17, 2004. |
International Search Report for PCT/FR03/02842 (Priority Application for U.S. Appl. No. 10/529,218), dated May 17, 2004. |
International Search Report for PCT/FR03/02843 (Priority Application for U.S. Appl. No. 10/528,698), dated May 17, 2004. |
International Search Report for PCT/FR03/02845 (Priority Application for U.S. Appl. No. 10/529,264), dated May 17, 2004. |
International Search Report for PCT/FR03/02846 (Priority Application for U.S. Appl. No. 10/528,699), dated May 17, 2004. |
International Search Report for PCT/FR03/02848 (Priority Application for U.S. App. No. 10/528,835), dated May 17, 2004. |
English language Derwent Abstract for FR 2 775 566. |
English language Derwent Abstract for FR 2 798 061. |
Aldrich: Polymer Properties; 4th Ed. Catalog No. Z41, 247-3 (1999) published by John Wiley, New York. |
Boutevin, B. et al., “Study of Morphological and Mechanical Properties of PP/PBT,” Polymer Bulletin, 34, pp. 117-123, (1995). |
Buzin, A. et al., “Calorimetric Study of Block-Copolymers of Poly(n-butyl Acrylate) and Gradient Poly(n-butyl acrylate-co-methyl methacrylate)” vol. 43, 2002, pp. 5563-5569. |
Co-pending U.S. Appl. No. 10/529,265, filed Sep. 28, 2005; Inventors: Xavier Blin et al. |
Co-pending U.S. Appl. No. 10/529,267, filed Sep. 29, 2005; Inventors: Valerie De La Poterie et al. |
Co-pending U.S. Appl. No. 10/573,579; filed Dec. 26, 2006; Inventor: Marco Vicic et al. |
Co-pending U.S. Appl. No. 10/585,817, filed Jan. 10, 2007; Inventor: Valerie De La Poterie. |
Co-pending U.S. Appl. No. 10/585,818, filed Jul. 12, 2006; Inventors: Valerie De La Poterie. |
Co-pending U.S. Appl. No. 10/670,388, filed Sep. 26, 2003; Inventors: Beatrice Toumi et al. |
Co-pending U.S. Appl. No. 10/670,478, filed Sep. 26, 2003; Inventors: Bertrand Lion et al. |
Co-pending U.S. Appl. No. 10/949,448, filed Sep. 27, 2004; Inventors: Xavier Blin et al. |
Co-pending U.S. Appl. No. 11/086,906, filed Mar. 23, 2005; Inventors: Philippe Ilekti et al. |
Co-pending U.S. Appl. No. 11/089,210, filed Mar. 25, 2005. |
Co-pending U.S. Appl. No. 11/858,994, filed Sep. 21, 2007; Inventors: Bertrand Lion et al. |
Co-pending U.S. Appl. No. 11/859,004, filed Sep. 21, 2007; Inventors: Bertrand Lion et al. |
Co-pending U.S. Appl. No. 11/859,015, filed Sep. 21, 2007; Inventors: Bertrand Lion et al. |
English language Abstract of FR 2 710 552, dated Apr. 7, 1995. |
English language Abstract of FR 2 710 646, dated Apr. 7, 1995. |
English language Abstract of FR 2 791 987, dated Oct. 13, 2000. |
English language Abstract of FR 2 832 720, dated May 30, 2003. |
English language Abstract of FR 2 834 458, dated Jul. 11, 2003. |
English language Abstract of JP 07-309721, dated Nov. 28, 1995. |
English language Abstract of JP 08-119836, dated May 14, 1996. |
English language Abstract of WO 01/13863, dated Mar. 1, 2001. |
English language Abstract of WO 01/51018, dated Jul. 19, 2001. |
English language Derwent Abstract for EP 0 080 976, dated Jun. 8, 1983. |
English language Derwent Abstract for EP 0 815 836, dated Jan. 7, 1998. |
English language Derwent Abstract for FR 2 775 566, dated Sep. 10, 1999. |
English language Derwent Abstract for FR 2 792 190, dated Oct. 20, 2000. |
English language Derwent Abstract for FR 2 831 430, dated May 2, 2003. |
English language Derwent Abstract for JP 06-279323, dated Oct. 4, 1994. |
English language Derwent Abstract for JP 07-196450, dated Aug. 1, 1995. |
English language Derwent Abstract for JP 09-263518, dated Oct. 7, 1997. |
English language Derwent Abstract for JP 11-124312, dated May 11, 1999. |
English language Derwent Abstract of DE 100 29 697, dated Dec. 20, 2001. |
English language Derwent Abstract of EP 0 648 485, dated Apr. 19, 1995. |
English language Derwent Abstract of FR 2 140 977, dated Jan. 19, 1973. |
English language Derwent Abstract of JP 2002-201244, dated Jul. 19, 2002. |
English language Derwent Abstract of JP 5-221829, dated Aug. 31, 1993. |
European Search Report for EP 03 292 383, dated May 17, 2004, in Co-pending U.S. Appl. No. 10/670,388. |
Flick, “Cosmetic Additives: An Industrial Guide”, Noyes Publications, Park Ridge, NJ, p. 266 (1991). |
Fonnum, et al., Colloid Polym. Sci., 1993, 271: 380-389. |
French Search Report for FR 02/11949 for Copending U.S. Appl. No. 10/670,478, dated Jul. 7, 2003. |
French Search Report for FR 03/11340 for Copending U.S. Appl. No. 10/949,448, dated May 9, 2005. |
French Search Report for FR 04/03090, dated Sep. 30, 2004, (Priority document for Copending U.S. Appl. No. 11/089,210). |
French Search Report for FR 04/50572, for Copending U.S. Appl. No. 11/086,906, dated Nov. 9, 2004. |
Hamley, I.W., “Crystallization in Block Copolymers,” Advances in Polymer Science, vol. 148, pp. 113-137 (1999). |
Hansen, C.M., “The Three Dimensional Solubility Parameter—Key to Paint Component Affinities: I. Solvents, Plasticizers, Polymers, and Resins”, Journal of Paint Technology, vol. 39, No. 505, pp. 104-117 (1967). |
HCAPLUS abstract 1964: 70247, abstracting: Develop. Ind. Microbiol., vol. 2, pp. 47-53 (1961). |
International Search Report for PCT Application No. PCT/FR03/02849, dated Jun. 24, 2004. |
International Search Report for PCT/FR03/02841, dated Jun. 1, 2004. |
International Search Report for PCT/IB2005/000230, dated May 27, 2005, (PCT counterpart to Co-pending U.S. Appl. No. 10/585,817). |
International Search Report for PCT/IB2005/000236, dated Aug. 3, 2005, (PCT counterpart to Co-pending U.S. Appl. No. 10/585,818). |
Kirk-Othmer, “Encyclopedia of Chemical Technology”, vol. 22, 3rd Edition, Wiley, 1979, pp. 333-432. |
Nojima. S., “Melting Behavior of Poly (E-caprolactone)-block-polybutadiene Copolymers”, Macromolecules, 32, 3727-3734 (1999). |
Office Action mailed Aug. 12, 2005, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Aug. 12, 2009 in co-pending U.S. Appl. No. 10/949,448. |
Office Action mailed Aug. 18, 2009 in co-pending U.S. Appl. No. 10/529,264. |
Office Action mailed Dec. 10, 2008, in co-pending U.S. Appl. No. 10/528,698. |
Office Action mailed Dec. 23, 2008, in co-pending U.S. Appl. No. 10/529,266. |
Office Action mailed Jan. 7, 2008, in co-pending U.S. Appl. No. 10/670,388. |
Office Action mailed Jun. 12, 2009 in co-pending U.S. Appl. No. 11/086,906. |
Office Action mailed Jun. 24, 2009 in co-pending U.S. Appl. No. 10/528,698. |
Office Action mailed Jun. 24, 2009 in co-pending U.S. Appl. No. 10/529,267. |
Office Action mailed Jun. 29, 2009 in co-pending U.S. Appl. No. 10/529,266. |
Office Action mailed Jun. 4, 2009 in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Jun. 8, 2009 in co-pending U.S. Appl. No. 11/089,210. |
Office Action mailed Mar. 12, 2009, in co-pending U.S. Appl. No. 10/529,218. |
Office Action mailed Mar. 18, 2009, in co-pending U.S. Appl. No. 10/528,699. |
Office Action mailed Mar. 18, 2009, in co-pending U.S. Appl. No. 10/573,579. |
Office Action mailed Mar. 26, 2008, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Mar. 7, 2006, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed May 3, 2007, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Nov. 15, 2006, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Nov. 25, 2008, in co-pending U.S. Appl. No. 10/949,448. |
Office Action mailed Nov. 25, 2008, in co-pending U.S. Appl. No. 10/670,388. |
Office Action mailed Oct. 1, 2008, in co-pending U.S. Appl. No. 10/529,318. |
Office Action mailed Oct. 21, 2008, in co-pending U.S. Appl. No. 10/670,478. |
Office Action mailed Sep. 2, 2009 in co-pending U.S. Appl. No. 10/529,318. |
Office Action mailed Sep. 7, 2007, in co-pending U.S. Appl. No. 10/670,478. |
Pigeon, R. et al., Chimie Macromoleculaire Appliquee, No. 600, 40/41 (1074), pp. 139-158. |
Porter, “Chapter 7: Non Ionics,” Handbook of Surfactants, 1991, pp. 116-178, Chapman and Hall, New York. |
Prince, L.M. ed., Macroemulsions Theory and Practice, Academic Press (1977), pp. 21-32. |
Rangarajan P., et al., “Morphology of Semi-Crystalline Block Copolymers of Ethylene-(ethylene-alt-propylene),” Macromolecules, 26, 4640-4645 (1993). |
Richter, P. et al., “Polymer Aggregates with Crystalline Cores: The System Poly(ethylene)-poly(ethylene-propylene),” Macromolecules, 30, 1053-1068 (1997). |
Thermal—Transisitons—of—Homopolymers.pdf. Thermal Transistions of Homopolymers: Glass Transistion & Melting Point Data. Accessed online Dec. 19, 2008 at: http://www.sigmaaldrich.com/etc/medialib/docs/Aldrich/General—Information/thermal—transitions—of—homopolymers.Par.0001.File.tmp/thermal—transitions—of—homopolymers.pdf. |
Co-pending U.S. Appl. No. 11/878,067, filed Jul. 20, 2007; Inventors: Caroline Lebre et al. |
Co-pending U.S. Appl. No. 11/878,849, filed Jul. 27, 2007; Inventors: Celine Farcet et al. |
English language Abstract of EP 1 604 634, dated Dec. 14, 2005. |
English language Abstract of FR 2 357 241, dated Feb. 3, 1978. |
English language Abstract of FR 2 880 268, dated Jul. 7, 2006. |
English language Abstract of JP 2006-151867, dated Jun. 15, 2006. |
French Search Report for FR 04/03088, dated Nov. 2, 2004. |
French Search Report for FR 06/53144, dated Feb. 13, 2007. |
French Search Report for FR 06/53154, dated Apr. 2, 2007. |
Specific Gravity and Viscosity of Liquid Table; available at http://www.csgnetwork.com/sgvisc.html. Sesame seed oil information originally published Mar. 28, 2002. |
Toniu et al., “Process for Preparation of Block Polymers, Products Obtained by Means of the Process and Cosmetic Compositions Containing Them”, 1973, French Patent Office, pp. 1-26 (English translation of French Patent No. FR2140977). |
Notice of Allowance in U.S. Appl. No. 10/670,478 dated Jul. 6, 2010. |
Office Action mailed Aug. 2, 2010, in co-pending U.S. Appl. No. 10/949,435. |
Office Action mailed Aug. 31, 2010, in co-pending U.S. Appl. No. 10/529,265. |
Office Action mailed Feb. 2, 2010, in co-pending U.S. Appl. No. 10/949,448. |
Office Action mailed Feb. 27, 2009, in co-pending U.S. Appl. No. 11/878,849. |
Office Action mailed Jan. 28, 2010, in co-pending U.S. Appl. No. 10/529,264. |
Office Action mailed Jul. 12, 2010, in co-pending U.S. Appl. No. 11/858,994. |
Office Action mailed Jul. 21, 2009, in co-pending U.S. Appl. No. 11/878,067. |
Office Action mailed Jul. 28, 2010, in co-pending U.S. Appl. No. 10/529,264. |
Office Action mailed Jul. 9, 2010, in co-pending U.S. Appl. No. 11/859,004. |
Office Action mailed Jul. 9, 2010, in co-pending U.S. Appl. No. 11/859,015. |
Office Action mailed Mar. 17, 2010, in co-pending U.S. Appl. No. 10/529,318. |
Office Action mailed Mar. 18, 2009, in related U.S. Appl. No. 11/089,172. |
Office Action mailed Mar. 30, 2010, in co-pending U.S. Appl. No. 11/089,210. |
Office Action mailed Mar. 30, 2010, in co-pending U.S. Appl. No. 11/878,067. |
Office Action mailed May 12, 2010, in co-pending U.S. Appl. No. 11/086,906. |
Office Action mailed May 28, 2010, in co-pending U.S. Appl. No. 10/573,579. |
Office Action mailed Sep. 9, 2009, in co-pending U.S. Appl. No. 11/878,849. |
Related U.S. Appl. No. 11/089,172, filed Mar. 25, 2005, Inventors: Katarina Benabdillah et al. |
U.S. Appl. No. 14/354,719, filed Apr. 28, 2014, Bukawa, et al. |
U.S. Appl. No. 14/359,791, filed May 21, 2014, Bui, et al. |
U.S. Appl. No. 14/363,215, filed Jun. 5, 2014, Bukawa, et al. |
Derwent Abstract of FR 2 860 156. |
Derwent Abstract of JP 2001/348553. |
Derwent Abstract of JP H11-100307. |
Derwent Abstract of JP 2004/002435. |
Derwent Abstract of JP 2004/002432. |
International Search Report for PCT/FRO3/02848 (Priority Application for U.S. App. No. 10/528,835), dated May 17, 2004, Ex. Loiselet-Taisne. |
Co-pending U.S. Appl. No. 10/949,435, filed Sep. 27, 2004; Inventors: Xavier Blin et al. |
English language Abstract of JP 2003-40336, Feb. 13, 2003. |
Erichsen et al., “Molecular Weight Dependence of the Surface Glass Transition of Polystyrene Films Investigated by the Embedding of Gold Nanoclusters,” MRS Publication, 2001. |
Nojiri et al., “Molecular Weight Dependence of the Glass Transition Temperature in Poly(vinyl acetate),” Japan J. Appl. Phys., 10 (1971), p. 803. |
U.S. Appl. No. 13/729,631, filed Dec. 28, 2012, Kawaratani, et al. |
Number | Date | Country | |
---|---|---|---|
20060147402 A1 | Jul 2006 | US |