Composition for an etching mask comprising a silicon-containing material

Information

  • Patent Grant
  • 7906180
  • Patent Number
    7,906,180
  • Date Filed
    Wednesday, August 23, 2006
    17 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
Abstract
The present invention includes a composition for a silicon-containing material used as an etch mask for underlying layers. More specifically, the silicon-containing material may be used as an etch mask for a patterned imprinted layer comprising protrusions and recessions. To that end, in one embodiment of the present invention, the composition includes a hydroxyl-functional silicone component, a cross-linking component, a catalyst component, and a solvent. This composition allows the silicon-containing material to selectively etch the protrusions and the segments of the patterned imprinting layer in superimposition therewith, while minimizing the etching of the segments in superposition with the recessions, and therefore allowing an in-situ hardened mask to be created by the silicon-containing material, with the hardened mask and the patterned imprinting layer forming a substantially planarized profile.
Description
BACKGROUND OF THE INVENTION

The field of invention relates generally to micro-fabrication of structures. More particularly, the present invention is directed to formation of an etching mask comprising a silicon containing material used in semiconductor processing.


Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller. One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, micro-fabrication becomes increasingly important. Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.


An exemplary micro-fabrication technique is shown in U.S. Pat. No. 6,334,960 to Willson et al. Willson et al. disclose a method of forming a relief image in a structure. The method includes providing a substrate having a transfer layer. The transfer layer is covered with a polymerizable fluid composition. An imprint device makes mechanical contact with the polymerizable fluid. The imprint device includes a relief structure formed from lands and grooves. The polymerizable fluid composition fills the relief structure, with the thickness of the polymerizable fluid in superimposition with the lands defining a residual thickness. The polymerizable fluid composition is then subjected to conditions to solidify and polymerize the same, forming a solidified polymeric material on the transfer layer that contains a relief structure complimentary to that of the imprint device. The imprint device is then separated from the solid polymeric material such that a replica of the relief structure in the imprint device is formed in the solidified polymeric material. The transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer. Thereafter, conventional etching processes may be employed to transfer the pattern of the relief structure into the substrate.


In recent trends in micro-fabrication of semiconductors, a silicon containing material has been utilized as a masking layer for underlying layers during etching. An example of utilizing silicon as a masking layer is found in, U.S. Pat. No. 6,468,896 to Röhr et al., entitled “Method of Fabricating Semiconductor Components,” discloses a method of depositing a silicon layer upon a metal layer, selectively etching the silicon layer with the selectively etched silicon layer serving as a hard mask when etching of the metal layer occurs.


In another example, U.S. patent application Ser. No. 10/178,947 to Watts et al., entitled “Low Viscosity High Resolution Patterning Material,” discloses a method of forming a conformal layer upon a patterned layer with the conformal layer serving as a hard mask for the patterned layer during etching and the conformal layer being formed from a silicon-containing polymerized fluid.


It is desired, therefore, to provide an improved composition of the silicon-containing material used in imprint lithography processes.


SUMMARY OF THE INVENTION

The present invention includes a composition for a silicon-containing material used as an etch mask. More specifically, the silicon-containing material may be used as an etch mask for an imprinted layer comprising protrusions and recessions. To that end, in one embodiment of the present invention, the composition includes a solid silicone T-resin (also known as a silsesquioxane), a cross-linking agent, a catalyst, and a solvent. This composition allows the silicon-containing material to selectively etch the protrusions and the segments of the patterned imprinted layer in superimposition therewith, while minimizing the etching of the segments in superposition with the recessions, and therefore allowing an in-situ hardened mask to be created by the silicon-containing material, with the hardened mask and the imprinting layer forming a substantially planarized profile. In a further embodiment, the composition includes an epoxy-functional silane in addition to the aforementioned components. The epoxy-functional silane is added to improve the cross-linking conversion rate of the composition.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a lithographic system in accordance with the present invention;



FIG. 2 is a simplified elevation view of a lithographic system, shown in FIG. 1, employed to create a patterned imprinting layer in accordance with the present invention;



FIG. 3 is a simplified representation of material from which a patterned imprinting layer, shown in FIG. 2, is comprised before being polymerized and cross-linked in accordance with the present invention;



FIG. 4 is a simplified representation of cross-linked polymer material into which the material shown in FIG. 3 is transformed after being subjected to radiation in accordance with the present invention;



FIG. 5 is a simplified elevation view of an imprint device spaced-apart from the patterned imprinting layer, shown in FIG. 1, after patterning in accordance with the present invention;



FIG. 6 is a simplified elevation view of formation of a multi-layered structure on a solidified imprinting layer, shown in FIG. 5, by deposition of a conformal layer, adjacent to the patterned imprinting layer, employing a mold in accordance with one embodiment of the present invention;



FIG. 7 is a simplified elevation view after a blanket etch of the multi-layered structure, shown in FIG. 6, to format a crown surface in the conformal layer with portions of the patterned imprinting layer being exposed in accordance with one embodiment of the present invention;



FIG. 8 is a simplified elevation view of the multi-layered structure, shown in FIG. 7, after subjecting the crown surface to an anisotropic etch to expose regions of a substrate in accordance with the present invention;



FIG. 9 is a simplified elevation view showing planarization of a conformal layer employing a planarized mold in accordance with an alternate embodiment of the present invention;



FIG. 10 is a simplified plan view of a radiation source employed in the lithographic system shown in FIG. 1, depicting dual radiation sources;



FIG. 11 is a simplified plan view of a radiation source employed in the lithographic system shown in FIG. 1, depicting single radiation source;



FIG. 12 is a cross-sectional view of a substrate shown in FIGS. 1, 2, 5, 6, 7 and 8 showing an infra-red absorption layer in accordance with the present invention;



FIG. 13 is a cross-sectional view of a substrate shown in FIGS. 1, 2, 5, 6, 7 and 8 showing an infra-red absorption layer in accordance with an alternate embodiment of the present invention;



FIG. 14 is a cross-section view showing a release layer and a planarization layer that may be employed in accordance with the present invention; and



FIG. 15 is a cross-section view showing a release layer applied to a planarization mold shown in FIG. 13.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 depicts a lithographic system 10 in accordance with one embodiment of the present invention that includes a pair of spaced-apart bridge supports 12 having a bridge 14 and a stage support 16 extending therebetween. Bridge 14 and stage support 16 are spaced-apart. Coupled to bridge 14 is an imprint head 18, which extends from bridge 14 toward stage support 16. Disposed upon stage support 16 to face imprint head 18 is a motion stage 20. Motion stage 20 is configured to move with respect to stage support 16 along X and Y axes and may provide movement along the Z axis as well. A radiation source 22 is coupled to system 10 to impinge actinic radiation upon motion stage 20. As shown, radiation source 22 is coupled to bridge 14 and includes a power generator 23 connected to radiation source 22.


Referring to both FIGS. 1 and 2, connected to imprint head 18 is a template 24 having a patterned mold 26 thereon. Patterned mold 26 includes a plurality of features defined by a plurality of spaced-apart recesses 28 and projections 30. Projections 30 have a width W1, and recesses 28 have a width W2, both of which are measured in a direction that extends transversely to the Z axis. The plurality of features defines an original pattern that forms the basis of a pattern to be transferred into a substrate 32 positioned on motion stage 20. To that end, imprint head 18 is adapted to move along the Z axis and vary a distance “d” between patterned mold 26 and substrate 32. Alternatively, or in conjunction with imprint head 18, motion stage 20 may move template 24 along the Z-axis. In this manner, the features on patterned mold 26 may be imprinted into a flowable region of substrate 32, discussed more fully below. Radiation source 22 is located so that patterned mold 26 is positioned between radiation source 22 and substrate 32. As a result, patterned mold 26 is fabricated from material that allows it to be substantially transparent to the radiation produced by radiation source 22. An exemplary system is available under the trade name IMPRIO 100™ from Molecular Imprints, Inc. having a place of business at 1807-C Braker Lane, Suite 100, Austin, Tex. 78758. The system description for the IMPRIO 100™ is available at www.molecularimprints.com and is incorporated herein by reference.


Referring to both FIGS. 2 and 3, a flowable region, such as an imprinting layer 34, is disposed on a portion of surface 36 that presents a substantially planar profile. In the present embodiment, the flowable region is deposited as a plurality of spaced-apart discrete droplets 38 of material 40 on substrate 32, discussed more fully below. Material 40 is substantially silicon-free and may be selectively polymerized and cross-linked to record an inverse of the original pattern therein, defining a recorded pattern. Material 40 is shown in FIG. 4 as being cross-linked at points 42, forming cross-linked polymer material 44.


Referring to FIGS. 2, 3 and 5, the pattern recorded in imprinting layer 34 is produced, in part, by mechanical contact with patterned mold 26. To that end, the distance “d” is reduced to allow imprinting layer 34 to come into mechanical contact with patterned mold 26, spreading droplets 38 so as to form imprinting layer 34 with a contiguous formation of material 40 over surface 36. In one embodiment, distance “d” is reduced to allow sub-portions 46 of imprinting layer 34 to ingress into and fill recesses 28.


In the present embodiment, sub-portions 48 of imprinting layer 34 in superimposition with projections 30 remain after the desired, usually minimum distance “d”, has been reached, leaving sub-portions 46 with a thickness t1, and sub-portions 48 with a thickness, t2. Thickness t2 is referred to as a residual thickness. Thicknesses “t1” and “t2” may be any thickness desired, dependent upon the application. The total volume contained in droplets 38 may be such so as to minimize, or avoid, a quantity of material 40 from extending beyond the region of surface 36 in superimposition with patterned mold 26, while obtaining desired thicknesses t1 and t2.


Referring to FIGS. 2, 3, and 4, after a desired distance “d” has been reached, radiation source 22 produces actinic radiation that polymerizes and cross-links material 40, forming cross-linked polymer material 44. As a result, the composition of imprinting layer 34 transforms from material 40 to material 44, which is a solid. Specifically, material 44 is solidified to form solidified imprinting layer 134 with a side having a shape that conforms to a shape of a surface 50 of patterned mold 26, shown more clearly in FIG. 5. As a result, solidified imprinting layer 134 is formed having recessions 52 and protrusions 54. After formation of solidified imprinting layer 134, distance “d” is increased so that patterned mold 26 and solidified imprinting layer 134 are spaced-apart. Typically, this process is repeat several times to pattern different regions (not shown) of substrate 32, referred to as a step and repeat process. An exemplary step and repeat process is disclosed in published U.S. patent application Ser. No. 20040008334, which assigned to assignee of the present invention and is incorporated by reference.


Referring to FIGS. 1, 2 and 3, the characteristics of material 40 are important to efficiently pattern substrate 32 in light of the unique deposition process employed. As mentioned above, material 40 is deposited on substrate 32 as a plurality of discrete and spaced-apart droplets 38. The combined volume of droplets 38 is such that the material 40 is distributed appropriately over an area of surface 36 where imprinting layer 34 is to be formed. In this fashion, the total volume of imprinting material 40 in droplets 38 defines the distance “d”, to be obtained so that the total volume occupied by the material 40 in the gap defined between patterned mold 26 and the portion of substrate 32 in superimposition therewith once the desired distance “d” is reached is substantially equal to the total volume of material 40 in droplets 38. As a result, imprinting layer 34 is spread and patterned concurrently, with the pattern being subsequently set by exposure to radiation, such as ultraviolet radiation. To facilitate the deposition process, it is desired that material 40 have certain characteristics to provide rapid and even spreading of material 40 in droplets 38 over surface 36 so that the all thicknesses t1 are substantially uniform and all residual thicknesses t2 are substantially uniform.


An exemplary composition for material 40 is silicon-free and consists of the following:


Composition 1
isobornyl acrylate n-hexyl acrylate ethylene glycol diacrylate 2-hydroxy-2-methyl-1-phenyl-propan-1-one

In COMPOSITION 1, isobornyl acrylate comprises approximately 55% of the composition, n-hexyl acrylate comprises approximately 27%, ethylene glycol diacrylate comprises approximately 15% and the initiator 2-hydroxy-2-methyl-1-phenyl-propan-1-one comprises approximately 3%. The initiator is sold under the trade name DAROCUR® 1173 by CIBA® of Tarrytown, N.Y. The above-identified composition also includes stabilizers that are well known in the chemical art to increase the operational life of the composition. To provide suitable release properties, COMPOSITION 1 may be employed with a template treated to have a mold surface that is hydrophobic and/or low surface energy, e.g., an a priori release layer.


Referring to FIGS. 3 and 5, to improve the release properties of patterned mold 26 and solidified imprinting layer 134 and to ensure that solidified imprinting layer 134 does not adhere to patterned mold 26, an additive may be included in COMPOSITION 1. To that end, material 40 may include, as an additive, a surfactant. For purposes of this invention a surfactant is defined as any molecule, one tail of which is hydrophobic. Surfactants may be either fluorine containing, e.g., include a fluorine chain, or may not include any fluorine in the surfactant molecule structure. An exemplary surfactant is available under the trade name ZONYL® FSO-100 from DUPONT™ that has a general structure of R1R2 where R1═F(CF2CF2)Y, with y being in a range of 1 to 7, inclusive and R2═CH2CH2O(CH2CH2O)xH, where X is in a range of 0 to 15, inclusive. This provides material 40 with the following composition:


Composition 2
isobornyl acrylate n-hexyl acrylate ethylene glycol diacrylate 2-hydroxy-2-methyl-1-phenyl-propan-1-one RfCH2CH2O(CH2CH2O)XH

The ZONYL® FSO-100 additive comprises less than 1% of the composition, with the relative amounts of the remaining components being as discussed above with respect to COMPOSITION 1. However, the percentage of ZONYL® FSO-100 may be greater than 1%.


Referring to FIGS. 5 and 6, to facilitate transferring of the pattern in patterned mold 26 into substrate 32, a multi-layered structure 56 is generated by formation of a silicon-containing conformal layer 58 adjacent to solidified imprinting layer 134. To that end, silicon-containing material is deposited adjacent to solidified imprinting layer 134. Specifically, a silicon-containing material may be deposited adjacent to solidified imprinting layer 134 using any known technique to form conformal layer 58, such as the technique discussed above with respect to deposition of material 40. Alternatively, the silicon-containing material may be deposited adjacent to solidified imprinting layer 134 employing spin-coating techniques.


In an exemplary technique for forming conformal layer 58, silicon-containing material is deposited adjacent to solidified imprinting layer 134 using spin-coating techniques and subsequently thermally curing the silicon-containing material to form conformal layer 58. To that end, exemplary material that may be employed to form conformal layer 58 includes solid silicone T-resin, a cross-linking agent, a catalyst, and a solvent.


The solid silicone T-resin, also known as silsesquioxane, is process compatible, satisfying ionic, purity, and by-product contamination requirements desired. The cross-linking agent is included to cross-link the silicone resin, providing conformal layer 58 with the properties to record a pattern thereon having very small feature sizes, i.e., on the order of a few nanometers. To that end, the catalyst is provided to produce a condensation reaction in response to thermal energy, e.g., heat, causing the silicone resin and the cross-linking agent to polymerize and cross-link, forming a cross-linked polymer material. The solvent selected is compatible with the silicone resin and represents the remaining balance of the silicon-containing material. It is desired that the solvent minimize, if not avoid, causing distortions in solidified imprinting layer 134 due, for example, to swelling of solidified imprinting layer 134.


The silicone T-resin can be any alkyl and/or aryl substituted silsesquioxane, copolymer, blend or mixture thereof. Such silicone T-resins have the general formula RSiO1.5 and, in some embodiments, R is selected from the group consisting of hydroxyl, methyl, phenyl, propyl, and combinations thereof. Examples of a silicone T-resin include ultraviolet (UV) curable sol-gels, UV curable epoxy-functionalized silsesquioxane, UV curable acrylate-functionalized silsesquioxane, and UV curable silsesquioxane via thiolene chemistry; and non-cured materials such as hydrogen silsesquioxane, and poly(meth)acrylate/siloxane copolymers. Preferably, a hydroxyl-functional polysiloxane is used such as a hydroxyl-functional silsesquioxane, where such species can further comprise organic substitute groups, with examples of such organic substitute groups including, but not limited to, methyl, phenyl, propyl and combinations thereof. The silicone T-resin may be present in the silicon-containing composition in amounts of approximately 2 to 40% by weight, depending on the thicknesses desired for conformal layer 58. Exemplary examples of hydroxyl-functional silsesquioxanes used in the present invention are silicon T-resin intermediates available from Dow Corning® (Midland, Mich.) under the trade names Z-6018 and 217 flake resin.


The cross-linking agent is a compound that includes two or more polymerizable groups. The cross-linking agent may be present in the silicon-containing composition in amounts of approximately 2 to 50% by weight in relation to the quantity of silicone resin present. Typically, the cross-linking agent is present in the silicon-containing composition in an amount of approximately 20 to 30%. An exemplary example of a cross-linking agent used in the present invention is a hexamethoxymethylmelamine (HMMM) based aminoplast cross-linking agent available from Cytec Industries, Inc. (West Paterson, N.J.) under the trade name CYMEL 303ULF.


The catalyst may be any component that catalyzes a condensation reaction. Suitable catalysts may include, but are not limited to, acidic compounds such as sulfonic acid. The catalyst may be present in the silicon-containing material in amounts of approximately 0.05% to 5% by weight in relation to the silicone resin present. Typically, the catalyst is present in the silicon-containing material in an amount of approximately 1 to 2%. An exemplary example of a catalyst used in the present invention is toluenesulfonic acid available from Cytec Industries, Inc. (West Paterson, N.J.) under the trade name CYCAT 4040.


For the balance of the composition, a solvent is utilized. The solvent can be any solvent or combination of solvents that satisfies several criteria. As mentioned above, the solvent should not cause solidified imprinting layer 134 to swell. In addition, the evaporation rate of the solvent should be established so that a desired quantity of the solvent evaporates as a result of the spin-coating process while providing sufficient viscosity to facilitate planarization of silicon-containing material in furtherance of forming conformal layer 58. Suitable solvents may include, but are not limited to, alcohol, ether, a glycol or glycol ether, a ketone, an ester, an acetate and mixtures thereof. The solvent may be present in the silicon-containing material used to form conformal layer 58 in amounts of approximately 60 to 98% by weight, dependent upon the desired thicknesses of conformal layer 58. An exemplary examples of solvents used in the present invention are methyl amyl ketone (MAK) and propylene glycol methyl ether acetate available from Aldrich Co. (St. Louis, Mo.).


In a further embodiment, the composition of conformal layer 58 is altered to include an epoxy-functional silane coupling agent to improve the cross-linking reaction and improve the rate of cross-linking. Examples of epoxy-functional silanes may include glycidoxymethyltrimethoxysilane, 3-glycidoxypropyltrihydroxysilane, 3-glycidoxypropyldimethylhydroxysilane, 3-glycidoxypropyltrimeth oxysilane, 2,3-epoxypropyltrimethoxysilane, and the like. The epoxy-functional silane may be present in conformal layer 58 in amounts of approximately 2 to 30% by weight of silicon-containing compound in relation to the silicone resin and typically in an amount of 5 to 10%. An exemplary example of epoxy-functional silane used in the present invention is gamma-glycidoxypropyltrimethoxysilane available from GE Silicone/OSi Specialty (Wilton, Conn.) under the trade name A187.


Exemplary compositions from which to form conformal layer 58 are as follows:


Composition 3
hydroxyl-functional polysiloxane hexamethoxymethylmelamine toluenesulfonic acid methyl amyl ketone
Composition 4
hydroxyl-functional polysiloxane hexamethoxymethylmelamine gamma-glycidoxypropyltrimethoxysilane toluenesulfonic acid methyl amyl ketone
Composition 5
hydroxyl-functional silsesquioxane hexamethoxymethylmelamine toluene sulfonic acid propylene glycol methyl ether acetate

In COMPOSITION 3, hydroxyl-functional polysiloxane, Z-6018, comprises approximately 4% of the composition, hexamethoxymethylmelamine comprises approximately 0.95%, toluenesulfonic acid comprises approximately 0.05% and methyl amyl ketone comprises approximately 95%. In COMPOSITION 4, hydroxyl-functional polysiloxane, Z-6018, comprises approximately 4% of the composition, hexamethoxymethylmelamine comprises approximately 0.7%, gamma-glycidoxypropyltrimethoxysilane comprises approximately 0.25%, toluenesulfonic acid comprises approximately 0.05%, and methyl amyl ketone comprises approximately 95%. In COMPOSITION 5, hydroxyl-functional silsesquioxane, Dow Corning 217 resin, comprises approximately 8% of the composition, hexamethoxymethylmelamine comprises approximately 1.8%, toluene sulfonic acid comprises approximately 0.2%, and propylene glycol methyl ether acetate comprises approximately 90%.


COMPOSITIONS 3, 4 and 5 are made up of at least 4% of the silicone resin. Upon curing, however, the quantity of silicon present in conformal layer 58 is at least 5% by weight and typically in a range of 20% or greater. Specifically, the quantity and composition of the solvent present in COMPOSITIONS 3, 4 and 5 is selected so that a substantial portion of the solvent evaporates during spin-coating application of the COMPOSITION 3, 4 or 5 on solidified imprinting layer 134. In the present exemplary silicon-containing material, approximately 90% of the solvent evaporates during spin-coating. Upon exposing the silicon-containing material to thermal energy, the remaining 10% of the solvent evaporates, leaving conformal layer 58 with approximately 20% silicon by weight.


An exemplary method of forming conformal layer 58 includes spinning-on approximately 4 mL of the silicon-containing material deposited proximate to a center of solidified imprinting layer 134. To that end, substrate 32 is spun at 1000 rev/min for 1 min by placing substrate 32 on a hot plate. Thereafter, the silicon-containing material is subjected to thermal energy by baking at 150° C. for 1 min. This produces the silicon-containing material from which conformal layer 58 is formed, with thickness variations of 20 nm or less. Were it desired to increase the thickness of the solidified silicon-containing layer, e.g., to provide the solidified silicon-containing layer with a thickness of 200 nm, the aforementioned spin-coating and curing processes are simply repeated. As a result, the solvent employed is selected so as not to remove, “wash away,” silicon-containing material in a well-cured conformal layer 58.


Referring to FIGS. 5 and 6, the spin-coating and curing processes, conformal layer 58 includes first and second opposed sides. First side 60 faces imprinting layer 134 and has a profile complementary to the profile of the imprinting layer 134. The second side faces away from imprinting layer 134 forming a normalization surface 62, which is substantially smooth and typically planar. In this manner, normalization surface 62 provides a solidified conformal layer 58 with a substantially normalized profile. It is believed that normalization surface 62 is provided with a smooth, e.g., substantially planar, topography by ensuring that COMPOSITIONS 3, 4 and 5 have a glass transition temperature lower than the curing temperature. Specifically, it is desired that the temperature difference between the glass transition temperature and the curing temperature be sufficient to allow the silicon-containing material to reflow during curing to maximize smoothness, e.g., planarity of normalization surface 62 in a minimum amount of time. For example, the COMPOSITIONS 3, 4 and 5 each have a glass transition temperature in the range of from approximately 50° C. to 80° C. and a curing temperature of 150° C. As a result, of the topography of normalization surface 62, the distances, k2, k4, k6, k8 and k10, between the apex 64 of each of the protrusions 54 and normalization surface 62 are substantially the same. Similarly, the distance, k1, k3, k5, k7, k9 and k11 between a nadir surface 66 of each of the recessions 52 and normalization surface 62 are substantially the same.


Referring to FIGS. 6 and 7, after formation of the normalization surface 62, a blanket etch is employed to remove portions of conformal layer 58 to provide multi-layered structure 56 with a crown surface 70. For example and without limitation, the blanket etch may be achieved in a system available from LAM Research 9400SE obtained from Lam Research, Inc. of Fremont, Calif. In this manner, normalization surface 62 is subjected to an isotropic halogen reactive ion etch (“RIE”) rich in fluorine, i.e., wherein at least one of the precursors was a fluorine-containing material, for example, and without limitation, a combination of CHF3 and O2. Other suitable halogen compounds include, for example, and without limitation, CF4. It is desirable that oxygen be absent from the plasma chemistry. Normalization surface 62 is subjected to the blanket etch sufficient to expose crown surface 70.


Crown surface 70 is defined by an exposed surface 72 of each of protrusions 54 and upper surfaces of portions 74 that remain on conformal layer 58 after the blanket etch. The composition of conformal layer 58 is such that when the blanket etch is applied to conformal layer 58, crown surface 70 is provided with a substantially planar profile. That is, the thickness of protrusions 54, shown as “a”, is substantially the same as the thickness of portions 74, shown as “b”. An exemplary blanket etch may be a plasma etch process employing a fluorine-based chemistry.


Referring to FIGS. 7 and 8, crown surface 70 is subjected to an anisotropic etch. The etch chemistry of the anisotropic etch is selected to maximize etching of protrusions 54 and the segments of imprinting layer 134, in superimposition therewith, while minimizing etching of the portions 74 in superimposition with recessions 52. In the present example, advantage was taken of the distinction of the silicon content between the imprinting layer 134 and the conformal layer 58. Specifically, employing an anisotropic plasma etch, e.g., an RIE plasma etch with an oxygen-based chemistry would create an in-situ hardened mask 76 in the regions of portions 74 proximate to crown surface 70. This results from the interaction of the silicon-containing polymerizable material with the oxygen plasma. As a result of the hardened mask 76 and the anisotropicity of the etch process, regions 78 of substrate 32 in superimposition with protrusions 54 are exposed. The width U′ of regions 78 are optimally equal to width W2, shown in FIG. 2.


Referring to FIGS. 2, 7 and 8, the advantages of this patterning process are manifold. For example, the relative etch rate differential between portions 74 and exposed surfaces 72 facilitates providing precise etch selectivity. As a result, the dimensional width U′ of regions 78 may be precisely controlled, thereby reducing transfer distortions of the pattern into substrate 32. The resulting structure may be used as a mask to facilitate transfer of a pattern into substrate 32. Specifically, the etch differential provided by hardened mask 76 and the portions of solidified imprinting layer 134 in superimposition therewith would provide an etch differential in the presence of a blanket etch. In this manner, regions 78 of substrate 32 would etch sooner than regions of substrate 32 in superimposition with hardened mask 76. By properly selecting materials and etch chemistries, the relational dimensions between the differing features of the pattern eventually transferred into substrate 32 may be controlled as desired. For example, it was found beneficial to include an oxygen plasma etch after the fluorine etch and before the oxygen etch. Specifically, the etch selectivity during the oxygen plasma etch was improved. It is believed that residual fluorine is present on normalization surface 62 and that the Argon etch removes the residual fluorine, thereby further reducing the fluorine available during the oxygen plasma etch.


It has been found that additional planarization may be desired when forming conformal layer 58, shown in FIG. 6, when features of sub ten micron dimension are to be transferred into substrate 32. To that end, as shown in FIGS. 2 and 9, the silicon-containing material may be spun-on as discussed above with respect to forming conformal layer 58 or may be deposited as a plurality of droplets discussed above with respect to imprinting layer 34. After deposition of the silicon-containing material, a planarizing mold 80 having a substantially smooth, if not planar, surface 82 is employed to contact normalization surface 62, before solidification of the silicon-containing material in conformal layer 58. In this manner, conformal layer 58 is provided with a normalized surface with respect to solidified imprinting layer 134. This is typically achieved by providing an optical flat which has sufficient area to concurrently planarize all regions of substrate 32 that includes silicon-containing material employed to form normalization layer 58. Thereafter, the silicon-containing material in conformal layer 58 is solidified and planarized mold 80 is separated from conformal layer 58; and the normalization surface 62 may be processed as discussed above to pattern the same and transfer a pattern into substrate 32.


Referring to both FIGS. 2, 6 and 10, it may be desired to implement a step and repeat planarization process when forming normalization layer 58. To that end, radiation source 22 may be selected to provide actinic radiation to both effectuate cross-linking using both infrared (IR) radiation and ultraviolet radiation. An exemplary radiation source 22 may include multiple sources each of which produces a single range of wavelengths of radiation and is shown including two radiation sources 84 and 86. Radiation source 84 may be any known in the art capable of producing IR radiation, and radiation source 86 may be any known in the art capable of producing actinic radiation employed to polymerize and cross-link material in droplets 38, such as UV radiation. Specifically, radiation produced by either of sources 84 and 86 propagates along optical path 88 toward substrate 32. A circuit (not shown) is in electrical communication with radiation sources 84 and 86 to selectively allow radiation in the UV and IR spectra to impinge upon substrate 32.


Referring to FIG. 11, alternatively, radiation source 22 may include a single radiation source that produces multiple ranges of wavelength, which may be selectively controlled to impinge upon substrate 32 sequentially or concurrently. An exemplary radiation source 22 consists of a single broad spectrum radiation source 90 that produces UV and IR radiation, which may consist of a mercury (Hg) lamp. To selectively impinge differing types of radiation upon substrate 32, a filtering system 92 is utilized. Filtering system 92 comprises a high pass filter (not shown) and a low pass filter (not shown), each in optical communication with radiation source 90. Filtering system 92 may position the high pass filter (not shown) such that optical path 88 comprises IR radiation or filtering system 92 may position the low pass filter (not shown) such that optical path 88 comprises UV radiation. The high pass and low pass filters (not shown) may be any known in the art, such as interference filters comprising two semi-reflective coatings with a spacer disposed therebetween. The index of refraction and the thickness of the spacer determine the frequency band being selected and transmitted through the interference filter. Therefore, the appropriate index of refraction and thickness of the spacer is chosen for both the high pass filter (not shown) and the low pass filter (not shown), such that the high pass filter (not shown) permits passage of IR radiation and the low pass filter (not shown) permits passage of UV radiation. A processor (not shown) is in data communication with radiation source 90 and filtering system 92 to selectively allow the desired wavelength of radiation to propagate along optical path 88. The circuit enables high pass filter (not shown) when IR radiation is desired and enables the low pass filter (not shown) when UV radiation is desired.


Referring to FIG. 12, substrate 32 may have one or more existing layers disposed thereon before deposition of imprinting layer 34. As a result, heating the silicon-containing material may be problematic, because the material from which the wafer is formed and/or the preexisting layers on the wafer, e.g., solidified imprinting layer 134, are substantially non-responsive to infrared radiation. As a result, very little energy transfer may occur, resulting in it being difficult to raise the temperature of the silicon-containing material sufficient to achieve cross-linking.


To facilitate cross-linking of the silicon-containing material in conformal layer 58, one of the layers included with substrate 32 may be an infrared absorption layer 94. Absorption layer 94 comprises a material that is excited when exposed to IR radiation and produces a localized heat source. Typically, absorption layer 94 is formed from a material that maintains a constant phase state during the heating process, which may include a solid phase state. Specifically, the IR radiation impinging upon absorption layer 94 causes an excitation of the molecules contained therein, generating heat. The heat generated in absorption layer 94 is transferred to the silicon-containing material via conduction through the wafer and/or any intervening layer of material thereon, e.g., absorption layer 94 may be disposed on surface 36 so as to be disposed between substrate 32 and solidified imprinting layer 134. As a result, absorption layer 94 and substrate 32 provide a bifurcated heat transfer mechanism that is able to absorb IR radiation and to produce a localized heat source sensed by the silicon-containing material in conformal layer 58. In this manner, absorption layer 94 creates a localized heat sources on surface 36. To that end, absorption layer 94 may be deposited using any known technique, including spin-coating, chemical vapor deposition, physical vapor deposition, atomic layer deposition and the like. Exemplary materials that may be formed from a carbon based PVD coating, organic thermo set coating with carbon black filler or molybdenum disulfide (MoS2) based coating.


Referring to FIG. 13, absorption layer 94 may be disposed on a side of substrate 32 disposed opposite to solidified imprinting layer 134. As a result, absorption layer 94 may be permanently or removably attached. Exemplary materials that may be employed as absorption layer 94 include black nickel and anodized black aluminum. Also, black chromium may be employed as absorption layer 94. Black chromium is typically deposited as a mixture of oxides and is used as a coating for solar cells.


Furthermore, as shown in FIG. 2, patterned mold 26 may be fabricated from any material, such as, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and combinations of the above. However, it the present embodiment, the actinic radiation propagates through patterned mold 26. Therefore, it is desired that patterned mold 26 be fabricated from material that is substantially transparent to the actinic radiation. The plurality of features on patterned mold 26 are shown as recesses 28 extending along a direction parallel to projections 30 that provide a cross-section of patterned mold 26 with a shape of a battlement. However, recesses 28 and projections 30 may correspond to virtually any feature required to create an integrated circuit and may be as small as a few tenths of nanometers.


Referring to FIGS. 2 and 14, similarly, it may be desirable to provide substrate 32 with a planarized surface upon which to forming imprinting layer 34. To that end, a primer layer 96 may be formed upon substrate 32. Primer layer 96 has proved beneficial when surface 36 of substrate 32 appears rough when compared to the features dimensions to be formed in imprinting layer 34. Additionally, it has been found beneficial to deposit primer layer 96 when forming imprinting layer 34 upon a previously disposed patterned layer present on substrate 32. Primer layer 96 may also functions, inter alia, to provide a standard interface with imprinting layer 34, thereby reducing the need to customize each process to the material from which substrate 32 is formed. In addition, primer layer 96 may be formed from an organic material with the same etch characteristics as imprinting layer 34. Primer layer 96 is fabricated in such a manner so as to possess a continuous, smooth, relatively defect-free surface that may exhibit excellent adhesion to imprinting layer 34. An exemplary material to use to form primer layer 96 is available from Brewer Science, Inc. of Rolla, Mo. under the trade name DUV30J-6


Referring to FIGS. 5 and 14, to reduce the probability that solidified imprinting layer 134 does not adhere to patterned mold 26, surface 50 may be treated with a low surface energy coating 98. Low surface energy coating 98 may be applied using any known process. For example, processing techniques may include chemical vapor deposition method, physical vapor deposition, atomic layer deposition or various other techniques, brazing and the like. In a similar fashion a low surface energy coating 198 may be applied to planarizing mold 94, shown in FIG. 15. Typically, the surfactant has a surface energy associated therewith that is lower than a surface energy of the polymerizable material in the layer. An exemplary material and process by which to form the aforementioned surfactant is discussed by Bender et al. in MULTIPLE IMPRINTING IN UV-BASED NANOIMPRINT LITHOGRAPHY:RELATED MATERIAL ISSUES, Microelectronic Engineering pp. 61-62 (2002). The low surface energy of the surfactant provides the desired release properties to reduce adherence of either imprinting layer 34 or conformal layer 58 to patterned mold 26. It should be understood that the surfactant may be used in conjunction with, or in lieu of, low surface energy coatings 98 and 198.


The embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims
  • 1. A composition operable for forming a layer on a surface, the composition comprising: a solid hydroxyl-functional silicone T-resin component having the general formula RSiO1.5, wherein R is selected from the group consisting of hydroxyl, methyl, phenyl, propyl, and combinations thereof, the T-resin component having silicon atoms associated therewith;a cross-linking component;a catalyst component; anda solvent component,wherein the catalyst component catalyzes a condensation reaction between the cross-linking component and the silicone T-resin component to form Si—O—C bonds in a cross-linked polymer material in response to thermal energy, andwherein the silicon atoms of the T-resin component comprise at least 5% by weight of the cross-linked polymer material.
  • 2. The composition as recited in claim 1 wherein the silicon atoms in the composition comprise at least 5% by weight of the silicone T-resin component, the cross-linking component, and the catalyst component.
  • 3. The composition as recited in claim 1 wherein the silicone resin component is approximately 4% by weight of the composition, the cross-linking component is approximately 0.95% by weight of the composition, the catalyst component is approximately 0.05% by weight of the composition, and the solvent component is approximately 95% by weight of the composition.
  • 4. The composition as recited in claim 1 further including an epoxy-functional silane component, wherein the silicone resin component is approximately 4% by weight of the composition, the cross-linking component is approximately 0.7% by weight of the composition, the epoxy-functional silane component is approximately 0.25% by weight of the composition, the catalyst component is approximately 0.05% by weight of the composition, and the solvent component is approximately 95% by weight of the composition.
  • 5. The composition as recited in claim 1 wherein the cross-linking component includes an aminoplast crosslinker.
  • 6. The composition as recited in claim 1 wherein the cross-linking component includes hexamethoxymethylmelamine.
  • 7. The composition as recited in claim 1 wherein the catalyst component includes an acidic compound.
  • 8. The composition as recited in claim 1 wherein the catalyst component includes toluenesulfonic acid.
  • 9. The composition as recited in claim 4 wherein the solvent component is from a set consisting of alcohol, ether, glycol, glycol ether, methyl amyl ketone, ester, and acetate.
  • 10. The composition as recited in claim 4 wherein the epoxy-functional silane component is selected from a set consisting of glycidoxypropyltrihydroxysilane, 3-glycidoxy-propyldimethylhydroxysilane, 3-glycidoxypropyltrimethoxysilane, 2,3-epoxypropyltrimethoxy-silane, and gamma-glycidoxypropyltrimethoxysilane.
  • 11. The composition as recited in claim 1 wherein the composition is solidifiable as a result of thermal exposure.
  • 12. The composition as recited in claim 1 wherein the composition is solidifiable as a result of centrifugation and thermal exposure.
  • 13. The composition as recited in claim 1 wherein the solvent is propylene glycol methyl ether acetate.
  • 14. A substrate having coated thereon the composition of claim 1, wherein after coating the substrate and curing the composition, the silicon atom content in the coating is in a range of 10%-20% by weight.
  • 15. A substrate having coated thereon the composition of claim 1, wherein after coating the substrate and curing the composition, the silicon atom content in the coating is greater than 20% by weight.
  • 16. A composition operable for forming a layer on a surface, the composition comprising: a solid silicone T-resin component, having silicon atoms associated therewith, wherein the solid silicone T-resin component is a hydroxyl-functional silsesquioxane having the general formula RSiO1.5, wherein R is selected from the group consisting of hydroxyl, methyl, phenyl, propyl, and combinations thereof;a cross-linking component, wherein the cross-linking component is hexamethoxymethylmelamine;a catalyst component, wherein the catalyst component is toluene sulfonic acid; anda solvent component, wherein the solvent component is propylene glycol methyl ether acetate.
  • 17. The composition as recited in claim 16 wherein the solid silicone T-resin component is approximately 4% by weight of the composition, the cross-linking component is approximately 0.95% by weight of the composition, the catalyst component is approximately 0.05% by weight of the composition, and the solvent component is approximately 95% by weight of the composition.
  • 18. A composition operable for forming a layer on a surface, the composition comprising: a hydroxyl-functional silsesquioxane having the general formula RSiO1.5, wherein R is selected from the group consisting of hydroxyl, methyl, phenyl, propyl, and combinations thereof;hexamethoxymethylmelamine;toluene sulfonic acid; andpropylene glycol methyl ether acetate.
  • 19. A method for forming a layer on a surface, the method comprising: depositing a composition on the surface, the composition comprising: a solid hydroxyl-functional silicone T-resin component having the general formula RSiO1.5, wherein R is selected from the group consisting of hydroxyl, methyl, phenyl, propyl, and combinations thereof, the T-resin component having silicon atoms associated therewith;a cross-linking component;an acidic catalyst component; anda solvent component,wherein the catalyst component catalyzes a condensation reaction between the cross-linking component and the silicone T-resin component to form a cross-linked polymer material in response to thermal energy; andthen exposing the composition to thermal energy to form the cross-linked polymer material on the surface, wherein the silicon atoms of the T-resin component comprise at least 5% by weight of the cross-linked polymer material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application for Patent is a Continuation-In-Part of U.S. patent application Ser. No. 10/789,319, filed Feb. 27, 2004.

US Referenced Citations (351)
Number Name Date Kind
3527062 Bilinski et al. Sep 1970 A
3783520 King Jan 1974 A
3807027 Heisler Apr 1974 A
3807029 Troeger Apr 1974 A
3810874 Mitsch et al. May 1974 A
3811665 Seelig May 1974 A
3912670 Huemmer et al. Oct 1975 A
3919351 Chang et al. Nov 1975 A
4062600 Wyse Dec 1977 A
4070116 Frosch et al. Jan 1978 A
4098001 Watson Jul 1978 A
4119688 Hiraoka Oct 1978 A
4155169 Drake et al. May 1979 A
4201800 Alcorn et al. May 1980 A
4202107 Watson May 1980 A
4267212 Sakawaki May 1981 A
4326805 Feldman et al. Apr 1982 A
4337579 De Fazio Jul 1982 A
4355469 Nevins et al. Oct 1982 A
4414750 De Fazio Nov 1983 A
4426247 Tamamura et al. Jan 1984 A
4440804 Milgram Apr 1984 A
4451507 Beltz et al. May 1984 A
4507331 Hiraoka Mar 1985 A
4512848 Deckman et al. Apr 1985 A
4517337 Lockhart et al. May 1985 A
4544572 Sandvig et al. Oct 1985 A
4552832 Blume et al. Nov 1985 A
4552833 Ito et al. Nov 1985 A
4600309 Fay Jul 1986 A
4610442 Oku et al. Sep 1986 A
4614667 Larson et al. Sep 1986 A
4617238 Crivello et al. Oct 1986 A
4657845 Frchet et al. Apr 1987 A
4692205 Sachdev et al. Sep 1987 A
4694703 Routson Sep 1987 A
4707218 Giammarco et al. Nov 1987 A
4724222 Feldman Feb 1988 A
4731155 Napoli et al. Mar 1988 A
4737425 Lin et al. Apr 1988 A
4763886 Takei Aug 1988 A
4772878 Kane Sep 1988 A
4808511 Holmes Feb 1989 A
4826943 Ito et al. May 1989 A
4846931 Gmitter et al. Jul 1989 A
4848179 Ubhayakar Jul 1989 A
4848911 Uchida et al. Jul 1989 A
4857477 Kanamori Aug 1989 A
4883561 Gmitter et al. Nov 1989 A
4887283 Hosno Dec 1989 A
4891303 Garza et al. Jan 1990 A
4908298 Hefferon et al. Mar 1990 A
4909151 Fukui et al. Mar 1990 A
4919748 Bredbenner et al. Apr 1990 A
4921778 Thackeray et al. May 1990 A
4929083 Brunner May 1990 A
4931351 McColgin et al. Jun 1990 A
4959252 Bonnebat et al. Sep 1990 A
4964145 Maldonado Oct 1990 A
4964945 Calhoun Oct 1990 A
4976818 Hashimoto et al. Dec 1990 A
4980316 Huebner Dec 1990 A
4999280 Hiraoka Mar 1991 A
5028366 Harakal et al. Jul 1991 A
5053318 Gulla et al. Oct 1991 A
5063321 Carter Nov 1991 A
5071694 Uekita et al. Dec 1991 A
5072126 Progler Dec 1991 A
5073230 Maracas et al. Dec 1991 A
5074667 Miyatake Dec 1991 A
5102977 McLafferty et al. Apr 1992 A
5108875 Thackeray et al. Apr 1992 A
5110514 Soane May 1992 A
5126006 Cronin et al. Jun 1992 A
5148036 Matsugu et al. Sep 1992 A
5148037 Suda et al. Sep 1992 A
5151754 Ishibashi et al. Sep 1992 A
5155749 DiMilia et al. Oct 1992 A
5169494 Hashimoto et al. Dec 1992 A
5171490 Fudim Dec 1992 A
5173393 Sezi et al. Dec 1992 A
5179863 Uchida et al. Jan 1993 A
5182174 Stephenson Jan 1993 A
5198326 Hashimoto et al. Mar 1993 A
5204739 Domenicali Apr 1993 A
5206983 Guckel et al. May 1993 A
5212147 Sheats May 1993 A
5218193 Miyatake Jun 1993 A
5234793 Sebald et al. Aug 1993 A
5240550 Boehnke et al. Aug 1993 A
5240878 Fitzsimmons et al. Aug 1993 A
5242711 DeNatale et al. Sep 1993 A
5244818 Jokerst et al. Sep 1993 A
5259926 Kuwabara et al. Nov 1993 A
5270984 Mine Dec 1993 A
5277749 Griffith et al. Jan 1994 A
5314772 Kozicki et al. May 1994 A
5318870 Hartney Jun 1994 A
5324683 Fitch et al. Jun 1994 A
5328810 Lowrey et al. Jul 1994 A
5330881 Sidman et al. Jul 1994 A
5331020 Brown et al. Jul 1994 A
5348616 Hartman et al. Sep 1994 A
5355219 Araki et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5362606 Hartney et al. Nov 1994 A
5366851 Novembre Nov 1994 A
5374454 Bickford et al. Dec 1994 A
5376810 Hoenk et al. Dec 1994 A
5380474 Rye et al. Jan 1995 A
5389696 Dempsey et al. Feb 1995 A
5392123 Marcus et al. Feb 1995 A
5414514 Smith et al. May 1995 A
5417802 Obeng May 1995 A
5421981 Leader et al. Jun 1995 A
5422295 Choi et al. Jun 1995 A
5424549 Feldman Jun 1995 A
5425848 Haisma et al. Jun 1995 A
5425964 Southwell et al. Jun 1995 A
5431777 Austin et al. Jul 1995 A
5439766 Day et al. Aug 1995 A
5452090 Progler et al. Sep 1995 A
5453157 Jeng Sep 1995 A
5458520 DeMercuio et al. Oct 1995 A
5468542 Crouch Nov 1995 A
5480047 Tanigawa et al. Jan 1996 A
5504793 Chen Apr 1996 A
5507411 Peckels Apr 1996 A
5508527 Kuroda et al. Apr 1996 A
5512131 Kumar et al. Apr 1996 A
5515167 Ledger et al. May 1996 A
5523878 Wallace et al. Jun 1996 A
5527662 Hashimoto et al. Jun 1996 A
5542978 Kindt-Larsen et al. Aug 1996 A
5545367 Bae et al. Aug 1996 A
5563702 Emery et al. Oct 1996 A
5566584 Briganti Oct 1996 A
5594042 Glover et al. Jan 1997 A
5601641 Stephens Feb 1997 A
5629095 Bujanowski et al. May 1997 A
5633505 Chung et al. May 1997 A
5654238 Cronin et al. Aug 1997 A
5669303 Maracas et al. Sep 1997 A
5670415 Rust Sep 1997 A
5700626 Lee et al. Dec 1997 A
5723176 Keyworth et al. Mar 1998 A
5724145 Kondo et al. Mar 1998 A
5725788 Maracas et al. Mar 1998 A
5726548 Chiba et al. Mar 1998 A
5731981 Simard Mar 1998 A
5736424 Prybyla et al. Apr 1998 A
5737064 Inoue et al. Apr 1998 A
5743998 Park Apr 1998 A
5747102 Smith et al. May 1998 A
5753014 Van Rijn May 1998 A
5760500 Kondo et al. Jun 1998 A
5772905 Chou Jun 1998 A
5776748 Singhvi et al. Jul 1998 A
5779799 Davis Jul 1998 A
5785918 Hull Jul 1998 A
5802914 Fassler et al. Sep 1998 A
5804474 Sakaki et al. Sep 1998 A
5808742 Everett et al. Sep 1998 A
5825482 Nikoonahad et al. Oct 1998 A
5837314 Beaton et al. Nov 1998 A
5849209 Kindt-Larsen et al. Dec 1998 A
5849222 Jen et al. Dec 1998 A
5855686 Rust Jan 1999 A
5861467 Bujanowski et al. Jan 1999 A
5876550 Feygin et al. Mar 1999 A
5877036 Kawai Mar 1999 A
5877861 Ausschnitt et al. Mar 1999 A
5884292 Baker et al. Mar 1999 A
5888650 Calhoun et al. Mar 1999 A
5895263 Carter et al. Apr 1999 A
5900160 Whitesides et al. May 1999 A
5905104 Eklund et al. May 1999 A
5907782 Wu May 1999 A
5912049 Shirley Jun 1999 A
5926690 Toprac et al. Jul 1999 A
5937758 Maracas et al. Aug 1999 A
5942871 Lee Aug 1999 A
5948219 Rohner Sep 1999 A
5948470 Harrison et al. Sep 1999 A
5948570 Kornblit et al. Sep 1999 A
5952127 Yamanaka Sep 1999 A
5988859 Kirk Nov 1999 A
6033977 Gutsche et al. Mar 2000 A
6035805 Rust Mar 2000 A
6036055 Mogadam et al. Mar 2000 A
6038280 Rossiger et al. Mar 2000 A
6039897 Lochhead et al. Mar 2000 A
6046056 Parce et al. Apr 2000 A
6051345 Huang Apr 2000 A
6074827 Nelson et al. Jun 2000 A
6081334 Grimbergen et al. Jun 2000 A
6088103 Everett et al. Jul 2000 A
6091485 Li et al. Jul 2000 A
6096655 Lee et al. Aug 2000 A
6117708 Wensel Sep 2000 A
6125183 Jiawook et al. Sep 2000 A
6128085 Buermann et al. Oct 2000 A
6133576 Shafer et al. Oct 2000 A
6137562 Masuyuki et al. Oct 2000 A
6143412 Schueller et al. Nov 2000 A
6150231 Muller et al. Nov 2000 A
6150680 Eastman et al. Nov 2000 A
6168845 Fontana, Jr. et al. Jan 2001 B1
6180239 Whitesides et al. Jan 2001 B1
6182042 Peevers Jan 2001 B1
6188150 Spence Feb 2001 B1
6204343 Barucha et al. Mar 2001 B1
6204922 Chalmers Mar 2001 B1
6218316 Marsh Apr 2001 B1
6234379 Donges May 2001 B1
6245213 Olsson et al. Jun 2001 B1
6245581 Bonser et al. Jun 2001 B1
6274294 Hines Aug 2001 B1
6309580 Chou Oct 2001 B1
6316290 Wensel Nov 2001 B1
6326627 Putvinski et al. Dec 2001 B1
6329256 Ibok Dec 2001 B1
6334960 Willson et al. Jan 2002 B1
6337262 Pradeep et al. Jan 2002 B1
6342097 Terry et al. Jan 2002 B1
6355198 Kim et al. Mar 2002 B1
6361831 Sato et al. Mar 2002 B1
6383928 Eissa May 2002 B1
6387783 Furukawa et al. May 2002 B1
6387787 Mancini et al. May 2002 B1
6388253 Su May 2002 B1
6391217 Schaffer et al. May 2002 B2
6391798 DeFelice et al. May 2002 B1
6407340 Wikström et al. Jun 2002 B1
6410209 Adams et al. Jun 2002 B1
6411010 Suzuki et al. Jun 2002 B1
6420892 Krivy et al. Jul 2002 B1
6423207 Heidari et al. Jul 2002 B1
6437891 Chandrasekhar et al. Aug 2002 B1
6447919 Brown et al. Sep 2002 B1
6455411 Jiang et al. Sep 2002 B1
6467761 Amatucci et al. Oct 2002 B1
6468642 Bray et al. Oct 2002 B1
6468896 Rohr et al. Oct 2002 B2
6482742 Chou Nov 2002 B1
6489068 Kye Dec 2002 B1
6495624 Brown Dec 2002 B1
6503914 Benish et al. Jan 2003 B1
6514672 Young et al. Feb 2003 B2
6517977 Resnick et al. Feb 2003 B2
6517995 Jacobson et al. Feb 2003 B1
6518168 Clem et al. Feb 2003 B1
6518189 Chou Feb 2003 B1
6521324 Debe et al. Feb 2003 B1
6522411 Moon et al. Feb 2003 B1
6534418 Plat et al. Mar 2003 B1
6539286 Jiang Mar 2003 B1
6541356 Fogel et al. Apr 2003 B2
6541360 Plat et al. Apr 2003 B1
6544594 Linford et al. Apr 2003 B2
6561706 Singh et al. May 2003 B2
6565776 Li et al. May 2003 B1
6565928 Sakamoto et al. May 2003 B2
6580172 Mancini et al. Jun 2003 B2
6580505 Bareket Jun 2003 B1
6588632 Nicol Jul 2003 B1
6600969 Sudolcan et al. Jul 2003 B2
6632742 Yang et al. Oct 2003 B2
6633391 Oluseyi et al. Oct 2003 B1
6646662 Nebashi et al. Nov 2003 B1
6649272 Moore et al. Nov 2003 B2
6664306 Gaddam et al. Dec 2003 B2
6677252 Marsh Jan 2004 B2
6696157 David et al. Feb 2004 B1
6696220 Bailey et al. Feb 2004 B2
6703190 Elian et al. Mar 2004 B2
6713238 Chou et al. Mar 2004 B1
6716767 Shih et al. Apr 2004 B2
6719915 Willson et al. Apr 2004 B2
6721529 Chen et al. Apr 2004 B2
6730256 Bloomstein et al. May 2004 B1
6731857 Shelnut et al. May 2004 B2
6737489 Linert et al. May 2004 B2
6743713 Mukher-Hee-Roy et al. Jun 2004 B2
6753131 Rogers et al. Jun 2004 B1
6753972 Hirose et al. Jun 2004 B1
6767983 Fujiyama et al. Jul 2004 B1
6770852 Stegner Aug 2004 B1
6774183 Palumbo et al. Aug 2004 B1
6776094 Whitesides et al. Aug 2004 B1
6777170 Bloomstein et al. Aug 2004 B1
6790905 Fitzgerald et al. Sep 2004 B2
6802870 Chang et al. Oct 2004 B2
6805054 Meissl et al. Oct 2004 B1
6809356 Chou Oct 2004 B2
6814879 Shibata Nov 2004 B2
6828244 Chou Dec 2004 B2
6830819 Kaplan et al. Dec 2004 B2
6900881 Sreenivasan et al. May 2005 B2
6990870 Choi et al. Jan 2006 B2
7071088 Watts et al. Jul 2006 B2
7105452 Sreenivasan Sep 2006 B2
7122079 Xu et al. Oct 2006 B2
7186656 Sreenivasan Mar 2007 B2
7205244 Stacey et al. Apr 2007 B2
7241395 Sreenivasan et al. Jul 2007 B2
20010023829 Olsson et al. Sep 2001 A1
20010044075 Nishimura et al. Nov 2001 A1
20020042027 Chou et al. Apr 2002 A1
20020069525 Hada et al. Jun 2002 A1
20020094496 Choi et al. Jul 2002 A1
20020127449 Ban et al. Sep 2002 A1
20020132482 Chou Sep 2002 A1
20020150398 Choi et al. Oct 2002 A1
20020167117 Chou Nov 2002 A1
20030034329 Chou Feb 2003 A1
20030080471 Chou May 2003 A1
20030080472 Chou May 2003 A1
20030081193 White et al. May 2003 A1
20030092261 Kondo et al. May 2003 A1
20030129542 Shih et al. Jul 2003 A1
20030133126 Sarfaty et al. Jul 2003 A1
20030179354 Araki et al. Sep 2003 A1
20030235787 Watts et al. Dec 2003 A1
20040029041 Shih et al. Feb 2004 A1
20040036201 Chou et al. Feb 2004 A1
20040046288 Chou Mar 2004 A1
20040065252 Sreenivasan et al. Apr 2004 A1
20040065976 Sreenivasan et al. Apr 2004 A1
20040110856 Young et al. Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040118809 Chou et al. Jun 2004 A1
20040131718 Chou et al. Jul 2004 A1
20040137734 Chou et al. Jul 2004 A1
20040141163 Bailey et al. Jul 2004 A1
20040149687 Choi et al. Aug 2004 A1
20040150129 Hougham et al. Aug 2004 A1
20040156108 Chou et al. Aug 2004 A1
20040163563 Sreenivasan et al. Aug 2004 A1
20040168613 Nguyen et al. Sep 2004 A1
20040170770 Nguyen et al. Sep 2004 A1
20040192041 Jeong et al. Sep 2004 A1
20040197843 Chou et al. Oct 2004 A1
20040200411 Willson et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040202872 Fang et al. Oct 2004 A1
20040229158 Meador et al. Nov 2004 A1
20040241338 Foster et al. Dec 2004 A1
20050040532 Kumar et al. Feb 2005 A1
20060224009 Hamada et al. Oct 2006 A1
20100098940 Liu et al. Apr 2010 A1
Foreign Referenced Citations (48)
Number Date Country
2800476 Jul 1978 DE
19648844 Sep 1997 DE
244884 Mar 1987 EP
733455 Sep 1996 EP
80355 Oct 1997 EP
0867775 Sep 1998 EP
55-88332 Jul 1980 JP
57-7931 Jan 1982 JP
58-129074 Aug 1983 JP
63-138730 Jun 1988 JP
1-196749 Aug 1989 JP
02-24848 Jan 1990 JP
02-92603 Apr 1990 JP
02192045 Jul 1990 JP
2219881 Sep 1990 JP
4-70379 May 1992 JP
4-366958 Dec 1992 JP
2001343757 Dec 2001 JP
2002251802 Sep 2002 JP
2002270541 Sep 2002 JP
WO 8702935 May 1987 WO
WO 9217883 Oct 1992 WO
WO 9810121 Mar 1998 WO
WO 9905724 Feb 1999 WO
WO 9945753 Sep 1999 WO
WO 9963535 Dec 1999 WO
WO 0021689 Apr 2000 WO
WO 0054107 Sep 2000 WO
WO 0133232 May 2001 WO
WO 0147003 Jun 2001 WO
WO 0153889 Jul 2001 WO
WO 0163361 Aug 2001 WO
WO 0169317 Sep 2001 WO
WO 0179589 Oct 2001 WO
WO 0179591 Oct 2001 WO
WO 0179592 Oct 2001 WO
WO 0179933 Oct 2001 WO
WO 0190816 Nov 2001 WO
WO 0207199 Jan 2002 WO
WO 0222916 Mar 2002 WO
WO 0224977 Mar 2002 WO
WO 03010289 Feb 2003 WO
WO 03079416 Sep 2003 WO
WO 03099536 Dec 2003 WO
WO 2004088414 Oct 2004 WO
WO 20050077764 Jan 2005 WO
WO 2005114719 Jan 2005 WO
WO 2010047770 Apr 2010 WO
Related Publications (1)
Number Date Country
20080097065 A1 Apr 2008 US
Continuation in Parts (1)
Number Date Country
Parent 10789319 Feb 2004 US
Child 11508765 US