Composition for regulating production of fusion proteins

Information

  • Patent Grant
  • 12331323
  • Patent Number
    12,331,323
  • Date Filed
    Monday, September 16, 2024
    a year ago
  • Date Issued
    Tuesday, June 17, 2025
    3 months ago
  • Inventors
  • Original Assignees
    • ERAD Therapeutics Canada Inc.
  • Examiners
    • Marvich; Maria
    Agents
    • Lathrop GPM LLP
    • Trinque; Brian C.
    • Greene; Christine
Abstract
Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of mRNA. The sequences of mRNA may encode for translation of target biomolecules, thereby causing an increase in bioavailability of the target biomolecules within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecules are modified Cholera toxin A and Cholera toxin B.
Description
SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in computer readable format. The Sequence Listing is provided as a file entitled 757778 AS FILED Sequence Listing.xml created Oct. 23, 2024, and is approximately 17.442 bytes in size. The information in the computer readable format of the sequence listing is incorporated herein by reference in its entirety.


TECHNICAL FIELD

The present disclosure generally relates to compositions for regulating the production of proteins. In particular, the present disclosure relates to compositions for regulating gene expression and, consequently, the production of modified Cholera toxin A and Cholera toxin B.


BACKGROUND

Proteins with a single amino acid mutation, or mutations at more than one amino acid, will generally not fold into fully functional proteins.


Misfolded proteins are degraded by the endoplasmic reticulum.


These misfolded proteins may retain some of their function. As such, it may be desirable to establish therapies, treatments and/or interventions that may result from interfering with endoplasmic reticulum mediated protein degradation.


Modified Cholera toxin B in combination with Cholera toxin A has been demonstrated to interfere with endoplasmic reticulum mediated protein degradation.


SUMMARY

Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of mRNA. The sequences of mRNA may encode for translation of target biomolecules, thereby causing an increase in bioavailability of the target biomolecules within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecules are modified Cholera toxin A and Cholera toxin B.


In some embodiments of the present disclosure the compositions comprise a plasmid of deoxyribonucleic acid (DNA) that includes one or more insert sequences of nucleotides that encode for the production of mRNA and a backbone sequence of nucleotides that facilitates introduction of the one or more insert sequences into one or more of a subject's cells where it is expressed and/or replicated. Expression of the one or more insert sequences by one or more cells of the subject results in an increased production of the mRNA and, consequently, increased translation of the target biomolecules by one or more of the subject's cells.


Some embodiments of the present disclosure relate to a recombinant plasmid (RP). In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 2. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for modified Cholera toxin A and Cholera toxin B.


Some embodiments of the present disclosure relate to a method of making a composition/target cell complex. The method comprising a step of administering an RP comprising SEQ ID NO. 1 and SEQ ID NO. 2 to a target cell for forming the composition/target cell complex, wherein the composition/target cell complex causes the target cell to increase production of one or more sequences of mRNA that increases production of the target biomolecules.


Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for target biomolecules, for example modified Cholera toxin A and Cholera toxin B. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences of modified Cholera toxin A and Cholera toxin B and/or combinations thereof, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.







DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used therein have the meanings that would be commonly understood by one of skill in the art in the context of the present description. Although any methods and materials similar or equivalent to those described therein can also be used in the practice or testing of the present disclosure, the preferred compositions, methods and materials are now described. All publications mentioned therein are incorporated therein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


As used therein, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, reference to “a composition” includes one or more compositions and reference to “a subject” or “the subject” includes one or more subjects.


As used therein, the terms “about” or “approximately” refer to within about 25%, preferably within about 20%, preferably within about 15%, preferably within about 10%, preferably within about 5% of a given value or range. It is understood that such a variation is always included in any given value provided therein, whether or not it is specifically referred to.


As used therein, the term “ameliorate” refers to improve and/or to make better and/or to make more satisfactory.


As used therein, the term “cell” refers to a single cell as well as a plurality of cells or a population of the same cell type or different cell types. Administering a composition to a cell includes in vivo, in vitro and ex vivo administrations and/or combinations thereof.


As used therein, the term “complex” refers to an association, either direct or indirect, between one or more particles of a composition and one or more target cells. This association results in a change in the metabolism of the target cell. As used therein, the phrase “change in metabolism” refers to an increase or a decrease in the production by one or more target cells of one or more proteins, and/or any post-translational modifications of one or more proteins.


As used therein, the term “composition” refers to a substance that, when administered to a subject, causes one or more chemical reactions and/or one or more physical reactions and/or one or more physiological reactions and/or one or more immunological reactions in the subject. In some embodiments of the present disclosure, the composition is a plasmid vector.


As used therein, the term “endogenous” refers to the production and/or modification of a molecule that originates within a subject.


As used therein, the terms “production”, “producing” and “produce” refer to the synthesis and/or replication of DNA, the transcription of one or more sequences of RNA, the translation of one or more amino acid sequences, the post-translational modifications of an amino acid sequence, and/or the production of one or more regulatory molecules that can influence the production and/or functionality of an effector molecule or an effector cell. For clarity, “production” is also used therein to refer to the functionality of a regulatory molecule, unless the context reasonably indicates otherwise.


As used therein, the term “subject” refers to any therapeutic target that receives the composition. The subject can be a vertebrate, for example, a mammal including a human. The term “subject” does not denote a particular age or sex. The term “subject” also refers to one or more cells of an organism, an in vitro culture of one or more tissue types, an in vitro culture of one or more cell types, ex vivo preparations, and/or a sample of biological materials such as tissue, and/or biological fluids.


As used therein, the term “target biomolecules” refers to modified Cholera toxin A and Cholera toxin B.


As used therein, the term “target cell” refers to one or more cells and/or cell types that are affected, either directly or indirectly, by a biomolecule.


As used therein, the term “therapeutically effective amount” refers to the amount of the composition used that is of sufficient quantity to ameliorate, treat and/or inhibit one or more of a disease, disorder or a symptom thereof. The “therapeutically effective amount” will vary depending on the composition used, the route of administration of the composition and the severity of the disease, disorder or symptom thereof. The subject's age, weight and genetic make-up may also influence the amount of the composition that will be a therapeutically effective amount.


As used therein, the terms “treat”, “treatment” and “treating” refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing an occurrence of a disease, disorder or symptom thereof and/or the effect may be therapeutic in providing a partial or complete amelioration or inhibition of a disease, disorder, or symptom thereof. Additionally, the term “treatment” refers to any treatment of a disease, disorder, or symptom thereof in a subject and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; and (c) ameliorating the disease.


As used therein, the terms “unit dosage form” and “unit dose” refer to a physically discrete unit that is suitable as a unitary dose for patients. Each unit contains a predetermined quantity of the composition and optionally, one or more suitable pharmaceutically acceptable carriers, one or more excipients, one or more additional active ingredients, or combinations thereof. The amount of composition within each unit is a therapeutically effective amount.


Where a range of values is provided therein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also, encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


In some embodiments of the present disclosure, a composition is a recombinant plasmid (RP) for introducing genetic material, such as one or more nucleotide sequences, into a target cell for reproduction or transcription of an insert that comprises one or more nucleotide sequences that are carried within the RP. In some embodiments of the present disclosure, the RP is delivered by a viral vector. In some embodiments of the present disclosure, the vector is an adeno-associated virus vector.


In some embodiments of the present disclosure, the insert comprises one or more nucleotide sequences that encode for production of at least one sequence of mRNA that increases the production of target biomolecules, such as modified Cholera toxin A and Cholera toxin B.


In some embodiments of the present disclosure, the target biomolecules are Cholera toxin A and Cholera toxin B.


In some embodiments of the present disclosure, the subject may respond to receiving a therapeutic amount of the composition by changing production and/or functionality of one or more i molecules by changing production of one or more DNA sequences, one or more RNA sequences, and/or one or more proteins that regulate the levels and/or functionality of the one or more intermediary molecules.


In some embodiments of the present disclosure, administering a therapeutic amount of the composition to a subject upregulates the production, functionality or both of one or more sequences of mRNA that each encode for one or more biomolecules.


In some embodiments of the present disclosure, the composition is an RP that may be used for gene therapy. The gene therapy is useful for increasing the subject's endogenous production of one or more sequences of mRNA that encode for target biomolecules. For example, the RP can contain one or more nucleotide sequences that cause increased production of one or more nucleotide sequences that cause an increased production of one or more mRNA sequences that encode for biomolecules, such as modified Cholera toxin A and Cholera toxin B.


In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a vector that comprises a virus that can be enveloped, or not (unenveloped), replication effective or not (replication ineffective), or combinations thereof. In some embodiments of the present disclosure, the vector is a virus that is not enveloped and not replication effective. In some embodiments of the present disclosure, the vector is a virus of the Parvoviridae family. In some embodiments of the present disclosure, the vector is a virus of the genus Dependoparvovirus. In some embodiments of the present disclosure, the vector is an adeno-associated virus (AAV). In some embodiments of the present disclosure, the vector is a recombinant AAV. In some embodiments of the present disclosure, the vector is a recombinant AAV6.2FF.


The embodiments of the present disclosure also relate to administering a therapeutically effective amount of the composition. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is between about 10 and about 1×1016 TCID50/kg (50% tissue culture infective dose per kilogram of the patient's body mass). In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to the patient is about 1×1013 TCID50/kg. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is measured in TPC/kg (total particle count of the composition per kilogram of the patient's body mass). In some embodiments of the present disclosure, the therapeutically effective amount of the composition is between about 10 and about 1×1016 TCP/kg.


Some embodiments of the present disclosure relate to an adeno-associated virus (AAV) genome consisting of an RP that, when operable inside a target cell, will cause the target cell to produce an mRNA sequence that upregulates production of biomolecules, with examples being modified Cholera toxin A and Cholera toxin B. The RP is comprised of AAV2 inverted terminal repeats (ITRs), a composite CASI promoter, and a human growth hormone (HGH) signal peptide, followed by a mRNA expression cassette encoding for modified Cholera toxin A and Cholera toxin B, followed by a Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE) and a Simian virus 40 (SV40) polyadenylation (polyA) signal.










SEQ ID NO. 1(backbone sequence No. 1):



5′ AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT





GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTT





CCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAG





GAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCA





ACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTT





TCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGA





CAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGT





CCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTG





CTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCT





CTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGG





CCGCCTCCCCGCCTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTT





ATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT





CACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGAT





CTCGACCTCGACTAGAGCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTA





ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGC





TCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCC





TCAGTGAGCGAGCGAGCGCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATC





GCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAATTCCAGACGATTGAGC





GTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATA





TTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTG





ATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTTGCGTGATGGACAGA





CTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACC





GTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAAC





GAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCG





GCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCC





AGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG





GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT





ACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC





GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA





CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTAT





AAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAAT





TTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAAT





CTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTA





GTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACC





TGATAGCCTTTGTAGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATC





AGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCAC





CCGTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTT





CTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGG





GTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAA





TTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTGGAATTCCTGATGCG





GTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGT





ACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCT





GACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACC





GTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGA





CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT





TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA





TTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATG





CTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT





ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGA





AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT





CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG





AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAA





GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCA





GTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGC





CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGAC





CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATC





GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG





CCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA





GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACT





TCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA





GCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTAT





CGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA





TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACT





CATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA





GATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGA





GCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGC





GTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCG





GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA





CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTA





GCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGC





GATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA





GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCT





ACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAA





GGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCA





CGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCC





ACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA





AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCA





CATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAG





TGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGA





GGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTC





ATTAATGCAGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCG





GGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAG





GGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAACCCGCCATGC





TACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAGTTCCGCGT





TACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATT





GACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG





TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCA





TATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTA





TGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTC





ATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCC





CCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATG





GGGGGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGGGGGGCGGGGCGAGGGGC





GGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCG





AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCG





CGCGGCGGGCGGGAGTCGCTGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCG





CCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTAAAACAGGTAAGTCCGG





CCTCCGCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACGGCGAGCGCT





GCCACGTCAGACGAAGGGCGCAGCGAGCGTCCTGATCCTTCCGCCCGGACGCTCAG





GACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGCAGAAGG





ACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCG





GAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTGG





GGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTTTTTTTTCTA





CAGGTCCTGGGTGACGAACAGGGTACCGCCACC 3′





SEQ ID NO. 2(mRNA expression cassette No. 2 - modified 


Cholera toxin A and Cholera toxin B):


5′ AACGATGATAAACTGTATCGCGCGGATAGCCGCCCGCCGGATGAAATTAAACAGAG





CGGCGGCCTGATGCCGCGCGGCCAGAGCGAATATTTTGATCGCGGCACCCAGATGA





ACATTAACCTGTATGATCATGCGCGCGGCACCCAGACCGGCTTTGTGCGCCATGATG





ATGGCTATGTGAGCACCAAAATTAGCCTGCGCAGCGCGCATCTGGTGGGCCAGACC





ATTCTGAGCGGCCATAGCACCTATTATATTTATGTGATTGCGACCGCGCCGAACATG





TTTAACGTGAACGATGTGCTGGGCGCGTATAGCAGCCATCCGGATGAACAGGAAGT





GAGCGCGCTGGGCGGCATTCCGTATAGCCAGATTTATGGCTGGTATCGCGTGCATTT





TGGCGTGCTGGATGAACAGCTGCATCGCAACCGCGGCTATCGCGATCGCTATTATAG





CAACCTGGATATTGCGCCGGCGGCGGATGGCTATGGCCTGGCGGGCTTTCCGCCGG





AACATCGCGCGTGGCGCGAAGAACCGTGGATTCATCATGCGCCGCCGGGCTGCGGC





AACGCGCCGCGCAGCAGCATGAGCAACACCTGCGATGAAAAAACCCAGAGCCTGG





GCGTGAAATTTCTGGATGAATATCAGAGCAAAGTGAAACGCCAGATTTTTAGCGGCT





ATCAGAGCGATATTGATACCCATAACCGCATTAAAGATGAACTGATGGCAACAGGG





AGCCGAACCTCTCTGCTCCTTGCTTTCGGGCTCCTTTGCCTACCGTGGCTCCAAGAGG





GCTCGGCAACCCCGCAGAACATTACCGATCTGTGCGCGGAATATCATAACACCCAG





ATTCATACCCTGAACGATAAAATTTTTAGCTATACCGAAAGCCTGGCGGGCAAACGC





GAAATGGCGATTATTACCTTTAAAAACGGCGCGACCTTTCAGGTGGAAGTGCCGGG





CAGCCAGCATATTGATAGCCAGAAAAAAGCGATTGAACGCATGAAAGATACCCTGC





GCATTGCGTATCTGACCGAAGCGAAAGTGGAAAAACTGTGCGTGTGGAACAACAAA





ACCCCGCATGCGATTGCGGCGATTAGCATGGCGAACTCTAGAGAT 3′





SEQ ID NO. 3 = SEQ ID NO. 1 + SEQ ID NO. 2


5′ AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT





GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTT





CCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAG





GAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCA





ACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTT





TCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGA





CAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGT





CCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTG





CTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCT





CTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGG





CCGCCTCCCCGCCTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTT





ATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT





CACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGAT





CTCGACCTCGACTAGAGCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTA





ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGC





TCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCC





TCAGTGAGCGAGCGAGCGCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATC





GCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAATTCCAGACGATTGAGC





GTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATA





TTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTG





ATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTTGCGTGATGGACAGA





CTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACC





GTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAAC





GAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCG





GCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCC





AGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG





GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT





ACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATC





GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA





CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTAT





AAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAAT





TTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAAT





CTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTA





GTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACC





TGATAGCCTTTGTAGAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATC





AGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCAC





CCGTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTT





CTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGG





GTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAA





TTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTGGAATTCCTGATGCG





GTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGT





ACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCT





GACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACC





GTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGA





CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT





TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA





TTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATG





CTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT





ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGA





AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT





CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG





AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAA





GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCA





GTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGC





CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGAC





CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATC





GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG





CCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA





GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACT





TCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA





GCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTAT





CGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA





TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACT





CATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA





GATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGA





GCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGC





GTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCG





GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA





CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTA





GCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGC





GATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA





GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCT





ACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAA





GGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCA





CGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCC





ACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA





AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCA





CATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAG





TGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGA





GGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTC





ATTAATGCAGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCG





GGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAG





GGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAACCCGCCATGC





TACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAGTTCCGCGT





TACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATT





GACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG





TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCA





TATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTA





TGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTC





ATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCC





CCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATG





GGGGGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGC





GGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCG





AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCG





CGCGGCGGGGGGAGTCGCTGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCG





CCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTAAAACAGGTAAGTCCGG





CCTCCGCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACGGCGAGCGCT





GCCACGTCAGACGAAGGGCGCAGCGAGCGTCCTGATCCTTCCGCCCGGACGCTCAG





GACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGCAGAAGG





ACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCG





GAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTGG





GGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTTTTTTTTCTA





CAGGTCCTGGGTGACGAACAGGGTACCGCCACCAACGATGATAAACTGTATCGCGC





GGATAGCCGCCCGCCGGATGAAATTAAACAGAGCGGCGGCCTGATGCCGCGCGGCC





AGAGCGAATATTTTGATCGCGGCACCCAGATGAACATTAACCTGTATGATCATGCGC





GCGGCACCCAGACCGGCTTTGTGCGCCATGATGATGGCTATGTGAGCACCAAAATTA





GCCTGCGCAGCGCGCATCTGGTGGGCCAGACCATTCTGAGCGGCCATAGCACCTATT





ATATTTATGTGATTGCGACCGCGCCGAACATGTTTAACGTGAACGATGTGCTGGGCG





CGTATAGCAGCCATCCGGATGAACAGGAAGTGAGCGCGCTGGGCGGCATTCCGTAT





AGCCAGATTTATGGCTGGTATCGCGTGCATTTTGGCGTGCTGGATGAACAGCTGCAT





CGCAACCGCGGCTATCGCGATCGCTATTATAGCAACCTGGATATTGCGCCGGCGGCG





GATGGCTATGGCCTGGCGGGCTTTCCGCCGGAACATCGCGCGTGGCGCGAAGAACC





GTGGATTCATCATGCGCCGCCGGGCTGCGGCAACGCGCCGCGCAGCAGCATGAGCA





ACACCTGCGATGAAAAAACCCAGAGCCTGGGCGTGAAATTTCTGGATGAATATCAG





AGCAAAGTGAAACGCCAGATTTTTAGCGGCTATCAGAGCGATATTGATACCCATAA





CCGCATTAAAGATGAACTGATGGCAACAGGGAGCCGAACCTCTCTGCTCCTTGCTTT





CGGGCTCCTTTGCCTACCGTGGCTCCAAGAGGGCTCGGCAACCCCGCAGAACATTAC





CGATCTGTGCGCGGAATATCATAACACCCAGATTCATACCCTGAACGATAAAATTTT





TAGCTATACCGAAAGCCTGGCGGGCAAACGCGAAATGGCGATTATTACCTTTAAAA





ACGGCGCGACCTTTCAGGTGGAAGTGCCGGGCAGCCAGCATATTGATAGCCAGAAA





AAAGCGATTGAACGCATGAAAGATACCCTGCGCATTGCGTATCTGACCGAAGCGAA





AGTGGAAAAACTGTGCGTGTGGAACAACAAAACCCCGCATGCGATTGCGGCGATTA





GCATGGCGAACTCTAGAGAT 3′






As will be appreciated by those skilled in the art, because the recombinant plasmid is a circular vector, the one or more sequences of the mRNA expression cassettes may be connected at the 3′ end of SEQ ID NO. 1, as shown in SEQ ID NO. 3, or at the 5′ end of SEQ ID NO. 1.


As will be appreciated by those skilled in the art, a perfect match of nucleotides with each of the miRNA expression cassette sequences is not necessary in order to have the desired result of increased bioavailability of the target biomolecule as a result of the target cell producing the mRNA sequence of the target biomolecule. In some embodiments of the present disclosure, about 80% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 85% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 90% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 95% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result.


Example 1-Expression Cassette

Expression cassettes for expressing mRNA were synthesized. The synthesized mRNA expression cassettes were cloned into the pAVA-00200 plasmid backbone containing the CASI promoter, multiple cloning site (MCS), Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE), and Simian virus 40 (SV40) polyadenylation (polyA) sequence, all flanked by the AAV2 inverted terminal repeats (ITR). pAVA-00200 was cut with the restriction enzymes KpnI and Xbal in the MCS and separated on a 1% agarose gel. The band of interest was excised and purified using a gel extraction kit. Each mRNA expression cassette was amplified by polymerase chain reaction (PCR) using Taq polymerase and the PCR products were gel purified. The bands of interest were also excised and purified using a gel extraction kit. These PCR products contained the mRNA expression cassettes in addition to 15 base pair 5′ and 3′ overhangs that aligned with the ends of the linearized pAVA-00200 backbone. Using in-fusion cloning, the amplified mRNA expression cassettes are integrated with the pAVA-00200 backbone via homologous recombination. The resulting RP contained the following: 5′ ITR, CASI promoter, mRNA expression cassette, WPRE, SV40 polyA and ITR 3′.

Claims
  • 1. A composition that comprises a recombinant plasmid (RP) with a sequence of nucleotides that encodes a messenger ribonucleic acid (mRNA) sequence that encodes modified Cholera toxin A and Cholera toxin B, and wherein the sequence of nucleotides is about 95% to about 100% identical to the nucleotide sequence of SEQ ID NO: 2.
  • 2. The composition of claim 1, wherein the RP is configured to be delivered to a target cell, wherein the RP is delivered by a viral vector.
  • 3. The composition of claim 2, wherein the viral vector is an adeno associated virus (AAV).
  • 4. A composition that comprises a RP with a sequence of nucleotides that encodes a mRNA sequence that encodes modified Cholera toxin A and Cholera toxin B, wherein the sequence of nucleotides is about 95% to about 100% identical to the nucleotide sequence of SEQ ID NO: 3.
Foreign Referenced Citations (1)
Number Date Country
WO-2011025905 Mar 2011 WO
Non-Patent Literature Citations (2)
Entry
Bharati and Ganguly, Cholera toxin: A paradigm of a multifunctional protein, Indian J Med Res 133, Feb. 2011, pp. 179-187.
Arrington et al, Plasmid Vectors Encoding Cholera Toxin or the Heat-Labile Enterotoxin from Escherichia coli are Strong Adjuvants for DNA Vaccines, Journal of Virology, May 2002, p. 4536-4546.