COMPOSITION OF PRIMERS FOR DETECTING HIGH GRADE SQUAMOUS INTRAEPITHELIAL LESION

Information

  • Patent Application
  • 20220205057
  • Publication Number
    20220205057
  • Date Filed
    March 16, 2020
    4 years ago
  • Date Published
    June 30, 2022
    2 years ago
Abstract
The present invention relates to a composition of primers for detecting HSIL comprising a first set of primers, called splice junctions set of primers which comprises at least 2 pairs of primers of each of a first subset of pairs of primers specific of HPV16, a second subset specific of HPV18, a third subset specific of HPV31, a fourth subset specific of HPV33, a fifth subset specific of HPV35, a sixth subset specific of HPV39, a seventh subset specific of HPV45, a eighth subset specific of HPV51, a ninth subset specific of HPV52, a tenth subset specific of HPV56, an eleventh subset specific of HPV58, a twelfth subset specific of HPV59 and a thirteenth subset specific of HPV66.
Description
FIELD OF THE INVENTION

The present invention relates to a composition of primers, a kit and a method for detecting high grade squamous intraepithelial lesion (HSIL) and/or for typing a Human Papillomavirus (HPV).


BACKGROUND OF THE INVENTION

Human papillomaviruses (HPV) infections are associated with the development of cervical carcinoma, one of the most common cancers among women, and other cancers like anal cancer (Lin C et al. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis. Lancet Infect Dis, 2018, 18:198-206) and head and neck cancer (Chaturvedi A K, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol Off J Am Soc Clin Oncol, 2011, 29:4294-301). HPV are the etiologic agents responsible for over 99% of all cervical cancers (Walboomers J M, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 1999, 189:12-9). HPV are small, non-enveloped DNA viruses commonly transmitted through sexual contact, which infect basal cells and replicate in the nucleus of squamous epithelial cells. HPV include more than 200 genotypes characterized by their oncogenic potential, with highly oncogenic HPV types (high-risk HPV) having a unique ability to drive cell proliferation (Schiffman M, et al. S. Carcinogenic human papillomavirus infection. Nat Rev Dis Primer, 2016, 2:16086).


The genomic organization of papillomaviruses is divided into functional early and late regions. The model of HPV infection, which is mainly derived from knowledge on HPV16, is that following the infection of basal cells in the cervical epithelium, the early HPV genes (E6, E7, E1, E2, E4 and E5) are expressed and the viral DNA replicates from the episomal form of the viral DNA. As the cells divide, in the upper layers of the epithelium the viral genome is replicated further, and the late genes (L1 and L2) and E4 are expressed. Viral shedding then further initiates new infections (Woodman C B J, et al. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer, 2007, 7:11-22).


HPV infection during the development of cervical cancer is associated with a shift from productive infection (which in most of the cases will be cleared by the immune system), towards non-productive persistent and transforming infection (in a minority of cases) characterized in particular by a high level of E6 and E7 mRNAs and low expression of E2 and late genes such as L1 (Doorbar J, et al. The biology and life-cycle of human papillomaviruses. Vaccine, 2012, 30 Suppl 5:F55-70, Shulzhenko N, et al. Ménage à trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends Microbiol, 2014, 22:345-53). High-risk HPV infection may result in low-grade lesions, with highly productive infection and high rate of spontaneous regression. In contrast, high-risk persistent HPV infection is responsible for high-grade lesion, the true precancerous lesion.


Cervical cancer screening allows detection and treatment of precancerous lesions before the development of cervical cancer. Screening is based on different algorithms, some allowing detection of HPV, and others identifying abnormal cells. Despite the role of high-risk HPV in cervical cancer, screening tests of cancer or precancerous lesions remain in many countries mainly based on the Papanicolaou (Pap) cytology test and do not include molecular virology tests (Schiffman M, et al. 2016). This is largely due to the low Positive Predictive Value (PPV) of current molecular tests. Indeed, because most of the current molecular diagnostic methods rely on the detection of HPV genome (DNA) and do not address the patterns of viral expression (RNA), they remain weak predictors of the evolution from low-grade squamous intraepithelial lesion (LSIL) to high-grade squamous intraepithelial lesion (HSIL) of the cervix (Tornesello M L, et al. Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. BioMed Res Int, 2013, 2013:519619). In addition, DNA identification of high-risk HPV is not fully predictive of cancer since only persistence for years of high-risk HPV is associated with an increased risk of cancer development (Schiffman M, et al. 2016). Thus, the use of HPV DNA tests, as a screening assay, is currently increasing worldwide and shows high sensitivity (Ogilvie G S, et al. Effect of Screening With Primary Cervical HPV Testing vs Cytology Testing on High-grade Cervical Intraepithelial Neoplasia at 48 Months: The HPV FOCAL Randomized Clinical Trial. JAMA, 2018, 320:43-52) but low PPV for HSIL detection (Cuzick J, et al. Comparing the performance of six human papillomavirus tests in a screening population. Br J Cancer, 2013, 108:908-13).


HPV RNA tests and in particular expression of E6 and E7 mRNAs of high-risk HPV have been proposed as better molecular markers of cancer development, but E6 and E7 are also expressed during HPV transient infection so it remains difficult to define a threshold of expression associated with the persistence and evolution to high-grade lesions and cancer. There is no consensus that HPV RNA tests have a better diagnostic accuracy compared to HPV DNA tests and cytology for the detection of cervical precancerous lesions (Virtanen E, et al. Performance of mRNA- and DNA-based high-risk human papillomavirus assays in detection of high-grade cervical lesions. Acta Obstet Gynecol Scand, 2017, 96:61-8, Cook D A, et al. Aptima HPV Assay versus Hybrid Capture® 2 HPV test for primary cervical cancer screening in the HPV FOCAL trial. J Clin Virol Off Publ Pan Am Soc Clin Virol, 2017, 87:23-9, Ge Y et al. Aptima Human Papillomavirus E6/E7 mRNA Test Results Strongly Associated With Risk for High-Grade Cervical Lesions in Follow-Up Biopsies. J Low Genit Tract Dis, 2018, 22:195-200). There is therefore a need for a novel generation of molecular diagnostic tests that can not only detect HPV infection, but also have the ability to accurately predict precancerous stages to offer a better and cost saving medical benefit (de Thurah L, et al. Concordant testing results between various human papillomavirus assays in primary cervical cancer screening: systematic review. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis, 2018, 24:29-36, Hawkes D, et al. Not all HPV nucleic acid tests are equal: only those calibrated to detect high grade lesions matter for cervical screening. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis, 2018, 24:436-7, de Thurah L, et al. Not all HPV nucleic acid tests are equal: only those calibrated to detect high grade lesions matter for cervical screening: Response to “Concordant testing results between various human papillomavirus assays in primary cervical cancer screening: systematic review” Published 27 May, 2017. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis, 2018, 24:438-9).


SUMMARY OF THE INVENTION

Now, taking advantage of Next-Generation Sequencing (NGS) technologies, the inventors have developed a multiplexed amplification system targeting the virus splice junctions coupled with NGS analysis that allows to describe fine equilibrium among transcript species of 13 high-risk HPV (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66) plus 3 putative high-risk HPV (HPV68, 73, 82), in a single reaction. This molecular approach makes, in particular, possible to take a snapshot of the early vs late populations of HPV transcripts and to define a model based on a combination of reads that reflects the biology of the virus, which can then be correlated to the evolution of lesions. The ultimate goal is to replace the conventional methods of the triage of women at risk of transforming infection before colposcopy.


Based on a study conducted on 55 patients, starting from cervical smears conserved at room temperature, the inventors have showed that the method of the invention can be used as a marker of high-grade cytology, with encouraging diagnostic performances as a triage test.


A subject of the present invention is therefore a composition of primers for detecting high grade squamous intraepithelial lesion (HSIL) comprising a first set of primers, called splice junctions set of primers, which comprises:

    • at least 2 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-2 to SEQ ID NO: 27-28; and
    • at least 2 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 29-30 to SEQ ID NO: 63-64; and
    • at least 2 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 65-66 to SEQ ID NO: 91-92; and
    • at least 2 pairs of primers of a fourth subset of HPV33 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 93-94 to SEQ ID NO: 117-118; and
    • at least 2 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 119-120 to SEQ ID NO: 145-146; and
    • at least 2 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 147-148 to SEQ ID NO: 165-166; and
    • at least 2 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 167-168 to SEQ ID NO: 193-194; and
    • at least 2 pairs of primers of a eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 195-196 to SEQ ID NO: 213-214; and
    • at least 2 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 215-216 to SEQ ID NO: 245-246; and
    • at least 2 pairs of primers of a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 247-248 to SEQ ID NO: 277-278; and
    • at least 2 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 279-280 to SEQ ID NO: 303-304; and
    • at least 2 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 305-306 to SEQ ID NO: 331-332; and
    • at least 2 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 333-334 to SEQ ID NO: 361-362.


The aim of the invention is notably to lower the number of primers used in the multiplex system. This lowering of the numbers of primers may be done by lowering the number of the targeted splice junctions and by using redundant nucleic acid sequences.


Thus the 362 nucleic acid sequences of the primers of the splice junctions set primers are redundant and represent in fact 165 unique nucleic acid sequences.


The present invention also relates to a composition of primers for detecting HSIL comprising a first set of pairs of primers, called splice junctions set of primers, which comprises:

    • at least 2 pairs of primers of a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1501 to SEQ ID NO: 1514; and
    • at least 2 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1515 to SEQ ID NO: 1532; and
    • at least 2 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1533 to SEQ ID NO: 1546; and
    • at least 2 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1547 to SEQ ID NO:1559; and
    • at least 2 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1560 to SEQ ID NO: 1573; and
    • at least 2 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1574 to SEQ ID NO: 1583; and
    • at least 2 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1584 to SEQ ID NO: 1597; and
    • at least 2 pairs of primers of a eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1598 to SEQ ID NO: 1607; and
    • at least 2 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1608 to SEQ ID NO: 1623; and
    • at least 2 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1624 to SEQ ID NO: 1639; and
    • at least 2 pairs of primers of an eleventh subset of HPV58 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1640 to SEQ ID NO: 1652; and
    • at least 2 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1653 to SEQ ID NO: 1666; and
    • at least 2 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1667 to SEQ ID NO: 1681.


DETAILED DESCRIPTION OF THE INVENTION

Definitions


High-risk HPV also called HR-HPV herein refer to the HPV of the following types: HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59 and HPV66.


Putative high risk HPV herein refer to the HPV of the following types: HPV68, HPV73 and HPV82.


HSIL refers to high grade squamous intraepithelial lesion. HSIL may be cervical, anogenital, head and neck HSIL. Preferably, HSIL is cervix HSIL.


LSIL refers to low grade squamous intraepithelial lesion. LSIL may be cervical, anogenital, head and neck LSIL. Preferably, LSIL is cervix LSIL.


Splice junctions set of primers refer herein to a set of primers which target high risk and optionally putative high risk HPV splice events involving a pair of splice donor (SD) and splice acceptor (SA) sites.


Unsplice junctions set of primers refer herein to a set of primers which target high risk and optionally putative high risk HPV genomic regions spanning either splice donor or splice acceptor sites in the absence of any splice event. In this context, the term “junction” refers to exon-intron interface (i.e. the position where a donor or acceptor site would be found in case of a splice event).


Genomic set of primers refer herein to a set of primers which target high risk and optionally of putative high risk HPV genomic regions away from any splice donor or splice acceptor sites.


Fusion set of primers refer herein to a set of primers which target high risk and optionally of putative high risk HPV fusion transcripts.


Human set of primers refer herein to a set of primers which target human sequences.


HPV RNA Seq refers herein to a multiplexed amplification system coupled with Next Generation Sequencing analysis.


The expression “the nucleic acid sequence selected from the group consisting of SEQ ID NO: x-x+1 to SEQ ID NO: x+n-x+n+1” means “the nucleic acid sequence selected from the group consisting of SEQ ID NO: x-x+1, SEQ ID NO: x+2-x+3, SEQ ID NO: x+4-x+5 . . . and SEQ ID NO: x+n-x+n+1”. For example, the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-2 to SEQ ID NO: 5-6 means the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-2 (pair of primers SEQ ID NO: 1 and SEQ ID NO: 2), SEQ ID NO: 3-4 (pair of primers SEQ ID NO: 3 and SEQ ID NO: 4) and SEQ ID NO: 5-6 (pair of primers SEQ ID NO: 5 and SEQ ID NO: 6).


The expression “the nucleic acid sequence selected from the group consisting of SEQ ID NO: x to SEQ ID NO: x+n” means “the nucleic acid sequence selected from the group consisting of SEQ ID NO: x, SEQ ID NO: x+1, SEQ ID NO: x+2 . . . and SEQ ID NO: x+n”. For example, the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 6 means the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6.


Biological samples as referred herein include, without limitation, mammalian bodily fluids, especially oral fluids or scrapings, genital scrapings, in particular cervix scrapings.


Primers and amplicons encompassed by the invention are not limited to the sequences defined in the primers and amplicons depicted below. Primers and amplicons may encompass primers having at least 95% of identity with the primers and amplicons defined below. Primers can also comprise extra bases at the 5′ end. Also, primers shall be understood as embracing shorter sequences of at least 12, 15, 20 or 25 consecutive bases of the primers featured below. In some embodiments, it shall be understood that the invention also contemplates generic probes which have the sequences of the primers depicted herein and which are directly or indirectly labeled. The probes and primers can be extended or swifted from 1 to 15 bases depending on the desired specificity of the PCR amplification step and/or on the specificity of the detection step using standard parameters such as the nucleic acid size and GC contents, stringent hybridization conditions and temperature reactions. For example, low stringency conditions are used when it is desired to obtain broad positive results on a range of homologous targets whereas high stringency conditions are preferred to obtain positive results only if the specific target nucleic is present in the sample.


As used herein, the term “stringent hybridization conditions” refers to conditions under which the primer or probe will hybridize only to that exactly complementary target(s). The hybridization conditions affect the stability of hybrids, e.g., temperature, salt concentration, pH, formamide concentration and the like. These conditions are optimized to maximize specific binding and minimize non-specific binding of primer or probe to its target nucleic acid sequence. Stringent conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequences at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe or primer. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na+, typically about 0.01 to 1.0 M Na+ concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes or primers (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes or primers (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringent conditions include hybridization with a buffer solution of 20-30% formamide, 1 M NaCl, 1% SDS at 37° C. and a wash in 2*SSC at 40° C. Exemplary high stringency conditions include hybridization in 40-50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1*SSC at 60° C. Determination of particular hybridization conditions relating to a specified nucleic acid is routine and is well known in the art, for instance, as described in J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 3rd Ed., 2001; and F. M. Ausubel, Ed., Short Protocols in Molecular Biology, Current Protocols; 5th Ed., 2002.


Moreover, to improve the hybridization with the coupled oligonucleotide, it can be advantageous for the oligonucleotide to contain an “arm” and a “spacer” sequence of bases. The use of an arm makes it possible, in effect, to bind the primer at a chosen distance from the support, enabling its conditions of interaction with the DNA to be improved. The arm advantageously consists of a linear carbon chain, comprising 1 to 18 and preferably 6 or 12 (CH2) groups, and an amine which permits binding to the column. The arm is linked to a phosphate of the oligonucleotide or of a “spacer” composed of bases which do not interfere with the hybridization. Thus, the “spacer” can comprise purine bases. As an example, the “spacer” can comprise the sequence GAGG. The arm is advantageously composed of a linear carbon chain comprising 6 or 12 carbon atoms.


For implementation of the present invention, different types of support may be used. These can be functionalized chromatographic supports, in bulk or prepacked in a column, functionalized plastic surfaces or functionalized latex beads, magnetic or otherwise. Chromatographic supports are preferably used. As an example, the chromatographic supports capable of being used are agarose, acrylamide or dextran as well as their derivatives (such as Sephadex, Sepharose, Superose, etc.), polymers such as poly(styrene/divinylbenzene), or grafted or ungrafted silica, for example. The chromatography columns can operate in the diffusion or perfusion mode.


As used herein, the term “sequencing” is used in a broad sense and refers to any technique known by the skilled person including but not limited to Sanger dideoxy termination sequencing, whole-genome sequencing, sequencing by hybridization, pyrosequencing, capillary electrophoresis, cycle sequencing, single-base extension sequencing, solid-phase sequencing, high-throughput sequencing, massively parallel signature sequencing (MPSS), sequencing by reversible dye terminator, paired-end sequencing, near-term sequencing, exonuclease sequencing, sequencing by ligation, short-read sequencing, single-molecule sequencing, sequencing-by-synthesis, real-time sequencing, reverse-terminator sequencing, nanopore sequencing, 454 sequencing, Solexa Genome Analyzer sequencing, SOLiD sequencing, MS-PET sequencing, mass spectrometry, and a combination thereof. In specific embodiments, the method and kit of the invention is adapted to run on ABI PRISM® 377 DNA Sequencer, an ABI PRISM® 310, 3100, 3100-Avant, 3730, or 3730×1 Genetic Analyzer, an ABI PRISM® 3700 DNA Analyzer, or an Applied Biosystems SOLiD™ System (all from Applied Biosystems), a Genome Sequencer 20 System (Roche Applied Science).


For all technologies described herein, although the said primers can be used in solution, in another embodiment the said primers are linked to a solid support.


To permit its covalent coupling to the support, the primer is generally functionalized. Thus, it may be modified by a thiol, amine or carboxyl terminal group at the 5′ or 3′ position. In particular, the addition of a thiol, amine or carboxyl group makes it possible, for example, to couple the oligonucleotide to a support bearing disulphide, maleimide, amine, carboxyl, ester, epoxide, cyanogen bromide or aldehyde functions. These couplings form by establishment of disulphide, thioether, ester, amide or amine links between the primer and the support. Any other method known to a person skilled in the art may be used, such as bifunctional coupling reagents, for example.


Moreover, to improve the hybridization with the coupled oligonucleotide, it can be advantageous for the oligonucleotide to contain an “arm” and a “spacer” sequence of bases. The use of an arm makes it possible, in effect, to bind the primer at a chosen distance from the support, enabling its conditions of interaction with the DNA to be improved. The arm advantageously consists of a linear carbon chain, comprising 1 to 18 and preferably 6 or 12 (CH2) groups, and an amine which permits binding to the column. The arm is linked to a phosphate of the oligonucleotide or of a “spacer” composed of bases which do not interfere with the hybridization. Thus, the “spacer” can comprise purine bases. As an example, the “spacer” can comprise the sequence GAGG. The arm is advantageously composed of a linear carbon chain comprising 6 or 12 carbon atoms.


For implementation of the present invention, different types of support may be used. These can be functionalized chromatographic supports, in bulk or prepacked in a column, functionalized plastic surfaces or functionalized latex beads, magnetic or otherwise. Chromatographic supports are preferably used. As an example, the chromatographic supports capable of being used are agarose, acrylamide or dextran as well as their derivatives (such as Sephadex, Sepharose, Superose, etc.), polymers such as poly(styrene/divinylbenzene), or grafted or ungrafted silica, for example. The chromatography columns can operate in the diffusion or perfusion mode.


Composition of Primers for Detecting High Grade Squamous Intraepithelial Lesion


The present invention relates to a composition of primers for detecting HSIL comprising a first set of primers, called splice junctions set of primers, which comprises:

    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-2, SEQ ID NO: 3-4, SEQ ID NO: 5-6, SEQ ID NO: 7-8, SEQ ID NO: 9-10, SEQ ID NO: 11-12, SEQ ID NO: 13-14, SEQ ID NO: 15-16, SEQ ID NO: 17-18, SEQ ID NO: 19-20, SEQ ID NO: 21-22, SEQ ID NO: 23-24, SEQ ID NO: 25-26 and SEQ ID NO: 27-28; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 29-30, SEQ ID NO: 31-32, SEQ ID NO: 33-34, SEQ ID NO: 35-36, SEQ ID NO: 37-38, SEQ ID NO: 39-40, SEQ ID NO: 41-42, SEQ ID NO: 43-44, SEQ ID NO: 45-46, SEQ ID NO: 47-48, SEQ ID NO: 49-50, SEQ ID NO: 51-52, SEQ ID NO: 53-54, SEQ ID NO: 55-56, SEQ ID NO: 57-58, SEQ ID NO: 59-60, SEQ ID NO: 61-62 and SEQ ID NO: 63-64; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 65-66, SEQ ID NO: 67-68, SEQ ID NO: 69-70, SEQ ID NO: 71-72, SEQ ID NO: 73-74, SEQ ID NO: 75-76, SEQ ID NO: 77-78, SEQ ID NO: 79-80, SEQ ID NO: 81-82, SEQ ID NO: 83-84, SEQ ID NO: 85-86, SEQ ID NO: 87-88, SEQ ID NO: 89-90 and SEQ ID NO: 91-92; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 pairs of primers of a fourth subset of HPV33 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 93-94, SEQ ID NO: 95-96, SEQ ID NO: 97-98, SEQ ID NO: 99-100, SEQ ID NO: 101-102, SEQ ID NO: 103-104, SEQ ID NO: 105-106, SEQ ID NO: 107-108, SEQ ID NO: 109-110, SEQ ID NO: 111-112, SEQ ID NO: 113-114, SEQ ID NO: 115-116 and SEQ ID NO: 117-118; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 119-120, SEQ ID NO: 121-122, SEQ ID NO: 123-124, SEQ ID NO: 125-126, SEQ ID NO: 127-128, SEQ ID NO: 129-130, SEQ ID NO: 131-132, SEQ ID NO: 133-134, SEQ ID NO: 135-136, SEQ ID NO: 137-138, SEQ ID NO: 139-140, SEQ ID NO: 141-142, SEQ ID NO: 143-144 and SEQ ID NO: 145-146; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 147-148, SEQ ID NO: 149-150, SEQ ID NO: 151-152, SEQ ID NO: 153-154, SEQ ID NO: 155-156, SEQ ID NO: 157-158, SEQ ID NO: 159-160, SEQ ID NO: 161-162, SEQ ID NO: 163-164 and SEQ ID NO: 165-166; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 167-168, SEQ ID NO: 169-170, SEQ ID NO: 171-172, SEQ ID NO: 173-174, SEQ ID NO: 175-176, SEQ ID NO: 177-178, SEQ ID NO: 179-180, SEQ ID NO: 181-182, SEQ ID NO: 183-184, SEQ ID NO: 185-186, SEQ ID NO: 187-188, SEQ ID NO: 189-190, SEQ ID NO: 191-192 and SEQ ID NO: 193-194; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of an eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 195-196, SEQ ID NO: 197-198, SEQ ID NO: 199-200; SEQ ID NO: 201-202, SEQ ID NO:203-204, SEQ ID NO: 205-206, SEQ ID NO: 207-208, SEQ ID NO: 209-210, SEQ ID NO: 211-212 and SEQ ID NO: 213-214; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 215-216, SEQ ID NO: 217-218, SEQ ID NO: 219-220, SEQ ID NO: 221-222, SEQ ID NO: 223-224, SEQ ID NO: 225-226, SEQ ID NO: 227-228, SEQ ID NO: 229-230, SEQ ID NO: 231-232, SEQ ID NO: 233-234, SEQ ID NO: 235-236, SEQ ID NO: 237-238, SEQ ID NO: 239-240 SEQ ID NO: 241-242, SEQ ID NO: 243-244 and SEQ ID NO: 245-246; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 pairs of primers of a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 247-248, SEQ ID NO: 249-250, SEQ ID NO: 251-252, SEQ ID NO: 253-254, SEQ ID NO: 255-256, SEQ ID NO: 257-258, SEQ ID NO: 259-260, SEQ ID NO: 261-262, SEQ ID NO: 263-264, SEQ ID NO: 265-266, SEQ ID NO: 267-268, SEQ ID NO: 269-270, SEQ ID NO: 271-272, SEQ ID NO: 273-274, SEQ ID NO: 275-276 and SEQ ID NO: 277-278; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 279-280, SEQ ID NO: 281-282, SEQ ID NO: 283-284, SEQ ID NO: 285-286, SEQ ID NO: 287-288, SEQ ID NO: 289-290, SEQ ID NO: 291-292, SEQ ID NO: 293-294, SEQ ID NO: 295-296, SEQ ID NO: 297-298, SEQ ID NO: 299-300, SEQ ID NO: 301-302 and SEQ ID NO: 303-304; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 305-306, SEQ ID NO: 307-308, SEQ ID NO: 309-310, SEQ ID NO: 311-312, SEQ ID NO: 313-314, SEQ ID NO: 315-316, SEQ ID NO: 317-318, SEQ ID NO: 319-320, SEQ ID NO: 321-322, SEQ ID NO: 323-324, SEQ ID NO: 325-326, SEQ ID NO: 327-328, SEQ ID NO: 329-330 and SEQ ID NO: 331-332; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14 or at least 15, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 333-334, SEQ ID NO: 335-336, SEQ ID NO: 337-338, SEQ ID NO: 339-340, SEQ ID NO: 341-342, SEQ ID NO: 343-344, SEQ ID NO: 345-346, SEQ ID NO: 347-348, SEQ ID NO: 349-350, SEQ ID NO: 351-352, SEQ ID NO: 353-354, SEQ ID NO: 355-356, SEQ ID NO: 357-358, SEQ ID NO: 359-360 and SEQ ID NO: 361-362.


The splice junctions set of primers may further comprise:

    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 363-364, SEQ ID NO: 365-366, SEQ ID NO: 367-368, SEQ ID NO: 369-370, SEQ ID NO: 371-372, SEQ ID NO: 373-374, SEQ ID NO: 375-376, SEQ ID NO: 377-378, SEQ ID NO: 379-380 and SEQ ID NO: 381-382; and/or
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 383-384, SEQ ID NO: 385-386, SEQ ID NO: 387-388, SEQ ID NO: 389-390 SEQ ID NO: 391-392, SEQ ID NO: 393-394, SEQ ID NO: 395-396, SEQ ID NO: 397-398, SEQ ID NO: 399-400, SEQ ID NO: 401-402, SEQ ID NO: 403-404, SEQ ID NO: 405-406 and SEQ ID NO: 407-408; and/or
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 409-410, SEQ ID NO: 411-412, SEQ ID NO: 413-414, SEQ ID NO: 415-416, SEQ ID NO: 417-418, SEQ ID NO: 419-420, SEQ ID NO: 421-422, SEQ ID NO: 423-424, SEQ ID NO: 425-426, SEQ ID NO: 427-428 and SEQ ID NO: 429-430.


These additional subsets of pairs of primers correspond to the putative high risk HPV: HPV68, HPV73 and HPV82.


The composition of primers for detecting HSIL may comprises the splice junctions set comprising at least 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and optionally at least 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


The composition of primers for detecting HSIL may comprises the splice junctions set comprising 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and optionally 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


The composition of primers for detecting HSIL may comprises the splice junctions set consisting of 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and optionally of 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


In one embodiment, the composition of primers for detecting HSIL according to the invention comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 361-362 and optionally of SEQ ID NO: 363-364 to SEQ ID NO: 381-382 and/or SEQ ID NO: 383-384 to SEQ ID NO: 385-386 and/or SEQ ID NO: 387-388 to SEQ ID NO: 429-430.


In a preferred embodiment, the composition of primers for detecting HSIL according to the invention comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 429-430.


In one embodiment, the composition of primers for detecting HSIL consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 361-362 and optionally of SEQ ID NO: 363-364 to SEQ ID NO: 381-382 and/or SEQ ID NO: 383-384 to SEQ ID NO: 385-386 and/or SEQ ID NO: 387-388 to SEQ ID NO: 429-430.


In a preferred embodiment, the composition of primers for detecting HSIL according to the invention consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 429-430.


The splice junctions set of primers of the invention may be defined by the nucleic acid sequence of the pairs of primers that compose it as defined above or by the nucleic acid sequence of the amplicons which are produced by the pairs of primers that compose it as defined below.


The pairs of primers that compose splice junctions set of primers as defined above correspond to the amplicons which are produced by the pairs of primers that compose splice junctions set of primers as defined below. The correspondence between the pairs of primers and their corresponding amplicons is given in table 2Abis.


The present invention also relates to a composition of primers for detecting HSIL comprising a first set of pairs of primers, called splice junctions set of primers, which comprises:

    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1501, SEQ ID NO: 1502, SEQ ID NO: 1503, SEQ ID NO: 1504, SEQ ID NO: 1505, SEQ ID NO: 1506, SEQ ID NO: 1507, SEQ ID NO: 1508, SEQ ID NO: 1509, SEQ ID NO: 1510, SEQ ID NO: 1511, SEQ ID NO: 1512, SEQ ID NO: 1513 and SEQ ID NO: 1514; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18 or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1515, SEQ ID NO: 1516, SEQ ID NO: 1517, SEQ ID NO: 1518, SEQ ID NO: 1519, SEQ ID NO: 1520, SEQ ID NO: 1521, SEQ ID NO: 1522, SEQ ID NO: 1523, SEQ ID NO: 1524, SEQ ID NO: 1525, SEQ ID NO: 1526, SEQ ID NO: 1527, SEQ ID NO: 1528, SEQ ID NO: 1529, SEQ ID NO: 1530, SEQ ID NO: 1531 and SEQ ID NO: 1532; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 of pairs primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1533, SEQ ID NO: 1534, SEQ ID NO: 1535, SEQ ID NO: 1536, SEQ ID NO: 1537, SEQ ID NO: 1538, SEQ ID NO: 1539, SEQ ID NO: 1540, SEQ ID NO: 1541, SEQ ID NO: 1542, SEQ ID NO: 1543, SEQ ID NO: 1544, SEQ ID NO: 154 and SEQ ID NO: 1546; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 pairs of primers of a fourth subset of pairs of primers HPV33 specific able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1547, SEQ ID NO: 1548, SEQ ID NO: 1549, SEQ ID NO: 1550, SEQ ID NO: 1551, SEQ ID NO: 1552, SEQ ID NO: 1553, SEQ ID NO: 1554, SEQ ID NO: 1555, SEQ ID NO: 1556, SEQ ID NO: 1557, SEQ ID NO: 1558 and SEQ ID NO:1559; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, or at least 14 or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1560, SEQ ID NO: 1561, SEQ ID NO: 1562, SEQ ID NO: 1563, SEQ ID NO: 1564, SEQ ID NO: 1565, SEQ ID NO: 1566, SEQ ID NO: 1567, SEQ ID NO: 1568, SEQ ID NO: 1569, SEQ ID NO: 1570, SEQ ID NO: 1571, SEQ ID NO: 1572 and SEQ ID NO: 1573; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1574, SEQ ID NO: 1575, SEQ ID NO: 1576, SEQ ID NO: 1577, SEQ ID NO: 1578, SEQ ID NO: 1579, SEQ ID NO: 1580, SEQ ID NO: 1581, SEQ ID NO: 1582 and SEQ ID NO: 1583; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1584, SEQ ID NO: 1585, SEQ ID NO: 1586, SEQ ID NO: 1587, SEQ ID NO: 1588, SEQ ID NO: 1589, SEQ ID NO: 1590, SEQ ID NO: 1591, SEQ ID NO: 1592, SEQ ID NO: 1593, SEQ ID NO: 1594, SEQ ID NO: 1595, SEQ ID NO: 1596 and SEQ ID NO: 1597; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of an eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1598, SEQ ID NO: 1599, SEQ ID NO: 1600, SEQ ID NO: 1601, SEQ ID NO: 1602, SEQ ID NO: 1603, SEQ ID NO: 1604, SEQ ID NO: 1605, SEQ ID NO: 1606 and SEQ ID NO: 1607; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 pairs of primers a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1608, SEQ ID NO: 1609, SEQ ID NO: 1610, SEQ ID NO: 1611, SEQ ID NO: 1612, SEQ ID NO: 1613, SEQ ID NO: 1614, SEQ ID NO: 1615, SEQ ID NO: 1616, SEQ ID NO: 1617, SEQ ID NO: 1618, SEQ ID NO: 1619, SEQ ID NO: 1620, SEQ ID NO: 1621, SEQ ID NO: 1622 and SEQ ID NO: 1623; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 or at least 16, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1624, SEQ ID NO: 1625, SEQ ID NO: 1626, SEQ ID NO: 1627, SEQ ID NO: 1628, SEQ ID NO: 1629, SEQ ID NO: 1630, SEQ ID NO: 1631, SEQ ID NO: 1632, SEQ ID NO: 1633, SEQ ID NO: 1634, SEQ ID NO: 1635, SEQ ID NO: 1636, SEQ ID NO: 1637, SEQ ID NO: 1638 and SEQ ID NO: 1639; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 pairs of primers of an eleventh subset of HPV58 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1640, SEQ ID NO: 1641, SEQ ID NO: 1642, SEQ ID NO: 1643, SEQ ID NO: 1644, SEQ ID NO: 1645, SEQ ID NO: 1646, SEQ ID NO: 1647, SEQ ID NO: 1648, SEQ ID NO: 1649, SEQ ID NO: 1650, SEQ ID NO: 1651 and SEQ ID NO: 1652; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 or at least 14, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1653, SEQ ID NO: 1654, SEQ ID NO: 1655, SEQ ID NO: 1656, SEQ ID NO: 1657, SEQ ID NO: 1658, SEQ ID NO: 1659, SEQ ID NO: 1660, SEQ ID NO: 1661, SEQ ID NO: 1662, SEQ ID NO: 1663, SEQ ID NO: 1664, SEQ ID NO: 1665 and SEQ ID NO: 1666; and
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14 or at least 15, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 pairs of primers a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1667, SEQ ID NO: 1668, SEQ ID NO: 1669, SEQ ID NO: 1670, SEQ ID NO: 1671, SEQ ID NO: 1672, SEQ ID NO: 1673, SEQ ID NO: 1674, SEQ ID NO: 1675, SEQ ID NO: 1676, SEQ ID NO: 1677, SEQ ID NO: 1678, SEQ ID NO: 1679, SEQ ID NO: 1680 and SEQ ID NO: 1681.


The splice junctions set of primers may further comprise:

    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1682, SEQ ID NO: 1683, SEQ ID NO: 1684, SEQ ID NO: 1685, SEQ ID NO: 1686, SEQ ID NO: 1687, SEQ ID NO: 1688, SEQ ID NO: 1689, SEQ ID NO: 1690 and SEQ ID NO: 1691; and/or
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1692, SEQ ID NO: 1693, SEQ ID NO: 1694, SEQ ID NO: 1695, SEQ ID NO: 1696, SEQ ID NO: 1697, SEQ ID NO: 1698, SEQ ID NO: 1699, SEQ ID NO: 1700, SEQ ID NO: 1701, SEQ ID NO: 1702, SEQ ID NO: 1703 and SEQ ID NO: 1704; and/or
    • at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1705, SEQ ID NO: 1706, SEQ ID NO: 1707, SEQ ID NO: 1708, SEQ ID NO: 1709, SEQ ID NO: 1710, SEQ ID NO: 1711, SEQ ID NO: 1712, SEQ ID NO: 1713, SEQ ID NO: 1714 and SEQ ID NO: 1715.


The composition of primers for detecting HSIL may comprises the splice junction set of primers comprising at least 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and optionally at least 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


The composition of primers for detecting HSIL may comprises the splice junction set of primers comprising 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and optionally 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


The composition of primers for detecting HSIL may comprises the splice junction set of primers consisting of 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of each of the first to the thirteenth subsets of pairs of primers of the splice junctions set of primers as defined above and of optionally 2, 3, 4, 5, 6, 7, 8, 9 or more preferably 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers of the splice junctions set of primers as defined above.


In one embodiment, the composition for detecting HSIL of primers according to the invention comprises the splice junction set of primers comprising the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 1681 and optionally of SEQ ID NO: 1682 to SEQ ID NO: 1691 and/or SEQ ID NO: 1692 to SEQ ID NO: 1704 and/or SEQ ID NO: 1705 to SEQ ID NO: 1715.


In a preferred embodiment, the composition of primers for detecting HSIL according to the invention comprises the splice junction set of primers comprising the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 1715.


In one embodiment, the composition of primers consists of the splice junction set of primers consisting of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 1681 and optionally of SEQ ID NO: 1682 to SEQ ID NO: 1691 and/or SEQ ID NO: 1692 to SEQ ID NO: 1704 and/or SEQ ID NO: 1705 to SEQ ID NO: 1715.


In a preferred embodiment, the composition of primers for detecting HSIL according to the invention consists of the splice junction set of primers consisting of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 1715.


In one embodiment, the composition of primers for detecting HSIL does not comprise an additional set of primers selected from the group consisting of a unsplice junctions set of primers, a genomic set of primers and a fusion set of primers. In particular, the composition of primers for detecting HSIL may not comprise an unsplice junctions set of primers, a genomic set of primers and a fusion set of primers.


In one embodiment, the composition of primers for detecting HSIL comprises a human set of primers. The primers of the human set of primers target human sequences.


The human set of primers may be used as an internal control.


The human set of primers may comprise at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29 or at least 30, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1441-1442, SEQ ID NO: 1443-1444, SEQ ID NO: 1445-1446, SEQ ID NO: 1447-1448, SEQ ID NO: 1449-1450, SEQ ID NO: 1451-1452, SEQ ID NO: 1453-1454, SEQ ID NO: 1455-1456, SEQ ID NO: 1457-1458, SEQ ID NO: 1459-1460, SEQ ID NO: 1461-1462, SEQ ID NO: 1463-1464, SEQ ID NO: 1465-1466, SEQ ID NO: 1467-1468, SEQ ID NO: 1469-1470, SEQ ID NO: 1471-1472, SEQ ID NO: 1473-1474, SEQ ID NO: 1475-1476, SEQ ID NO: 1477-1478, SEQ ID NO: 1479-1480, SEQ ID NO: 1481-1482, SEQ ID NO: 1483-1484, SEQ ID NO: 1485-1486, SEQ ID NO: 1487-1488, SEQ ID NO: 1489-1490, SEQ ID NO: 1491-1492, SEQ ID NO: 1493-1494, SEQ ID NO: 1495-1496, SEQ ID NO: 1497-1498 and SEQ ID NO: 1499-1500.


In one preferred embodiment, the human set of primers comprises SEQ ID NO: 1441-1442 to SEQ ID NO: 1499-1500.


In one more preferred embodiment, the human set of primers consists of SEQ ID NO: 1441-1442 to SEQ ID NO: 1499-1500.


The human set of primers may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29 or at least 30, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one preferred embodiment, the human set of primers comprises pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one more preferred embodiment, the human set of primers consists of pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one embodiment, the composition of primers for detecting HSIL may also comprise a fusion set of primers. The primers of fusion set of primers target high risk and optionally of putative high risk HPV fusion transcripts.


The primers of fusion set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 865-866 to SEQ ID NO: 899-900;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 901-902 to SEQ ID NO: 935-936;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 937-938 to SEQ ID NO: 971-972;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourth subset of HPV33 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 973-974 to SEQ ID NO: 1007-1008;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1009-1010 to SEQ ID NO: 1043-1044;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1045-1046 to SEQ ID NO: 1079-1080;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, preferably at least 17, more preferably 18 or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1081-1082 to SEQ ID NO: 1115-1116.
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1117-1118 to SEQ ID NO: 1151-1152;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1153-1154 to SEQ ID NO: 1187-1188;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1189-1190 to SEQ ID NO: 1223-1224;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1225-1226 to SEQ ID NO: 1259-1260;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1261-1262 to SEQ ID NO: 1295-1296;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1297-1298 to SEQ ID NO: 1331-1332.


The fusion set of primers may further comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1369-1370 to SEQ ID NO: 1403-1404;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In one embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1331-1332 and optionally of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368 and/or SEQ ID NO: 1369-1370 to SEQ ID NO: 1403-1404 and/or SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In a preferred embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1439-1440.


In one embodiment, the fusion set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1331-1332 and optionally of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368 and/or SEQ ID NO: 1369-1370 to SEQ ID NO: 1403-1404 and/or SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In a preferred embodiment, the fusion set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1439-1440.


The primers of fusion set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1933 to 1 SEQ ID NO: 1950;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1951 to SEQ ID NO: 1968;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1969 to SEQ ID NO: 1986;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1987 to SEQ ID NO: 2004;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2005 to SEQ ID NO: 2022;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2023 to SEQ ID NO: 2040;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a seventh subset of HPV45 specific pairs of primers selected from the group consisting of SEQ ID NO: 2041 to SEQ ID NO: 2058,
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2059 to SEQ ID NO: 2076;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2077 to SEQ ID NO: 2094;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2095 to SEQ ID NO: 2112;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of an eleventh subset of HPV58 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2113 to SEQ ID NO: 2130;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2131 to SEQ ID NO: 2148;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2149 to SEQ ID NO: 2166.


The fusion set may also comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2167 to SEQ ID NO: 2184; and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:2185 to SEQ ID NO: 2202; and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2203 to SEQ ID NO: 2220.


In one embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1933 to SEQ ID NO: 2166 and optionally of SEQ ID NO: 2167 to SEQ ID NO: 2184 and/or SEQ ID NO: 2185 to SEQ ID NO: 2202 and/or SEQ ID NO: 2203 to SEQ ID NO: 2220.


In a preferred embodiment, the fusion set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 2220.


In one embodiment, the fusion set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1933 to SEQ ID NO: 2166 and optionally of SEQ ID NO: 2167 to SEQ ID NO: 2184 and/or SEQ ID NO: 2185 to SEQ ID NO: 2202 and/or SEQ ID NO: 2203 to SEQ ID NO: 2220.


In a preferred embodiment, the fusion set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 2220.


The present invention also relates to a kit for detecting HSIL comprising the composition of primers for detecting HSIL of the invention and optionally reagents for a cDNA amplification. Reagents available for this purpose are well-known in the art and include the DNA polymerases, buffers for the enzymes, detergents, enhancing agents. The kit of the invention may also comprise reagent for reverse transcription and/or for sequencing. In some preferred embodiments of the kit of the invention, the primers, and optional reagents are in lyophilised form to allow ambient storage. The components of the kits are packaged together into any of the various containers suitable for nucleic acid amplification such as plates, slides, wells, dishes, beads, particles, cups, strands, chips, strips and others. The kit optionally includes instructions for performing at least one specific embodiment of the method of the invention. In some advantageous embodiments, the kit comprises micro-well plates or microtubes, preferably in a dried format, i.e., wherein the wells of the plates or microtubes comprise a dried composition containing at least the primers, and preferably further comprising all the reagents for the reverse transcription, cDNA amplification or sequencing.


The present invention also relates to the use of the composition of primers for detecting HSIL of the invention or of the kit for detecting HSIL of the invention.


An In Vitro Method for Detecting HSIL in a Biological Sample


The present invention also relates to an in vitro method for detecting HSIL in a biological sample comprising the steps of:

    • (a) extraction of RNA from the biological sample,
    • (b) reverse transcription of the RNA so as to generate cDNA,
    • (c) amplification of the cDNA generated at step (b) with the composition of primers of the invention so as to produce amplicons,
    • (d) quantifying the expression level of each amplicon produced at step (c),
    • (e) determining if the biological sample comprises HSIL based on the expression level of the amplicons quantified at step (d).


Preferably, the step (d) of quantifying the expression level of each amplicon is carried by sequencing.


The step (d) of quantifying the expression level of each amplicon may comprise the steps of:

    • (d1) sequencing the amplicons so as to generate reads,
    • (d2) aligning the reads to sequence of the corresponding amplicon,
    • (d3) for each amplicon, quantifying the reads corresponding to the sequence of said amplicon.


The quantification of the expression level of each amplicons may be carried using a partial digestion of the amplicons. Then, the step (d) of quantifying the expression level of each amplicon may comprise the steps of:

    • (d1) partially digesting the amplicon so as to generate fragments,
    • (d2) sequencing the fragments produced at step (d1) so as to generate reads,
    • (d3) aligning the reads to sequence of the corresponding amplicon,
    • (d4) for each amplicon, quantifying the reads corresponding to the sequence of said amplicon.


In a preferred embodiment, the step of determining if the biological sample comprises HSIL comprises a step of determining if the biological sample comprises HSIL corresponding to one HPV type defined herein based on the expression level of the amplicons quantified in step (d) specific of the said HPV type. In this embodiment, the step of determining if the biological sample comprises HSIL is carried for each HPV type. Thus, for each HPV type, the expression level of the amplicons corresponding this HPV type is analyzed and it is determined if the biological sample comprises a HSIL corresponding to this HPV type. If it is determined that the biological sample comprises a HSIL corresponding to at least one HPV type, than the biological sample is classified as comprising HSIL.


Preferably, the step of determining if the biological sample comprises HSIL is carried out by using a logistic regression analysis wherein the variables depend on the quantified level of expression the amplicons.


Thus, the step of determining if the biological sample comprises HSIL may comprise:

    • for each type of HPV selected from the group consisting of HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59, and HPV66 and optionally HPV68 and/or HPV73 and/or HPV82, a step calculating a probability pHPVj that the biological sample comprises an HSIL of HPVj type wherein j=16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73 and/or 82 using the following formula:







logit






(

p

H

P

V

j


)


=


β
0

+




i
=
1


2

5




(


β
i



X

i

j



)







with:

    • β0 is the intercept,
    • βi is a coefficient corresponding to a given splice junction, called splice junction i,
    • βij is a variable depending on the quantified level of expression of the amplicon corresponding to the splice junction i for the HPVj


wherein if one pHPVj is higher than 0.5, it is indicative of the presence of a HPVj HSIL in the biological sample.


In a preferred embodiment, the amplicons corresponding to the splice junction i=1 are respectively:

    • the amplicons corresponding to the splice junction i=1 are respectively SEQ ID NO: 1501 for HPV16, SEQ ID NO: 1515 for HPV18, SEQ ID NO: 1533 for HPV31, SEQ ID NO: 1547 for HPV33, SEQ ID NO: 1560 for HPV35, SEQ ID NO: 1574 for HPV39, SEQ ID NO: 1584 for HPV45, SEQ ID NO: 1598 for HPV51, SEQ ID NO: 1608 for HPV52, SEQ ID NO: 1624 for HPV56, SEQ ID NO: 1640 for HPV58, SEQ ID NO: 1653 for HPV59, SEQ ID NO: 1667 for HPV66, SEQ ID NO: 1682 for HPV68, SEQ ID NO: 1692 for HPV73 and SEQ ID NO: 1705 for HPV82,
    • the amplicons corresponding to the splice junction i=2 are respectively SEQ ID NO: 1502 for HPV16, SEQ ID NO: 1516 for HPV18, SEQ ID NO: 1534 for HPV31, SEQ ID NO: 1548 for HPV33, SEQ ID NO: 1561 for HPV35, absent for HPV39, SEQ ID NO: 1585 for HPV45, absent for HPV51, SEQ ID NO: 1609 for HPV52, SEQ ID NO: 1625 for HPV56, SEQ ID NO: 1641 for HPV58, SEQ ID NO: 1654 for HPV59, SEQ ID NO: 1668 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=3 are respectively SEQ ID NO: 1503 for HPV16, SEQ ID NO: 1517 for HPV18, SEQ ID NO: 1535 for HPV31, SEQ ID NO: 1549 for HPV33, SEQ ID NO: 1562 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1599 for HPV51, SEQ ID NO: 1610 for HPV52, SEQ ID NO: 1626 for HPV56, SEQ ID NO: 1642 for HPV58, absent for HPV59, SEQ ID NO: 1669 for HPV66, SEQ ID NO: 1683 for HPV68, SEQ ID NO: 1693 for HPV73 and SEQ ID NO: 1706 for HPV82,
    • the amplicons corresponding to the splice junction i=4 are respectively SEQ ID NO: 1504 for HPV16, SEQ ID NO: 1518 for HPV18, SEQ ID NO: 1536 for HPV31, SEQ ID NO: 1550 for HPV33, SEQ ID NO: 1563 for HPV35, SEQ ID NO: 1576 for HPV39, SEQ ID NO: 1587 for HPV45, SEQ ID NO: 1600 for HPV51, SEQ ID NO: 1611 for HPV52, SEQ ID NO: 1627 for HPV56, SEQ ID NO: 1643 for HPV58, SEQ ID NO: 1656 for HPV59, SEQ ID NO: 1671 for HPV66, SEQ ID NO: 1684 for HPV68, SEQ ID NO: 1694 for HPV7 and SEQ ID NO: 1707 for HPV82,
    • the amplicons corresponding to the splice junction i=5 are respectively SEQ ID NO: 1505 for HPV16, SEQ ID NO: 1519 for HPV18, SEQ ID NO: 1537 for HPV31, SEQ ID NO: 1551 for HPV33, SEQ ID NO: 1564 for HPV35, absent for HPV39, SEQ ID NO: 1588 for HPV45, absent for HPV51, SEQ ID NO: 1612 for HPV52, SEQ ID NO: 1628 for HPV56, SEQ ID NO: 1644 for HPV58, SEQ ID NO: 1657 for HPV59, SEQ ID NO: 1672 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=6 are respectively SEQ ID NO: 1506 for HPV16, SEQ ID NO: 1520 for HPV18, SEQ ID NO: 1538 for HPV31, SEQ ID NO: 1552 for HPV33, SEQ ID NO: 1565 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1601 for HPV51, SEQ ID NO: 1613 for HPV52, SEQ ID NO: 1629 for HPV56, SEQ ID NO: 1645 for HPV58, absent for HPV59, absent for HPV66, SEQ ID NO: 1686 for HPV68, SEQ ID NO: 1695 for HPV73 and SEQ ID NO: 1708 for HPV82,
    • the amplicons corresponding to the splice junction i=7 are respectively SEQ ID NO: 1507 for HPV16, SEQ ID NO: 1521 for HPV18, SEQ ID NO: 1539 for HPV31, SEQ ID NO: 1553 for HPV33, SEQ ID NO: 1566 for HPV35, SEQ ID NO: 1578 for HPV39, SEQ ID NO: 1590 for HPV45, SEQ ID NO: 1602 for HPV51, SEQ ID NO: 1614 for HPV52, SEQ ID NO: 1630 for HPV56, SEQ ID NO: 1646 for HPV58, absent for HPV59, SEQ ID NO: 1674 for HPV66, SEQ ID NO: 1685 for HPV68, SEQ ID NO: 1696 for HPV73 and SEQ ID NO: 1709 for HPV82,
    • the amplicons corresponding to the splice junction i=8 are respectively SEQ ID NO: 1508 for HPV16, absent for HPV18, SEQ ID NO: 1540 for HPV31, SEQ ID NO: 1554 for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1615 for HPV52, SEQ ID NO: 1631 for HPV56, SEQ ID NO: 1647 for HPV58, absent for HPV59, SEQ ID NO: 1675 for HPV66, absent for HPV68, SEQ ID NO: 1697 for HPV73 and SEQ ID NO: 1710 for HPV82,
    • the amplicons corresponding to the splice junction i=9 are respectively SEQ ID NO: 1509 for HPV16, SEQ ID NO: 1522 for HPV18, SEQ ID NO: 1541 for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1579 for HPV39, SEQ ID NO: 1591 for HPV45, SEQ ID NO: 1603 for HPV51, SEQ ID NO: 1616 for HPV52, SEQ ID NO: 1632 for HPV56, absent HPV58, SEQ ID NO: 1659 for HPV59, SEQ ID NO: 1676 for HPV66, SEQ ID NO: 1687 for HPV68, SEQ ID NO: 1698 for HPV73 and SEQ ID NO: 1711 for HPV82,
    • the amplicons corresponding to the splice junction i=10 are respectively absent for HPV16, SEQ ID NO: 1523 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=11 are respectively SEQ ID NO: 1510 for HPV16, SEQ ID NO: 1524 for HPV18, SEQ ID NO: 1542 for HPV31, SEQ ID NO: 1555 for HPV33, SEQ ID NO: 1567 for HPV35, SEQ ID NO: 1580 for HPV39, SEQ ID NO: 1592 for HPV45, SEQ ID NO: 1604 for HPV51, SEQ ID NO: 1617 for HPV52, SEQ ID NO: 1633 for HPV56, SEQ ID NO: 1648 for HPV58, SEQ ID NO: 1660 for HPV59, SEQ ID NO: 1677 for HPV66, SEQ ID NO: 1688 for HPV68, SEQ ID NO: 1699 for HPV73 and SEQ ID NO: 1712 for HPV82,
    • the amplicons corresponding to the splice junction i=12 are respectively absent for HPV16, SEQ ID NO: 1525 for HPV18, absent for HPV31, absent for HPV33, SEQ ID NO: 1568 or HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1618 for HPV52, SEQ ID NO: 1634 for HPV56, absent for HPV58, SEQ ID NO: 1661 for HPV59, absent for HPV66, absent for HPV68, SEQ ID NO: 1700 for HPV73, absent for HPV82,
    • the amplicons corresponding to the splice junction i=13 are respectively absent for HPV16, SEQ ID NO: 1526 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1593 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=14 are respectively absent for HPV16, SEQ ID NO: 1527 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=15 are respectively SEQ ID NO: 1511 for HPV16, SEQ ID NO: 1528 for HPV18, SEQ ID NO: 1543 for HPV31, SEQ ID NO: 1556 for HPV33, SEQ ID NO: 1569 for HPV35, SEQ ID NO: 1581 for HPV39, SEQ ID NO: 1594 for HPV45, SEQ ID NO: 1605 for HPV51, SEQ ID NO: 1619 for HPV52, SEQ ID NO: 1635 for HPV56, SEQ ID NO: 1649 for HPV58, SEQ ID NO: 1662 for HPV59, SEQ ID NO: 1678 for HPV66, SEQ ID NO: 1689 for HPV68, SEQ ID NO: 1701 for HPV73 and SEQ ID NO: 1713 for HPV82,
    • the amplicons corresponding to the splice junction i=16 are respectively SEQ ID NO: 1512 for HPV16, SEQ ID NO: 1529 for HPV18, SEQ ID NO: 1544 for HPV31, SEQ ID NO: 1557 for HPV33, SEQ ID NO: 1570 for HPV35, absent for HPV39, SEQ ID NO: 1595 for HPV45, absent for HPV51, SEQ ID NO: 1620 for HPV52, SEQ ID NO: 1636 for HPV56, SEQ ID NO: 1650 for HPV58, SEQ ID NO: 1663 for HPV59, SEQ ID NO: 1679 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=17 are respectively SEQ ID NO: 1513 for HPV16, absent for HPV18, SEQ ID NO: 1545 for HPV31, SEQ ID NO: 1558 for HPV33, SEQ ID NO: 1571 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1606 for HPV51, SEQ ID NO: 1621 for HPV52, SEQ ID NO: 1637 for HPV56, SEQ ID NO: 1651 for HPV58, absent for HPV59, absent for HPV66, SEQ ID NO: 1690 for HPV68, SEQ ID NO: 1702 for HPV73 and SEQ ID NO: 1714 for HPV82,
    • the amplicons corresponding to the splice junction i=18 are respectively SEQ ID NO:1514 for HPV16, SEQ ID NO: 1531 for HPV18, SEQ ID NO: 1546 for HPV31, SEQ ID NO: 1559 for HPV33, SEQ ID NO: 1572 for HPV35, SEQ ID NO: 1583 for HPV39, SEQ ID NO: 1597 for HPV45, SEQ ID NO: 1607 for HPV51, SEQ ID NO: 1622 for HPV52, SEQ ID NO: 1638 for HPV56, SEQ ID NO: 1652 for HPV58, SEQ ID NO: 1665 for HPV59, SEQ ID NO: 1681 for HPV66, SEQ ID NO: 1691 for HPV68, SEQ ID NO: 1703 for HPV73 and SEQ ID NO: 1715 for HPV82,
    • the amplicons corresponding to the splice junction i=19 are respectively absent for HPV16, SEQ ID NO: 1532 for HPV18, absent for HPV31, absent for HPV33, SEQ ID NO: 1573 for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1623 for HPV52, SEQ ID NO: 1639 for HPV56, absent for HPV58, SEQ ID NO: 1666 for HPV59, absent for HPV66, absent for HPV68, SEQ ID NO: 1704 for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=20 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1577 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1658 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=21 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1582 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1664 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=22 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1575 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1655 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=23 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1586 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1670 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=24 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1589 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1673 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,
    • the amplicons corresponding to the splice junction i=25 are respectively absent for HPV16, SEQ ID NO: 1530 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1596 HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1680 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82.


The in vitro method for detecting HSIL may comprise a step of treatment of the biological sample with a solution comprising 30-60 wt % of methanol and 40-70 wt % of water such as preservCyt.


Composition of Primers for HPV Typing


The present invention relates to a composition of primers for typing HPV selected from the group consisting of:

    • at least one pair of primers of each of the first to the thirteenth and optionally of the fourteenth and/or fifteenth and/or sixteenth subsets of the splice junctions set of pairs of primers as defined above,
    • a second set of primers, called unsplice junctions set of primers,
    • a third set of primers, called genomic set of primers, and
    • a fourth set of primers, called fusion set of primers.


The present invention relates to a composition of primers for typing HPV comprising the set of primers selected from the group consisting of the splice junctions set of primers as defined above, a second set of primers, called unsplice junctions set of primers, a third set of primers, called genomic set of primers, and a fourth set of primers, called fusion set of primers.


The present invention also relates to a composition of primers for typing HPV comprising the splice junctions set of primers as defined above and an additional set of primers selected from the group consisting of a second set of primers, called unsplice junctions set of primers, a third set of primers, called genomic set of primers and a fourth set of primers, called fusion set of primers.


The method and composition of primers for typing HPV according the invention provides results as good as current gold standard test for HPV typing.


Moreover, the method and the composition of primers of the invention replace the current combination of cytology (Pap smear) and HPV molecular screening by a single molecular test for both the detection of high-risk or putative high-risk HPV and the triage of women at risk of transforming infection, before colposcopy. In particular, the splice junctions set of primers may be used for both detecting a HSIL lesion and typing HPV.


Preferably, the composition of primers for typing HPV of the invention comprises the splice junctions set of primers as defined above, an unsplice junctions set of primers, a genomic set of primers and a fusion set of primers.


Each of the unspliced junctions set, the genomic set of primers and the fusion set of primers may comprise a subset of pairs of primers specific of each high risk HPV and optionally a subset of primers specific of each putative high risk HPV.


The composition of primers for typing HPV of the invention may also comprises an additional fifth set of primers, called human set of primers. The human set of primers is as defined above.


The primers of unsplice junctions set of primers target high risk and optionally of putative high risk HPV genomic regions spanning either splice donor or splice acceptor sites in the absence of any splice event.


The unsplice junctions set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 431-432, to SEQ ID NO: 451-452;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 or at least 12, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 453-454 to SEQ ID NO: 475-476;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 477-478 to SEQ ID NO: 497-498;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a fourth subset of HPV33 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 499-500 to SEQ ID NO: 515-516;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 517-518 to SEQ ID NO: 535-536;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 537-538 to SEQ ID NO: 551-552;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 553-554 to SEQ ID NO: 571-572;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 573-574 to SEQ ID NO: 589-590;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 591-592 to SEQ ID NO: 611-612;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 613-614 to SEQ ID NO: 631-632;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 633-634 to SEQ ID NO: 647-648;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 649-650 to SEQ ID NO: 663-664;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 665-666 to SEQ ID NO: 679-680.


The unsplice junctions set of primers may further comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 681-682 to SEQ ID NO: 697-698; and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of the fifteenth subset of HPV73 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 699-700 to SEQ ID NO: 717-718; and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of the sixteenth subset of HPV82 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 719-720 to SEQ ID NO: 735-736.


In one embodiment, the unsplice junctions set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 431-432 to SEQ ID NO: 679-680 and optionally of SEQ ID NO: 681-682 to SEQ ID NO: 697-698 and/or SEQ ID NO: 699-700 to SEQ ID NO: 717-718 and/or SEQ ID NO: 719-720 to SEQ ID NO: 735-736.


In a preferred embodiment, the unsplice junctions set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 431-432 to SEQ ID NO: 735-736.


In one embodiment, the unsplice junctions set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 431-432 to SEQ ID NO: 679-680 and optionally of SEQ ID NO: 681-682 to SEQ ID NO: 697-698 and/or SEQ ID NO: 699-700 to SEQ ID NO: 717-718 and/or SEQ ID NO: 719-720 to SEQ ID NO: 735-736.


In a preferred embodiment, the unsplice junctions set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 431-432 to SEQ ID NO: 735-736.


The unsplice junctions set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1716 to SEQ ID NO: 1726;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 or at least 12, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1727 to SEQ ID NO: 1738;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 or at least 12, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1739 to SEQ ID NO: 1749;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1750 to SEQ ID NO: 1758;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1759 to SEQ ID NO: 1768;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1769 to SEQ ID NO: 1776;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1777 to SEQ ID NO: 1786;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1787 to SEQ ID NO: 1795;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 or at least 11, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1796 to SEQ ID NO: 1806;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1807 to SEQ ID NO: 1816;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of an eleventh subset of HPV58 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1817 to SEQ ID NO: 1824;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8, or 1, 2, 3, 4, 5, 6, 7 or 8 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1825 to SEQ ID NO: 1832;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6 or at least 7, or 1, 2, 3, 4, 5, 6 or 7 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1833 to SEQ ID NO: 1840.


The unsplice junctions set of primers may further comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1841 to SEQ ID NO: 1849;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9 or at least 10, or 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1850 to SEQ ID NO: 1859,
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or at least 9, or 1, 2, 3, 4, 5, 6, 7, 8 or 9 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1860 to SEQ ID NO: 1868.


In one embodiment, the unsplice junctions set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1716 to SEQ ID NO: 1840 and optionally of SEQ ID NO: 1841 to SEQ ID NO: 1849 and/or SEQ ID NO: 1850 to SEQ ID NO: 1859 and/or SEQ ID NO: 1860 to SEQ ID NO: 1868.


In a preferred embodiment, the unsplice junctions set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1716 to SEQ ID NO: 1726 to SEQ ID NO: 1860 to SEQ ID NO: 1868.


In one embodiment, the unsplice junctions set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1716 to SEQ ID NO: 1840 and optionally of SEQ ID NO: 1841 to SEQ ID NO: 1849 and/or SEQ ID NO: 1850 to SEQ ID NO: 1859 and/or SEQ ID NO: 1860 to SEQ ID NO: 1868.


In a preferred embodiment, the unsplice junctions set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1716 to SEQ ID NO: 1726 to SEQ ID NO: 1868.


The primers of the genomic set of primers target high risk and optionally of putative high risk HPV genomic regions away from any splice donor or splice acceptor sites,


The genomic set of primers may comprise:

    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 737-738, SEQ ID NO: 739-740, SEQ ID NO: 741-742 and SEQ ID NO: 743-744;
    • at least 1, at least 2, at least 3 or at least 4 or 1, 2, 3 or 4 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 745-746, SEQ ID NO: 747-748, SEQ ID NO: 749-750 and SEQ ID NO: 751-752;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 753-754, SEQ ID NO: 755-756, SEQ ID NO: 757-758 and SEQ ID NO: 759-760;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fourth subset HPV33 of specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 761-762, SEQ ID NO: 763-764, SEQ ID NO: 765-766 and SEQ ID NO: 767-768;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 769-770, SEQ ID NO: 771-772, SEQ ID NO: 773-774 and SEQ ID NO: 775-776;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 777-778, SEQ ID NO: 779-780, SEQ ID NO: 781-782 and SEQ ID NO: 783-784;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 785-786, SEQ ID NO: 787-788, SEQ ID NO: 789-790 and SEQ ID NO: 791-792;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 793-794, SEQ ID NO: 795-796, SEQ ID NO: 797-798 and SEQ ID NO: 799-800;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 801-802, SEQ ID NO: 803-804, SEQ ID NO: 805-806 and SEQ ID NO: 807-808;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 809-810, SEQ ID NO: 811-812, SEQ ID NO: 813-814 and SEQ ID NO: 815-816;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 817-818, SEQ ID NO: 819-820, SEQ ID NO: 821-822 and SEQ ID NO: 823-824;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 825-826, SEQ ID NO: 827-828, SEQ ID NO: 829-830 and SEQ ID NO: 831-832;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 833-834, SEQ ID NO: 835-836, SEQ ID NO: 837-838 and SEQ ID NO: 839-840.


The genomic set of primers may further comprise:

    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 841-842, SEQ ID NO: 843-844, SEQ ID NO: 845-846 and SEQ ID NO: 847-848;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 849-850, SEQ ID NO: 851-852, SEQ ID NO: 853-854 and SEQ ID NO: 855-856;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 857-858, SEQ ID NO: 859-860, SEQ ID NO: 861-862 and SEQ ID NO: 863-864.


In one embodiment, the genomic set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 737-738 to SEQ ID NO: 839-840 and optionally of SEQ ID NO: 841-842 to SEQ ID NO: 847-848 and/or SEQ ID NO: 849-850 to SEQ ID NO: 853-854 and SEQ ID NO: 855-856 and/or SEQ ID NO: 857-858 to SEQ ID NO: 863-864. In a preferred embodiment, the genomic set of primers comprises the pairs of primers having the nucleic acid sequence SE SEQ ID NO: 737-738 to SEQ ID NO: 863-864.


In one embodiment, the genomic set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 737-738 to SEQ ID NO: 839-840 and optionally of SEQ ID NO: 841-842 to SEQ ID NO: 847-848 and/or SEQ ID NO: 849-850 to SEQ ID NO: 853-854 and SEQ ID NO: 855-856 and/or SEQ ID NO: 857-858 to SEQ ID NO: 863-864. In a preferred embodiment, the genomic set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 737-738 to SEQ ID NO: 863-864.


The genomic set of primers may comprise:

    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1869 to SEQ ID NO: 1872;
    • at least 1, at least 2, at least 3 or at least 4, or 1,2, 3 or 4 pairs of primers the second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1873 to SEQ ID NO: 1876;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1877 to SEQ ID NO: 1880;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1881 to SEQ ID NO: 1884;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1885 to SEQ ID NO: 1888;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1889 to SEQ ID NO: 1892;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1893 to SEQ ID NO: 1896;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1897 to SEQ ID NO: 1900;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1901 to SEQ ID NO: 1904;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1905 to SEQ ID NO: 1908;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of an eleventh subset of HPV58 specific pairs of primers specific able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1909 to SEQ ID NO: 1912;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1913 to SEQ ID NO: 1916;
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1917 to SEQ ID NO: 1920.


The genomic set of primers may further comprise:

    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1921 to SEQ ID NO: 1924; and/or
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1925 to SEQ ID NO: 1928; and/or
    • at least 1, at least 2, at least 3 or at least 4, or 1, 2, 3 or 4 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1929 to SEQ ID NO: 1932.


In one embodiment, the genomic set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 1920 and optionally of SEQ ID NO: 1921 to SEQ ID NO: 1924 and/or SEQ ID NO: 1925 to SEQ ID NO: 1928 and/or SEQ ID NO: 1929 to SEQ ID NO: 1932.


In a preferred embodiment, the genomic set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 1932.


In one embodiment, the genomic set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 1833 to 1840 and optionally of SEQ ID NO: 1921 to SEQ ID NO: 1924 and/or SEQ ID NO: 1925 to SEQ ID NO: 1928 and/or SEQ ID NO: 1929 to SEQ ID NO: 1932.


In a preferred embodiment, the genomic set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 1932.


The primers of fusion set of primers target high risk and optionally of putative high risk HPV fusion transcripts.


The primers of fusion set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a first subset of HPV16 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 865-866 to SEQ ID NO: 899-900;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 901-902 to SEQ ID NO: 935-936;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a third subset of HPV31 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 937-938 to SEQ ID NO: 971-972;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourth subset of HPV33 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 973-974 to SEQ ID NO: 1007-1008;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifth subset of HPV35 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1009-1010 to SEQ ID NO: 1043-1044;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixth subset of HPV39 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1045-1046 to SEQ ID NO: 1079-1080;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, preferably at least 17, more preferably 18 or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a seventh subset of HPV45 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1081-1082 to SEQ ID NO: 1115-1116.
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a eighth subset of HPV51 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1117-1118 to SEQ ID NO: 1151-1152;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a ninth subset of HPV52 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1153-1154 to SEQ ID NO: 1187-1188;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a tenth subset of HPV56 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1189-1190 to SEQ ID NO: 1223-1224;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of an eleventh subset of HPV58 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1225-1226 to SEQ ID NO: 1259-1260;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a twelfth subset of HPV59 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1261-1262 to SEQ ID NO: 1295-1296;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1297-1298 to SEQ ID NO: 1331-1332.


The fusion set of primers may further comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1369-1370 to SEQ ID NO: 1403-1404;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In one embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1331-1332 and optionally of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368 and/or SEQ ID NO: 1369-1370 to SEQ ID NO: 1403-1404 and/or SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In a preferred embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1439-1440.


In one embodiment, the fusion set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1331-1332 and optionally of SEQ ID NO: 1333-1334 to SEQ ID NO: 1367-1368 and/or SEQ ID NO: 1369-1370 to SEQ ID NO: 1403-1404 and/or SEQ ID NO: 1405-1406 to SEQ ID NO: 1439-1440.


In a preferred embodiment, the fusion set of primers consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 865-866 to SEQ ID NO: 1439-1440.


The primers of fusion set of primers may comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1933 to 1 SEQ ID NO: 1950;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1951 to SEQ ID NO: 1968;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1969 to SEQ ID NO: 1986;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1987 to SEQ ID NO: 2004;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2005 to SEQ ID NO: 2022;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2023 to SEQ ID NO: 2040;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a seventh subset of HPV45 specific pairs of primers selected from the group consisting of SEQ ID NO: 2041 to SEQ ID NO: 2058,
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a eighth subset of HPV51 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2059 to SEQ ID NO: 2076;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2077 to SEQ ID NO: 2094;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a tenth subset of HPV56 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2095 to SEQ ID NO: 2112;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of an eleventh subset of HPV58 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2113 to SEQ ID NO: 2130;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2131 to SEQ ID NO: 2148;
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2149 to SEQ ID NO: 2166.


The fusion set may also comprise:

    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2167 to SEQ ID NO: 2184; and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:2185 to SEQ ID NO: 2202;and/or
    • at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17 or at least 18, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2203 to SEQ ID NO: 2220.


In one embodiment, the fusion set of primers comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1933 to SEQ ID NO: 2166 and optionally of SEQ ID NO: 2167 to SEQ ID NO: 2184 and/or SEQ ID NO: 2185 to SEQ ID NO: 2202 and/or SEQ ID NO: 2203 to SEQ ID NO: 2220.


In a preferred embodiment, the fusion set of primers comprises the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 2220.


In one embodiment, the fusion set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1933 to SEQ ID NO: 2166 and optionally of SEQ ID NO: 2167 to SEQ ID NO: 2184 and/or SEQ ID NO: 2185 to SEQ ID NO: 2202 and/or SEQ ID NO: 2203 to SEQ ID NO: 2220.


In a preferred embodiment, the fusion set of primers consists of the pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 1869 to SEQ ID NO: 2220.


In one embodiment, the composition of primers for HPV typing comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 1439-1440.


In one embodiment, the composition of primers for HPV typing consists of the pairs of primers able to produce amplicons having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 1439-1440.


In one embodiment, the composition of primers for HPV typing comprises the pairs of primers able to produce amplicons having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 2220.


In one embodiment, the composition of primers for HPV typing consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 2220.


The primers of the human set of primers target human sequences.


The human set of primers may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29 or at least 30, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 pairs of primers having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1441-1442, SEQ ID NO: 1443-1444, SEQ ID NO: 1445-1446, SEQ ID NO: 1447-1448, SEQ ID NO: 1449-1450, SEQ ID NO: 1451-1452, SEQ ID NO: 1453-1454, SEQ ID NO: 1455-1456, SEQ ID NO: 1457-1458, SEQ ID NO: 1459-1460, SEQ ID NO: 1461-1462, SEQ ID NO: 1463-1464, SEQ ID NO: 1465-1466, SEQ ID NO: 1467-1468, SEQ ID NO: 1469-1470, SEQ ID NO: 1471-1472, SEQ ID NO: 1473-1474, SEQ ID NO: 1475-1476, SEQ ID NO: 1477-1478, SEQ ID NO: 1479-1480, SEQ ID NO: 1481-1482, SEQ ID NO: 1483-1484, SEQ ID NO: 1485-1486, SEQ ID NO: 1487-1488, SEQ ID NO: 1489-1490, SEQ ID NO: 1491-1492, SEQ ID NO: 1493-1494, SEQ ID NO: 1495-1496, SEQ ID NO: 1497-1498 and SEQ ID NO: 1499-1500.


In one preferred embodiment, the human set of primers comprises SEQ ID NO: 1441-1442 to SEQ ID NO: 1499-1500.


In one more preferred embodiment, the human set of primers consists SEQ ID NO: 1441-1442 to SEQ ID NO: 1499-1500.


The human set of primers may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29 or at least 30, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one preferred embodiment, the human set of primers comprises pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one more preferred embodiment, the human set of primers consists of pairs of primers able to produce the amplicons having the nucleic acid sequence SEQ ID NO: 2221 to SEQ ID NO: 2250.


In one embodiment, the composition of primers for HPV typing comprises the pairs of primers having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 1499-1500.


Due to the redondancy between the pairs of primers the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 1499-1500 represent only 525 unique pairs of primers.


In one embodiment, the composition of primers for HPV typing consists of the pairs of primers able to produce amplicons having the nucleic acid sequence SEQ ID NO: 1-2 to SEQ ID NO: 1499-1500.


In one embodiment, the composition of primers for HPV typing comprises the pairs of primers able to produce amplicons having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 2250.


In one embodiment, the composition of primers for HPV typing consists of the pairs of primers having the nucleic acid sequence SEQ ID NO: 1501 to SEQ ID NO: 2250.


The present invention also relates to a kit for HPV typing comprising the composition of primers for HPV typing of the invention and optionally reagents for cDNA amplification.


The reagents for the kit for HPV typing may be the same as those for detecting HSIL.


The present invention also relates to the use of the composition of primers for HPV typing as defined above or of the kit for HPV typing as defined above for HPV typing.


An In Vitro Method for HPV Typing in a Biological Sample


The present invention also relates to an in vitro method for HPV typing in a biological sample comprising the steps of:

    • (a) extraction of RNA from the biological sample,
    • (b) reverse transcription of the RNA so as to generate cDNA,
    • (c) amplification of the cDNA generated at step (b) with the composition of primers for HPV typing so as to produce amplicons,
    • (d) quantification of the expression level of each amplicon.


The quantification of the expression level of each amplicon as well as the step (a) to (c) may be carried by the same methods as those disclosed for the in vitro method for detecting HSIL.


Typically, the in vitro method for HPV typing in a biological sample further comprises the step (e) of for each HPV type, comparing the expression level of all amplicons specific of said HPV type with a reference value, wherein if the expression level of all the amplicons specific of said HPV type is higher than the reference value, it is indicative of the presence of said HPV type in the biological sample.


Indeed, the number of reads mapping to HPV-specific amplicons (i.e. the sum of categories “splice junction”, “unsplice junction” and “genomic”) was used to detect the presence of a given HPV genotype. According the results of the inventors, the reference value is preferably between of 100-200 reads, more preferably 150 reads.


The practice of the present invention will employ, unless otherwise indicated, conventional techniques, which are within the skill of the art. Such techniques are explained fully in the literature.





For a better understanding of the invention and to show how the same may be carried into effect, there will now be described by way of example a specific mode contemplated by the Inventors with reference to the accompanying drawings in which:



FIG. 1 shows an alignment of the genomes of HPV wherein are located the known and predictive splice donor and splice acceptor sites.



FIG. 2 shows the location on the genomes of HPV and predictive splice donor (SD) and splice acceptor (SA) sites.



FIG. 3 shows a Receiver Operating Characteristic (ROC) curve. HPV DNA (PapilloCheck) was used as a reference to evaluate the performances of HPV RNA-Seq for HPV genotyping applications. AUC means Area Under Curve.



FIG. 4 shows the number of HPV genotypes identified by HPV RNA-Seq (left bars) at threshold value of 150 reads, vs HPV DNA -PapilloCheck (right bars).





The examples and figures should not be interpreted in any way as limiting the scope of the present invention.


EXAMPLES

Material and Methods:


Evaluation of Transport Medium for RNA Conservation


HPV16-positive cervical squamous cell carcinoma SiHa cells were cultivated and inoculated at a final concentration of 7×104 cells/mL in four transport medium: PreservCyt Solution (Hologic, USA), NovaPrep HQ+ Solution (Novaprep, France), RNA Protect Cell Reagent (Qiagen, Germany) and NucliSens Lysis Buffer (BioMerieux, France). The mixtures were aliquoted in 1 mL tubes and kept at room temperature for 2 hours (DO), 48 hours (D2), 168 hours (D7), 336 hours (D14) and 504 hours (D21). In parallel, 7×104 cells pellets without transport medium were kept frozen −80° C. for 2 hours, 48 hours, 168 hours, 336 hours and 504 hours as a control. At D0, D2, D7, D14 and D21, room temperature aliquots were centrifuged, the medium removed, and the pellets were frozen −80° C. for a short time (<1 h) before proceeding with RNA extraction. In the particular case of the NucliSens Lysis Buffer since the cells were lysed, the entire 1 mL aliquot was frozen −80° C. for a short time without prior centrifugation. For each sample, RNA was extracted using the PicoPure RNA Isolation kit (Thermo Fisher Scientific, USA), together with the corresponding (time match) frozen control, so that all samples have undergone one freezing cycle. RT-qPCR was performed to quantify the expression of the two human genes G6PD (forward primer: TGCAGATGCTGTGTCTGG (SEQ ID NO: 2251); reverse primer: CGTACTGGCCCAGGACC (SEQ ID NO: 2252) and GAPDH (forward primer: GAAGGTGAAGGTCGGAGTC; reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 2253)) and the expression of the two viral genes HPV16 E6 (forward primer: ATGCACCAAAAGAGAACTGC (SEQ ID NO: 2254); reverse primer: TTACAGCTGGGTTTCTCTAC (SEQ ID NO: 2255)) and E7 (forward primer: GTAACCTTTTGTTGCAAGTGTGACT (SEQ ID NO: 2256); reverse primer: GATTATGGTTTCTGAGAACAGATGG (SEQ ID NO:2257)). RNA integrity was assessed on a Bioanalyzer instrument (Agilent, USA).


HPV Selection and Splice Sites Analysis


HPV reference clones made available by the International Human Papillomavirus Reference Center (Karolinska University, Stockholm, Sweden) served as reference genomes, except for HPV68 which was retrieved from Chen et al. (Evolution and Taxonomic Classification of Alphapapillomavirus 7 Complete Genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLOS ONE, 2013, 8:e72565). Accession numbers used in this study were: K02718 (HPV16), X05015 (HPV18), J04353 (HPV31), M12732 (HPV33), X74477 (HPV35), M62849 (HPV39), X74479 (HPV45), M62877 (HPV51), X74481 (HPV52), X74483 (HPV56), D90400 (HPV58), X77858 (HPV59), U31794 (HPV66), KC470267 (HPV68), X94165 (HPV73) and AB027021 (HPV82). Multiple alignments of HPV genomes was done with ClustalW v2.1 using Geneious v10 (Kearse M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma Oxf Engl, 2012, 28:1647-9). Previously known splice donor (SD) and splice acceptor (SA) sites for HPV16 (Zheng Z-M, et al. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci J Virtual Libr, 2006, 11:2286-302) and HPV18 (Wang X, et al. Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol, 2011, 85:8080-92) were reported on the alignment, and predictions of unknown SD and SA sites were done manually for the other genotypes by sequence analogy (FIGS. 1 and 2).


HPV RNA-Seq AmpliSeq Custom Panel

A custom AmpliSeq panel was designed to be used on both PGM and Ion Proton instruments (Thermo Fisher Scientific). Five categories of target sequences were defined as follow:


HPV splice junctions (sp): a set of target sequences which are specific HPV splice events, involving a pair of splice donor (SD) and splice acceptor (SA) sites. The nomenclature includes a “sp” tag. For example, “31_sp_1296_3295_J43-46” stands for HPV31 (31), splice junction (sp), SD at position 1296 on HPV31 genome, SA at position 3295 on HPV31 genome, and junction (J) at position 43-46 on amplicon. The junction coordinates are given in a 4-bases interval, where the first 2 bases correspond to the donor part (or left part) and the last 2 bases to the acceptor part (or right part) of the sequence. Primers and amplicons corresponding to splice junctions set are given at Table 2A and 2Abis.


HPV unsplice junctions (unsp): a set of target sequences which are specific HPV genomic regions spanning either SD or SA sites, in the absence of any splice event. The nomenclature includes an “unsp” tag. For example, “31_unsp_1296_1297_J43-46” stands for HPV31 (31), unspliced (unsp), last base of the left part of the amplicon at position 1296 on HPV31 genome, first base of the right part of the amplicon at position 1297 on HPV31 genome, junction (J) at position 43-46 on amplicon. Primers and amplicons corresponding to unsplice junctions set are given at Table 2B and 2Bbis. In this context, the term ‘junction’ refers to the exon-intron interface (i.e. the position where a donor or acceptor site would be found in case of a splice event), and the associated junction coordinates are used to characterize unspliced sequences bioinformatically as described in section “Sequencing data processing”.


HPV genome away from splice junctions (gen): a set of target sequences which are specific HPV genomic regions, away from any SD or SA sites. The nomenclature includes a “gen” tag. For example, “45_gen_1664_1794_NoJ” stands for HPV45 (45), HPV genomic region (gen), amplicon coordinates from position 1664 to position 1794 on HPV45 genome. Primers and amplicons corresponding to the genomic set are given at Table 2C and 2Cbis.


HPV-human fusion sequences (fus): a set of hypothesis-driven viral-cellular fusion transcripts, based on previous descriptions (Wentzensen N, et al. Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene, 2002, 21:419-2622-26, Tang K-W, et al. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat Commun, 2013, 4:2513, Peter M, et al. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene, 2006, 25:5985-93, Lu X, et al. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer. PloS One, 2014, 9:e97588, Kraus I, et al. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes. Cancer Res, 2008, 68:2514-22). For each HPV, 18 fusion sequence candidates involving SA2 or putative breakpoint 1 or 2 (put. bkpt, see FIG. 2) for the viral part, and specific exons from MYC or PVT1 oncogenes for the cellular part, were added to the design. For example, “18_fus_929_MYC_001_exon3_J37-40” stands for HPV18 (18), candidate fusion transcript (fus), break/fusion at position 929 on HPV18 genome, fused with MYC mRNA isoform 001 exon 3, junction (J) at position 37-40 on amplicon. Primers and amplicons corresponding to the fusion set are given at Table 2D and 2Dbis.


Human sequences (hg): a set of 30 human sequences used as internal controls retrieved from publically available AmpliSeq projects and representing housekeeping genes (ACTB, B2M, GAPDH, GUSB, RPLPO), epithelial markers (KRT10, KRT14, KRT17), oncogenes, tumor supressor genes canonical cancer pathways and direct or indirect downstream effectors of HPV oncoproteins (AKT1, BCL2, BRAF, CDH1, CDKN2A, CDKN2B, ERBB2, FOS, HRAS, KRAS, MET, MK167, MYC, NOTCH1, PCNA, PTEN, RB1, STAT1, TERT, TOP2A, TP53, WNT1). The nomenclature for these sequences includes an “hg” tag. For example, “hg_TOP2A_E21E22” stands for human topoisomerase 2A mRNA exon (Wang X, et al. 2011, Wentzensen N, et al., 2002). Primers and amplicons corresponding to the human set are given at Table 2E and 2Ebis.


In total, 750 target sequences were included into the panel (Table 1) and can be amplified with a pool of 525 unique primers (Table 2A-2E). The average amplicon size of the panel (primers included) is 141 bp (range: 81-204 bp). A detailed table including the nucleic acid sequences of the primers along with their corresponding amplicons and amplicon sequences is given in Table 2Abis-2Ebis.


Table 1 below shows the HPV RNA-Seq AmpliSeq custom panel contents. The number of target amplicons is indicated for each category (sp, unsp, gen, fus, hg) and for each viral and cellular origin. Putative high-risk HPV are indicated by a star (*).















TABLE 1






Sp
unsp
gen
fus
Hg






















HPV16
14
11
4
18
0



HPV18
18
12
4
18
0



HPV31
14
11
4
18
0



HPV33
13
9
4
18
0



HPV35
14
10
4
18
0



HPV39
10
8
4
18
0



HPV45
14
10
4
18
0



HPV51
10
9
4
18
0



HPV52
16
11
4
18
0



HPV56
16
10
4
18
0



HPV58
13
8
4
18
0



HPV59
14
8
4
18
0



HPV66
15
8
4
18
0



HPV68*
10
9
4
18
0



HPV73*
13
10
4
18
0



HPV82*
11
9
4
18
0



human
0
0
0
0
30



TOTAL
215
153
64
288
30
750





















TABLE 2A








Forward

Reverse





primer

primer


HPV
Splice
Forward primer
SEQ
Reverse primer
SEQ


type
junction
nucleic acid sequence
ID NO
nucleic acid sequence
ID NO







HPV16
SD3-SA4
GCGGGTATGGCAATACTGAAGT
  1
GTTTTCGTCAAATGGAAACTCATTAGGA
  2



i = 1









HPV16
SD3-SA5
GCGGGTATGGCAATACTGAAGT
  3
TGACACACATTTAAACGTTGGCAAAG
  4



i = 2









HPV16
SD3-SA6
GCGGGTATGGCAATACTGAAGT
  5
AAGGCGACGGCTTTGGTAT
  6



i = 3









HPV16
SD1-SA4
CACAGAGCTGCAAACAACTATACAT
  7
GTTTTCGTCAAATGGAAACTCATTAGGA
  8



i = 4









HPV16
SD1-SA5
CACAGAGCTGCAAACAACTATACAT
  9
TGACACACATTTAAACGTTGGCAAAG
 10



i = 5









HPV16
SD1-SA6
CACAGAGCTGCAAACAACTATACAT
 11
AAGGCGACGGCTTTGGTAT
 12



i = 6









HPV16
SD1-SA1
CACAGAGCTGCAAACAACTATACAT
 13
TGTCCAGATGTCTTTGCTTTTCTTCA
 14



I = 7









HPV16
SD1-SD2
CACAGAGCTGCAAACAACTATACAT
 15
TCAGTTGTCTCTGGTTGCAAATCT
 16



i = 8









HPV16
SD1-SA3
CACAGAGCTGCAAACAACTATACAT
 17
CCATTAACAGGTCTTCCAAAGTACGA
 18



i = 9









HPV16
SD5-SA9
GCTCACACAAAGGACGGATTAAC
 19
ATCCGTGCTTACAACCTTAGATACTG
 20



i = 11









HPV16
SD2-SA4
GGAATTGTGTGCCCCATCTGT
 21
GTTTTCGTCAAATGGAAACTCATTAGGA
 22



i = 15









HPV16
SD2-SA5
GGAATTGTGTGCCCCATCTGT
 23
TGACACACATTTAAACGTTGGCAAAG
 24



i = 16









HPV16
SD2-SA6
GGAATTGTGTGCCCCATCTGT
 25
AAGGCGACGGCTTTGGTAT
 26



i = 17









HPV16
SD2-SA9
GGAATTGTGTGCCCCATCTGT
 27
ATCCGTGCTTACAACCTTAGATACTG
 28



i = 18









HPV18
SD3-SA4
TCAGATAGTGGCTATGGCTGTTCT
 29
GTCATTTATTTCATATACTGGATTGCCA
 30



i = 1









HPV18
SD3-SA5
TCAGATAGTGGCTATGGCTGTTCT
 31
GGTTTCCTTCGGTGTCTGCAT
 32



i = 2









HPV18
SD3-SA6
TCAGATAGTGGCTATGGCTGTTCT
 33
ACGTCTGGCCGTAGGTCT
 34



i = 3









HPV18
SD1-SA4
TTCACTGCAAGACATAGAAATAACCTGT
 35
GTCATTTATTTCATATACTGGATTGCCA
 36



i = 4









HPV18
SD1-SA5
TTCACTGCAAGACATAGAAATAACCTGT
 37
GGTTTCCTTCGGTGTCTGCAT
 38



i = 5









HPV18
SD1-SA6
TTCACTGCAAGACATAGAAATAACCTGT
 39
ACGTCTGGCCGTAGGTCT
 40



i = 6









HPV18
SD1-SA1
TTCACTGCAAGACATAGAAATAACCTGT
 41
CCCAGCTATGTTGTGAAATCGT
 42



i = 7









HPV18
SD1-SD2
TTCACTGCAAGACATAGAAATAACCTGT
 43
AGAAACAGCTGCTGGAATGCT
 44



i = 9









HPV18
SD4-SA6
GGATTGGACACTGCAAGACACA
 45
ACGTCTGGCCGTAGGTCT
 46



i = 10









HPV18
SD5-SA9
CAGCTACACCTACAGGCAACAA
 47
GTATTTACAACTCTTGCCACAGAAGG
 48



i = 11









HPV18
SD5-SD10
CAGCTACACCTACAGGCAACAA
 49
TCAGGTAACTGCACCCTAAATACTCTAT
 50



i = 12









HPV18
SD6-SA9
CGAAAACATAGCGACCACTATAGAGAT
 51
GTATTTACAACTCTTGCCACAGAAGGA
 52



i = 13









HPV18
SD6-SA10
CGAAAACATAGCGACCACTATAGAGAT
 53
TCAGGTAACTGCACCCTAAATACTCTAT
 54



i = 14









HPV18
SD2-SA4
TGCATCCCAGCAGTAAGCAA
 55
GTCATTTATTTCATATACTGGATTGCCA
 56



i = 15









HPV18
SD2-SA5
TGCATCCCAGCAGTAAGCAA
 57
GGTTTCCTTCGGTGTCTGCAT
 58



i = 16









HPV18
SD2-SA8
TGCATCCCAGCAGTAAGCAA
 59
ACGTCTGGCCGTAGGTCT
 60



i = 25









HPV18
SD2-SA9
TGCATCCCAGCAGTAAGCAA
 61
GTATTTACAACTCTTGCCACAGAAGGA
 62



i = 18









HPV18
SD2-SA10
TGCATCCCAGCAGTAAGCAA
 63
TCAGGTAACTGCACCCTAAATACTCTAT
 64



i = 19









HPV31
SD3-SA4
GCGGGTATGGCAATACTGAAGT
 65
AATGTAAAAACCACCAGTCTGCTATGTA
 66



i = 1









HPV31
SD3-SA5
GCGGGTATGGCAATACTGAAGT
 67
CGTTGAGAAAGAGTCTCCATCGTTTT
 68



i = 2









HPV31
SD3-SA6
GCGGGTATGGCAATACTGAAGT
 69
GAATTCGATGTGGTGGTGTTGTTG
 70



i = 3









HPV31
SD1-SA4
CGGCATTGGAAATACCCTACGAT
 71
AATGTAAAAACCACCAGTCTGCTATGTA
 72



i = 4









HPV31
SD1-SA5
CGGCATTGGAAATACCCTACGAT
 73
CGTTGAGAAAGAGTCTCCATCGTTTT
 74



i = 5









HPV31
SD1-SA6
CGGCATTGGAAATACCCTACGAT
 75
GAATTCGATGTGGTGGTGTTGTTG
 76



i = 6









HPV31
SD1-SA1
CGGCATTGGAAATACCCTACGAT
 77
TTTTCTTCTGGACACAACGGTCTT
 78



i = 7









HPV31
SD1-SA2
CGGCATTGGAAATACCCTACGAT
 79
ACATAGTCTTGCAACGTAGGTGTTT
 80



i = 8









HPV31
SD1-SA3
CGGCATTGGAAATACCCTACGAT
 81
CATTAACAGCTCTTGCAATATGCGAATA
 82



i = 9









HPV31
SD5-SA9
CAGCTGCATGCACAAACCA
 83
TTTAGACACTGGGACAGGTGGTA
 84



i = 11









HPV31
SD2-SA5
AATCGTGTGCCCCAACTGT
 85
AATGTAAAAACCACCAGTCTGCTATGTA
 86



i = 15









HPV31
SD2-SA5
AATCGTGTGCCCCAACTGT
 87
CGTTGAGAAAGAGTCTCCATCGTTTT
 88



i = 16









HPV31
SD2-SA6
AATCGTGTGCCCCAACTGT
 89
GAATTCGATGTGGTGGTGTTGTTG
 90



i = 17









HPV31
SD2-SA9
AATCGTGTGCCCCAACTGT
 91
TTTAGACACTGGGACAGGTGGTA
 92



i = 18









HPV33
SD3-SA4
GATGAGCTAGAAGACAGCGGATATG
 93
CATACACTGGGTTACCATTTTCATCAAA
 94



i = 1









HPV33
SD3-SA5
GATGAGCTAGAAGACAGCGGATATG
 95
TGATATTTCCTCCATGGTTTTCCTTGTC
 96



i = 2









HPV33
SD3-SA6
GATGAGCTAGAAGACAGCGGATATG
 97
GTGGTGGTCGGTTATCGTTGT
 98



i = 3









HPV33
SD1-SA4
AGCATTGGAGACAACTATACACAACATT
 99
CATACACTGGGTTACCATTTTCATCAAA
100



i = 4









HPV33
SD1-SA5
AGCATTGGAGACAACTATACACAACATT
101
TGATATTTCCTCCATGGTTTTCCTTGTC
102



i = 5









HPV33
SD1-SA6
AGCATTGGAGACAACTATACACAACATT
103
GTGGTGGTCGGTTATCGTTGT
104



i = 6









HPV33
SD1-SA1
AGCATTGGAGACAACTATACACAACATT
105
TCGTTTGTTTAAATCCACATGTCGTTTT
106



i = 7









HPV33
SD1-SA2
AGCATTGGAGACAACTATACACAACATT
107
CATATTCCTTTAACGTTGGCTTGTGT
108



i = 8









HPV33
SD5-SA9
ACGTACTGCAACTAACTGCACAA
109
ATCAGTGCTGACAACTTTAGATACAGG
110



i = 11









HPV33
SD2-SA4
GTGCCCTACCTGTGCACAA
111
CATACACTGGGTTACCATTTTCATCAAA
112



i = 15









HPV33
SD2-SA5
GTGCCCTACCTGTGCACAA
113
TGATATTTCCTCCATGGTTTTCCTTGTC
114



i = 16









HPV33
SD2-SA6
GTGCCCTACCTGTGCACAA
115
GTGGTGGTCGGTTATCGTTGT
116



i = 17









HPV33
SD2-SA9
GTGCCCTACCTGTGCACAA
117
ATCAGTGCTGACAACTTTAGATACAGG
118



i = 18









HPV35
SD3-SA4
ATTATTTGAACTACCAGACAGCGGTT
119
TCATTGTGAAATGTAAAGACCACTACCC
120



i = 1









HPV35
SD3-SA5
ATTATTTGAACTACCAGACAGCGGTT
121
GGAAAGCGTCTCCATCATTTTCTTTG
122



i = 2









HPV35
SD3-SA6
ATTATTTGAACTACCAGACAGCGGTT
123
GCTTTGGTATGGGTCTCGGT
124



i = 3









HPV35
SD1-SA4
CGAGGTAGAAGAAAGCATCCATGAAAT
125
TCATTGTGAAATGTAAAGACCACTACCC
126



i = 4









HPV35
SD1-SA5
CGAGGTAGAAGAAAGCATCCATGAAAT
127
GGAAAGCGTCTCCATCATTTTCTTTG
128



i = 5









HPV35
SD1-SA6
CGAGGTAGAAGAAAGCATCCATGAAAT
129
GCTTTGGTATGGGTCTCGGT
130



i = 6









HPV35
SD1-SA1
CGAGGTAGAAGAAAGCATCCATGAAAT
131
TCCACCGATGTTATGGAATCGTTTT
132



i = 7









HPV35
SD5-SA9
TCTACATCTGACTGCACAAACAAAGA
133
CATCAGTGCTAACAACCTTAGACACT
134



i = 11









HPV35
SD5-SA10
TCTACATCTGACTGCACAAACAAAGA
135
ACTCTGTATTGCAAACCAGATACCTTG
136



i = 12









HPV35
SD2-SA4
CGGCTGTTCACAGAGAGCATAAT
137
TCATTGTGAAATGTAAAGACCACTACCC
138



i = 14









HPV35
SD2-SA5
CGGCTGTTCACAGAGAGCATAAT
139
GGAAAGCGTCTCCATCATTTTCTTTG
140



i = 16









HPV35
SD2-SA6
CGGCTGTTCACAGAGAGCATAAT
141
GCTTTGGTATGGGTCTCGGT
142



i = 17









HPV35
SD2-SA9
CGGCTGTTCACAGAGAGCATAAT
143
CATCAGTGCTAACAACCTTAGACACT
144



i = 18









HPV35
SD2-SA10
CGGCTGTTCACAGAGAGCATAAT
145
ACTCTGTATTGCAAACCAGATACCTTG
146



i = 19









HPV39
SD3-SA4
GGTGTATTCCGTGCCAGACA
147
CTGTTTTGGTCAAATGGAAATGCATTAG
148



i = 1









HPV39
SD3-SA7
GGTGTATTCCGTGCCAGACA
149
GGTCGCGGTGGTGTTTGATAA
150



i = 22









HPV39
SD1-SA4
CACCACCTTGCAGGACATTACAATA
151
CTGTTTTGGTCAAATGGAAATGCATTAG
152



i = 4









HPV39
SD1-SA1
CACCACCTTGCAGGACATTACAATA
153
GGTCGCGGTGGTGTTTGATAA
154



i = 20









HPV39
SD1-SA3
CACCACCTTGCAGGACATTACAATA
155
CTGTCCTGTATAGCTTCCTGCTATTTT
156



i = 7









HPV39
SD5-SA9
CACCACCTTGCAGGACATTACAATA
157
TGCTGTAGTTGTCGCAGAGTATC
158



i = 9









HPV39
SD2-SA4
CACAGTAACAGTACAGGCCACA
159
AGTATTGACAACCTTCGCCACA
160



i = 11









HPV39
SD2-SA7
CGTGGTGTGCAACTGCAA
161
CTGTTTTGGTCAAATGGAAATGCATTAG
162



i = 15









HPV39
SD2-SA7
CGTGGTGTGCAACTGCAA
163
GGTCGCGGTGGTGTTTGATAA
164



i = 21









HPV39
SD2-SA9
CGTGGTGTGCAACTGCAA
165
AGTATTGACAACCTTCGCCACA
166



i = 18









HPV45
SD3-SA4
TCAGATAGTGGCTATGGCTGTTCT
167
GAAATGCATGTGGAAATGTAAATACCGT
168



i = 1









HPV45
SD3-SA5
TCAGATAGTGGCTATGGCTGTTCT
169
GGATTCCTTCGGTGTCTGCAT
170



i = 2









HPV45
SD3-SA8
TCAGATAGTGGCTATGGCTGTTCT
171
CCCACGGATGCGGTTTTG
172



i = 23









HPV45
SD1-SA4
CTACAAGACGTATCTATTGCCTGTGT
173
GAAATGCATGTGGAAATGTAAATACCGT
174



i = 4









HPV45
SD1-SA5
CTACAAGACGTATCTATTGCCTGTGT
175
GGATTCCTTCGGTGTCTGCAT
176



i = 5









HPV45
SD1-SA8
CTACAAGACGTATCTATTGCCTGTGT
177
CCCACGGATGCGGTTTTG
178



i = 24









HPV45
SD1-SA1
CTACAAGACGTATCTATTGCCTGTGT
179
CGTTTGTCCTTAAGGTGTCTACGTTTT
180



i = 7









HPV45
SD1-SA3
CTACAAGACGTATCTATTGCCTGTGT
181
TCAAAAACAGCTGCTGTAGTGTTCT
182



i = 9









HPV45
SD5-SA9
TCCTGTGTTCAAGTACAAGTAACAACAA
183
GCTGACAACTCTGGCCACA
184



i = 11









HPV45
SD6-SA9
CGCAAATATGCAGACCATTACTCAGAA
185
GCTGACAACTCTGGCCACA
186



i = 13









HPV45
SD2-SA4
AGCACCTTGTCCTTTGTGTGT
187
GAAATGCATGTGGAAATGTAAATACCGT
188



i = 15









HPV45
SD2-SA5
AGCACCTTGTCCTTTGTGTGT
189
GGATTCCTTCGGTGTCTGCAT
190



i = 16









HPV45
SD2-SA8
AGCACCTTGTCCTTTGTGTGT
191
CCCACGGATGCGGTTTTG
192



i = 25









HPV45
SD2-SA9
AGCACCTTGTCCTTTGTGTGT
193
GCTGACAACTCTGGCCACA
194



i = 18









HPV51
SD3-SA4
CGGACAGCGGATATGGCAATA
195
TCATTCAATGTATACACAGCATTCCCAT
196



i = 1









HPV51
SD3-SA6
CGGACAGCGGATATGGCAATA
197
CCACGCAGGTGGTAAGGG
198



i = 3









HPV51
SD1-SA4
CTGCATGAATTATGTGAAGCTTTGAAC
199
TCATTCAATGTATACACAGCATTCCCAT
200



i = 4









HPV51
SDA-SA6
CTGCATGAATTATGTGAAGCTTTGAAC
201
CCACGCAGGTGGTAAGGG
202



i = 6









HPV51
SD1-SA1
CTGCATGAATTATGTGAAGCTTTGAAC
203
TCCCGCTATTTCATGGAACCTTTT
204



i = 7









HPV51
SD1-SA3
CTGCATGAATTATGTGAAGCTTTGAAC
205
CATCTGCTGTACAACGCGAAG
206



I = 9









HPV51
SD5-SA9
CTAACACTGGAGGGCACCAAA
207
CAATTCGAGACACAGGTGCAG
208



i = 11









HPV51
SD2-SA4
GGGCGAACTAAGCCTGGTTT
209
TCATTCAATGTATACACAGCATTCCCAT
210



i = 15









HPV51
SD2-SA6
GGGCGAACTAAGCCTGGTTT
211
CCACGCAGGTGGTAAGGG
212



i = 17









HPV51
SD2-SA9
GGGCGAACTAAGCCTGGTTT
213
CAATTCGAGACACAGGTGCAG
214



i = 18









HPV52
SD3-SA4
CAAACCATGTCACGTAGAAGACAG
215
GGGTTTTTGAAATGAAACACAACCAATC
216



i = 1









HPV52
SD3-SA5
CAAACCATGTCACGTAGAAGACAG
217
CGGTATCGACTCCATCGTTTTCC
218



i = 2









HPV52
SD3-SA6
CAAACCATGTCACGTAGAAGACAG
219
GCGGAGGTCTTGGAGGTTT
220



i = 3









HPV52
SD1-SA4
AGAATCGGTGCATGAAATAAGGCT
221
GGGTTTTTGAAATGAAACACAACCAATC
222



i = 4









HPV52
SD1-SA5
AGAATCGGTGCATGAAATAAGGCT
223
CGGTATCGACTCCATCGTTTTCC
224



i = 5









HPV52
SD1-SA6
AGAATCGGTGCATGAAATAAGGCT
225
GCGGAGGTCTTGGAGGTTT
226



i = 6









HPV52
SD1-SA1
AGAATCGGTGCATGAAATAAGGCT
227
CGCTTGTTTGCATTAACATGTCTTTCT
228



i = 7









HPV52
SD1-SA2
AGAATCGGTGCATGAAATAAGGCT
229
TCAGTTGTTTCAGGTTGCAGATCTAATA
230



i = 8









HPV52
SD1-SA3
AGAATCGGTGCATGAAATAAGGCT
231
GCATTTGCTGTAGAGTACGAAGGT
232



i = 9









HPV52
SD5-SA9
TCACTGCAACTGAGTGCACAA
233
TGCTTACAACCTTAGAGACAGGTACA
234



i = 11









HPV52
SD5-SA10
TCACTGCAACTGAGTGCACAA
235
CCTGTATTGCAGGCCAGACA
236



i = 12









HPV52
SD2-SA4
GCTGTTGGGCACATTACAAGTT
237
GGGTTTTTGAAATGAAACACAACCAATC
238



i = 15









HPV52
SD2-SA5
GCTGTTGGGCACATTACAAGTT
239
CGGTATCGACTCCATCGTTTTCC
240



i = 16









HPV52
SD2-SA6
GCTGTTGGGCACATTACAAGTT
241
GCGGAGGTCTTGGAGGTTT
242



i = 17









HPV52
SD2-SA9
GCTGTTGGGCACATTACAAGTT
243
TGCTTACAACCTTAGAGACAGGTACA
244



i = 18









HPV52
SD2-SA10
GCTGTTGGGCACATTACAAGTT
245
CCTGTATTGCAGGCCAGACA
246



i = 19









HPV56
SD3-SA4
CAAGACAGCGGGTATGGCAATA
247
TGAAACTGAAACACTAACATTCTACTGTGT
248



i = 1









HPV56
SD3-SA5
CAAGACAGCGGGTATGGCAATA
249
TTTTCTTTGTCCTCGTCGTTATCCAA
250



i = 2









HPV56
SD3-SA6
CAAGACAGCGGGTATGGCAATA
251
GGTGGTGGTGGTGGTCTT
252



i = 3









HPV56
SD1-SA4
GCACCACTTGAGTGAGGTATTAGAA
253
TGAAACTGAAACACTAACATTCTACTGTGT
254



i = 4









HPV56
SD1-SA5
GCACCACTTGAGTGAGGTATTAGAA
255
TTTTCTTTGTCCTCGTCGTTATCCAA
256



i = 5









HPV56
SD1-SA6
GCACCACTTGAGTGAGGTATTAGAA
257
GGTGGTGGTGGTGGTCTT
258



i = 6









HPV56
SD1-SA1
GCACCACTTGAGTGAGGTATTAGAA
259
CAATTGCTTTTCCTCCGGAGTTAA
260



i = 7









HPV56
SD1-SA2
GCACCACTTGAGTGAGGTATTAGAA
261
ACGTCTTGCAGCGTTGGTA
262



i = 8









HPV56
SD1-SA3
GCACCACTTGAGTGAGGTATTAGAA
263
TGTACAACACGCAGGTCCTC
264



i = 9









HPV56
SD5-SA9
ACAACAACCACCCTGGTGATAAG
265
ACAACCTTTGAAACAGGTGTTGGA
266



i = 11









HPV56
SD5-SA10
ACAACAACCACCCTGGTGATAAG
267
CAACCGTACCCTAAATACCCTATATTGA
268



i = 12









HPV56
SD2-SA4
GTTAACAGTAACGTGCCCACTCT
269
TGAAACTGAAACACTAACATTCTACTGTGT
270



i = 15









HPV56
SD2-SA5
GTTAACAGTAACGTGCCCACTCT
271
TTTTCTTTGTCCTCGTCGTTATCCAA
272



i = 16









HPV56
SD2-SA6
GTTAACAGTAACGTGCCCACTCT
273
GGTGGTGGTGGTGGTCTT
274



i = 17









HPV56
SD2-SA9
GTTAACAGTAACGTGCCCACTCT
275
ACAACCTTTGAAACAGGTGTTGGA
276



i = 18









HPV56
SD2-SA10
GTTAACAGTAACGTGCCCACTCT
277
CAACCGTACCCTAAATACCCTATATTGA
278



i = 19









HPV58
SD3-SA4
AAAATTATTGAGCTAGAAGACAGCGGAT
279
TGCATCAAATGGAAATGGATTGTTAAATTCA
280



i = 1









HPV58
SD3-SA5
AAAATTATTGAGCTAGAAGACAGCGGAT
281
TGATATTTCCTCCATCGTTTTCCTTGTC
282



i = 2









HPV58
SD3-SA6
AAAATTATTGAGCTAGAAGACAGCGGAT
283
CCCTGTGTACTTTCGTTGTTGGT
284



i = 3









HPV58
SD1-SA4
GTCAGGCGTTGGAGACATCT
285
TGCATCAAATGGAAATGGATTGTTAAATTCA
286



i = 4









HPV58
SD1-SA5
GTCAGGCGTTGGAGACATCT
287
TGATATTTCCTCCATCGTTTTCCTTGTC
288



i = 5









HPV58
SD1-SA6
GTCAGGCGTTGGAGACATCT
289
CCCTGTGTACTTTCGTTGTTGGT
290



i = 6









HPV58
SD1-SA1
GTCAGGCGTTGGAGACATCT
291
CGACCCGAAATATTATGAAACCTTTTGT
292



i = 7









HPV58
SD1-SA2
GTCAGGCGTTGGAGACATCT
293
GCGTTGGGTTGTTTCCTCTCA
294



i = 8









HPV58
SD5-SA9
GAGGAGGACTACACAGTACAACTAACT
295
GCTTACAACCTTAGACACAGGCA
296



i = 11









HPV58
SD2-SA4
TGCTTATGGGCACATGTACCATT
297
TGCATCAAATGGAAATGGATTGTTAAATTCA
298



i = 15









HPV58
SD2-SA5
TGCTTATGGGCACATGTACCATT
299
TGATATTTCCTCCATCGTTTTCCTTGTC
300



i = 16









HPV58
SD2-SA6
TGCTTATGGGCACATGTACCATT
301
CCCTGTGTACTTTCGTTGTTGGT
302



i = 17









HPV58
SD2-SA9
TGCTTATGGGCACATGTACCATT
303
GCTTACAACCTTAGACACAGGCA
304



i = 18









HPV59
SD3-SA4
AAAGAAGGTTAATAACAGTGCCAGACA
305
TCTATTTTTGTCAAATGGCAATTTGTTTGGA
306



i = 1









HPV59
SD3-SA5
AAAGAAGGTTAATAACAGTGCCAGACA
307
GGTGTCCATCACTGTCTGCAT
308



i = 2









HPV59
SD3-SA7
AAAGAAGGTTAATAACAGTGCCAGACA
309
CCCAAGTACGTGGCTTCGG
310



i = 22









HPV59
SD1-SA4
GCATCAATTGTGTGTTTTGCAAAGG
311
TCTATTTTTGTCAAATGGCAATTTGTTTGGA
312



i = 4









HPV59
SD1-SA5
GCATCAATTGTGTGTTTTGCAAAGG
313
GGTGTCCATCACTGTCTGCAT
314



i = 5









HPV59
SD1-SA7
GCATCAATTGTGTGTTTTGCAAAGG
315
CCCAAGTACGTGGCTTCGG
316



i = 20









HPV59
SD1-SA3
GCATCAATTGTGTGTTTTGCAAAGG
317
TGTAAGGCTCGCAATCCGT
318



i = 9









HPV59
SD5-SA9
TCCGTTTGCATCCAGGCAA
319
TGACATACTCATCAGTGCTGACAAC
320



i = 11









HPV59
SD5-SA10
TCCGTTTGCATCCAGGCAA
321
GCCAAATTTATTGGGATCAGGTAACTT
322



i = 12









HPV59
SD2-SA4
ACTATCCTTTGTGTGTCCTTTGTGT
323
TCTATTTTTGTCAAATGGCAATTTGTTTGGA
324



i = 15









HPV59
SD2-SA5
ACTATCCTTTGTGTGTCCTTTGTGT
325
GGTGTCCATCACTGTCTGCAT
326



i = 16









HPV59
SD2-SA7
ACTATCCTTTGTGTGTCCTTTGTGT
327
CCCAAGTACGTGGCTTCGG
328



i = 21









HPV59
SD2-SA9
ACTATCCTTTGTGTGTCCTTTGTGT
329
TGACATACTCATCAGTGCTGACAAC
330



i = 18









HPV59
SD2-SA10
ACTATCCTTTGTGTGTCCTTTGTGT
331
GCCAAATTTATTGGGATCAGGTAACTT
332



i = 19









HPV66
SD3-SA4
GAAGACAGCGGGTATGGCAATA
333
CATTACTTAATTCATACACAGGATTACCATT
334



i = 1









HPV66
SD3-SA5
GAAGACAGCGGGTATGGCAATA
335
TTTTCTTTGTCCTCGTCGTTATCCAA
336



i = 2









HPV66
SD3-SA6
GACAGGGAGACAGCTCAACAATTATT
337
CTCTCGGTACACAGTTTGCTGATTA
338



i = 3









HPV66
SD3-SA8
GAAGACAGCGGGTATGGCAATA
339
GGTGGTGGTGGTCCTGTG
340



i = 23









HPV66
SD1-SA4
CACCATCTGAGCGAGGTATTACA
341
CATTACTTAATTCATACACAGGATTACCATT
342



i = 4









HPV66
SD1-SA5
CACCATCTGAGCGAGGTATTACA
343
TTTTCTTTGTCCTCGTCGTTATCCAA
344



i = 5









HPV66
SD1-SA8
CACCATCTGAGCGAGGTATTACA
345
GGTGGTGGTGGTCCTGTG
346



i = 24









HPV66
SD1-SA1
CACCATCTGAGCGAGGTATTACA
347
GAAATCGTCTTTTATGTTCACAGTGCAA
348



i = 7









HPV66
SD1-SA2
CACCATCTGAGCGAGGTATTACA
349
AACCTCTTGCAACGTTGGTACT
350



i = 8









HPV66
SD1-SA3
CACCATCTGAGCGAGGTATTACA
351
TGTACCACACGTAGCTCCTCT
352



i = 9









HPV66
SD5-SA9
GTATCAACACACAAAGCCACTGT
353
ACAACCTTTGAAACAGGTGTTGGA
354



i = 11









HPV66
SD2-SA4
GTTAACAGTAACGTGCCCACTCT
355
CATTACTTAATTCVATACACAGGATTACCATT
356



i = 15









HPV66
SD2-SA5
GTTAACAGTAACGTGCCCACTCT
357
TTTTCTTTGTCCTCGTCGTTATCCAA
358



i = 16









HPV66
SD2-SA8
GTTAACAGTAACGTGCCCACTCT
359
GGTGGTGGTGGTCCTGTG
360



i = 25









HPV66
SD2-SA9
GTTAACAGTAACGTGCCCACTCT
361
ACAACCTTTGAAACAGGTGTTGGA
362



i = 18









HPV68
SD3-SA4
AGACAACCGGCGTATACAGTG
363
CTGTTTTGGTCAAATGGAAATGCATTAG
364



i = 1









HPV68
SD3-SA6
AGACAACCGGCGTATACAGTG
365
TCGCGGTGGTGTTCTGTAG
366



i = 3









HPV68
SD1-SA4
GACATTGGACACTACATTGCATGAC
367
CTGTTTTGGTCAAATGGAAATGCATTAG
368



i = 4









HPV68
SD1-SA1
GACATTGGACACTACATTGCATGAC
369
CTTCGTTTTGTTGTTAGGTGCCTTAG
370



i = 7









HPV68
SD1-SA6
GACATTGGACACTACATTGCATGAC
371
TCGCGGTGGTGTTCTGTAG
372



i = 6









HPV68
SD1-SA3
GACATTGGACACTACATTGCATGAC
373
CTGTTGTAGTGTCCGCAGGTT
374



i = 9









HPV68
SD5-SA9
AGTAGAAGTGCAGGCCAAAACAA
375
ATTGACAACCTTCGCCACTGA
376



i = 11









HPV68
SD2-SA4
TCCGTGGTGTGCAACTGAA
377
CTGTTTTGGTCAAATGGAAATGCATTAG
378



i = 15









HPV68
SD2-SA6
TCCGTGGTGTGCAACTGAA
379
TCGCGGTGGTGTTCTGTAG
380



i = 17 









HPV68
SD2-SA9
TCCGTGGTGTGCAACTGAA
381
ATTGACAACCTTCGCCACTGA
382



i = 1









HPV73
SD3-SA4
AAACGAAGACTGTTTGAGGAGCA
383
GGGTTCCCATTACTGTCAAATGGA
384



i = 1









HPV73
SD3-SA6
AAACGAAGACTGTTTGAGGAGCA
385
TGGTGTTGGTGGTTGTGGT
386



i = 3









HPV73
SD1-SA4
AGCGTTATGTGACGAAGTGAATATTTCT
387
GGGTTCCCATTACTGTCAAATGGA
388



i = 4









HPV73
SD1-SA6
AGCGTTATGTGACGAAGTGAATATTTCT
389
TGGTGTTGGTGGTTGTGGT
390



i = 6









HPV73
SD1-SA1
AGCGTTATGTGACGAAGTGAATATTTCT
391
CTGTTCTGCTATTTGATGAAACCGTTTT
392



i = 7









HPV73
SD1-SA2
AGCGTTATGTGACGAAGTGAATATTTCT
393
TTCGGTTGTTGGTTTCAGGTCTAA
394



i = 8









HPV73
SD1-SA3
AGCGTTATGTGACGAAGTGAATATTTCT
395
CCTAGTGTACCCATAAGCAACTCTTCTA
396



i = 9









HPV73
SD5-SA9
ACCTACATCCCACCACAGAGT
397
GCTTACAACCTTAGACACAGACACA
398



i = 11









HPV73
SD5-SA10
ACCTACATCCCACCACAGAGT
399
ACGAAGCCTAAACACCCTGTATTG
400



i = 12









HPV73
SD2-SA4
TGCTTATGGGTACACTAGGTATTGTGT
401
GGGTTCCCATTACTGTCAAATGGA
402



i = 15









HPV73
SD2-SA6
TGCTTATGGGTACACTAGGTATTGTGT
403
TGGTGTTGGTGGTTGTGGT
404



i = 17









HPV73
SD2-SA9
TGCTTATGGGTACACTAGGTATTGTGT
405
GCTTACAACCTTAGACACAGACACA
406



i = 18









HPV73
SD2-SA10
TGCTTATGGGTACACTAGGTATTGTGT
407
ACGAAGCCTAAACACCCTGTATTG
408



i = 19









HPV82
SD3-SA4
CCGGACAGTGGATATGGCAATA
409
CATCATTTAGTGCATATACAGGATTC
410



i = 1









HPV82
SD3-SA6
CCGGACAGTGGATATGGCAATA
411
GGGTGTTCGATAGCTGTTCAA
412



i = 3









HPV82
SD1-SA4
CCTGCAATACGTCTATGCACAAT
413
CATCATTTAGTGCATATACAGGATTCCC
414



i = 4









HPV82
SD1-SA6
CCTGCAATACGTCTATGCACAAT
415
GGGTGTTCGATAGCTGTTCAA
416



i = 6









HPV82
SD1-SA1
CCTGCAATACGTCTATGCACAAT
417
TTTTTTGTCGTCCACCACCTTTTG
418



i = 7









HPV82
SD1-SA2
CCTGCAATACGTCTATGCACAAT
419
TCCAACACTATGTCCTTTAATTGTGGT
420



i = 8









HPV82
SD10SA3
CCTGCAATACGTCTATGCACAAT
421
CCAGTAACATTTGCTGAAATATGCGAA
422



i = 9









HPV82
SD5-SA9
TGCGACCACCAAATACACTGT
423
GTGTTGACAATGCGTGACACT
424



i = 1









HPV82
SD2-SA4
CGTGGTGTGCGACCAACTAA
425
CATCATTTAGTGCATATACAGGATTCCC
426



i = 15









HPV82
SD2-SA6
CGTGGTGTGCGACCAACTAA
427
GGGTGTTCGATAGCTGTTCAA
428



i = 17









HPV82
SD2-SA9
CGTGGTGTGCGACCAACTAA
429
GTGTTGACAATGCGTGACACT
430



i = 18





















TABLE 2Abis







Forward
Reverse





Splice
primer
primer





junction
SEQ ID
SEQ ID
Amplicon
Amplicon


HPV type
i =
NO
NO
nucleic acid sequence
SEQ ID NO




















HPV16
SD3-SA4
1
2
GGAAACTCAGCAGATGTTAC
1501



i = 1


AGATTCTAGGTGGCCTTATT







TACATAATAGATTGGTGGTG







TTTACATT






HPV16
SD3-SA5
3
4
GGAAACTCAGCAGATGTTAC
1502



i = 2


AGGACGTGGTCCAGATTAAG







TTTGCACGAGGACGAGGACA







AGGAAAACGATGGAGACT






HPV16
SD3-SA6
5
6
GGAAACTCAGCAGATGTTAC
1503



i = 3


AGCAGCAACGAAGTATCCTC







TCCTGAAATTATTAGGCAGC







ACTTGGCCAACCACCCCGCC







GCGACCC






HPV16
SD1-SA4
7
8
GATATAATATTAGAATGTGT
1504



i = 4


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGATTCTAGGT







GGCCTTATTTACATAATAGA







TTGGTGGTGTTTACATT






HPV16
SD1-SA5
9
10
GATATAATATTAGAATGTGT
1505



i = 5


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGGACGTGGTC







CAGATTAAGTTTGCACGAGG







ACGAGGACAAGGAAAACGAT







GGAGACT






HPV16
SD1-SA6
11
12
GATATAATATTAGAATGTGT
1506



i = 6


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGCAGCAACGA







AGTATCCTCTCCTGAAATTA







TTAGGCAGCACTTGGCCAAC







CACCCCGCCGCGACCC






HPV16
SD1-SA1
13
14
GATATAATATTAGAATGTGT
1507



i = 7


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGGTGTATTAA







CTGTCAAAAGCCACTGTGTC







C






HPV16
SD1-SA2
15
16
GATATAATATTAGAATGTGT
1508



i = 8


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGATCATCAAG







AACACGTAGAGAAACCCAGC







TGTAATCATGCATGGAGATA







CACCTACATTGCATGAATAT







ATGTT






HPV16
SD1-SA3
17
18
GATATAATATTAGAATGTGT
1509



i = 9


GTACTGCAAGCAACAGTTAC







TGCGACGTGAGTGTGACTCT







ACGCTTCGGTTGTGCGTACA







AAGCACACACGTAGACAT






HPV16
SD5-SA9
19
20
TGTAATAGTAACACTACACC
1510



i = 11


CATAGTACATTTAAAAGATG







TCTCTTTGGCTGCCTAGTGA







GGCCACTGTCTACTTGCCTC







CTGTCC






HPV16
SD2-SA4
21
22
TCTCAGAAACCATAATCTAC
1511



i = 15


CATGGCTGATCCTGCAGATT







CTAGGTGGCCTTATTTACAT







AATAGATTGGTGGTGTTTAC







ATT






HPV16
SD2-SA5
23
24
TCTCAGAAACCATAATCTAC
1512



i = 16


CATGGCTGATCCTGCAGGAC







GTGGTCCAGATTAAGTTTGC







ACGAGGACGAGGACAAGGAA







AACGATGGAGACT






HPV16
SD2-SA6
25
26
TCTCAGAAACCATAATCTAC
1513



i = 17


CATGGCTGATCCTGCAGCAG







CAACGAAGTATCCTCTCCTG







AAATTATTAGGCAGCACTTG







GCCAACCACCCCGCCGCGAC







CC






HPV16
SD2-SA9
27
28
TCTCAGAAACCATAATCTAC
1514



i = 18


CATGGCTGATCCTGCAGATG







TCTCTTTGGCTGCCTAGTGA







GGCCACTGTCTACTTGCCTC







CTGTCC






HPV18
SD3-SA4
29
30
GAAGTGGAAGCAACACAGAT
1515



i = 1


TCAGGATAATAGATGGCCAT







ATTTAGAAAGTAGAATAACA







GTATTTGAATTTCCAAATGC







ATTTCCATTTGATAAAAA






HPV18
SD3-SA5
31
32
GAAGTGGAAGCAACACAGAT
1516



i = 2


TCAGGACATGGTCCAGATTA







GATTTGCACGAGGAAGAGGA







AG






HPV18
SD3-SA6
33
34
GAAGTGGAAGCAACACAGAT
1517



i = 3


TCAGCTTGTTAAACAGCTAC







AGCACACCCCCTCACCGTAT







TCCAGCACCGTGTCCGTGGG







CACCGCAA






HPV18
SD1-SA4
35
36
GTATATTGCAAGACAGTATT
1518



i = 4


GGAACTTACAGAGGATAATA







GATGGCCATATTTAGAAAGT







AGAATAACAGTATTTGAATT







TCCAAATGCATTTCCATTTG







ATAAAAA






HPV18
SD1-SA5
37
38
GTATATTGCAAGACAGTATT
1519



i = 5


GGAACTTACAGAGGACATGG







TCCAGATTAGATTTGCACGA







GGAAGAGGAAG






HPV18
SD1-SA6
39
40
GTATATTGCAAGACAGTATT
1520



i = 6


GGAACTTACAGAGCTTGTTA







AACAGCTACAGCACACCCCC







TCACCGTATTCCAGCACCGT







GTCCGTGGGCACCGCAA






HPV18
SD1-SA1
41
42
GTATATTGCAAGACAGTATT
1521



i = 7


GGAACTTACAGAGGTGCCTG







CGGTGCCAGAAACCGTTGAA







TCCAGCAGAAAAACTTAGAC







ACCTTAATGAAAAACG






HPV18
SD1-SA3
43
44
GTATATTGCAAGACAGTATT
1522



i = 9


GGAACTTACAGAGTGTGAAG







CCAGAATTGAGCTAGTAGTA







GAAAGCTCAGCAGACGACCT







TCG






HPV18
SD4-SA6
45
46
TGCGAGGAACTATGGAATAC
1523



i = 10


AGAACCTACTCACTGCTTTA







AAAAAGCTTGTTAAACAGCT







ACAGCACACCCCCTCACCGT







ATTCCAGCACCGTGTCCGTG







GGCACCGCAA






HPV18
SD5-SA9
47
48
CAAAAGACGGAAACTCTGTA
1524



i = 11


GTGGTAACACTACGCCTATA







ATACATTTAAAAGATGGCTT







TGTGGCGGCCTAGTGACAAT







ACCGTATATCTTCCACC






HPV18
SD5-SA10
49
50
CAAAAGACGGAAACTCTGTA
1525



i = 12


GTGGTAACACTACGCCTATA







ATACATTTAAAAGGTGGTGG







CAATAAGCAGGATATTCCTA







AGGTTTCTGCATACCAAT






HPV18
SD6-SA9
51
52
ATATCATCCACCTGGCATTG
1526



i = 13


GACAGATGGCTTTGTGGCGG







CCTAGTGACAATACCGTATA







TCTTCCACC






HPV18
SD6-SA10
53
54
ATATCATCCACCTGGCATTG
1527



i = 14


GACAGGTGGTGGCAATAAGC







AGGATATTCCTAAGGTTTCT







GCATACCAAT






HPV18
SD2-SA4
55
56
CAATGGCTGATCCAGAAGGA
1528



i = 15


TAATAGATGGCCATATTTAG







AAAGTAGAATAACAGTATTT







GAATTTCCAAATGCATTTCC







ATTTGATAAAAA






HPV18
SD2-SA5
57
58
CAATGGCTGATCCAGAAGGA
1529



i = 16


CATGGTCCAGATTAGATTTG







CACGAGGAAGAGGAAG






HPV18
SD2-SA8
59
60
CAATGGCTGATCCAGAAGCT
1530



i = 25


TGTTAAACAGCTACAGCACA







CCCCCTCACCGTATTCCAGC







ACCGTGTCCGTGGGCACCGC







AA






HPV18
SD2-SA9
61
62
CAATGGCTGATCCAGAAGAT
1531



i = 18


GGCTTTGTGGCGGCCTAGTG







ACAATACCGTATATCTTCCA







CC






HPV18
SD2-SA10
63
64
CAATGGCTGATCCAGAAGGT
1532



i = 19


GGTGGCAATAAGCAGGATAT







TCCTAAGGTTTCTGCATACC







AAT






HPV31
SD3-SA4
65
66
GGAAACGCAGCAGATGGTAC
1533



i = 1


AGGATGACAGATGGCCATAC







C






HPV31
SD3-SA5
67
68
GGAAACGCAGCAGATGGTAC
1534



i = 2


AGGACGTGGTGCAGATTAAA







TTTGCACGAGGAAGAGGACA







AAG






HPV31
SD3-SA6
69
70
GGAAACGCAGCAGATGGTAC
1535



i = 3


AGCAGTGACGAAATATCCTT







TGCTGGGATTGTTACAAAGC







TACCAACAGC






HPV31
SD1-SA4
71
72
GAACTAAGATTGAATTGTGT
1536



i = 4


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGGATGACAGA







TGGCCATACC






HPV31
SD1-SA5
73
74
GAACTAAGATTGAATTGTGT
1537



i = 5


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGGACGTGGTG







CAGATTAAATTTGCACGAGG







AAGAGGACAAAG






HPV31
SD1-SA6
75
76
GAACTAAGATTGAATTGTGT
1538



i = 6


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGCAGTGACGA







AATATCCTTTGCTGGGATTG







TTACAAAGCTACCAACAGC






HPV31
SD1-SA1
77
78
GAACTAAGATTGAATTGTGT
1539



i = 7


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGGTGTATAAC







GTGTCA






HPV31
SD1-SA2
79
80
GAACTAAGATTGAATTGTGT
1540



i = 8


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGAAGACCTCG







TACTGAAACCCAAGTGTAAA







CATGCGTGGAG






HPV31
SD1-SA3
81
82
GAACTAAGATTGAATTGTGT
1541



i = 9


CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGTGTAAGTCT







ACACTTCGTTTGTGTGTACA







GAGCACACAAGTAGA






HPV31
SD5-SA9
83
84
AACAAGGGCTGTCAGTTGTC
1542



i = 11


CTGCAACTACACCTATAATA







CACTTAAAAGATGTCTCTGT







GGCGGCCTAGCGAGGCTACT







GTCTACT






HPV31
SD2-SA4
85
86
TCTACTAGACTGTAACTACA
1543



i = 15


ATGGCTGATCCAGCAGGATG







ACAGATGGCCATACC






HPV31
SD2-SA5
87
88
TCTACTAGACTGTAACTACA
1544



i = 16


ATGGCTGATCCAGCAGGACG







TGGTGCAGATTAAATTTGCA







CGAGGAAGAGGACAAAG






HPV31
SD2-SA6
89
90
TCTACTAGACTGTAACTACA
1545



i = 17


ATGGCTGATCCAGCAGCAGT







GACGAAATATCCTTTGCTGG







GATTGTTACAAAGCTACCAA







CAGC






HPV31
SD2-SA9
91
92
TCTACTAGACTGTAACTACA
1546



i = 18


ATGGCTGATCCAGCAGATGT







CTCTGTGGCGGCCTAGCGAG







GCTACTGTCTACT






HPV33
SD3-SA4
93
94
GCAATACTGAAGTGGAAACT
1547



i = 1


CAGCAGATGGTACAACAGAC







TCTAGATGGCCATATTTACA







TAGTAGATTAACAGTATTTG







AATTTAAAAATCCATTCCCA



HPV33
SD3-SA5
95
96
GCAATACTGAAGTGGAAACT
1548



i = 2


CAGCAGATGGTACAACAGGA







CGTGGTGCAAATTAGATTTA







ATAGAGGAAGAG






HPV33
SD3-SA6
97
98
GCAATACTGAAGTGGAAACT
1549



i = 3


CAGCAGATGGTACAACAGCA







ACCAAATATCCACTACTGAA







ACTGCTGACATACAGACAG






HPV33
SD1-SA4
99
100
GAACTACAGTGCGTGGAATG
1550



i = 4


CAAAAAACCTTTGCAACGAT







CTGAGACTCTAGATGGCCAT







ATTTACATAGTAGATTAACA







GTATTTGAATTTAAAAATCC







ATTCCCA






HPV33
SD1-SA5
101
102
GAACTACAGTGCGTGGAATG
1551



i = 5


CAAAAAACCTTTGCAACGAT







CTGAGGACGTGGTGCAAATT







AGATTTAATAGAGGAAGAG






HPV33
SD1-SA6
103
104
GAACTACAGTGCGTGGAATG
1552



i = 6


CAAAAAACCTTTGCAACGAT







CTGAGCAACCAAATATCCAC







TACTGAAACTGCTGACATAC







AGACAG






HPV33
SD1-SA1
105
106
GAACTACAGTGCGTGGAATG
1553



i = 7


CAAAAAACCTTTGCAACGAT







CTGAGGTGTATTATATGTCA







AAGACCTTTGTGTCCTCAAG







AAAA






HPV33
SD1-SA2
107
108
GAACTACAGTGCGTGGAATG
1554



i = 8


CAAAAAACCTTTGCAACGAT







CTGAGGTCCCGACGTAGAGA







AACTGCACTGTGACGTGTAA







AAACGCCATGAGAGG






HPV33
SD5-SA9
109
110
ACAAGCAGCGGACTGTGTGT
1555



i = 11


AGTTCTAACGTTGCACCTAT







AGTGCATTTAAAAGATGTCC







GTGTGGCGGCCTAGTGAGGC







CACAGTGTACCTGCCTCCTG







TA






HPV33
SD2-SA4
111
112
CAATAAACATCATCTACAAT
1556



i = 15


GGCCGATCCTGAAGACTCTA







GATGGCCATATTTACATAGT







AGATTAACAGTATTTGAATT







TAAAAATCCATTCCCA






HPV33
SD2-SA5
113
114
CAATAAACATCATCTACAAT
1557



i = 16


GGCCGATCCTGAAGGACGTG







GTGCAAATTAGATTTAATAG







AGGAAGAG






HPV33
SD2-SA6
115
116
CAATAAACATCATCTACAAT
1558



i = 17


GGCCGATCCTGAAGCAACCA







AATATCCACTACTGAAACTG







CTGACATACAGACAG






HPV33
SD2-SA9
117
118
CAATAAACATCATCTACAAT
1559



i = 18


GGCCGATCCTGAAGATGTCC







GTGTGGCGGCCTAGTGAGGC







CACAGTGTACCTGCCTCCTG







TA






HPV35
SD3-SA4
119
120
ATGGCAATTCTGAAGTGGAA
1560



i = 1


ATACAGCAGATACAACAGAT







GACAGGTGGCCATACTTACA







TAGCA






HPV35
SD3-SA5
121
122
ATGGCAATTCTGAAGTGGAA
1561



i = 2


ATACAGCAGATACAACAGGA







CGTGGTGCAGATTAAATTTG







CACGAGGAAGAGGA






HPV35
SD3-SA6
123
124
ATGGCAATTCTGAAGTGGAA
1562



i = 3


ATACAGCAGATACAACAGCA







GCACAGAACTATCCACTGCT







GAAATTGCTACACAGCTACA







CGCCTACAACACC






HPV35
SD1-SA4
125
126
TTGTTTGAATTGTGTATACT
1563



i = 4


GCAAACAAGAATTACAGCGG







AGTGAGATGACAGGTGGCCA







TACTTACATAGCA






HPV35
SD1-SA5
127
128
TTGTTTGAATTGTGTATACT
1564



i = 5


GCAAACAAGAATTACAGCGG







AGTGAGGACGTGGTGCAGAT







TAAATTTGCACGAGGAAGAG







GA






HPV35
SD1-SA6
129
130
TTGTTTGAATTGTGTATACT
1565



i = 6


GCAAACAAGAATTACAGCGG







AGTGAGCAGCACAGAACTAT







CCACTGCTGAAATTGCTACA







CAGCTACACGCCTACAACAC







C






HPV35
SD1-SA1
131
132
TTGTTTGAATTGTGTATACT
1566



i = 7


GCAAACAAGAATTACAGCGG







AGTGAGGTGTATTACATGTC







AAAAACCGCTGTGTCCAGTT







GAAAAGCAAAGACATTTAGA







AGAAAA






HPV35
SD5-SA9
133
134
CCGGTGTGGTAGTTGTAGTA
1567



i = 11


CAACTACACCTATAGTACAT







TTAAAAGATGTCTCTGTGGC







GGTCTAACGAAGCCACTGTC







TACCTGCCTCCAGTGTC






HPV35
SD5-SA10
135
136
CCGGTGTGGTAGTTGTAGTA
1568



i = 12


CAACTACACCTATAGTACAT







TTAAAAGATTCTAATAAAAT







AGCAGTACC






HPV35
SD2-SA4
137
138
CTACAATGGCTGATCCTGCA
1569



i = 15


GATGACAGGTGGCCATACTT







ACATAGCA






HPV35
SD2-SA5
139
140
CTACAATGGCTGATCCTGCA
1570



i = 16


GGACGTGGTGCAGATTAAAT







TTGCACGAGGAAGAGGA






HPV35
SD2-SA6
141
142
CTACAATGGCTGATCCTGCA
1571



i = 17


GCAGCACAGAACTATCCACT







GCTGAAATTGCTACACAGCT







ACACGCCTACAACACC






HPV35
SD2-SA9
143
144
CTACAATGGCTGATCCTGCA
1572



i = 18


GATGTCTCTGTGGCGGTCTA







ACGAAGCCACTGTCTACCTG







CCTCCAGTGTC






HPV35
SD2-SA10
145
146
CTACAATGGCTGATCCTGCA
1573



i = 19


GATTCTAATAAAATAGCAGT







ACC






HPV39
SD3-SA4
147
148
GCGGATATGGCAATATGGAA
1574



i = 1


GTGGAAACAGCTGAAGTGGA







GGAGACGATAGGTGGCCATA







TTTACGTAGTAGGCTAACAG







TGTTTAAATTTC






HPV39
SD3-SA7
149
150
GCGGATATGGCAATATGGAA
1575



i = 22


GTGGAAACAGCTGAAGTGGA







GGAGTGACGGATCGGTACCC







ACTACTGAACTTACTACCGA







A






HPV39
SD1-SA4
151
152
GCCTGTGTCTATTGCAGACG
1576



i = 4


ACCACTACAGCAAACCGAGA







CGATAGGTGGCCATATTTAC







GTAGTAGGCTAACAGTGTTT







AAATTTC






HPV39
SD1-SA7
153
154
GCCTGTGTCTATTGCAGACG
1577



i = 20


ACCACTACAGCAAACCGAGT







GACGGATCGGTACCCACTAC







TGAACTTACTACCGAA






HPV39
SD1-SA1
155
156
GCCTGTGTCTATTGCAGACG
1578



i = 7


ACCACTACAGCAAACCGAGG







TGCATGTGTTGTCTGAAACC







GCTGTGTCCAGCAGAAAAAT







TAAGACACCTAAATAGCAAA







CGAAGATTTCAT






HPV39
SD1-SA3
157
158
GCCTGTGTCTATTGCAGACG
1579



i = 9


ACCACTACAGCAAACCGAGT







GTAACAACACACTGCAGCTG







GTAGTAGAAGCCTCACGG






HPV39
SD5-SA9
159
160
ACACAAGACGGTACCTCAGT
1580



i = 11


TGTGGTAACACTACGCCTAT







AATACATTTAAAAGATGGCT







ATGTGGCGGTCTAGTGACAG







CATGGTGTATTTGCCTCCAC







CTTC






HPV39
SD2-SA4
161
162
ACCAGTAACCTGCTATGGCC
1581



i = 15


AATCGTGAAGACGATAGGTG







GCCATATTTACGTAGTAGGC







TAACAGTGTTTAAATTTC






HPV39
SD2-SA7
163
164
ACCAGTAACCTGCTATGGCC
1582



i = 21


AATCGTGAAGTGACGGATCG







GTACCCACTACTGAACTTAC







TACCGAA






HPV39
SD2-SA9
165
166
ACCAGTAACCTGCTATGGCC
1583



i = 18


AATCGTGAAGATGGCTATGT







GGCGGTCTAGTGACAGCATG







GTGTATTTGCCTCCACCTTC



HPV45
SD3-SA4
167
168
GAAGTGGAAGCTGCAGAGAC
1584



i = 1


TCAGATAATAAATGGCCATA







TTTAGAAAGTAGGGTG






HPV45
SD3-SA5
169
170
GAAGTGGAAGCTGCAGAGAC
1585



i = 2


TCAGGACATGGTCCAGATTA







GATTTGCACGAGGACGATGA







AG






HPV45
SD3-SA8
171
172
GAAGTGGAAGCTGCAGAGAC
1586



i = 23


TCAGATTGTTAGACAGCTAC







AACACGCCTCCACGTCGACC







CC






HPV45
SD1-SA4
173
174
ATATTGCAAAGCAACATTGG
1587



i = 4


AACGCACAGAGATAATAAAT







GGCCATATTTAGAAAGTAGG







GTG






HPV45
SD1-SA5
175
176
ATATTGCAAAGCAACATTGG
1588



i = 5


AACGCACAGAGGACATGGTC







CAGATTAGATTTGCACGAGG







ACGATGAAG






HPV45
SD1-SA8
177
178
ATATTGCAAAGCAACATTGG
1589



i = 24


AACGCACAGAGATTGTTAGA







CAGCTACAACACGCCTCCAC







GTCGACCCC






HPV45
SD1-SA1
179
180
ATATTGCAAAGCAACATTGG
1590



i = 7


AACGCACAGAGGTGCCTGCG







GTGCCAGAAACCATTGAACC







CAGCAGA






HPV45
SD1-SA3
181
182
ATATTGCAAAGCAACATTGG
1591



i = 9


AACGCACAGAGTGTGACGGC







AGAATTGAGCTTACAGTAGA







GAGCTCGGCAGAGGACCTT






HPV45
SD5-SA9
183
184
AAGAAGGAAAGTGTGTAGTG
1592



i = 11


GTAACACTACGCCTATAATA







CACTTAAAAGATGGCTTTGT







GGCGGCCTAGTGACAGTACG







GTATATCTTCCACCACCTTC



HPV45
SD6-SA9
185
186
ATATCCTCCACCTGGCATTG
1593



i = 13


GACAGATGGCTTTGTGGCGG







CCTAGTGACAGTACGGTATA







TCTTCCACCACCTTC






HPV45
SD2-SA4
187
188
CCGTGGTGTGCAACTAACCA
1594



i = 15


ATAATCTACAATGGCGGATC







CAGAAGATAATAAATGGCCA







TATTTAGAAAGTAGGGTG






HPV45
SD2-SA5
189
190
CCGTGGTGTGCAACTAACCA
1595



i = 16


ATAATCTACAATGGCGGATC







CAGAAGGACATGGTCCAGAT







TAGATTTGCACGAGGACGAT







GAAG






HPV45
SD2-SA8
191
192
CCGTGGTGTGCAACTAACCA
1596



i = 25


ATAATCTACAATGGCGGATC







CAGAAGATTCiTTAGACAGC







TACAACACGCCTCCACGTCG







ACCCC






HPV45
SD2-SA9
193
194
CCGTGGTGTGCAACTAACCA
1597



i = 18


ATAATCTACAATGGCGGATC







CAGAAGATGGCTTTGTGGCG







GCCTAGTGACAGTACGGTAT







ATCTTCCACCACCTTC






HPV51
SD3-SA4
195
196
CACAAGTGGAAACTGTGGAA
1598



i = 1


GCAACGTTGCAGGATGCAAA







CCTAATGTATTTACATACAA







GGGTAACAGTATTAAAGTTT







TTAAATACATTTCCATTTGA







TAACA






HPV51
SD3-SA6
197
198
CACAAGTGGAAACTGTGGAA
1599



i = 3


GCAACGTTGCAGTACCTGCA







GCGACGCGTTATCCACTACT







ACAACTGTTGAACAACTATC







AAACACCCCAACGACCAATC



HPV51
SD1-SA4
199
200
GTTTCTATGCACAATATACA
1600



i = 4


GGTAGTGTGTGTGTATTGTA







AAAAGGAATTATGTAGAGCA







GGATGCAAACCTAATGTATT







TACATACAAGGGTAACAGTA







TTAAAGTTTTTAAATACATT







TCCATTTGATAACA






HPV51
SD1-SA6
201
202
GTTTCTATGCACAATATACA
1601



i = 6


GGTAGTGTGTGTGTATTGTA







AAAAGGAATTATGTAGAGCA







GTACCTGCAGCGACGCGTTA







TCCACTACTACAACTGTTGA







ACAACTATCAAACACCCCAA







CGACCAATC






HPV51
SD1-SA1
203
204
GTTTCTATGCACAATATACA
1602



i = 7


GGTAGTGTGTGTGTATTGTA







AAAAGGAATTATCiTAGAGC







AGGTGTCATAGATGTCAAAG







ACCACTTGGGCCTGAAGAAA







AGCAAAAATTGGTGGACGAA







AAA






HPV51
SD1-SA3
205
206
GTTTCTATGCACAATATACA
1603



i = 9


GGTAGTGTGTGTGTATTGTA







AAAAGGAATTATGTAGAGCA







GGTGTTCAAGTGTAGTACAA







CTGGCAGTGGAAAGCAGTGG







AGACACC






HPV51
SD5-SA9
207
208
GTGCAACTCAGACTGCGTTT
1604



i = 11


ATAGTGCATTTAAAAGATGG







CATTGTGGCGCACTAATGAC







AGCAAGGTGTATTTGCCAC






HPV51
SD2-SA4
209
210
GCCCGTGTTGTGCGAACAAC
1605



i = 15


TAGCAACGGCGATGGACTGT







GAAGGATGCAAACCTAATGT







ATTTACATACAAGGGTAACA







GTATTAAAGTTTTTAAATAC







ATTTCCATTTCiATAACA






HPV51
SD2-SA6
211
212
GCCCGTGTTGTGCGAACAAC
1606



i = 17


TAGCAACGGCGATGGACTGT







GAAGTACCTGCAGCGACGCG







TTATCCACTACTACAACTGT







TGAACAACTATCAAACACCC







CAACGACCAATC






HPV51
SD2-SA9
213
214
GCCCGTGTTGTGCGAACAAC
1607



i = 18


TAGCAACGGCGATGGACTGT







GAAGATGGCATTGTGGCGCA







CTAATGACAGCAAGGTGTAT







TTGCCAC






HPV52
SD3-SA4
215
216
CGGCTATGGCAATAGTGAAG
1608



i = 1


TGGAAGCGCAGCAGATGGCA







GACCAGATCCTAGGTGGCCA







TATTTACATAGTA






HPV52
SD3-SA5
217
218
CGGCTATGGCAATAGTGAAG
1609



i = 2


TGGAAGCGCAGCAGATGGCA







GACCAGGACGTGGTGCAAAT







TAGATTTAATACAGGAAGAG







GACAA






HPV52
SD3-SA6
219
220
CGGCTATGGCAATAGTGAAG
1610



i = 3


TGGAAGCGCAGCAGATGGCA







GACCAGTAACGAAGTATCCA







CTACTGAAACTGCTGTCCAC







CTATGCACCG






HPV52
SD1-SA4
221
222
GCAGTGTGTGCAGTGCAAAA
1611



i = 4


AAGAGCTACAACGAAGAGAG







ATCCTAGGTGGCCATATTTA







CATAGTA






HPV52
SD1-SA5
223
224
GCAGTGTGTGCAGTGCAAAA
1612



i = 5


AAGAGCTACAACGAAGAGAG







GACGTGGTGCAAATTAGATT







TAATACAGGAAGAGGACAA






HPV52
SD1-SA6
225
226
GCAGTGTGTGCAGTGCAAAA
1613



i = 6


AAGAGCTACAACGAAGAGAG







TAACGAAGTATCCACTACTG







AAACTGCTGTCCACCTATGC







ACCG






HPV52
SD1-SA1
227
228
GCAGTGTGTGCAGTGCAAAA
1614



i = 7


AAGAGCTACAACGAAGAGAG







ATGTATAATTTGTCAAACGC







CATTATGTCCTGAAGAAAA






HPV52
SD1-SA2
229
230
GCACiTGTGTGCAGTGCAAA
1615



i = 8


AAAGAGCTACAACGAAGAGA







GACCCCGACCTGTGACCCAA







GTGTAACGTCATGCGTGGAG







ACAAAGCAACTATAAAAGAT







TATA






HPV52
SD1-SA3
231
232
GCAGTGTGTGCAGTGCAAAA
1616



i = 9


AAGAGCTACAACGAAGAGAG







TTGTGATAGCACACTACGGC







TATGCATTCATAGCACTGCG







ACGG






HPV52
SD5-SA9
233
234
ACAAAGGACGGGTTGCACAT
1617



i = 11


ACAACTTGTACTGCACCTAT







AATACACCTAAAAGATGTCC







GTGTGGCGGCCTAGTGAGGC







CACTGTGTACCTGCCTCC






HPV52
SD5-SA10
235
236
ACAAAGGACGGGTTGCACAT
1618



i = 12


ACAACTTGTACTGCACCTAT







AATACACCTAAAAGTAGTGG







TAATGGTAAAAAAGTTTTAG







TTCCCAAGG






HPV52
SD2-SA4
237
238
GTGTGCCCCGGCTGTGCACG
1619



i = 15


GCTATAAACAACCCTGCAAT







GGAGGACCCTGAAGATCCTA







GGTGGCCATATTTACATAGT







A






HPV52
SD2-SA5
239
240
GTGTGCCCCGGCTGTGCACG
1620



i = 16


GCTATAAACAACCCTGCAAT







GGAGGACCCTGAAGGACGTG







GTGCAAATTAGATTTAATAC







AGGAAGAGGACAA






HPV52
SD2-SA6
241
242
GTGTGCCCCGGCTGTGCACG
1621



i = 17


GCTATAAACAACCCTGCAAT







GGAGGACCCTGAAGTAACGA







AGTATCCACTACTGAAACTG







CTGTCCACCTATGCACCG






HPV52
SD2-SA9
243
244
GTGTGCCCCGGCTGTGCACG
1622



i = 18


GCTATAAACAACCCTGCAAT







GGAGGACCCTCiAAGATGTC







CGTGTGGCGGCCTAGTGAGG







CCACTGTGTACCTGCCTCC






HPV52
SD2-SA10
245
246
GTGTGCCCCGGCTGTGCACG
1623



i = 19


GCTATAAACAACCCTGCAAT







GGAGGACCCTGAAGTAGTGG







TAATGGTAAAAAAGTTTTAG







TTCCCAAGG






HPV56
SD3-SA4
247
248
CATTGGAAACTCTGGAAACA
1624



i = 1


CCAGAACAGATGCTAAATTA







CGATATTT






HPV56
SD3-SA5
249
250
CATTGGAAACTCTGGAAACA
1625



i = 2


CCAGAACAGGACGTGGTCCA







GATTAAAT






HPV56
SD3-SA6
251
252
CATTGGAAACTCTGGAAACA
1626



i = 3


CCAGAACAGTACCTGTAGAT







ACAACGTATCCCCTGTTGAA







ACTGTTAACGAATACAACAC







CCAC






HPV56
SD1-SA4
253
254
ATACCTTTAATTGATCTTAG
1627



i = 4


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGATGCTAAATTACGATAT







TT






HPV56
SD1-SA5
255
256
ATACCTTTAATTGATCTTAG
1628



i = 5


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGGACGTGGTCCAGATTAA







AT






HPV56
SD1-SA6
257
258
ATACCTTTAATTGATCTTAG
1629



i = 6


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGTACCTGTAGATACAACG







TATCCCCTGTTGAAACTGTT







AACGAATACAACACCCAC






HPV56
SD1-SA1
259
260
ATACCTTTAATTGATCTTAG
1630



i = 7


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGGTGCTACAGATGTCAAA







GTCCG






HPV56
SD1-SA2
261
262
ATACCTTTAATTGATCTTAG
1631



i = 8


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGACAAACATCTAGAGAAC







CTAGAGAATCTACAGTATAA







TCATGCATGGTAAAG






HPV56
SD1-SA3
263
264
ATACCTTTAATTGATCTTAG
1632



i = 9


ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGTGTAAGTTTGTGGTGCA







GTTGGACATTCAGAGTACCA







AA






HPV56
SD5-SA9
265
266
ACTACGCCTGTAGTACATTT
1633



i = 11


AAAAGATGGCGACGTGGCGG







CCTAGTGAAAATAAGGTGTA







TCTACC






HPV56
SD5-SA10
267
268
ACTACGCCTGTAGTACATTT
1634



i = 12


AAAAGGACAATACCAAAACA







AACATTCCCAAAGTTAGTGC







ATA






HPV56
SD2-SA4
269
270
GCGCATCAAGTAACTAACTG
1635



i = 15


CAATGGCGTCACCTGAAGAT







GCTAAATTACGATATTT






HPV56
SD2-SA5
271
272
GCGCATCAAGTAACTAACTG
1636



i = 16


CAATGGCGTCACCTGAAGGA







CGTGGTCCAGATTAAAT






HPV56
SD2-SA6
273
274
GCGCATCAAGTAACTAACTG
1637



i = 17


CAATGGCGTCACCTGAAGTA







CCTGTAGATACAACGTATCC







CCTGTTGAAACTGTTAACGA







ATACAACACCCAC






HPV56
SD2-SA9
275
276
GCGCATCAAGTAACTAACTG
1638



i = 18


CAATGGCGTCACCTGAAGAT







GGCGACGTGGCGGCCTAGTG







AAAATAAGGTGTATCTACC






HPV56
SD2-SA10
277
278
GCGCATCAAGTAACTAACTG
1639



i = 19


CAATGGCGTCACCTGAAGGA







CAATACCAAAACAAACATTC







CCAAAGTTAGTGCATA






HPV58
SD3-SA4
279
280
ATGGCAATACTGAAGTGGAA
1640



i = 1


ACTGAGCAGATGGCACACCA







GATTCACGATGGCCATATTT







GCACAGTAGACTAACAGTAT







T






HPV58
SD3-SA5
281
282
ATGGCAATACTGAAGTGGAA
1641



i = 2


ACTGAGCAGATGGCACACCA







GGACGTGGTGCAAATTAGGC







TTAATAGAGGAAGAG






HPV58
SD3-SA6
283
284
ATGGCAATACTGAAGTGGAA
1642



i = 3


ACTGAGCAGATGGCACACCA







GTGATCAAATATCCACTACT







GAAACTGCTGACCCAAAGAC







CACCGAGGCC






HPV58
SD1-SA4
285
286
GTGCATGAAATCGAATTGAA
1643



i = 4


ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGATT







CACGATGGCCATATTTGCAC







AGTAGACTAACAGTATT






HPV58
SD1-SA5
287
288
GTGCATGAAATCGAATTGAA
1644



i = 5


ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGGAC







GTGGTGCAAATTAGGCTTAA







TAGAGGAAGAG






HPV58
SD1-SA6
289
290
GTGCATGAAATCGAATTGAA
1645



i = 6


ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGTGA







TCAAATATCCACTACTGAAA







CTGCTGACCCAAAGACCACC







GAGGCC






HPV58
SD1-SA1
291
292
GTGCATGAAATCGAATTGAA
1646



i = 7


ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGATG







TATTATTTGTCAAAGACCAT







TGTGTCCACAAGAAAAAAAA







AGGCATGTGGATTTAA






HPV58
SD1-SA2
293
294
GTGCATGAAATCGAATTGAA
1647



i = 8


ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGACC







CCGACGTAGACAAACACAAG







TGTAACCTGTAACAACGCCA



HPV58
SD5-SA9
295
296
GTACATACAAAGGGCGGAAC
1648



i = 11


GTGTGTAGTTCTAAAGTTTC







ACCTATCGTGCATTTAAAAG







ATGTCCGTGTGGCGGCCTAG







TGAGGCCACTGTGTACCTGC







CTCCTG






HPV58
SD2-SA4
297
298
GTGTGCCCTAGCTGTGCACA
1649



i = 15


GCAATAAACACCATCTGCAA







TGGATGACCCTGAAGATTCA







CGATGGCCATATTTGCACAG







TAGACTAACAGTATT






HPV58
SD2-SA5
299
300
GTGTGCCCTAGCTGTGCACA
1650



i = 16


GCAATAAACACCATCTGCAA







TGGATGACCCTGAAGGACGT







GGTGCAAATTAGGCTTAATA







GAGGAAGAG






HPV58
SD2-SA6
301
302
GTGTGCCCTAGCTGTGCACA
1651



i = 17


GCAATAAACACCATCTGCAA







TGGATGACCCTGAAGTGATC







AAATATCCACTACTGAAACT







GCTGACCCAAAGACCACCGA







GGCC






HPV58
SD2-SA9
303
304
GTGTGCCCTAGCTGTGCACA
1652



i = 18


GCAATAAACACCATCTGCAA







TGGATGACCCTGAAGATGTC







CGTGTGGCGGCCTAGTGAGG







CCACTGTGTACCTGCCTCCT







G






HPV59
SD3-SA4
305
306
GCGGCTATGGCTATTCTGAA
1653



i = 1


GTGGAAATGCTCGAGACTCA







GATAACAGGTGGCCATATTT







AAATAGCAGATTAATGGTAT







TTAAATT






HPV59
SD3-SA5
307
308
GCGGCTATGGCTATTCTGAA
1654



i = 2


GTGGAAATGCTCGAGACTCA







GGACGTGGTGCAGATTAGAT







TTGAACGAGGAAGAGGAAG






HPV59
SD3-SA7
309
310
GCGGCTATGGCTATTCTGAA
1655



i = 22


GTGGAAATGCTCGAGACTCA







GTGACCiAGCAAGTATCCAC







TGCTGGATCTTCTGAGCAAC







TATCATACCCCTCCGCAACG







CCCC






HPV59
SD1-SA4
311
312
GGAACTGCAAGAAAGAGAGA
1656



i = 4


TAACAGGTGGCCATATTTAA







ATAGCAGATTAATGGTATTT







AAATT






HPV59
SD1-SA5
313
314
GGAACTGCAAGAAAGAGAGG
1657



i = 5


ACGTGGTGCAGATTAGATTT







GAACGAGGAAGAGGAAG






HPV59
SD1-SA7
315
316
GGAACTGCAAGAAAGAGAGT
1658



i = 20


GACGAGCAAGTATCCACTGC







TGGATCTTCTGAGCAACTAT







CATACCCCTCCGCAACGCCC







C






HPV59
SD1-SA3
317
318
GGAACTGCAAGAAAGAGAGT
1659



i = 9


GTAATAATCAACTTCAGCTA







GTAGTAGAAACCTCGCAAG






HPV59
SD5-SA9
319
320
CAACCCGCGACGGCACATCC
1660



i = 11


CTTGCAGTAACACTACGCCT







ATAATACACTTAAAAGATGG







CTCTATGGCGTTCTAGTGAC







AACAAGGTGTATCTACCTCC







ACCTTCGGTAGCTAAG






HPV59
SD5-SA10
321
322
CAACCCGCGACGGCACATCC
1661



i = 12


CTTGCAGTAACACTACGCCT







ATAATACACTTAAAAGGTGG







TAATGGTAGACAGGATGTTC







CTAAGGTGTCTGCATATCAA







TACAGAGTATTTAGGGTT






HPV59
SD2-SA4
323
324
GCAGCAAACCAGTAACCTGC
1662



i = 15


AATGGCCGATTCGGAAGATA







ACAGGTGGCCATATTTAAAT







AGCAGATTAATGGTATTTAA







ATT






HPV59
SD2-SA5
325
326
GCAGCAAACCAGTAACCTGC
1663



i = 16


AATGGCCGATTCGGAAGGAC







GTGGTGCAGATTAGATTTGA







ACGAGGAAGAGGAAG






HPV59
SD2-SA7
327
328
GCAGCAAACCAGTAACCTGC
1664



i = 21


AATGGCCGATTCGGAAGTGA







CGAGCAAGTATCCACTGCTG







GATCTTCTGAGCAACTATCA







TACCCCTCCGCAACGCCCC






HPV59
SD2-SA9
329
330
GCAGCAAACCAGTAACCTGC
1665



i = 18


AATGGCCGATTCGGAAGATG







GCTCTATGGCGTTCTAGTGA







CAACAAGGTGTATCTACCTC







CACCTTCGGTAGCTAAG






HPV59
SD2-SA10
331
332
GCAGCAAACCAGTAACCTGC
1666



i = 19


AATGGCCGATTCGGAAGGTG







GTAATGGTAGACAGGATGTT







CCTAAGGTGTCTGCATATCA







ATACAGAGTATTTAGGGTT






HPV66
SD3-SA4
333
334
CATTGGAAACATTGGAAACA
1667



i = 1


TCACAACAGATGCAAAATTA







AGATATTTACACAGTAGAAT







TTCAGTGTTTAAGTTTGAAA







ATCCATTTCCATTAGATAAC



HPV66
SD3-SA5
335
336
CATTGGAAACATTGGAAACA
1668



i = 2


TCACAACAGGACATGGTCCA







GATTAAAT






HPV66
SD3-SA6
337
338
GCAAGTACAAACAGCACATG
1669



i = 3


CAGATGCACAGACGTTGCAA







AAACTAAAACGAAAGTATAT







AGGTAGTCCCTTAAGTGATA







TTAG






HPV66
SD3-SA8
339
340
CATTGGAAACATTGGAAACA
1670



i = 23


TCACAACAGACTGTTAACGA







ATACAACAAC






HPV66
SD1-SA4
341
342
AATACCTTTACTTGATCTTA
1671



i = 4


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGATGCAAAATTAAGATA







TTTACACAGTAGAATTTCAG







TGTTTAAGTTTGAAAATCCA







TTTCCATTAGATAAC






HPV66
SD1-SA5
343
344
AATACCTTTACTTGATCTTA
1672



i = 5


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGGACATGGTCCAGATTA







AAT






HPV66
SD1-SA8
345
346
AATACCTTTACTTGATCTTA
1673



i = 24


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGACTGTTAACGAATACA







ACAAC






HPV66
SD1-SA1
347
348
AATACCTTTACTTGATCTTA
1674



i = 7


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGGTGCTACCGATGTCAA







TGTCCGTTAACACCGGAGGA







AAAACAA






HPV66
SD1-SA2
349
350
AATACCTTTACTTGATCTTA
1675



i = 8


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGACATACGAGTAGACAA







GCTACAGAATCTACAGTATA







ACCATGCATGGTAA






HPV66
SD1-SA3
351
352
AATACCTTTACTTGATCTTA
1676



i = 9


GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGTGTGAGTTGGTGGTGC







AGTTGGACATTCAGAGTACC







AA






HPV66
SD5-SA9
353
354
GGTGATAAAACTACGCCTGT
1677



i = 11


AATCCATTTAAAAGATGGCG







ATGTGGCGGCCTAGTGACAA







TAAGGTGTACCTACC






HPV66
SD2-SA4
355
356
GCGCATCATCTAAATAACTG
1678



i = 15


CAATGGCATCACCTGAAGAT







GCAAAATTAAGATATTTACA







CAGTAGAATTTCAGTGTTTA







AGTTTGAAAATCCATTTCCA







TTAGATAAC






HPV66
SD2-SA5
357
358
GCGCATCATCTAAATAACTG
1679



i = 16


CAATGGCATCACCTGAAGGA







CATGGTCCAGATTAAAT






HPV66
SD2-SA8
359
360
GCGCATCATCTAAATAACTG
1680



i = 25


CAATGGCATCACCTGAAGAC







TGTTAACGAATACAACAAC






HPV66
SD2-SA9
361
362
GCGCATCATCTAAATAACTG
1681



i = 18


CAATGGCATCACCTGAAGAT







GGCGATGTGGCGGCCTAGTG







ACAATAAGGTGTACCTACC






HPV68
SD3-SA4
363
364
CCGGACAGCGGCTATGGCAA
1682



i = 1


TATGGAAGTGGAAACTAACT







CGGAGACAATACiGTGGCCG







TATTTACATAGTAGACTAAC







CGTGTTTAAATTTC






HPV68
SD3-SA6
365
366
CCGGACAGCGGCTATGGCAA
1683



i = 3


TATGGAAGTGGAAACTAACT







CGGAGTACCACTGACGGAAA







AGTATCCACTACTGAATCTG







TTGCCGAC






HPV68
SD1-SA4
367
368
GTTACAATAGACTGTGTCTA
1684



i = 4


TTGCAGAAGGCAACTACAAC







GGACAGAGACAATAGGTGGC







CGTATTTACATAGTAGACTA







ACCGTGTTTAAATTTC






HPV68
SD1-SA1
369
370
GTTACAATAGACTGTGTCTA
1685



i = 7


TTGCAGAAGGCAACTACAAC







GGACAGAGGTGCATGAGTTG







CCTGAAACCATTGTGTCCAG







CAGAAAAA






HPV68
SD1-SA6
371
372
GTTACAATAGACTGTGTCTA
1686



i = 6


TTGCAGAAGGCAACTACAAC







GGACAGAGTACCACTGACCi







GAAAAGTATCCACTACTGAA







TCTGTTGCCGAC






HPV68
SD1-SA3
373
374
GTTACAATAGACTGTGTCTA
1687



i = 9


TTGCAGAAGGCAACTACAAC







GGACAGAGTGTAACAAGGCA







CTGCAACTAGTAGTAGAAGC







GTCGCGGGAC






HPV68
SD5-SA9
375
376
AAGACGGAGCCTTTGTTGTG
1688



i = 11


GTGACACTACACCTATAGTG







CATTTAAAAGATGGCATTGT







GGCGAGCTAGCGACAACATG







GTGTATTTGCCTCCCCCC






HPV68
SD2-SA4
377
378
ACCCAGTAATCTGCAATGGC
1689



i = 15


CAATTGTGAAGACAATAGGT







GGCCGTATTTACATAGTAGA







CTAACCGTGTTTAAATTTC






HPV68
SD2-SA6
379
380
ACCCAGTAATCTGCAATGGC
1690



i = 17


CAATTGTGAAGTACCACTGA







CGGAAAAGTATCCACTACTG







AATCTGTTGCCGAC






HPV68
SD2-SA9
381
382
ACCCAGTAATCTGCAATGGC
1691



i = 18


CAATTGTGAAGATGGCATTG







TGGCGAGCTAGCGACAACAT







GGTGTATTTGCCTCCCCCC






HPV73
SD3-SA4
383
384
GGACAGTGGATATGGCAATA
1692



i = 1


CTGAAGTGGAAACTTACGAG







ACAGAGATGATACTTGGAAA







TATTTACATAGTAGAATTAA







GGTGTTTACTTTTTTAAATC







CATT






HPV73
SD3-SA6
385
386
GGACAGTGGATATGGCAATA
1693



i = 3


CTGAAGTGGAAACTTACGAG







ACAGAGCGCCTGTGAAGTAT







CCATTCCTGAAATTGTTAAC







CCACTGCAC






HPV73
SD1-SA4
387
388
ATACATGATATAAACCTGGA
1694



i = 4


CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGATG







ATACTTGGAAATATTTACAT







AGTAGAATTAAG






HPV73
SD1-SA6
389
390
ATACATGATATAAACCTGGA
1695



i = 6


CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGCGC







CTGTGAAGTATCCATTCCTG







AAATTGTTAACCCACTGCAC



HPV73
SD1-SA1
391
392
ATACATGATATAAACCTGGA
1696



i = 7


CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGGTG







CGGAAAATGCCAAAAACCAT







TATGTCCACTGGAAAAGCAA







AAGCATGTAGATGAAAA






HPV73
SD1-SA2
393
394
ATACATGATATAAACCTGGA
1697



i = 8


CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGACC







ATCTGCAACTGTGGTGTAAG







ATGCATGGAAAAAAAACAAC







CTTGCAGGACATTACT






HPV73
SD1-SA3
395
396
ATACATGATATAAACCTGGA
1698



i = 9


CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGTGT







CAGTGCACAGTATGCCTTGC







CATTGAAAGCAACAAAGCTG







ATTTAAGAGTGA






HPV73
SD5-SA9
397
398
CCTGTACCCAGTGTACTACA
1699



i = 11


CATAATGTTGCGCCAATAGT







GCATTTAAAAGATGTGGCGA







CCTACTGATGCAAAGGTATA







CCTGCCCCC






HPV73
SD5-SA10
399
400
CCTGTACCCAGTGTACTACA
1700



i = 12


CATAATGTTGCGCCAATAGT







GCATTTAAAAGGATTCTCAA







AAACGTAAAACCATAGTTCC







TAAAGTTTCAGGTTTG






HPV73
SD2-SA4
401
402
GCCCCAACTGTTCCAGAAAC
1701



i = 15


CTATAAAAGAAGATGGCTGA







TTCAGATGATACTTGGAAAT







ATTTACATAGTAGAATTAAG







GTGTTTACTTTTTTAAATCC







ATT






HPV73
SD2-SA6
403
404
GCCCCAACTGTTCCAGAAAC
1702



i = 17


CTATAAAAGAAGATGGCTGA







TTCAGCGCCTGTGAAGTATC







CATTCCTGAAATTGTTAACC







CACTGCAC






HPV73
SD2-SA9
405
406
GCCCCAACTGTTCCAGAAAC
1703



i = 18


CTATAAAAGAAGATGGCTGA







TTCAGATGTGGCGACCTACT







GATGCAAAGGTATACCTGCC







CCC






HPV73
SD2-SA10
407
408
GCCCCAACTGTTCCAGAAAC
1704



i = 19


CTATAAAAGAAGATGGCTGA







TTCAGGATTCTCAAAAACGT







AAAACCATAGTTCCTAAAGT







TTCAGGTTTG






HPV82
SD3-SA4
409
410
CACAAGTGGAGACTGTGGAA
1705



i = l


GGACCCTTACAGATCCAAAT







TTAATGTATTTACATAGTAG







AGTGACAGTATTTCAATTTT







TAAATGCATTTCCATTTGAC







CCCCAT






HPV82
SD3-SA6
411
412
CACAAGTGGAGACTGTGGAA
1706



i = 3


GGACCCTTACAGTACCTACA







GCACCCCGTCACCCTCTACT







ACAACTG






HPV82
SD1-SA4
413
414
ATTCAGGTATTGTGTGTATA
1707



i = 4


TTGTAAAAAGGAGTTGTGTA







GAGCAGATCCAAATTTAATG







TATTTACATAGTAGAGTGAC







AGTATTTCAATTTTTAAATG







CATTTCCATTTGACCCCCAT



HPV82
SD1-SA6
415
416
ATTCAGGTATTGTGTGTATA
1708



i = 6


TTGTAAAAAGGAGTTGTGTA







GAGCAGTACCTACAGCACCC







CGTCACCCTCTACTACAACT







G






HPV82
SD1-SA1
417
418
ATTCAGGTATTGTGTGTATA
1709



i = 7


TTGTAAAAAGGAGTTGTGTA







GAGCAGGTGTCATAGATGTC







AGAGACCACTTGGGCCTGAA







GAAAAG






HPV82
SD1-SA2
419
420
ATTCAGGTATTGTGTGTATA
1710



i = 8


TTGTAAAAAGGAGTTGTGTA







GAGCAGAAAACCACCAAGAC







AACGTAGTGAAACCCAGGTG







TAATAACGCCATGCGTGGTA







ATGT






HPV82
SD1-SA3
421
422
ATTCAGGTATTGTGTGTATA
1711



i = 9


TTGTAAAAAGGAGTTGTGTA







GAGCAGGTGTTCGAGTGTTG







TACAGCTCGCAGTGGAAAGC







AGTGGAGACAGCC






HPV82
SD5-SA9
423
424
GGAACTGCAGGCCCAAACAC
1712



i = 11


CGGAGGGCACCTCAGTGCAA







CTAAAACTGCGTTTATAGTT







CATTTAAAAGATGGCTTTGT







GGCGTACTAATGACAGCAAA







GTGTATTTACCACCTGCACC



HPV82
SD2-SA4
425
426
CATCGGCAATGGACAGTGAA
1713



i = 15


GATCCAAATTTAATGTATTT







ACATAGTAGAGTGACAGTAT







TTCAATTTTTAAATGCATTT







CCATTTGACCCCCAT






HPV82
SD2-SA6
427
428
CATCGGCAATGGACAGTGAA
1714



i = 17


GTACCTACAGCACCCCGTCA







CCCTCTACTACAACTG






HPV82
SD2-SA9
429
430
CATCGGCAATGGACAGTGAA
1715



i = 18


GATGGCTTTGTGGCGTACTA







ATGACAGCAAAGTGTATTTA







CCACCTGCACC





















TABLE 2B








For-

Re-





ward

verse




Forward
pri-
Reverse
pri-




primer
mer
primer
mer




nucleic 
SEQ
nucleic
SEQ


HPV
Splice
acid
ID
acid
ID


type
site
sequence
NO
sequence
NO







HPV16
SD3
GCGGGTATGG
431
TGGTGTTTGG
432




CAATACTGAA

CATATAGTGT





GT

GTCTTT






HPV16
SD1
CACAGAGCTG
433
CACATACAGC
434




CAAACAACTA

ATATGGATTC





TACAT

CCATCTC






HPV16
SA4
GGATGTAAAG
435
GTTTTCGTCA
436




CATAGACCAT

AATGGAAACT





TGGTACA

CATTAGGA






HPV16
SA5
CGGAAATCCA
437
TGACACACAT
438




GTGTATGAGC

TTAAACGTTG





TTAATGAT

GCAAAG






HPV16
SA6
CATGCGGGTG
439
AAGGCGACGG
440




GTCAGGTAA

CTTTGGTAT






HPV16
SD5
GCTCACACAA
441
CCAATGCCAT
442




AGGACGGATT

GTAGACGACA





AAC

CT






HPV16
SA1
GGAACAACAT
443
TGTCCAGATG
444




TAGAACAGCA

TCTTTGCTTT





ATACAACA

TCTTCA






HPV16
SA2
CGGTGGACCG
445
TCAGTTGTCT
446




GTCGATG

CTGGTTGCAA







ATCT






HPV16
SA9
CCTATAGTTC
447
ATCCGTGCTT
448




CAGGGTCTCC

ACAACCTTAG





ACAA

ATACTG






HPV16
SA3
CTCAGAGGAG
449
CCATTAACAG
450




GAGGATGAAA

GTCTTCCAAA





TAGATG

GTACGA






HPV16
SD2
GGAATTGTGT
451
CATCCATTAC
452




GCCCCATCTG

ATCCCGTACC





T

CT






HPV18
SD3
TCAGATAGTG
453
CCGTTGTCTA
454




GCTATGGCTG

TAGCCTCCGT





TTCT








HPV18
SD1
TTCACTGCAA
455
CTATACATTT
456




GACATAGAAA

ATGGCATGCA





TAACCTGT

GCATGG






HPV18
SA4
CTAAAATGTC
457
GTCATTTATT
458




CTCCAATACT

TCATATACTG





ACTAACCACA

GATTGCCA





A








HPV18
SD4
GGATTGGACA
459
CCCATGCTAC
460




CTGCAAGACA

ATAGGTCATA





CA

CAATTGTC






HPV18
SA8
TGACGACACG
461
ACGTCTGGCC
462




GTATCCGCTA

GTAGGTCT



HPV18
SD5
CAGCTACACC
463
GTCGCTATGT
464




TACAGGCAAC

TTTCGCAATC





AA

TGTA






HPV18
SD6
CGAAAACATA
465
TTGTACACTA
466




GCGACCACTA

TCTGGAATTG





TAGAGAT

CAACAGT






HPV18
SA1
TCAGACTCTG
467
CCCAGCTATG
468




TGTATGGAGA

TTGTGAAATC





CACAT

GT






HPV18
SA9
TCCTAAGAAA
469
GTATTTACAA
470




CGTAAACGTG

CTCTTGCCAC





TTCCC

AGAAGGA






HPV18
SA10
GCATATTTTA
471
TCAGGTAACT
472




TCATGCTGGC

GCACCCTAAA





AGCTCTA

TACTCTAT






HPV18
SA3
CAGAGGAAGA
473
AGAAACAGCT
474




AAACGATGAA

GCTGGAATGC





ATAGATGG

T






HPV18
SD2
TGCATCCCAG
475
CTCGTCATCT
476




CAGTAAGCAA

GATATTACAT







CTCCTG







TT






HPV31
SD3
GCGGGTATGG
477
TGGAGTTTCA
478




CAATACTGAA

TTCTCTCGTT





GT

CACTATG






HPV31
SD1
CGGCATTGGA
479
TCTTAAACAT
480




AATACCCTAC

TTTGTACACA





GAT

CTCCGTGT






HPV31
SA4
CACTAGATGG
481
AATGTAAAAA
482




CAACCCTGTA

CCACCAGTCT





TCT

GCTATGTA






HPV31
SA5
CTGGTGGTTT
483
CGTTGAGAAA
484




TTACATTTCC

GAGTCTCCAT





AAATCCAT

CGTTTT






HPV31
SA6
CATGCGGGTG
485
GAATTCGATG
486




GTCAGGTAA

TGGTGGTGTT







GTTG






HPV31
SD5
CAGCTGCATG
487
GCCATGTAGA
488




CACAAACCA

TGACACTTGT







TCATACAA






HPV31
SA1
GGAACAACAT
489
TTTTCTTCTG
490




TAGAAAAATT

GACACAACGG





GACAAACAAA

TCTT





GG








HPV31
SA2
GAAACGATTC
491
ACATAGTCTT
492




CACAACATAG

GCAACGTAGG





GAGGA

TGTTT






HPV31
SA9
GCCACAAGTG
493
TTTAGACACT
494




TCTATTTTTG

GGGACAGGTG





TTGATG

GTA






HPV31
SA3
CAGATGAGGA
495
CATTAACAGC
496




GGATGTCATA

TCTTGCAATA





GACAGT

TGCGAATA






HPV31
SD2
AATCGTGTGC
497
CCCCTGTCTG
498




CCCAACTGT

TCTGTCAATT







ACTG






HPV33
SD3
GATGAGCTAG
499
CATCCCCCAC
500




AAGACAGCGG

CCCACTAGAT





ATATG








HPV33
SD1
AGCATTGGAG
501
CGCAAACACA
502




ACAACTATAC

GTTTACATAT





ACAACATT

TCCAAATG






HPV33
SA4
TGTGAAACAT
503
CATACACTGG
504




AGGGCATTAG

GTTACCATTT





TGCAATTA

TCATCAAA






HPV33
SA6
GGATGCTGCA
505
GTGGTGGTCG
506




AAGTATTCTA

GTTATCGTTG





AAACACAA

T






HPV33
SD5
ACGTACTGCA
507
GCCAGGTGGA
508




ACTAACTGCA

TGACATAGAA





CAA

CTATACA






HPV33
SA1
ATTCTGTATA
509
TCGTTTGTTT
510




TGGAAATACA

AAATCCACAT





TTAGAACAAA

GTCGTTTT





CAG








HPV33
SA2
CGATTTCATA
511
CATATTCCTT
512




ATATTTCGGG

TAACGTTGGC





TCGTTGG

TTGTGT






HPV33
SA9
TTGTTGTAGA
513
ATCAGTGCTG
514




CGGTGCTGAC

ACAACTTTAG





TTT

ATACAGG






HPV33
SD2
GTGCCCTACC
515
TTCTTCTCTC
516




TGTGCACAA

TATGACTGCT







TCTACCT






HPV35
SD3
ATTATTTGAA
517
GCTACTAGAG
518




CTACCAGACA

GTTATACTAT





GCGGTT

CCCCACT






HPV35
SD1
CGAGGTAGAA
519
CATACTCCAT
520




GAAAGCATCC

ATGGCTGGCC





ATGAAAT

TTC






HPV35
SA4
CATTAGTGCA
521
TCATTGTGAA
522




ATTAAAATGC

ATGTAAAGAC





CCACCTT

CACTACCC






HPV35
SA5
GGAAACCCAG
523
GGAAAGCGTC
524




TGTATGGGCT

TCCATCATTT





TAAT

TCTTTG






HPV35
SA6
AAAATATATG
525
GCTTTGGTAT
526




GGAAGTGCAT

GGGTCTCGGT





GTGGGT








HPV35
SD5
TCTACATCTG
527
CCATCTCCAT
528




ACTGCACAAA

GTAGATGAAG





CAAAGA

CATCTTG






HPV35
SA1
GGAGAAACGT
529
TCCACCGATG
530




TAGAAAAACA

TTATGGAATC





ATGCAACA

GTTTT






HPV35
SA9
GGGTGACTTT
531
CATCAGTGCT
532




TATTTACACC

AACAACCTTA





CTAGTT

GACACT






HPV35
SA10
CATCTACTAT
533
ACTCTGTATT
534




CATGCAGGCA

GCAAACCAGA





GTTCT

TACCTTG






HPV35
SD2
CGGCTGTTCA
535
CCCGTACGTC
536




CAGAGAGCAT

TACTAACTAC





AAT

TGCTT






HPV39
SD3
GGTGTATTCC
537
GTACACTGCC
538




GTGCCAGACA

GCCATGTTC



HPV39
SD1
CACCACCTTG
539
GATTGGCATG
540




CAGGACATTA

CAGCTAGTGG





CAATA








HPV39
SA4
ATTAGATGGG
541
CTGTTTTGGT
542




TATGCAATAA

CAAATGGAAA





GTTTAGATAG

TGCATTAG





G








HPV39
SD5
CACAGTAACA
543
CGTATCCAAT
544




GTACAGGCCA

GCCAGGTACA





CA

TGAAA






HPV39
SA1
CTCGGACTCG
545
CTGTCCTGTA
546




GTGTATGCAA

TAGCTTCCTG







CTATTTT






HPV39
SA9
GCAATAACCA
547
AGTATTGACA
548




TTCAGGGTTC

ACCTTCGCCA





CAATT

CA






HPV39
SA3
CATGCAGTTA
549
TGCTGTAGTT
550




ATCACCAACA

GTCGCAGAGT





TCAACT

ATC






HPV39
SD2
CGTGGTGTGC
551
CACTGTGTCG
552




AACTGCAA

CCTGTTTGTT







TAT






HPV45
SD3
TCAGATAGTG
553
ACTATCCCCA
554




GCTATGGCTG

CCACTACTTT





TTCT

GTGTA






HPV45
SD1
CTACAAGACG
555
AAGTCTATAC
556




TATCTATTGC

ATTTATGGCA





CTGTGT

TGCAGCATA






HPV45
SA4
CATTATTACA
557
GAAATGCATG
558




GCTAAAATGT

TGGAAATGTA





CCTCCAATCC

AATACCGT



HPV45
SA8
TGACGACACG
559
CCCACGGATG
560




GTATCCGCTA

CGGTTTTG



HPV45
SD5
TCCTGTGTTC
561
GGTCTGCATA
562




AAGTACAAGT

TTTGCGTAGC





AACAACAA

CTATA






HPV45
SD6
CGCAAATATG
563
CCCACCGAGA
564




CAGACCATTA

TTTGTACACT





CTCAGAA

GTTA






HPV45
SA1
AAACTCTGTA
565
CGTTTGTCCT
566




TATGGAGAGA

TAAGGTGTCT





CACTGGA

ACGTTTT






HPV15
SA9
GCACACAATA
567
GCTGACAACT
568




TTATTTATGG

CTGGCCACA





CCATGGTA








HPV45
SA3
GGAGTTAGTC
569
TCAAAAACAG
570




ATGCACAACT

CTGCTGTAGT





ACCA

GTTCT






HPV45
SD2
AGCACCTTGT
571
CAATTGTTTC
572




CCTTTGTGTG

TACAAAGAAC





T

CAGCCATT






HPV51
SD3
CGGACAGCGG
573
TCTGTTGTTT
574




ATATGGCAAT

CCACATCCAT





A

AACACT






HPV51
SD1
CTGCATGAAT
575
GTAAACATTG
576




TATGTGAAGC

TTTGCATACT





TTTGAAC

GCATATGGA






HPV51
SA4
AGTATGTCCA
577
TCATTCAATG
578




CCATTACTAA

TATACACAGC





TAACGTCAAA

ATTCCCAT





C








HPV51
SA6
GCACAACAGT
579
CCACGCAGGT
580




GGGAGGTCTA

GGTAAGGG





TATG








HPV51
SD5
CTAACACTGG
581
ATGCCAGGTT
582




AGGGCACCAA

GAGGATACGT





A

TTTTAT






HPV51
SA1
GAGAGTATAG
583
TCCCGCTATT
584




ACGTTATAGC

TCATGGAACC





AGGTCTGT

TTTT






HPV51
SA9
GGCCCTATAC
585
CAATTCGAGA
586




ACATTTACTA

CACAGGTGCA





CGCAAA

G






HPV51
SA3
GCGTGACCAG
587
CATCTGCTGT
588




CTACCAGAAA

ACAACGCGAA







G






HPV51
SD2
GGGCGAACTA
589
CTCATCATCC
590




AGCCTGGTTT

GAAACATTAT







CTCCTG







T






HPV52
SD3
CAAACCATGT
591
CCCCACCCCA
592




CACGTAGAAG

CTTGATTGA





ACAG








HPV52
SD1
AGAATCGGTG
593
CACACGCCAT
594




CATGAAATAA

ATGGATTATT





GGCT

GTCTCTA






HPV52
SA4
CCTTAGTACA
595
GGGTTTTTGA
596




AATAAAATGC

AATGAAACAC





CCACCAT

AACCAATC






HPV52
SA6
GTAACAGGAG
597
GCGGAGGTCT
598




TATGGGAAGT

TGGAGGTTT





ACATGTG








HPV52
SD5
TCACTGCAAC
599
TGCCAGGTAG
600




TGAGTGCACA

ATGAAATTTG





A

AACATACA






HPV52
SA1
GTATGGGAAA
601
CGCTTGTTTG
602




ACATTAGAAG

CATTAACATG





AGAGGGT

TCTTTCT






HPV52
SA2
GACATGTTAA
603
TCAGTTGTTT
604




TGCAAACAAG

CAGGTTGCAG





CGATTTC

ATCTAATA






HPV52
SA9
TTTTACTACG
605
TGCTTACAAC
606




TCGCAGGCGT

CTTAGAGACA





AA

GGTACA






HPV52
SA10
AAGCATCTAT
607
CCTGTATTGC
608




TATTATGCAG

AGGCCAGACA





GCAGTTCT








HPV52
SA3
GATGAGGAGG
609
GCATTTGCTG
610




ATACAGATGG

TAGAGTACGA





TGTG

AGGT






HPV52
SD2
GCTGTTGGGC
611
TCCTCTGAAA
612




ACATTACAAG

TGTTATCTCC





TT

TGTTTGTT






HPV56
SD3
CAAGACAGCG
613
GGTACTGTTT
614




GGTATGGCAA

TGTGAGCCTC





TA

CATTT






HPV56
SD1
GCACCACTTG
615
ACAATAAACA
616




AGTGAGGTAT

TACTCTGCAC





TAGAA

ACTGCATA






HPV56
SA5
AGAATGTTAG
617
TTTTCTTTGT
618




TGTTTCAGTT

CCTCGTCGTT





TCAAAATCC

ATCCAA






HPV56
SD5
ACAACAACCA
619
TATTGTCTGT
620




CCCTGGTGAT

ACTTGTCCAA





AAG

TGATATGT






HPV56
SA1
TCAGTGTATG
621
CAATTGCTTT
622




GAGCTACACT

TCCTCCGGAG





AGAAAGT

TTAA






HPV56
SA2
TGCATTGTGA
623
ACGTCTTGCA
624




CAGAAAAAGA

GCGTTGGTA





CGATTTC








HPV56
SA9
AGGGATCCTC
625
ACAACCTTTG
626




CTTTGCATTA

AAACAGGTGT





TGG

TGGA






HPV56
SA10
ATCATGCAGG
627
CAACCGTACC
628




CAGTTCACGA

CTAAATACCC







TATATTGA






HPV56
SA3
ACAGCAAGCT
629
TGTACAACAC
630




AGACAAGCTA

GCAGGTCCTC





AACAA








HPV56
SD2
GTTAACAGTA
631
TTCTACAATT
632




ACGTGCCCAC

GCCTCTACTT





TCT

CAAACCAT






HPV58
SD3
AAAATTATTG
633
CCCCACTAGA
634




AGCTAGAAGA

CTCCGAGTCA





CAGCGGAT

TTTAA






HPV58
SD1
GTCAGGCGTT
635
TCGTAAGCAC
636




GGAGACATCT

ACTTTACATA







CTGCAAA






HPV58
SA4
ATTAGATGGT
637
TGCATCAAAT
638




AACGACATTT

GGAAATGGAT





CAATAGATGT

TGTTAAATTC







A






HPV58
SA6
ACAATTATGG
639
CCCTGTGTAC
640




GAGGTACATG

TTTCGTTGTT





TGGGTA

GGT






HPV58
SD5
GAGGAGGACT
641
CCAATGCCAT
642




ACACAGTACA

GTGGATGACA





ACTAACT

TATTACA






HPV58
SA1
CGCTATATGG
643
CGACCCGAAA
644




AGACACATTA

TATTATGAAA





GAACAAACA

CCTTTTGT






HPV58
SA9
CTGATTTTAT
645
GCTTACAACC
646




GTTGCACCCT

TTAGACACAG





AGCTATTT

GCA






HPV58
SD2
TGCTTATGGG
647
CTGTTCTTCG
648




CACATGTACC

TTCTATTACC





ATT

GCTTCTA






HPV59
SD3
AAAGAAGGTT
649
GTCTATTTGA
650




AATAACAGTG

CTGTCGCTAC





CCAGACA

AAACAC






HPV59
SD1
GCATCAATTG
651
GCATTTCAGA
652




TGTGTTTTGC

CACGCTGCAT





AAAGG

AC






HPV59
SA4
AGATAGAAAG
653
TCTATTTTTG
654




CATAGGCACC

TCAAATGGCA





TAGTACAA

ATTTGTTTGG







A






HPV59
SD5
TCCGTTTGCA
655
CCAATGCCAG
656




TCCAGGCAA

GTAGAGGAAA







TATTTTCA






HPV59
SA9
CCTCGTAAAC
657
TGACATACTC
658




GTAAACGTGT

ATCAGTGCTG





TCC

ACAAC






HPV59
SA10
GTATGTCACC
659
GCCAAATTTA
660




CGTACCAGTA

TTGGGATCAG





TTTTCTAC

GTAACTT






HPV59
SA3
CAGATGGAGT
661
TGTAAGGCTC
662




TAATCATCCT

GCAATCCGT





TTGCTACT








HPV59
SD2
ACTATCCTTT
663
CGTCATCTGA
664




GTGTGTCCTT

AATTTTGTCA





TGTGT

CCTGTTTT






HPV66
SD3
GAAGACAGCG
665
GATACCGAGT
666




GGTATGGCAA

GCTCACTACA





TA

ATTACTG






HPV66
SD1
CACCATCTGA
667
ACAATAAACA
668




GCGAGGTATT

TACCCTACAT





ACA

ACTGCATATG







G






HPV66
SA6
GTGGGTGGTG
669
GGACAGTAAA
670




TAAAGTGTCA

TACTCTCGGT





TCA

TTCCAT






HPV66
SD5
GTATCAACAC
671
TCTGTACTTG
672




ACAAAGCCAC

TCCAATGATA





TGT

TGTTGTTGT






HPV66
SA1
GGGCAACATT
673
GAAATCGTCT
674




AGAAAGTATA

TTTATGTTCA





ACTAAAAAAC

CAGTGCAA





A








HPV66
SA9
GCTACATTTG
675
ACAACCTTTG
676




CACTATGGCC

AAACAGGTGT





TGTA

TGGA






HPV66
SA3
ACAGCAAGCT
677
TGTACCACAC
678




AGACAAGCTG

GTAGCTCCTC





AA

T






HPV66
SD2
GTTAACAGTA
679
TTCTACAATT
680




ACGTGCCCAC

GCTTCTACCT





TCT

GAAACCAT






HPV68
SD3
AGACAACCGG
681
CACACTACTA
682




CGTATACAGT

CAGTCCTCCC





G

GTAT






HPV68
SD1
GACATTGGAC
683
GATTGGCATG
684




ACTACATTGC

CAGCAAATGG





ATGAC

TA






HPV68
SA4
CCTAATACAA
685
CTGTTTTGGT
686




ATAAAGTGTC

CAAATGGAAA





CACCAATGCT

TGCATTAG



HPV68
SA1
GGAATCGGTG
687
CTTCGTTTTG
688




TATGCAACTA

TTGTTAGGTG





CATTAGAA

CCTTAG






HPV68
SA6
CTAGTGGAAA
689
TCGCGGTGGT
690




ATGGGACGTG

GTTCTGTAG





CATTATA








HPV68
SD5
AGTAGAAGTG
691
AAGCGTTATG
692




CAGGCCAAAA

TTTTTGCAAC





CAA

CTATACC






HPV68
SA9
TACAACCTTT
693
ATTGACAACC
694




GCCATAACTA

TTCGCCACTG





TATATGGT

A






HPV68
SA3
CCACCAACAT
695
CTGTTGTAGT
696




CTACTACTAG

GTCCGCAGGT





CCAGA

T






HPV68
SD2
TCCGTGGTGT
697
GACTGTGTCA
698




GCAACTGAA

CCTGTTTGTT







TATCTACT






HPV73
SD3
AAACGAAGAC
699
GACACAATTT
700




TGTTTGAGGA

GGTTGCCTTC





GCA

TTCATTAA






HPV73
SD1
AGCGTTATGT
701
AAAATTTTAA
702




GACGAAGTGA

ACACGGTTGA





ATATTTCT

CATACAC






HPV73
SA4
CAAGTTAAAT
703
GGGTTCCCAT
704




GCCCTCCATT

TACTGTCAAA





ACTGATAAC

TGGA






HPV73
SA6
GGGTAAAAGG
705
TGGTGTTGGT
706




CATATGGGAA

GGTTGTGGT





GTACAT








HPV73
SD5
ACCTACATCC
707
GTCCAATGCC
708




CACCACAGAG

ATGTTGTTGT





T

TACA






HPV73
SA1
AGACAATCAG
709
CTGTTCTGCT
710




TATATGGCAC

ATTTGATGAA





TACGTTAGA

ACCGTTTT






HPV73
SA9
TGGGTCAGGT
711
GCTTACAACC
712




TTTATATTAC

TTAGACACAG





ACCCTAGT

ACACA






HPV73
SA10
TGCAGGTAGC
713
ACGAAGCCTA
714




ACACGTTTGT

AACACCCTGT







ATTG






HPV73
SA3
ACTCAGAGGA
715
CCTAGTGTAC
716




TGAGGATGAA

CCATAAGCAA





ACAGA

CTCTTCTA






HPV73
SD2
TGCTTATGGG
717
TGGAATTGGA
718




TACACTAGGT

TCCCCTGTTT





ATTGTGT

TTCTTT






HPV82
SD3
CCGGACAGTG
719
GGTCTATCTC
720




GATATGGCAA

TGTACTTCTG





TA

TCGCT






HPV82
SD1
CCTGCAATAC
721
CATGCTGCAT
722




GTCTATGCAC

ATGGCGTATT





AAT

GTC






HPV82
SA4
ACACAGAAGC
723
CATCATTTAG
724




CTGCTGCAAA

TGCATATACA







GGATTCCC






HPV82
SA6
GGGCACAACA
725
GGGTGTTCGA
726




ATGGGAGGTA

TAGCTGTTCA







A






HPV82
SD5
TGCGACCACC
727
CAATGCCAGG
728




AAATACACTG

TAGATGACAC





T

TTCTTTAA






HPV82
SA1
GTAGGTCTGT
729
TTTTTTGTCG
730




GTATGGTGCT

TCCACCACCT





ACATT

TTTG






HPV82
SA9
GGGATTACTA
731
GTGTTGACAA
732




CTTTGTGGCC

TGCGTGACAC





GTATA

T






HPV82
SA3
GGAGGATGAA
733
CCAGTAACAT
734




GTAGATAATA

TTGCTGAAAT





TGCGTGAC

ATGCGAA






HPV82
SD2
CGTGGTGTGC
735
TTGTCAACTA
736




GACCAACTAA

CTGCCTCCAC







ATAAAA





















TABLE 2Bbis







For-
Re-






ward
verse






pri-
pri-

Ampli-




mer
mer

con




SEQ
SEQ
Amplicon
SEQ


HPV
Splice
ID
ID
nucleic acid
ID


type
site
NO
NO
sequence
NO







HPV16
SD3
431
432
GGAAACTCAGCAGATGTTAC
1716






AGGTAGAAGGGCGCCATGAG







ACTGAAACACCATGTAGTCA







GTATAGTGGTGGAAGTGGGG







GTGGTTGCAGTCAGTACAGT







AGTGGAAGTGGGGGAGAGGG







TGTTAGTG






HPV16
SD1
433
434
GATATAATATTAGAATGTGT
1717






GTACTGCAAGCAACAGTTAC







TGCGACGTGAGGTATATGAC







TTTGCTTTTCGGGATTTATG







CATAGTATATA






HPV16
SA4
435
436
ACTAAAATGCCCTCCATTAT
1718






TAATTACATCTAACATTAAT







GCTGGTACAGATTCTAGGTG







GCCTTATTTACATAATAGAT







TGGTGGTGTTTACATT






HPV16
SA5
437
438
AAGAACTGGAAATCCTTTTT
1719






CTCAAGGACGTGGTCCAGAT







TAAGTTTGCACGAGGACGAG







GACAAGGAAAACGATGGAGA







CT






HPV16
SA6
439
440
TATTATGTCCTACATCTGTG
1720






TTTAGCAGCAACGAAGTATC







CTCTCCTGAAATTATTAGGC







AGCACTTGGCCAACCACCCC







GCCGCGACCC






HPV16
SD5
441
442
TGTAATAGTAACACTACACC
1721






CATAGTACATTTAAAAGGTG







ATGCTAATACTTTAAAATGT







TTAAGATATAGATTTAAAAA







GCATTGTACATTGTATACTG







C






HPV16
SA1
443
444
AACCGTTGTGTGATTTGTTA
1722






ATTAGGTGTATTAACTGTCA







AAAGCCACTGTGTCC






HPV16
SA2
445
446
TATGTCTTGTTGCAGATCAT
1723






CAAGAACACGTAGAGAAACC







CAGCTGTAATCATGCATGGA







GATACACCTACATTGCATGA







ATATATGTT






HPV16
SA9
447
448
TATACAATTATTGCTGATGC
1724






AGGTGACTTTTATTTACATC







CTAGTTATTACATGTTACGA







AAACGACGTAAACGTTTACC







ATATTTTTTTTCAGATGTCT







CTTTGGCTGCCTAGTGAGGC







CACTGTCTACTTGCCTCCTG







TCC






HPV16
SA3
449
450
GTCCAGCTGGACAAGCAGAA
1725






CCGGACAGAGCCCATTACAA







TATTGTAA







CCTTTTGTTGCAAGTGTGAC







TCTACGCTTCGGTTGTGCGT







ACAAAGCACACACGTAGACA







T






HPV16
SD2
451
452
TCTCAGAAACCATAATCTAC
1726






CATGGCTGATCCTGCAGGTA







CCAATGGGGAAG






HPV18
SD3
453
454
GAAGTGGAAGCAACACAGAT
1727






TCAGGTAACTACAAATGGCG







AACATGGCGGCAATGTATGT







AGTGGCGGCAGT






HPV18
SD1
455
456
GTATATTGCAAGACAGTATT
1728






GGAACTTACAGAGGTATTTG







AATTTGCATTTAAAGATTTA







TTTGTGGTGTATAGAGACAG







TATACC






HPV18
SA4
457
458
ATATACATCCAGCAAAGGAT
1729






AATAGATGGCCATATTTAGA







AAGTAGAATAACAGTATTTG







AATTTCCAAATGCATTTCCA







TTTGATAAAAA






HPV18
SD4
459
460
TGCGAGGAACTATGGAATAC
1730






AGAACCTACTCACTGCTTTA







AAAAAGGTGGCCAAACAGTA







CAAGTATATTTTGATGGCAA







CAAA






HPV18
SA8
461
462
CTCAGCTTGTTAAACAGCTA
1731






CAGCACACCCCCTCACCGTA







TTCCAGCACCGTGTCCGTGG







GCACCGCAA






HPV18
SD5
463
464
CAAAAGACGGAAACTCTGTA
1732






GTGGTAACACTACGCCTATA







ATACATTTAAAAGGTGACAG







AAACAGTTTAAAATGTTTAC







GG






HPV18
SD6
465
466
ATATCATCCACCTGGCATTG
1733






GACAGGTGCAGGCAATGAAA







AAACAGGAATACTGACTGTA







ACATACCATAGTGAAACACA







AAGAACAAAATTTTTAAAT






HPV18
SA1
467
468
TGGAAAAACTAACTAACACT
1734






GGGTTATACAATTTATTAAT







AAGGTGCCTGCGGTGCCAGA







AACCGTTGAATCCAGCAGAA







AAACTTAGACACCTTAATGA







AAAACG






HPV18
SA9
469
470
TATTTTTTTGCAGATGGCTT
1735






TGTGGCGGCCTAGTGACAAT







ACCGTATATCTTCCACC






HPV18
SA10
471
472
GATTATTAACTGTTGGTAAT
1736






CCATATTTTAGGGTTCCTGC







AGGTGGTGGCAATAAGCAGG







ATATTCCTAAGGTTTCTGCA







TACCAAT






HPV18
SA3
473
474
AGTTAATCATCAACATTTAC
1737






CAGCCCGACGAGCCGAACCA







CAACGTCACACAATGTTGTG







TATGTGTTGTAAGTGTGAAG







CCAGAATTGAGCTAGTAGTA







GAAAGCTCAGCAGACGACCT







TCG






HPV18
SD2
475
476
CAATGGCTGATCCAGAAGGT
1738






ACAGACGGGGAGGGCACGGG







TTGTAACG







GCTGGTTTTATGTACAAGCT







ATTGTAGACAAAAA






HPV31
SD3
477
478
GGAAACGCAGCAGATGGTAC
1739






AGGTAGAGGAGCAACAAACA







ACATTAAGTTGTAATGGTAG







TGACGGGACA






HPV31
SD1
479
480
GAACTAAGATTGAATTGTGT
1740






CTACTGCAAAGGTCAGTTAA







CAGAAACAGAGGTATTAGAT







TTTGCATTTACAGATTTAAC







AATAGTATATAGGGACGACA







CACC






HPV31
SA4
481
482
ATAGATGTAAAGCATAAAGC
1741






TTTAATGCAGTTAAAATGTC







CTCCTTTATTGATTACATCT







AATATAAATGCAGGTAAGGA







TGACAGATGGCCATACC






HPV31
SA5
483
484
TTCCATTTGACAAAAACGGA
1742






AATCCAGTATATGAATTAAG







TGATAAAAACTGGAAATCCT







TTTTCTCAAGGACGTGGTGC







AGATTAAATTTGCACGAGGA







AGAGGACAAAG






HPV31
SA6
485
486
TTCTTTTTCCTGAATCTGTA
1743






TTTAGCAGTGACGAAATATC







CTTTGCTGGGATTGTTACAA







AGCTACCAACAGC






HPV31
SD5
487
488
AACAAGGGCTGTCAGTTGTC
1744






CTGCAACTACACCTATAATA







CACTTAAAAGGTGATGCAAA







TATATTAAAATGTTTAAGAT







ATAGGCTGTCAAAATATAAA







CAA






HPV31
SA1
489
490
TATATGTGATTTGTTAATTA
1745






GGTGTATAACGTGTCA






HPV31
SA2
491
492
AGGTGGACAGGACGTTGCAT
1746






AGCATGTTGGAGAAGACCTC







GTACTGAAACCCAAGTGTAA







ACATGCGTGGAG






HPV31
SA9
493
494
GGGGTGATTTTTATTTGCAC
1747






CCTAGTTATTATATGTTAAA







ACGTCGACGTGCTACTGTCT







ACT






HPV31
SA3
495
496
CCAGCTGGACAAGCAGAACC
1748






GGACACATCCAATTACAATA







TCGTTACCTTTTGTTGTCAG







TGTAAGTCTACACTTCGTTT







GTGTGTACAGAGCACACAAG







TAGA






HPV31
SD2
497
498
TCTACTAGACTGTAACTACA
1749






ATGGCTGATCCAGCAGGTAC







AGATGGGGAGGGGACGGGAT







GCAATGGTTGGTTTTATGTA







GAAG






HPV33
SD3
499
500
GCAATACTGAAGTGGAAACT
1750






CAGCAGATGGTACAACAGGT







AGAAAGTCAAAATGGCGACA







CAAACTTAAATGACTTAGA






HPV33
SD1
501
502
GAACTACAGTGCGTGGAATG
1751






CAAAAAACCTTTGCAACGAT







CTGAGGTA







TATGATTTTGCATTTGCAGA







TTTAACAGTTGTATATAGAG







AGGGAAATC






HPV33
SA4
503
504
AAATGTCCACCACTGCTTCT
1752






TACCTCAAATACAAATGCAG







GCACAGACTCTAGATGGCCA







TATTTACATAGTAGATTAAC







AGTATTTGAATTTAAAAATC







CATTCCCA






HPV33
SA6
505
506
ATGTGGGAAGTACATGTGGG
1753






TGGTCAGGTAATTGTTTGTC







CTACGTCTATATCTAGCAAC







CAAATATCCACTACTGAAAC







TGCTGACATACAGACAG






HPV33
SD5
507
508
ACAAGCAGCGGACTGTGTGT
1754






AGTTCTAACGTTGCACCTAT







AGTGCATTTAAAAGGTGAAT







CAAATAGTTTAAAATGTTTA







AGATACAGATTAAAACCTTA







TAAAGAGT






HPV33
SA1
509
510
TTAAAAAACCTTTAAATGAA
1755






ATATTAATTAGGTGTATTAT







ATGTCAAAGACCTTTGTGTC







CTCAAGAAAA






HPV33
SA2
511
512
GCAGGGCGCTGTGCGGCGTG
1756






TTGGAGGTCCCGACGTAGAG







AAACTGCACTGTGACGTGTA







AAAACGCCATGAGAGG






HPV33
SA9
513
514
GTTTTACATCCTAGTTATTT
1757






TATTTTACGTCGCAGGCGTA







AACGTTTTCCATATTTTTTT







ACAGATGTCCGTGTGGCGGC







CTAGTGAGGCCACAGTGTAC







CTGCCTCCTGTA






HPV33
SD2
515
516
CAATAAACATCATCTACAAT
1758






GGCCGATCCTGAAGGTACAA







ATGGGGCTGGGATGGGGTGT







ACTGGTTGGTTTG






HPV35
SD3
517
518
ATGGCAATTCTGAAGTGGAA
1759






ATACAGCAGATACAACAGGT







AGAGGGGCATGATACAGTTG







AACAATGTAGTATGGGC






HPV35
SD1
519
520
TTGTTTGAATTGTGTATACT
1760






GCAAACAAGAATTACAGCGG







AGTGAGGTATATGACTTTGC







ATGCTATGATTTGTGTATAG







TATATAGA






HPV35
SA4
521
522
TACTTATTACATCAAATATA
1761






AATGCAGGCAAAGATGACAG







GTGGCCATACTTACATAGCA






HPV35
SA5
523
524
GATAAAAACTGGAAATCCTT
1762






TTTCTCAAGGACGTGGTGCA







GATTAAATTTGCACGAGGAA







GAGGA






HPV35
SA6
525
526
GGTCAGGTAATTGTTTGTCC
1763






TGAATCTGTATTTAGCAGCA







CAGAACTATCCACTGCTGAA







ATTGCTACACAGCTACACGC







CTACAACACC






HPV35
SD5
527
528
CCGGTGTGGTAGTTGTAGTA
1764






CAACTACACCTATAGTACAT







TTAAAAGGTGATGCAAATAC







ATTAAAGTGTTTAAGATATA







GATTGGGTAAATATAAA






HPV35
SA1
529
530
AACAGTTATGTCATTTATTA
1765






ATTAGGTGTATTACATGTCA







AAAACCGCT







GTGTCCAGTTGAAAAGCAAA







GACATTTAGAAGAAAA






HPV35
SA9
531
532
GTCTCTGTGGCGGTCTAACG
1766






AAGCCACTGTCTACCTGCCT







CCAGTGTC






HPV35
SA10
533
534
AGGCTATTAGCTGTGGGTCA
1767






CCCATACTATGCTATTAAAA







AACAAGATT







CTAATAAAATAGCAGTACC






HPV35
SD2
535
536
CTACAATGGCTGATCCTGCA
1768






GGTACAGATGAAGGGGAGGG







GACGGGAT







GTAATGGATGGTTTTTTGTA







G






HPV39
SD3
537
538
GCGGATATGGCAATATGGAA
1769






GTGGAAACAGCTGAAGTGGA







GGAGGTAA







CTGTAGCAACTAATACAAAT







GGGGATGCTGAAGGG






HPV39
SD1
539
540
GCCTGTGTCTATTGCAGACG
1770






ACCACTACAGCAAACCGAGG







TATATGAATTTGCATTTAG







TGATTTATATGTAGTATAT







AGGGACGGGGAA






HPV39
SA4
541
542
AAATATAAAAGTTTACTACA
1771






AATGAAATGTCCACCATTAT







TAATAACCT







CCAATACCAATCCTGTGGAA







GACGATAGGTGGCCATATTT







ACGTAGTAG







GCTAACAGTGTTTAAATTTC






HPV39
SD5
543
544
ACACAAGACGGTACCTCAGT
1772






TGTGGTAACACTACGCCTAT







AATACATTT







AAAAGGTGACAAAAATGGTT







TAAAATGTTTAAGATATAGA







CTACAAAA







ATATGACACATTGTTTGAAA







ATA






HPV39
SA1
545
546
CTACATTAGAAAATATAACT
1773






AATACAAAGTTATATAATTT







ATTAATAAG







GTGCATGTGTTGTCTGAAAC







CGCTGTGTCCAGCAGAAAAA







TTAAGACAC







CTAAATAGCAAACGAAGATT







TCAT






HPV39
SA9
547
548
ATTATTTGTTGCCATTATTG
1774






TATTTTTTCCTAAAAAAACG







TAAACGTATT







ATTTGCCTCCACCTTC






HPV39
SA3
549
550
ACTAGCCAGACGGGATGAAC
1775






CACAGCGTCACACAATACAG







TGTTCGTGTTGTAAGTGTAA







CAACACACTGCAGCTGGTAG







TAGAAGCCTCACGG






HPV39
SD2
551
552
ACCAGTAACCTGCTATGGCC
1776






AATCGTGAAGGTACAGACGG







GGATGGGTCGGGATGTAACG







GATGGTTTCTAGTACAGGCA







ATAGTAG






HPV45
SD3
553
554
GAAGTGGAAGCTGCAGAGAC
1777






TCAGGTAACTGTAAACACTA







ATGCGGAA







AATGGCGGCAGTGTACATAG






HPV45
SD1
555
556
ATATTGCAAAGCAACATTGG
1778






AACGCACAGAGGTATATCAA







TTTGCTTTTAAAGATTTATG







TATAGTGTATAGAGACTGTA







TAGCA






HPV45
SA4
557
558
TATTAACATCCAATATTGAT
1779






CCAGCAAAAGATAATAAATG







GCCATATTTAGAAAGTAGGG







TG






HPV45
SA8
559
560
CTCAGATTGTTAGACAGCTA
1780






CAACACGCCTCCACGTCGAC







CCC






HPV45
SD5
561
562
AAGAAGGAAAGTGTGTAGTG
1781






GTAACACTACGCCTATAATA







CACTTAAAAGGTGACAAAAA







CAGTTTGAAATGTTTAAGA






HPV45
SD6
563
564
ATATCCTCCACCTGGCATTG
1782






GACAGGTTGTAATAAAAACA







CTGGTATATTAACTGTAACA







TATAATAGTGAGGTACAAAG







AAATACCTTTTTGGATGTAG







TTACTATTCC






HPV45
SA1
565
566
AAAAATAACTAATACAGAGT
1783






TGTATAATTTGTTAATAAGG







TGCCTGCGGTGCCAGAAACC







ATTGAACCCAGCAGA






HPV45
SA9
567
568
TTATTATTTTCCTAAAAAAC
1784






GTAAACGTATTCCCTATTTT







TTTGCAGATGGCTTTGTGGC







GGCCTAGTGACAGTACGGTA







TATCTTCCACCACCTTC






HPV45
SA3
569
570
GCCCGACGAGCCGAACCACA
1785






GCGTCACAAAATTTTGTGTG







TATGTTGTAAGTGTGACGGC







AGAATTGAGCTTACAGTAGA







GAGCTCGGCAGAGGACCTT






HPV45
SD2
571
572
CCGTGGTGTGCAACTAACCA
1786






ATAATCTACAATGGCGGATC







CAGAAGGTACCGACGGGGAG







GGAACGGGGTGT






HPV51
SD3
573
574
CACAAGTGGAAACTGTGGAA
1787






GCAACGTTGCAGGTAGATGG







GCAACATGGCGGTTCACAGA







ACAGTGTGTGTAGTAGCGGG







GGGGGC






HPV51
SD1
575
576
CiTTTCTATGCACAATATAC
1788






AGGTAGTGTGTGTGTATTGT







AAAAAGGAATTATGTAGAGC







AGATGTATATAATGTAGCAT







TTACTGAAATTAAGATTGTA







TATAGGGATAATAA






HPV51
SA4
577
578
ATAAATCCACAAGAGGATGC
1789






AAACCTAATGTATTTACATA







CAAGGGTAACAGTATTAAAG







TTTTTAAATACATTTCCATT







TGATAACA






HPV51
SA6
579
580
TATGGTACTGTAATAACATG
1790






TCCTGAATATGTATCTAGTA







CCTGCAGCGACGCGTTATCC







ACTACTACAACTGTTGAACA







ACTATCAAACACCCCAACGA







CCAATC






HPV51
SD5
581
582
GTGCAACTCAGACTGCGTTT
1791






ATAGTGCATTTAAAAGGTGA







TACAAATTGTTTAAAATGTT







TTAGATACAGATTTACAAAA







CACAAAGGGTTAT






HPV51
SA1
583
584
GTATGGTACTACATTAGAGG
1792






CAATTACTAAAAAAAGCTTA







TATGATTTATCGATAAGGTG







TCATAGATGTCAAAGACCAC







TTGGGCCTGAAGAAAAGCAA







AAATTGGTGGACGAAAAA






HPV51
SA9
585
586
CGCCGTAAACGTATACCCTA
1793






TTTTTTTACAGATGGCATTG







TGGCGCACTAATGACAGCAA







GGTGTATTTGCCAC






HPV51
SA3
587
588
GACGGGCTGGACAGGCTACG
1794






TGTTACAGAATTGAAGCTCC







GTGTTGCAGGTGTTCAAGTG







TAGTACAACTGGCAGTGGAA







AGCAGTGGAGACACC






HPV51
SD2
589
590
GCCCGTGTTGTGCGAACAAC
1795






TAGCAACGGCGATGGACTGT







GAAGGTACAGAGGATGAGGG







GGCGGGGTGTAATGGGTGGT







TTTTTGTTGAAGCAATAGTA







GAAAAAAAA






HPV52
SD3
591
592
CGGCTATGGCAATAGTGAAG
1796






TGGAAGCGCAGCAGATGGCA







GACCAGGTAGACGGGCAAAA







TGGCGACTGGCAAAGTAACA







GTAG






HPV52
SD1
593
594
GCAGTGTGTGCAGTGCAAAA
1797






AAGAGCTACAACGAAGAGAG







GTATACAAGTTTCTATTTAC







AGATTTACGAATAGTATA






HPV52
SA4
595
596
TAATTTTAACAACAAATACA
1798






AATGCAGGAACAGATCCTAG







GTGGCCATATTTACATAGTA






HPV52
SA6
597
598
GGTGGTCAGGTAATTGTTTG
1799






TCCTGCATCTGTATCTAGTA







ACGAAGTATCCACTACTGAA







ACTGCTGTCCACCTATGCAC







CG






HPV52
SD5
599
600
ACAAAGGACGGGTTGCACAT
1800






ACAACTTGTACTGCACCTAT







AATACACCTAAAAGGTGATC







CTAATAGTTTAAAATGTTTA







AGATATAGGGTAAAAACACA







TAAAAGTT






HPV52
SA1
601
602
AAAAAAACCATTAAGTGAAA
1801






TAACTATTAGATGTATAATT







TGTCAAACGCCATTATGTCC







TGAAGAAAA






HPV52
SA2
603
604
ATAATATTATGGGTCGTTGG
1802






ACAGGGCGCTGTTCAGAGTG







TTGGAGACCCCGACCTGTGA







CCCAAGTGTAACGTCATGCG







TGGAGACAAAGCAACTATAA







AAGATTATA






HPV52
SA9
605
606
ACGTTTTCCATATTTTTTTA
1803






CAGATGTCCGTGTGGCGGCC







TAGTGAGGCCACTGTGTACC







TGCCTCC






HPV52
SA10
607
608
CGATTACTAACAGTAGGACA
1804






TCCCTATTTTTCTATTAAAA







ACACCAGTAGTGGTAATGGT







AAAAAAGTTTTAGTTCCCAA







GG






HPV52
SA3
609
610
CiACCGGCCAGATGGACAAG
1805






CAGAACAAGCCACAAGCAAT







TACTACATTGTGACATATTG







TCACAGTTGTGATAGCACAC







TACGGCTATGCATTCATAGC







ACTGCGACGG






HPV52
SD2
611
612
GTGTGCCCCGGCTGTGCAC
1806






GGCTATAAACAACCCTGCAA







TGGAGGACCCTGAAGGTACA







GAGGGCGAAAGGGAGGGATG







TACAGGCTGGTTTGAAGTAG







AGGCAATAATAGAAA






HPV56
SD3
613
614
CATTGGAAACTCTGGAAACA
1807






CCAGAACAGGTAGATGAAGA







GGTACAGGGACGTGGGTGCG







GGAATACACA






HPV56
SD1
615
616
ATACCTTTAATTGATCTTAG
1808






ATTATCATGTGTATATTGCA







AAAAAGAACTAACACGTGCT







GAGGTATATAATTTTGCATG







CACTGAATTAAAATTAGTGT







ATAGGGATGATTTTCCT






HPV56
SA5
617
618
ATTTCCATTAGATAATAATG
1809






GTAATCCTGTATATGAATTA







AGTAATGTAAACTGGAAATG







TTTCTTTACAAGGACGTGGT







CCAGATTAAAT






HPV56
SD5
619
620
ACTACGCCTGTAGTACATTT
1810






AAAAGGTGAACCTAACAGAT







TAAAATGTTGTAGATATCGA







TTTCAAAAATATAAAACATT







GTTTGTGGATGTAACATCA






HPV56
SA1
621
622
ATAACTAAAAAACAGTTATC
1811






iTGATTTATTAATAAGGTGC







TACAGATGTCAAAGTCCG






HPV56
SA2
623
624
ATCTAATAGCACATGGTTGG
1812






ACCGGGTCATGTTTGGGGTG







CTGGAGACAAACATCTAGAG







AACCTAGAGAATCTACAGTA







TAATCATGCATGGTAAAG






HPV56
SA9
625
626
CCTGTGTATTTTTTTAGACG
1813






TAGGCGCCGTAAACGTATTC







CCTATTTTTTTGCAGATGGC







GACGTGGCGGCCTAGTGAAA







ATAAGGTGTATCTACC






HPV56
SA10
627
628
TTGCTTGCCGTAGGACATCC
1814






CTATTACTCTGTGACTAAGG







ACAATACCAAAACAAACATT







CCCAAAGTTAGTGCATA






HPV56
SA3
629
630
CATACGTGTTACCTAATACA
1815






CGTACCTTGTTGTGAGTGTA







AGTTTGTGGTGCAGTTGGAC







ATTCAGAGTACCAAA






HPV56
SD2
631
632
GCGCATCAAGTAACTAACTG
1816






CAATGGCGTCACCTGAAGGT







ACAGATGGGGAGGGGAAGGG







ATGTTGTGG






HPV58
SD3
633
634
ATGGCAATACTGAAGTGGAA
1817






ACTGAGCAGATGGCACACCA







GGTAGAAAGCCAAAATGGCG







ACGCAGAC






HPV58
SD1
635
636
GTGCATGAAATCGAATTGAA
1818






ATGCGTTGAATGCAAAAAGA







CTTTGCAGCGATCTGAGGTA







TATGACTTTGTATTTGCAGA







TTTAAGAATAGTGTATAGAG







ATGGAAATCCA






HPV58
SA4
637
638
AAAACATAGGGCATTAGTAC
1819






AATTAAAATGTCCACCATTA







ATAATTACCTCAAATACAAA







TGCAGGCAAAGATTCACGAT







GGCCATATTTGCACAGTAGA







CTAACAGTATT






HPV58
SA6
639
640
GTCGGGTAATTGTATGTCCT
1820






ACATCTATACCTAGTGATCA







AATATCCACTACTGAAACTG







CTGACCCAAAGACCACCGAG







GCC






HPV58
SD5
641
642
GTACATACAAAGGGCGGAAC
1821






GTGTGTAGTTCTAAAGTTTC







ACCTATCGTGCATTTAAAAG







GTGACCCAAATAGTTTAAAA







TGTTTAAGATATAGATTAAA







ACCATTTAAAGACTTATAC






HPV58
SA1
643
644
CTAAAAAAGTGTTTAAATGA
1822






AATATTAATTAGATGTATTA







TTTGTCAAAGACCATTGTGT







CCACAAGAAAAAAAAAGGCA







TGTGGATTTAA






HPV58
SA9
645
646
CTAAAAAAGTGTTTAAATGA
1823






AATATTAATTAGATGTATTA







TTTGTCAAAGACCATTGTGT







CCACAAGAAAAAAAAAGGCA







TGTGGATTTAA






HPV58
SD2
647
648
GTGTGCCCTAGCTGTGCACA
1824






GCAATAAACACCATCTGCAA







TGGATGACCCTGAAGGTACA







AACGGGGTAGGGGCGGGCTG







TACTGGCTGGTTTGAGG






HPV59
SD3
649
650
GCGGCTATGGCTATTCTGAA
1825






GTGGAAATGCTCGAGACTCA







GGTAACCGTGGAGAATACTG







GAAATGGGGATAGCAATGGC







A






HPV59
SD1
651
652
GGAACTGCAAGAAAGAGAGG
1826






TATTTGAATTTGCTTTTAAT







GACTTATTTATAGTGTATAG







AGACTGTACACC






HPV59
SA4
653
654
ATTAAATGTCCACCAATGCT
1827






TATTACATCAAATACAAATC







CAGTTACAGATAACAGGTGG







CCATATTTAAATAGCAGATT







AATGGTATTTAAATT






HPV59
SD5
655
656
CAACCCGCGACGGCACATCC
1828






CTTGCAGTAACACTACGCCT







ATAATACACTTAAAAGGTGA







CAAAAATGGCCTTAAGTGTT







TAAGGTATAGATTAAGAAAA







GTACACTGGTTATT






HPV59
SA9
657
658
CTATTTTTTTACAGATGGCT
1829






CTATGGCGTTCTAGTGACAA







CAAGGTGTATCTACCTCCAC







CTTCGGTAGCTAAG






HPV59
SA10
659
660
CACGCAGGCAGTTCCAGACT
1830






TCTTACAGTTGGACATCCAT







ATTTTAAAGTACCTAAAGGT







GGTAATGGTAGACAGGATGT







TCCTAAGGTGTCTGCATATC







AATACAGAGTATTTAGGGTT






HPV59
SA3
661
662
AGCTAGACGAGCTGAACCAC
1831






AGCGTCACAACATTGTGTGT







GTGTGTTGTAAGTGTAATAA







TCAACTTCAGCTAGTAGTAG







AAACCTCGCAAG






HPV59
SD2
663
664
GCAGCAAACCAGTAACCTGC
1832






AATGGCCGATTCGGAAGGTA







CAGATGGGGAAGGGACGGGG







TGCAATGGATGGTTTTTTGT







GCAGGCAATAGTAGATAAA






HPV66
SD3
665
666
CATTGGAAACATTGGAAACA
1833






TCACAACAGGTAGAATACGA







AAAGGGAAATGGGTGCGGGA







GCTCACAAAATGGAGGCTCG







CAAAA






HPV66
SD1
667
668
AATACCTTTACTTGATCTTA
1834






GATTATCATGTGTATACTGC







AAAAAGGAACTTACAAGTTT







AGAGCTATATAGGTTTGCAT







GTATTGAGTTAAAACTAGTA







TATAGAAACAATTGG






HPV66
SA6
669
670
GGGGTGGATTACAGAGGCAT
1835






ATATTATATGCATGATGGCC







ACAAAACATATTACACAGAC







TTTGAACAGGAGGCCAAAAA







ATATGGGTGTACAAACATAT







GGGAAGTACAT






HPV66
SD5
671
672
GGTGATAAAACTACGCCTGT
1836






AATCCATTTAAAAGGTGAAG







CTAATAGATTAAAGTGTTGT







AGATACAGATTTCAAAAATA







TAAAACATTATTTACAGATG







TA






HPV66
SA1
673
674
GTTATCTGATTTATCAATAA
1837






GGTGCTACCGATGTCAATGT







CCGTTAACACCGGAGGAAAA







ACAA






HPV66
SA9
675
676
TATTTTTTTAAACGTAGGCG
1838






CCGTAAACGTATTCCCTATT







TTTTTGCAGATGGCGATGTG







GCGGCCTAGTGACAATAAGG







TGTACCTACC






HPV66
SA3
677
678
CAACATAAGTGTTACCTAAT
1839






TCACGTACCTTGTTGTAAGT







GTGAGTTGGTGGTGCAGTTG







GACATTCAGAGTACCAA






HPV66
SD2
679
680
GCGCATCATCTAAATAACTG
1840






CAATGGCATCACCTGAAGGT







ACAGATGGGGAGGGGATGGG







ATGTTGTGG






HPV68
SD3
681
682
CCGGACAGCGGCTATGGCAA
1841






TATGGAAGTGGAAACTAACT







CGGAGGTAACTGTAGCACCT







AATATAAATGGGGAGGATGG







GGAAAATGAAGGGGAA







AATGGCGACAGT






HPV68
SD1
683
684
GTTACAATAGACTGTGTCTA
1842






TTGCAGAAGGCAACTACAAC







GGACAGAGGTATATGAATTT







GCCTTTAGTGACCTATGTGT







AGTGTATAGAGACGGGG






HPV68
SA4
685
686
AATAACATCCAATACTAACC
1843






CTGTAGAAGACAATAGGTGG







CCGTATTTACATAGTAGACT







AACCGTGTTTAAATTTC






HPV68
SA1
687
688
ACCATAACTAATACAAAGTT
1844






ATATAATTTATTGATAAGGT







GCATGAGTTGCCTGAAACCA







TTGTGTCCAGCAGAAAAA






HPV68
SA6
689
690
ATGGCAACATAATCCATTGT
1845






CCTGACTCTATGTGCAGTAC







CACTGACGGAAAAGTATCCA







CTACTGAATCTGTTGCCGAC






HPV68
SD5
691
692
AAGACGGAGCCTTTGTTGTG
1846






GTGACACTACACCTATAGTG







CATTTAAAAGGTGACAAAAA







TGGATTAAAATGTCTTA






HPV68
SA9
693
694
TCCAATTATTATTTATTACC
1847






ATTGTTATTCTTTTTATTAA







AAAAACGTAAACACCTTCCT







TATTTTTTTACAGATGGCAT







TGTGGCGAGCTAGCGACAAC







ATGGTGTATTTGCCTCCCCC







C






HPV68
SA3
695
696
CGGGACGAACAACAGCGTCA
1848






CAGAATTCAGTGTCTGTGTT







GTAAGTGTAACAAGGCACTG







CAACTAGTAGTAGAAGCGTC







GCGGGAC






HPV68
SD2
697
698
ACCCAGTAATCTGCAATGGC
1849






CAATTGTGAAGGTACCGATG







GGGACGGGACGGGGTGTAAC







GGATGGTTTTTGTAGAAGC







AAT






HPV73
SD3
699
700
GGACAGTGGATATGGCAATA
1850






CTGAAGTGGAAACTTACGAG







ACAGAGGTACCGGGACTTGG







GGCAGGGGTAGGGTGTTTAC







AAAATG






HPV73
SD1
701
702
ATACATGATATAAACCTGGA
1851






CTGTGTGTTTTGCCAACGTG







GACTGTACAGATCTGAGGTA







TATGATTTTGCATTTAGTGA







TTTGTGTATTGTATATAGAA







AGGATAAACCATATG






HPV73
SA4
703
704
ATCAAATACAAATCCTAAAG
1852






CAGATGATACTTGGAAATAT







TTACATAGTAGAATTAAGGT







GTTTACTTTTTTAAATCCAT







T






HPV73
SA6
705
706
ATGGGTGGTCAGGTAATATG
1853






TTGTGCTCCTGTATCTAGCG







CCTGTGAAGTATCCATTCCT







GAAATTGTTAACCCACTGCA







C






HPV73
SD5
707
708
CCTGTACCCAGTGTACTACA
1854






CATAATGTTGCGCCAATAGT







GCATTTAAAAGGTGACAAAA







ACAGCTTAAAATGTTTTAGA







TATAGATTGCATAAAGGCTA







TTCACATTTATTTAAAAA






HPV73
SA1
709
710
AAATTTAACTAACAAACAGT
1855






TATGTAATATTTTAATAAGG







TGCGGAAAATGCCAAAAACC







ATTATGTCCACTGGAAAAGC







AAAAGCATGTAGATGAAAA






HPV73
SA9
711
712
TATTATTTGTTAAAGCGCAA
1856






ACGTAAACGTCTGTCATATT







CTTTTACAGATGTGGCGACC







TACTGATGCAAAGGTATACC







TGCCCCC






HPV73
SA10
713
714
TGGCTGTGGGACACCCATAT
1857






TTTCCTATCAAGGATTCTCA







AAAACGTAAAACCATAGTTC







CTAAAGTTTCAGGTTTG






HPV73
SA3
715
716
CAGCCATCTAGACAGACAAG
1858






CTGAACGAGAGTGTTACAGA







ATAGTTACTGACTGCACGAA







GTGTCAGTGCACAGTATGCC







TTGCCATTGAAAGCAACAAA







GCTGATTTAAGAGTGA






HPV73
SD2
717
718
GCCCCAACTGTTCCAGAAAC
1859






CTATAAAAGAAGATGGCTGA







TTCAGGTAATTGGGAAGGGA







GGTGTACGGGATGGTTTAAT







GTAGAAGCCATTGTAG






HPV82
SD3
719
720
CACAAGTGGAGACTGTGGAA
1860






GGACCCTTACAGGTAGATGG







GCAAAATGACGGGTCACAAC







ATAGTATGTGTAGTGGCGGG







GGGAGC






HPV82
SD1
721
722
ATTCAGGTATTGTGTGTATA
1861






TTGTAAAAAGGAGTTGTGTA







GAGCAGATGTGTATAATGTA







GCATTTACAGAACTTAGGAT







TGTATATAGG






HPV82
SA4
723
724
TTGTATGCCCACCATTGCTT
1862






ATTACCTCAAATATCAATCC







AAAAGAAGATCCAAATTTAA







TGTATTTACATAGTAGAGTG







ACAGTATTTCAATTTTTAAA







TGCATTTCCATTTGACCCCC







AT






HPV82
SA6
725
726
TATATGTGTGGCAATGTAAT
1863






AACATGTCCTGAATATGTAT







CTAGTACCTACAGCACCCCG







TCACCCTCTACTACAACTG






HPV82
SD5
727
728
GGAACTGCAGGCCCAAACAC
1864






CGGAGGGCACCTCAGTGCAA







CTAAAACTGCGTTTATAGTT







CATTTAAAAGGTGCAACAAA







TTGTTTAAAATGTTTAAGAT







ACAGATTTGCAAAACATAGA







AATTTGT






HPV82
SA1
729
730
AGAGGCCATTACTAACAAAA
1865






GTTTATATGAATTATTAATA







AGGTGTCATAGATGTCAGAG







ACCACTTGGGCCTGAAGAAA







AG






HPV82
SA9
731
732
CATATTTGTTACGCAAACGC
1866






CGTAAACGTATACCCTATTT







TTTTGCAGATGGCTTTGTGG







CGTACTAATGACAGCAAAGT







GTATTTACCACCTGCACC






HPV82
SA3
733
734
CAGCCAGCCAGACAAGCTGG
1867






ACAGGATACGTGTTACAGAA







TTAAAGTGCACTGTTGCAGG







TGTTCGAGTGTTGTACAGCT







CGCAGTGGAAAGCAGTG







GAGACAGCC






HPV82
SD2
735
736
CATCGGCAATGGACAGTGAA
1868






GGTACAGAGGATGAGGGGGC







GGGGTGTACCGGGTGG





















TABLE 2C








For-

Re-





ward

verse




Forward
pri-
Reverse
pri-




primer
mer
primer
mer




nucleic
SEQ
nucleic
SEQ


HPV
Region
acid
ID
acid
ID


type
name
sequence
NO
sequence
NO







HPV16
ctr11
AACGTGTTGC
737
CATTCCCCAT
738




GATTGGTGTA

GAACATGCTA





TTG

AACTTTG






HPV16
ctr12
CGTGCTTTTT
739
GAGGCTGCTG
740




GCTTTGCTTT

TTATCCACAA





GT

TAGTAAT






HPV16
ctr13
CCTGTGTAGG
741
TCTATTATCC
742




TGTTGAGGTA

ACACCTGCAT





GGT

TTGCT






HPV16
ctr14
CCAGGCCCAT
743
AGGTCAGGAA
744




TTTGTAGCTT

AACAGGGATT







TGG






HPV18
ctr11
TGGAGTAAAC
745
CATTTGTAAC
746




CCAACAATAG

GCAACAGGGC





CAGAAG

TAAT






HPV18
ctr12
CGTATGCATG
747
CATGTATATG
748




GGTATTGGTA

CAATAGTAAC





TTTGTG

ATGGGCAA






HPV18
ctr13
GAGGACGTTA
749
CCCTGTGATA
750




GGGACAATGT

AAGGACGCGA





GT

TTT






HPV18
ctr!4
CGCCCTAGTG
751
GGAGGATTGT
752




AGTAACAACT

AGGATAAAAT





GTATTT

GGATGCT






HPV31
ctr11
GTGAAACACC
753
TGCACATGCA
754




AGAATGGATA

TTACTATCAC





GAAAGAC

TGTCA






HPV31
ctr12
GCATTGTGCT
755
ACAACGTAAT
756




ATGCTTTTTG

GGAGAGGTTG





CTTTG

CAATA






HPV31
ctr13
GCTTAGTTTG
757
ACCACCGGCA
758




GGCCTGTGTT

TATCTATTAG







AGTTTTC






HPV31
ctr!4
TGTGTGTGTT
759
CAACTTTTAC
760




GTGTATGTTG

TATGGCGTGA





TCCTT

CACCTA






HPV33
ctr11
CGGAGCCAAA
761
CGTTATCATA
762




CATGTGCATT

TGCCCACTGT





G

ACCATT






HPV33
ctr12
CCATTTCTAC
763
GTTGTGTCAT
764




CTATGCTTGG

ATGCTGTGCA





TTGCT

TGAAA






HPV33
ctr13
CATGTGTAGG
765
CCTATTATCA
766




CCTTGAAATA

GCACCCGGTT





GGTAGA

GT





G








HPV33
ctr14
CTTGCCCTAC
767
CGGTTAGGCA
768




CCTGCATTG

TACAAAATGG







AGGAAAT






HPV35
ctr11
GCTATGTATT
769
CATTCTGGTG
770




TCAGCTGCAA

TTTCTCCATC





GTATGCT

AACCT






HPV35
ctr12
CGTTCGCTAT
771
GCCAAATATT
772




TGCTATCTGT

GTGCATGAGC





GTCATTA

GTTAATC






HPV35
Ctr13
GGTACAGATA
773
GACATTCTCC
774




ACAGGGAATG

TGCTTTTACC





CATTTC

TGGTTA





T








HPV35
ctr14
AACATTCCTA
775
TGGGTGGACC
776




CCTCAGCAGA

ACAAGTATGA





ACAC

AAA






HPV39
ctr11
AGGGTTACTG
777
CGTATCCCCT
778




TAGGAAAGGG

GTTACCACAC





ATTAAG

TAATATTG





T








HPV39
ctr12
TTGGTGTGGT
779
CTCCAATGGT
780




TTGGTGTGTG

GTGGTACGTA





TATAT

TAAGAA






HPV39
ctr13
CCAGCCATTG
781
GCCTATAATG
782




GGTGTTGGTA

CACAACTGTG







TCTGTT






HPV39
ctr14
CATTTTGTGG
783
CCTGGACAGG
784




CGACCGAAGT

ATGATGAGTA







ATAAGG






HPV45
ctr11
GCAACGTTAT
785
GGTACGTGCA
786




ACGCCCATAT

ACAATGTGCT





CCAAT

TAA






HPV45
ctr12
TGCTTTTGCT
787
CATCACAGGT
788




TGGTTGTTGG

ATGTTACACT





T

GTACTGT






HPV45
ctr13
GGCATGTGTA
789
ACATCCTGCG
790




GGTATGGAAA

TAATAACAGC





TTGGT

TGTAG






HPV45
ctr14
ATTTCGGTTG
791
CAGTTGTGCA
792




CCTGTGGCTT

AGCCATTGTT





ATA

TTAGT






HPV51
ctr11
GATGGAGGCA
793
GTGTTTGGTG
794




ACTGGAGAGA

GGCCATATAT





AATT

GACTAT






HPV51
ctr12
AAGCCAATAT
795
AACACGTATT
796




GTGCTGCTAA

GGGACAGCAG





TTGTA

TAG






HPV51
ctr13
ACACCCCTCC
797
TGTACGCCAA
798




ACAGGCTAA

CCTGCAACAA






HPV51
ctr14
GGGTATTACA
799
GCTGCAGCTG
800




TTATCCCCGT

TAACAAAATG





AGGTCA

GAA





A








HPV52
ctr11
CACCATCAGT
801
CTGTGACATT
802




TGCAGAAGGA

AGTTTGGACA





TTAAAA

CTGTT





G








HPV52
ctr12
CAACACAAGC
803
CCTGCGCATA
804




CAATATTGCT

CACCGATATA





GCTA

GAT






HPV52
ctr13
GGACTATATG
805
GATGCAGGGC
806




TTTTGGGAGG

GTTTTAGTTT





TGGATT

GG





T








HPV52
ctr14
TCGGTTGGTC
807
TTTAGGCGGG
808




TTGGCACAA

ACAACAAGTG







T






HPV56
ctr11
CAGATGATAG
809
GCTGTTGTGC
810




CCAAATTGCG

CCTTTTATAA





TTTCA

TGTCTAC






HPV56
ctr12
TGCTACGCAT
811
GGATGTGGCT
812




ATATATTGCA

ATAACAAACC





ACCATT

AAAACAAT





GA








HPV56
Ctr13
TGTACTCCCG
813
GTGTCTATCA
814




CTATGGGTGA

TGTCCCCATC





A

CTCTA






HPV56
ctr14
AATTCGGTTG
815
GGGTGCGGTA
816




CATGGCCTAG

CTGTACATAA





T

TTCAAG






HPV58
ctr11
CAATGGGACA
817
GGGCCACACA
818




ATGGATACAA

GTAACATACA





AGTAG

ACT





GT








HPV58
ctr12
TCTATATATG
819
CATGTGCAGA
820




CTTGGTTGCT

ACCAGTATAC





GGTGTTG

AGTTAGT






HPV58
ctr13
CGTTTGGTCT
821
GCTGTGCGGG
822




GGGCATGTGT

ATATCTGTTA





A

CTG






HPV58
ctr14
TCTATGAGTA
823
GGAGGTAAAG
824




AGGTGCTGTC

TAAAATGGAG





CCTAAA

GCAGTA





T








HPV59
ctr11
GTGCATGTTA
825
TCAAACACGC
826




ATTGAACCAC

TATCATCAAC





CCAAA

TCCAT






HPV59
ctr12
GTTGCAATGT
827
CATGGGCATA
828




CCCGCTTCTG

TAGTAGTAAC







AGTGGAA






HPV59
ctr13
GCTGTGTACC
829
CTGTGTCTAC
830




TGCCATTGGA

CATATCACCA







TCTTCA






HPV59
ctr14
GGTTGCACCC
831
GCAAAACTGG
832




AATGAGTAAG

ACATTCAGGA





GTA

CAAAA






HPV66
ctr11
AGACATAGAT
833
ATCACCCCCT
834




AGCAATGCAC

TCATCTACTT





AAGCA

TACTACA






HPV66
ctr12
GTTTGTCTGT
835
GCATGGCAAT
836




GTGTGTGCCA

ATATACACAG





TT

TGTAGGT






HPV66
Ctr13
GTAGGCCGAG
837
GTGCACATCC
838




GTCAACCTTT

CACAATACAT





A

AACTG






HPV66
ctr14
GGTTAGGTGG
839
CAAAAGGCTA
840




TGTTCCTTAC

GGCAACCGAA





TGTTTA

TT






HPV68
ctr11
CGACACGCCG
841
CGCTGCAGCA
842




GAATGGATAA

TTACTATTAC







AATCTG






HPV68
ctr12
GGTGTGGTTT
843
GGTATACAGC
844




TGTGTATGCA

AAACACCTCA





TGT

AATGGT






HPV68
Ctr13
GCCTGTGTTG
845
TGCAACATTG
846




GTGTTGAAAT

TCCCTACTGT





AGGTA

CTTTAG






HPV68
ctr14
CCCTGTGACT
847
CCACACGGTA
848




AACATATGTC

TAGTTTGCAA





CTTGT

CCAT






HPV73
ctr11
GAACGCATGT
849
GCTGCACTAA
850




TAATTGAACC

CGTTTGTCTT





TCCAA

TTAATCC






HPV73
ctr12
TCGCTTGCAG
851
CATGGTAATG
852




TGTCTGTGTA

TACAAGTGCC





TATTT

ATAGGA






HPV73
Ctr13
TGTATTTTAG
853
CTCCAAAGCC
854




GTTGTAGGCC

AACATCTATC





TCCCTTA

ATATCAC






HPV73
ctr14
GTCGCCATTT
855
AGGAAACAAA
856




TACATGCATT

CCCTGCCAAG





AAGGT

TT






HPV82
Ctr11
CGTAGTACAG
857
CCCATTGTAC
858




CCGTTGCATT

CATTTGCGAT





G

AGTT






HPV82
ctr12
GCTGCTAAGT
859
CTGCTGCAAA
860




GTATATAGTT

CACATATTGG





ACTCGC

GATT





A








HPV82
Ctr13
GGATGTGTTG
861
TCCTGTTGGT
862




GTGTTGAAGT

CGTTGCCATT





AGGTA








HPV82
ctr14
CCTGTAGGTT
863
AAATCGGTCG
864




AAGGGTGGTG

CCACAAAATG





TT

G





















TABLE 2Cbis







For-







ward







pri-


Ampli-




mer
Reverse
Amplicon
con




SEQ
primer
nucleic
SEQ


HPV
Region
ID
SEQ ID
acid
ID


type
name
NO
NO
sequence
NO







HPV16
ctr11
737
738
CTGCATTTGGACTTA
1869






CACCCAGTATAGCTG







ACAGTATAAAAACAC







TATTACAACAATATT







GTTTATATTTACACA







TT






HPV16
ctr12
739
740
GTGCTTTTGTGTGTC
1870






TGCCTATTAATACGT







CCGCTGCTTTTGTCT







GTGTCTACATACACA







TCATTAATAATATTG







GT






HPV16
ctr13
741
742
CGTGGTCAGCCATTA
1871






GGTGTGGGCATTAGT







GGCCATCCTTTATTA







AATAAATTGGATGAC







ACAGAAAATGCTAGT







GCTTATGC






HPV16
ctr14
743
744
CAACCGAATTCGGTT
1872






GCATGCTTTTTGGCA







CAAAATGTGTTTTTT







TAAATAGTTCTATGT







CAGCAACTATGGTTT







AAACTTGTACGTTTC







CTGCTTGCCATGCGT







G






HPV18
ctr11
745
746
GATTTAAAACACTAA
1873






TACAGCCATTTATAT







TATATGCCCATATTC







AATGTCTAGACTGTA







AATGGGGAGTATTAA







T






HPV18
ctr12
747
748
TATATTGTGGTAATA
1874






ACGTCCCCTGCCACA







GCATTCACAGTATAT







GTATTTTGTTTTTTA






HPV18
ctr13
749
750
CTGTAGATTATAAGC
1875






AGACACAGTTATGTA







TTTTGGGCTGTGCCC







CTGCTATTGGGGAAC







ACTGGGCTAAAGGCA







CTGCTTGT






HPV18
ctr14
751
752
GTGTTTGTGGTATGG
1876






GTGTTGCTTGTTGGG







CTATATATTGTCCTG







TATTTCAAGTTATAA







AACTGCACACCTTAC






HPV31
ctr11
753
754
AAACAGTATTACAGC
1877






ATAGTTTTAATGACA







CAACATTTGATTTGT







CCCAAATGGTACAAT







GGGCATATGACAATG







ATGTTATGGATGATA







GTGAAATTGCCTATA







AATATGCACAATTAG







C






HPV31
ctr12
755
756
CTTTTGTGTGCTACT
1878






ATTTGTGTGTCTTGT







CATACGTCCACTTGT







GCTGTCTGTGTCGGT







ATATGCAACACTACT







ATTATTAATTGTGAT







TTTATGGGT






HPV31
ctr13
757
758
GGTTTAGAGGTAGGT
1879






CGCGGGCAGCCATTA







GGTGTAGGTATTAGT







GGTCATCCATTATTA







AATAAATTTGATGAC







ACT






HPV31
ctr14
759
760
ATATACACCCTATTA
1880






GTAACATACTATTAC







TATTTTATAAACTAT







TGTTCCTACTTGTTC







CTACTTGTTCCTGCT







CCTCCCAATAGTCAT







GTACTTATTTCTGCC







TATAATT






HPV33
ctr11
761
762
ATATACACCCTATTA
1881






GTAACATACTATTAC







TATTTTATAAACTAT







TGTTCCTACTTGTTC







CTACTTGTTCCTGCT







CCTCCCAATAGTCAT







GTACTTATTTCTGCC







TATAATT






HPV33
ctr12
763
764
GGTGTTGGTATTGCTG
1882






CTTTGGGTGTTTGTG







GGATCTCCTTTAAAA







ATTTTTTTTTGCTAT







TTGTTGTTTTTATAT







TTACCAATGATGTGT







ATTAAT






HPV33
Ctr13
765
766
GGCAGCCATTAGGCG
1883






TTGGCATAAGTGGTC







ATCCTTTATTAAACA







AATTTGATGACACTG







AAACCGGTAACAAGT







ATCCTGG






HPV33
ctr14
767
768
CAATGTACCTACCTT
1884






TATTTCCCTATATTT







GTAGTACCTACATGT







TTAGTATTGCTTTAC







CTTTTGACATACTAG







TGTCCATATTGTACA






HPV35
ctr11
769
770
AATACAACCACCAAA
1885






ATTACGTAGTACCCC







AGCTGCGTTATATTG







GTTTAAAACAGCAAT







GTCAAATATTAGTG






HPV35
ctr12
771
772
TACTCAGCATTAATA
1886






TTACTGGTTTTAATA







CTGTGGGTTACTGTA







GCAACACCACTACGT







TGCTTTTGTTGTTTT







CTTTGCTTTTTGTAT







ATACCTATGGGAAT






HPV35
Ctr13
773
774
ATGGATTATAAACAA
1887






ACACAATTGTGTTTA







ATAGGTTGTAGGCCT







CCTATAGGTGAACAT







TGGGGAAAAGGCACA







CCTTGTAATGC






HPV35
ctr14
775
776
TTAATCCTTGTGTTC
1888






CTGATATATATTGTT







TGCCAACTTTATATT







GGC







TTTTGCCAATCTTTA







AACTTGATTCATCTT







GCAGTATTAGTCAT






HPV39
ctr11
777
778
ACATTGTTACATGTT
1889






CCAGAAAGTTGTATG







CTTCTGGAGCCTCCT







AAACTGCGCAGCCCT







GTAGCAGCACTATAT







TGGTATCGCACAGGT







ATATC






HPV39
ctr12
779
780
ATATATGTTGCAATG
1890






TCCCGCTTTTGCCGT







CTGTGCATGTGTGTG







CGTATGTGTGGATAA







TTGTGTTTGTGTTTA






HPV39
ctr13
781
782
TTAGTGGACACCCAT
1891






TATATAATAGACAGG







ATGATACTGAAAACT







CACCATTTTCATCAA







CCACCAATAAGGACA







GTAGGGATAATGTGT







CTGTGGATTATA






HPV39
ctr14
783
784
TCAGCAAAAACATGT
1892






CTTTACCTTAGGTTC







ACCCTGCATAGTTGG







CACTGGTAACAGTTT







TACTGGCGCG






HPV45
ctr11
785
786
GTTTAGATTGTAAAT
1893






GGGGAGTATTAATAT







TAGCTTTATTAAGAT







ATAAATGTGGCAAAA







ATAGACTAACTGTTG







CAAAAGGC






HPV45
ctr12
787
788
GTTTCTTTTTATAGT
1894






TGTTATTACATCCCC







ATTAACAGCATTTGC







TGTATACATTTGTTG







CTATTTACTACCTAT







GTTTGTATTACATAT







GCATGCTTTACACAC







CATACAATAATTACT







ATAATGT






HPV45
ctr13
789
790
CGTGGGCAGCCTTTA
1895






GGTATTGGCCTAAGT







GGCCATCCATTTTAT







AATAAATTGGATGAT







ACAGAAAGTGCTCAT







GCAG






HPV45
ctr14
791
792
TGTGACCTTTTAAAC
1896






ATAATACCTAAACTG







GCACATTTACAACCC







CTACATAGTTTAACC







TACTGGCGCGCCTTC







TTGGCGTACATGTGG







CACACCTGGTATTAG







TCATTTTCCTGTCCA







GGTGT






HPV51
ctr11
793
794
GCTAAATTTTTAAGA
1897






TATCAAGGTGTAAAC







TTTATGTCCTTTATT







CAAATGTTTAAACAG







TTTTTAAAAGGAACA







CCAAAACACAATTGC






HPV51
ctr12
795
796
TAGACATATTGTAAC
1898






CATTGCAGTGTTTAT







TATTTTGCTATTTGT







GCTTTGCTTGTGTGT







GTGTCTTGTGTTGTG







TTGTTTGTTGCCG






HPV51
Ctr13
797
798
GCCAGATCCTTTGGC
1899






CAAATATAAATTTTG







GGATGTTGATTTAAA







GGAACGATTTTCTTT







AGATTTAGACCAATT







TGCATTGGGTCGCAA







GTTT






HPV51
ctr14
799
800
GGGTGGTGTTTCGGT
1900






GGCGTCCCTATTGCC







CTACCCATTTTTTGC







AG







CACAACAGTTTATAT







TTGTGCTATTTAGTT







ATACTTTGTAGC






HPV52
ctr11
801
802
TATTAATACAGCCCT
1901






ATAGCATATATGCCC







ATTTGCAATGTTTAA







CATGTGACAGAGGCG







TGCTTATACTGCTGC







TAATTAGGTTTAAAT







GTGGAAAAAACAGAT







T






HPV52
ctr12
803
804
TTGTGTATATATAAC
1902






AATGTTAGGATTATT







TGTATTTTGTTTTAT







TTTGCTTATGGTGTT







TTGTGCAGTGCTTAG







GCCGCTCTTGCT






HPV52
Ctr13
805
806
AAAAGAAAAGTTTTC
1903






TGCAGATTTAGATCA







GTTTCCTTTAGGTAG







GAAGTTTTTGTTACA







GGCAGGGCTACAGGC







TAGGC






HPV52
ctr14
807
808
CTTTGGTTGTCCTTG
1904






GCACAGTAACAACTA







TTTTTATATAAGTTT







CAGCAAACTGCTTAA







TCCTTTGGTTTCCTG







CAGTCCACTGGTCT






HPV56
ctr11
809
810
ATATGCACAATTAGC
1905






AGATGTAGACAGCAA







TGCACAAGCCTTTTT







AAAAAGCAATATGCA







GGCAAAATATGTAAA







GGATTGTGGAATAAT







GT






HPV56
ctr12
811
812
TTTTTGTGTTATTGG
1906






TGTGTTTGCGCTTTG







CTTTTGTGTTTGTTT







GCTTGTGTGTCATGT







TGTCCCGCTTTTGCT







ATCTGCCTCTGTGTT







TTCCAGTTGTATATT







ATTAATAAT






HPV56
ctr13
813
814
CATTGGACTAAAGGT
1907






GCTGTGTGTAAGTCC







ACACAAGTTACCACA







GGGGACTGCCCGCCT







CTTGCATTAATTAAT







ACACCTA






HPV56
ctr14
815
816
GCCATTATTTAAACT
1908






AAAAGGAATTCGGTT







GCATGGCCTAGTGCC







ATTATTTAAACCAAA







AGGCCCTTTTCAGCA







GAACAGTTAATCCTT







TGGCATATTGCCGTT







TCCTGTGTTTTATA






HPV58
ctr11
817
818
GTGAAAAAACAAATG
1909






ATGGAGGTAATTGGA







GACCAATAGTACAAT







TTTTAAGATATCAAA







ATATTGAATTTACAG







CATTTTTAGTTGCAT







TTAAACAGTTTTTAC







AAGGTGTACCAAAAA







AA






HPV58
ctr12
819
820
GTGTTGCTGCTTTGG
1910






GTGTCTGTGGGGTCG







GCTCTACGAATTTTT







TTCTGTTACTTAATA







TTTTTATATATACCA







ATGATGTGTATTAAT







TTTCATGCACAATAC







TTAACCCAACAAG






HPV58
Ctr13
821
822
GGCCTTGAAATAGGT
1911






AGGGGACAGCCATTG







GGTGTTGGCGTAAGT







GGTCATCCTTATTTA







AATAAATTTGATGAC







ACTGAAAC






HPV58
ctr14
823
824
TGCCCTACCCTGCCC
1912






TGCCTATTATGCATA







CCTATGTAATAGTAT







TTGTATGATATGTAT







TTTATAGTTTTTAAC







AG






HPV59
ctr11
825
826
TTGCGTAGTGGTGTT
1913






GCAGCACTATATTGG







TACAGAACAGGAATG







TCCAATATTAGTGAA







GTTATAGGGGAAACG







CCCGAATGGATACAA







AGACTAACAATTATA







CAAC






HPV59
ctr12
827
828
CAATCTGTCTATATG
1914






TGTGCATATACATGG







TTACTAGTATTTGTG







TATATTGTGGTTATC







ACCTCCTCATATGAG







TGTTTTTTACTATAT







ATATTGTTTTTTATA







A






HPV59
ctrB
829
830
GAACACTGGACAAAG
1915






GGCACTGCTTGTAAG







CCTACTACTGTGGTT







CAGGGCGATTGTCCT







CCACTAGAATTAATA







AATACACCAAT






HPV59
ctr14
831
832
CTGTCCCTTTATTGT
1916






TTCTTTGTCCTTATT







ACACATTATTACACA







TTGCCCTACTTACAT







AGGTGTGTTTGTTCC







TTCA






HPV66
ctr11
833
834
TTTTTAAAAAGTAATA
1917






TGCAAGCAAAATATG







TAAAGGATTGTGGAA







TAATGTGTAGACATT







ACAAAAGGGCACAGC







AACAGCAAATGAATA







TGTGCCAGTGGATAA







AGCATATA






HPV66
ctr12
835
836
TTGTCCCGCTTTTGC
1918






TATCTGCATCTTTAT







TTACAAGTTGTCTTA







TACTAATTATTTTAT







TTTGGTTTGTTGTGG







CTACATCATTTTTTG







ATACTTTTATACTGT







TTTTACTATTTTTTT







ATAT






HPV66
Ctr13
837
838
GGTGCTGGGTTAAGT
1919






GGTCATCCATTATTT







AATAGGCTGGATGAC







ACTGAGGTCTCTAAT







TTAGCAGGTAATAAT







GTTATAGAAGATAGC







CGGGACAATATATCT







GTTGATTGTAAACAA







ACC






HPV66
ctr14
839
840
ATGTTATATTAAATA
1920






GGTTGTTTGTATGCA







CTATAGTAACACACC







AAACTCCATTTTAGT







GCTGTACGCCATTTT







ATGCATGCAACCG






HPV68
ctr11
841
842
AAAGATTAACCATAA
1921






TACAACATGGAATAG







ATGATAGTGTATTTG







ATTTATCAGACATGG







TACAATGGGCATTTG







ATAATGAGTTAACAG







ATGACAGTGATATAG







CATTTCAATATGCTA







TGTTAG






HPV68
ctr12
843
844
ATATATGTTGCACTG
1922






TCCCGCTTTTGCAGT







CTGTGCATGTGTGTG







TGTATGTGTGGATAT







TTGTGTTTGTGTTTA







TATTAGTTAGAACTA







C






HPV68
Ctr13
845
846
GGGGGCAGCCATTGG
1923






GCGTTGGCCTTAGTG







GGCATCCACTATATA







ATAGGCTGGATGATA







CTGAAAATTCCCCGT







TTTCCTCTAATAAAA







CTC






HPV68
ctr14
847
848
TTTACATATAATAGG
1924






ACTGCAACATTTCAT







ACATAATTTGTAGCC







CTACCCTAAGGTGTG







TTACATTATATGCAA







TATATTT






HPV73
ctr11
849
850
GACTACGAAGTACAC
1925






CATGTGCATTATATT







GGTATAGAACTAGTT







TATCAAATATTAGTG







AAATAGTAGGAGACA







CACCTGAGT






HPV73
ctr12
851
852
ACCCATGGTTATTGG
1926






TATTGATTATAATAA







CCTTTATACATGTAT







CA






HPV73
Ctr13
853
854
GGGGAACATTGGGGT
1927






CCAGGCACGCCATGT







ACTTCACAAACTGTT







AATACTGGTGATTGT







CCCCCACTGGAATTA







AAGAACACCCCTATA







CAGGATG






HPV73
ctr14
855
856
AAAAAGGGCAACCGA
1928






TTTCGGTTGCACAGT







AAAACATGTTTTAAT







GTGTTTTGCTGTTGT







AGCAAAATAGTTGTA







CTGTTTTTGGCTTCC







TGCAGGC






HPV82
ctr11
857
858
TACTTTTATAGAACA
1929






GGAATATCAAACATT







AGTAGCACATATGGC







GAAACACCAGAATGG







ATTACAAGACAAACA







CAACTACAGCACAGT







TTTGATGATAGCACG







TTTG






HPV82
ctr12
859
860
ACCATTGCGGTGTTT
1930






TTGGTGTGTTTATTT







GTGCTTTGCGTGTGT







GTGTGTCTTGTGTTG







TGTTGTTTGTTGCCG







CTATTGC






HPV82
ctr13
861
862
GGGGTCAGCCGTTAG
1931






GTGTTGGCCTTAGTG







GTCATCCTTTATTTA







ATAAGTATGATGATA







CTGAAAACTCTAGGT







TTGCC






HPV82
ctr14
863
864
TAGGTGGCGTCCCTA
1932






TTGCCCTACCCATAT







TTGTGGCTTGCAGCA







CACTTGTATATATAT







GTTCTTGCTGTATTG







CATGTACCACAGGAT







TCCATTTTGTTTTTT







CCTGCAG





















TABLE 2D








Forward

Reverse




Forward primer
primer
Reverse primer
primer


HPV

nucleic acid
SEQ ID
nucleic acid
SEQ ID


type
Region name
sequence
NO
sequence
NO







HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 865
CTGAGAAGCCCTGCCCTTC
 866



MYC_001_exon1
C








HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 867
AAATACGGCTGCACCGAGT
 868



MYC_001_exon2
C








HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 869
GGTGATCCAGACTCTGACCT
 870



MYC_001_exon3
C

TTTG






HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 871
ATCATGATGGCTGTATGTGC
 872



PVT1_002_exon3
C

CA






HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 873
CATGGTTCCACCAGCGTTAT
 874



PVT1_004_exon1
C

T






HPV16
bkpt1-
AGTACAGACCTACGTGACCATATAGA
 875
TCTTTGCTCGCAGCTCGT
 876



PVT1_005_exon1
C








HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 877
CTGAGAAGCCCTGCCCTTC
 878



MYC_001_exon1









HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 879
AAATACGGCTGCACCGAGT
 880



MYC_001_exon2









HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 881
GGTGATCCAGACTCTGACCT
 882



MYC_001_exon3


TTTG






HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 883
ATCATGATGGCTGTATGTGC
 884



PVT1_002_exon3


CA






HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 885
CATGGTTCCACCAGCGTTAT
 886



PVT1_004_exon1


T






HPV16
bkpt2-
GCTCACACAAAGGACGGATTAAC
 887
TCTTTGCTCGCAGCTCGT
 888



PVT1_005_exon1









HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 889
CTGAGAAGCCCTGCCCTTC
 890



MYC_001_exon1









HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 891
AAATACGGCTGCACCGAGT
 892



MYC_001_exon2









HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 893
GGTGATCCAGACTCTGACCT
 894



MYC_001_exon3


TTTG






HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 895
ATCATGATGGCTGTATGTGC
 896



PVT1_002_exon3


CA






HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 897
CATGGTTCCACCAGCGTTAT
 898



PVT1_004_exon1


T






HPV16
SD2-
GGAATTGTGTGCCCCATCTGT
 899
TCTTTGCTCGCAGCTCGT
 900



PVT1_005_exon1









HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 901
CTGAGAAGCCCTGCCCTTC
 902



MYC_001_exon1
AAA








HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 903
AAATACGGCTGCACCGAGT
 904



MYC_001_exon2
AAA








HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 905
GGTGATCCAGACTCTGACCT
 906



MYC_001_exon3
AAA

TTTG






HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 907
ATCATGATGGCTGTATGTGC
 908



PVT1_002_exon3
AAA

CA






HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 909
CATGGTTCCACCAGCGTTAT
 910



PVT1_004_exon1
AAA

T






HPV18
bkpt1-
AATGACAGTAAAGACATAGACAGCC
 911
TCTTTGCTCGCAGCTCGT
 912



PVT1_005_exon1
AAA








HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 913
CTGAGAAGCCCTGCCCTTC
 914



MYC_001_exon1









HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 915
AAATACGGCTGCACCGAGT
 916



MYC_001_exon2









HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 917
GGTGATCCAGACTCTGACCT
 918



MYC_001_exon3


TTTG






HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 919
ATCATGATGGCTGTATGTGC
 920



PVT1_002_exon3


CA






HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 921
CATGGTTCCACCAGCGTTAT
 922



PVT1_004_exon1


T






HPV18
bkpt2-
CAGCTACACCTACAGGCAACAA
 923
TCTTTGCTCGCAGCTCGT
 924



PVT1_005_exon1









HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 925
CTGAGAAGCCCTGCCCTTC
 926



MYC_001_exon1









HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 927
AAATACGGCTGCACCGAGT
 928



MYC_001_exon2









HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 929
GGTGATCCAGACTCTGACCT
 930



MYC_001_exon3


TTTG






HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 931
ATCATGATGGCTGTATGTGC
 932



PVT1_002_exon3


CA






HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 933
CATGGTTCCACCAGCGTTAT
 934



PVT1_004_exon1


T






HPV18
SD2-
TGCATCCCAGCAGTAAGCAA
 935
TCTTTGCTCGCAGCTCGT
 936



PVT1_005_exon1









HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 937
CTGAGAAGCCCTGCCCTTC
 938



MYC_001_exon1
A








HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 939
AAATACGGCTGCACCGAGT
 940



MYC_001_exon2
A








HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 941
GGTGATCCAGACTCTGACCT
 942



MYC_001_exon3
A

TTTG






HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 943
ATCATGATGGCTGTATGTGC
 944



PVT1_002_exon3
A

CA






HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 945
CATGGTTCCACCAGCGTTAT
 946



PVT1_004_exon1
A

T






HPV31
bkpt1-
CAACGTTTAAATGTGTGTCAGGACAA
 947
TCTTTGCTCGCAGCTCGT
 948



PVT1_005_exon1
A








HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 949
CTGAGAAGCCCTGCCCTTC
 950



MYC_001_exon1









HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 951
AAATACGGCTGCACCGAGT
 952



MYC_001_exon2









HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 953
GGTGATCCAGACTCTGACCT
 954



MYC_001_exon3


TTTG






HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 955
ATCATGATGGCTGTATGTGC
 956



PVT1_002_exon3


CA






HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 957
CATGGTTCCACCAGCGTTAT
 958



PVT1_004_exon1


T






HPV31
bkpt2-
CAGCTGCATGCACAAACCA
 959
TCTTTGCTCGCAGCTCGT
 960



PVT1_005_exon1









HPV31
SD2-
AATCGTGTGCCCCAACTGT
 961
CTGAGAAGCCCTGCCCTTC
 962



MYC_001_exon1









HPV31
SD2-
AATCGTGTGCCCCAACTGT
 963
AAATACGGCTGCACCGAGT
 964



MYC_001_exon2









HPV31
SD2-
AATCGTGTGCCCCAACTGT
 965
GGTGATCCAGACTCTGACCT
 966



MYC_001_exon3


TTTG






HPV31
SD2-
AATCGTGTGCCCCAACTGT
 967
ATCATGATGGCTGTATGTGC
 968



PVT1_002_exon3


CA






HPV31
SD2-
AATCGTGTGCCCCAACTGT
 969
CATGGTTCCACCAGCGTTAT
 970



PVT1_004_exon1


T






HPV31
SD2-
AATCGTGTGCCCCAACTGT
 971
TCTTTGCTCGCAGCTCGT
 972



PVT1_005_exon1









HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 973
CTGAGAAGCCCTGCCCTTC
 974



MYC_001_exon1
CGA








HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 975
AAATACGGCTGCACCGAGT
 976



MYC_001_exon2
CGA








HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 977
GGTGATCCAGACTCTGACCT
 978



MYC_001_exon3
CGA

TTTG






HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 979
ATCATGATGGCTGTATGTGC
 980



PVT1_002_exon3
CGA

CA






HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 981
CATGGTTCCACCAGCGTTAT
 982



PVT1_004_exon1
CGA

T






HPV33
bkpt1-
GTGCAGGAGAAAATACTAGATCTTTA
 983
TCTTTGCTCGCAGCTCGT
 984



PVT1_005_exon1
CGA








HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 985
CTGAGAAGCCCTGCCCTTC
 986



MYC_001_exon1









HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 987
AAATACGGCTGCACCGAGT
 988



MYC_001_exon2









HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 989
GGTGATCCAGACTCTGACCT
 990



MYC_001_exon3


TTTG






HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 991
ATCATGATGGCTGTATGTGC
 992



PVT1_002_exon3


CA






HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 993
CATGGTTCCACCAGCGTTAT
 994



PVT1_004_exon1


T






HPV33
bkpt2-
ACGTACTGCAACTAACTGCACAA
 995
TCTTTGCTCGCAGCTCGT
 996



PVT1_005_exon1









HPV33
SD2-
GTGCCCTACCTGTGCACAA
 997
CTGAGAAGCCCTGCCCTTC
 998



MYC_001_exon1









HPV33
SD2-
GTGCCCTACCTGTGCACAA
 999
AAATACGGCTGCACCGAGT
1000



MYC_001_exon2









HPV33
SD2-
GTGCCCTACCTGTGCACAA
1001
GGTGATCCAGACTCTGACCT
1002



MYC_001_exon3


TTTG






HPV33
SD2-
GTGCCCTACCTGTGCACAA
1003
ATCATGATGGCTGTATGTGC
1004



PVT1_002_exon3


CA






HPV33
SD2-
GTGCCCTACCTGTGCACAA
1005
CATGGTTCCACCAGCGTTAT
1006



PVT1_004_exon1


T






HPV33
SD2-
GTGCCCTACCTGTGCACAA
1007
TCTTTGCTCGCAGCTCGT
1008



PVT1_005_exon1









HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1009
CTGAGAAGCCCTGCCCTTC
1010



MYC_001_exon1
T








HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1011
AAATACGGCTGCACCGAGT
1012



MYC_001_exon2
T








HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1013
GGTGATCCAGACTCTGACCT
1014



MYC_001_exon3
T

TTTG






HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1015
ATCATGATGGCTGTATGTGC
1016



PVT1_002_exon3
T

CA






HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1017
CATGGTTCCACCAGCGTTAT
1018



PVT1_004_exon1
T

T






HPV35
bkpt1-
ATTACGAGACTGATAGCACATGTTTG
1019
TCTTTGCTCGCAGCTCGT
1020



PVT1_005_exon1
T








HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1021
CTGAGAAGCCCTGCCCTTC
1022



MYC_001_exon1









HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1023
AAATACGGCTGCACCGAGT
1024



MYC_001_exon2









HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1025
GGTGATCCAGACTCTGACCT
1026



MYC_001_exon3


TTTG






HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1027
ATCATGATGGCTGTATGTGC
1028



PVT1_002_exon3


CA






HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1029
CATGGTTCCACCAGCGTTAT
1030



PVT1_004_exon1


T






HPV35
bkpt2-
TCTACATCTGACTGCACAAACAAAGA
1031
TCTTTGCTCGCAGCTCGT
1032



PVT1_005_exon1









HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1033
CTGAGAAGCCCTGCCCTTC
1034



MYC_001_exon1









HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1035
AAATACGGCTGCACCGAGT
1036



MYC_001_exon2









HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1037
GGTGATCCAGACTCTGACCT
1038



MYC_001_exon3


TTTG






HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1039
ATCATGATGGCTGTATGTGC
1040



PVT1_002_exon3


CA






HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1041
CATGGTTCCACCAGCGTTAT
1042



PVT1_004_exon1


T






HPV35
SD2-
CGGCTGTTCACAGAGAGCATAAT
1043
TCTTTGCTCGCAGCTCGT
1044



PVT1_005_exon1









HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1045
CTGAGAAGCCCTGCCCTTC
1046



MYC_001_exon1









HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1047
AAATACGGCTGCACCGAGT
1048



MYC_001_exon2









HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1049
GGTGATCCAGACTCTGACCT
1050



MYC_001_exon3


TTTG






HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1051
ATCATGATGGCTGTATGTGC
1052



PVT1_002_exon3


CA






HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1053
CATGGTTCCACCAGCGTTAT
1054



PVT1_004_exon1


T






HPV39
bkpt1-
ACAACGTTTAAATGTGTTACAGGACA
1055
TCTTTGCTCGCAGCTCGT
1056



PVT1_005_exon1









HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1057
CTGAGAAGCCCTGCCCTTC
1058



MYC_001_exon1









HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1059
AAATACGGCTGCACCGAGT
1060



MYC_001_exon2









HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1061
GGTGATCCAGACTCTGACCT
1062



MYC_001_exon3


TTTG






HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1063
ATCATGATGGCTGTATGTGC
1064



PVT1_002_exon3


CA






HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1065
CATGGTTCCACCAGCGTTAT
1066



PVT1_004_exon1


T






HPV39
bkpt2-
CACAGTAACAGTACAGGCCACA
1067
TCTTTGCTCGCAGCTCGT
1068



PVT1_005_exon1









HPV39
SD2-
CGTGGTGTGCAACTGCAA
1069
CTGAGAAGCCCTGCCCTTC
1070



MYC_001_exon1









HPV39
SD2-
CGTGGTGTGCAACTGCAA
1071
AAATACGGCTGCACCGAGT
1072



MYC_001_exon2









HPV39
SD2-
CGTGGTGTGCAACTGCAA
1073
GGTGATCCAGACTCTGACCT
1074



MYC_001_exon3


TTTG






HPV39
SD2-
CGTGGTGTGCAACTGCAA
1075
ATCATGATGGCTGTATGTGC
1076



PVT1_002_exon3


CA






HPV39
SD2-
CGTGGTGTGCAACTGCAA
1077
CATGGTTCCACCAGCGTTAT
1078



PVT1_004_exon1


T






HPV39
SD2-
CGTGGTGTGCAACTGCAA
1079
TCTTTGCTCGCAGCTCGT
1080



PVT1_005_exon1









HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1081
CTGAGAAGCCCTGCCCTTC
1082



MYC_001_exon1
TA








HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1083
AAATACGGCTGCACCGAGT
1084



MYC_001_exon2
TA








HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1085
GGTGATCCAGACTCTGACCT
1086



MYC_001_exon3
TA

TTTG






HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1087
ATCATGATGGCTGTATGTGC
1088



PVT1_002_exon3
TA

CA






HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1089
CATGGTTCCACCAGCGTTAT
1090



PVT1_004_exon1
TA

T






HPV45
bkpt1-
CGTTACAGGACAAAATACTAGACCAC
1091
TCTTTGCTCGCAGCTCGT
1092



PVT1_005_exon1
TA








HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1093
CTGAGAAGCCCTGCCCTTC
1094



MYC_001_exon1
AA








HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1095
AAATACGGCTGCACCGAGT
1096



MYC_001_exon2
AA








HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1097
GGTGATCCAGACTCTGACCT
1098



MYC_001_exon3
AA

TTTG






HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1099
ATCATGATGGCTGTATGTGC
1100



PVT1_002_exon3
AA

CA






HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1101
CATGGTTCCACCAGCGTTAT
1102



PVT1_004_exon1
AA

T






HPV45
bkpt2-
TCCTGTGTTCAAGTACAAGTAACAAC
1103
TCTTTGCTCGCAGCTCGT
1104



PVT1_005_exon1
AA








HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1105
CTGAGAAGCCCTGCCCTTC
1106



MYC_001_exon1









HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1107
AAATACGGCTGCACCGAGT
1108



MYC_001_exon2









HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1109
GGTGATCCAGACTCTGACCT
1110



MYC_001_exon3


TTTG






HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1111
ATCATGATGGCTGTATGTGC
1112



PVT1_002_exon3


CA






HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1113
CATGGTTCCACCAGCGTTAT
1114



PVT1_004_exon1


T






HPV45
SD2-
AGCACCTTGTCCTTTGTGTGT
1115
TCTTTGCTCGCAGCTCGT
1116



PVT1_005_exon1









HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1117
CTGAGAAGCCCTGCCCTTC
1118



MYC_001_exon1
AT








HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1119
AAATACGGCTGCACCGAGT
1120



MYC_001_exon2
AT








HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1121
GGTGATCCAGACTCTGACCT
1122



MYC_001_exon3
AT

TTTG






HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1123
ATCATGATGGCTGTATGTGC
1124



PVT1_002_exon3
AT

CA






HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1125
CATGGTTCCACCAGCGTTAT
1126



PVT1_004_exon1
AT

T






HPV51
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1127
TCTTTGCTCGCAGCTCGT
1128



PVT1_005_exon1
AT








HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1129
CTGAGAAGCCCTGCCCTTC
1130



MYC_001_exon1









HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1131
AAATACGGCTGCACCGAGT
1132



MYC_001_exon2









HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1133
GGTGATCCAGACTCTGACCT
1134



MYC_001_exon3


TTTG






HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1135
ATCATGATGGCTGTATGTGC
1136



PVT1_002_exon3


CA






HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1137
CATGGTTCCACCAGCGTTAT
1138



PVT1_004_exon1


T






HPV51
bkpt2-
CTAACACTGGAGGGCACCAAA
1139
TCTTTGCTCGCAGCTCGT
1140



PVT1_005_exon1









HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1141
CTGAGAAGCCCTGCCCTTC
1142



MYC_001_exon1









HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1143
AAATACGGCTGCACCGAGT
1144



MYC_001_exon2









HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1145
GGTGATCCAGACTCTGACCT
1146



MYC_001_exon3


TTTG






HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1147
ATCATGATGGCTGTATGTGC
1148



PVT1_002_exon3


CA






HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1149
CATGGTTCCACCAGCGTTAT
1150



PVT1_004_exon1


T






HPV51
SD2-
GGGCGAACTAAGCCTGGTTT
1151
TCTTTGCTCGCAGCTCGT
1152



PVT1_005_exon1









HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1153
CTGAGAAGCCCTGCCCTTC
1154



MYC_001_exon1
AA








HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1155
AAATACGGCTGCACCGAGT
1156



MYC_001_exon2
AA








HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1157
GGTGATCCAGACTCTGACCT
1158



MYC_001_exon3
AA

TTTG






HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1159
ATCATGATGGCTGTATGTGC
1160



PVT1_002_exon3
AA

CA






HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1161
CATGGTTCCACCAGCGTTAT
1162



PVT1_004_exon1
AA

T






HPV52
bkpt1-
GCTGATAGTAATGACCTAAACGCACA
1163
TCTTTGCTCGCAGCTCGT
1164



PVT1_005_exon1
AA








HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1165
CTGAGAAGCCCTGCCCTTC
1166



MYC_001_exon1









HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1167
AAATACGGCTGCACCGAGT
1168



MYC_001_exon2









HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1169
GGTGATCCAGACTCTGACCT
1170



MYC_001_exon3


TTTG






HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1171
ATCATGATGGCTGTATGTGC
1172



PVT1_002_exon3


CA






HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1173
CATGGTTCCACCAGCGTTAT
1174



PVT1_004_exon1


T






HPV52
bkpt2-
TCACTGCAACTGAGTGCACAA
1175
TCTTTGCTCGCAGCTCGT
1176



PVT1_005_exon1









HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1177
CTGAGAAGCCCTGCCCTTC
1178



MYC_001_exon1









HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1179
AAATACGGCTGCACCGAGT
1180



MYC_001_exon2









HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1181
GGTGATCCAGACTCTGACCT
1182



MYC_001_exon3


TTTG






HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1183
ATCATGATGGCTGTATGTGC
1184



PVT1_002_exon3


CA






HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1185
CATGGTTCCACCAGCGTTAT
1186



PVT1_004_exon1


T






HPV52
SD2-
GCTGTTGGGCACATTACAAGTT
1187
TCTTTGCTCGCAGCTCGT
1188



PVT1_005_exon1









HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1189
CTGAGAAGCCCTGCCCTTC
1190



MYC_001_exon1
T








HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1191
AAATACGGCTGCACCGAGT
1192



MYC_001_exon2
T








HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1193
GGTGATCCAGACTCTGACCT
1194



MYC_001_exon3
T

TTTG






HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1195
ATCATGATGGCTGTATGTGC
1196



PVT1_002_exon3
T

CA






HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1197
CATGGTTCCACCAGCGTTAT
1198



PVT1_004_exon1
T

T






HPV56
bkpt1-
GTGCCAGAACAAAATACTAGACTGTT
1199
TCTTTGCTCGCAGCTCGT
1200



PVT1_005_exon1
T








HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1201
CTGAGAAGCCCTGCCCTTC
1202



MYC_001_exon1









HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1203
AAATACGGCTGCACCGAGT
1204



MYC_001_exon2









HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1205
GGTGATCCAGACTCTGACCT
1206



MYC_001_exon3


TTTG






HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1207
ATCATGATGGCTGTATGTGC
1208



PVT1_002_exon3


CA






HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1209
CATGGTTCCACCAGCGTTAT
1210



PVT1_004_exon1


T






HPV56
bkpt2-
ACAACAACCACCCTGGTGATAAG
1211
TCTTTGCTCGCAGCTCGT
1212



PVT1_005_exon1









HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1213
CTGAGAAGCCCTGCCCTTC
1214



MYC_001_exon1









HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1215
AAATACGGCTGCACCGAGT
1216



MYC_001_exon2









HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1217
GGTGATCCAGACTCTGACCT
1218



MYC_001_exon3


TTTG






HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1219
ATCATGATGGCTGTATGTGC
1220



PVT1_002_exon3


CA






HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1221
CATGGTTCCACCAGCGTTAT
1222



PVT1_004_exon1


T






HPV56
SD2-
GTTAACAGTAACGTGCCCACTCT
1223
TCTTTGCTCGCAGCTCGT
1224



PVT1_005_exon1









HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1225
CTGAGAAGCCCTGCCCTTC
1226



MYC_001_exon1
GAA








HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1227
AAATACGGCTGCACCGAGT
1228



MYC_001_exon2
GAA








HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1229
GGTGATCCAGACTCTGACCT
1230



MYC_001_exon3
GAA

TTTG






HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1231
ATCATGATGGCTGTATGTGC
1232



PVT1_002_exon3
GAA

CA






HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1233
CATGGTTCCACCAGCGTTAT
1234



PVT1_004_exon1
GAA

T






HPV58
bkpt1-
GCAGGACAAAATCCTAGACATATAC
1235
TCTTTGCTCGCAGCTCGT
1236



PVT1_005_exon1
GAA








HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1237
CTGAGAAGCCCTGCCCTTC
1238



MYC_001_exon1
CT








HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1239
AAATACGGCTGCACCGAGT
1240



MYC_001_exon2
CT








HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1241
GGTGATCCAGACTCTGACCT
1242



MYC_001_exon3
CT

TTTG






HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1243
ATCATGATGGCTGTATGTGC
1244



PVT1_002_exon3
CT

CA






HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1245
CATGGTTCCACCAGCGTTAT
1246



PVT1_004_exon1
CT

T






HPV58
bkpt2-
GAGGAGGACTACACAGTACAACTAA
1247
TCTTTGCTCGCAGCTCGT
1248



PVT1_005_exon1
CT








HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1249
CTGAGAAGCCCTGCCCTTC
1250



MYC_001_exon1









HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1251
AAATACGGCTGCACCGAGT
1252



MYC_001_exon2









HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1253
GGTGATCCAGACTCTGACCT
1254



MYC_001_exon3


TTTG






HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1255
ATCATGATGGCTGTATGTGC
1256



PVT1_002_exon3


CA






HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1257
CATGGTTCCACCAGCGTTAT
1258



PVT1_004_exon1


T






HPV58
SD2-
TGCTTATGGGCACATGTACCATT
1259
TCTTTGCTCGCAGCTCGT
1260



PVT1_005_exon1









HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1261
CTGAGAAGCCCTGCCCTTC
1262



MYC_001_exon1
T








HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1263
AAATACGGCTGCACCGAGT
1264



MYC_001_exon2
T








HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1265
GGTGATCCAGACTCTGACCT
1266



MYC_001_exon3
T

TTTG






HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1267
ATCATGATGGCTGTATGTGC
1268



PVT1_002_exon3
T

CA






HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1269
CATGGTTCCACCAGCGTTAT
1270



PVT1_004_exon1
T

T






HPV59
bkpt1-
GCGTTTAAGTGTGTTACAGGATCAAA
1271
TCTTTGCTCGCAGCTCGT
1272



PVT1_005_exon1
T








HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1273
CTGAGAAGCCCTGCCCTTC
1274



MYC_001_exon1









HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1275
AAATACGGCTGCACCGAGT
1276



MYC_001_exon2









HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1277
GGTGATCCAGACTCTGACCT
1278



MYC_001_exon3


TTTG






HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1279
ATCATGATGGCTGTATGTGC
1280



PVT1_002_exon3


CA






HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1281
CATGGTTCCACCAGCGTTAT
1282



PVT1_004_exon1


T






HPV59
bkpt2-
TCCGTTTGCATCCAGGCAA
1283
TCTTTGCTCGCAGCTCGT
1284



PVT1_005_exon1









HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1285
CTGAGAAGCCCTGCCCTTC
1286



MYC_001_exon1









HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1287
AAATACGGCTGCACCGAGT
1288



MYC_001_exon2









HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1289
GGTGATCCAGACTCTGACCT
1290



MYC_001_exon3


TTTG






HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1291
ATCATGATGGCTGTATGTGC
1292



PVT1_002_exon3


CA






HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1293
CATGGTTCCACCAGCGTTAT
1294



PVT1_004_exon1


T






HPV59
SD2-
ACTATCCTTTGTGTGTCCTTTGTGT
1295
TCTTTGCTCGCAGCTCGT
1296



PVT1_005_exon1









HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1297
CTGAGAAGCCCTGCCCTTC
1298



MYC_001_exon1









HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1299
AAATACGGCTGCACCGAGT
1300



MYC_001_exon2









HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1301
GGTGATCCAGACTCTGACCT
1302



MYC_001_exon3


TTTG






HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1303
ATCATGATGGCTGTATGTGC
1304



PVT1_002_exon3


CA






HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1305
CATGGTTCCACCAGCGTTAT
1306



PVT1_004_exon1


T






HPV66
bkpt1-
CGTGCCAGAACAAAATACTAGACTGT
1307
TCTTTGCTCGCAGCTCGT
1308



PVT1_005_exon1









HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1309
CTGAGAAGCCCTGCCCTTC
1310



MYC_001_exon1









HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1311
AAATACGGCTGCACCGAGT
1312



MYC_001_exon2









HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1313
GGTGATCCAGACTCTGACCT
1314



MYC_001_exon3


TTTG






HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1315
ATCATGATGGCTGTATGTGC
1316



PVT1_002_exon3


CA






HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1317
CATGGTTCCACCAGCGTTAT
1318



PVT1_004_exon1


T






HPV66
bkpt2-
GTATCAACACACAAAGCCACTGT
1319
TCTTTGCTCGCAGCTCGT
1320



PVT1_005_exon1









HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1321
CTGAGAAGCCCTGCCCTTC
1322



MYC_001_exon1









HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1323
AAATACGGCTGCACCGAGT
1324



MYC_001_exon2









HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1325
GGTGATCCAGACTCTGACCT
1326



MYC_001_exon3


TTTG






HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1327
ATCATGATGGCTGTATGTGC
1328



PVT1_002_exon3


CA






HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1329
CATGGTTCCACCAGCGTTAT
1330



PVT1_004_exon1


T






HPV66
SD2-
GTTAACAGTAACGTGCCCACTCT
1331
TCTTTGCTCGCAGCTCGT
1332



PVT1_005_exon1









HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1333
CTGAGAAGCCCTGCCCTTC
1334



MYC_001_exon1
CAT








HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1335
AAATACGGCTGCACCGAGT
1336



MYC_001_exon2
CAT








HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1337
GGTGATCCAGACTCTGACCT
1338



MYC_001_exon3
CAT

TTTG






HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1339
ATCATGATGGCTGTATGTGC
1340



PVT1_002_exon3
CAT

CA






HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1341
CATGGTTCCACCAGCGTTAT
1342



PVT1_004_exon1
CAT

T






HPV68
bkpt1-
ACAGGACAGTAAATGTATACAGGAC
1343
TCTTTGCTCGCAGCTCGT
1344



PVT1_005_exon1
CAT








HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1345
CTGAGAAGCCCTGCCCTTC
1346



MYC_001_exon1









HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1347
AAATACGGCTGCACCGAGT
1348



MYC_001_exon2









HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1349
GGTGATCCAGACTCTGACCT
1350



MYC_001_exon3


TTTG






HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1351
ATCATGATGGCTGTATGTGC
1352



PVT1_002_exon3


CA






HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1353
CATGGTTCCACCAGCGTTAT
1354



PVT1_004_exon1


T






HPV68
bkpt2-
AGTAGAAGTGCAGGCCAAAACAA
1355
TCTTTGCTCGCAGCTCGT
1356



PVT1_005_exon1









HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1357
CTGAGAAGCCCTGCCCTTC
1358



MYC_001_exon1









HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1359
AAATACGGCTGCACCGAGT
1360



MYC_001_exon2









HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1361
GGTGATCCAGACTCTGACCT
1362



MYC_001_exon3


TTTG






HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1363
ATCATGATGGCTGTATGTGC
1364



PVT1_002_exon3


CA






HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1365
CATGGTTCCACCAGCGTTAT
1366



PVT1_004_exon1


T






HPV68
SD2-
TCCGTGGTGTGCAACTGAA
1367
TCTTTGCTCGCAGCTCGT
1368



PVT1_005_exon1









HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1369
CTGAGAAGCCCTGCCCTTC
1370



MYC_001_exon1









HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1371
AAATACGGCTGCACCGAGT
1372



MYC_001_exon2









HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1373
GGTGATCCAGACTCTGACCT
1374



MYC_001_exon3


TTTG






HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1375
ATCATGATGGCTGTATGTGC
1376



PVT1_002_exon3


CA






HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1377
CATGGTTCCACCAGCGTTAT
1378



PVT1_004_exon1


T






HPV73
bkpt1-
GTATGAACGTGACAGTGTACACCTAA
1379
TCTTTGCTCGCAGCTCGT
1380



PVT1_005_exon1









HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1381
CTGAGAAGCCCTGCCCTTC
1382



MYC_001_exon1









HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1383
AAATACGGCTGCACCGAGT
1384



MYC_001_exon2









HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1385
GGTGATCCAGACTCTGACCT
1386



MYC_001_exon3


TTTG






HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1387
ATCATGATGGCTGTATGTGC
1388



PVT1_002_exon3


CA






HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1389
CATGGTTCCACCAGCGTTAT
1390



PVT1_004_exon1


T






HPV73
bkpt2-
ACCTACATCCCACCACAGAGT
1391
TCTTTGCTCGCAGCTCGT
1392



PVT1_005_exon1









HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1393
CTGAGAAGCCCTGCCCTTC
1394



MYC_001_exon1
T








HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1395
AAATACGGCTGCACCGAGT
1396



MYC_001_exon2
T








HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1397
GGTGATCCAGACTCTGACCT
1398



MYC_001_exon3
T

TTTG






HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1399
ATCATGATGGCTGTATGTGC
1400



PVT1_002_exon3
T

CA






HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1401
CATGGTTCCACCAGCGTTAT
1402



PVT1_004_exon1
T

T






HPV73
SD2-
TGCTTATGGGTACACTAGGTATTGTG
1403
TCTTTGCTCGCAGCTCGT
1404



PVT1_005_exon1
T








HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1405
CTGAGAAGCCCTGCCCTTC
1406



MYC_001_exon1
AT








HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1407
AAATACGGCTGCACCGAGT
1408



MYC_001_exon2
AT








HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1409
GGTGATCCAGACTCTGACCT
1410



MYC_001_exon3
AT

TTTG






HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1411
ATCATGATGGCTGTATGTGC
1412



PVT1_002_exon3
AT

CA






HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1413
CATGGTTCCACCAGCGTTAT
1414



PVT1_004_exon1
AT

T






HPV82
bkpt1-
GTGCCAGGAGAAAATACTAGACTGTT
1415
TCTTTGCTCGCAGCTCGT
1416



PVT1_005_exon1
AT








HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1417
CTGAGAAGCCCTGCCCTTC
1418



MYC_001_exon1









HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1419
AAATACGGCTGCACCGAGT
1420



MYC_001_exon2









HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1421
GGTGATCCAGACTCTGACCT
1422



MYC_001_exon3


TTTG






HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1423
ATCATGATGGCTGTATGTGC
1424



PVT1_002_exon3


CA






HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1425
CATGGTTCCACCAGCGTTAT
1426



PVT1_004_exon1


T






HPV82
bkpt2-
TGCGACCACCAAATACACTGT
1427
TCTTTGCTCGCAGCTCGT
1428



PVT1_005_exon1









HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1429
CTGAGAAGCCCTGCCCTTC
1430



MYC_001_exon1









HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1431
AAATACGGCTGCACCGAGT
1432



MYC_001_exon2









HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1433
GGTGATCCAGACTCTGACCT
1434



MYC_001_exon3


TTTG






HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1435
ATCATGATGGCTGTATGTGC
1436



PVT1_002_exon3


CA






HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1437
CATGGTTCCACCAGCGTTAT
1438



PVT1_004_exon1


T






HPV82
SD2-
CGTGGTGTGCGACCAACTAA
1439
TCTTTGCTCGCAGCTCGT
1440



PVT1_005_exon1





















TABLE 2Dbis







Forward
Reverse






primer
primer

Amplicon


HPV

SEQ
SEQ
Amplicon
SEQ


type
Region name
ID NO
ID NO
nucleic acid sequence
ID NO







HPV16
bkpt1-
 865
 866
TATTGGAAACACATGCGCCTAGCTGCTCGCGGCCG
1933



MYC_001_exon1


CCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTC







CTGCCTCGA






HPV16
bkpt1-
 867
 868
TATTGGAAACACATGCGCCTAGCAGCCTCCCGCG
1934



MYC_001_exon2


ACGATGCCCCTCAACGTTAGCTTCACCAACAGGA







ACTATGACCTCGACTACG






HPV16
bkpt1-
 869
 870
TATTGGAAACACATGCGCCTAGAGGAGGAACAAG
1935



MYC_001_exon3


AAGATGAGGAAGAAATCGATGTTGTTTCTGTGGA







AAAGAGGCAGGCTCCTGG






HPV16
bkpt1-
 871
 872
TATTGGAAACACATGCGCCTAGCTGACCATACTCC
1936



PVT1_002_exon3


CTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV16
bkpt1-
 873
 874
TATTGGAAACACATGCGCCTAGTCTGAGCCTGATG
1937



PVT1_004_exon1


GATTTACAGTGATCTTCAGTGGTCTGGGG






HPV16
bkpt1-
 875
 876
TATTGGAAACACATGCGCCTAGCTCCGGGCAGAG
1938



PVT1_005_exon1


CGCGTGTGGCGGCCGAGCACATGGGCCCGCGGGC







CGGGCGGGCTCGGGGCGGCCGGGACGAGGAGGG







GCGACG






HPV16
bkpt2-
 877
 878
TGTAATAGTAACACTACACCCATAGCTGCTCGCGG
1939



MYC_001_exon1


CCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCC







CTCCTGCCTCGA






HPV16
bkpt2-
 879
 880
TGTAATAGTAACACTACACCCATAGCAGCCTCCCG
1940



MYC_001_exon2


CGACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV16
bkpt2-
 881
 882
TGTAATAGTAACACTACACCCATAGAGGAGGAAC
1941



MYC_001_exon3


AAGAAGATGAGGAAGAAATCGATGTTGTTTCTGT







GGAAAAGAGGCAGGCTCCTGG






HPV16
bkpt2-
 883
 884
TGTAATAGTAACACTACACCCATAGCTGACCATAC
1942



PVT1_002_exon3


TCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACC







T






HPV16
bkpt2-
 885
 886
TGTAATAGTAACACTACACCCATAGTCTGAGCCTG
1943



PVT1_004_exon1


ATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV16
bkpt2-
 887
 888
TGTAATAGTAACACTACACCCATAGCTCCGGGCA
1944



PVT1_005_exon1


GAGCGCGTGTGGCGGCCGAGCACATGGGCCCGCG







GGCCGGGCGGGCTCGGGGCGGCCGGGACGAGGA







GGGGCGACG






HPV16
SD2-
 889
 890
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1945



MYC_001_exon1


AGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCC







GTCCCTGGCTCCCCTCCTGCCTCGA






HPV16
SD2-
 891
 892
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1946



MYC_001_exon2


AGCAGCCTCCCGCGACGATGCCCCTCAACGTTAGC







TTCACCAACAGGAACTATGACCTCGACTACG






HPV16
SD2-
 893
 894
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1947



MYC_001_exon3


AGAGGAGGAACAAGAAGATGAGGAAGAAATCGA







TGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV16
SD2-
 895
 896
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1948



PVT1_002_exon3


AGCTGACCATACTCCCTGGAGCCTTCTCCCGAGGT







GCGCGGGTGACCT






HPV16
SD2-
 897
 898
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1949



PVT1_004_exon1


AGTCTGAGCCTGATGGATTTACAGTGATCTTCAGT







GGTCTGGGG






HPV16
SD2-
 899
 900
TCTCAGAAACCATAATCTACCATGGCTGATCCTGC
1950



PVT1_005_exon1


AGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCAC







ATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCC







GGGACGAGGAGGGGCGACG






HPV18
bkpt1-
 901
 902
TACAGTATTGGCAACTAATACGTTGGGCTGCTCGC
1951



MYC_001_exon1


GGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTC







CCCTCCTGCCTCGA






HPV18
bkpt1-
 903
 904
TACAGTATTGGCAACTAATACGTTGGGCAGCCTCC
1952



MYC_001_exon2


CGCGACGATGCCCCTCAACGTTAGCTTCACCAACA







GGAACTATGACCTCGACTACG






HPV18
bkpt1-
 905
 906
TACAGTATTGGCAACTAATACGTTGGGAGGAGGA
1953



MYC_001_exon3


ACAAGAAGATGAGGAAGAAATCGATGTTGTTTCT







GTGGAAAAGAGGCAGGCTCCTGG






HPV18
bkpt1-
 907
 908
TACAGTATTGGCAACTAATACGTTGGGCTGACCAT
1954



PVT1_002_exon3


ACTCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGA







CCT






HPV18
bkpt1-
 909
 910
TACAGTATTGGCAACTAATACGTTGGGTCTGAGCC
1955



PVT1_004_exon1


TGATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV18
bkpt1-
 911
 912
TACAGTATTGGCAACTAATACGTTGGGCTCCGGGC
1956



PVT1_005_exon1


AGAGCGCGTGTGGCGGCCGAGCACATGGGCCCGC







GGGCCGGGCGGGCTCGGGGCGGCCGGGACGAGG







AGGGGCGACG






HPV18
bkpt2-
 913
 914
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1957



MYC_001_exon1


CCTATAACTGCTCGCGGCCGCCACCGCCGGGCCCC







GGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV18
bkpt2-
 915
 916
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1958



MYC_001_exon2


CCTATAACAGCCTCCCGCGACGATGCCCCTCAACG







TTAGCTTCACCAACAGGAACTATGACCTCGACTAC







G






HPV18
bkpt2-
 917
 918
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1959



MYC_001_exon3


CCTATAAAGGAGGAACAAGAAGATGAGGAAGAA







ATCGATGTTGTTTCTGTGGAAAAGAGGCAGGCTCC







TGG






HPV18
bkpt2-
 919
 920
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1960



PVT1_002_exon3


CCTATAACTGACCATACTCCCTGGAGCCTTCTCCC







GAGGTGCGCGGGTGACCT






HPV18
bkpt2-
 921
 922
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1961



PVT1_004_exon1


CCTATAATCTGAGCCTGATGGATTTACAGTGATCT







TCAGTGGTCTGGGG






HPV18
bkpt2-
 923
 924
CAAAAGACGGAAACTCTGTAGTGGTAACACTACG
1962



PVT1_005_exon1


CCTATAACTCCGGGCAGAGCGCGTGTGGCGGCCG







AGCACATGGGCCCGCGGGCCGGGCGGGCTCGGGG







CGGCCGGGACGAGGAGGGGCGACG






HPV18
SD2-
 925
 926
CAATGGCTGATCCAGAAGCTGCTCGCGGCCGCCA
1963



MYC_001_exon1


CCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTCCTG







CCTCGA






HPV18
SD2-
 927
 928
CAATGGCTGATCCAGAAGCAGCCTCCCGCGACGA
1964



MYC_001_exon2


TGCCCCTCAACGTTAGCTTCACCAACAGGAACTAT







GACCTCGACTACG






HPV18
SD2-
 929
 930
CAATGGCTGATCCAGAAGAGGAGGAACAAGAAG
1965



MYC_001_exon3


ATGAGGAAGAAATCGATGTTGTTTCTGTGGAAAA







GAGGCAGGCTCCTGG






HPV18
SD2-
 931
 932
CAATGGCTGATCCAGAAGCTGACCATACTCCCTGG
1966



PVT1_002_exon3


AGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV18
SD2-
 933
 934
CAATGGCTGATCCAGAAGTCTGAGCCTGATGGATT
1967



PVT1_004_exon1


TACAGTGATCTTCAGTGGTCTGGGG






HPV18
SD2-
 935
 936
CAATGGCTGATCCAGAAGCTCCGGGCAGAGCGCG
1968



PVT1_005_exon1


TGTGGCGGCCGAGCACATGGGCCCGCGGGCCGGG







CGGGCTCGGGGCGGCCGGGACGAGGAGGGGCGA







CG






HPV31
bkpt1-
 937
 938
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1969



MYC_001_exon1


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV31
bkpt1-
 939
 940
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1970



MYC_001_exon2


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGCAGCCTCCCGCGACGATGCCCCTCAACGTTA







GCTTCACCAACAGGAACTATGACCTCGACTACG






HPV31
bkpt1-
 941
 942
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1971



MYC_001_exon3


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGAGGAGGAACAAGAAGATGAGGAAGAAATC







GATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV31
bkpt1-
 943
 944
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1972



PVT1_002_exon3


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGCTGACCATACTCCCTGGAGCCTTCTCCCGAG







GTGCGCGGGTGACCT






HPV31
bkpt1-
 945
 946
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1973



PVT1_004_exon1


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGTCTGAGCCTGATGGATTTACAGTGATCTTCA







GTGGTCTGGGG






HPV31
bkpt1-
 947
 948
ATATTAGAACATTATGAAAATGATAGTAAACGAC
1974



PVT1_005_exon1


TTTGTGATCATATAGACTATTGGAAACATATTCGA







CTTGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGC







ACATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGG







CCGGGACGAGGAGGGGCGACG






HPV31
bkpt2-
 949
 950
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1975



MYC_001_exon1


TAACTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV31
bkpt2-
 951
 952
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1976



MYC_001_exon2


TAACAGCCTCCCGCGACGATGCCCCTCAACGTTAG







CTTCACCAACAGGAACTATGACCTCGACTACG






HPV31
bkpt2-
 953
 954
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1977



MYC_001_exon3


TAAAGGAGGAACAAGAAGATGAGGAAGAAATCG







ATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV31
bkpt2-
 955
 956
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1978



PVT1_002_exon3


TAACTGACCATACTCCCTGGAGCCTTCTCCCGAGG







TGCGCGGGTGACCT






HPV31
bkpt2-
 957
 958
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1979



PVT1_004_exon1


TAATCTGAGCCTGATGGATTTACAGTGATCTTCAG







TGGTCTGGGG






HPV31
bkpt2-
 959
 960
AACAAGGGCTGTCAGTTGTCCTGCAACTACACCTA
1980



PVT1_005_exon1


TAACTCCGGGCAGAGCGCGTGTGGCGGCCGAGCA







CATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGC







CGGGACGAGGAGGGGCGACG






HPV31
SD2-
 961
 962
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1981



MYC_001_exon1


GCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCG







TCCCTGGCTCCCCTCCTGCCTCGA






HPV31
SD2-
 963
 964
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1982



MYC_001_exon2


GCAGCCTCCCGCGACGATGCCCCTCAACGTTAGCT







TCACCAACAGGAACTATGACCTCGACTACG






HPV31
SD2-
 965
 966
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1983



MYC_001_exon3


GAGGAGGAACAAGAAGATGAGGAAGAAATCGAT







GTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV31
SD2-
 967
 968
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1984



PVT1_002_exon3


GCTGACCATACTCCCTGGAGCCTTCTCCCGAGGTG







CGCGGGTGACCT






HPV31
SD2-
 969
 970
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1985



PVT1_004_exon1


GTCTGAGCCTGATGGATTTACAGTGATCTTCAGTG







GTCTGGGG






HPV31
SD2-
 971
 972
TCTACTAGACTGTAACTACAATGGCTGATCCAGCA
1986



PVT1_005_exon1


GCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCACA







TGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCCG







GGACGAGGAGGGGCGACG






HPV33
bkpt1-
 973
 974
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1987



MYC_001_exon1


ATTGGAAACTGATACGCATGGCTGCTCGCGGCCG







CCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTC







CTGCCTCGA






HPV33
bkpt1-
 975
 976
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1988



MYC_001_exon2


ATTGGAAACTGATACGCATGGCAGCCTCCCGCGA







CGATGCCCCTCAACGTTAGCTTCACCAACAGGAAC







TATGACCTCGACTACG






HPV33
bkpt1-
 977
 978
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1989



MYC_001_exon3


ATTGGAAACTGATACGCATGGAGGAGGAACAAGA







AGATGAGGAAGAAATCGATGTTGTTTCTGTGGAA







AAGAGGCAGGCTCCTGG






HPV33
bkpt1-
 979
 980
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1990



PVT1_002_exon3


ATTGGAAACTGATACGCATGGCTGACCATACTCCC







TGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV33
bkpt1-
 981
 982
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1991



PVT1_004_exon1


ATTGGAAACTGATACGCATGGTCTGAGCCTGATG







GATTTACAGTGATCTTCAGTGGTCTGGGG






HPV33
bkpt1-
 983
 984
AGCTGATAAAACTGATTTACCATCACAAATTGAAC
1992



PVT1_005_exon1


ATTGGAAACTGATACGCATGGCTCCGGGCAGAGC







GCGTGTGGCGGCCGAGCACATGGGCCCGCGGGCC







GGGCGGGCTCGGGGCGGCCGGGACGAGGAGGGG







CGACG






HPV33
bkpt2-
 985
 986
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1993



MYC_001_exon1


CCTATAGCTGCTCGCGGCCGCCACCGCCGGGCCCC







GGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV33
bkpt2-
 987
 988
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1994



MYC_001_exon2


CCTATAGCAGCCTCCCGCGACGATGCCCCTCAACG







TTAGCTTCACCAACAGGAACTATGACCTCGACTAC







G






HPV33
bkpt2-
 989
 990
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1995



MYC_001_exon3


CCTATAGAGGAGGAACAAGAAGATGAGGAAGAA







ATCGATGTTGTTTCTGTGGAAAAGAGGCAGGCTCC







TGG






HPV33
bkpt2-
 991
 992
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1996



PVT1_002_exon3


CCTATAGCTGACCATACTCCCTGGAGCCTTCTCCC







GAGGTGCGCGGGTGACCT






HPV33
bkpt2-
 993
 994
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1997



PVT1_004_exon1


CCTATAGTCTGAGCCTGATGGATTTACAGTGATCT







TCAGTGGTCTGGGG






HPV33
bkpt2-
 995
 996
ACAAGCAGCGGACTGTGTGTAGTTCTAACGTTGCA
1998



PVT1_005_exon1


CCTATAGCTCCGGGCAGAGCGCGTGTGGCGGCCG







AGCACATGGGCCCGCGGGCCGGGCGGGCTCGGGG







CGGCCGGGACGAGGAGGGGCGACG






HPV33
SD2-
 997
 998
CAATAAACATCATCTACAATGGCCGATCCTGAAG
1999



MYC_001_exon1


CTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCGTC







CCTGGCTCCCCTCCTGCCTCGA






HPV33
SD2-
 999
1000
CAATAAACATCATCTACAATGGCCGATCCTGAAG
2000



MYC_001_exon2


CAGCCTCCCGCGACGATGCCCCTCAACGTTAGCTT







CACCAACAGGAACTATGACCTCGACTACG






HPV33
SD2-
1001
1002
CAATAAACATCATCTACAATGGCCGATCCTGAAG
2001



MYC_001_exon3


AGGAGGAACAAGAAGATGAGGAAGAAATCGATG







TTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV33
SD2-
1003
1004
CAATAAACATCATCTACAATGGCCGATCCTGAAG
2002



PVT1_002_exon3


CTGACCATACTCCCTGGAGCCTTCTCCCGAGGTGC







GCGGGTGACCT






HPV33
SD2-
1005
1006
CAATAAACATCATCTACAATGGCCGATCCTGAAGT
2003



PVT1_004_exon1


CTGAGCCTGATGGATTTACAGTGATCTTCAGTGGT







CTGGGG






HPV33
SD2-
1007
1008
CAATAAACATCATCTACAATGGCCGATCCTGAAG
2004



PVT1_005_exon1


CTCCGGGCAGAGCGCGTGTGGCGGCCGAGCACAT







GGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCCGG







GACGAGGAGGGGCGACG






HPV35
bkpt1-
1009
1010
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2005



MYC_001_exon1


GCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCG







TCCCTGGCTCCCCTCCTGCCTCGA






HPV35
bkpt1-
1011
1012
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2006



MYC_001_exon2


GCAGCCTCCCGCGACGATGCCCCTCAACGTTAGCT







TCACCAACAGGAACTATGACCTCGACTACG






HPV35
bkpt1-
1013
1014
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2007



MYC_001_exon3


GAGGAGGAACAAGAAGATGAGGAAGAAATCGAT







GTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV35
bkpt1-
1015
1016
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2008



PVT1_002_exon3


GCTGACCATACTCCCTGGAGCCTTCTCCCGAGGTG







CGCGGGTGACCT






HPV35
bkpt1-
1017
1018
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2009



PVT1_004_exon1


GTCTGAGCCTGATGGATTTACAGTGATCTTCAGTG







GTCTGGGG






HPV35
bkpt1-
1019
1020
CTGATCACATACAGTATTGGAAACTGATTCGTCTT
2010



PVT1_005_exon1


GCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCACA







TGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCCG







GGACGAGGAGGGGCGACG






HPV35
bkpt2-
1021
1022
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2011



MYC_001_exon1


CTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCGTC







CCTGGCTCCCCTCCTGCCTCGA






HPV35
bkpt2-
1023
1024
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2012



MYC_001_exon2


CAGCCTCCCGCGACGATGCCCCTCAACGTTAGCTT







CACCAACAGGAACTATGACCTCGACTACG






HPV35
bkpt2-
1025
1026
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2013



MYC_001_exon3


AGGAGGAACAAGAAGATGAGGAAGAAATCGATG







TTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV35
bkpt2-
1027
1028
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2014



PVT1_002_exon3


CTGACCATACTCCCTGGAGCCTTCTCCCGAGGTGC







GCGGGTGACCT






HPV35
bkpt2-
1029
1030
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2015



PVT1_004_exon1


TCTGAGCCTGATGGATTTACAGTGATCTTCAGTGG







TCTGGGG






HPV35
bkpt2-
1031
1032
CCGGTGTGGTAGTTGTAGTACAACTACACCTATAG
2016



PVT1_005_exon1


CTCCGGGCAGAGCGCGTGTGGCGGCCGAGCACAT







GGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCCGG







GACGAGGAGGGGCGACG






HPV35
SD2-
1033
1034
CTACAATGGCTGATCCTGCAGCTGCTCGCGGCCGC
2017



MYC_001_exon1


CACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTCC







TGCCTCGA






HPV35
SD2-
1035
1036
CTACAATGGCTGATCCTGCAGCAGCCTCCCGCGAC
2018



MYC_001_exon2


GATGCCCCTCAACGTTAGCTTCACCAACAGGAACT







ATGACCTCGACTACG






HPV35
SD2-
1037
1038
CTACAATGGCTGATCCTGCAGAGGAGGAACAAGA
2019



MYC_001_exon3


AGATGAGGAAGAAATCGATGTTGTTTCTGTGGAA







AAGAGGCAGGCTCCTGG






HPV35
SD2-
1039
1040
CTACAATGGCTGATCCTGCAGCTGACCATACTCCC
2020



PVT1_002_exon3


TGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV35
SD2-
1041
1042
CTACAATGGCTGATCCTGCAGTCTGAGCCTGATGG
2021



PVT1_004_exon1


ATTTACAGTGATCTTCAGTGGTCTGGGG






HPV35
SD2-
1043
1044
CTACAATGGCTGATCCTGCAGCTCCGGGCAGAGC
2022



PVT1_005_exon1


GCGTGTGGCGGCCGAGCACATGGGCCCGCGGGCC







GGGCGGGCTCGGGGCGGCCGGGACGAGGAGGGG







CGACG






HPV39
bkpt1-
1045
1046
AAATACTAGAATACTATGAACAAGACAGTAAATC
2023



MYC_001_exon1


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGCTGCTCGCGGCCGCCACCGCCGGGCCCC







GGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV39
bkpt1-
1047
1048
AAATACTAGAATACTATGAACAAGACAGTAAATC
2024



MYC_001_exon2


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGCAGCCTCCCGCGACGATGCCCCTCAACG







TTAGCTTCACCAACAGGAACTATGACCTCGACTAC







G






HPV39
bkpt1-
1049
1050
AAATACTAGAATACTATGAACAAGACAGTAAATC
2025



MYC_001_exon3


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGAGGAGGAACAAGAAGATGAGGAAGAAA







TCGATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCT







GG






HPV39
bkpt1-
1051
1052
AAATACTAGAATACTATGAACAAGACAGTAAATC
2026



PVT1_002_exon3


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGCTGACCATACTCCCTGGAGCCTTCTCCCG







AGGTGCGCGGGTGACCT






HPV39
bkpt1-
1053
1054
AAATACTAGAATACTATGAACAAGACAGTAAATC
2027



PVT1_004_exon1


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGTCTGAGCCTGATGGATTTACAGTGATCTT







CAGTGGTCTGGGG






HPV39
bkpt1-
1055
1056
AAATACTAGAATACTATGAACAAGACAGTAAATC
2028



PVT1_005_exon1


AATATATGATCAAATTAATTATTGGAAATGTGTGC







GAATGGCTCCGGGCAGAGCGCGTGTGGCGGCCGA







GCACATGGGCCCGCGGGCCGGGCGGGCTCGGGGC







GGCCGGGACGAGGAGGGGCGACG






HPV39
bkpt2-
1057
1058
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2029



MYC_001_exon1


GCCTATAACTGCTCGCGGCCGCCACCGCCGGGCCC







CGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV39
bkpt2-
1059
1060
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2030



MYC_001_exon2


GCCTATAACAGCCTCCCGCGACGATGCCCCTCAAC







GTTAGCTTCACCAACAGGAACTATGACCTCGACTA







CG






HPV39
bkpt2-
1061
1062
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2031



MYC_001_exon3


GCCTATAAAGGAGGAACAAGAAGATGAGGAAGA







AATCGATGTTGTTTCTGTGGAAAAGAGGCAGGCTC







CTGG






HPV39
bkpt2-
1063
1064
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2032



PVT1_002_exon3


GCCTATAACTGACCATACTCCCTGGAGCCTTCTCC







CGAGGTGCGCGGGTGACCT






HPV39
bkpt2-
1065
1066
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2033



PVT1_004_exon1


GCCTATAATCTGAGCCTGATGGATTTACAGTGATC







TTCAGTGGTCTGGGG






HPV39
bkpt2-
1067
1068
ACACAAGACGGTACCTCAGTTGTGGTAACACTAC
2034



PVT1_005_exon1


GCCTATAACTCCGGGCAGAGCGCGTGTGGCGGCC







GAGCACATGGGCCCGCGGGCCGGGCGGGCTCGGG







GCGGCCGGGACGAGGAGGGGCGACG






HPV39
SD2-
1069
1070
ACCAGTAACCTGCTATGGCCAATCGTGAAGCTGCT
2035



MYC_001_exon1


CGCGGCCGCCACCGCCGGGCCCCGGCCGTCCCTG







GCTCCCCTCCTGCCTCGA






HPV39
SD2-
1071
1072
ACCAGTAACCTGCTATGGCCAATCGTGAAGCAGC
2036



MYC_001_exon2


CTCCCGCGACGATGCCCCTCAACGTTAGCTTCACC







AACAGGAACTATGACCTCGACTACG






HPV39
SD2-
1073
1074
ACCAGTAACCTGCTATGGCCAATCGTGAAGAGGA
2037



MYC_001_exon3


GGAACAAGAAGATGAGGAAGAAATCGATGTTGTT







TCTGTGGAAAAGAGGCAGGCTCCTGG






HPV39
SD2-
1075
1076
ACCAGTAACCTGCTATGGCCAATCGTGAAGCTGA
2038



PVT1_002_exon3


CCATACTCCCTGGAGCCTTCTCCCGAGGTGCGCGG







GTGACCT






HPV39
SD2-
1077
1078
ACCAGTAACCTGCTATGGCCAATCGTGAAGTCTGA
2039



PVT1_004_exon1


GCCTGATGGATTTACAGTGATCTTCAGTGGTCTGG







GG






HPV39
SD2-
1079
1080
ACCAGTAACCTGCTATGGCCAATCGTGAAGCTCCG
2040



PVT1_005_exon1


GGCAGAGCGCGTGTGGCGGCCGAGCACATGGGCC







CGCGGGCCGGGCGGGCTCGGGGCGGCCGGGACGA







GGAGGGGCGACG






HPV45
bkpt1-
1081
1082
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2041



MYC_001_exon1


AGTTATTGGCAACTTATACGTTTGGCTGCTCGCGG







CCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCC







CTCCTGCCTCGA






HPV45
bkpt1-
1083
1084
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2042



MYC_001_exon2


AGTTATTGGCAACTTATACGTTTGGCAGCCTCCCG







CGACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV45
bkpt1-
1085
1086
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2043



MYC_001_exon3


AGTTATTGGCAACTTATACGTTTGGAGGAGGAAC







AAGAAGATGAGGAAGAAATCGATGTTGTTTCTGT







GGAAAAGAGGCAGGCTCCTGG






HPV45
bkpt1-
1087
1088
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2044



PVT1_002_exon3


AGTTATTGGCAACTTATACGTTTGGCTGACCATAC







TCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACC







T






HPV45
bkpt1-
1089
1090
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2045



PVT1_004_exon1


AGTTATTGGCAACTTATACGTTTGGTCTGAGCCTG







ATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV45
bkpt1-
1091
1092
TGAAAATGACAGTAAAGACATAAACAGCCAAATA
2046



PVT1_005_exon1


AGTTATTGGCAACTTATACGTTTGGCTCCGGGCAG







AGCGCGTGTGGCGGCCGAGCACATGGGCCCGCGG







GCCGGGCGGGCTCGGGGCGGCCGGGACGAGGAG







GGGCGACG






HPV45
bkpt2-
1093
1094
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2047



MYC_001_exon1


ATAACTGCTCGCGGCCGCCACCGCCGGGCCCCGG







CCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV45
bkpt2-
1095
1096
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2048



MYC_001_exon2


ATAACAGCCTCCCGCGACGATGCCCCTCAACGTTA







GCTTCACCAACAGGAACTATGACCTCGACTACG






HPV45
bkpt2-
1097
1098
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2049



MYC_001_exon3


ATAAAGGAGGAACAAGAAGATGAGGAAGAAATC







GATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV45
bkpt2-
1099
1100
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2050



PVT1_002_exon3


ATAACTGACCATACTCCCTGGAGCCTTCTCCCGAG







GTGCGCGGGTGACCT






HPV45
bkpt2-
1101
1102
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2051



PVT1_004_exon1


ATAATCTGAGCCTGATGGATTTACAGTGATCTTCA







GTGGTCTGGGG






HPV45
bkpt2-
1103
1104
AAGAAGGAAAGTGTGTAGTGGTAACACTACGCCT
2052



PVT1_005_exon1


ATAACTCCGGGCAGAGCGCGTGTGGCGGCCGAGC







ACATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGG







CCGGGACGAGGAGGGGCGACG






HPV45
SD2-
1105
1106
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2053



MYC_001_exon1


GGATCCAGAAGCTGCTCGCGGCCGCCACCGCCGG







GCCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV45
SD2-
1107
1108
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2054



MYC_001_exon2


GGATCCAGAAGCAGCCTCCCGCGACGATGCCCCT







CAACGTTAGCTTCACCAACAGGAACTATGACCTCG







ACTACG






HPV45
SD2-
1109
1110
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2055



MYC_001_exon3


GGATCCAGAAGAGGAGGAACAAGAAGATGAGGA







AGAAATCGATGTTGTTTCTGTGGAAAAGAGGCAG







GCTCCTGG






HPV45
SD2-
1111
1112
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2056



PVT1_002_exon3


GGATCCAGAAGCTGACCATACTCCCTGGAGCCTTC







TCCCGAGGTGCGCGGGTGACCT






HPV45
SD2-
1113
1114
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2057



PVT1_004_exon1


GGATCCAGAAGTCTGAGCCTGATGGATTTACAGT







GATCTTCAGTGGTCTGGGG






HPV45
SD2-
1115
1116
CCGTGGTGTGCAACTAACCAATAATCTACAATGGC
2058



PVT1_005_exon1


GGATCCAGAAGCTCCGGGCAGAGCGCGTGTGGCG







GCCGAGCACATGGGCCCGCGGGCCGGGCGGGCTC







GGGGCGGCCGGGACGAGGAGGGGCGACG






HPV51
bkpt1-
1117
1118
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2059



MYC_001_exon1


ACTATTGGACATTGTTACGATATGCTGCTCGCGGC







CGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCC







TCCTGCCTCGA






HPV51
bkpt1-
1119
1120
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2060



MYC_001_exon2


ACTATTGGACATTGTTACGATATGCAGCCTCCCGC







GACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV51
bkpt1-
1121
1122
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2061



MYC_001_exon3


ACTATTGGACATTGTTACGATATGAGGAGGAACA







AGAAGATGAGGAAGAAATCGATGTTGTTTCTGTG







GAAAAGAGGCAGGCTCCTGG






HPV51
bkpt1-
1123
1124
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2062



PVT1_002_exon3


ACTATTGGACATTGTTACGATATGCTGACCATACT







CCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV51
bkpt1-
1125
1126
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2063



PVT1_004_exon1


ACTATTGGACATTGTTACGATATGTCTGAGCCTGA







TGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV51
bkpt1-
1127
1128
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2064



PVT1_005_exon1


ACTATTGGACATTGTTACGATATGCTCCGGGCAGA







GCGCGTGTGGCGGCCGAGCACATGGGCCCGCGGG







CCGGGCGGGCTCGGGGCGGCCGGGACGAGGAGG







GGCGACG






HPV51
bkpt2-
1129
1130
GTGCAACTCAGACTGCGTTTATAGCTGCTCGCGGC
2065



MYC_001_exon1


CGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCC







TCCTGCCTCGA






HPV51
bkpt2-
1131
1132
GTGCAACTCAGACTGCGTTTATAGCAGCCTCCCGC
2066



MYC_001_exon2


GACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV51
bkpt2-
1133
1134
GTGCAACTCAGACTGCGTTTATAGAGGAGGAACA
2067



MYC_001_exon3


AGAAGATGAGGAAGAAATCGATGTTGTTTCTGTG







GAAAAGAGGCAGGCTCCTGG






HPV51
bkpt2-
1135
1136
GTGCAACTCAGACTGCGTTTATAGCTGACCATACT
2068



PVT1_002_exon3


CCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV51
bkpt2-
1137
1138
GTGCAACTCAGACTGCGTTTATAGTCTGAGCCTGA
2069



PVT1_004_exon1


TGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV51
bkpt2-
1139
1140
GTGCAACTCAGACTGCGTTTATAGCTCCGGGCAGA
2070



PVT1_005_exon1


GCGCGTGTGGCGGCCGAGCACATGGGCCCGCGGG







CCGGGCGGGCTCGGGGCGGCCGGGACGAGGAGG







GGCGACG






HPV51
SD2-
1141
1142
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2071



MYC_001_exon1


GACTGTGAAGCTGCTCGCGGCCGCCACCGCCGGG







CCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV51
SD2-
1143
1144
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2072



MYC_001_exon2


GACTGTGAAGCAGCCTCCCGCGACGATGCCCCTC







AACGTTAGCTTCACCAACAGGAACTATGACCTCG







ACTACG






HPV51
SD2-
1145
1146
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2073



MYC_001_exon3


GACTGTGAAGAGGAGGAACAAGAAGATGAGGAA







GAAATCGATGTTGTTTCTGTGGAAAAGAGGCAGG







CTCCTGG






HPV51
SD2-
1147
1148
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2074



PVT1_002_exon3


GACTGTGAAGCTGACCATACTCCCTGGAGCCTTCT







CCCGAGGTGCGCGGGTGACCT






HPV51
SD2-
1149
1150
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2075



PVT1_004_exon1


GACTGTGAAGTCTGAGCCTGATGGATTTACAGTGA







TCTTCAGTGGTCTGGGG






HPV51
SD2-
1151
1152
GCCCGTGTTGTGCGAACAACTAGCAACGGCGATG
2076



PVT1_005_exon1


GACTGTGAAGCTCCGGGCAGAGCGCGTGTGGCGG







CCGAGCACATGGGCCCGCGGGCCGGGCGGGCTCG







GGGCGGCCGGGACGAGGAGGGGCGACG






HPV52
bkpt1-
1153
1154
TTGAACATTGGAAATTGACTCGAATGGCTGCTCGC
2077



MYC_001_exon1


GGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTC







CCCTCCTGCCTCGA






HPV52
bkpt1-
1155
1156
TTGAACATTGGAAATTGACTCGAATGGCAGCCTCC
2078



MYC_001_exon2


CGCGACGATGCCCCTCAACGTTAGCTTCACCAACA







GGAACTATGACCTCGACTACG






HPV52
bkpt1-
1157
1158
TTGAACATTGGAAATTGACTCGAATGGAGGAGGA
2079



MYC_001_exon3


ACAAGAAGATGAGGAAGAAATCGATGTTGTTTCT







GTGGAAAAGAGGCAGGCTCCTGG






HPV52
bkpt1-
1159
1160
TTGAACATTGGAAATTGACTCGAATGGCTGACCAT
2080



PVT1_002_exon3


ACTCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGA







CCT






HPV52
bkpt1-
1161
1162
TTGAACATTGGAAATTGACTCGAATGGTCTGAGCC
2081



PVT1_004_exon1


TGATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV52
bkpt1-
1163
1164
TTGAACATTGGAAATTGACTCGAATGGCTCCGGGC
2082



PVT1_005_exon1


AGAGCGCGTGTGGCGGCCGAGCACATGGGCCCGC







GGGCCGGGCGGGCTCGGGGCGGCCGGGACGAGG







AGGGGCGACG






HPV52
bkpt2-
1165
1166
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2083



MYC_001_exon1


ACCTATAACTGCTCGCGGCCGCCACCGCCGGGCCC







CGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV52
bkpt2-
1167
1168
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2084



MYC_001_exon2


ACCTATAACAGCCTCCCGCGACGATGCCCCTCAAC







GTTAGCTTCACCAACAGGAACTATGACCTCGACTA







CG






HPV52
bkpt2-
1169
1170
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2085



MYC_001_exon3


ACCTATAAAGGAGGAACAAGAAGATGAGGAAGA







AATCGATGTTGTTTCTGTGGAAAAGAGGCAGGCTC







CTGG






HPV52
bkpt2-
1171
1172
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2086



PVT1_002_exon3


ACCTATAACTGACCATACTCCCTGGAGCCTTCTCC







CGAGGTGCGCGGGTGACCT






HPV52
bkpt2-
1173
1174
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2087



PVT1_004_exon1


ACCTATAATCTGAGCCTGATGGATTTACAGTGATC







TTCAGTGGTCTGGGG






HPV52
bkpt2-
1175
1176
ACAAAGGACGGGTTGCACATACAACTTGTACTGC
2088



PVT1_005_exon1


ACCTATAACTCCGGGCAGAGCGCGTGTGGCGGCC







GAGCACATGGGCCCGCGGGCCGGGCGGGCTCGGG







GCGGCCGGGACGAGGAGGGGCGACG






HPV52
SD2-
1177
1178
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2089



MYC_001_exon1


GCAATGGAGGACCCTGAAGCTGCTCGCGGCCGCC







ACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTCCT







GCCTCGA






HPV52
SD2-
1179
1180
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2090



MYC_001_exon2


GCAATGGAGGACCCTGAAGCAGCCTCCCGCGACG







ATGCCCCTCAACGTTAGCTTCACCAACAGGAACTA







TGACCTCGACTACG






HPV52
SD2-
1181
1182
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2091



MYC_001_exon3


GCAATGGAGGACCCTGAAGAGGAGGAACAAGAA







GATGAGGAAGAAATCGATGTTGTTTCTGTGGAAA







AGAGGCAGGCTCCTGG






HPV52
SD2-
1183
1184
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2092



PVT1_002_exon3


GCAATGGAGGACCCTGAAGCTGACCATACTCCCT







GGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV52
SD2-
1185
1186
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2093



PVT1_004_exon1


GCAATGGAGGACCCTGAAGTCTGAGCCTGATGGA







TTTACAGTGATCTTCAGTGGTCTGGGG






HPV52
SD2-
1187
1188
GTGTGCCCCGGCTGTGCACGGCTATAAACAACCCT
2094



PVT1_005_exon1


GCAATGGAGGACCCTGAAGCTCCGGGCAGAGCGC







GTGTGGCGGCCGAGCACATGGGCCCGCGGGCCGG







GCGGGCTCGGGGCGGCCGGGACGAGGAGGGGCG







ACG






HPV56
bkpt1-
1189
1190
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2095



MYC_001_exon1


AGAATATTGGAAAGCTGTGCGACATGCTGCTCGC







GGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTC







CCCTCCTGCCTCGA






HPV56
bkpt1-
1191
1192
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2096



MYC_001_exon2


AGAATATTGGAAAGCTGTGCGACATGCAGCCTCC







CGCGACGATGCCCCTCAACGTTAGCTTCACCAACA







GGAACTATGACCTCGACTACG






HPV56
bkpt1-
1193
1194
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2097



MYC_001_exon3


AGAATATTGGAAAGCTGTGCGACATGAGGAGGAA







CAAGAAGATGAGGAAGAAATCGATGTTGTTTCTG







TGGAAAAGAGGCAGGCTCCTGG






HPV56
bkpt1-
1195
1196
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2098



PVT1_002_exon3


AGAATATTGGAAAGCTGTGCGACATGCTGACCAT







ACTCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGA







CCT






HPV56
bkpt1-
1197
1198
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2099



PVT1_004_exon1


AGAATATTGGAAAGCTGTGCGACATGTCTGAGCC







TGATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV56
bkpt1-
1199
1200
TGAAAAAAGATAGTAGATGTATTGCAGATCATAT
2100



PVT1_005_exon1


AGAATATTGGAAAGCTGTGCGACATGCTCCGGGC







AGAGCGCGTGTGGCGGCCGAGCACATGGGCCCGC







GGGCCGGGCGGGCTCGGGGCGGCCGGGACGAGG







AGGGGCGACG






HPV56
bkpt2-
1201
1202
ACTACGCCTGTAGCTGCTCGCGGCCGCCACCGCCG
2101



MYC_001_exon1


GGCCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV56
bkpt2-
1203
1204
ACTACGCCTGTAGCAGCCTCCCGCGACGATGCCCC
2102



MYC_001_exon2


TCAACGTTAGCTTCACCAACAGGAACTATGACCTC







GACTACG






HPV56
bkpt2-
1205
1206
ACTACGCCTGTAGAGGAGGAACAAGAAGATGAGG
2103



MYC_001_exon3


AAGAAATCGATGTTGTTTCTGTGGAAAAGAGGCA







GGCTCCTGG






HPV56
bkpt2-
1207
1208
ACTACGCCTGTAGCTGACCATACTCCCTGGAGCCT
2104



PVT1_002_exon3


TCTCCCGAGGTGCGCGGGTGACCT






HPV56
bkpt2-
1209
1210
ACTACGCCTGTAGTCTGAGCCTGATGGATTTACAG
2105



PVT1_004_exon1


TGATCTTCAGTGGTCTGGGG






HPV56
bkpt2-
1211
1212
ACTACGCCTGTAGCTCCGGGCAGAGCGCGTGTGG
2106



PVT1_005_exon1


CGGCCGAGCACATGGGCCCGCGGGCCGGGCGGGC







TCGGGGCGGCCGGGACGAGGAGGGGCGACG






HPV56
SD2-
1213
1214
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2107



MYC_001_exon1


GAAGCTGCTCGCGGCCGCCACCGCCGGGCCCCGG







CCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV56
SD2-
1215
1216
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2108



MYC_001_exon2


GAAGCAGCCTCCCGCGACGATGCCCCTCAACGTT







AGCTTCACCAACAGGAACTATGACCTCGACTACG






HPV56
SD2-
1217
1218
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2109



MYC_001_exon3


GAAGAGGAGGAACAAGAAGATGAGGAAGAAATC







GATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV56
SD2-
1219
1220
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2110



PVT1_002_exon3


GAAGCTGACCATACTCCCTGGAGCCTTCTCCCGAG







GTGCGCGGGTGACCT






HPV56
SD2-
1221
1222
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2111



PVT1_004_exon1


GAAGTCTGAGCCTGATGGATTTACAGTGATCTTCA







GTGGTCTGGGG






HPV56
SD2-
1223
1224
GCGCATCAAGTAACTAACTGCAATGGCGTCACCT
2112



PVT1_005_exon1


GAAGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGC







ACATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGG







CCGGGACGAGGAGGGGCGACG






HPV58
bkpt1-
1225
1226
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2113



MYC_001_exon1


ATTGGAAACTAATACGCATGGCTGCTCGCGGCCG







CCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTC







CTGCCTCGA






HPV58
bkpt1-
1227
1228
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2114



MYC_001_exon2


ATTGGAAACTAATACGCATGGCAGCCTCCCGCGA







CGATGCCCCTCAACGTTAGCTTCACCAACAGGAAC







TATGACCTCGACTACG






HPV58
bkpt1-
1229
1230
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2115



MYC_001_exon3


ATTGGAAACTAATACGCATGGAGGAGGAACAAGA







AGATGAGGAAGAAATCGATGTTGTTTCTGTGGAA







AAGAGGCAGGCTCCTGG






HPV58
bkpt1-
1231
1232
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2116



PVT1_002_exon3


ATTGGAAACTAATACGCATGGCTGACCATACTCCC







TGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV58
bkpt1-
1233
1234
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2117



PVT1_004_exon1


ATTGGAAACTAATACGCATGGTCTGAGCCTGATG







GATTTACAGTGATCTTCAGTGGTCTGGGG






HPV58
bkpt1-
1235
1236
GCTGATAAAAATGATTTAACATCACAAATTGAAC
2118



PVT1_005_exon1


ATTGGAAACTAATACGCATGGCTCCGGGCAGAGC







GCGTGTGGCGGCCGAGCACATGGGCCCGCGGGCC







GGGCGGGCTCGGGGCGGCCGGGACGAGGAGGGG







CGACG






HPV58
bkpt2-
1237
1238
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2119



MYC_001_exon1


AGTTTCACCTATCGCTGCTCGCGGCCGCCACCGCC







GGGCCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCG







A






HPV58
bkpt2-
1239
1240
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2120



MYC_001_exon2


AGTTTCACCTATCGCAGCCTCCCGCGACGATGCCC







CTCAACGTTAGCTTCACCAACAGGAACTATGACCT







CGACTACG






HPV58
bkpt2-
1241
1242
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2121



MYC_001_exon3


AGTTTCACCTATCGAGGAGGAACAAGAAGATGAG







GAAGAAATCGATGTTGTTTCTGTGGAAAAGAGGC







AGGCTCCTGG






HPV58
bkpt2-
1243
1244
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2122



PVT1_002_exon3


AGTTTCACCTATCGCTGACCATACTCCCTGGAGCC







TTCTCCCGAGGTGCGCGGGTGACCT






HPV58
bkpt2-
1245
1246
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2123



PVT1_004_exon1


AGTTTCACCTATCGTCTGAGCCTGATGGATTTACA







GTGATCTTCAGTGGTCTGGGG






HPV58
bkpt2-
1247
1248
GTACATACAAAGGGCGGAACGTGTGTAGTTCTAA
2124



PVT1_005_exon1


AGTTTCACCTATCGCTCCGGGCAGAGCGCGTGTGG







CGGCCGAGCACATGGGCCCGCGGGCCGGGCGGGC







TCGGGGCGGCCGGGACGAGGAGGGGCGACG






HPV58
SD2-
1249
1250
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2125



MYC_001_exon1


TGCAATGGATGACCCTGAAGCTGCTCGCGGCCGC







CACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTCC







TGCCTCGA






HPV58
SD2-
1251
1252
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2126



MYC_001_exon2


TGCAATGGATGACCCTGAAGCAGCCTCCCGCGAC







GATGCCCCTCAACGTTAGCTTCACCAACAGGAACT







ATGACCTCGACTACG






HPV58
SD2-
1253
1254
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2127



MYC_001_exon3


TGCAATGGATGACCCTGAAGAGGAGGAACAAGAA







GATGAGGAAGAAATCGATGTTGTTTCTGTGGAAA







AGAGGCAGGCTCCTGG






HPV58
SD2-
1255
1256
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2128



PVT1_002_exon3


TGCAATGGATGACCCTGAAGCTGACCATACTCCCT







GGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV58
SD2-
1257
1258
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2129



PVT1_004_exon1


TGCAATGGATGACCCTGAAGTCTGAGCCTGATGG







ATTTACAGTGATCTTCAGTGGTCTGGGG






HPV58
SD2-
1259
1260
GTGTGCCCTAGCTGTGCACAGCAATAAACACCATC
2130



PVT1_005_exon1


TGCAATGGATGACCCTGAAGCTCCGGGCAGAGCG







CGTGTGGCGGCCGAGCACATGGGCCCGCGGGCCG







GGCGGGCTCGGGGCGGCCGGGACGAGGAGGGGC







GACG






HPV59
bkpt1-
1261
1262
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2131



MYC_001_exon1


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV59
bkpt1-
1263
1264
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2132



MYC_001_exon2


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGCAGCCTCCCGCGACGATGCCCCTCAACGTTAG







CTTCACCAACAGGAACTATGACCTCGACTACG






HPV59
bkpt1-
1265
1266
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2133



MYC_001_exon3


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGAGGAGGAACAAGAAGATGAGGAAGAAATCG







ATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV59
bkpt1-
1267
1268
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2134



PVT1_002_exon3


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGCTGACCATACTCCCTGGAGCCTTCTCCCGAGG







TGCGCGGGTGACCT






HPV59
bkpt1-
1269
1270
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2135



PVT1_004_exon1


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGTCTGAGCCTGATGGATTTACAGTGATCTTCAG







TGGTCTGGGG






HPV59
bkpt1-
1271
1272
ATTAGAACATTATGAAAACGATAGTAAAGACATT
2136



PVT1_005_exon1


AATGAACACATAAACTATTGGAAACTGGTGCGTA







TGGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCA







CATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGC







CGGGACGAGGAGGGGCGACG






HPV59
bkpt2-
1273
1274
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2137



MYC_001_exon1


ACGCCTATAACTGCTCGCGGCCGCCACCGCCGGG







CCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV59
bkpt2-
1275
1276
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2138



MYC_001_exon2


ACGCCTATAACAGCCTCCCGCGACGATGCCCCTCA







ACGTTAGCTTCACCAACAGGAACTATGACCTCGAC







TACG






HPV59
bkpt2-
1277
1278
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2139



MYC_001_exon3


ACGCCTATAAAGGAGGAACAAGAAGATGAGGAA







GAAATCGATGTTGTTTCTGTGGAAAAGAGGCAGG







CTCCTGG






HPV59
bkpt2-
1279
1280
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2140



PVT1_002_exon3


ACGCCTATAACTGACCATACTCCCTGGAGCCTTCT







CCCGAGGTGCGCGGGTGACCT






HPV59
bkpt2-
1281
1282
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2141



PVT1_004_exon1


ACGCCTATAATCTGAGCCTGATGGATTTACAGTGA







TCTTCAGTGGTCTGGGG






HPV59
bkpt2-
1283
1284
CAACCCGCGACGGCACATCCCTTGCAGTAACACT
2142



PVT1_005_exon1


ACGCCTATAACTCCGGGCAGAGCGCGTGTGGCGG







CCGAGCACATGGGCCCGCGGGCCGGGCGGGCTCG







GGGCGGCCGGGACGAGGAGGGGCGACG






HPV59
SD2-
1285
1286
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2143



MYC_001_exon1


AAGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV59
SD2-
1287
1288
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2144



MYC_001_exon2


AAGCAGCCTCCCGCGACGATGCCCCTCAACGTTA







GCTTCACCAACAGGAACTATGACCTCGACTACG






HPV59
SD2-
1289
1290
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2145



MYC_001_exon3


AAGAGGAGGAACAAGAAGATGAGGAAGAAATCG







ATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV59
SD2-
1291
1292
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2146



PVT1_002_exon3


AAGCTGACCATACTCCCTGGAGCCTTCTCCCGAGG







TGCGCGGGTGACCT






HPV59
SD2-
1293
1294
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2147



PVT1_004_exon1


AAGTCTGAGCCTGATGGATTTACAGTGATCTTCAG







TGGTCTGGGG






HPV59
SD2-
1295
1296
GCAGCAAACCAGTAACCTGCAATGGCCGATTCGG
2148



PVT1_005_exon1


AAGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCA







CATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGC







CGGGACGAGGAGGGGCGACG






HPV66
bkpt1-
1297
1298
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2149



MYC_001_exon1


TAGACTATTGGAAAGCTGTACGACATGCTGCTCGC







GGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCTC







CCCTCCTGCCTCGA






HPV66
bkpt1-
1299
1300
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2150



MYC_001_exon2


TAGACTATTGGAAAGCTGTACGACATGCAGCCTCC







CGCGACGATGCCCCTCAACGTTAGCTTCACCAACA







GGAACTATGACCTCGACTACG






HPV66
bkpt1-
1301
1302
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2151



MYC_001_exon3


TAGACTATTGGAAAGCTGTACGACATGAGGAGGA







ACAAGAAGATGAGGAAGAAATCGATGTTGTTTCT







GTGGAAAAGAGGCAGGCTCCTGG






HPV66
bkpt1-
1303
1304
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2152



PVT1_002_exon3


TAGACTATTGGAAAGCTGTACGACATGCTGACCAT







ACTCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGA







CCT






HPV66
bkpt1-
1305
1306
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2153



PVT1_004_exon1


TAGACTATTGGAAAGCTGTACGACATGTCTGAGCC







TGATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV66
bkpt1-
1307
1308
TATGAAAAAGATAGTAAATGCATTATAGATCACA
2154



PVT1_005_exon1


TAGACTATTGGAAAGCTGTACGACATGCTCCGGG







CAGAGCGCGTGTGGCGGCCGAGCACATGGGCCCG







CGGGCCGGGCGGGCTCGGGGCGGCCGGGACGAGG







AGGGGCGACG






HPV66
bkpt2-
1309
1310
GGTGATAAAACTACGCCTGTAACTGCTCGCGGCC
2155



MYC_001_exon1


GCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCT







CCTGCCTCGA






HPV66
bkpt2-
1311
1312
GGTGATAAAACTACGCCTGTAACAGCCTCCCGCG
2156



MYC_001_exon2


ACGATGCCCCTCAACGTTAGCTTCACCAACAGGA







ACTATGACCTCGACTACG






HPV66
bkpt2-
1313
1314
GGTGATAAAACTACGCCTGTAAAGGAGGAACAAG
2157



MYC_001_exon3


AAGATGAGGAAGAAATCGATGTTGTTTCTGTGGA







AAAGAGGCAGGCTCCTGG






HPV66
bkpt2-
1315
1316
GGTGATAAAACTACGCCTGTAACTGACCATACTCC
2158



PVT1_002_exon3


CTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV66
bkpt2-
1317
1318
GGTGATAAAACTACGCCTGTAATCTGAGCCTGATG
2159



PVT1_004_exon1


GATTTACAGTGATCTTCAGTGGTCTGGGG






HPV66
bkpt2-
1319
1320
GGTGATAAAACTACGCCTGTAACTCCGGGCAGAG
2160



PVT1_005_exon1


CGCGTGTGGCGGCCGAGCACATGGGCCCGCGGGC







CGGGCGGGCTCGGGGCGGCCGGGACGAGGAGGG







GCGACG






HPV66
SD2-
1321
1322
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2161



MYC_001_exon1


AAGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV66
SD2-
1323
1324
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2162



MYC_001_exon2


AAGCAGCCTCCCGCGACGATGCCCCTCAACGTTA







GCTTCACCAACAGGAACTATGACCTCGACTACG






HPV66
SD2-
1325
1326
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2163



MYC_001_exon3


AAGAGGAGGAACAAGAAGATGAGGAAGAAATCG







ATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV66
SD2-
1327
1328
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2164



PVT1_002_exon3


AAGCTGACCATACTCCCTGGAGCCTTCTCCCGAGG







TGCGCGGGTGACCT






HPV66
SD2-
1329
1330
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2165



PVT1_004_exon1


AAGTCTGAGCCTGATGGATTTACAGTGATCTTCAG







TGGTCTGGGG






HPV66
SD2-
1331
1332
GCGCATCATCTAAATAACTGCAATGGCATCACCTG
2166



PVT1_005_exon1


AAGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCA







CATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGC







CGGGACGAGGAGGGGCGACG






HPV68
bkpt1-
1333
1334
ATTAACTATTGGAATTGTGTGCGACTGGCTGCTCG
2167



MYC_001_exon1


CGGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCT







CCCCTCCTGCCTCGA






HPV68
bkpt1-
1335
1336
ATTAACTATTGGAATTGTGTGCGACTGGCAGCCTC
2168



MYC_001_exon2


CCGCGACGATGCCCCTCAACGTTAGCTTCACCAAC







AGGAACTATGACCTCGACTACG






HPV68
bkpt1-
1337
1338
ATTAACTATTGGAATTGTGTGCGACTGGAGGAGG
2169



MYC_001_exon3


AACAAGAAGATGAGGAAGAAATCGATGTTGTTTC







TGTGGAAAAGAGGCAGGCTCCTGG






HPV68
bkpt1-
1339
1340
ATTAACTATTGGAATTGTGTGCGACTGGCTGACCA
2170



PVT1_002_exon3


TACTCCCTGGAGCCTTCTCCCGAGGTGCGCGGGTG







ACCT






HPV68
bkpt1-
1341
1342
ATTAACTATTGGAATTGTGTGCGACTGGTCTGAGC
2171



PVT1_004_exon1


CTGATGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV68
bkpt1-
1343
1344
ATTAACTATTGGAATTGTGTGCGACTGGCTCCGGG
2172



PVT1_005_exon1


CAGAGCGCGTGTGGCGGCCGAGCACATGGGCCCG







CGGGCCGGGCGGGCTCGGGGCGGCCGGGACGAGG







AGGGGCGACG






HPV68
bkpt2-
1345
1346
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2173



MYC_001_exon1


TAGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGC







CGTCCCTGGCTCCCCTCCTGCCTCGA






HPV68
bkpt2-
1347
1348
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2174



MYC_001_exon2


TAGCAGCCTCCCGCGACGATGCCCCTCAACGTTAG







CTTCACCAACAGGAACTATGACCTCGACTACG






HPV68
bkpt2-
1349
1350
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2175



MYC_001_exon3


TAGAGGAGGAACAAGAAGATGAGGAAGAAATCG







ATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV68
bkpt2-
1351
1352
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2176



PVT1_002_exon3


TAGCTGACCATACTCCCTGGAGCCTTCTCCCGAGG







TGCGCGGGTGACCT






HPV68
bkpt2-
1353
1354
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2177



PVT1_004_exon1


TAGTCTGAGCCTGATGGATTTACAGTGATCTTCAG







TGGTCTGGGG






HPV68
bkpt2-
1355
1356
AAGACGGAGCCTTTGTTGTGGTGACACTACACCTA
2178



PVT1_005_exon1


TAGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCA







CATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGC







CGGGACGAGGAGGGGCGACG






HPV68
SD2-
1357
1358
ACCCAGTAATCTGCAATGGCCAATTGTGAAGCTGC
2179



MYC_001_exon1


TCGCGGCCGCCACCGCCGGGCCCCGGCCGTCCCTG







GCTCCCCTCCTGCCTCGA






HPV68
SD2-
1359
1360
ACCCAGTAATCTGCAATGGCCAATTGTGAAGCAG
2180



MYC_001_exon2


CCTCCCGCGACGATGCCCCTCAACGTTAGCTTCAC







CAACAGGAACTATGACCTCGACTACG






HPV68
SD2-
1361
1362
ACCCAGTAATCTGCAATGGCCAATTGTGAAGAGG
2181



MYC_001_exon3


AGGAACAAGAAGATGAGGAAGAAATCGATGTTGT







TTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV68
SD2-
1363
1364
ACCCAGTAATCTGCAATGGCCAATTGTGAAGCTG
2182



PVT1_002_exon3


ACCATACTCCCTGGAGCCTTCTCCCGAGGTGCGCG







GGTGACCT






HPV68
SD2-
1365
1366
ACCCAGTAATCTGCAATGGCCAATTGTGAAGTCTG
2183



PVT1_004_exon1


AGCCTGATGGATTTACAGTGATCTTCAGTGGTCTG







GGG






HPV68
SD2-
1367
1368
ACCCAGTAATCTGCAATGGCCAATTGTGAAGCTCC
2184



PVT1_005_exon1


GGGCAGAGCGCGTGTGGCGGCCGAGCACATGGGC







CCGCGGGCCGGGCGGGCTCGGGGCGGCCGGGACG







AGGAGGGGCGACG






HPV73
bkpt1-
1369
1370
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2185



MYC_001_exon1


GCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCG







TCCCTGGCTCCCCTCCTGCCTCGA






HPV73
bkpt1-
1371
1372
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2186



MYC_001_exon2


GCAGCCTCCCGCGACGATGCCCCTCAACGTTAGCT







TCACCAACAGGAACTATGACCTCGACTACG






HPV73
bkpt1-
1373
1374
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2187



MYC_001_exon3


GAGGAGGAACAAGAAGATGAGGAAGAAATCGAT







GTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV73
bkpt1-
1375
1376
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2188



PVT1_002_exon3


GCTGACCATACTCCCTGGAGCCTTCTCCCGAGGTG







CGCGGGTGACCT






HPV73
bkpt1-
1377
1378
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2189



PVT1_004_exon1


GTCTGAGCCTGATGGATTTACAGTGATCTTCAGTG







GTCTGGGG






HPV73
bkpt1-
1379
1380
GTGATCATATTGATCATTGGAAACACGTGCGACAT
2190



PVT1_005_exon1


GCTCCGGGCAGAGCGCGTGTGGCGGCCGAGCACA







TGGGCCCGCGGGCCGGGCGGGCTCGGGGCGGCCG







GGACGAGGAGGGGCGACG






HPV73
bkpt2-
1381
1382
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2191



MYC_001_exon1


ATAGCTGCTCGCGGCCGCCACCGCCGGGCCCCGG







CCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV73
bkpt2-
1383
1384
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2192



MYC_001_exon2


ATAGCAGCCTCCCGCGACGATGCCCCTCAACGTTA







GCTTCACCAACAGGAACTATGACCTCGACTACG






HPV73
bkpt2-
1385
1386
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2193



MYC_001_exon3


ATAGAGGAGGAACAAGAAGATGAGGAAGAAATC







GATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGG






HPV73
bkpt2-
1387
1388
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2194



PVT1_002_exon3


ATAGCTGACCATACTCCCTGGAGCCTTCTCCCGAG







GTGCGCGGGTGACCT






HPV73
bkpt2-
1389
1390
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2195



PVT1_004_exon1


ATAGTCTGAGCCTGATGGATTTACAGTGATCTTCA







GTGGTCTGGGG






HPV73
bkpt2-
1391
1392
CCTGTACCCAGTGTACTACACATAATGTTGCGCCA
2196



PVT1_005_exon1


ATAGCTCCGGGCAGAGCGCGTGTGGCGGCCGAGC







ACATGGGCCCGCGGGCCGGGCGGGCTCGGGGCGG







CCGGGACGAGGAGGGGCGACG






HPV73
SD2-
1393
1394
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2197



MYC_001_exon1


GGCTGATTCAGCTGCTCGCGGCCGCCACCGCCGG







GCCCCGGCCGTCCCTGGCTCCCCTCCTGCCTCGA






HPV73
SD2-
1395
1396
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2198



MYC_001_exon2


GGCTGATTCAGCAGCCTCCCGCGACGATGCCCCTC







AACGTTAGCTTCACCAACAGGAACTATGACCTCG







ACTACG






HPV73
SD2-
1397
1398
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2199



MYC_001_exon3


GGCTGATTCAGAGGAGGAACAAGAAGATGAGGA







AGAAATCGATGTTGTTTCTGTGGAAAAGAGGCAG







GCTCCTGG






HPV73
SD2-
1399
1400
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2200



PVT1_002_exon3


GGCTGATTCAGCTGACCATACTCCCTGGAGCCTTC







TCCCGAGGTGCGCGGGTGACCT






HPV73
SD2-
1401
1402
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2201



PVT1_004_exon1


GGCTGATTCAGTCTGAGCCTGATGGATTTACAGTG







ATCTTCAGTGGTCTGGGG






HPV73
SD2-
1403
1404
GCCCCAACTGTTCCAGAAACCTATAAAAGAAGAT
2202



PVT1_005_exon1


GGCTGATTCAGCTCCGGGCAGAGCGCGTGTGGCG







GCCGAGCACATGGGCCCGCGGGCCGGGCGGGCTC







GGGGCGGCCGGGACGAGGAGGGGCGACG






HPV82
bkpt1-
1405
1406
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2203



MYC_001_exon1


ATTATTGGACGTTGGTACGATATGCTGCTCGCGGC







CGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCC







TCCTGCCTCGA






HPV82
bkpt1-
1407
1408
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2204



MYC_001_exon2


ATTATTGGACGTTGGTACGATATGCAGCCTCCCGC







GACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV82
bkpt1-
1409
1410
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2205



MYC_001_exon3


ATTATTGGACGTTGGTACGATATGAGGAGGAACA







AGAAGATGAGGAAGAAATCGATGTTGTTTCTGTG







GAAAAGAGGCAGGCTCCTGG






HPV82
bkpt1-
1411
1412
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2206



PVT1_002_exon3


ATTATTGGACGTTGGTACGATATGCTGACCATACT







CCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV82
bkpt1-
1413
1414
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2207



PVT1_004_exon1


ATTATTGGACGTTGGTACGATATGTCTGAGCCTGA







TGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV82
bkpt1-
1415
1416
GAACTGGACAGTGATAAATTAGTAGATCAAATTA
2208



PVT1_005_exon1


ATTATTGGACGTTGGTACGATATGCTCCGGGCAGA







GCGCGTGTGGCGGCCGAGCACATGGGCCCGCGGG







CCGGGCGGGCTCGGGGCGGCCGGGACGAGGAGG







GGCGACG






HPV82
bkpt2-
1417
1418
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2209



MYC_001_exon1


GTGCAACTAAAACTGCGTTTATAGCTGCTCGCGGC







CGCCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCC







TCCTGCCTCGA






HPV82
bkpt2-
1419
1420
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2210



MYC_001_exon2


GTGCAACTAAAACTGCGTTTATAGCAGCCTCCCGC







GACGATGCCCCTCAACGTTAGCTTCACCAACAGG







AACTATGACCTCGACTACG






HPV82
bkpt2-
1421
1422
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2211



MYC_001_exon3


GTGCAACTAAAACTGCGTTTATAGAGGAGGAACA







AGAAGATGAGGAAGAAATCGATGTTGTTTCTGTG







GAAAAGAGGCAGGCTCCTGG






HPV82
bkpt2-
1423
1424
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2212



PVT1_002_exon3


GTGCAACTAAAACTGCGTTTATAGCTGACCATACT







CCCTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV82
bkpt2-
1425
1426
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2213



PVT1_004_exon1


GTGCAACTAAAACTGCGTTTATAGTCTGAGCCTGA







TGGATTTACAGTGATCTTCAGTGGTCTGGGG






HPV82
bkpt2-
1427
1428
GGAACTGCAGGCCCAAACACCGGAGGGCACCTCA
2214



PVT1_005_exon1


GTGCAACTAAAACTGCGTTTATAGCTCCGGGCAG







AGCGCGTGTGGCGGCCGAGCACATGGGCCCGCGG







GCCGGGCGGGCTCGGGGCGGCCGGGACGAGGAG







GGGCGACG






HPV82
SD2-
1429
1430
CATCGGCAATGGACAGTGAAGCTGCTCGCGGCCG
2215



MYC_001_exon1


CCACCGCCGGGCCCCGGCCGTCCCTGGCTCCCCTC







CTGCCTCGA






HPV82
SD2-
1431
1432
CATCGGCAATGGACAGTGAAGCAGCCTCCCGCGA
2216



MYC_001_exon2


CGATGCCCCTCAACGTTAGCTTCACCAACAGGAAC







TATGACCTCGACTACG






HPV82
SD2-
1433
1434
CATCGGCAATGGACAGTGAAGAGGAGGAACAAG
2217



MYC_001_exon3


AAGATGAGGAAGAAATCGATGTTGTTTCTGTGGA







AAAGAGGCAGGCTCCTGG






HPV82
SD2-
1435
1436
CATCGGCAATGGACAGTGAAGCTGACCATACTCC
2218



PVT1_002_exon3


CTGGAGCCTTCTCCCGAGGTGCGCGGGTGACCT






HPV82
SD2-
1437
1438
CATCGGCAATGGACAGTGAAGTCTGAGCCTGATG
2219



PVT1_004_exon1


GATTTACAGTGATCTTCAGTGGTCTGGGG






HPV82
SD2-
1439
1440
CATCGGCAATGGACAGTGAAGCTCCGGGCAGAGC
2220



PVT1_005_exon1


GCGTGTGGCGGCCGAGCACATGGGCCCGCGGGCC







GGGCGGGCTCGGGGCGGCCGGGACGAGGAGGGG







CGACG




















TABLE 2E





Human

Forward

Reverse


gene
Forward primer
primer
Reverse primer
primer


name
Nucleic acid sequence
SEQ ID NO
Nucleic acid sequence
SEQ ID NO







ACTB
CCAGGTCATCACCATTGGCAAT
1441
CGTACAGGTCTTTGCGGATGT
1442





AKT1
CCATGAGCGACGTGGCTATT
1443
CTCACGTTGGTCCACATCCT
1444





B2M
CTGTGCTCGCGCTACTCT
1445
CAACTTCAATGTCGGATGGATGAAAC
1446





BCL2
GTGGATGACTGAGTACCTGAACC
1447
GGCCAAACTGAGCAGAGTCTT
1448





BRAF
CGGGACTCGAGTGATGATTGG
1449
CTGAGGTGTAGGTGCTGTCA
1450





CDH1
CTCCTGAAAAGAGAGTGGAAGTGT
1451
CCGGATTAATCTCCAGCCAGTT
1452





CDKN2A
AACGCACCGAATAGTTACGGT
1453
ACGGGTCGGGTGAGAGT
1454





CDKN2B
CGGATCCCAACGGAGTCAA
1455
ACCGGTCGGGTGAGAGT
1456





ERBB2
TCTTCCAGAACCTGCAAGTAATCC
1457
GGTGGGTGTTATGGTGGATGA
1458





FOS
AGGAGAATCCGAAGGGAAAGGAATA
1459
TCCTTCAGCAGGTTGGCAAT
1460





GAPDH
AGTCCACTGGCGTCTTCAC
1461
TGATCTTGAGGCTGTTGTCATACTTC
1462





GUSB
GCGAGTATGGAGCAGAAACGA
1463
AATTCCAAATGAGCTCTCCAACCA
1464





HRAS
CGGAATATAAGCTGGTGGTGGT
1465
GCACGTCTCCCCATCAATGA
1466





KRAS
GTGCAATGAGGGACCAGTACA
1467
CTACTAGGACCATAGGTACATCTTCAGA
1468





KRT10
GATGAGCTGACCCTGACCAA
1469
GGCAGCATTCATTTCCACATTCAC
1470





KRT14
AGGAGCTGGCCTACCTGAA
1471
CTTCTCATACTGGTCACGCATCT
1472





KRT17
AACACTGAGCTGGAGGTGAAG
1473
CTGTAGCAGGATGTTGGCATTG
1474





MET
TGTGTGCATTCCCTATCAAATATGTCAA
1475
GCGCTTCACAGCCTGATGA
1476





MKI67
CGTCGTGTCTCAAGATCTAGCTT
1477
TGAGTCATCTGCGGTACTGTCT
1478





MYC
GCTTCTCTGAAAGGCTCTCCTT
1479
AAATACGGCTGCACCGAGT
1480





NOTCH1
CCGACGCACAAGGTGTCTT
1481
GTCGGCGTGTGAGTTGATGA
1482





PCNA
GACGGAGTGAAATTTTCTGCAAGT
1483
GAAGTTCAGGTACCTCAGTGCAAA
1484





PTEN
AGCGTGCAGATAATGACAAGGAA
1485
GATTTGACGGCTCCTCTACTGT
1486





RB1
CGGTCTTCATGCAGAGACTGA
1487
GTGAAATATAGATGTTCCCTCCAGGAAT
1488





RPLP0
GACGGATTACACCTTCCCACTT
1489
GACTCTTCCTTGGCTTCAACCTTA
1490





STAT1
CGATGGGCTCAGCTTTCAGA
1491
ACAAAACCTCGTCCACGGAAT
1492





TERT
TCCTGCGTTTGGTGGATGAT
1493
CCTCGTCTTCTACAGGGAAGTTCA
1494





TOP2A
TGGGTGGTCCTGCAAAATCC
1495
ACATATTGATTTGGAGCCAGTTCTTCA
1496





TP53
CTGGCCCCTGTCATCTTCTG
1497
CTTGGCCAGTTGGCAAAACAT
1498





WNT1
CTGGAACTGTCCCACTGCT
1499
CAGGATTCGATGGAACCTTCTGA
1500




















TABLE 2Ebis






Forward
Reverse




Human
primer
primer

Amplicon


gene
SEQ ID
SEQ ID
Amplicon
SEQ ID


name
NO
NO
nucleic acid sequence
NO







ACTB
1441
1442
GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGA
2221





GTCCTGTGGCATCCACGAAACTACCTTCAACTCCATCATGAAGTGTGACGTG






G






AKT1
1443
1444
GTGAAGGAGGGTTGGCTGCACAAACGAGGGGAGTACATCAAGACCTGGCGG
2222





CCACGCTACTTCCTCCTCAAGAATGATGGCACCTTCATTGGCTACAAGGAGC






GGCCGC






B2M
1445
1446
CTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCA
2223





CGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTG






G






BCL2
1447
1448
GGCACCTGCACACCTGGATCCAGGATAACGGAGGCTGGGATGCCTTTGTGGA
2224





ACTGTACGGCCCCAGCATGCGGCCTCTGTTTGATTTCTCCTGGCTGTCTCTG






BRAF
1449
1450
GAGATTCCTGATGGGCAGATTACAGTGGGACAAAGAATTGGATCTGGATCAT
2225





TTGGAACAGTCTACAAGGGAAAGTGGCATGGTGATGTGGCAGTGAAAATGTT






GAATG






CDH1
1451
1452
CCGAGGACTTTGGCGTGGGCCAGGAAATCACATCCTACACTGCCCAGGAGCC
2226





AGACACATTTATGGAACAGAAAATAACATATCGGATTTGGAGAGACACTGCC






CDKN2A
1453
1454
CGGAGGCCGATCCAGGTCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTG
2227





CTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCC






CDKN2B
1455
1456
CCGTTTCGGGAGGCGCGCGATCCAGGTCATGATGATGGGCAGCGCCCGCGTG
2228





GCGGAGCTGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGACCCTGCC






ERBB2
1457
1458
GGGGACGAATTCTGCACAATGGCGCCTACTCGCTGACCCTGCAAGGGCTGGG
2229





CATCAGCTGGCTGGGGCTGCGCTCACTGAGGGAACTGGGCAGTGGACTGGCC






C






FOS
1459
1460
AGATGGCTGCAGCCAAATGCCGCAACCGGAGGAGGGAGCTGACTGATACAC
2230





TCCAAGCGGAGACAGACCAACTAGAAGATGAGAAGTCTGCTTTGCAGACCG






AG






GAPDH
1461
1462
CACCATGGAGAAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCAT
2231





CATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATG






A






GUSB
1463
1464
TTGCAGGGTTTCACCAGGATCCACCTCTGATGTTCACTGAAGAGTACCAGAA
2232





AAGTCTGCTAGAGCAGTACCATCTGGGTCTGGATCAAAAACGCAGAAAATAC






G






HRAS
1465
1466
GGGCGCCGGCGGTGTGGGCAAGAGTGCGCTGACCATCCAGCTGATCCAGAA
2233





CCATTTTGTGGACGAATACGACCCCACTATAGAGGATTCCTACCGGAAGCAG






GTGG






KRAS
1467
1468
TGAGGACTGGGGAGGGCTTTCTTTGTGTATTTGCCATAAATAATACTAAATCA
2234





TTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAGTTAAGGAC






KRT10
1469
1470
GGCTGACCTGGAGATGCAAATTGAGAGCCTGACTGAAGAGCTGGCCTATCTG
2235





AAGAAGAACCACGAGGAGGAAATGAAAGACCTTCGAAATGTGTCCACTGGT






GAT






KRT14
1471
1472
GAAGAACCACGAGGAGGAGATGAACGCCCTGCGAGGCCAGGTGGGTGGTGA
2236





GATCAATGTGGAGATGGACGCTGCCCCAGGCGTGGACCTGAGCCGCATCCTC






AACG






KRT17
1473
1474
ATCCGTGACTGGTACCAGAGGCAGGCCCCGGGGCCCGCCCGTGACTACAGCC
2237





AGTACTACAGGACAATTGAGGAGCTGCAGAACAAGATCCTCACAGCCACCGT






GGA






MET
1475
1476
CGACTTCTTCAACAAGATCGTCAACAAAAACAATGTGAGATGTCTCCAGCAT
2238





TTTTACGGACCCAATCATGAGCACTGCTTTAATAGGACACTTCTGAGAAAT






MKI67
1477
1478
CTCTTCTGACCCTGATGAGAAAGCTCAAGATTCCAAGGCCTATTCAAAAATC
2239





ACTGAAGGAAAAGTTTCAGGAAATCCTCAGGTACATATCAAGAATGTCAAAG






A






MYC
1479
1480
GCAGCTGCTTAGACGCTGGATTTTTTTCGGGTAGTGGAAAACCAGCAGCCTC
2240





CCGCGACGATGCCCCTCAACGTTAGCTTCACCAACAGGAACTATGACCTCGA






CTACG






NOTCH1
1481
1482
CCAGATCCTGATCCGGAACCGAGCCACAGACCTGGATGCCCGCATGCATGAT
2241





GGCACGACGCCACTGATCCTGGCTGCCCGCCTGGCCGTGGAGGGCATGCTGG






AGGACC






PCNA
1483
1484
GGAGAACTTGGAAATGGAAACATTAAATTGTCACAGACAAGTAATGTCGATA
2242





AAGAGGAGGAAGCTGTTACCATAGAGATGAATGAACCAGTTCAACTAACT






PTEN
1485
1486
TATCTAGTACTTACTTTAACAAAAAATGATCTTGACAAAGCAAATAAAGACA
2243





AAGCCAACCGATACTTTTCTCCAAATTTTAAGGTGAAGCTGTACTTCACAAA






A






RB1
1487
1488
AAACAAATATTTTGCAGTATGCTTCCACCAGGCCCCCTACCTTGTCACCAATA
2244





CCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGG






RPLP0
1489
1490
GCTGAAAAGGTCAAGGCCTTCTTGGCTGATCCATCTGCCTTTGTGGCTGCTGC
2245





CCCTGTGGCTGCTGCCACCACAGCTGCTCCTGCTGCTGCTGCAGCCCCAGC






STAT1
1491
1492
AGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAATGTGGACC
2246





AGCTGAACATGTTGGGAGAGAAGCTTCTTGGTCCTAACGCCAGCCCCGATGG






TCTC






TERT
1493
1494
TTCTTGTTGGTGACACCTCACCTCACCCACGCGAAAACCTTCCTCAGGACCCT
2247





GGTCCGAGGTGTCCCTGAGTATGGCTGCGTGGTGAACTTGCGGAAGACAGTG






G






TOP2A
1495
1496
CCAACTTTGATGTGCGTGAAATTGTAAATAACATCAGGCGTTTGATGGATGG
2248





AGAAGAACCTTTGCCAATGCTTCCAAGTTACAAGAACTTCAAGGGTACTAT






TP53
1497
1498
TCCCTTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTG
2249





CATTCTGGGACAGCCAAGTCTGTGACTTGCACGTACTCCCCTGCCCTCAACAA






G






WNT1
1499
1500
CCAGGGCCCCACCTCTTCGGCAAGATCGTCAACCGAGGCTGTCGAGAAACGG
2250





CGTTTATCTTCGCTATCACCTCCGCCGGGGTCACCCATTCGGTGGCGCGCTCC






TGC









Study Participants


Study participants were women aged from 25 to 65 years old referred for colposcopy consultation in French hospitals. The patients were referred for colposcopy in the context of a LSIL or a HSIL result at their cytology test performed in accordance with French recommendations regarding the cervical cancer screening program. Patients provided written informed consent according to French legislation.


Specimen Collection


Genital samples were collected just before performing colposcopy using a cervical sampling device, immersed and rinsed in a vial filled with 20mL of PreservCyt Solution (Hologic, USA), and sent at room temperature to the HPV National Reference Center (CNR) at Institut Pasteur, Paris, France. From July 2014 to April 2015, 84 patients were enrolled in the study, coming from 3 different French centers: CHU Angers (n=66); CHU Kremlin-Bicêtre (n=10); CHU Tours (n=6). Samples were removed of the study because of technical reasons (sample leakage, n=1) or legal issues (n=7) or because they were used for initial technical tests (RNA conservation, RNA extraction and amplification, n=4). The remaining 72 samples (HSIL=37; LSIL=35) were processed.


Data Collection


The following bio-clinical data were collected: date and results of the cytology test, age at the time of the cytology test, date and results of all available histological results posterior to colposcopy. As colposcopy was performed in the context of routine healthcare, biopsies were not performed in case of normal colposcopy.


HPV DNA Detection Using the PapilloCheck Test Kit (HPV DNA)


Upon reception at CNR, 16 mL of cytological sample were transferred into a 50 mL Falcon tube and centrifuged at 4,500 g for 10 minutes. The supernatant was removed and the pellet washed with 1 mL of PBS. Sample was then centrifuged again at 5000 g for 10 minutes and the supernatant removed. The pellet was frozen at −80° C. before DNA extraction. Following DNA extraction (Macherey Nagel, Germany), HPV detection was done using the PapilloCheck Test Kit (Greiner Bio-One GmbH, Germany) according to manufacturer instructions.


RNA Extraction and Characterization


In parallel to the HPV DNA procedure, 3×1 mL aliquots of cytological specimen were centrifuged at 14,000 rpm for 7 minutes, the supernatant was removed and the pellet was washed with 1 mL of PBS. Sample was then centrifuged again at 14,000 rpm for 7 minutes and the supernatant removed. The pellet was frozen at −80° C. before RNA extraction. RNA extractions were done using the PicoPure RNA Isolation kit (Thermo Fisher Scientific,), including on-column DNAse treatment, with a final elution volume of 30 μl. Total RNA was quantified on a Nanodrop (Life Technologies) and RNA integrity was evaluated on a Bioanalyzer RNA 6000 pico chip (Agilent) using the RIN (RNA Integrity Number), a quality score ranging from 1 (strongly degraded RNA) to 10 (intact RNA). For each sample, RT-qPCR targeting mRNA from on housekeeping genes ACTB (forward primer: CATCGAGCACGGCATCGTCA (SEQ ID NO: 2258); reverse primer: TAGCACAGCCTGGATAGCAAC (SEQ ID NO: 2259); amplicon size=210 bp) and GAPDH (forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: 2260); reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 2261); amplicon size=226 bp) were done in a SYBR Green format with 45 cycles of amplification. RT-negative (RT-) PCR were also run to evaluate the presence of residual DNA after RNA extraction.


Amplification and Sequencing


Starting from RNA, cDNA were generated using the SuperScript III (n=17 samples) or Superscript IV (n=55 samples) (Thermo Fisher Scientific) with random hexamers and a final RNAse H treatment. Libraries were prepared using the Ion AmpliSeq Library Kit 2.0 and AmpliSeq custom panel WG_WG00141, with 21 cycles of amplification before adapter's ligation. Each sample was barcoded individually. Only positive libraries were sequenced. In total, 55 clinical samples plus 1 cellular model (SiHa) were sequenced on 4 Ion Proton runs.


Sequencing Data Processing


Reads were aligned to the reference sequences of the amplicons using STAR23 v2.5.3a in local alignment mode (parameter -alignEndsType EndToEnd), by only reporting uniquely mapped reads (-outFilterMultimapNmax 1) and turning off splicing alignment (-alignIntronMax 1). The expression of each amplicon was evaluated by the number of sequencing reads uniquely mapping to their respective sequence (read counts). For reference sequences containing a splice junction, only reads mapping at the junction site and encompassing at least 10 bases before and 10 bases after the junction were kept.


HSIL Prediction Model


Selection of Amplicons


Read counts were normalized by the size of the library (each read count was divided by a ratio of the library size for a given sample to that of the average library size across samples) and the 215 amplicons capturing splice junctions (sp) of the 16 high-risk or putative high risk HPV were selected. These amplicons have been annotated with generic names with respect to the type of transcripts they capture, which are shared across HPV species (e.g. “SD1-SA1”, see FIG. 2). Amplicons capturing homolog generic splice junctions conserved across the 16 HPV species were summed up, leading to the definition of 18 variables used as predictors in the model. 33 out of the 55 clinical samples have been selected as presenting enough coverage of these specific amplicons (20 mono-infected and 13 multi-infected samples). The remaining 22 samples of the dataset were not used in the logistic regression analysis because they had missing or too low expression signal at splice junctions for the prediction, reflecting for example HPV-negative samples.


Logistic Regression Model


Calling high grade cytology Y as taking the value 1 for high grade (HSIL) and 0 for low grade (LSIL), and a set of amplicons x, a logistic regression model was used to predict the probability that a given observation belongs to the “1” class versus the probability that it belongs to the “0” class. Logistic regression models the log odds of the event (here the grade of the cytology) as a function of the predictor variables (here the amplicon expression estimated by its read count). Formally, the logistic regression model assumes that the log odds is a linear function of the predictors:







(
π
)

=


ln


(

π

1
-
π


)


=


β
0

+


β
t


x







where indicates the probability of the event (being of high-grade), βi are the regression coefficients, and xi the explanatory variables, in our case the log 2 number of reads mapping to the amplicons.


Solving for π, this gives:






π
=

1

1
+

e

-

(


β
0

+

β

x


)









Implementation of the Logistic Regression Model


To limit overfitting, the inventors used L2-norm (ridge) regularization, which allows shrinking the magnitudes of the regression coefficients such that they will better fit future data. The inventors estimated the logistic model using the R (http://www.r-project.org/) package glmnet (Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw, 2010, 33:1-22). Leave-one-out (LOO) cross-validation was used to pick the regularization parameter λ, the one that gives minimum mean cross-validated misclassification error was used. Using λ as the regularization parameter, the model output consisted in an estimate of a coefficient value β for each variable in the logistic regression model. This model was then used to predict the grade of the multi-infected observations, by treating each HPV species separately.


Training Set and Test Set


The model was built upon the clinical outcome LSIL or HSIL obtained from the cytological analysis, and estimated on a training set consisting of 20 mono-infected samples (5 LSIL and 15 HSIL) in order to avoid a confusion bias. It is indeed anticipated that, in the case of multi-infected samples, several HPV could contribute differently to the progression of the lesion or to a mix of several grades within the same sample, because they are engaged in different stages of their cycle. The performance of the model was then evaluated on a test set consisting of 13 multi-infected samples. In this case, the set of amplicons of each HPV species was used separately to classify the multi-infected samples, to get one prediction per HPV, as done for the mono-infected samples. For example if a sample had expression of amplicons from both HPV16 and HPV32, two predictions were given: one using only sequencing reads mapping to HPV16, and one using only sequencing reads mapping to HPV32. Like this it became possible to interpret the results finely from a virological point of view, as the inventors could discriminate which HPV was responsible of the lesion.


Results:


Evaluation of Transport Medium for RNA Conservation


The stability of total RNA from cervical cells at room temperature was evaluated in four solutions: PreservCyt (Hologic), the most widely used solution for gynecological specimen collection; NovaPrep HQ+ Solution (Novaprep), a competitor product used for cells and DNA recovery but never evaluated for RNA conservation; RNA Protect Cell Reagent (Qiagen), a popular solution for RNA stability; and NucliSens Lysis Buffer (BioMérieux), a lysis buffer part of the NucliSens automated acid nucleic procedure which has been described as a RNA stabilizer. The amount of spiked HPV16-positive cervical squamous cell carcinoma cells (SiHa) was calibrated to be representative of a cervical smear. After 48 h at room temperature, RT-qPCR measurement of cellular and viral transcripts showed no or little RNA loss in PreservCyt, only limited RNA degradation (<1 log) in RNA Protect and NucliSens Lysis Buffer, and a marked RNA loss in NovaPrep HQ+ Solution (>2 log). After 7 days and up to 21 days, only the PreservCyt solution provided RNA quality with a limited RNA degradation pattern as indicated by the detection of 18S and 28S rRNA. The inventors therefore decided to use the PreservCyt solution to collect the gynecological specimen of the study.


HPV RNA-Seq AmpliSeq Custom Panel


Transcriptomic maps known for HPV1620 and HPV1821 were used to predict unknown but likely splice donor and splice acceptor sites for HPV31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82 (FIGS. 1 and 2). The resulting reconstructed transcripts, as well as HPV genomic sequences, were used as a template for the design of an Ion AmpliSeq panel targeting 16 high-risk or putative high-risk HPV and named HPV RNA-Seq. Putative breakpoints in HPV genomes, and 30 human cellular genes used as internal controls, were also added to the design. In total, 750 sequences are targeted by a single mix made of 525 unique primers (Table 1 and Tableau 2A-2E).


Samples, RNA & Sequencing


72 gynecological samples (HSIL=37; LSIL=35) coming from 3 different French centers (Angers, Kremlin-Bicêtre and Tours) and collected in PreservCyt solution were processed with RNA extraction using a method designed to recover total RNA from as little as a single cell (PicoPure RNA Isolation kit, Thermo Fisher Scientific, USA). In most of the cases total RNA was measurable using a Nanodrop (70/72 positive, average on positive RNA eluates=18 ng/μL) and was detectable on a Bioanalyzer pico RNA chip with a pattern indicating RNA degradation (63/72 positive, average RNA Integrity Number on positive=2.2). RT-qPCR performed for all samples on ACTB mRNA (amplicon size=210 bp) and GAPDH mRNA (amplicon size=226 bp) indicated that RNA quality was compatible with amplification of 200-250 bp size fragments (ACTB mRNA average Ct=27.8; GAPDH mRNA average Ct=30.1). Samples that failed passing this initial RT-PCR quality control were not sequenced. qPCR performed after omitting the reverse transcription step (RT-) were also run and showed in general no or little traces of residual genomic DNA (ACTB DNA average Ct=38.4; GAPDH DNA average Ct=35.6). Note, the presence of residual cellular DNA or HPV DNA in RNA preparation is not a major concern since the AmpliSeq assay can differentiate between HPV transcripts and genomic sequences. AmpliSeq libraries were initiated from total RNA and were positive after 21 cycles of amplification for 55 samples (i.e. detectable on a Bioanalyzer HS DNA chip). Attempts to add one or two amplification cycles did not bring any significant improvement to the results (data not shown). In total, 55 patients (HSIL=27; LSIL=28), plus SiHa HPV16-positive cells as a control, had been sequenced on Ion Proton. The sequencing reads were aligned to the target sequences and read counts were generated. An average of 2.4 million usable reads per sample was reached (min=0.02M; max=8.3M), among which an average of 2.1 million reads mapped to the human sequences (hg) used as internal controls (min=0.01M; max=8.06M). The detection of highly expressed human sequences in all samples, even though inter-sample variations were observed, contributed to validate the sequencing procedure, which is important especially for the interpretation of HPV-negative samples. Rare non-zero values were also observed for some of the numerous HPV-human fusion sequences (fus) that were hypothesized but were all false positives, identified as such because only half of the reference sequences were covered by reads.


HPV RNA-Seq Used for HPV Detection and Genotyping


The first application of HPV RNA-Seq is to detect the presence in a given sample of any of the 16 high-risk or putative high-risk HPV targeted by the panel. The number of reads mapping to HPV-specific amplicons (i.e. the sum of categories “sp”, “unsp” and “gen”) was used to detect the presence of a given HPV genotype. To help determining a threshold for detection, we took as a reference a HPV DNA test validated for clinical use (PapilloCheck, Greiner Bio-One GmbH). The best sensitivity and specificity values between the two tests were obtained for threshold of 100-200 reads (FIG. 3). For example, a threshold value of 150 reads resulted in a Sensitivity (Se(HPV-DNA)) of 97.3%, a Specificity (Sp(HPV-DNA)) of 83.3%, leading to a Positive Predictive Value (PPV(HPV-DNA)) of 92.3% and a Negative Predictive Value (NPV(HPV-DNA)) of 93.8% for detecting high-risk HPV in this population composed of around 50% of HSIL and 50% of LSIL (Table 3). Table 3 shows the performances of HPV RNA-Seq for HPV detection vs HPV DNA (PapilloCheck) at threshold value of 150 reads. Sensitivity (Se), Specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are given. HPV+ means that at least one HPV genotype is identified in a patient.













TABLE 3







HPV DNA
























HPV+
HPV−
Se(HPV-
97.3%






DNA)



HPV RNA-
HPV+
36
3
Sp(HPV-
83.3%


Seq



DNA)




HPV−
1
15
PPV(HPV-
92.3%






DNA)







NPV(HPV-
93.8%






DNA)









A more detailed view of the genotypes identified by both techniques is given in FIG. 4. The number of mono-infected, multi-infected, or HPV-negative samples identified by the two tests is summarized in Table 4. Note that, because the HPV DNA test can detect the 16 high-risk or putative high-risk HPV captured by HPV RNA-Seq (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82) plus 8 additional low-risk HPV (HPV6, 11, 40, 42, 43, 44/45, 53 and 70), the comparison was based only on the 16 HPV common to both tests.











TABLE 4






HPV RNA-




Seq
HPV DNA

















Mono-infected samples
26
27


Multi-infected samples
13
10


HPV-negative samples
16
18









Using a threshold value of 150 reads, HPV RNA-Seq detected two more positive patients than the HPV DNA test (n=39 vs n=37, Table 3). HPV RNA-Seq identified the presence of more than one HPV for three more patients than the HPV DNA test (n=13 vs n=10 multi-infected samples, Table 4). Globally, HPV16 was found at a slightly weaker occurrence by HPV RNA-Seq (n=18 vs n=19) in favor of other genotypes such as HPV31, 33, 45, 52, 56, 58 or 66 which were less commonly found by the HPV DNA test (HPV31 n=5 vs n=4; HPV33 n=3 vs n=1; HPV45 n=3 vs n=2; HPV52 n=5 vs n=3; HPV56 n=4 vs n=2; HPV58 n=5 vs n=4; HPV66 n=2 vs n=1, FIG. 4). Apart from HPV16, only HPV51 was less frequently found by HPV RNA-Seq than by HPV DNA (n=2 vs n=3). The cellular model (SiHa) gave only HPV16 signal in both tests, as expected.


HPV RNA-Seq Used as a Marker of High-Grade Cytology


The inventors conducted an exploratory analysis on 20 of the mono-infected samples in which they showed that HPV RNA splice junctions could be used to predict high-grade cytology. They focused the analysis on amplicons capturing splice junctions (category “sp”) to be sure to detect HPV transcripts. However, the number of mono-infected samples (n=20) used as training set was small, in particular the number of samples of LSIL (n=5). LOO cross-validation was used to pick the lambda giving the minimum cross-validated error using ridge regularization. Lambda=0.08 gave a mean cross-validated error of 15%. The inventors also computed a 20% prediction error using nested cross-validation. This error rate can be seen as an indicator of how the model could fit future datasets. The inventors used the corresponding parameter to fit a regularized logistic regression model, assigning a coefficient to each amplicon (Table 5) and a probability of being of high-grade to each sample (Table 6). In table 5, the first and fourth columns give the id of the splice junction captured by the amplicon, the second column gives the coefficient assigned by the logistic regression, the third column indicate whether the splice junction comes from a “late” or “early” transcript.












TABLE 5





junction
Coefficient
name_transcript_category
name_transcript_contents


















(Intercept)
0.468298365




SD2_SA10
−0.693322203
Late
L1


SD3_SA4
0.545728771
Early
(E1) E4 E5


SD1_SA4
0.387642812
Early
(E6) E2 E5


SD2_SA4
−0.262522618
Early
(E7) E2 E5


SD1_SA2
0.146954179
Early
E6 E7


SD2_SA5
0.12050536
Early
(E7) E2 E5


SD1_SA6
0.107204358
Early
(E6) E4 E5


SD5_SA10
0.096088118
Late
L1


SD3_SA6
0.093052957
Early
(E1) E4 E5


SD1_SA5
0.092877361
Early
(E6) E2 E5


SD2_SA6
−0.088655106
Early
(E7) E4 E5


SD1_SA1
0.07669912
Early
E6 E7


SD1_SA3
0.069688722
Early
E6 E7


SD2_SA8
0.061867993
Early
(E7) E4 E5


SD3_SA5
0.051702326
Early
(E1) E4 E5


SD2_SA9
−0.040972141
Late
L1


SD5_SA9
−0.026083777
Late
L1


SD3_SA8
0
Early
(E1) E4 E5




















TABLE 6





sample
prediction_score
prediction_class
prediction_class
prediction_accuracy



















IonXpress_039_115
0.115
−1
LSIL
TRUE


IonXpress_033_730
0.204
−1
LSIL
TRUE


IonXpress_038_114
0.259
−1
LSIL
TRUE


1492
0.425
−1
LSIL
TRUE


IonXpress_019_2613
0.562
1
LSIL
FALSE


IonXpress_027_598
0.653
1
HSIL
TRUE


729
0.716
1
HSIL
TRUE


567
0.718
1
HSIL
TRUE


IonXpress_018_2439
0.902
1
HSIL
TRUE


610
0.904
1
HSIL
TRUE


1066
0.911
1
HSIL
TRUE


IonXpress_034_758
0.919
1
HSIL
TRUE


1122
0.934
1
HSIL
TRUE


25
0.944
1
HSIL
TRUE


IonXpress_037_1267
0.947
1
HSIL
TRUE


IonXpress_024_26
0.965
1
HSIL
TRUE


IonXpress_025_538
0.97
1
HSIL
TRUE


752
0.976
1
HSIL
TRUE


IonXpress_021_443
0.984
1
HSIL
TRUE


2612
0.993
1
HSIL
TRUE









Table 6 shows the classification results of the (ridge) logistic regression. The first column gives the sample id, the second column gives the probability estimate that the sample is HSIL, the third and fourth columns gives the corresponding prediction, the fifth column contains TRUE if the prediction is consistent with the grade evaluated by cytology.


The grade of the 20 mono-infected samples was classified correctly, except for one observation (Table 5). It is interesting to note that this unique misclassified sample (IonXpress_019_2613), which was classified LSIL by the cytological analysis, was further found as containing a mixture of LSIL and HSIL lesions after histological examination performed more than one year after the sampling done for HPV RNA-Seq/cytology sampling.


The estimated model was then used to classify the 13 multi-infected samples, with each HPV species present within one sample being classified individually for its implication in HSIL development. If at least one HPV species gave a HSIL prediction, the sample was considered to be HSIL. We calculated performances for HSIL prediction for all samples, considering as not being of high-grade both the six samples without sufficient coverage of the splice junctions and the 16 HPV-negative samples not exceeding the threshold of HPV detection. The calculated performances for HSIL prediction in comparison to cytology for the 55 patients (mono-infected, multi-infected and HPV-negative) were Se(cyto)=66.7%, Sp(cyto)=85.7%, PPV(cyto)=81.8% and NPV(cyto)=72.7% (Table 7A). The performances were also calculated for the subset of 39 samples having at least one HPV identified by HPV RNA-Seq, giving in this case Se(cyto/HR+)=94.7%, Sp(cyto/HR+)=80.0%, PPV(cyto/HR+)=81.8% and NPV(cyto/HR+)=94.1% (Table 7B). In table 7, Sensitivity (Se), Specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are given. “Not HSIL” means that either no HPV was detected in the sample by HPV RNA-Seq or that none of the HPV genotypes detected were given HSIL prediction.













TABLE 7







A

Cytology



















HSIL
LSIL
Se(cyto)
66.7%


HPV RNA-
HSIL
18
4
Sp(cyto)
85.7%


Seq








Not
9
24
PPV(cyto)
81.8%



HSIL










NPV(cyto)
72.7%














B

Cytology



















HSIL
LSIL
Se(cyto/HR+)
94.7%


HPV RNA-
HSIL
18
4
Sp(cyto/HR+)
80.0%


Seq HR+








Not
1
16
PPV(cyto/HR+)
81.8%



HSIL










NPV(cyto/HR+)
94.1%









Note that the ratio HSIL to LSIL remained similar between these two populations (around 1:1), making the comparison of the PPV and the NPV possible. Finally a summary of the results for HPV detection and genotyping (HPV RNA-Seq vs HPV DNA) and high-grade cytology prediction (HPV RNA-Seq vs cytology), including posterior histological data of cervix biopsies when available, is presented in Table 8.














TABLE 8









HPV RNA-Seq



















Marker of HSIL



















Genotyping
Per HPV






















Per patient
Not enough coverage
Not

Per patient


Time (days)


Sample name
HPV DNA
Detection
on splice junctions
HSIL
HSIL
Prediction
Cytology
Histology
cyto-histo



















D-15-0041_1066_BC13
16
16


16
HSIL
HSIL
HSIL
55


D-15-0041_1122_BC14
16
16


16
HSIL
HSIL
HSIL
130


D-15-0041_1124_BC5
16, 39
16, 39
39
16

Not HSIL
LSIL
HSIL
[70-434]


D-15-0041_1490_BC6
16, 39
16, 35, 39

39
16, 35
HSIL
LSIL
HSIL
67


D-15-0041_1492_BC7
16
16

16

Not HSIL
LSIL
LSIL
81


D-15-0041_151_BC15
16, (53)
16


16
HSIL
LSIL
HSIL
130


D-15-0041_152_BC16
16, (42)
16, 52, 82
16, 52, 82


Not HSIL
LSIL
LSIL
41


D-15-0041_2209_BC11
16, (42), 52
16, 39, 52
39
16, 52

Not HSIL
LSIL
HSIL
n.d.


D-15-0041_250_BC12
16, 39, (42)
16, 39

16, 39

Not HSIL
LSIL
LSIL
55


D-15-0041_25_BC4
16
16


16
HSIL
HSIL
HSIL
75


D-15-0041_2612_BC8
16
16


16
HSIL
HSIL
n.d.
n.d.


D-15-0041_567_BC9
16
16


16
HSIL
HSIL
HSIL
n.d.


D-15-0041_610_BC2
16
16


16
HSIL
HSIL
HSIL
113


D-15-0041_729_BC3
16
16


16
HSIL
HSIL
HSIL
59


D-15-0041_752_BC10
16
16


16
HSIL
HSIL
HSIL
444


IonXpress_017_2437
(43), 51
51

51

Not HSIL
LSIL
LSIL
195


IonXpress_017_251
neg
neg



Not HSIL
HSIL
LSIL
85


IonXpress_018_2439
58
58


58
HSIL
HSIL
LSIL
164


IonXpress_018_440
neg
neg



Not HSIL
LSIL
LSIL
38


IonXpress_019_2613
16
16


16
HSIL
LSIL
HSIL
[416-780]


IonXpress_020_3137
(53)
56
56


Not HSIL
HSIL
HSIL
350


IonXpress_021_10
56, (44/55)
56

56

Not HSIL
LSIL
n.d.
130


IonXpress_021_443
58
33, 58
33

58
HSIL
HSIL
LSIL
99


IonXpress_022_23
neg
neg



Not HSIL
HSIL
HSIL
n.d.


IonXpress_022_444
16, 33
16, 33

33
16
HSIL
HSIL
HSIL
69


IonXpress_023_24
(6), (11), (53)
neg



Not HSIL
HSIL
HSIL
[0-13]


IonXpress_023_536
neg
neg



Not HSIL
LSIL
LSIL
101


IonXpress_024_26
45
45


45
HSIL
HSIL
HSIL
106


IonXpress_024_537
neg
neg



Not HSIL
LSIL
LSIL
71


IonXpress_025_457
neg
neg



Not HSIL
LSIL
LSIL
278


IonXpress_025_538
35
31, 35
31

35
HSIL
HSIL
HSIL
191


IonXpress_026_539
neg
neg



Not HSIL
LSIL
n.d.
n.d.


IonXpress_026_565
16
neg



Not HSIL
HSIL
HSIL
65


IonXpress_027_598
31
31


31
HSIL
HSIL
HSIL
52


IonXpress_028_609
35, 52
52


52
HSIL
LSIL
HSIL
83


IonXpress_029_611
neg
neg



Not HSIL
HSIL
n.d.
n.d.


IonXpress_030_612
neg
neg



Not HSIL
LSIL
LSIL
113


IonXpress_031_613
35, 39, (44/55)
35, 39

35, 39

Not HSIL
LSIL
LSIL
83


IonXpress_032_728
neg
neg



Not HSIL
HSIL
HSIL
59


IonXpress_033_730
31
31

31

Not HSIL
LSIL
HSIL
[211-575]


IonXpress_034_758
58
58


58
HSIL
HSIL
HSIL
43


IonXpress_035_1150
16, 39, 52
16, 39, 52

52
16, 39
HSIL
HSIL
HSIL
125


IonXpress_036_1151
(11), 31
31


31
HSIL
HSIL
HSIL
125


IonXpress_036_98
(42)
neg



Not HSIL
LSIL
n.d.
20


IonXpress_037_100
neg
neg



Not HSIL
LSIL
LSIL
57


IonXpress_037_1267
45
45


45
HSIL
HSIL
LSIL
71


IonXpress_038_114
31
31

31

Not HSIL
LSIL
HSIL
154


IonXpress_038_1597
neg
neg



Not HSIL
HSIL
HSIL
85


IonXpress_039_115
56
56

56

Not HSIL
LSIL
LSIL
34


IonXpress_039_1598
neg
neg



Not HSIL
HSIL
LSIL
115


IonXpress_041_1650
66, (70)
56, 66
56, 66


Not HSIL
LSIL
LSIL
115


IonXpress_043_1871
51, 58, 68, 73
33, 51, 58, 68
33
51, 58, 68

Not HSIL
LSIL
LSIL
101


IonXpress_044_2064
39, 51
45
45


Not HSIL
LSIL
HSIL
129


IonXpress_045_2065
neg
52, 58
52, 58


Not HSIL
LSIL
LSIL
160


IonXpress_046_2066
(6)
66
66


Not HSIL
LSIL
HSIL
99









HPV RNA-Seq Used as a Triage Test


The performances of HPV RNA-Seq as a triage test were evaluated using histology as gold standard. Results from histological examination were, however, not available for all patients. The time interval separating HPV RNA-Seq/cytology tests from histological analysis, varying between 0 and 780 days, was another limitation in this study. To try to overcome these drawbacks, we compared the performances of HPV RNA-Seq vs histology to the performances of cytology vs histology, considering either all available samples or only samples for which histology was done less than 3 months after HPV RNA-Seq/cytology or only samples for which histology was done less than 6 months after HPV RNA-Seq/cytology. In addition and for each category, we made the distinction between the performances obtained when HPV RNA-Seq HPV-positive and HPV-negative patients were grouped together or when only HPV-positive patients were considered. Calculation of the PPV as a function of HSIL prevalence in the population was also done.


REFERENCES

Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present application.

Claims
  • 1-15. (canceled)
  • 16. An in vitro method for detecting HSIL in a biological sample comprising the steps of: (a) extraction of RNA from the biological sample,(b) reverse transcription of the RNA so as to generate cDNA,(c) amplification of the cDNA generated at step (b) with a composition of primers so as to produce amplicon(s),(d) quantifying the expression level of each amplicon produced at step (c),(e) determining if the biological sample comprises HSIL based on the expression level of the amplicons quantified at step (d),wherein the composition of primers comprises a first set of pairs of primers, called splice junctions set of primers, which comprises: at least 2 pairs of primers of a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1501 to SEQ ID NO: 1514; andat least 2 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1515 to SEQ ID NO: 1532; andat least 2 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1533 to SEQ ID NO: 1546; andat least 2 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1547 to SEQ ID NO:1559; andat least 2 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1560 to SEQ ID NO: 1573; andat least 2 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1574 to SEQ ID NO: 1583; andat least 2 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1584 to SEQ ID NO: 1597; andat least 2 pairs of primers of a eighth subset HPV51 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1598 to SEQ ID NO: 1607; andat least 2 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1608 to SEQ ID NO: 1623; andat least 2 pairs of primers of a tenth subset EIPV56 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1624 to SEQ ID NO: 1639; andat least 2 pairs of primers of an eleventh subset HPV58 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1640 to SEQ ID NO:1652; andat least 2 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1653 to SEQ ID NO: 1666; andat least 2 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1667 to SEQ ID NO: 1681, and optionally:at least 2 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1682 to SEQ ID NO: 1691; and/orat least 2 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1692 to SEQ ID NO: 1704; and/orat least 2 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1705 to SEQ ID NO: 1715.
  • 17. The in vitro method for detecting HSIL according to claim 16, wherein the splice junctions set of primers comprises at least 10 pairs of primers of the first to the thirteenth subsets of pairs of primers and optionally at least 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers.
  • 18. The in vitro method for detecting HSIL according to claim 16, wherein the composition of primers comprises an additional set of primers selected from the group consisting of: a second set of primers, called unsplice junctions set of primers wherein the primers target high risk and optionally putative high risk HPV genomic regions spanning either splice donor or splice acceptor sites in the absence of any splice event,a third set of primers, called genomic set of primers wherein the primers target high risk and optionally putative high risk HPV genomic regions away from any splice donor or splice acceptor sites, anda fourth set of primers, called fusion set of primers wherein the primers target high risk and optionally putative high risk HPV fusion transcripts.
  • 19. The in vitro method for detecting HSIL according to claim 16, wherein the step of determining if the biological sample comprises HSIL comprises: for each type of HPV selected from the group consisting of HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59, and HPV66 and optionally HPV68 and/or HPV73 and/or HPV82, a step calculating a probability pHPVj that the biological sample comprises an HSIL of HPVj type wherein j=16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73 and/or 82 using the following formula:
  • 20. The in vitro method for detecting HSIL according to claim 19, wherein: the amplicons corresponding to the splice junction i=1 are respectively SEQ ID NO: 1501 for HPV16, SEQ ID NO: 1515 for HPV18, SEQ ID NO: 1533 for HPV31, SEQ ID NO: 1547 for HPV33, SEQ ID NO: 1560 for HPV35, SEQ ID NO: 1574 for HPV39, SEQ ID NO: 1584 for HPV45, SEQ ID NO: 1598 for HPV51, SEQ ID NO: 1608 for HPV52, SEQ ID NO: 1624 for HPV56, SEQ ID NO: 1640 for HPV58, SEQ ID NO: 1653 for HPV59, SEQ ID NO: 1667 for HPV66, SEQ ID NO: 1682 for HPV68, SEQ ID NO: 1692 for HPV73 and SEQ ID NO: 1705 for HPV82,the amplicons corresponding to the splice junction i=2 are respectively SEQ ID NO: 1502 for HPV16, SEQ ID NO: 1516 for HPV18, SEQ ID NO: 1534 for HPV31, SEQ ID NO: 1548 for HPV33, SEQ ID NO: 1561 for HPV35, absent for HPV39, SEQ ID NO: 1585 for HPV45, absent for HPV51, SEQ ID NO: 1609 for HPV52, SEQ ID NO: 1625 for HPV56, SEQ ID NO: 1641 for HPV58, SEQ ID NO: 1654 for HPV59, SEQ ID NO: 1668 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=3 are respectively SEQ ID NO: 1503 for HPV16, SEQ ID NO: 1517 for HPV18, SEQ ID NO: 1535 for HPV31, SEQ ID NO: 1549 for HPV33, SEQ ID NO: 1562 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1599 for HPV51, SEQ ID NO: 1610 for HPV52, SEQ ID NO: 1626 for HPV56, SEQ ID NO: 1642 for HPV58, absent for HPV59, SEQ ID NO: 1669 for HPV66, SEQ ID NO: 1683 for HPV68, SEQ ID NO: 1693 for HPV73 and SEQ ID NO: 1706 for HPV82,the amplicons corresponding to the splice junction i=4 are respectively SEQ ID NO: 1504 for HPV16, SEQ ID NO: 1518 for HPV18, SEQ ID NO: 1536 for HPV31, SEQ ID NO: 1550 for HPV33, SEQ ID NO: 1563 for HPV35, SEQ ID NO: 1576 for HPV39, SEQ ID NO: 1587 for HPV45, SEQ ID NO: 1600 for HPV51, SEQ ID NO: 1611for HPV52, SEQ ID NO: 1627 for HPV56, SEQ ID NO: 1643 for HPV58, SEQ ID NO: 1656 for HPV59, SEQ ID NO: 1671 for HPV66, SEQ ID NO: 1684 for HPV68, SEQ ID NO: 1694 for HPV7 and SEQ ID NO: 1707 for HPV82,the amplicons corresponding to the splice junction i=5 are respectively SEQ ID NO: 1505 for HPV16, SEQ ID NO: 1519 for HPV18, SEQ ID NO: 1537 for HPV31, SEQ ID NO: 1551 for HPV33, SEQ ID NO: 1564 for HPV35, absent for HPV39, SEQ ID NO: 1588 for HPV45, absent for HPV51, SEQ ID NO: 1612 for HPV52, SEQ ID NO: 1628 for HPV56, SEQ ID NO: 1644 for HPV58, SEQ ID NO: 1657 for HPV59, SEQ ID NO: 1672 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=6 are respectively SEQ ID NO: 1506 for HPV16, SEQ ID NO: 1520 for HPV18, SEQ ID NO: 1538 for HPV31, SEQ ID NO: 1552 for HPV33, SEQ ID NO: 1565 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1601 for HPV51, SEQ ID NO: 1613 for HPV52, SEQ ID NO: 1629 for HPV56, SEQ ID NO: 1645 for HPV58, absent for HPV59, absent for HPV66, SEQ ID NO: 1686 for HPV68, SEQ ID NO: 1695 for HPV73 and SEQ ID NO: 1708 for HPV82,the amplicons corresponding to the splice junction i=7 are respectively SEQ ID NO: 1507 for HPV16, SEQ ID NO: 1521 for HPV18, SEQ ID NO: 1539 for HPV31, SEQ ID NO: 1553 for HPV33, SEQ ID NO: 1566 for HPV35, SEQ ID NO: 1578 for HPV39, SEQ ID NO: 1590 for HPV45, SEQ ID NO: 1602 for HPV51, SEQ ID NO: 1614 for HPV52, SEQ ID NO: 1630 for HPV56, SEQ ID NO: 1646 for HPV58, absent for HPV59, SEQ ID NO: 1674 for HPV66, SEQ ID NO: 1685 for HPV68, SEQ ID NO: 1696 for HPV73 and SEQ ID NO: 1709 for HPV82,the amplicons corresponding to the splice junction i=8 are respectively SEQ ID NO: 1508 for HPV16, absent for HPV18, SEQ ID NO: 1540 for HPV31, SEQ ID NO: 1554 for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1615 for HPV52, SEQ ID NO: 1631 for HPV56, SEQ ID NO: 1647 for HPV58, absent for HPV59, SEQ ID NO: 1675 for HPV66, absent for HPV68, SEQ ID NO: 1697 for HPV73 and SEQ ID NO: 1710 for HPV82,the amplicons corresponding to the splice junction i=9 are respectively SEQ ID NO: 1509 for HPV16, SEQ ID NO: 1522 for HPV18, SEQ ID NO: 1541 for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1579 for HPV39, SEQ ID NO: 1591 for HPV45, SEQ ID NO: 1603 for HPV51, SEQ ID NO: 1616 for HPV52, SEQ ID NO: 1632 for HPV56, absent HPV58, SEQ ID NO: 1659 for HPV59, SEQ ID NO: 1676 for HPV66, SEQ ID NO: 1687 for HPV68, SEQ ID NO: 1698 for HPV73 and SEQ ID NO: 1711 for HPV82the amplicons corresponding to the splice junction i=10 are respectively absent for HPV16, SEQ ID NO: 1523 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=11 are respectively SEQ ID NO: 1510 for HPV16, SEQ ID NO: 1524 for HPV18, SEQ ID NO: 1542 for HPV31, SEQ ID NO: 1555 for HPV33, SEQ ID NO: 1567 for HPV35, SEQ ID NO: 1580 for HPV39, SEQ ID NO: 1592 for HPV45, SEQ ID NO: 1604 for HPV51, SEQ ID NO: 1617 for HPV52, SEQ ID NO: 1633 for HPV56, SEQ ID NO: 1648 for HPV58, SEQ ID NO: 1660 for HPV59, SEQ ID NO: 1677 for HPV66, SEQ ID NO: 1688 for HPV68, SEQ ID NO: 1699 for HPV73 and SEQ ID NO: 1712 for HPV82,the amplicons corresponding to the splice junction i=12 are respectively absent for HPV16, SEQ ID NO: 1525 for HPV18, absent for HPV31, absent for HPV33, SEQ ID NO: 1568 or HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1618 for HPV52, SEQ ID NO: 1634 for HPV56, absent for HPV58, SEQ ID NO: 1661 for HPV59, absent for HPV66, absent for HPV68, SEQ ID NO: 1700 for HPV73, absent for HPV82,the amplicons corresponding to the splice junction i=13 are respectively absent for HPV16, SEQ ID NO: 1526 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1593 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=14 are respectively absent for HPV16, SEQ ID NO: 1527 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=15 are respectively SEQ ID NO: 1511 for HPV16, SEQ ID NO: 1528 for HPV18, SEQ ID NO: 1543 for HPV31, SEQ ID NO: 1556 for HPV33, SEQ ID NO: 1569 for HPV35, SEQ ID NO: 1581 for HPV39, SEQ ID NO: 1594 for HPV45, SEQ ID NO: 1605 for HPV51, SEQ ID NO: 1619 for HPV52, SEQ ID NO: 1635 for HPV56, SEQ ID NO: 1649 for HPV58, SEQ ID NO: 1662 for HPV59, SEQ ID NO: 1678 for HPV66, SEQ ID NO: 1689 for HPV68, SEQ ID NO: 1701 for HPV73 and SEQ ID NO: 1713 for HPV82,the amplicons corresponding to the splice junction i=16 are respectively SEQ ID NO: 1512 for HPV16, SEQ ID NO: 1529 for HPV18, SEQ ID NO: 1544 for HPV31, SEQ ID NO: 1557 for HPV33, SEQ ID NO: 1570 for HPV35, absent for HPV39, SEQ ID NO: 1595 for HPV45, absent for HPV51, SEQ ID NO: 1620 for HPV52, SEQ ID NO: 1636 for HPV56, SEQ ID NO: 1650 for HPV58, SEQ ID NO: 1663 for HPV59, SEQ ID NO: 1679 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=17 are respectively SEQ ID NO: 1513 for HPV16, absent for HPV18, SEQ ID NO: 1545 for HPV31, SEQ ID NO: 1558 for HPV33, SEQ ID NO: 1571 for HPV35, absent for HPV39, absent for HPV45, SEQ ID NO: 1606 for HPV51, SEQ ID NO: 1621 for HPV52, SEQ ID NO: 1637 for HPV56, SEQ ID NO: 1651 for HPV58, absent for HPV59, absent for HPV66, SEQ ID NO: 1690 for HPV68, SEQ ID NO: 1702 for HPV73 and SEQ ID NO: 1714 for HPV82,the amplicons corresponding to the splice junction i=18 are respectively SEQ ID NO:1514 for HPV16, SEQ ID NO: 1531 for HPV18, SEQ ID NO: 1546 for HPV31, SEQ ID NO: 1559 for HPV33, SEQ ID NO: 1572 for HPV35, SEQ ID NO: 1583 for HPV39, SEQ ID NO: 1597 for HPV45, SEQ ID NO: 1607 for HPV51, SEQ ID NO: 1622 for HPV52, SEQ ID NO: 1638 for HPV56, SEQ ID NO: 1652 for HPV58, SEQ ID NO: 1665 for HPV59, SEQ ID NO: 1681 for HPV66, SEQ ID NO: 1691 for HPV68, SEQ ID NO: 1703 for HPV73 and SEQ ID NO: 1715 for HPV82,the amplicons corresponding to the splice junction i=19 are respectively absent for HPV16, SEQ ID NO: 1532 for HPV18, absent for HPV31, absent for HPV33, SEQ ID NO: 1573 for HPV35, absent for HPV39, absent for HPV45, absent for HPV51, SEQ ID NO: 1623 for HPV52, SEQ ID NO: 1639 for HPV56, absent for HPV58, SEQ ID NO: 1666 for HPV59, absent for HPV66, absent for HPV68, SEQ ID NO: 1704 for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=20 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1577 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1658 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=21 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1582 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1664 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=22 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, SEQ ID NO: 1575 for HPV39, absent for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, SEQ ID NO: 1655 for HPV59, absent for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=23 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1586 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1670 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=24 are respectively absent for HPV16, absent for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1589 for HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1673 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82,the amplicons corresponding to the splice junction i=25 are respectively absent for HPV16, SEQ ID NO: 1530 for HPV18, absent for HPV31, absent for HPV33, absent for HPV35, absent for HPV39, SEQ ID NO: 1596 HPV45, absent for HPV51, absent for HPV52, absent for HPV56, absent for HPV58, absent for HPV59, SEQ ID NO: 1680 for HPV66, absent for HPV68, absent for HPV73 and absent for HPV82.
  • 21. A composition of primers according to claim 16.
  • 22. A kit comprising the composition of primers according to claim 16 and optionally reagents for cDNA amplification.
  • 23. Use of the composition of the primers according to claim 16.
  • 24. An in vitro method for HPV typing in a biological sample comprising the steps of: (a) extraction of RNA from the biological sample,(b) reverse transcription of the RNA so as to generate cDNA,(c) amplification of the cDNA generated at step (b) with a composition of primers so as to produce amplicon(s),(d) quantification of the expression level of each amplicon and(e) for each HPV type, a step of:comparing the expression level of all amplicons specific of said HPV type with a reference value, wherein if the expression level of all the amplicons specific of said HPV type is higher than the reference value, it is indicative of the presence of said HPV type in the biological sample,wherein the composition of primers comprises a first set of pairs of primers, called splice junctions set of primers, which comprises: at least 2 pairs of primers of a first subset of HPV16 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1501 to SEQ ID NO: 1514; andat least 2 pairs of primers of a second subset of HPV18 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1515 to SEQ ID NO: 1532; andat least 2 pairs of primers of a third subset of HPV31 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1533 to SEQ ID NO: 1546; andat least 2 pairs of primers of a fourth subset of HPV33 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1547 to SEQ ID NO:1559; andat least 2 pairs of primers of a fifth subset of HPV35 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1560 to SEQ ID NO: 1573; andat least 2 pairs of primers of a sixth subset of HPV39 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1574 to SEQ ID NO: 1583; andat least 2 pairs of primers of a seventh subset of HPV45 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1584 to SEQ ID NO: 1597; andat least 2 pairs of primers of a eighth subset HPV51 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1598 to SEQ ID NO: 1607; andat least 2 pairs of primers of a ninth subset of HPV52 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1608 to SEQ ID NO: 1623; andat least 2 pairs of primers of a tenth subset HPV56 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1624 to SEQ ID NO: 1639; andat least 2 pairs of primers of an eleventh subset EIPV58 specific of pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO:1640 to SEQ ID NO:1652; andat least 2 pairs of primers of a twelfth subset of HPV59 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1653 to SEQ ID NO: 1666; andat least 2 pairs of primers of a thirteenth subset of HPV66 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1667 to SEQ ID NO: 1681, and optionally:at least 2 pairs of primers of a fourteenth subset of HPV68 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1682 to SEQ ID NO: 1691; and/orat least 2 pairs of primers of a fifteenth subset of HPV73 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1692 to SEQ ID NO: 1704; and/orat least 2 pairs of primers of a sixteenth subset of HPV82 specific pairs of primers able to produce the amplicons having the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1705 to SEQ ID NO: 1715.
  • 25. The in vitro method for HPV typing according to claim 24, wherein the splice junctions set of primers comprises at least 10 pairs of primers of the first to the thirteenth subsets of pairs of primers and optionally at least 10 pairs of primers of the fourteenth and/or the fifteenth and/or the sixteenth subsets of pairs of primers.
  • 26. The in vitro method for HPV typing according to claim 24, wherein the composition of primers comprises an additional set of primers selected from the group consisting of: a second set of primers, called unsplice junctions set of primers wherein the primers target high risk and optionally of putative high risk HPV genomic regions spanning either splice donor or splice acceptor sites in the absence of any splice event,a third set of primers, called genomic set of primers wherein the primers target high risk and optionally of putative high risk HPV genomic regions away from any splice donor or splice acceptor sites, anda fourth set of primers, called fusion set of primers wherein the primers target high risk and optionally of putative high risk HPV fusion transcripts.
Priority Claims (1)
Number Date Country Kind
19305394.9 Mar 2019 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/057078 3/16/2020 WO 00