Compositions and method for measuring and calibrating amplification bias in multiplexed PCR reactions

Information

  • Patent Grant
  • 9150905
  • Patent Number
    9,150,905
  • Date Filed
    Wednesday, May 8, 2013
    11 years ago
  • Date Issued
    Tuesday, October 6, 2015
    8 years ago
Abstract
Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates generally to quantitative high-throughput sequencing of adaptive immune receptor encoding DNA (e.g., DNA encoding T cell receptors (TCR) and immunoglobulins (IG) in multiplexed nucleic acid amplification reactions. In particular, the compositions and methods described herein overcome undesirable distortions in the quantification of adaptive immune receptor encoding sequences that can result from biased over-utilization and/or under-utilization of specific oligonucleotide primers in multiplexed DNA amplification.


2. Description of the Related Art


The adaptive immune system employs several strategies to generate a repertoire of T- and B-cell antigen receptors, i.e., adaptive immune receptors, with sufficient diversity to recognize the universe of potential pathogens. The ability of T cells to recognize the universe of antigens associated with various cancers or infectious organisms is conferred by its T cell antigen receptor (TCR), which is a heterodimer of an α (alpha) chain from the TCRA locus and a β (beta) chain from the TCRB locus, or a heterodimer of a γ (gamma) chain from the TCRG locus and a δ (delta) chain from the TCRD locus. The proteins which make up these chains are encoded by DNA, which in lymphoid cells employs a unique rearrangement mechanism for generating the tremendous diversity of the TCR. This multi-subunit immune recognition receptor associates with the CD3 complex and binds to peptides presented by either the major histocompatibility complex (MHC) class I or MHC class II proteins on the surface of antigen-presenting cells (APCs). Binding of TCR to the antigenic peptide on the APC is the central event in T cell activation, which occurs at an immunological synapse at the point of contact between the T cell and the APC.


Each TCR peptide contains variable complementarity determining regions (CDRs), as well as framework regions (FRs) and a constant region. The sequence diversity of αβ T cells is largely determined by the amino acid sequence of the third complementarity-determining region (CDR3) loops of the α and β chain variable domains, which diversity is a result of recombination between variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments in the β chain locus, and between analogous Vα and Jα gene segments in the α chain locus, respectively. The existence of multiple such gene segments in the TCR α and β chain loci allows for a large number of distinct CDR3 sequences to be encoded. CDR3 sequence diversity is further increased by independent addition and deletion of nucleotides at the Vβ-Dβ, Dβ-Jβ, and Vα-Jα junctions during the process of TCR gene rearrangement. In this respect, immunocompetence is derived from the diversity of TCRs.


The γδ TCR heterodimer is distinctive from the αβ TCR in that it encodes a receptor that interacts closely with the innate immune system, and recognizes antigen in a non-HLA-dependent manner. TCRγδ is expressed early in development, and has specialized anatomical distribution, unique pathogen and small-molecule specificities, and a broad spectrum of innate and adaptive cellular interactions. A biased pattern of TCRγ V and J segment expression is established early in ontogeny. Consequently, the diverse TCRγ repertoire in adult tissues is the result of extensive peripheral expansion following stimulation by environmental exposure to pathogens and toxic molecules.


Immunoglobulins (Igs or IG), also referred to herein as B cell receptors (BCR), are proteins expressed by B cells consisting of four polypeptide chains, two heavy chains (H chains) from the IGH locus and two light chains (L chains) from either the IGK or the IGL locus, forming an H2L2 structure. H and L chains each contain three complementarity determining regions (CDR) involved in antigen recognition, as well as framework regions and a constant domain, analogous to TCR. The H chains of Igs are initially expressed as membrane-bound isoforms using either the IGM or IGD constant region exons, but after antigen recognition the constant region can class-switch to several additional isotypes, including IGG, IGE and IGA. As with TCR, the diversity of naïve Igs within an individual is mainly determined by the hypervariable complementarity determining regions (CDR). Similar to TCRB, the CDR3 domain of H chains is created by the combinatorial joining of the VH, DH, and JH gene segments. Hypervariable domain sequence diversity is further increased by independent addition and deletion of nucleotides at the VH-DH, DH-JH, and VH-JH junctions during the process of Ig gene rearrangement. Distinct from TCR, Ig sequence diversity is further augmented by somatic hypermutation (SHM) throughout the rearranged IG gene after a naïve B cell initially recognizes an antigen. The process of SHM is not restricted to CDR3, and therefore can introduce changes to the germline sequence in framework regions, CDR1 and CDR2, as well as in the somatically rearranged CDR3.


As the adaptive immune system functions in part by clonal expansion of cells expressing unique TCRs or BCRs, accurately measuring the changes in total abundance of each T cell or B cell clone is important to understanding the dynamics of an adaptive immune response. For instance, a healthy human has a few million unique rearranged TCRβ chains, each carried in hundreds to thousands of clonal T-cells, out of the roughly trillion T cells in a healthy individual. Utilizing advances in high-throughput sequencing, a new field of molecular immunology has recently emerged to profile the vast TCR and BCR repertoires. Compositions and methods for the sequencing of rearranged adaptive immune receptor gene sequences and for adaptive immune receptor clonotype determination are described in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; and PCT/US2011/049012, all herein incorporated by reference.


To date, several different strategies have been employed to sequence nucleic acids encoding adaptive immune receptors quantitatively at high throughput, and these strategies may be distinguished, for example, by the approach that is used to amplify the CDR3-encoding regions, and by the choice of sequencing genomic DNA (gDNA) or messenger RNA (mRNA).


Sequencing mRNA is a potentially easier method than sequencing gDNA, because mRNA splicing events remove the intron between J and C segments. This allows for the amplification of adaptive immune receptors (e.g., TCRs or Igs) having different V regions and J regions using a common 3′ PCR primer in the C region. For each TCRβ, for example, the thirteen J segments are all less than 60 base pairs (bp) long. Therefore, splicing events bring identical polynucleotide sequences encoding TCRβ constant regions (regardless of which V and J sequences are used) within less than 100 bp of the rearranged VDJ junction. The spliced mRNA can then be reverse transcribed into complementary DNA (cDNA) using poly-dT primers complementary to the poly-A tail of the mRNA, random small primers (usually hexamers or nonamers) or C-segment-specific oligonucleotides. This should produce an unbiased library of TCR cDNA (because all cDNAs are primed with the same oligonucleotide, whether poly-dT, random hexamer, or C segment-specific oligo) that may then be sequenced to obtain information on the V and J segment used in each rearrangement, as well as the specific sequence of the CDR3. Such sequencing could use single, long reads spanning CDR3 (“long read”) technology, or could instead involve shotgun assembly of the longer sequences using fragmented libraries and higher throughput shorter sequence reads.


Efforts to quantify the number of cells in a sample that express a particular rearranged TCR (or Ig) based on mRNA sequencing are difficult to interpret, however, because each cell potentially expresses different quantities of TCR mRNA. For example, T cells activated in vitro have 10-100 times as much mRNA per cell than quiescent T cells. To date, there is very limited information on the relative amount of TCR mRNA in T cells of different functional states, and therefore quantitation of mRNA in bulk does not necessarily accurately measure the number of cells carrying each clonal TCR rearrangement.


Most T cells, on the other hand, have one productively rearranged TCRα and one productively rearranged TCRβ gene (or two rearranged TCRγ and TCRδ), and most B cells have one productively rearranged Ig heavy-chain gene and one productively rearranged Ig light-chain gene (either IGK or IGL) so quantification in a sample of genomic DNA encoding TCRs or BCRs should directly correlate with, respectively, the number of T or B cells in the sample. Genomic sequencing of polynucleotides encoding any one or more of the adaptive immune receptor chains desirably entails amplifying with equal efficiency all of the many possible rearranged CDR3 sequences that are present in a sample containing DNA from lymphoid cells of a subject, followed by quantitative sequencing, such that a quantitative measure of the relative abundance of each rearranged CDR3 clonotype can be obtained.


Difficulties are encountered with such approaches, however, in that equal amplification and sequencing efficiencies may not be achieved readily for each rearranged clone using multiplex PCR. For example, at TCRB each clone employs one of 54 possible germline V region-encoding genes and one of 13 possible J region-encoding genes. The DNA sequence of the V and J segments is necessarily diverse, in order to generate a diverse adaptive immune repertoire. This sequence diversity makes it impossible to design a single, universal primer sequence that will anneal to all V segments (or J segments) with equal affinity, and yields complex DNA samples in which accurate determination of the multiple distinct sequences contained therein is hindered by technical limitations on the ability to quantify a plurality of molecular species simultaneously using multiplexed amplification and high throughput sequencing.


One or more factors can give rise to artifacts that skew the correlation between sequencing data outputs and the number of copies of an input clonotype, compromising the ability to obtain reliable quantitative data from sequencing strategies that are based on multiplexed amplification of a highly diverse collection of TCRβ gene templates. These artifacts often result from unequal use of diverse primers during the multiplexed amplification step. Such biased utilization of one or more oligonucleotide primers in a multiplexed reaction that uses diverse amplification templates may arise as a function of differential annealing kinetics due to one or more of differences in the nucleotide base composition of templates and/or oligonucleotide primers, differences in template and/or primer length, the particular polymerase that is used, the amplification reaction temperatures (e.g., annealing, elongation and/or denaturation temperatures), and/or other factors (e.g., Kanagawa, 2003 J. Biosci. Bioeng. 96:317; Day et al., 1996 Hum. Mol. Genet. 5:2039; Ogino et al., 2002 J. Mol. Diagnost. 4:185; Barnard et al., 1998 Biotechniques 25:684; Aird et al., 2011 Genome Biol. 12:R18).


Clearly there remains a need for improved compositions and methods that will permit accurate quantification of adaptive immune receptor-encoding DNA sequence diversity in complex samples, in a manner that avoids skewed results such as misleading over- or underrepresentation of individual sequences due to biases in the amplification of specific templates in an oligonucleotide primer set used for multiplexed amplification of a complex template DNA population. The presently described embodiments address this need and provide other related advantages.


SUMMARY OF THE INVENTION

A composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, each adaptive immune receptor comprising a variable region and a joining region, the composition comprising a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula: 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I] wherein: (a) V is a polynucleotide comprising at least 20 and not more than 1000 contiguous nucleotides of an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof, and each V polynucleotide comprising a unique oligonucleotide sequence; (b) J is a polynucleotide comprising at least 15 and not more than 600 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and each J polynucleotide comprising a unique oligonucleotide sequence; (c) U1 is either nothing or comprises an oligonucleotide sequence that is selected from (i) a first universal adaptor oligonucleotide sequence and (ii) a first sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a first universal adaptor oligonucleotide sequence; (d) U2 is either nothing or comprises an oligonucleotide sequence that is selected from (i) a second universal adaptor oligonucleotide sequence, and (ii) a second sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a second universal adaptor oligonucleotide sequence; (e) B1, B2, B3, and B4 are each independently either nothing or each comprises an oligonucleotide B that comprises a barcode sequence of 3-25 contiguous nucleotides, wherein each B1, B2, B3 and B4 comprises an oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence of (a) and (ii) the unique J oligonucleotide sequence of (b); (f) R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from (a)-(e), and wherein: (g) the plurality of template oligonucleotides comprises at least a or at least b unique oligonucleotide sequences, whichever is larger, wherein a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide.


In one embodiment, a is 1 to a number of maximum V gene segments in the mammalian genome of the subject. In another embodiment, b is 1 to a number of maximum J gene segments in the mammalian genome of the subject. In other embodiments, a is 1 or b is 1.


In some embodiments, the plurality of template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the mammalian subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the mammalian subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment. In one embodiment, J comprises a constant region of the adaptive immune receptor J region encoding gene sequence.


In another embodiment, the adaptive immune receptor is selected from the group consisting of TCRB, TCRG, TCRA, TCRD, IGH, IGK, and IGL. In some embodiments, the V polynucleotide of (a) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor V-region polypeptide. In other embodiments, the J polynucleotide of (b) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor J-region polypeptide.


In some embodiments, a stop codon is between V and B2.


In one embodiment, each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount. In another embodiment, the plurality of template oligonucleotides have a plurality of sequences of general formula (I) that is selected from: (1) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOs. in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13; (2) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOs. in FIGS. 6a and 6b as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5; (3) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOs. in FIGS. 7a-7m as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9; (4)


the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:3157-4014; (5) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4015-4084; (6) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4085-5200; (7) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:5579-5821; (8) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 5822-6066; and (9) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 6067-6191.


In some embodiments, V is a polynucleotide comprising at least 30, 60, 90, 120, 150, 180, or 210 contiguous nucleotides of the adaptive immune receptor V region encoding gene sequence, or the complement thereof. In another embodiment, V is a polynucleotide comprising not more than 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor V region encoding gene sequence, or the complement thereof.


In other embodiments, J is a polynucleotide comprising at least 16-30, 31-60, 61-90, 91-120, or 120-150 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof. In another embodiment, J is a polynucleotide comprising not more than 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof.


In some embodiments, each template oligonucleotide is less than 1000, 900, 800, 700, 600, 500, 400, 300 or 200 nucleotides in length.


In other embodiments, the composition includes a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors comprising a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers. In some embodiments, a′ is 1 to a number of maximum V gene segments in the mammalian genome, and b′ is 1 to a number of maximum number of J gene segments in the mammalian genome. In one embodiment, a′ is a. In another embodiment, b′ is b.


In yet another embodiment, each V-segment oligonucleotide primer and each J-segment oligonucleotide primer in the oligonucleotide primer set is capable of specifically hybridizing to at least one template oligonucleotide in the plurality of template oligonucleotides. In other embodiments, each V-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment. In another embodiment, each J-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.


In other embodiments, the composition comprises at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each V-segment oligonucleotide primer can specifically hybridize, and at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each J-segment oligonucleotide primer can specifically hybridize.


The invention comprises a method for determining non-uniform nucleic acid amplification potential among members of a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject. The method includes steps for: (a) amplifying the composition as described herein in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides; (b) sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; and (c) comparing a frequency of occurrence of each of said template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said template oligonucleotide sequences and said expected distribution indicates a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers.


In one embodiment, the predetermined molar ratios are equimolar. In another embodiment, the expected distribution comprises a uniform amplification level for said set of template oligonucleotides amplified by said set of oligonucleotide primers. In yet another embodiment, each amplified template nucleic acid molecule is less than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80 or 70 nucleotides in length.


The method includes steps comprising for each member of the set of oligonucleotide primers that exhibits non-uniform amplification potential relative to the expected distribution, adjusting the relative representation of the oligonucleotide primer member in the set of oligonucleotide amplification primers. In one embodiment, adjusting comprises increasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers. In another embodiment, adjusting comprises decreasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.


In other embodiments, the set of oligonucleotide primers does not include oligonucleotide primers that specifically hybridize to a V-region pseudogene or orphon or to a J-region pseudogene or orphon.


The method also includes steps comprising: for each member of the set of oligonucleotide amplification primers that exhibits non-uniform amplification potential relative to the expected distribution, calculating a proportionately increased or decreased frequency of occurrence of the amplified template nucleic acid molecules, the amplification of which is promoted by said member, thereby correcting for non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.


The invention includes a method for quantifying a plurality of rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, each adaptive immune receptor comprising a variable (V) region and a joining (J) region, the method comprising: (A) amplifying rearranged nucleic acid molecules in a multiplex polymerase chain reaction (PCR) that comprises: (1) rearranged nucleic acid molecules from the biological sample that comprises lymphoid cells of the mammalian subject; (2) the composition as described herein wherein a known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence is present; (3) an oligonucleotide amplification primer set that is capable of amplifying rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors from the biological sample.


In some embodiments, the primer set comprises: (a) in substantially equimolar amounts, a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor V region-encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional adaptive immune receptor V region-encoding gene segments that are present in the composition, and (b) in substantially equimolar amounts, a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor J region-encoding gene segment and wherein the plurality of J-segment primers specifically hybridize to substantially all functional adaptive immune receptor J region-encoding gene segments that are present in the composition.


In another embodiment, the V-segment and J-segment oligonucleotide primers are capable of promoting amplification in said multiplex polymerase chain reaction (PCR) of (i) substantially all template oligonucleotides in the composition to produce a multiplicity of amplified template oligonucleotides, said multiplicity of amplified template nucleic acid molecules being sufficient to quantify diversity of the template oligonucleotides in the composition, and (ii) substantially all rearranged nucleic acid molecules encoding adaptive immune receptors in the biological sample to produce a multiplicity of amplified rearranged DNA molecules, said multiplicity of amplified rearranged nucleic acid molecules being sufficient to quantify diversity of the rearranged nucleic acid molecules in the DNA from the biological sample.


In one embodiment, each amplified nucleic acid molecule in the plurality of amplified template oligonucleotides and in the plurality of amplified rearranged nucleic acid molecules is less than 1000 nucleotides in length; (B) quantitatively sequencing said amplified template oligonucleotides and said amplified rearranged nucleic acid molecules to quantify (i) a template product number of amplified template oligonucleotides which contain at least one oligonucleotide barcode sequence, and (ii) a rearranged product number of amplified rearranged nucleic acid molecules which lack an oligonucleotide barcode sequence; (C) calculating an amplification factor by dividing the template product number of (B)(i) by the known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence of (A)(2); and (D) dividing the rearranged product number of (B)(ii) by the amplification factor calculated in (C) to quantify the number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample.


In other embodiments, the quantified number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample is the number of unique B cell or unique T cell genome templates in the sample.


The invention includes a method for calculating an average amplification factor in a multiplex PCR assay, comprising: obtaining a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject; contacting said sample with a known quantity of template oligonucleotides comprising a composition as described herein; amplifying the template oligonucleotides and the rearranged nucleic acid molecules from lymphoid cells of the mammalian subject in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides and a plurality of amplified rearranged nucleic acid molecules; sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; and determining an average amplification factor for said multiplex PCR reaction based on an average number of copies of said plurality of amplified template oligonucleotides and said known quantity of said template oligonucleotides.


The method also includes sequencing said plurality of amplified rearranged nucleic acid molecules from lymphoid cells of the mammalian subject to determine for each unique rearranged nucleic acid molecule comprising said plurality, i) a rearranged nucleic acid molecule sequence and (ii) a number of occurrences of said rearranged nucleic acid molecule sequence; and determining the number of lymphoid cells in said sample, based on the average amplification factor for said multiplex PCR reaction and said number of occurrences of said rearranged nucleic acid molecules.


In other embodiments, the method comprises determining the number of lymphoid cells in said sample comprises generating a sum of the number of occurrences of each of said amplified rearranged nucleic acid sequences and dividing said sum by said average amplification factor. In some embodiments, the known quantity is one copy each of said template oligonucleotides. In one embodiment, 100≦a≦500. In another embodiment, 100≦b≦500.


A method is provided for correcting for amplification bias in an multiplex PCR amplification reaction to quantify rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, comprising: (a) contacting said sample with a composition described herein to generate a template-spiked sample, wherein said templates and said rearranged nucleic acid molecules comprise corresponding V and J region sequences; (b) amplifying said template-spiked sample in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides and a plurality of amplified rearranged nucleic acid molecules encoding a plurality of adaptive immune receptors; (c) sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; (d) sequencing said plurality of amplified rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors, for each unique rearranged nucleic acid molecules encoding said plurality of adaptive immune receptors comprising said plurality, (i) a rearranged nucleic acid molecule sequence and (ii) a frequency of occurrence of said rearranged nucleic acid molecule sequence; (e) comparing frequency of occurrence of said template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said template oligonucleotide sequences and said expected distribution indicates non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers; (f) generating a set of correction values for a set of template molecules and rearranged nucleic acid molecule sequences amplified by said members of the set of oligonucleotide amplification primers having said indicated non-uniform nucleic acid amplification potential, wherein said set of correction values corrects for amplification bias in said multiplex PCR reaction; and (g) optionally applying said set of correction values to said frequency of occurrence of said rearranged nucleic acid molecule sequences to correct for amplification bias in said multiplex PCR reaction.


The invention comprises a kit, comprising: reagents comprising: a composition comprising a plurality of template oligonucleotides and a set of oligonucleotide primers as described herein; instructions for determining a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers that are capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject.


In another embodiment, the kit comprises instructions for correcting for one or more members of the set of oligonucleotide primers having a non-uniform nucleic acid amplification potential.


In other embodiments, the kit comprises instructions for quantifying the number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample


These and other aspects of the herein described invention embodiments will be evident upon reference to the following detailed description and attached drawings. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference in their entirety, as if each was incorporated individually. Aspects and embodiments of the invention can be modified, if necessary, to employ concepts of the various patents, applications and publications to provide yet further embodiments.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:



FIG. 1 shows a schematic diagram of an exemplary template oligonucleotide for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding an adaptive immune receptor (TCR or BCR). U1, U2, universal adaptor oligonucleotides; B1-4, barcode oligonucleotides; V, variable region oligonucleotide; J, joining region oligonucleotide; R, restriction enzyme recognition site; S, optional stop codon.



FIG. 2 shows post-amplification frequencies of individual TCRB V gene segment sequences amplified from a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560) using an equimolar (unadjusted) pool of 52 PCR primers (SEQ ID NOS:1753-1804) and quantitatively sequenced on the Illumina HiSeq™ DNA sequencer. Frequency in the absence of bias was calculated as 0.0188.



FIG. 3 shows the results of quantitative sequencing following cross-amplification of template oligonucleotides using TCRB V region-specific primers. Y-axis indicates individual amplification primers (SEQ ID NOS:1753-1804) that were present in each separate amplification reaction at twice the molar concentration (2×) of the other primers from the same primer set, for amplification of a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560); X-axis is not labeled but data points are presented in the same order as for Y-axis, with X-axis representing corresponding amplified V gene templates as identified by quantitative sequencing. Black squares indicate no change in degree of amplification with the respective primer present at 2× relative to equimolar concentrations of all other primers; white squares indicate 10-fold increase in amplification; grey squares indicate intermediate degrees (on a greyscale gradient) of amplification between zero and 10-fold. Diagonal line of white squares indicates that 2× concentration for a given primer resulted in about 10-fold increase in amplification of the respective template for most primers. Off-diagonal white squares indicate non-corresponding templates to which certain primers were able to anneal and amplify.



FIG. 4 shows post-amplification frequencies of individual TCRB V gene segment sequences amplified from a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560), using equimolar concentrations of all members of a TCRB amplification primer set (SEQ ID NOS:1753-1804) prior to adjusting for primer utilization bias (black bars, all V-region primers present in equimolar concentrations), and using the same primer set (SEQ ID NOS:1753-1804) after adjusting multiple individual primer concentrations to compensate for bias (grey bars, concentrations of highly efficient primers were reduced and concentrations of poorly efficient primers were increased, see Table 6). Post-amplification frequencies were determined by quantitative sequencing on the Illumina HiSeq™ DNA sequencer.



FIGS. 5
a-5l show TCRB V/J sets (68 V+13 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human T cell receptor β (TCRB) chain polypeptides.



FIGS. 6
a and 6b show TCRG V/J sets (14 V+5 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human T cell receptor γ (TCRG) chain polypeptides.



FIGS. 7
a-7m show IGH V/J sets (127 V+9 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human immunoglobulin heavy (IGH) chain polypeptides.



FIG. 8 shows the results of calculating an amplification factor for each VJ pair in a template composition that was added to a multiplexed PCR amplification of IGH sequences, and then averaging the amplification factor across all synthetic templates to estimate fold sequence coverage across all synthetic template molecules.



FIG. 9 shows a plot of the numbers of B cells that were estimated using a synthetic template composition and amplification factor as described herein, versus the known numbers of B cells used as a source of natural DNA templates.



FIG. 10 shows a pre-PCR amplification sequencing count for each of 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules.



FIG. 11 shows TCRB-primer iterations for synthetic TCRB VJ templates graphed against relative amplification bias.



FIG. 12 shows IGH primer iterations for synthetic IGH VJ templates graphed against relative amplification bias.



FIG. 13 shows the relative amplification bias for 27 synthetic IGH DJ templates of the V gene.



FIGS. 14
a-d show TCRG-primer iterations for 55 synthetic TCRG VJ templates. Relative amplification bias was determined for the TCRG VJ primers prior to chemical bias control correction (FIG. 14a), 1st iteration of chemical correction (FIG. 14b), 2nd iteration of chemical correction (FIG. 14c), and final iteration of chemical correction (FIG. 14d).





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, in certain embodiments and as described herein, compositions and methods that are useful for reliably quantifying large and structurally diverse populations of rearranged genes encoding adaptive immune receptors, such as immunoglobulins (Ig) and/or T cell receptors (TCR). These rearranged genes may be present in a biological sample containing DNA from lymphoid cells of a subject or biological source, including a human subject.


A “rearranged nucleic acid molecule,” as used herein, can include any genomic DNA, cDNA, or mRNA obtained directly or indirectly from a lymphoid cell line that includes sequences that encode a rearranged adaptive immune receptor.


Disclosed herein are unexpectedly advantageous approaches for the standardization and calibration of complex oligonucleotide primer sets that are used in multiplexed nucleic acid amplification reactions to generate a population of amplified rearranged DNA molecules from a biological sample containing rearranged genes encoding adaptive immune receptors, prior to quantitative high throughput sequencing of such amplified products. Multiplexed amplification and high throughput sequencing of rearranged TCR and BCR (IG) encoding DNA sequences are described, for example, in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S.A. No. 61/550,311, and U.S.A. No. 61/569,118; accordingly these disclosures are incorporated by reference and may be adapted for use according to the embodiments described herein.


Briefly and according to non-limiting theory, the present compositions and methods overcome inaccuracies that may arise in current methods which quantify TCR and BCR gene diversity by sequencing the products of multiplexed nucleic acid amplification. To accommodate the vast diversity of TCR and BCR gene template sequences that may be present in a biological sample, oligonucleotide primer sets used in multiplexed amplification reactions typically comprise a wide variety of sequence lengths and nucleotide compositions (e.g., GC content). Consequently, under a given set of amplification reaction conditions, the efficiencies at which different primers anneal to and support amplification of their cognate template sequences may differ markedly, resulting in non-uniform utilization of different primers, which leads to artifactual biases in the relative quantitative representation of distinct amplification products.


For instance, relative overutilization of some highly efficient primers results in overrepresentation of certain amplification products, and relative underutilization of some other low-efficiency primers results in underrepresentation of certain other amplification products. Quantitative determination of the relative amount of each template species that is present in the lymphoid cell DNA-containing sample, which is achieved by sequencing the amplification products, may then yield misleading information with respect to the actual relative representation of distinct template species in the sample prior to amplification. In pilot studies, for example, it was observed that multiplexed PCR, using a set of oligonucleotide primers designed to be capable of amplifying a sequence of every possible human TCRB variable (V) region gene from human lymphoid cell DNA templates, did not uniformly amplify TCRB V gene segments. Instead, some V gene segments were relatively overamplified (representing ˜10% of total sequences) and other V gene segments were relatively underamplified (representing about 4×10−3% of total sequences); see also, e.g., FIG. 2.


To overcome the problem of such biased utilization of subpopulations of amplification primers, the present disclosure provides for the first time a template composition and method for standardizing the amplification efficiencies of the members of an oligonucleotide primer set, where the primer set is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptors (TCR or Ig) in a biological sample that comprises DNA from lymphoid cells. The template composition comprises a plurality of diverse template oligonucleotides of general formula (I) as described in greater detail herein:

5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  (I)


The constituent template oligonucleotides, of which the template composition is comprised, are diverse with respect to the nucleotide sequences of the individual template oligonucleotides. The individual template oligonucleotides thus may vary in nucleotide sequence considerably from one another as a function of significant sequence variability amongst the large number of possible TCR or BCR variable (V) and joining (J) region polynucleotides. Sequences of individual template oligonucleotide species may also vary from one another as a function of sequence differences in U1, U2, B (B1, B2, B3, and B4) and R oligonucleotides that are included in a particular template within the diverse plurality of templates.


In certain embodiments barcode oligonucleotides B (B1, B2, B3, and B4) may independently and optionally comprise an oligonucleotide barcode sequence, wherein the barcode sequence is selected to identify uniquely a particular paired combination of a particular unique V oligonucleotide sequence and a particular unique J oligonucleotide sequence. The relative positioning of the barcode oligonucleotides B1 and B4 and universal adaptors advantageously permits rapid identification and quantification of the amplification products of a given unique template oligonucleotide by short sequence reads and paired-end sequencing on automated DNA sequencers (e.g., Illumina HiSeq™ or Illumina MiSEQ®, or GeneAnalyzer™-2, Illumina Corp., San Diego, Calif.). In particular, these and related embodiments permit rapid high-throughput determination of specific combinations of a V and a J sequence that are present in an amplification product, thereby to characterize the relative amplification efficiency of each V-specific primer and each J-specific primer that may be present in a primer set which is capable of amplifying rearranged TCR or BCR encoding DNA in a sample. Verification of the identities and/or quantities of the amplification products may be accomplished by longer sequence reads, optionally including sequence reads that extend to B2.


In use, each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount, which in certain preferred embodiments includes preparations in which the molar concentrations of all oligonucleotides are within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 percent of each other. In certain other preferred embodiments as provided herein, template oligonucleotides are regarded as being present in a substantially equimolar amount when the molar concentrations of all oligonucleotides are within one order of magnitude of each other, including preparations in which the greatest molar concentration that any given unique template oligonucleotide species may have is no more than 1000, 900, 800, 700, 600, 500, 440, 400, 350, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40 or 30 percent greater than the molar concentration at which is present the unique template oligonucleotide species having the lowest concentration in the composition.


In a similar manner, certain embodiments disclosed herein contemplate oligonucleotide primer sets for amplification, in which sets the component primers may be provided in substantially equimolar amounts. As also described herein, according to certain other embodiments, the concentration of one or more primers in a primer set may be adjusted deliberately so that certain primers are not present in equimolar amounts or in substantially equimolar amounts.


The template composition described herein may, in preferred embodiments, be employed as a nucleic acid amplification (e.g., PCR) template to characterize an oligonucleotide primer set, such as the complex sets of V-segment and J-segment oligonucleotide primers that may be used in multiplexed amplification of rearranged TCR or Ig genes, for example, a primer set as provided herein or any of the primer sets described in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S.A. No. 61/550,311, and U.S.A. No. 61/569,118; or the like.


Preferably all templates in the template composition for standardizing amplification efficiency, which is described herein and which comprises a plurality of template oligonucleotides having diverse sequences and the general structure of general formula (I), are oligonucleotides of substantially identical length. Without wishing to be bound by theory, it is generally believed that in a nucleic acid amplification reaction such as a polymerase chain reaction (PCR), template DNA length can influence the amplification efficiency of oligonucleotide primers by affecting the kinetics of interactions between primers and template DNA molecules to which the primers anneal by specific, nucleotide sequence-directed hybridization through nucleotide base complementarity. Longer templates are generally regarded as operating less efficiently than relatively shorter templates. In certain embodiments, the presently disclosed template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of TCR or BCR comprises a plurality of template oligonucleotides of general formula (I) as provided herein, wherein the template oligonucleotides are of an identical length or a substantially identical length that is not more than 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150 or 100 nucleotides in length, including all integer values therebetween.


Accordingly, in order to reduce, remove or minimize the potential contribution to undesirable biases in oligonucleotide primer utilization during multiplexed amplification, preferred embodiments disclosed herein may employ a plurality of template oligonucleotides wherein all template oligonucleotides in the sequence-diverse plurality of template oligonucleotides are of substantially identical length. A plurality of template oligonucleotides may be of substantially identical length when all (e.g., 100%) or most (e.g., greater than 50%) such oligonucleotides in a template composition are oligonucleotides that each have the exact same number of nucleotides, or where one or more template oligonucleotides in the template composition may vary in length from one another by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90 or 100 nucleotides in length. It will be appreciated from the present disclosure that even in situations where not all template oligonucleotides have exactly the same length, the herein described compositions and methods may still be employed to determine and optionally correct non-uniform nucleic acid amplification potential among members of a set of oligonucleotide amplification primers.


According to certain presently disclosed embodiments, (i) each template oligonucleotide of the presently described template composition is provided in a substantially equimolar amount, (ii) the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptor comprises a plurality of V-segment oligonucleotide primers that are provided in substantially equimolar amounts, (iii) the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptor comprises a plurality of J-segment oligonucleotide primers that are provided in substantially equimolar amounts, and (iv) amplification scales linearly with the number of starting templates of a given sequence.


Hence, an expected yield for the amplification product of each template can be calculated and arbitrarily assigned a theoretical uniform amplification level value of 100%. After permitting the primer sets to amplify the sequences of the template oligonucleotides in an amplification reaction, any statistically significant deviation from substantial equivalence that is observed among the relative proportions of distinct amplification products indicates that there has been bias (i.e., unequal efficiency) in primer utilization during amplification. In other words, quantitative differences in the relative amounts of different amplification products that are obtained indicate that not all primers in the primer set have amplified their respective templates with comparable efficiencies. Certain embodiments contemplate assigning a range of tolerances above and below a theoretical 100% yield, such that any amplification level value within the range of tolerances may be regarded as substantial equivalence.


In certain such embodiments, the range of amplification product yields may be regarded as substantially equivalent when the product yields are all within the same order of magnitude (e.g., differ by less than a factor of ten). In certain other such embodiments, the range of amplification product yields may be regarded as substantially equivalent when the product yields differ from one another by no more than nine-fold, eight-fold, seven-fold, six-fold, five-fold, four-fold or three-fold. In certain other embodiments, product yields that may be regarded as being within an acceptable tolerance range may be more or less than a calculated 100% yield by as much as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 100, or 200%.


Because the method involves determining the nucleotide sequence of each amplification product using known techniques as part of the quantification process, the primer(s) responsible for amplification of each unique (as defined by sequence) product can be identified and their relative amount(s) in the primer set can be adjusted (e.g., increased or decreased in a statistically significant manner) accordingly. The concentrations of excessively efficient primers in the primer set can be reduced relative to the concentrations of other primers, so that the level of specific amplification by such primers of templates in the herein described template composition is substantially equivalent to the level of amplification delivered by the majority of primers which deliver the theoretical uniform amplification level, or which deliver a level that is within the acceptable tolerance range. The concentrations of poorly efficient primers in the primer set can be increased relative to the concentrations of other primers, so that the level of specific amplification by such primers of templates in the herein described template composition is substantially equivalent to the level of amplification delivered by the majority of primers which deliver the theoretical uniform amplification level, or which deliver a level within the acceptable tolerance range.


Accordingly and as described herein, there are thus presently provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is designed to amplify coding sequences for a complete repertoire of a given TCR or Ig chain, a method for determining non-uniform amplification efficiency (“non-uniform amplification potential”) among members of such a primer set, and a method for correcting such non-uniform amplification potential. By providing the herein described template composition as a standard with which oligonucleotide primer sets can be calibrated, and in particular embodiments, where each template oligonucleotide is present in a substantially equimolar amount so that individual primer concentrations can be adjusted to yield substantially uniform amplification of a structurally diverse array of amplification products, the present disclosure thus advantageously overcomes the above described problems associated with biases in individual primer efficiency.


Using the compositions and methods provided herein, individual primers may be identified as having a non-uniform amplification potential by virtue of their promotion of non-uniform amplification as evidenced by increased (e.g., greater in a statistically significant manner) or decreased (e.g., lower in a statistically significant manner) amplification of specific template oligonucleotides relative to the uniform amplification level, despite the presence in an amplification reaction (i) of all template oligonucleotides in substantially equimolar amounts to one another, (ii) of all V-segment primers in substantially equimolar amounts to one another, and (iii) of all J-segment primers in substantially equimolar amounts to one another.


The relative concentrations of such primers may then be decreased or increased to obtain a modified complete set of primers in which all primers are not present in substantially equimolar amounts relative to one another, to compensate, respectively, for the increased or decreased level of amplification relative to the uniform amplification level. The primer set may then be retested for its ability to amplify all sequences in the herein disclosed template composition at the uniform amplification level, or within an acceptable tolerance range.


The process of testing modified primer sets for their ability to amplify the herein disclosed template composition, in which all template oligonucleotides are provided in substantially equimolar amounts to one another, may be repeated iteratively until all products are amplified at the uniform amplification level, or within an acceptable tolerance range. By such a process using the herein disclosed template composition, the amplification efficiency of an oligonucleotide primer set may be standardized, where the primer set is capable of amplifying productively rearranged DNA encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject.


Additionally or alternatively, according to the present disclosure it may be determined whether any particular pair of oligonucleotide amplification primers exhibits non-uniform amplification potential, such as increased or decreased amplification of the template composition relative to a uniform amplification level exhibited by a majority of the oligonucleotide amplification primers, and a normalizing adjustment factor can then be used to calculate, respectively, a proportionately decreased or increased frequency of occurrence of the amplification products that are promoted by each such amplification primer pair. The present template compositions thus, in certain embodiments, provide a method of correcting for non-uniform nucleic acid amplification potential among members of a set of oligonucleotide amplification primers.


Certain such embodiments may advantageously permit correction, calibration, standardization, normalization, or the like, of data that are obtained as a consequence of non-uniform amplification events. Thus, the present embodiments permit correction of data inaccuracies, such as may result from biased oligonucleotide primer utilization, without the need for iteratively adjusting the concentrations of one or more amplification primers and repeating the steps of amplifying the herein described template compositions. Advantageous efficiencies may thus be obtained where repetition of the steps of quantitatively sequencing the amplification products can be avoided. Certain other contemplated embodiments may, however, employ such an iterative approach.


Accordingly, and as described herein, there is presently provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set, along with methods for using such a template composition to determine non-uniform nucleic acid amplification potential (e.g., bias) among individual members of the oligonucleotide primer set. Also described herein are methods for correcting such non-uniform nucleic acid amplification potentials (e.g., biases) among members of the oligonucleotide primer set. These and related embodiments exploit previously unrecognized benefits that are obtained by calibrating complex oligonucleotide primer sets to compensate for undesirable amplification biases using the template composition for standardizing amplification efficiency having the features described herein, and will find uses in improving the accuracy with which specific clonotypic TCR and/or Ig encoding DNA sequences can be quantified, relative to previously described methodologies.


As also noted above and described elsewhere herein, prior to the present disclosure there existed unsatisfactory and difficult-to-discern discrepancies between (i) the actual quantitative distribution of rearranged adaptive immune receptor-encoding DNA templates having unique sequences in a biological sample comprising lymphoid cell DNA from a subject, and (ii) the relative representation of nucleic acid amplification products of such templates, following multiplexed amplification using a complex set of oligonucleotide amplification primers designed to amplify substantially all productively rearranged adaptive immune receptor genes in the sample. Due to, e.g., the heterogeneity of both the template population and the amplification primer set, and as shown herein, significant disparities in the amplification efficiencies of different amplification primers may be common, leading to substantial skewing in the relative proportions of amplification products that are obtained and quantitatively sequenced following an amplification reaction.


Templates and Primers


According to certain preferred embodiments there is thus provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA (which in certain embodiments may refer to productively rearranged DNA but which in certain other embodiments need not be so limited) encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject, the template composition comprising a plurality of template oligonucleotides of general formula (I):

5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  (I)


as provided herein. In certain preferred embodiments each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount, which in certain embodiments and as noted above may refer to a composition in which each of the template oligonucleotides is present at an equimolar concentration or at a molar concentration that deviates from equimolar by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 50, 60, 70, 80, 90, 100 or 200% on a molar basis, and which in certain other embodiments may refer to a composition in which all of the template oligonucleotides are present at molar concentrations that are within an order of magnitude of one another. The plurality of templates may comprise at least 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 or more discrete oligonucleotide species each having a distinct nucleotide sequence, including every intermediate integer value therebetween.


The herein disclosed template composition thus comprises a plurality of template oligonucleotides of general formula:

5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  [I]


wherein, briefly and as elaborated in greater detail elsewhere herein, according to certain preferred embodiments:


V is a polynucleotide comprising at least 20, 30, 60, 90, 120, 150, 180, or 210, and not more than 1000, 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof, and in each of the plurality of template oligonucleotide sequences V comprises a unique oligonucleotide sequence;


J is a polynucleotide comprising at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and in each of the plurality of template oligonucleotide sequences J comprises a unique oligonucleotide sequence;


U1 and U2 are each either nothing or each comprise an oligonucleotide having, independently, a sequence that is selected from (i) a universal adaptor oligonucleotide sequence, and (ii) a sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to the universal adaptor oligonucleotide sequence;


B1, B2, B3, and B4 are each independently either nothing or each comprise an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 contiguous nucleotides (including all integer values therebetween), wherein in each of the plurality of template oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, or identifies as a paired combination, (i) the unique V oligonucleotide sequence of the template oligonucleotide and (ii) the unique J oligonucleotide sequence of the template oligonucleotide; and


R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from V, J, U1, U2, B1, B2, B3, and B4.


In some embodiments, the template oligonucleotide composition comprises additional non-coding or random oligonucleotides. These oligonucleotides may be inserted in various sections between or within the components in the general formula I (5′-U1-B1-V-B2-R-B3-J-B4-U2-3′) and be of various lengths in size.


In one embodiment, a is 1 to a number of maximum V gene segments in the mammalian genome of the subject. In another embodiment, b is 1 to a number of maximum J gene segments in the mammalian genome of the subject. In other embodiments, a is 1 or b is 1. In some embodiments, a can range from 1 V gene segment to 54 V gene segments for TCRA, 1-76 V gene segments for TCRB, 1-15 V gene segments for TCRG, 1-7 V gene segments for TCRD, 1-165 V gene segments for IGH, 1-111 for IGK, or 1-79 V gene segments for IGL. In other embodiments, b can range from 1 J gene segment to 61 J gene segments for TCRA, 1-14 J gene segments for TCRB, 1-5 J gene segments for TCRG, 1-4 gene segments for TCRD, 1-9 J gene segments for IGH, 1-5 J gene segments for IGK, or 1-11 J gene segments for IGL.


The table below lists the number of V gene segments (a) and J gene segments (b) for each human adaptive immune receptor loci, including functional V and J segments.


















functional V

Functional J



V segments *
segments **
J segments *
segments **



















TCRA
54
45
61
50


TCRB
76
48
14
13


TCRG
15
6
5
5


TCRD
7
7
4
4


IGH
165
51
9
6


IGK
111
44
5
5


IGL
79
33
11
7





* Total variable and joining segment genes


** Variable and joining segment genes with at least one functional allele






In some embodiments, the J polynucleotide comprises at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor J constant region, or the complement thereof.


In certain embodiments the plurality of template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in a subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment.


The presently contemplated invention is not intended to be so limited, however, such that in certain embodiments, a substantially fewer number of template oligonucleotides may advantageously be used. In these and related embodiments, where a is the number of unique adaptive immune receptor V region-encoding gene segments in a subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, the minimum number of unique oligonucleotide sequences of which the plurality of template oligonucleotides is comprised may be determined by whichever is the larger of a and b, so long as each unique V polynucleotide sequence and each unique J polynucleotide sequence is present in at least one template oligonucleotide in the template composition. Thus, according to certain related embodiments the template composition may comprise at least one template oligonucleotide for each unique V polynucleotide, e.g., that includes a single one of each unique V polynucleotide according to general formula (I), and at least one template oligonucleotide for each unique J polynucleotide, e.g., that includes a single one of each unique J polynucleotide according to general formula (I).


In certain other embodiments, the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal.


That is, in certain embodiments, the template composition comprises at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each V-segment oligonucleotide primer can specifically hybridize, and at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each J-segment oligonucleotide primer can specifically hybridize.


According to such embodiments the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of adaptive immune receptors comprises a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers. The plurality of a′ V-segment oligonucleotide primers are each independently capable of annealing or specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment. The plurality of b′ J-segment oligonucleotide primers are each independently capable of annealing or specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.


In some embodiments, a′ is the same as a (described above for template oligonucleotides). In other embodiments, b′ is the same as b (described above for template oligonucleotides).


Thus, in certain embodiments and as also discussed elsewhere herein, the present template composition may be used in amplification reactions with amplification primers that are designed to amplify all rearranged adaptive immune receptor encoding gene sequences, including those that are not expressed, while in certain other embodiments the template composition and amplification primers may be designed so as not to yield amplification products of rearranged genes that are not expressed (e.g., pseudogenes, orphons). It will therefore be appreciated that in certain embodiments only a subset of rearranged adaptive immune receptor encoding genes may desirably be amplified, such that suitable amplification primer subsets may be designed and employed to amplify only those rearranged V-J sequences that are of interest. In these and related embodiments, correspondingly, a herein described template composition comprising only a subset of interest of rearranged V-J rearranged sequences may be used, so long as the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal. The actual number of template oligonucleotides in the template composition may thus vary considerably among the contemplated embodiments, as a function of the amplification primer set that is to be used.


For example, in certain related embodiments, in the template composition the plurality of template oligonucleotides may have a plurality of sequences of general formula (I) that is selected from (1) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOS, respectively, as set forth in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13; (2) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIG. 6 as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5; and (3) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIG. 7 as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


In certain embodiments, V is a polynucleotide sequence that encodes at least 10-70 contiguous amino acids of an adaptive immune receptor V-region, or the complement thereof; J is a polynucleotide sequence that encodes at least 5-30 contiguous amino acids of an adaptive immune receptor J-region, or the complement thereof; U1 and U2 are each either nothing or comprise an oligonucleotide comprising a nucleotide sequence that is selected from (i) a universal adaptor oligonucleotide sequence, and (ii) a sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to the universal adaptor oligonucleotide sequence; B1, B2, B3 and B4 are each independently either nothing or each comprise an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleotides, wherein in each of the plurality of oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence and (ii) the unique J oligonucleotide sequence; and R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from V, J, U1, U2, B1, B2, B3, and B4. In certain preferred embodiments the plurality of template oligonucleotides comprises at least either a or b unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises a plurality of template oligonucleotides that comprise at least whichever is the greater of a or b unique template oligonucleotide sequences, provided that at least one V polynucleotide corresponding to each V region-encoding gene segment and at least one J polynucleotide corresponding to each J region-encoding gene segment is included.


A large number of adaptive immune receptor variable (V) region and joining (J) region gene sequences are known as nucleotide and/or amino acid sequences, including non-rearranged genomic DNA sequences of TCR and Ig loci, and productively rearranged DNA sequences at such loci and their encoded products, and also including pseudogenes at these loci, and also including related orphons. See, e.g., U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; PCT/US2011/049012. These and other sequences known to the art may be used according to the present disclosure for the design and production of template oligonucleotides to be included in the presently provided template composition for standardizing amplification efficiency of an oligonucleotide primer set, and for the design and production of the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding TCR or Ig polypeptide chains, which rearranged DNA may be present in a biological sample comprising lymphoid cell DNA.


In formula (I), V is a polynucleotide sequence of at least 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 or 450 and not more than 1000, 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor (e.g., TCR or BCR) variable (V) region gene sequence, or the complement thereof, and in each of the plurality of oligonucleotide sequences V comprises a unique oligonucleotide sequence. Genomic sequences for TCR and BCR V region genes of humans and other species are known and available from public databases such as Genbank; V region gene sequences include polynucleotide sequences that encode the products of expressed, rearranged TCR and BCR genes and also include polynucleotide sequences of pseudogenes that have been identified in the V region loci. The diverse V polynucleotide sequences that may be incorporated into the presently disclosed templates of general formula (I) may vary widely in length, in nucleotide composition (e.g., GC content), and in actual linear polynucleotide sequence, and are known, for example, to include “hot spots” or hypervariable regions that exhibit particular sequence diversity.


The polynucleotide V in general formula (I) (or its complement) includes sequences to which members of oligonucleotide primer sets specific for TCR or BCR genes can specifically anneal. Primer sets that are capable of amplifying rearranged DNA encoding a plurality of TCR or BCR are described, for example, in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or as described therein may be designed to include oligonucleotide sequences that can specifically hybridize to each unique V gene and to each J gene in a particular TCR or BCR gene locus (e.g., TCR α, β, γ or δ, or IgH μ, γ, δ, α or ε, or IgL κ or λ). For example by way of illustration and not limitation, an oligonucleotide primer of an oligonucleotide primer amplification set that is capable of amplifying rearranged DNA encoding one or a plurality of TCR or BCR may typically include a nucleotide sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides, or more, and may specifically anneal to a complementary sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides of a V or a J polynucleotide as provided herein. In certain embodiments the primers may comprise at least 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides, and in certain embodiment the primers may comprise sequences of no more than 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides. Primers and primer annealing sites of other lengths are also expressly contemplated, as disclosed herein.


The entire polynucleotide sequence of each polynucleotide V in general formula (I) may, but need not, consist exclusively of contiguous nucleotides from each distinct V gene. For example and according to certain embodiments, in the template composition described herein, each polynucleotide V of formula (I) need only have at least a region comprising a unique V oligonucleotide sequence that is found in one V gene and to which a single V region primer in the primer set can specifically anneal. Thus, the V polynucleotide of formula (I) may comprise all or any prescribed portion (e.g., at least 15, 20, 30, 60, 90, 120, 150, 180 or 210 contiguous nucleotides, or any integer value therebetween) of a naturally occurring V gene sequence (including a V pseudogene sequence) so long as at least one unique V oligonucleotide sequence region (the primer annealing site) is included that is not included in any other template V polynucleotide.


It may be preferred in certain embodiments that the plurality of V polynucleotides that are present in the herein described template composition have lengths that simulate the overall lengths of known, naturally occurring V gene nucleotide sequences, even where the specific nucleotide sequences differ between the template V region and any naturally occurring V gene. The V region lengths in the herein described templates may differ from the lengths of naturally occurring V gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent.


The V polynucleotide in formula (I) may thus, in certain embodiments, comprise a nucleotide sequence having a length that is the same or similar to that of the length of a typical V gene from its start codon to its CDR3 encoding region and may, but need not, include a nucleotide sequence that encodes the CDR3 region. CDR3 encoding nucleotide sequences and sequence lengths may vary considerably and have been characterized by several different numbering schemes (e.g., Lefranc, 1999 The Immunologist 7:132; Kabat et al., 1991 In: Sequences of Proteins of Immunological Interest, NIH Publication 91-3242; Chothia et al., 1987 J. Mol. Biol. 196:901; Chothia et al., 1989 Nature 342:877; Al-Lazikani et al., 1997 J. Mol. Biol. 273:927; see also, e.g., Rock et al., 1994 J. Exp. Med. 179:323; Saada et al., 2007 Immunol. Cell Biol. 85:323).


Briefly, the CDR3 region typically spans the polypeptide portion extending from a highly conserved cysteine residue (encoded by the trinucleotide codon TGY; Y=T or C) in the V segment to a highly conserved phenylalanine residue (encoded by TTY) in the J segment of TCRs, or to a highly conserved tryptophan (encoded by TGG) in IGH. More than 90% of natural, productive rearrangements in the TCRB locus have a CDR3 encoding length by this criterion of between 24 and 54 nucleotides, corresponding to between 9 and 17 encoded amino acids. The CDR3 lengths of the presently disclosed synthetic template oligonucleotides should, for any given TCR or BCR locus, fall within the same range as 95% of naturally occurring rearrangements. Thus, for example, in a herein described template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of TCRB polypeptides, the CDR3 encoding portion of the V polynucleotide may have a length of from 24 to 54 nucleotides, including every integer therebetween. The numbering schemes for CDR3 encoding regions described above denote the positions of the conserved cysteine, phenylalanine and tryptophan codons, and these numbering schemes may also be applied to pseudogenes in which one or more codons encoding these conserved amino acids may have been replaced with a codon encoding a different amino acid. For pseudogenes which do not use these conserved amino acids, the CDR3 length may be defined relative to the corresponding position at which the conserved residue would have been observed absent the substitution, according to one of the established CDR3 sequence position numbering schemes referenced above.


It may also be preferred, in certain embodiments, that the plurality of V polynucleotides that are present in the herein described template composition have nucleotide compositions (e.g., percentage of GC content) that simulate the overall nucleotide compositions of known, naturally occurring V gene sequences, even where the specific nucleotide sequences differ. Such template V region nucleotide compositions may differ from the nucleotide compositions of naturally occurring V gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent. Optionally and according to certain embodiments, the V polynucleotide of the herein described template oligonucleotide includes a stop codon at or near the 3′ end of V in general formula (I).


In formula (I) J is a polynucleotide comprising at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and in each of the plurality of oligonucleotide sequences J comprises a unique oligonucleotide sequence.


The polynucleotide J in general formula (I) (or its complement) includes sequences to which members of oligonucleotide primer sets specific for TCR or BCR genes can specifically anneal. Primer sets that are capable of amplifying rearranged DNA encoding a plurality of TCR or BCR are described, for example, in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or as described therein may be designed to include oligonucleotide sequences that can specifically hybridize to each unique V gene and to each unique J gene in a particular TCR or BCR gene locus (e.g., TCR α, β, γ or δ, or IgH μ, γ, δ, α or ε, or IgL κ or λ).


The entire polynucleotide sequence of each polynucleotide J in general formula (I) may, but need not, consist exclusively of contiguous nucleotides from each distinct J gene. For example and according to certain embodiments, in the template composition described herein, each polynucleotide J of formula (I) need only have at least a region comprising a unique J oligonucleotide sequence that is found in one J gene and to which a single V region primer in the primer set can specifically anneal. Thus, the V polynucleotide of formula (I) may comprise all or any prescribed portion (e.g., at least 15, 20, 30, 60, 90, 120, 150, 180 or 210 contiguous nucleotides, or any integer value therebetween) of a naturally occurring V gene sequence (including a V pseudogene sequence) so long as at least one unique V oligonucleotide sequence region (the primer annealing site) is included that is not included in any other template J polynucleotide.


It may be preferred in certain embodiments that the plurality of J polynucleotides that are present in the herein described template composition have lengths that simulate the overall lengths of known, naturally occurring J gene nucleotide sequences, even where the specific nucleotide sequences differ between the template J region and any naturally occurring J gene. The J region lengths in the herein described templates may differ from the lengths of naturally occurring J gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent.


The J polynucleotide in formula (I) may thus, in certain embodiments, comprise a nucleotide sequence having a length that is the same or similar to that of the length of a typical naturally occurring J gene and may, but need not, include a nucleotide sequence that encodes the CDR3 region, as discussed above.


Genomic sequences for TCR and BCR J region genes of humans and other species are known and available from public databases such as Genbank; J region gene sequences include polynucleotide sequences that encode the products of expressed and unexpressed rearranged TCR and BCR genes. The diverse J polynucleotide sequences that may be incorporated into the presently disclosed templates of general formula (I) may vary widely in length, in nucleotide composition (e.g., GC content), and in actual linear polynucleotide sequence.


Alternatives to the V and J sequences described herein, for use in construction of the herein described template oligonucleotides and/or V-segment and J-segment oligonucleotide primers, may be selected by a skilled person based on the present disclosure using knowledge in the art regarding published gene sequences for the V- and J-encoding regions of the genes for each TCR and Ig subunit. Reference Genbank entries for human adaptive immune receptor sequences include: TCRα: (TCRA/D): NC000014.8 (chr14:22090057 . . . 23021075); TCRβ: (TCRB): NC000007.13 (chr7:141998851 . . . 142510972); TCRγ: (TCRG): NC000007.13 (chr7:38279625 . . . 38407656); immunoglobulin heavy chain, IgH (IGH): NC000014.8 (chr14: 106032614 . . . 107288051); immunoglobulin light chain-kappa, IgLκ (IGK): NC000002.11 (chr2: 89156874 . . . 90274235); and immunoglobulin light chain-lambda, IgLλ (IGL): NC000022.10 (chr22: 22380474 . . . 23265085). Reference Genbank entries for mouse adaptive immune receptor loci sequences include: TCRβ: (TCRB): NC000072.5 (chr6: 40841295 . . . 41508370), and immunoglobulin heavy chain, IgH (IGH): NC000078.5 (chr12:114496979 . . . 117248165).


Template and primer design analyses and target site selection considerations can be performed, for example, using the OLIGO primer analysis software and/or the BLASTN 2.0.5 algorithm software (Altschul et al., Nucleic Acids Res. 1997, 25(17):3389-402), or other similar programs available in the art.


Accordingly, based on the present disclosure and in view of these known adaptive immune receptor gene sequences and oligonucleotide design methodologies, for inclusion in the instant template oligonucleotides those skilled in the art can design a plurality of V region-specific and J region-specific polynucleotide sequences that each independently contain oligonucleotide sequences that are unique to a given V and J gene, respectively. Similarly, from the present disclosure and in view of known adaptive immune receptor sequences, those skilled in the art can also design a primer set comprising a plurality of V region-specific and J region-specific oligonucleotide primers that are each independently capable of annealing to a specific sequence that is unique to a given V and J gene, respectively, whereby the plurality of primers is capable of amplifying substantially all V genes and substantially all J genes in a given adaptive immune receptor-encoding locus (e.g., a human TCR or IgH locus). Such primer sets permit generation, in multiplexed (e.g., using multiple forward and reverse primer pairs) PCR, of amplification products that have a first end that is encoded by a rearranged V region-encoding gene segment and a second end that is encoded by a J region-encoding gene segment.


Typically and in certain embodiments, such amplification products may include a CDR3-encoding sequence although the invention is not intended to be so limited and contemplates amplification products that do not include a CDR3-encoding sequence. The primers may be preferably designed to yield amplification products having sufficient portions of V and J sequences and/or of V-J barcode (B) sequences as described herein, such that by sequencing the products (amplicons), it is possible to identify on the basis of sequences that are unique to each gene segment (i) the particular V gene, and (ii) the particular J gene in the proximity of which the V gene underwent rearrangement to yield a functional adaptive immune receptor-encoding gene. Typically, and in preferred embodiments, the PCR amplification products will not be more than 600 base pairs in size, which according to non-limiting theory will exclude amplification products from non-rearranged adaptive immune receptor genes. In certain other preferred embodiments the amplification products will not be more than 500, 400, 300, 250, 200, 150, 125, 100, 90, 80, 70, 60, 50, 40, 30 or 20 base pairs in size, such as may advantageously provide rapid, high-throughput quantification of sequence-distinct amplicons by short sequence reads.


In certain preferred embodiments, the plurality of template oligonucleotides comprises at least a or at least b unique oligonucleotide sequences, whichever is larger, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide. It will be appreciated that because the template oligonucleotides have a plurality of oligonucleotide sequences of general formula (I), which includes a V polynucleotide and which also includes a J polynucleotide, that the template composition may thus comprise fewer than (a×b) unique oligonucleotide sequences, but will comprise at least the larger of a or b unique oligonucleotide sequences. Accordingly, the composition may accommodate at least one occurrence of each unique V polynucleotide sequence and at least one occurrence of each unique J polynucleotide sequence, where in some instances the at least one occurrence of a particular unique V polynucleotide will be present in the same template oligonucleotide in which may be found the at least one occurrence of a particular unique J polynucleotide. Thus, for example, “at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide” may in certain instances refer to a single template oligonucleotide in which one unique V polynucleotide and one unique J polynucleotide are present.


As also disclosed elsewhere herein, in certain other preferred embodiments the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal. Hence, the composition may comprise fewer than a or b unique sequences, for example, where an amplification primer set may not include a unique primer for every possible V and/or J sequence.


It will be noted that certain embodiments contemplate a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying productively rearranged DNA encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject as provided herein, wherein the template composition comprises a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ (I) as described herein. According to these and related embodiments and as also described elsewhere herein, the set of oligonucleotide amplification primers that is capable of amplifying productively rearranged DNA may exclude any oligonucleotide primers that specifically hybridize to a V-region pseudogene or orphon or to a J-region pseudogene or orphon. Hence, in such embodiments the template composition will desirably exclude template oligonucleotides of general formula (I) in which unique V oligonucleotide sequences and/or unique J oligonucleotide sequences are sequences that are, respectively, unique to a V-region pseudogene or orphon or to a J-region pseudogene or orphon.


An exemplary TCRB template composition comprising 858 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:3157-4014. Another exemplary TCRB template composition comprising 871 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:1-871. Another exemplary TCRB template composition comprising 689 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:872-1560.


An exemplary TCRG template composition comprising 70 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4015-4084. An exemplary TCRG template composition comprising 70 distinct template oligonucleotides is also disclosed in the Sequence Listing in SEQ ID NOS:1561-1630.


An exemplary IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200. An exemplary IGH template composition comprising 1116 distinct template oligonucleotides is also disclosed in the Sequence Listing in SEQ ID NOS:1805-2920.


Also disclosed herein are exemplary sets of V and J polynucleotides for inclusion in the herein described template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). For TCRB, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOS, respectively, as set forth in FIG. 5 as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13.


For TCRG, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIG. 6 as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5.


For IGH, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIG. 7 as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


Primers


According to the present disclosure, oligonucleotide primers are provided in an oligonucleotide primer set that comprises a plurality of V-segment primers and a plurality of J-segment primers, where the primer set is capable of amplifying rearranged DNA encoding adaptive immune receptors in a biological sample that comprises lymphoid cell DNA. Suitable primer sets are known in the art and disclosed herein, for example, the primer sets in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or those shown in Table 1. In certain embodiments the primer set is designed to include a plurality of V sequence-specific primers that includes, for each unique V region gene (including pseudogenes) in a sample, at least one primer that can specifically anneal to a unique V region sequence; and for each unique J region gene in the sample, at least one primer that can specifically anneal to a unique J region sequence.


Primer design may be achieved by routine methodologies in view of known TCR and BCR genomic sequences. Accordingly, the primer set is preferably capable of amplifying every possible V-J combination that may result from DNA rearrangements in the TCR or BCR locus. As also described below, certain embodiments contemplate primer sets in which one or more V primers may be capable of specifically annealing to a “unique” sequence that may be shared by two or more V regions but that is not common to all V regions, and/or in which in which one or more J primers may be capable of specifically annealing to a “unique” sequence that may be shared by two or more J regions but that is not common to all J regions.


In particular embodiments, oligonucleotide primers for use in the compositions and methods described herein may comprise or consist of a nucleic acid of at least about 15 nucleotides long that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of the target V- or J-segment (i.e., portion of genomic polynucleotide encoding a V-region or J-region polypeptide). Longer primers, e.g., those of about 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, or 50, nucleotides long that have the same sequence as, or sequence complementary to, a contiguous sequence of the target V- or J-region encoding polynucleotide segment, will also be of use in certain embodiments. All intermediate lengths of the presently described oligonucleotide primers are contemplated for use herein. As would be recognized by the skilled person, the primers may have additional sequence added (e.g., nucleotides that may not be the same as or complementary to the target V- or J-region encoding polynucleotide segment), such as restriction enzyme recognition sites, adaptor sequences for sequencing, bar code sequences, and the like (see e.g., primer sequences provided in the Tables and sequence listing herein). Therefore, the length of the primers may be longer, such as about 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, 100 or more nucleotides in length or more, depending on the specific use or need.


Also contemplated for use in certain embodiments are adaptive immune receptor V-segment or J-segment oligonucleotide primer variants that may share a high degree of sequence identity to the oligonucleotide primers for which nucleotide sequences are presented herein, including those set forth in the Sequence Listing. Thus, in these and related embodiments, adaptive immune receptor V-segment or J-segment oligonucleotide primer variants may have substantial identity to the adaptive immune receptor V-segment or J-segment oligonucleotide primer sequences disclosed herein, for example, such oligonucleotide primer variants may comprise at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity compared to a reference polynucleotide sequence such as the oligonucleotide primer sequences disclosed herein, using the methods described herein (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding ability of an oligonucleotide primer variant to anneal to an adaptive immune receptor segment-encoding polynucleotide by taking into account codon degeneracy, reading frame positioning and the like.


Typically, oligonucleotide primer variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the annealing ability of the variant oligonucleotide is not substantially diminished relative to that of an adaptive immune receptor V-segment or J-segment oligonucleotide primer sequence that is specifically set forth herein.


Table 1 presents as a non-limiting example an oligonucleotide primer set that is capable of amplifying productively rearranged DNA encoding TCR β-chains (TCRB) in a biological sample that comprises DNA from lymphoid cells of a subject. In this primer set the J segment primers share substantial sequence homology, and therefore may cross-prime amongst more than one target J polynucleotide sequence, but the V segment primers are designed to anneal specifically to target sequences within the CDR2 region of V and are therefore unique to each V segment. An exception, however, is present in the case of several V primers where the within-family sequences of the closely related target genes are identical (e.g., V6-2 and V6-3 are identical at the nucleotide level throughout the coding sequence of the V segment, and therefore may have a single primer, TRB2V6-2/3).


It will therefore be appreciated that in certain embodiments the number of different template oligonucleotides in the template composition, and/or the number of different oligonucleotide primers in the primer set, may be advantageously reduced by designing template and/or primers to exploit certain known similarities in V and/or J sequences. Thus, in these and related embodiments, “unique” oligonucleotide sequences as described herein may include specific V polynucleotide sequences that are shared by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 distinct template oligonucleotides and/or specific J polynucleotide sequences that are shared by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 distinct template oligonucleotides, where such templates differ in sequence from one another by other than the shared V and/or J sequences.


According to certain presently contemplated embodiments, it may be useful to decrease (e.g., reduce in a statistically significant manner) template amplification bias such as non-uniform nucleic acid amplification potential among members of a set of amplification primers that can result from unequal primer efficiencies (e.g., unequal primer utilization) only for a limited subset of all naturally occurring V and J genes. For example, in analyses of the TCR or BCR immune repertoire involved in an immune response, whether to a specific antigen, as in a vaccine, or to a tissue, as in an autoimmune disease, only the productive TCR or IG rearrangements may be of interest. In such circumstances, it may be economically advantageous to identify and correct non-uniform nucleic acid amplification potential only for those V and J segment primers that contribute to productive rearrangements of TCR or BCR encoding DNA, and to exclude efforts to correct non-uniform amplification of pseudogenes and orphons (i.e., TCR or BCR V region-encoding segments that have been duplicated onto other chromosomes).


In the human IGH locus, for instance, the ImmunoGeneTics (IMGT) database (M.-P. LeFranc, Université Montpellier, Montpellier, France; www.imgt.org) annotates 165 V segment genes, of which 26 are orphons on other chromosomes and 139 are in the IGH locus at chromosome 14. Among the 139 V segments within the IGH locus, 51 have at least one functional allele, while 6 are ORFs (open-reading frames) which are missing at least one highly conserved amino-acid residue, and 81 are pseudogenes. Pseudogenes may include V segments that contain an in-frame stop codon within the V-segment coding sequence, a frameshift between the start codon and the CDR3 encoding sequence, one or more repeat-element insertions, and deletions of critical regions, such as the first exon or the RSS. To characterize functional IGH rearrangements in a sample while avoiding the time and expense of characterizing pseudogenes and/or orphons, it is therefore contemplated to use a subset of the herein described synthetic template oligonucleotides which is designed to include only those V segments that participate in a functional rearrangement to encode a TCR or BCR, without having to synthesize or calibrate amplification primers and template oligonucleotides specific to the pseudogene sequences. Advantageous efficiencies with respect, inter alia, to time and expense are thus obtained.









TABLE 1







Exemplary Oligonucleotide Primer Set (hsTCRB PCR Primers)











SEQ ID


Name
Sequence
NO:





TRBJ1-1
TTACCTACAACTGTGAGTCTGGTGCCTTGTCCAAA
1631





TRBJ1-2
ACCTACAACGGTTAACCTGGTCCCCGAACCGAA
1632





TRBJ1-3
ACCTACAACAGTGAGCCAACTTCCCTCTCCAAA
1633





TRBJ1-4
CCAAGACAGAGAGCTGGGTTCCACTGCCAAA
1634





TRBJ1-5
ACCTAGGATGGAGAGTCGAGTCCCATCACCAAA
1635





TRBJ1-6
CTGTCACAGTGAGCCTGGTCCCGTTCCCAAA
1636





TRBJ2-1
CGGTGAGCCGTGTCCCTGGCCCGAA
1637





TRBJ2-2
CCAGTACGGTCAGCCTAGAGCCTTCTCCAAA
1638





TRBJ2-3
ACTGTCAGCCGGGTGCCTGGGCCAAA
1639





TRBJ2-4
AGAGCCGGGTCCCGGCGCCGAA
1640





TRBJ2-5
GGAGCCGCGTGCCTGGCCCGAA
1641





TRBJ2-6
GTCAGCCTGCTGCCGGCCCCGAA
1642





TRBJ2-7
GTGAGCCTGGTGCCCGGCCCGAA
1643





TRB2V10-1
AACAAAGGAGAAGTCTCAGATGGCTACAG
1644





TRB2V10-2
GATAAAGGAGAAGTCCCCGATGGCTATGT
1645





TRB2V10-3
GACAAAGGAGAAGTCTCAGATGGCTATAG
1646





TRB2V6-2/3
GCCAAAGGAGAGGTCCCTGATGGCTACAA
1647





TRB2V6-8
CTCTAGATTAAACACAGAGGATTTCCCAC
1648





TRB2V6-9
AAGGAGAAGTCCCCGATGGCTACAATGTA
1649





TRB2V6-5
AAGGAGAAGTCCCCAATGGCTACAATGTC
1650





TRB2V6-6
GACAAAGGAGAAGTCCCGAATGGCTACAAC 
1651





TRB2V6-7
GTTCCCAATGGCTACAATGTCTCCAGATC
1652





TRB2V6-1
GTCCCCAATGGCTACAATGTCTCCAGATT
1653





TRB2V6-4
GTCCCTGATGGTTATAGTGTCTCCAGAGC
1654





TRB2V24-1 
ATCTCTGATGGATACAGTGTCTCTCGACA
1655





TRB2V25-1
TTTCCTCTGAGTCAACAGTCTCCAGAATA
1656





TRB2V27
TCCTGAAGGGTACAAAGTCTCTCGAAAAG
1657





TRB2V26
CTCTGAGAGGTATCATGTTTCTTGAAATA
1658





TRB2V28
TCCTGAGGGGTACAGTGTCTCTAGAGAGA
1659





TRB2V19
TATAGCTGAAGGGTACAGCGTCTCTCGGG
1660





TRB2V4-1
CTGAATGCCCCAACAGCTCTCTCTTAAAC
1661





TRB2V4-2/3
CTGAATGCCCCAACAGCTCTCACTTATTC
1662





TRB2V2P
CCTGAATGCCCTGACAGCTCTCGCTTATA
1663





TRB2V3-1
CCTAAATCTCCAGACAAAGCTCACTTAAA
1664





TRB2V3-2
CTCACCTGACTCTCCAGACAAAGCTCAT
1665





TRB2V16
TTCAGCTAAGTGCCTCCCAAATTCACCCT
1666





TRB2V23-1
GATTCTCATCTCAATGCCCCAAGAACGC
1667





TRB2V18
ATTTTCTGCTGAATTTCCCAAAGAGGGCC
1668





TRB2V17
ATTCACAGCTGAAAGACCTAACGGAACGT 
1669





TRB2V14
TCTTAGCTGAAAGGACTGGAGGGACGTAT
1670





TRB2V2
TTCGATGATCAATTCTCAGTTGAAAGGCC
1671





TRB2V12-1
TTGATTCTCAGCACAGATGCCTGATGT
1672





TRB2V12-2
GCGATTCTCAGCTGAGAGGCCTGATGG
1673





TRB2V12-3/4
TCGATICICAGCTAAGATGCCIAATGC
1674





TRB2V12-5
TTCTCAGCAGAGATGCCTGATGCAACTTTA
1675





TRB2V7-9
GGTTCTCTGCAGAGAGGCCTAAGGGATCT
1676





TRB2V7-8
GCTGCCCAGTGATCGCTTCTTTGCAGAAA
1677





TRB2V7-4
GGCGGCCCAGTGGTCGGTTCTCTGCAGAG
1678





TRB2V7-6/7
ATGATCGGTTCTCTGCAGAGAGGCCTGAGG
1679





TRB2V7-2
AGTGATCGCTTCTCTGCAGAGAGGACTGG
1680





TRB2V7-3
GGCTGCCCAACGATCGGTTCTTTGCAGT
1681





TRB2V7-1
TCCCCGTGATCGGTTCTCTGCACAGAGGT
1682





TRB2V11-123
CTAAGGATCGATTTTCTGCAGAGAGGCTC
1683





TRB2V13
CTGATCGATTCTCAGCTCAACAGTTCAGT
1684





TRB2V5-1
TGGTCGATTCTCAGGGCGCCAGTTCTCTA
1685





TRB2V5-3
TAATCGATTCTCAGGGCGCCAGTTCCATG
1686





TRB2V5-4
TCCTAGATTCTCAGGTCTCCAGTTCCCTA
1687





TRB2V5-8
GGAAACTTCCCTCCTAGATTTTCAGGTCG
1688





TRB2V5-5
AAGAGGAAACTTCCCTGATCGATTCTCAGC
1689





TRB2V5-6
GGCAACTTCCCTGATCGATTCTCAGGTCA
1690





TRB2V9
GTTCCCTGACTTGCACTCTGAACTAAAC
1691





TRB2V15
GCCGAACACTTCTTTCTGCTTTCTTGAC
1692





TRB2V30
GACCCCAGGACCGGCAGTTCATCCTGAGT
1693





TRB2V20-1
ATGCAAGCCTGACCTTGTCCACTCTGACA
1694





TRB2V29-1
CATCAGCCGCCCAAACCTAACATTCTCAA
1695









In certain embodiments, the V-segment and J-segment oligonucleotide primers as described herein are designed to include nucleotide sequences such that adequate information is present within the sequence of an amplification product of a rearranged adaptive immune receptor (TCR or Ig) gene to identify uniquely both the specific V and the specific J genes that give rise to the amplification product in the rearranged adaptive immune receptor locus (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), preferably at least about 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39 or 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and in certain preferred embodiments greater than 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 base pairs downstream of the J gene RSS, preferably at least about 22, 24, 26, 28 or 30 base pairs downstream of the J gene RSS, and in certain preferred embodiments greater than 30 base pairs downstream of the J gene RSS).


This feature stands in contrast to oligonucleotide primers described in the art for amplification of TCR-encoding or Ig-encoding gene sequences, which rely primarily on the amplification reaction merely for detection of presence or absence of products of appropriate sizes for V and J segments (e.g., the presence in PCR reaction products of an amplicon of a particular size indicates presence of a V or J segment but fails to provide the sequence of the amplified PCR product and hence fails to confirm its identity, such as the common practice of spectratyping).


Oligonucleotides (e.g., primers) can be prepared by any suitable method, including direct chemical synthesis by a method such as the phosphotriester method of Narang et al., 1979, Meth. Enzymol. 68:90-99; the phosphodiester method of Brown et al., 1979, Meth. Enzymol. 68:109-151; the diethylphosphoramidite method of Beaucage et al., 1981, Tetrahedron Lett. 22:1859-1862; and the solid support method of U.S. Pat. No. 4,458,066, each incorporated herein by reference. A review of synthesis methods of conjugates of oligonucleotides and modified nucleotides is provided in Goodchild, 1990, Bioconjugate Chemistry 1(3): 165-187, incorporated herein by reference.


The term “primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation of DNA synthesis under suitable conditions. Such conditions include those in which synthesis of a primer extension product complementary to a nucleic acid strand is induced in the presence of four different nucleoside triphosphates and an agent for extension (e.g., a DNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.


A primer is preferably a single-stranded DNA. The appropriate length of a primer depends on the intended use of the primer but typically ranges from 6 to 50 nucleotides, or in certain embodiments, from 15-35 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template nucleic acid, but must be sufficiently complementary to hybridize with the template. The design of suitable primers for the amplification of a given target sequence is well known in the art and described in the literature cited herein.


As described herein, primers can incorporate additional features which allow for the detection or immobilization of the primer but do not alter the basic property of the primer, that of acting as a point of initiation of DNA synthesis. For example, primers may contain an additional nucleic acid sequence at the 5′ end which does not hybridize to the target nucleic acid, but which facilitates cloning, detection, or sequencing of the amplified product. The region of the primer which is sufficiently complementary to the template to hybridize is referred to herein as the hybridizing region.


As used herein, a primer is “specific,” for a target sequence if, when used in an amplification reaction under sufficiently stringent conditions, the primer hybridizes primarily to the target nucleic acid. Typically, a primer is specific for a target sequence if the primer-target duplex stability is greater than the stability of a duplex formed between the primer and any other sequence found in the sample. One of skill in the art will recognize that various factors, such as salt conditions as well as base composition of the primer and the location of the mismatches, will affect the specificity of the primer, and that routine experimental confirmation of the primer specificity will be needed in many cases. Hybridization conditions can be chosen under which the primer can form stable duplexes only with a target sequence. Thus, the use of target-specific primers under suitably stringent amplification conditions enables the selective amplification of those target sequences which contain the target primer binding sites.


In particular embodiments, primers for use in the methods described herein comprise or consist of a nucleic acid of at least about 15 nucleotides long that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of the target V or J segment. Longer primers, e.g., those of about 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, or 50, nucleotides long that have the same sequence as, or sequence complementary to, a contiguous sequence of the target V or J segment, will also be of use in certain embodiments. All intermediate lengths of the aforementioned primers are contemplated for use herein. As would be recognized by the skilled person, the primers may have additional sequence added (e.g., nucleotides that may not be the same as or complementary to the target V or J segment), such as restriction enzyme recognition sites, adaptor sequences for sequencing, bar code sequences, and the like (see e.g., primer sequences provided herein and in the sequence listing). Therefore, the length of the primers may be longer, such as 55, 56, 57, 58, 59, 60, 65, 70, 75, nucleotides in length or more, depending on the specific use or need. For example, in one embodiment, the forward and reverse primers are both modified at the 5′ end with the universal forward primer sequence compatible with a DNA sequencer.


Also contemplated for use in certain embodiments are adaptive immune receptor V-segment or J-segment oligonucleotide primer variants that may share a high degree of sequence identity to the oligonucleotide primers for which nucleotide sequences are presented herein, including those set forth in the Sequence Listing. Thus, in these and related embodiments, adaptive immune receptor V-segment or J-segment oligonucleotide primer variants may have substantial identity to the adaptive immune receptor V-segment or J-segment oligonucleotide primer sequences disclosed herein, for example, such oligonucleotide primer variants may comprise at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity compared to a reference polynucleotide sequence such as the oligonucleotide primer sequences disclosed herein, using the methods described herein (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding ability of an oligonucleotide primer variant to anneal to an adaptive immune receptor segment-encoding polynucleotide by taking into account codon degeneracy, reading frame positioning and the like.


Typically, oligonucleotide primer variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the annealing ability of the variant oligonucleotide is not substantially diminished relative to that of an adaptive immune receptor V-segment or J-segment oligonucleotide primer sequence that is specifically set forth herein. As also noted elsewhere herein, in preferred embodiments adaptive immune receptor V-segment and J-segment oligonucleotide primers are designed to be capable of amplifying a rearranged TCR or IGH sequence that includes the coding region for CDR3.


According to certain embodiments contemplated herein, the primers for use in the multiplex PCR methods of the present disclosure may be functionally blocked to prevent non-specific priming of non-T or B cell sequences. For example, the primers may be blocked with chemical modifications as described in U.S. patent application publication US2010/0167353. According to certain herein disclosed embodiments, the use of such blocked primers in the present multiplex PCR reactions involves primers that may have an inactive configuration wherein DNA replication (i.e., primer extension) is blocked, and an activated configuration wherein DNA replication proceeds. The inactive configuration of the primer is present when the primer is either single-stranded, or when the primer is specifically hybridized to the target DNA sequence of interest but primer extension remains blocked by a chemical moiety that is linked at or near to the 3′ end of the primer.


The activated configuration of the primer is present when the primer is hybridized to the target nucleic acid sequence of interest and is subsequently acted upon by RNase H or another cleaving agent to remove the 3′ blocking group, thereby allowing an enzyme (e.g., a DNA polymerase) to catalyze primer extension in an amplification reaction. Without wishing to be bound by theory, it is believed that the kinetics of the hybridization of such primers are akin to a second order reaction, and are therefore a function of the T cell or B cell gene sequence concentration in the mixture. Blocked primers minimize non-specific reactions by requiring hybridization to the target followed by cleavage before primer extension can proceed. If a primer hybridizes incorrectly to a sequence that is related to the desired target sequence but which differs by having one or more non-complementary nucleotides that result in base-pairing mismatches, cleavage of the primer is inhibited, especially when there is a mismatch that lies at or near the cleavage site. This strategy to improve the fidelity of amplification reduces the frequency of false priming at such locations, and thereby increases the specificity of the reaction. As would be recognized by the skilled person, reaction conditions, particularly the concentration of RNase H and the time allowed for hybridization and extension in each cycle, can be optimized to maximize the difference in cleavage efficiencies between highly efficient cleavage of the primer when it is correctly hybridized to its true target sequence, and poor cleavage of the primer when there is a mismatch between the primer and the template sequence to which it may be incompletely annealed.


As described in US2010/0167353, a number of blocking groups are known in the art that can be placed at or near the 3′ end of the oligonucleotide (e.g., a primer) to prevent extension. A primer or other oligonucleotide may be modified at the 3′-terminal nucleotide to prevent or inhibit initiation of DNA synthesis by, for example, the addition of a 3′ deoxyribonucleotide residue (e.g., cordycepin), a 2′,3′-dideoxyribonucleotide residue, non-nucleotide linkages or alkane-diol modifications (U.S. Pat. No. 5,554,516). Alkane diol modifications which can be used to inhibit or block primer extension have also been described by Wilk et al., (1990 Nucleic Acids Res. 18 (8):2065), and by Arnold et al. (U.S. Pat. No. 6,031,091). Additional examples of suitable blocking groups include 3′ hydroxyl substitutions (e.g., 3′-phosphate, 3′-triphosphate or 3′-phosphate diesters with alcohols such as 3-hydroxypropyl), 2′3′-cyclic phosphate, 2′-hydroxyl substitutions of a terminal RNA base (e.g., phosphate or sterically bulky groups such as triisopropyl silyl (TIPS) or tert-butyl dimethyl silyl (TBDMS)). 2′-alkyl silyl groups such as TIPS and TBDMS substituted at the 3′-end of an oligonucleotide are described by Laikhter et al., U.S. patent application Ser. No. 11/686,894, which is incorporated herein by reference. Bulky substituents can also be incorporated on the base of the 3′-terminal residue of the oligonucleotide to block primer extension.


In certain embodiments, the oligonucleotide may comprise a cleavage domain that is located upstream (e.g., 5′ to) of the blocking group used to inhibit primer extension. As examples, the cleavage domain may be an RNase H cleavage domain, or the cleavage domain may be an RNase H2 cleavage domain comprising a single RNA residue, or the oligonucleotide may comprise replacement of the RNA base with one or more alternative nucleosides. Additional illustrative cleavage domains are described in US2010/0167353.


Thus, a multiplex PCR system may use 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or more forward primers, wherein each forward primer is complementary to a single functional TCR or Ig V segment or a small family of functional TCR or Ig V segments, e.g., a TCR Vβ segment, (see e.g., the TCRBV primers as shown in Table 1, SEQ ID NOS:1644-1695), and, for example, thirteen reverse primers, each specific to a TCR or Ig J segment, such as TCR Jβ segment (see e.g., TCRBJ primers in Table 1, SEQ ID NOS:1631-1643). In another embodiment, a multiplex PCR reaction may use four forward primers each specific to one or more functional TCRγ V segment and four reverse primers each specific for one or more TCRγ J segments. In another embodiment, a multiplex PCR reaction may use 84 forward primers each specific to one or more functional V segments and six reverse primers each specific for one or more J segments.


Thermal cycling conditions may follow methods of those skilled in the art. For example, using a PCR Express™ thermal cycler (Hybaid, Ashford, UK), the following cycling conditions may be used: 1 cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94° C. for 30 seconds, 59° C. for 30 seconds and 72° C. for 1 minute, followed by one cycle at 72° C. for 10 minutes. As will be recognized by the skilled person, thermal cycling conditions may be optimized, for example, by modifying annealing temperatures, annealing times, number of cycles and extension times. As would be recognized by the skilled person, the amount of primer and other PCR reagents used, as well as PCR parameters (e.g., annealing temperature, extension times and cycle numbers), may be optimized to achieve desired PCR amplification efficiency.


Alternatively, in certain related embodiments also contemplated herein, “digital PCR” methods can be used to quantitate the number of target genomes in a sample, without the need for a standard curve. In digital PCR, the PCR reaction for a single sample is performed in a multitude of more than 100 microcells or droplets, such that each droplet either amplifies (e.g., generation of an amplification product provides evidence of the presence of at least one template molecule in the microcell or droplet) or fails to amplify (evidence that the template was not present in a given microcell or droplet). By simply counting the number of positive microcells, it is possible directly to count the number of target genomes that are present in an input sample.


Digital PCR methods typically use an endpoint readout, rather than a conventional quantitative PCR signal that is measured after each cycle in the thermal cycling reaction (see, e.g., Pekin et al., 2011 Lab. Chip 11(13):2156; Zhong et al., 2011 Lab. Chip 11(13):2167; Tewhey et al., 2009 Nature Biotechnol. 27:1025; 2010 Nature Biotechnol. 28:178; Vogelstein and Kinzler, 1999 Proc. Natl. Acad. Sci. USA 96:9236-41; Pohl and Shih, 2004 Expert Rev. Mol. Diagn. 4(1); 41-7, 2004). Compared with traditional PCR, dPCR has the following advantages: (1) there is no need to rely on references or standards, (2) desired precision may be achieved by increasing the total number of PCR replicates, (3) it is highly tolerant to inhibitors, (4) it is capable of analyzing complex mixtures, and (5) it provides a linear response to the number of copies present in a sample to allow for small change in the copy number to be detected. Accordingly, any of the herein described compositions (e.g., template compositions and adaptive immune receptor gene-specific oligonucleotide primer sets) and methods may be adapted for use in such digital PCR methodology, for example, the ABI QuantStudio™ 12K Flex System (Life Technologies, Carlsbad, Calif.), the QX100™ Droplet Digital™ PCR system (BioRad, Hercules, Calif.), the QuantaLife™ digital PCR system (BioRad, Hercules, Calif.) or the RainDance™ microdroplet digital PCR system (RainDance Technologies, Lexington, Mass.).


Adaptors


The herein described template oligonucleotides of general formula (I) also may in certain embodiments comprise first (U1) and second (U2) universal adaptor oligonucleotide sequences, or may lack either or both of U1 and U2. U1 thus may comprise either nothing or an oligonucleotide having a sequence that is selected from (i) a first universal adaptor oligonucleotide sequence, and (ii) a first sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a first universal adaptor oligonucleotide sequence, and U2 may comprise either nothing or an oligonucleotide having a sequence that is selected from (i) a second universal adaptor oligonucleotide sequence, and (ii) a second sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a second universal adaptor oligonucleotide sequence.


U1 and/or U2 may, for example, comprise universal adaptor oligonucleotide sequences and/or sequencing platform-specific oligonucleotide sequences that are specific to a single-molecule sequencing technology being employed, for example the HiSeq™ or GeneAnalyzer™-2 (GA-2) systems (Illumina, Inc., San Diego, Calif.) or another suitable sequencing suite of instrumentation, reagents and software. Inclusion of such platform-specific adaptor sequences permits direct quantitative sequencing of the presently described template composition, which comprises a plurality of different template oligonucleotides of general formula (I), using a nucleotide sequencing methodology such as the HiSeq™ or GA2 or equivalent. This feature therefore advantageously permits qualitative and quantitative characterization of the template composition.


In particular, the ability to sequence all components of the template composition directly allows for verification that each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount. For example, a set of the presently described template oligonucleotides may be generated that have universal adaptor sequences at both ends, so that the adaptor sequences can be used to further incorporate sequencing platform-specific oligonucleotides at each end of each template.


Without wishing to be bound by theory, platform-specific oligonucleotides may be added onto the ends of such modified templates using 5′ (5′-platform sequence-universal adaptor-1 sequence-3′) and 3′ (5′-platform sequence-universal adaptor-2 sequence-3′) oligonucleotides in as little as two cycles of denaturation, annealing and extension, so that the relative representation in the template composition of each of the component template oligonucleotides is not quantitatively altered. Unique identifier sequences (e.g., barcode sequences B comprising unique V and B oligonucleotide sequences that are associated with and thus identify, respectively, individual V and J regions, as described herein) are placed adjacent to the adaptor sequences, thus permitting quantitative sequencing in short sequence reads, in order to characterize the template population by the criterion of the relative amount of each unique template sequence that is present.


Where such direct quantitative sequencing indicates that one or more particular oligonucleotides may be over- or underrepresented in a preparation of the template composition, adjustment of the template composition can be made accordingly to obtain a template composition in which all oligonucleotides are present in substantially equimolar amounts. The template composition in which all oligonucleotides are present in substantially equimolar amounts may then be used as a calibration standard for amplification primer sets, such as in the presently disclosed methods for determining and correcting non-uniform amplification potential among members of a primer set.


In addition to adaptor sequences described in the Examples and included in the exemplary template sequences in the Sequence Listing (e.g., at the 5′ and 3′ ends of SEQ ID NOS:1-1630), other oligonucleotide sequences that may be used as universal adaptor sequences will be known to those familiar with the art in view of the present disclosure, including selection of adaptor oligonucleotide sequences that are distinct from sequences found in other portions of the herein described templates. Non-limiting examples of additional adaptor sequences are shown in Table 2 and set forth in SEQ ID NOS:1710-1731.









TABLE 2







Exemplary Adaptor Sequences











SEQ ID


Adaptor (primer) name
Sequence
NO:





T7 Promotor
AATACGACTCACTATAGG
1710





T7 Terminator
GCTAGTTATTGCTCAGCGG
1711





T3
ATTAACCCTCACTAAAGG
1712





SP6
GATTTAGGTGACACTATAG
1713





M13F(-21)
TGTAAAACGACGGCCAGT
1714





M13F(-40)
GTTTTCCCAGTCACGAC
171





M13R Reverse
CAGGAAACAGCTATGACC
1716





AOX1 Forward
GACTGGTTCCAATTGACAAGC
1717





AOX1 Reverse
GCAAATGGCATTCTGACATCC
1718





pGEX Forward (GST 5, 
GGGCTGGCAAGCCACGTTTGGTG
1719


pGEX 5′)







pGEX Reverse (GST 3,
CCGGGAGCTGCATGTGTCAGAGG
1720


pGEX 3′)







BGH Reverse
AACTAGAAGGCACAGTCGAGGC
1721





GFP (C′ terminal, CFP,
CACTCTCGGCATGGACGAGC
1722


YFP or BFP)







GFP Reverse
TGGTGCAGATGAACTTCAGG
1723





GAG
GTTCGACCCCGCCTCGATCC
1724





GAG Reverse
TGACACACATTCCACAGGGTC
1725





CYC1 Reverse
GCGTGAATGTAAGCGTGAC
1726





pFastBacF
5′-d(GGATTATTCATACCGTCCCA)-3′
1727





pFastBacR
5′-d(CAAATGTGGTATGGCTGATT)-3′
1728





pBAD Forward
5′-d(ATGCCATAGCATTTTTATCC)-3′
1729





pBAD Reverse
5′-d(GATTTAATCTGTATCAGG)-3′
1730





CMV-Forward
5′-d(CGCAAATGGGCGGTAGGCGTG)-3′
1731









Barcodes


As described herein, certain embodiments contemplate designing the template oligonucleotide sequences to contain short signature sequences that permit unambiguous identification of the template sequence, and hence of at least one primer responsible for amplifying that template, without having to sequence the entire amplification product. In the herein described template oligonucleotides of general formula (I), B1, B2, B3, and B4 are each independently either nothing or each comprises an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 or more contiguous nucleotides (including all integer values therebetween), wherein in each of the plurality of template oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence of the template oligonucleotide and (ii) the unique J oligonucleotide sequence of the template oligonucleotide.


Thus, for instance, template oligonucleotides having barcode identifier sequences may permit relatively short amplification product sequence reads, such as barcode sequence reads of no more than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 55, 50, 45, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or fewer nucleotides, followed by matching this barcode sequence information to the associated V and J sequences that are incorporated into the template having the barcode as part of the template design. By this approach, a large number of amplification products can be simultaneously partially sequenced by high throughput parallel sequencing, to identify primers that are responsible for amplification bias in a complex primer set.


Exemplary barcodes may comprise a first barcode oligonucleotide of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 nucleotides that uniquely identifies each V polynucleotide in the template and a second barcode oligonucleotide of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 nucleotides that uniquely identifies each J polynucleotide in the template, to provide barcodes of, respectively, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or 32 nucleotides in length, but these and related embodiments are not intended to be so limited. Barcode oligonucleotides may comprise oligonucleotide sequences of any length, so long as a minimum barcode length is obtained that precludes occurrence of a given barcode sequence in two or more template oligonucleotides having otherwise distinct sequences (e.g., V and J sequences).


Thus, the minimum barcode length, to avoid such redundancy amongst the barcodes that are used to uniquely identify different V-J sequence pairings, is X nucleotides, where 4x is greater than the number of distinct template species that are to be differentiated on the basis of having non-identical sequences. For example, for the set of 871 template oligonucleotides set forth herein as SEQ ID NOS:1-871, the minimum barcode length would be five nucleotides, which would permit a theoretical total of 1024 (i.e., greater than 871) different possible pentanucleotide sequences. In practice, barcode oligonucleotide sequence read lengths may be limited only by the sequence read-length limits of the nucleotide sequencing instrument to be employed. For certain embodiments, different barcode oligonucleotides that will distinguish individual species of template oligonucleotides should have at least two nucleotide mismatches (e.g., a minimum hamming distance of 2) when aligned to maximize the number of nucleotides that match at particular positions in the barcode oligonucleotide sequences.


In preferred embodiments, for each distinct template oligonucleotide species having a unique sequence within the template composition of general formula (I), B1, B2, B3, and B4 will be identical.


The skilled artisan will be familiar with the design, synthesis, and incorporation into a larger oligonucleotide or polynucleotide construct, of oligonucleotide barcode sequences of, for instance, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 300, 500 or more contiguous nucleotides, including all integer values therebetween. For non-limiting examples of the design and implementation of oligonucleotide barcode sequence identification strategies, see, e.g., de Carcer et al., 2011 Adv. Env. Microbiol. 77:6310; Parameswaran et al., 2007 Nucl. Ac. Res. 35(19):330; Roh et al., 2010 Trends Biotechnol. 28:291.


Typically, barcodes are placed in templates at locations where they are not found naturally, i.e., barcodes comprise nucleotide sequences that are distinct from any naturally occurring oligonucleotide sequences that may be found in the vicinity of the sequences adjacent to which the barcodes are situated (e.g., V and/or J sequences). Such barcode sequences may be included, according to certain embodiments described herein, as elements B1, B2 and/or B3 of the presently disclosed template oligonucleotide of general formula (I). Accordingly, certain of the herein described template oligonucleotides of general formula (I) may also in certain embodiments comprise one, two or all three of barcodes B1, B2 and B3, while in certain other embodiments some or all of these barcodes may be absent. In certain embodiments all barcode sequences will have identical or similar GC content (e.g., differing in GC content by no more than 20%, or by no more than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10%).


In the template compositions according to certain herein disclosed embodiments the barcode-containing element B (e.g., B1, B2, B3, and/or B4) comprises the oligonucleotide sequence that uniquely identifies a single paired V-J combination. Optionally and in certain embodiments the barcode-containing element B may also include a random nucleotide, or a random polynucleotide sequence of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 300, 500 or more contiguous nucleotides, situated upstream and/or downstream of the specific barcode sequence that uniquely identifies each specific paired V-J combination. When present both upstream and downstream of the specific barcode sequence, the random nucleotide or random polynucleotide sequence are independent of one another, that is, they may but need not comprise the same nucleotide or the same polynucleotide sequence.


Restriction Enzyme Sites


According to certain embodiments disclosed herein, the template oligonucleotide may comprise a restriction endonuclease (RE) recognition site that is situated between the V and J sequences and does not occur elsewhere in the template oligonucleotide sequence. The RE recognition site may optionally be adjacent to a barcode site that identifies the V region sequence. The RE site may be included for any of a number of purposes, including without limitation as a structural feature that may be exploited to destroy templates selectively by contacting them with the appropriate restriction enzyme. It may be desirable to degrade the present template oligonucleotides selectively by contacting them with a suitable RE, for example, to remove template oligonucleotides from other compositions into which they may have been deliberately or accidentally introduced. Alternatively, the RE site may be usefully exploited in the course of sequencing template oligonucleotides in the template composition, and/or as a positional sequence marker in a template oligonucleotide sequence regardless of whether or not it is cleaved with a restriction enzyme. An exemplary RE site is the oligonucleotide motif GTCGAC, which is recognized by the restriction enzyme Sal I. A large number of additional restriction enzymes and their respective RE recognition site sequences are known in the art and are available commercially (e.g., New England Biolabs, Beverly, Mass.). These include, for example, EcoRI (GAATTC) and SphI (GCATGC). Those familiar with the art will appreciate that any of a variety of such RE recognition sites may be incorporated into particular embodiments of the presently disclosed template oligonucleotides.


Sequencing


Sequencing may be performed using any of a variety of available high throughput single molecule sequencing machines and systems. Illustrative sequence systems include sequence-by-synthesis systems such as the Illumina Genome Analyzer and associated instruments (Illumina, Inc., San Diego, Calif.), Helicos Genetic Analysis System (Helicos BioSciences Corp., Cambridge, Mass.), Pacific Biosciences PacBio RS (Pacific Biosciences, Menlo Park, Calif.), or other systems having similar capabilities. Sequencing is achieved using a set of sequencing oligonucleotides that hybridize to a defined region within the amplified DNA molecules. The sequencing oligonucleotides are designed such that the V- and J-encoding gene segments can be uniquely identified by the sequences that are generated, based on the present disclosure and in view of known adaptive immune receptor gene sequences that appear in publicly available databases. See, e.g., U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012. Exemplary TCRB J-region sequencing primers are set forth in Table 3:









TABLE 3







TCRBJ Sequencing Primers











SEQ ID


PRIMER
SEQUENCE
NO:





>Jseq1-1
ACAACTGTGAGTCTGGTGCCTTGTCCAAAGAAA
1696





>Jseq1-2
ACAACGGTTAACCTGGTCCCCGAACCGAAGGTG
1697





>Jseq1-3
ACAACAGTGAGCCAACTTCCCTCTCCAAAATAT
1698





>Jseq1-4
AAGACAGAGAGCTGGGTTCCACTGCCAAAAAAC
1699





>Jseq1-5
AGGATGGAGAGTCGAGTCCCATCACCAAAATGC
1700





>Jseq1-6
GTCACAGTGAGCCTGGTCCCGTTCCCAAAGTGG
1701





>Jseq2-1
AGCACGGTGAGCCGTGTCCCTGGCCCGAAGAAC
1702





>Jseq2-2
AGTACGGTCAGCCTAGAGCCTTCTCCAAAAAAC
1703





>Jseq2-3
AGCACTGTCAGCCGGGTGCCTGGGCCAAAATAC
1704





>Jseq2-4
AGCACTGAGAGCCGGGTCCCGGCGCCGAAGTAC
1705





>Jseq2-5
AGCACCAGGAGCCGCGTGCCTGGCCCGAAGTAC
1706





>Jseq2-6
AGCACGGTCAGCCTGCTGCCGGCCCCGAAAGTC
1707





>Jseq2-7
GTGACCGTGAGCCTGGTGCCCGGCCCGAAGTAC
1708









The term “gene” means the segment of DNA involved in producing a polypeptide chain such as all or a portion of a TCR or Ig polypeptide (e.g., a CDR3-containing polypeptide); it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons), and may also include regulatory elements (e.g., promoters, enhancers, repressor binding sites and the like), and may also include recombination signal sequences (RSSs) as described herein.


The nucleic acids of the present embodiments, also referred to herein as polynucleotides, may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. A coding sequence which encodes a TCR or an immunoglobulin or a region thereof (e.g., a V region, a D segment, a J region, a C region, etc.) for use according to the present embodiments may be identical to the coding sequence known in the art for any given TCR or immunoglobulin gene regions or polypeptide domains (e.g., V-region domains, CDR3 domains, etc.), or may be a different coding sequence, which, as a result of the redundancy or degeneracy of the genetic code, encodes the same TCR or immunoglobulin region or polypeptide.


In certain embodiments, the amplified J-region encoding gene segments may each have a unique sequence-defined identifier tag of 2, 3, 4, 5, 6, 7, 8, 9, 10 or about 15, 20 or more nucleotides, situated at a defined position relative to a RSS site. For example, a four-base tag may be used, in the Jβ-region encoding segment of amplified TCRβ CDR3-encoding regions, at positions +11 through +14 downstream from the RSS site. However, these and related embodiments need not be so limited and also contemplate other relatively short nucleotide sequence-defined identifier tags that may be detected in J-region encoding gene segments and defined based on their positions relative to an RSS site. These may vary between different adaptive immune receptor encoding loci.


The recombination signal sequence (RSS) consists of two conserved sequences (heptamer, 5′-CACAGTG-3′, and nonamer, 5′-ACAAAAACC-3′), separated by a spacer of either 12+/−1 bp (“12-signal”) or 23+/−1 bp (“23-signal”). A number of nucleotide positions have been identified as important for recombination including the CA dinucleotide at position one and two of the heptamer, and a C at heptamer position three has also been shown to be strongly preferred as well as an A nucleotide at positions 5, 6, 7 of the nonamer. (Ramsden et. al 1994; Akamatsu et. al. 1994; Hesse et. al. 1989). Mutations of other nucleotides have minimal or inconsistent effects. The spacer, although more variable, also has an impact on recombination, and single-nucleotide replacements have been shown to significantly impact recombination efficiency (Fanning et. al. 1996, Larijani et. al 1999; Nadel et. al. 1998). Criteria have been described for identifying RSS polynucleotide sequences having significantly different recombination efficiencies (Ramsden et. al 1994; Akamatsu et. al. 1994; Hesse et. al. 1989 and Cowell et. al. 1994). Accordingly, the sequencing oligonucleotides may hybridize adjacent to a four base tag within the amplified J-encoding gene segments at positions +11 through +14 downstream of the RSS site. For example, sequencing oligonucleotides for TCRB may be designed to anneal to a consensus nucleotide motif observed just downstream of this “tag”, so that the first four bases of a sequence read will uniquely identify the J-encoding gene segment (see, e.g., WO/2012/027503).


The average length of the CDR3-encoding region, for the TCR, defined as the nucleotides encoding the TCR polypeptide between the second conserved cysteine of the V segment and the conserved phenylalanine of the J segment, is 35+/−3 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the J segment tag of a particular TCR or IgH J region (e.g., TCR Jβ, TCR Jγ or IgH JH as described herein) will nearly always capture the complete V-D-J junction in a 50 base pair read. The average length of the IgH CDR3 region, defined as the nucleotides between the conserved cysteine in the V segment and the conserved phenylalanine in the J segment, is less constrained than at the TCRβ locus, but will typically be between about 10 and about 70 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the IgH J segment tag will capture the complete V-D-J junction in a 100 base pair read.


PCR primers that anneal to and support polynucleotide extension on mismatched template sequences are referred to as promiscuous primers. In certain embodiments, the TCR and Ig J-segment reverse PCR primers may be designed to minimize overlap with the sequencing oligonucleotides, in order to minimize promiscuous priming in the context of multiplex PCR. In one embodiment, the TCR and Ig J-segment reverse primers may be anchored at the 3′ end by annealing to the consensus splice site motif, with minimal overlap of the sequencing primers. Generally, the TCR and Ig V and J-segment primers may be selected to operate in PCR at consistent annealing temperatures using known sequence/primer design and analysis programs under default parameters.


For the sequencing reaction, the exemplary IGHJ sequencing primers extend three nucleotides across the conserved CAG sequences as described in WO/2012/027503.


Samples


The subject or biological source, from which a test biological sample may be obtained, may be a human or non-human animal, or a transgenic or cloned or tissue-engineered (including through the use of stem cells) organism. In certain preferred embodiments of the invention, the subject or biological source may be known to have, or may be suspected of having or being at risk for having, a circulating or solid tumor or other malignant condition, or an autoimmune disease, or an inflammatory condition, and in certain preferred embodiments of the invention the subject or biological source may be known to be free of a risk or presence of such disease.


Certain preferred embodiments contemplate a subject or biological source that is a human subject such as a patient that has been diagnosed as having or being at risk for developing or acquiring cancer according to art-accepted clinical diagnostic criteria, such as those of the U.S. National Cancer Institute (Bethesda, Md., USA) or as described in DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology (2008, Lippincott, Williams and Wilkins, Philadelphia/Ovid, New York); Pizzo and Poplack, Principles and Practice of Pediatric Oncology (Fourth edition, 2001, Lippincott, Williams and Wilkins, Philadelphia/Ovid, New York); and Vogelstein and Kinzler, The Genetic Basis of Human Cancer (Second edition, 2002, McGraw Hill Professional, New York); certain embodiments contemplate a human subject that is known to be free of a risk for having, developing or acquiring cancer by such criteria.


Certain other embodiments contemplate a non-human subject or biological source, for example a non-human primate such as a macaque, chimpanzee, gorilla, vervet, orangutan, baboon or other non-human primate, including such non-human subjects that may be known to the art as preclinical models, including preclinical models for solid tumors and/or other cancers. Certain other embodiments contemplate a non-human subject that is a mammal, for example, a mouse, rat, rabbit, pig, sheep, horse, bovine, goat, gerbil, hamster, guinea pig or other mammal; many such mammals may be subjects that are known to the art as preclinical models for certain diseases or disorders, including circulating or solid tumors and/or other cancers (e.g., Talmadge et al., 2007 Am. J. Pathol. 170:793; Kerbel, 2003 Canc. Biol. Therap. 2(4 Suppl 1):S134; Man et al., 2007 Canc. Met. Rev. 26:737; Cespedes et al., 2006 Clin. Transl. Oncol. 8:318). The range of embodiments is not intended to be so limited, however, such that there are also contemplated other embodiments in which the subject or biological source may be a non-mammalian vertebrate, for example, another higher vertebrate, or an avian, amphibian or reptilian species, or another subject or biological source.


Biological samples may be provided by obtaining a blood sample, biopsy specimen, tissue explant, organ culture, biological fluid or any other tissue or cell preparation from a subject or a biological source. Preferably the sample comprises DNA from lymphoid cells of the subject or biological source, which, by way of illustration and not limitation, may contain rearranged DNA at one or more TCR or BCR loci. In certain embodiments a test biological sample may be obtained from a solid tissue (e.g., a solid tumor), for example by surgical resection, needle biopsy or other means for obtaining a test biological sample that contains a mixture of cells.


According to certain embodiments, it may be desirable to isolate lymphoid cells (e.g., T cells and/or B cells) according to any of a large number of established methodologies, where isolated lymphoid cells are those that have been removed or separated from the tissue, environment or milieu in which they naturally occur. B cells and T cells can thus be obtained from a biological sample, such as from a variety of tissue and biological fluid samples including bone marrow, thymus, lymph glands, lymph nodes, peripheral tissues and blood, but peripheral blood is most easily accessed. Any peripheral tissue can be sampled for the presence of B and T cells and is therefore contemplated for use in the methods described herein. Tissues and biological fluids from which adaptive immune cells, may be obtained include, but are not limited to skin, epithelial tissues, colon, spleen, a mucosal secretion, oral mucosa, intestinal mucosa, vaginal mucosa or a vaginal secretion, cervical tissue, ganglia, saliva, cerebrospinal fluid (CSF), bone marrow, cord blood, serum, serosal fluid, plasma, lymph, urine, ascites fluid, pleural fluid, pericardial fluid, peritoneal fluid, abdominal fluid, culture medium, conditioned culture medium or lavage fluid. In certain embodiments, adaptive immune cells may be isolated from an apheresis sample. Peripheral blood samples may be obtained by phlebotomy from subjects. Peripheral blood mononuclear cells (PBMC) are isolated by techniques known to those of skill in the art, e.g., by Ficoll-Hypaque® density gradient separation. In certain embodiments, whole PBMCs are used for analysis.


For nucleic acid extraction, total genomic DNA may be extracted from cells using methods known in the art and/or commercially available kits, e.g., by using the QIAamp® DNA blood Mini Kit (QIAGEN®). The approximate mass of a single haploid genome is 3 pg. Preferably, at least 100,000 to 200,000 cells are used for analysis, i.e., about 0.6 to 1.2 μg DNA from diploid T or B cells. Using PBMCs as a source, the number of T cells can be estimated to be about 30% of total cells. The number of B cells can also be estimated to be about 30% of total cells in a PBMC preparation.


The Ig and TCR gene loci contain many different variable (V), diversity (D), and joining (J) gene segments, which are subjected to rearrangement processes during early lymphoid differentiation. Ig and TCR V, D and J gene segment sequences are known in the art and are available in public databases such as GENBANK. The V-D-J rearrangements are mediated via a recombinase enzyme complex in which the RAG1 and RAG2 proteins play a key role by recognizing and cutting the DNA at the recombination signal sequences (RSS), which are located downstream of the V gene segments, at both sides of the D gene segments, and upstream of the J gene segments. Inappropriate RSS reduce or even completely prevent rearrangement. The recombination signal sequence (RSS) includes two consensus sequences (heptamer, 5′-CACAGTG-3′, and nonamer, 5′-ACAAAAACC-3′), separated by a spacer of either 12+/−1 bp (“12-signal”) or 23+/−1 bp (“23-signal”). At the 3′ end of the V segment and D segment the RSS sequence is heptamer (CACAGTG)-spacer-nonamer (ACAAAAACC). At the 5′ end of the J segment and D segment the RSS sequence is nonamer (GGTTTTTGT)-spacer-heptamer (CACTGTG), with substantial sequence variation in the heptamer and nonamer sequence of each specific gene segment.


A number of nucleotide positions have been identified as important for recombination including the CA dinucleotide at position one and two of the heptamer, and a C at heptamer position three has also been shown to be strongly preferred as well as an A nucleotide at positions 5, 6, 7 of the nonamer. (Ramsden et. al 1994 Nucl. Ac. Res. 22:1785; Akamatsu et. al. 1994 J. Immunol. 153:4520; Hesse et. al. 1989 Genes Dev. 3:1053). Mutations of other nucleotides have minimal or inconsistent effects. The spacer, although more variable, also has an impact on recombination, and single-nucleotide replacements have been shown to significantly impact recombination efficiency (Fanning et. al. 1996 Cell. Immunol. Immumnopath. 79:1, Larijani et. al 1999 Nucl. Ac. Res. 27:2304; Nadel et. al. 1998 J. Immunol. 161:6068; Nadel et al., 1998 J. Exp. Med. 187:1495). Criteria have been described for identifying RSS polynucleotide sequences having significantly different recombination efficiencies (Ramsden et. al 1994 Nucl. Ac. Res. 22:1785; Akamatsu et. al. 1994J. Immunol. 153:4520; Hesse et. al. 1989 Genes Dev. 3:1053, and Lee et al., 2003 PLoS 1(1):E1).


The rearrangement process at the Ig heavy chain (IgH), TCR beta (TCRB), and TCR delta (TCRD) genes generally starts with a D to J rearrangement followed by a V to D-J rearrangement, while direct V to J rearrangements occur at Ig kappa (IgK), Ig lambda (IgL), TCR alpha (TCRA), and TCR gamma (TCRG) genes. The sequences between rearranging gene segments are generally deleted in the form of a circular excision product, also called TCR excision circle (TREC) or B cell receptor excision circle (BREC).


The many different combinations of V, D, and J gene segments represent the so-called combinatorial repertoire, which is estimated to be ˜2×106 for Ig molecules, ˜3×106 for TCRαβ and ˜5×103 for TCRγδ molecules. At the junction sites of the V, D, and J gene segments, deletion and random insertion of nucleotides occurs during the rearrangement process, resulting in highly diverse junctional regions, which significantly contribute to the total repertoire of Ig and TCR molecules, estimated to be >1012 possible amino acid sequences.


Mature B-lymphocytes further extend their Ig repertoire upon antigen recognition in germinal centers via somatic hypermutation, a process leading to affinity maturation of the Ig molecules. The somatic hypermutation process focuses on the V- (D-) J exon of IgH and Ig light chain genes and primarily generates single nucleotide mutations but sometimes also insertions or deletions of nucleotides. Somatically-mutated Ig genes are also typically found in mature B-cell malignancies.


In certain embodiments described herein, V-segment and J-segment primers may be employed in a PCR reaction to amplify rearranged TCR or BCR CDR3-encoding DNA regions in a test biological sample, wherein each functional TCR or Ig V-encoding gene segment comprises a V gene recombination signal sequence (RSS) and each functional TCR or Ig J-encoding gene segment comprises a J gene RSS. In these and related embodiments, each amplified rearranged DNA molecule may comprise (i) at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 (including all integer values therebetween) or more contiguous nucleotides of a sense strand of the TCR or Ig V-encoding gene segment, with the at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 or more contiguous nucleotides being situated 5′ to the V gene RSS and/or each amplified rearranged DNA molecule may comprise (ii) at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 (including all integer values therebetween) or more contiguous nucleotides of a sense strand of the TCR or Ig J-encoding gene segment, with the at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 or more contiguous nucleotides being situated 3′ to the J gene RSS.


Amplification Factor Determination


In addition to the use of the presently disclosed template compositions for standardizing amplification efficiency of oligonucleotide amplification primer sets as described herein, certain other embodiments contemplate use of the template composition to determine amplification factors for estimating the number of rearranged adaptive immune receptor encoding sequences in a sample. These and related embodiments may find use to quantify the number of adaptive immune receptor encoding sequences in a DNA sample that has been obtained from lymphoid cells, including lymphoid cells that are present in a mixture of cells that comprises cells in which DNA encoding an adaptive immune receptor has undergone DNA rearrangement, but where the sample also contains DNA from cells in which no such rearrangement has taken place (e.g., non-lymphoid cells, immature cells, mesenchymal cells, cancer cells, etc.).


The total number of different members of a given class of adaptive immune receptors (e.g., TCRs or IGs) in a subject may be estimated by multiplexed PCR using a comprehensive V-J amplification primer set followed by quantitative sequencing of amplification products. Multiplexed amplification and high throughput sequencing of rearranged TCR and BCR (IG) encoding DNA sequences are described, for example, in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S.A. No. 61/550,311, and U.S.A. No. 61/569,118.


This methodology typically involves sampling DNA from a subpopulation of lymphoid cells, such as lymphoid cells that are present in a blood sample, which is known also to contain nucleated cells that lack rearranged TCR or IG encoding DNA. The present compositions and methods may permit improved accuracy and precision in the determination of the number of rearranged TCR and IG encoding DNA molecules in such a sample. As described herein, for instance, by spiking the DNA sample with the present template composition, an internal amplification template standard is provided for assessing the relative efficiencies across the range of oligonucleotide primers that are present in the multiplexed amplification primer set. By so assessing the amplification products of the present artificial template composition, which is added to the amplification reaction in known amounts, an amplification factor (e.g., a multiplicative, normalizing, scaling or geometric factor, etc.) can be determined for the oligonucleotide amplification primer set and can then be used to calculate the number of natural DNA templates in the sample.


As another example, these and related embodiments permit quantification of Minimal Residual Disease (MRD) in lymphoma or leukemia, by quantitative detection of rearranged TCR or IG encoding DNA in samples obtained from mixed preparations of lymphoid and non-lymphoid cells, including persistent lymphoma or leukemia cells. Prior methods determine MRD as the number of malignant cells that are detectable as a proportion of the total number of cells in a sample. In contrast, the present methods permit estimation of the total number of cells in a sample that have rearranged TCR or IG encoding DNA, so that malignant cells (e.g., those having a particular TCR or IG rearrangement, such as a clonotype) can be quantified as a proportion of such rearranged cells instead of as a proportion of all cells. By way of non-limiting theory, it is believed that because the representation of all rearranged cells in a clinical sample from a subject having or suspected of having MRD is typically very low, the present methods will dramatically improve the sensitivity with which MRD can be detected, including improving such sensitivity by increasing the signal-to-noise ratio.


Accordingly certain embodiments thus provide a method for quantifying rearranged DNA molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject, each adaptive immune receptor comprising a variable region and a joining region. Briefly, the method comprises the steps of:


(A) in a multiplexed amplification reaction using the herein described oligonucleotide amplification primer set that is capable of amplifying substantially all V-J encoding combinations for a given adaptive immune receptor, amplifying DNA from the sample to which has been added a known amount of the herein described template composition for standardizing amplification efficiency, to obtain amplification products;


(B) quantitatively sequencing the amplification products of (A) to quantify (i) template amplification products, which are amplification products of the herein described template composition and will be identifiable because they contain at least one barcode oligonucleotide sequence, and (ii) amplification products of rearranged adaptive immune receptor encoding DNA sequences in the sample, which will be identifiable because they contain specific V and J sequences but lack an oligonucleotide barcode sequence;


(C) calculating an amplification factor based on quantitative information obtained in step (B); and


(D) using the amplification factor of (C) to determine, by calculation, the number of unique adaptive immune receptor encoding DNA molecules in the sample.


Without wishing to be bound by theory, according to these and related methods, the number of rearranged TCR or IG encoding DNA molecules that are sampled in a multiplexed amplification reaction is measured. To do so, a sequence coverage value, e.g., the number of output sequence reads that are determined for each input (template) molecule, is determined and averaged across the entire number of different template oligonucleotides that are present, to obtain an average sequence coverage value. By dividing (i) the number of reads that are obtained for a given sequence by (ii) the average sequence coverage value, the number of rearranged molecules that are present as templates at the start of the amplification reaction can be calculated.


Thus, for example, to calculate the sequence coverage value, a known quantity of a set of synthetic molecules of the presently disclosed template composition is added to each PCR amplification, the synthetic templates having the basic structure of formula (I) 5′U-B1-V-B2-R-(B3)-J-B4-U3′ where each V is a 300 base pair segment having a sequence that matches a TCR or IG V gene sequence and J is a 100 base pair segment having a sequence that matches a TCR or IG J gene. B2 is a unique barcode oligonucleotide sequence that uniquely identifies each VJ pair and that also differentiates amplification products of the synthetic DNA templates (which will contain the barcode sequence) from amplification products of naturally occurring biologic template DNA molecules that are contributed by the lymphoid DNA sample (which will lack the barcode sequence). In this example, B3 of formula (I) is nothing. After PCR amplification and sequencing, the numbers of each sequenced synthetic molecule (i.e., amplification products containing the barcode sequence) are counted. The sequence coverage of the synthetic molecules is then calculated based on the known number of starting synthetic template molecules used to spike the amplification reaction.


For example, a pool of 5000 synthetic, barcode-containing template molecules comprising 4-5 copies each of 1100 unique synthetic template oligonucleotide sequences (representing every possible VJ pair) may be added to the amplification reaction. If the amplification products include 50,000 sequences that match the synthetic template molecules, a sequence coverage value of 10× has been obtained and the amplification factor is 10. To estimate the number of natural VDJ-rearranged template molecules in the DNA obtained from the sample, the number of amplification products of the natural templates (i.e., amplification products that lack any barcode sequence) is then divided by the amplification factor. For added accuracy, because in this example the 5000 synthetic molecules are a complex pool of 1100 molecules representing every VJ pair, the amplification factor for every VJ pair can be individually calculated. The amplification factor can then be averaged across all of the synthetic molecules (FIG. 8). The accuracy and robustness of the method is shown in FIG. 9 and details are described below in Example 5.


In an alternative embodiment, identical to what is described above and below in this section, except differing in the use of a subset of the total pool of synthetic template molecules is used in a manner resulting in the addition to a sample of not more than 1 copy of a subset of distinct template molecules to the sample. Application of Poisson statistical methods well known to the ordinarily skilled artisan are used to determine the amount of template to add based upon the known properties of the pool (e.g., the total number of distinct sequences and the concentration of template molecules). For example, 200-500 template molecules are added to the amplification reaction, such that there is on average not more than one copy each of a subset of template molecules present in the pool.


Accordingly, in these embodiments the method comprises: (A) amplifying DNA in a multiplex polymerase chain reaction (PCR) that comprises: (1) DNA from the biological sample that comprises lymphoid cells of the subject, (2) the template composition of claim 1 in which a known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence is present, (3) an oligonucleotide amplification primer set that is capable of amplifying rearranged DNA encoding one or a plurality of adaptive immune receptors in the DNA from the biological sample, the primer set comprising: (a) in substantially equimolar amounts, a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor V region-encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional adaptive immune receptor V region-encoding gene segments that are present in the template composition, and (b) in substantially equimolar amounts, a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor J region-encoding gene segment and wherein the plurality of J-segment primers specifically hybridize to substantially all functional adaptive immune receptor J region-encoding gene segments that are present in the template composition, wherein the V-segment and J-segment oligonucleotide primers are capable of promoting amplification in said multiplex polymerase chain reaction (PCR) of (i) substantially all template oligonucleotides in the template composition to produce a multiplicity of amplified template DNA molecules, said multiplicity of amplified template DNA molecules being sufficient to quantify diversity of the template oligonucleotides in the template composition, and (ii) substantially all rearranged DNA molecules encoding adaptive immune receptors in the biological sample to produce a multiplicity of amplified rearranged DNA molecules, said multiplicity of amplified rearranged DNA molecules being sufficient to quantify diversity of the rearranged DNA molecules in the DNA from the biological sample, and wherein each amplified DNA molecule in the multiplicity of amplified template DNA molecules and in the multiplicity of amplified rearranged DNA molecules is less than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80 or 70 nucleotides in length;


(B) quantitatively sequencing all or a sufficient portion of each of said amplified template DNA molecules and each of said amplified rearranged DNA molecules to quantify (i) a template product number of amplified template DNA molecules which contain at least one oligonucleotide barcode sequence, and (ii) a rearranged product number of amplified rearranged DNA molecules which lack an oligonucleotide barcode sequence;


(C) calculating an amplification factor by dividing the template product number of (B)(i) by the known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence of (A)(2); and


(D) dividing the rearranged product number of (B)(ii) by the amplification factor calculated in (C) to quantify unique adaptive immune receptor encoding DNA molecules in the sample.


The contemplated embodiments are not intended to be limited to the above described method, such that from the present disclosure the skilled person will appreciate variations that may be employed. An alternative approach, for example, may not use the herein described synthetic template composition as a spiked-in control template in multiplexed PCR amplification of a DNA sample that contains rearranged lymphoid cell TCR and/or IG encoding DNA as well as non-rearranged DNA. Instead, according to one such alternative, to the amplification reaction using V and J amplification primers may be added a known set of oligonucleotide amplification primers that amplify a distinct, highly conserved genomic sequence region. These genomic control primers may amplify every genome that is present in the DNA sample regardless of whether or not it contains rearranged TCR and/or IG encoding sequences, whereas the V and J primers may amplify products only from genomes with a rearranged VDJ region. The ratio between these two classes of amplification product molecules permits estimation of the total number of B cell genomes in the sample.


The practice of certain embodiments of the present invention will employ, unless indicated specifically to the contrary, conventional methods in microbiology, molecular biology, biochemistry, molecular genetics, cell biology, virology and immunology techniques that are within the skill of the art, and reference to several of which is made below for the purpose of illustration. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al., Molecular Cloning: A Laboratory Manual (1982); Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, updated July 2008); Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Glover, DNA Cloning: A Practical Approach, vol. I & II (IRL Press, Oxford Univ. Press USA, 1985); Current Protocols in Immunology (Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober 2001 John Wiley & Sons, NY, N.Y.); Real-Time PCR: Current Technology and Applications, Edited by Julie Logan, Kirstin Edwards and Nick Saunders, 2009, Caister Academic Press, Norfolk, UK; Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, New York, 1992); Guthrie and Fink, Guide to Yeast Genetics and Molecular Biology (Academic Press, New York, 1991); Oligonucleotide Synthesis (N. Gait, Ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, Eds., 1985); Transcription and Translation (B. Hames & S. Higgins, Eds., 1984); Animal Cell Culture (R. Freshney, Ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984); Next-Generation Genome Sequencing (Janitz, 2008 Wiley-VCH); PCR Protocols (Methods in Molecular Biology) (Park, Ed., 3rd Edition, 2010 Humana Press); Immobilized Cells And Enzymes (IRL Press, 1986); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Harlow and Lane, Antibodies, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1998); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and CC Blackwell, eds., 1986); Riott, Essential Immunology, 6th Edition, (Blackwell Scientific Publications, Oxford, 1988); Embryonic Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2002); Embryonic Stem Cell Protocols: Volume I: Isolation and Characterization (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Embryonic Stem Cell Protocols: Volume II: Differentiation Models (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Human Embryonic Stem Cell Protocols (Methods in Molecular Biology) (Kursad Turksen Ed., 2006); Mesenchymal Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Darwin J. Prockop, Donald G. Phinney, and Bruce A. Bunnell Eds., 2008); Hematopoietic Stem Cell Protocols (Methods in Molecular Medicine) (Christopher A. Klug, and Craig T. Jordan Eds., 2001); Hematopoietic Stem Cell Protocols (Methods in Molecular Biology) (Kevin D. Bunting Ed., 2008) Neural Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Leslie P. Weiner Ed., 2008).


Unless specific definitions are provided, the nomenclature utilized in connection with, and the laboratory procedures and techniques of, molecular biology, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for recombinant technology, molecular biological, microbiological, chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.


Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. By “consisting of” is meant including, and typically limited to, whatever follows the phrase “consisting of” By “consisting essentially of” is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase “consisting essentially of” indicates that the listed elements are required or mandatory, but that no other elements are required and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.


In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise. As used herein, in particular embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 5%, 6%, 7%, 8% or 9%. In other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 10%, 11%, 12%, 13% or 14%. In yet other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 15%, 16%, 17%, 18%, 19% or 20%.


Reference throughout this specification to “one embodiment” or “an embodiment” or “an aspect” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


EXAMPLES
Example 1
Design of Template Oligonucleotides for Calibrating Amplification Primer Bias Control

In this and the following Examples, standard molecular biology and biochemistry materials and methodologies were employed, including techniques described in, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al., Molecular Cloning: A Laboratory Manual (1982); Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, updated July 2008); Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Glover, DNA Cloning: A Practical Approach, vol. I & II (IRL Press, Oxford Univ. Press USA, 1985); Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, New York, 1992); Oligonucleotide Synthesis (N. Gait, Ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, Eds., 1985); Transcription and Translation (B. Hames & S. Higgins, Eds., 1984); Perbal, A Practical Guide to Molecular Cloning (1984); Next-Generation Genome Sequencing (Janitz, 2008 Wiley-VCH); PCR Protocols (Methods in Molecular Biology) (Park, Ed., 3rd Edition, 2010 Humana Press).


A set of double-stranded DNA (dsDNA) template oligonucleotides was designed as a calibration standard for use as a control template that simulated all possible V/J combinations at a specified adaptive immune receptor (TCR or BCR) locus. For each human TCR and BCR locus, a list was compiled of the known genomic V segment sequences 5′ of the RSS, and a list of the known genomic J segments 3′ of the RSS. The coding strand sequences of the dsDNA template are presented here for ease of interpretation, according to the convention by which the 5′-to-3′ orientation is read left-to-right.


A schematic representation of the general structure of the template oligonucleotides is shown in FIG. 1. For use in cross-validation of each unique template oligonucleotide's identity in multiple contexts, a different 16 bp barcode oligonucleotide (B) was incorporated into each template that uniquely identified the V segment polynucleotide of the template with the first 8 bp of the barcode, and the J segment with the second 8 bp of the barcode. Copies of this barcode were incorporated thrice: (B3) between the external adapter (U2) and the J segment sequence (J) so that a short single-end read with standard Illumina or Ion primers can reveal the identity of the unique combination of V and J sequences in each template oligonucleotide, (B2) between the V and J segments so that a standard sequencing strategy (e.g., Illumina GA-2 or HiSeq™ or MiSEQ®) will capture the unique combination of V and J sequences in each template oligonucleotide, and (B3) between the V segment and the other external adapter (U1), so that a short paired-end read can confirm the identity of the unique combination of V and J sequences in each template oligonucleotide if so desired.


As shown in FIG. 1, the template oligonucleotide sequences started with an adapter sequence (U1) that was capable of incorporating sequencing platform-specific short oligonucleotide sequences at the ends of the molecule. In this example the Illumina Nextera™ adaptors were used, but it should be noted that essentially any pair of robust PCR primers would work equally well. As an exemplary adapter, the oligonucleotide sequence GCCTTGCCAGCCCGCTCAG [SEQ ID NO:1746] was attached at the V segment end of U1 (FIG. 1), in order to maintain compatibility with the Nextera™ Illumina Adaptor (Illumina, Inc., San Diego, Calif.)









[SEQ ID NO: 1747]


(CAAGCAGAAGACGGCATACGAGATCGGTCTGCCTTGCCAGCCCGCTCAG)







to add on the standard Illumina oligonucleotide, which was compatible with either single or paired end Illumina sequencing flowcells.


Immediately downstream from (3′ to) U1 was the first copy (B1) of the barcode oligonucleotide ACACACGTGACACTCT [SEQ ID NO:1748]. Next, a fixed length of V segment sequence was incorporated into the template oligonucleotide, with all templates in the template set ending a given number of bases before the natural RSS, in order to mimic a natural TCR or BCR gene rearrangement having a fixed number of bases deleted at the V segment. In this example zero bases were initially deleted before the RSS. To maximize the recognizability of these sequences, all V segment polynucleotide sequences were then trimmed to remove partial codons adjacent to the RSS, so that the residual V segment sequences were in frame with the start codon. Diverse V segment sequences were those shown in the exemplary template oligonucleotide sets presented in the Sequence Listing (e.g., a set of TCRB V segments within the formula (I) sequences of the TCRB template oligonucleotide set in SEQ ID NOS:1-871; a distinct set of TCRB V segments within the formula (I) sequences of the TCRB template oligonucleotide set in SEQ ID NOS:872-1560; a set of TCRG V segments within the formula (I) sequences of the TCRG template oligonucleotide set in SEQ ID NOS:1561-1630); a single exemplary V polynucleotide was as follows:









[SEQ ID NO: 1749]


TCTTATTTTCATAGGCTCCATGGATACTGGAATTACCCAGACACCAAAA





TACCTGGTCACAGCAATGGGGAGTAAAAGGACAATGAAACGTGAGCATC





TGGGACATGATTCTATGTATTGGTACAGACAGAAAGCTAAGAAATCCCT





GGAGTTCATGTTTTACTACAACTGTAAGGAATTCATTGAAAACAAGACT





GTGCCAAATCACTTCACACCTGAATGCCCTGACAGCTCTCGCTTATACC





TTCATGTGGTCGCACTGCAGCAAGAAGACTCAGCTGCGTATCTCTGCAC





CAGCAG.






The stop codon TGA was incorporated in-frame at the 3′ end of the V polynucleotide sequence in each template oligonucleotide, to ensure that the template oligonucleotide sequences would not be considered relevant in the event they contaminated a biological sample. Downstream from the stop codon, between the V segment and J segment where the NDN would normally be, the second copy of the V/J identifier barcode sequence B2 (SEQ ID NO:1748) was inserted. Next the Sal1 restriction enzyme recognition site (R) sequence GTCGAC was incorporated; this sequence was selected on the basis of being a sequence that was not naturally present in any of the TCRB V or J segment genomic sequences, conferring the ability to specifically destroy the synthetic template if desired, or for use as an informatic marker to identify the synthetic sequences. The B3 site, in this version of the template is empty.


The J polynucleotide (J) was incorporated as a fixed length of sequence from a J gene segment, measured from a fixed number of bases after the natural RSS to mimic a natural rearrangement, and in the present example extending into the J-C intron. In this example zero bases were deleted bases from the J segment, but in other template oligonucleotide designs a deletion of 5 bp was used to make room for the VJ barcode (B2) at the V-J junction while maintaining an overall J segment length in the natural range. An exemplary J polynucleotide was









[SEQ ID NO: 1750]


ACTGAAGCTTTCTTTGGACAAGGCACCAGACTCACAGTTGTAGGTAAGA


CATTTTTCAGGTTCTTTTGCAGATCCGTCACAGGGAAAAGTGGGTCCAC


AG.






Downstream from the J segment polynucleotide was the third copy (B4) of the V/J barcode identifier oligonucleotide (SEQ ID NO:1748). The exemplary template oligonucleotide sequence the sequence ended with a second adapter sequence (U2) that was capable of incorporating platform-specific sequences at the ends of the molecule. As noted above, a Nextera™-compatible adaptor (CTGATGGCGCGAGGGAGGC) [SEQ ID NO:1751] was used on the J segment end of U2, for use with the Nextera™ Illumina Adaptor (AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAG) [SEQ ID NO:1752] to permit adding on the standard Illumina sequencing oligonucleotide, which is compatible with either single or paired end flowcells.


Exemplary TCRB and TCRG template oligonucleotide sets according to the present disclosure were prepared and had the nucleotide sequences set forth in SEQ ID NOS:1-1630. The sets of template oligonucleotides having sequences set forth in SEQ ID NOS:1-871 and 1561-1630 were custom synthesized, based on the sequence design information disclosed herein, by Integrated DNA Technologies, Inc. (Coralville, Iowa) using gBlocks™ Gene Fragments chemistry. The set of template oligonucleotides having sequences set forth in SEQ ID NOS:872-1560 was generated by a PCR tiling approach described in Example 2.


TCRB Template Oligonucleotides (SEQ ID NOS:1-871).


A set of 871 template oligonucleotides of general formula (I) (in which B3 is nothing) was designed using human TCRB V and J polynucleotide sequences:

5′-U1-B1-V-B2-R-(B3)-J-B4-U2-3′  (I).


Each template oligonucleotide consisted of a 495 base pair DNA molecule. Sense strand sequences are presented as SEQ ID NOS:1-871.


A schematic diagram depicting the design of this template set is shown in FIG. 1. By convention, the diagram depicts the oligonucleotide design in the 5′- to ‘3’ (left-to-right) direction. “V segment” represents an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof “J segment” represents an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof. U1 and U2 represent, respectively, first and second universal adaptor oligonucleotide sequences, which may optionally further comprise, respectively, first and second sequencing platform-specific oligonucleotide sequences linked to and positioned 5′ to the first and second universal adaptor oligonucleotide sequences. B1, B2 and B4 represent oligonucleotide barcode sequences that each comprise an oligonucleotide barcode sequence comprising a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) a unique V segment sequence, and (ii) a unique J segment sequence; in this Example, B3 was nothing.


S represents an optional stop codon that may be in-frame or out of frame at the 3′ end of V. R represents an optional restriction enzyme recognition site. In SEQ ID NOS:1-871 the U1 and U2 adapters included the 19-mers as described above (SEQ ID NOS:1746 and 1751, respectively) and all (V+J)-identifying barcode (B) sequences (B1, B2, B4) were 16 nucleotides in length; the stop codon TGA and the Sal1 restriction enzyme recognition site (GTCGAC) were included.


TCRB Template Oligonucleotides (SEQ ID NOS:872-1560).


A second set of 689 template oligonucleotides was designed in which, according to general formula (I), V and J comprised, respectively, human TCRB V and J polynucleotide sequences, U1 and U2 independently comprised distinct restriction enzyme recognition sites (R1 and R3), and B1, B3, and B4 were independently nothing, to arrive at general formula (II):

R1-V-B2-R2-J-R3  (II)


wherein B2 was an 8-nucleotide barcode identifier (e.g., a barcode sequence as set forth in Table 7); R1, R2 and R3 were, respectively, the restriction enzyme recognition sites EcoR1 (GAATTC), Sal1 (GTCGAC) and Sph1 (GCATGC); and V and J were, respectively, V region and J region polynucleotides as described herein. Each template oligonucleotide consisted of a 239 base pair DNA molecule. Sense strand sequences are presented as SEQ ID NOS:872-1560.


TCRG Template Oligonucleotides (SEQ ID NOS:1561-1630).


A third set of 70 template oligonucleotides of general formula (I) was designed using human TCRG V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Sense strand sequences are presented as SEQ ID NOS:1561-1630. Details for the 70-oligonucleotide set of TCRG templates (SEQ ID NOS:1561-1630) are representative and were as follows:


Based on previously determined genomic sequences the human TCRG locus was shown to contain 14 Vγ segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 14 Vγ segments included six gene segments known to be expressed, three V segments that were classified as having open reading frames, and five V pseudogenes. The Vγ gene segments were linked to five Jγ gene segments. In order to include all possible V+J gene combinations for the 14 V and 5 J segments, 70 (5×14) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-(B3)-J-B4-U2-3′)(FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 70 templates (SEQ ID NOS:1561-1630) was amplified individually using oligonucleotide primers (Table 4; SEQ ID NOS:1732-1745) designed to anneal to the universal adapter sequences (U1, U2).









TABLE 4







TCRG Amplification Primers













SEQ ID


Primer Name
5′ Adapter
Sequence
NO:





TCRGV01_dev10
pGEXf
GGAGGGGAAGGCCCCACAGTGTCTTC
1732





TCRGV02/3/4/5/8_dev10
pGEXf
GGAGGGGAAGGCCCCACAGCGTCTTC
1733





TCRGV05P_dev10 
pGEXf
GGAGGGGAAGACCCCACAGCATCTTC
1734





TCRGV06_dev10
pGEXf
GGAGGGGAAGGCCCCACAGCATCTTC
1735





TCRGV07_dev10
pGEXf
GGCGGGGAAGGCCCCACAGCATCTTC
1736





TCRGV09_dev10
pGEXf
TGAAGTCATACAGTTCCTGGTGTCCAT
1737





TCRGV10_dev10
pGEXf
CCAAATCAGGCTTTGGAGCACCTGATCT 
1738





TCRGV11_dev10
pGEXf
CAAAGGCTTAGAATATTTATTACATGT
1739





TCRGVA_dev10
pGEXf
CCAGGTCCCTGAGGCACTCCACCAGCT
1740





TCRGVB_dev10
pGEXf
CTGAATCTAAATTATGAGCCATCTGACA 
1741





TCRGJP1_dev10
pGEXr
GTGAAGTTACTATGAGCTTAGTCCCTTC 
1742




AGCAAA






TCRGJP2_dev10
pGEXr
CGAAGTTACTATGAGCCTAGTCCCTTTT 
1743




GCAAA






TCRGJ1/2_dev10
pGEXr
TGACAACAAGTGTTGTTCCACTGCCAAA 
1744





TCRGJP_dev10
pGEXr
CTGTAATGATAAGCTTTGTTCCGGGACC 
1745




AAA









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The frequencies of occurrence for each of the 70 possible V-J combinations, as determined by sequencing barcodes B1, are shown in Table 5. The 70 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 70 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina HiSeq™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina Nextera™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 60 bp of the PCR reaction products were sequenced using an Illumina HiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 70 distinct template oligonucleotides was calculated to contain approximately 1.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.14-14%) for all species was desired. The quantitative sequencing revealed that the 70 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.14-14%).









TABLE 5







Relative Representation (number of occurrences of indicated V-J combination) of


amplification products of each TCRG VJ pair (14 V × 5 J) in re-amplification Template Pool














Count of Jseg









B Labels
TCRGJ
TCRGJ2
TCRGJP
TCRGJP1
TCRGJP2
#N/A
Grand Total

















TCRGV01
17
308
1315
741
822
44
3247


TCRGV02
630
781
2394
2009
122
65
6001


TCRGV03
250
166
2119
157
1105
51
3848


TCRGV04
777
37
2031
1490
1443
76
5854


TCRGV05
323
93
2571
716
150
63
3916


TCRGV05P
294
1161
2946
1552
530
111
6594


TCRGV06
164
1280
1809
401
23
40
3717


TCRGV07
16
234
1849
1697
93
78
3967


TCRGV08
2523
653
944
170
134
57
4481


TCRGV09
55
1004
2057
124
228
42
3510


TCRGV10
351
690
814
384
466
36
2741


TCRGV11
505
648
639
330
181
39
2342


TCRGVA
199
475
112
272
437
12
1507


TCRGVB
210
20
423
874
917
24
2468


#N/A
77
118
309
150
106
531
1291


Grand Total
6391
7668
22332
11067
6757
1269
55484









Example 2
Detection of TCRB V Gene Amplification Bias

This example describes how a set of 689 human TCRB template oligonucleotides of general formula (I) was assembled by tiling together four single stranded oligonucleotides of 50-90 nucleotides each to generate a template set containing hybridization targets for all possible V-J combinations in a set of oligonucleotide primers that was capable of amplifying human TCRB sequences. The set of template oligonucleotides was then used to characterize the relative amplification efficiencies of a set of TCRB V and J amplification primers.


A set of TCRB 689 template oligonucleotides containing polynucleotide sequences representing all possible productively rearranged V and J combinations for human TCRB chains was synthesized by “tiling” together four single-stranded DNA primers in a standard PCR reaction. Briefly, two 90 bp fragments (one in “forward” orientation and the other in “reverse”) were designed for each TCRB V gene segment, one 90 bp fragment (in “reverse” orientation) was designed for each TCRB J gene segment, and a 50 bp (forward) linker molecule was designed to link together the V and J gene fragments. In total, 52 V forward and 52 V reverse, 13 J reverse, and 689 linker molecules were designed. The two 90 bp fragments (one forward, one reverse) that corresponded to each of the V gene segments had 39 bp of complementary overlapping sequence. One end of each V reverse fragment had 25 bp of complementary sequence which overlapped with the 50 bp linker molecule. The remaining 25 bp in each of the linker molecules was a sequence that complementarily overlapped with one end of the J molecule. The molecules were designed so that the complementary sequences would anneal to one another and form double stranded DNA to which Taq polymerase could bind and enzymatically extend the molecule.


Each PCR reaction to assemble the tiled molecules used QIAGEN Multiplex PCR master mix (QIAGEN part number 206145, Qiagen, Valencia, Calif.), 10% Q-solution (QIAGEN), and the four single-stranded oligonucleotide sequences (two TCRB V, a TCRB J and a linker, as described above). The two external molecules (one V forward and one J reverse) were added at a final concentration of 1 μM each while the two internal molecules, (one V reverse and the forward linker), were each added at a final concentration of 0.01 μM. The thermocycler conditions were: 95° C. for 15 minutes, followed by 35 cycles of 94° C. for 30 seconds, 59° C. for 30 seconds, and 72° C. for 1 minute, followed by 1 cycle at 72° C. for 10 minutes. After synthesis, the molecules were quantified by the LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions and the concentration (in ng/μl) of each resulting band was calculated using Caliper LabChip GX software.


The nucleotide sequences for the resulting set of 689 TCRB template oligonucleotides are set forth in SEQ ID NOS:872-1560. In SEQ ID NOS:872-1560, each distinct V region sequence was identified by a unique barcode sequence of eight nucleotides, as shown in Table 7. All 689 templates were normalized to a standard concentration of 25 ng/μl, and then pooled. The resulting pool was used for the TCRB assays described herein to detect biased (non-uniform) utilization of TCRB amplification primers during amplification of the 689-template oligonucleotide set (SEQ ID NOS:872-1560).


Each of the 689 templates was present in the template oligonucleotide pool at experimentally as close as possible to equal molar concentration, and the pool was used as template for the TCRB amplification PCR reaction using an equimolar mixture of 52 TCRB V region primers that included an Illumina adapter-compatible sequence (SEQ ID NOS:1753-1804, Table 6) and an equimolar mix of 13 TCRB J region primers (SEQ ID NOS:1631-1643, Table 1). The members of the pool of 689 templates were amplified using an equimolar pool of the 52 TCRB VβF (forward) primers (the “VF pool”) and an equimolar pool of the 13 TCRB JβR (reverse) primers (the “JR pool”) as shown in Table 1 (SEQ ID NOS:1.631-1695). Polymerase chain reactions (PCR) (50 μL each) were set up at 1.0 μM VF pool (22 nM for each unique TCRB vβF primer), 1.0 μM JR pool (77 nM for each unique TCRB JβR primer), 1 μM QIAGEN Multiplex PCR master mix (QIAGEN part number 206145, Qiagen Corp., Valencia, Calif.), 10% Q-solution (QIAGEN), and 16 ng/μL genomic DNA (gDNA). The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif., USA): one cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94′C for 30 seconds, 59° C. for 30 seconds, and 72° C. for one minute, followed by one cycle at 72° C. for 10 minutes. To sample millions of rearranged TCRβ CDR3 loci, 12 to 20 wells of PCR were performed for each library. As noted above, the V and J primers included a tail that corresponded to, and was compatible with, Illumina adapters for sequencing.


Amplification products were quantitatively sequenced on an Illumina HiSeq™ sequencer. A 60-base pair region of each product molecule was sequenced using standard J sequencing primers (Table 3) starting from the J molecules. The frequencies of occurrence of each TCRB sequence in the reaction products are shown in FIG. 2, from which it was apparent that not all TCRB sequences had been amplified to a comparable degree.









TABLE 6







TCRB Amplification Primers












Adjusted





Relative





Primer





Molar



Primer Name
Primer Sequence
Ratio
SEQ ID NO:













TRB2V10-1
CAA GCA GAA GAC GGC ATA CGA
0.77
1753



GCT CTT CCG ATC TAA CAA AGG





AGA AGT CTC AGA TGG CTA CAG







TRB2V10-2
CAA GCA GAA GAC GGC ATA CGA
1.57
1754



GCT CTT CCG ATC TGA TAA AGG





AGA AGT CCC CGA TGG CTA TGT







TRB2V10-3
CAA GCA GAA GAC GGC ATA CGA
2.76
1755



GCT CTT CCG ATC TGA CAA AGG





AGA AGT CTC AGA TGG CTA TAG







TRB2V11-123
CAA GCA GAA GAC GGC ATA CGA
1.88
1756



GCT CTT CCG ATC TCT AAG GAT





CGA TTT TCT GCA GAG AGG CTC







TRB2V12-1
CAA GCA GAA GAC GGC ATA CGA
1
1757



GCT CTT CCG ATC TTT GAT TCT





CAG CAC AGA TGC CTG ATG T







TRB2V12-2
CAA GCA GAA GAC GGC ATA CGA
1
1758



GCT CTT CCG ATC TGC GAT TCT





CAG CTG AGA GGC CTG ATG G







TRB2V12-3/4
CAA GCA GAA GAC GGC ATA CGA
3.24
1759



GCT CTT CCG ATC TTC GAT TCT





CAG CTA AGA TGC CTA ATG C







TRB2V12-5
CAA GCA GAA GAC GGC ATA CGA
1.82
1760



GCT CTT CCG ATC TTT CTC AGC





AGA GAT GCC TGA TGC AAC TTT





A







TRB2V13
CAA GCA GAA GAC GGC ATA CGA
2.14
1761



GCT CTT CCG ATC TCT GAT CGA





TTC TCA GCT CAA CAG TTC AGT







TRB2V14
CAA GCA GAA GAC GGC ATA CGA
1.65
1762



GCT CTT CCG ATC TTC TTA GCT





GAA AGG ACT GGA GGG ACG TAT







TRB2V15
CAA GCA GAA GAC GGC ATA CGA
3.77
1763



GCT CTT CCG ATC TGC CGA ACA





CTT CTT TCT GCT TTC TTG AC







TRB2V16
CAA GCA GAA GAC GGC ATA CGA
1.40
1764



GCT CTT CCG ATC TTT CAG CTA





AGT GCC TCC CAA ATT CAC CCT







TRB2V17
CAA GCA GAA GAC GGC ATA CGA
2.87
1765



GCT CTT CCG ATC TAT TCA CAG





CTG AAA GAC CTA ACG GAA CGT







TRB2V18
CAA GCA GAA GAC GGC ATA CGA
0.80
1766



GCT CTT CCG ATC TAT TTT CTG





CTG AAT TTC CCA AAG AGG GCC







TRB2V19
CAA GCA GAA GAC GGC ATA CGA
0.84
1767



GCT CTT CCG ATC TTA TAG CTG





AAG GGT ACA GCG TCT CTC GGG







TRB2V2
CAA GCA GAA GAC GGC ATA CGA
1.02
1768



GCT CTT CCG ATC TTT CGA TGA





TCA ATT CTC AGT TGA AAG GCC







TRB2V20-1
CAA GCA GAA GAC GGC ATA CGA
1.66
1769



GCT CTT CCG ATC TAT GCA AGC





CTG ACC TTG TCC ACT CTG ACA







TRB2V23-1 
CAA GCA GAA GAC GGC ATA CGA
1
1770



GCT CTT CCG ATC TGA TTC TCA





TCT CAA TGC CCC AAG AAC GC







TRB2V24-1
CAA GCA GAA GAC GGC ATA CGA
4.01
1771



GCT CTT CCG ATC TAT CTC TGA





TGG ATA CAG TGT CTC TCG ACA







TRB2V25-1 
CAA GCA GAA GAC GGC ATA CGA
1.29
1772



GCT CTT CCG ATC TTT TCC TCT





GAG TCA ACA GTC TCC AGA ATA







TRB2V26
CAA GCA GAA GAC GGC ATA CGA
1
1773



GCT CTT CCG ATC TCT CTG AGA





GGT ATC ATG TTT CTT GAA ATA







TRB2V27
CAA GCA GAA GAC GGC ATA CGA
4.22
1774



GCT CTT CCG ATC TTC CTG AAG





GGT ACA AAG TCT CTC GAA AAG







TRB2V28
CAA GCA GAA GAC GGC ATA CGA
2.37
1775



GCT CTT CCG ATC TTC CTG AGG





GGT ACA GTG TCT CTA GAG AGA







TRB2V29-1
CAA GCA GAA GAC GGC ATA CGA
1.50
1776



GCT CTT CCG ATC TCA TCA GCC





GCC CAA ACC TAA CAT TCT CAA







TRB2V2P
CAA GCA GAA GAC GGC ATA CGA
1
1777



GCT CTT CCG ATC TCC TGA ATG





CCC TGA CAG CTC TCG CTT ATA







TRB2V3-1
CAA GCA GAA GAC GGC ATA CGA
3.35
1778



GCT CTT CCG ATC TCC TAA ATC





TCC AGA CAA AGC TCA CTT AAA







TRB2V3-2
CAA GCA GAA GAC GGC ATA CGA
1
1779



GCT CTT CCG ATC TCT CAC CTG





ACT CTC CAG ACA AAG CTC AT







TRB2V30
CAA GCA GAA GAC GGC ATA CGA
1.48
1780



GCT CTT CCG ATC TGA CCC CAG





GAC CGG CAG TTC ATC CTG AGT







TRB2V4-1
CAA GCA GAA GAC GGC ATA CGA
3.32
1781



GCT CTT CCG ATC TCT GAA TGC





CCC AAC AGC TCT CTC TTA AAC







TRB2V4-2/3 
CAA GCA GAA GAC GGC ATA CGA
3.11
1782



GCT CTT CCG ATC TCT GAA TGC





CCC AAC AGC TCT CAC TTA TTC







TRB2V5-1
CAA GCA GAA GAC GGC ATA CGA
1.27
1783



GCT CTT CCG ATC TTG GTC GAT





TCT CAG GGC GCC AGT TCT CTA







TRB2V5-3
CAA GCA GAA GAC GGC ATA CGA
1.75
1784



GCT CTT CCG ATC TTA ATC GAT





TCT CAG GGC GCC AGT TCC ATG







TRB2V5-4
CAA GCA GAA GAC GGC ATA CGA
1.58
1785



GCT CTT CCG ATC TTC CTA GAT





TCT CAG GTC TCC AGT TCC CTA







TRB2V5-5
CAA GCA GAA GAC GGC ATA CGA
0.99
1786



GCT CTT CCG ATC TAA GAG GAA





ACT TCC CTG ATC GAT TCT CAG





C







TRB2V5-6
CAA GCA GAA GAC GGC ATA CGA
0.69
1787



GCT CTT CCG ATC TGG CAA CTT





CCC TGA TCG ATT CTC AGG TCA







TRB2V5-8
CAA GCA GAA GAC GGC ATA CGA
3.30
1788



GCT CTT CCG ATC TGG AAA CTT





CCC TCC TAG ATT TTC AGG TCG







TRB2V6-1
CAA GCA GAA GAC GGC ATA CGA
1.74
1789



GCT CTT CCG ATC TGT CCC CAA





TGG CTA CAA TGT CTC CAG ATT







TRB2V6-2/3 
CAA GCA GAA GAC GGC ATA CGA
1.59
1790



GCT CTT CCG ATC TGC CAA AGG





AGA GGT CCC TGA TGG CTA CAA







TRB2V6-4
CAA GCA GAA GAC GGC ATA CGA
1.48
1791



GCT CTT CCG ATC TGT CCC TGA





TGG TTA TAG TGT CTC CAG AGC







TRB2V6-5
CAA GCA GAA GAC GGC ATA CGA
0.45
1792



GCT CTT CCG ATC TAA GGA GAA





GTC CCC AAT GGC TAC AAT GTC







TRB2V6-6
CAA GCA GAA GAC GGC ATA CGA
0.41
1793



GCT CTT CCG ATC TGA CAA AGG





AGA AGT CCC GAA TGG CTA CAA





C







TRB2V6-7
CAA GCA GAA GAC GGC ATA CGA
2.23
1794



GCT CTT CCG ATC TGT TCC CAA





TGG CTA CAA TGT CTC CAG ATC







TRB2V6-8
CAA GCA GAA GAC GGC ATA CGA
1.18
1795



GCT CTT CCG ATC TCT CTA GAT





TAA ACA CAG AGG ATT TCC CAC







TRB2V6-9
CAA GCA GAA GAC GGC ATA CGA
0.96
1796



GCT CTT CCG ATC TAA GGA GAA





GTC CCC GAT GGC TAC AAT GTA







TRB2V7-1
CAA GCA GAA GAC GGC ATA CGA
0.85
1797



GCT CTT CCG ATC TTC CCC GTG





ATC GGT TCT CTG CAC AGA GGT







TRB2V7-2
CAA GCA GAA GAC GGC ATA CGA
0.64
1798



GCT CTT CCG ATC TAG TGA TCG





CTT CTC TGC AGA GAG GAC TGG







TRB2V7-3
CAA GCA GAA GAC GGC ATA CGA
0.84
1799



GCT CTT CCG ATC TGG CTG CCC





AAC GAT CGG TTC TTT GCA GT







TRB2V7-4
CAA GCA GAA GAC GGC ATA CGA
0.48
1800



GCT CTT CCG ATC TGG CGG CCC





AGT GGT CGG TTC TCT GCA GAG







TRB2V7-6/7
CAA GCA GAA GAC GGC ATA CGA
1.01
1801



GCT CTT CCG ATC TAT GAT CGG





TTC TCT GCA GAG AGG CCT GAG





G







TRB2V7-8
CAA GCA GAA GAC GGC ATA CGA
1.57
1802



GCT CTT CCG ATC TGC TGC CCA





GTG ATC GCT TCT TTG CAG AAA







TRB2V7-9
CAA GCA GAA GAC GGC ATA CGA
0.49
1803



GCT CTT CCG ATC TGG TTC TCT





GCA GAG AGG CCT AAG GGA TCT







TRB2V9
CAA GCA GAA GAC GGC ATA CGA
3.46
1804



GCT CTT CCG ATC TGT TCC CTG





ACT TGC ACT CTG AAC TAA AC
















TABLE 7







Barcode sequences used to identify TCRB V


Regions in SEQ ID NOS: 872-1560









TCRBV region name
Nucleotide



of 8 bp barcode
Sequence
SEQ ID NO





TCRBV2_8bpBC
CAAGGTCA
SEQ ID NO: 6375





TCRBV3-1_8bpBC
TACGTACG
SEQ ID NO: 6376





TCRBV4-1_8bpBC
TACGCGTT
SEQ ID NO: 6377





TCRBV4-2_8bpBC
CTCAGTGA
SEQ ID NO: 6378





TCRBV4-3_8bpBC
GTGTCTAC
SEQ ID NO: 6379





TCRBV5-1_8bpBC
AGTACCGA
SEQ ID NO: 6380





TCRBV5-3_8bpBC
TTGCCTCA
SEQ ID NO: 6381





TCRBV5-4_8bpBC
TCGTTAGC
SEQ ID NO: 6382





TCRBV5-5_8bpBC
TGGACATG
SEQ ID NO: 6383





TCRBV5-6_8bpBC
AGGTTGCT
SEQ ID NO: 6384





TCRBV5-7_8bpBC
GTACAGTG
SEQ ID NO: 6385





TCRBV5-8_8bpBC
ATCCATGG
SEQ ID NO: 6386





TCRBV6-1_8bpBC
TGATGCGA
SEQ ID NO: 6387





TCRBV6-2_8bpBC
GTAGCAGT
SEQ ID NO: 6388





TCRBV6-3_8bpBC
GGATCATC
SEQ ID NO: 6389





TCRBV6-4_8bpBC
GTGAACGT
SEQ ID NO: 6390





TCRBV6-5_8bpBC
TGTCATCG
SEQ ID NO: 6391





TCRBV6-6_8bpBC
AGGCTTGA
SEQ ID NO: 6392





TCRBV6-7_8bpBC
ACACACGT
SEQ ID NO: 6393





TCRBV6-8_8bpBC
TCCACAGT
SEQ ID NO: 6394





TCRBV6-9_8bpBC
CAGTCTGT
SEQ ID NO: 6395





TCRBV7-1_8bpBC
TCCATGTG
SEQ ID NO: 6396





TCRBV7-2_8bpBC
TCACTGCA
SEQ ID NO: 6397





TCRBV7-3_8bpBC
CAAGTCAC
SEQ ID NO: 6398





TCRBV7-4_8bpBC
TAGACGGA
SEQ ID NO: 6399





TCRBV7-6_8bpBC
GAGCGATA
SEQ ID NO: 6400





TCRBV7-7_8bpBC
CTCGAGAA
SEQ ID NO: 6401





TCRBV7-8_8bpBC
ATGACACC
SEQ ID NO: 6402





TCRBV7-9_8bpBC
CTTCACGA
SEQ ID NO: 6403





TCRBV9_8bpBC
CGTAGAGT
SEQ ID NO: 6404





TCRBV10-1_8bpBC
TCGTCGAT
SEQ ID NO: 6405





TCRBV10-2_8bpBC
AGCTAGTG
SEQ ID NO: 6406





TCRBV10-3_8bpBC
TGAGACCT
SEQ ID NO: 6407





TCRBV11-1_8bpBC
GATGGCTT
SEQ ID NO: 6408





TCRBV11-2_8bpBC
GCATCTGA
SEQ ID NO: 6409





TCRBV11-3_8bpBC
GACACTCT
SEQ ID NO: 6410





TCRBV12-3_8bpBC
TGCTACAC
SEQ ID NO: 6411





TCRBV12-4_8bpBC
TCAGCTTG
SEQ ID NO: 6412





TCRBV12-5_8bpBC
TTCGGAAC
SEQ ID NO: 6413





TCRBV13_8bpBC
GCAATTCG
SEQ ID NO: 6414





TCRBV14_8bpBC
CAAGAGGT
SEQ ID NO: 6415





TCRBV15_8bpBC
GAATGGAC
SEQ ID NO: 6416





TCRBV16_8bpBC
AACTGCCA
SEQ ID NO: 6417





TCRBV17p_8bpBC
CCTAGTAG
SEQ ID NO: 6418





TCRBV18_8bpBC
CTGACGTT
SEQ ID NO: 6419





TCRBV19_8bpBC
TGCAGACA
SEQ ID NO: 6420





TCRBV20-1_8bpBC
AGTTGACC
SEQ ID NO: 6421





TCRBV24-1_8bpBC
GTCTCCTA
SEQ ID NO: 6422





TCRBV25-1_8bpBC
CTGCAATC
SEQ ID NO: 6423





TCRBV27-1_8bpBC
TGAGCGAA
SEQ ID NO: 6424





TCRBV28_8bpBC
TTGGACTG
SEQ ID NO: 6425





TCRBV29-1_8bpBC
AGCAATCC
SEQ ID NO: 6426





TCRBV30_8bpBC
CGAACTAC
SEQ ID NO: 6427









Using the data that were obtained to generate FIG. 2, as described above, the cross-amplification capability (ability to amplify a V gene segment other than the one for which the primer was specifically designed on the basis of annealing sequence complementarity) was assessed for each amplification primer that had been designed to anneal to a specific V gene segment. 52 independent amplification primer pools were prepared, where each primer pool had 51 of the 52 TCRB V region primers of Table 6 pooled at equimolar concentrations, and the 52nd TCRB V region primer present in the pool at twice the molar concentration of the other 51 primers. A separate amplification primer pool was prepared so that there was one pool for each of the 52 V primers in which a single primer was present at twice the concentration of the other primers, resulting in 52 unique primer pools. 52 separate amplification reactions were then set up, one for each of the unique amplification primer pools, with each reaction using the set of 689 template oligonucleotides (SEQ ID NOS:872-1560) described above. Template oligonucleotides were present at equimolar concentration relative to one another. Amplification and sequencing were conducted using the conditions described above. The results are shown in FIG. 3.


In FIG. 3, black squares indicated no change in the degree of amplification with the respective indicated TCRB V region-specific primer present at twice the concentration relative to equimolar concentrations of all other primers; white squares indicated a 10-fold increase in amplification; grey squares indicated intermediate degrees (on a greyscale gradient) of amplification between zero and 10-fold. The diagonal line indicated that doubling the molar concentration for a given primer resulted in about a 10-fold increase in the amplification of the respective template oligonucleotide having the specific annealing target sequence, in the case of most of the TCRB V regions primers that were tested. The off-diagonal white squares indicated non-corresponding templates to which certain primers were able to anneal and amplify.


Where one or more primers exhibited amplification potential that was significantly greater or lower than an acceptable range of amplification potential (e.g., a designated uniform amplification potential range), further adjustment of the concentrations of individual primer oligonucleotides and reiteration of the template amplification and quantitative sequencing steps were conducted, until each species of product molecule was present within a desired range that was indicative of correction of the non-uniform amplification potential among the primers within an amplification primer set.


Accordingly, primer concentrations were adjusted as indicated in Table 6, in order to determine whether biased amplification results that were apparent in FIGS. 2 and 3 could be reduced in severity by increasing or decreasing the relative presence of, respectively, highly efficient or poorly efficient amplification primers. For multiplexed PCR using an adjusted primer set, the V gene primer sequences remained the same (sequence reported in table 6), however the relative concentration of each primer was either increased, if the primer underamplified its template (FIG. 3), or decreased if the primer over-amplified its template (FIG. 3) The adjusted mixture of amplification primers was then used in a PCR to amplify the template composition containing, in equimolar amounts, the set of 689 template oligonucleotides (SEQ ID NOS:872-1560) that were used to generate the data in FIGS. 2 and 3.


Amplification and quantitative sequencing were performed as described above and the results are shown in FIG. 4, which compares the frequency at which each indicated amplified V region sequence-containing product was obtained when all amplification primers were present at equimolar concentrations (black bars) to the frequency at which each such product was obtained after the concentrations of the amplification primers were adjusted (grey bars) to the concentrations as indicated in Table 6.


Additional hs-TCRB primer sequences are found at SEQ ID NOs. 6192-6264.


Example 3
Correcting Non-Uniform Amplification Potential (PCR Bias) in TCR-Amplifying Oligonucleotide Primer Sets

Diverse TCR amplification primers are designed to amplify every possible combination of rearranged TCR V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers is used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of TCR-specific template oligonucleotides according to formula (I) with at least one template representing every possible V-J combination for the TCR locus. The amplification products are quantitatively sequenced and the frequency of occurrence of each unique V-J product sequence is obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V-J combination.


For TCRG, the TCRG template oligonucleotides (SEQ ID NOS:1561-1630) are amplified using TCRG V- and J-specific primers (SEQ ID NOS:1732-1745, Table 4). J primer independence of respectively paired V primers is identified by separately amplifying each of the eight TCRG V gene segment specific primers with a pool of the five J gene segment specific primers. The amplification products are quantitatively sequenced on an Illumina HiSeq™ sequencing platform and the frequency of occurrence of the internal 16 bp barcode sequences (B) that uniquely identify specific V-J combinations permit quantification of each V-J pair. V primer independence of respectively paired J primers is identified by performing the inverse reaction, i.e., by separately amplifying each of the five TCRG J gene segment primers with a pool of the eight V gene segment specific primers.


To test if TCRG V primers or J primers cross-amplify (e.g., whether gene segment specific primers amplify non-specifically, for instance, to test if the V primer specifically designed to amplify TCRG V7 segments is able to amplify both TCRG V6 and TCRG V7 V gene segments), independent primer pools are generated that contain equimolar concentrations of all but one of the primers, and the omitted primer is then added to the pool at twice the molar concentration of all other primers. The primers are then used to amplify a template composition that comprises a plurality of template oligonucleotides of general formula (I) as described herein, using TCRG V and J gene sequences in, respectively, the V and J polynucleotides of formula (I). Quantitative sequencing reveals the identities of any one or more templates that are overrepresented among the amplification products when a single amplification primer is present at twice the concentration of all other primers in the pool of primers. The primer mixture is then adjusted to increase or decrease the relative concentrations of one or more primers, to obtain amplification frequencies in iterative rounds that are within acceptable quantitative tolerances. The adjusted primer mixture so obtained is regarded as having been corrected to reduce non-uniform amplification potential among the members of the primer set.


To determine whether a corrected primer mixture exhibits unbiased amplification potential when used to amplify rearranged TCR template DNA in a biological sample from lymphoid cells of a subject, the artificial template compositions as described herein are prepared with all VJ pairs present at similar frequency, and also with varying ratios of the relative representation of certain VJ pairs. Each type of template preparation is separately tested as an amplification template for an amplification primer set that has been corrected to reduce non-uniform amplification potential among certain members of the primer set. Quantitative sequence determination of amplification products identifies that the relative quantitative representation of specific sequences in the template preparation is reflected in the relative quantitative representation of specific sequences among the amplification products.


As an alternative to the iterative process described above, or in addition to such iterative amplification steps followed by quantitative sequencing, amplification bias can also be corrected computationally. According to this computational approach, the starting frequency of each of the species of template oligonucleotide sequences in the synthesized template composition is known. The frequency of each of these species of oligonucleotide sequences among the amplification products that are obtained following PCR amplification is determined by quantitative sequencing. The difference between the relative frequencies of the template oligonucleotide sequences prior to PCR amplification and their frequencies following PCR amplification is the “PCR bias.” This difference is the amplification bias introduced during amplification, for example, as a consequence of different amplification efficiencies among the various amplification primers.


As quantitatively determined for each known template oligonucleotide sequence, the PCR bias for each primer is used to calculate an amplification bias (normalization) factor by which the observed frequency for each amplification product is corrected to reflect the actual frequency of the respective template sequence in the template composition. If PCR bias for an amplification primer set is empirically detected using the present template composition as being within a factor of 10, then the bias can be computationally corrected in amplification products obtained when the same amplification primer set is used to amplify a DNA sample of unknown composition. Improved accuracy in the quantification of template species in the DNA sample is thereby obtained.


Because V and J primers are empirically tested and shown to be independent, an amplification bias factor can be derived for each V species and for each J species, and an amplification factor for each VJ species pair is not necessary. Accordingly, the amplification bias factor for each V species and J species is derived using the present template composition. By the present method, the frequencies of the V and J gene sequences in the template composition are known (or can be calculated based on knowledge of the concentrations of each template oligonucleotide species in the template composition as synthesized) prior to PCR amplification. After PCR amplification, quantitative sequencing is used to detect the frequency of each V and J gene segment sequence in the amplification products. For each sequence, the difference in gene segment frequency is the amplification bias:

Initial Frequency/final frequency=amplification bias factor


Amplification bias factors are calculated for every V gene segment and every J gene segment. These amplification factors, once calculated, can be applied to samples for which the starting frequency of V and J genes is unknown.


In a mixed template population (such as a complex DNA sample obtained from a biological source that comprises DNA from lymphoid cells that are presumed to contain rearranged adaptive immune receptor encoding DNA, or a complex DNA sample which additionally comprises DNA from other cells lacking such rearrangements), where the starting frequency of each V and J gene segment is unknown, the calculated amplification factors for a primer set that has been characterized using the present template composition can be used to correct for residual PCR amplification bias. For each species of sequenced amplification product molecule, the V and J genes that are used by the molecule are determined based on sequence similarity. To correct for amplification bias, the number of times the molecule was sequenced is multiplied by both the correct V and J amplification factors. The resulting sequence count is the computationally “normalized” set.


Example 4
Generation of Additional Template Compositions

Additional template compositions were designed and produced essentially according to the methodologies described above.


V and J Polynucleotides.


TCRB V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 68 TCRB V and J SEQ ID NOS, respectively, as shown in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13.


TCRG V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIGS. 6a-6b as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5.


IGH V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIGS. 7a-7m as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


Template Compositions.


A template composition was prepared for standardizing the amplification efficiency of TCRB amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The TCRB template composition comprising 858 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:3157-4014.


A template composition was prepared for standardizing the amplification efficiency of TCRG amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The TCRG template composition comprising 70 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4015-4084.


A template composition was prepared for standardizing the amplification efficiency of IGH amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200. An IGH template composition comprising a set of 1116 template oligonucleotides is also disclosed in the Sequence Listing in SEQ ID NOS:1805-2920.


Example 5
Use of the Template Composition to Determine Amplification Factor

This example describes quantification of rearranged DNA molecules encoding a plurality of IG molecules, using the presently described template oligonucleotide composition as a “spiked-in” synthetic template in a multiplexed PCR amplification of a DNA sample containing B cell and fibroblast DNA.


Biological Template DNA: Eight biological samples were used as sources of template DNA, with each biological sample containing the same amount of total genomic DNA (gDNA), 300 ng, but in a different proportion of (i) DNA extracted from B cells to (ii) DNA extracted from human fibroblast cells, a cell type in which IG and TCR encoding genes do not rearrange. The samples contained 0, 0.07, 0.3, 1, 4, 18, 75 or 300 ng B cell gDNA, with fibroblast gDNA supplying the balance of each 300 ng gDNA preparation. Four replicates of each sample were made.


Synthetic Template DNA: To each PCR reaction (below) were added 5000 molecules (4-5 molecules of each sequence) from an oligonucleotide template composition comprising a pool of 1116 synthetic IGH template oligonucleotide molecules (SEQ ID NOS:4085-5200). An IGH template composition comprising a set of 1116 template oligonucleotides is also disclosed in the Sequence Listing as SEQ ID NOS:1805-2920.


PCR Reaction: The PCR reaction used QIAGEN Multiplex Plus™ PCR master mix (QIAGEN part number 206152, Qiagen, Valencia, Calif.), 10% Q-solution (QIAGEN), and 300 ng of biological template DNA (described above). The pooled amplification primers were added so the final reaction had an aggregate forward primer concentration of 2 μM and an aggregate reverse primer concentration of 2 μM. The forward primers (SEQ ID NOS:5201-5286) included 86 primers that had at the 3′ end an approximately 20 bp segment that annealed to the IGH V segment encoding sequence and at the 5′ end an approximately 20 bp universal primer pGEXf. The reverse primers (SEQ ID NOS:5287-5293) included an aggregate of J segment specific primers that at the 3′ end had an approximately 20 bp segment that annealed to the IGH J segment encoding sequence and at the 5′ end of the J primers was a universal primer pGEXr. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif., USA): one cycle at 95° C. for 10 minutes, 30 cycles at 94° C. for 30 seconds, 63° C. for 30 seconds, and 72° C. for one minute, followed by one cycle at 72° C. for 10 minutes. Each reaction was run in quadruplicates.


For sequencing, Illumina adapters (Illumina Inc., San Diego, Calif.), which also included a 8 bp tag and a 6 bp random set of nucleotides, were incorporated onto the ends of the PCR reaction products in a 7 cycle PCR reaction. The PCR reagents and conditions were as described above, except for the thermocycle conditions, which were: 95° C. for 5 minutes, followed by 7 cycles of 95° for 30 sec, 68° for 90 sec, and 72° for 30 sec. Following thermal cycling, the reactions were held for 10 minutes at 72° and the primers were the Illumina adaptor tailing primers (SEQ ID NOS:5387-5578). Samples were sequenced on an Illumina MiSEQ™ sequencer using the Illumina_PE_RD2 primer.


Results:


Sequence data were obtained for each sample and amplification products of synthetic templates were identified by the presence of the barcode oligonucleotide sequence. For each sample, the number of template products was divided by the number of unique synthetic template oligonucleotide sequences (1116) to arrive at a sample amplification factor. The total number of amplification products of the biological templates for each sample was then divided by the amplification factor to calculate the number of rearranged biological template molecules (e.g., VDJ recombinations) in the starting amplification reaction as an estimate of the number of unique B cell genome templates. The average values with standard deviations were plotted against the known number of rearranged biological template molecules based on B cell input (FIG. 9). In FIG. 9, the dots represent the average amplification factor and the bars represent the standard deviation across the four replicates. The use of amplification factors calculated as described herein to estimate the number of VJ-rearranged IG encoding molecules (as a proxy value for the number of B cells) yielded determinations that were consistent with known B cell numbers at least down to an input of 100 B cells. The estimated amplification factor values and the observed amplification factor were highly correlated (FIG. 9, R2=0.9988).


Example 6
IgH, IgL, and IgK Bias Control Templates

IgH VJ Template Oligonucleotides


In one embodiment, IgH VJ template oligonucleotides were generated and analyzed. A set of 1134 template oligonucleotides of general formula (I) was designed using human IgH V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Details for the 1134-oligonucleotide set of IgH templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgH locus was shown to contain 126 Vh segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 126 Vh segments included 52 gene segments known to be expressed, five V segments that were classified as having open reading frames, and 69 V pseudogenes. The Vh gene segments were linked to 9 Jh gene segments. In order to include all possible V+J gene combinations for the 126 V and 9 J segments, 1134 (9×126) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2). Two V segments were nucleotide identical to another two V segments—and thus were not ordered. This reduced the number of included segments from 1134 to 1116. The IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200.


Each of the 1116 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer. For this application a universal primer coded Nextera was used.









TABLE 8







Universal Primer sequences 


included in bias control templates









Primer




Name
Primer Sequence
SEQ ID NO





pGEXF
GGGCTGGCAAGCCACGTTTGGTG
SEQ ID NO: 6428





pGEXR
CCGGGAGCTGCATGTGTCAGAGG
SEQ ID NO: 6429









The universal primer sequences can be annealed to any primer sequence disclosed herein. An example of the PCR primers including the universal primer sequence are shown below:









TABLE 9







Example IGH PCR primers with Universal


Sequences (Bold and Underlined)









Primer Name
Primer Sequence
SEQ ID NO





pGEXf_IGHV(II)-


GGGCTGGCAAGCCACGTTTGGTG


SEQ ID


15-1_ver10_01
AGCCCCCAGGGAAGAAGCTGAAG
NO: 6430



TGG






pGEXr_IGHJ1/4/5_


CCGGGAGCTGCATGTGTCAGAGG


SEQ ID


ver10_03
CACCTGAGGAGACGGTGACCAGG
NO: 6431



GT









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 1116 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 1116 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 1116 distinct template oligonucleotides was calculated to contain approximately ˜0.09% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.009%-0.9%) for all species was desired. The quantitative sequencing revealed that the 1116 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.009-0.9%).


IgH DJ Template Oligonucleotides


In another embodiment, IgH DJ template oligonucleotides were generated and analyzed. A set of 243 template oligonucleotides of general formula (I) was designed using human IgH D and J polynucleotide sequences. Each template oligonucleotide consisted of a 382 base pair DNA molecule. The IgH DJ template oligonucleotide sequences are presented in SEQ ID NOs: 5579-5821. Details for the 243-oligonucleotide set of IgH templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgH locus was shown to contain 27 Dh segments. The 27 Dh gene segments were linked to 9 Jh gene segments. To include all possible D+J gene combinations for the 27 D and 9 J segments, 243 (9×27) templates were designed that represented all possible DJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of D gene and J gene segments (B1). However, for these molecules, the 300 bp of V gene specific sequence (V) was replaced with a segment of 182 bp of D gene specific sequence. This segment included both exonic and intronic nucleotide segments. Like the other molecules, these included a 3 base pair (bp) stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 243 templates (SEQ ID NOs: 5579-5821) was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2; See Table 8). These oligonucleotide sequences can be any universal primer; for this application a universal primer coded Nextera was used.


An example of the PCR primers with the universal adapter sequences are shown in Table 10.









TABLE 10







Example IgH DJ PCR primers with Universal


Sequences (Bold and Underlined)









Primer Name
Primer Sequence
SEQ ID NO





pGEXf_IGHV(II)-


GGGCTGGCAAGCCACGTTTGGTG


SEQ ID


15-1_ver10_01
AGCCCCCAGGGAAGAAGCTGAAG
NO: 6432



TGG






pGEXr_IGHJ1/4/5_


CCGGGAGCTGCATGTGTCAGAGG


SEQ ID


ver10_03
CACCTGAGGAGACGGTGACCAGG
NO: 6433



GT









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 243 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 243 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 243 distinct template oligonucleotides was calculated to contain approximately ˜0.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.04%-4.0%) for all species was desired. The quantitative sequencing revealed that the 243 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.04-4.0%). Following normalization, this set was combined with 1116 IgH VJ bias control set for a pool of 1359 templates.



FIG. 10 shows results for a pre-PCR amplification sequencing count for each of the 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules. Individual bias control molecules are along the x-axis. The set includes the 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules for a total of 1359 gblocks. The Y axis is the sequence count for each individual gblock. This calculation provides the quantification of the composition of the pre-amplification representation of each VJ pair. This data is used to estimate the change in frequency between the pre-sample and post-PCR amplification sample to calculate the amplification bias introduced by the primers.


IgL VJ Template Oligonucleotides


In another embodiment, IgL VJ template oligonucleotides were generated and analyzed. A set of 245 template oligonucleotides of general formula (I) was designed using human IgL V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. The IgL template oligonucleotides are presented as SEQ ID NOs: 5822-6066. Details for the 245-oligonucleotide set of IgL templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgL locus was shown to contain 75 VL segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 33 VL segments included gene segments known to be expressed, 5 V segments that were classified as having open reading frames, and 37 V pseudogenes. The VL gene segments were linked to five 6 JL gene segments. To include all possible functional and expressed V+J gene combinations for the 33 functional V and 6 J segments, 204 (6×33) templates were designed that represented all possible expressed VJ combinations. In addition, two of the V pseudogenes were questionable; an additional 12 (2×6) VJ templates were designed, resulting in a total of 216. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 216 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer; for this application, a universal primer coded Nextera was used.


The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 216 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 216 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 216 distinct template oligonucleotides was calculated to contain approximately ˜0.46% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.046%-4.6%) for all species was desired. The quantitative sequencing revealed that the 216 species of adapter-modified template oligonucleotides within the initial pool evenly represented.


IgK VJ Template Oligonucleotides


In one embodiment, IgK VJ template oligonucleotides were generated and analyzed. A set of 560 template oligonucleotides of general formula (I) was designed using human IgK V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Examples of IgK template oligonucleotides are found at SEQ ID NOs: 6067-6191. Details for the 560-oligonucleotide set of IgK templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgK locus was shown to contain 112 Vk segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 112 Vk segments included 46 gene segments known to be expressed, 8 V segments that were classified as having open reading frames, and 50 V pseudogenes. For this IgK, only expressed IgK VJ rearrangements were analyzed. Genes classified as pseudogenes and open reading frames were excluded. The Vk gene segments were linked to five Jk gene segments. This left us with 230 VJ gene rearrangements (46×5). To include all possible functional V+J gene combinations for the 46 functional V and 5 J segments, 230 (5×46) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 230 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer—for this application a universal primer coded Nextera was used.


The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 230 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 230 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 230 distinct template oligonucleotides was calculated to contain approximately ˜0.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (4.0%-0.04%) for all species was desired. The quantitative sequencing revealed that the 230 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


Example 7
Combined Assays

IgH DJ and IgH VJ Combined Assay


In some embodiments, it is desired to co-amplify and sequence rearranged IgH VDJ CDR3 chains and rearranged IgH DJ chains. To generate a pool of templates to test a combined IgH DJ and IgH VJ assay using the IgH DJ and IgH VJ templates. When pooled, the final pool includes 1116 VJ and 243 DJ templates, resulting in a total of 1359 individual templates. The IgH VJ template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOs: 4085-5200. The IgH DJ template oligonucleotide sequences are presented in SEQ ID NOs: 5579-5821.


To verify that all 1359 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 1359 distinct template oligonucleotides was calculated to contain approximately ˜0.073% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.73%-0.0073%) for all species was desired. The quantitative sequencing revealed that the 1359 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


IgL and IgK Combined Assay


In other embodiments, it is desired to co-amplify and sequence rearranged IgL and IgK rearranged CDR3 chains. To generate a pool of templates to test a combined IgL and IgK assay (the IgL and IgK templates were combined). When pooled, the final pool includes 216 IgL and 230 IgK templates, for a total of 446 individual templates. The IgL template oligonucleotides are presented as SEQ ID NOs: 5822-6066.


To verify that all 446 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 446 distinct template oligonucleotides was calculated to contain approximately ˜0.22% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (2.2%-0.022%) for all species was desired. The quantitative sequencing revealed that the 446 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


Example 8
Correcting Non-Uniform Amplification Potential (PCR Bias) in IgH-Amplifying Oligonucleotide Primer Sets

Diverse IgH amplification primers were designed to amplify every possible combination of rearranged IgH V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of IgH-specific template oligonucleotides according to formula (I) with at least one template representing every possible V-J combination for the IgH locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V-J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identified each V-J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements of the IgH locus, as annotated by the IMGT collaboration. See Yousfi Monod M, Giudicelli V, Chaume D, Lefranc. MP.IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONS. Bioinformatics. 2004; 20 (suppl 1):i379-i385. The locus included 126 unique V genes; 52 functional genes, 6 putative open reading frames lacking critical amino acids for function and 69 pseudogenes; and 9 J genes, 6 functional and 3 pseudogenes. The target sequence for primer annealing was identical for some V segments, allowing amplification of all 126 V segments with 86 unique forward primers. Similarly, 7 unique reverse primers annealed to all 9 J genes. As a baseline for bias assessment, the pool of 1116 templates was amplified using an equimolar pool of the 86 V forward primers (VF; specific to V genes) and an equimolar pool of the 7 J reverse primers (JR; specific to J genes).


Polymerase chain reactions (PCR) (25 μL each) were set up at 2.0 μM VF, 2.0 μM JR pool (Integrated DNA Technologies), 1 μM QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN), and 200,000 target molecules from our synthetic IgH repertoire mix. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C. for 6 minutes, 31 cycles at 95° C. for 30 sec, 64° C. for 120 sec, and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of VF and JR primers, 86 mixtures were prepared containing a single VF primer with all JR primers, and 7 mixtures containing a single JR primer with all VF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V or J gene segments, and to identify instances of off-target priming. Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual VF or JF within the context of all other equimolar primers (e.g. 2×-fold IgHV1-01+ all other equimolar VF and JR primers) to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was reiterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. To assess the robustness of the final optimized primer mix and scaling factors to deviations from equimolar template input, we used a highly uneven mixture of IgH reference templates to determine the effect on sequencing output. The final mix was substantially better than an equimolar mix.


Example 9
Correcting Non-Uniform Amplification Potential (PCR Bias) in TCRB-Amplifying Oligonucleotide Primer Sets

Diverse TCRB amplification primers were designed to amplify every possible combination of rearranged TCRB V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of TCRB-specific template oligonucleotides according to formula (I) with at least one template representing every possible V-J combination for the TCRB locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V-J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V-J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements of the TCRB locus, as annotated by the IMGT collaboration. See Yousfi Monod M, Giudicelli V, Chaume D, Lefranc. MP. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONS. Bioinformatics. 2004; 20 (suppl 1):i379-i385. The locus includes 67 unique V genes. The target sequence for primer annealing was identical for some V segments, allowing us to amplify all 67 V segments with 60 unique forward primers. For the J locus, 13 unique reverse primers annealed to 13 J genes. As a baseline for bias assessment, the pool of 868 templates was amplified using an equimolar pool of the 60 V forward primers (VF; specific to V genes) and an equimolar pool of the 13 J reverse primers (JR; specific to J genes). Polymerase chain reactions (PCR) (25 μL each) were set up at 3.0 μM VF, 3.0 μM JR pool (Integrated DNA Technologies), 1 μM QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN), and 200,000 target molecules from our synthetic TCRB repertoire mix. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C. for 5 minutes, 31 cycles at 95° C. for 30 sec, 62° C. for 90 sec, and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of our VF and JR primers, 60 mixtures were prepared containing a single VF primer with all JR primers, and 13 mixtures containing a single JR primer with all VF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V or J gene segments and to identify instances of off-target priming. Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual VF or JF within the context of all other equimolar primers (e.g. 2×-fold TCRBV07-6+ all other equimolar VF and JR primers) to allow us to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was iterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. The final mix was substantially better than an equimolar mix of primers.



FIG. 11 shows TCRB-primer iterations for synthetic TCRB VJ templates graphed against relative amplification bias. Relative amplification bias was determined for 858 synthetic TCRB VJ templates prior to chemical bias control correction (Equimolar Primers (black)), post chemical correction (Optimized Primers (dark grey)), and post chemical and computational correction (After computational adjustment (light grey)). The equimolar primers had a dynamic range of 264, an interquartile range of 0.841, and a sum of squares (log bias) of 132. The optimized primers had a dynamic range of 147, an interquartile range of 0.581, and a sum of squares (log bias) of 50.7. The corrected primers (after computational adjustment) had a dynamic range of 90.8, an interquartile range of 0.248, and a sum of squares (log bias) of 12.8.


Example 10
Correcting Non-Uniform Amplification Potential (PCR Bias) in a Combined IgH VJ and DJ-Amplifying Oligonucleotide Primer Sets

Diverse IgH amplification primers were designed to amplify every possible combination of rearranged IgH V and J gene segments and IgH D and J gene segments in a biological sample that contained lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of IgH-specific template oligonucleotides according to formula (I) with at least one template representing every possible V-J combination for the IgH locus and every possible D-J combination for the IgH locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V-J and D-J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V-J and D-J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements AND D and J gene rearrangements of the IgH locus, as annotated by the IMGT collaboration. The locus included 126 unique V genes; 52 functional genes, 6 putative open reading frames lacking critical amino acids for function and 69 pseudogenes; and 9 J genes, 6 functional and 3 pseudogenes. The locus also included 27 unique D genes. The target sequence for primer annealing was identical for some V segments, allowing amplification of all 126 V segments with 86 unique forward primers. Similarly, 7 unique reverse primers annealed to all 9 J genes. For the D-J assay, primers were designed to anneal to rearranged −DJ stems. During B cell development, both alleles undergo rearrangement between the D and J gene segments, resulting in two −DJ stems. A −DJ stem includes a J gene, one N region, and a D gene. Following DJ rearrangements, one of the two alleles V gene rearranges with the −DJ stem to code for the CDR3 gene region (VnDnJ). To amplify the −DJ stem, 27 unique primers were designed to anneal to each specific D genes in an intronic region upstream of the D gene exon. These segments, while present in −DJ stems. are excised following V to −DJ recombination. However, J primers were not re-designed; the DJ assay used the same J primers as the VJ assay.


As a baseline for bias assessment, the pool of 1359 templates was amplified using an optimized (mix 2-1) pool of the 86 V forward primers (VF; specific to V genes), 27 D forward primers (DF; specific to D genes) and an equimolar pool of the 7 J reverse primers (JR; specific to J genes). Polymerase chain reactions (PCR) (25 μL each) were set up at 1.0 μM VF, 1.0 μM DF, and 2.0 μM JR pool (Integrated DNA Technologies), 1× QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN), and 200,000 target molecules from our synthetic IgH VJ and DJ repertoire mix. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C. for 6 minutes, 31 cycles at 95° C. for 30 sec, 64° C. for 120 sec, and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of our DF and JR primers, 27 mixtures were prepared containing a single DF primer with all JR primers and the previously identified optimized VF pool, and 7 mixtures containing a single JR primer with all VF and DF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V, D, or J gene segments, and to identify instances of off-target priming.


Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual DF or JF within the context of all other primers—including the optimized mix of VF primers (e.g. 2×-fold IgHD2-08+ all other equimolar DF, optimal VF mix, and JR primers) to allow us to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the cross-amplification test, the DF primers were identified as cross amplified. 12 of the DF primers were removed, resulting in a final pool of 15 DF primers. Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was iterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. The final primer mix has substantially less primer bias than an equimolar primer mix.



FIG. 12 shows IGH primer iterations for synthetic IGH VJ templates graphed against relative amplification bias. Relative amplification bias was determined for 1116 synthetic IGH VJ templates relative amplification bias prior to chemical bias control correction (equimolar primers (black)), post chemical correction (optimized primers (dark grey)), and post chemical and computational correction (After computational adjustment (light grey)). The equimolar primers had a dynamic range of 1130, an interquartile range of 0.991, and a sum of squares (log bias) of 233. The optimized primers had a dynamic range of 129, an interquartile range of 0.732, and a sum of squares (log bias) of 88.2. The after computational adjusted primers had a dynamic range of 76.9, an interquartile range of 0.545, and a sum of squares (log bias) of 37.9.



FIG. 13 shows the relative amplification bias for 27 synthetic IGH DJ templates of the V gene. Relative amplification bias of the V gene segment is shown in three primer iterations: 1) prior to chemical bias control correction (black), 2) a first iteration of chemical correction (white), and 3) a post second iteration of chemical correction (light grey).


Example 11
TCRG VJ Primer Iterations

In other embodiments, TCRG VJ primers were tested for relative amplification bias in multiple primer iterations. FIGS. 14a-d show TCRG-primer iterations for 55 synthetic TCRG VJ templates. Relative amplification bias was determined for the TCRG VJ primers prior to chemical bias control correction (FIG. 14a), a first iteration of chemical correction (FIG. 14b), a second iteration of chemical correction (FIG. 14c), and final iteration of chemical correction (FIG. 14d).


Example 12
Alternative Bias Control and Spike-In Method

In other embodiments, alternative methods can be used to determine amplification bias. Two primary goals of the method are as follows: (1) to remove amplification bias in a multiplex PCR amplification of BCR or TCR genes and (2) to estimate the fraction of B or T cells in the starting template.


The method includes starting with a set of cells comprising DNA, or cDNA (mRNA) extracted from a sample that includes B and/or T cells. In a sample comprising cells, the DNA is extracted using methods standard in the art.


The extracted DNA is divided into multiple parts and put into different PCR wells. In some embodiments, one well is used to full capacity or thousands of wells can be used. In one embodiment, 188 wells are used for PCR (two 96 well plates). The number of TCR or BCR templates per well should be sparse, such that it is rare to have multiple molecules from the same clonotype in the same well.


The method then includes amplifying the DNA separately in each well using the same multiplex set of primers. The sets of primers described herein can be used. As described above, the bar coding method is applied to the amplified molecules in each well with the same barcode sequence. For example, each well gets its own barcode.


The molecules are then sequenced on a high throughput sequencing machine with a sufficient amount of the amplified BCR or TCR sequences to identify by sequence the V and the J chain used, as well as the bar code sequence.


Each well has an average copy count. Since each clonotype appears once in a well, the amount of that template relative to the average is the bias for that V-J combination. Since V and J bias are independent, not every V-J combination is necessary to determine the biases. These relative biases are then used to either re-design primers that are either highly under or over amplifying or to titrate the primer concentration to increase or decrease amplification. The entire process is repeated with a new primer lot and iterated to continue to decrease bias.


After any cycle of the iterations, a set of computational factors (the relative amplification factors) can be applied to remove bias. Bias can be reduced by both (or either) primer changes and computational correction.


The method includes computing a fraction of nucleated cells from a similar assay. For each well, each clonotype is identified, and the number of sequencing reads is determined for each clone. In some embodiments, the number of templates does not need to be sparse. The read counts for each clone are corrected by the bias control factors as described above.


A histogram is created of the corrected read counts, and the graph has a primary mode (the amplification factor). This mode is identified by inspection (based on identification of the first large peak), or by Fourier transform, or other known methods.


The total number of corrected reads in each well is divided by the amplification factor for that well. This is the estimated number of TCR or BCR genome templates that were in the well. The total number of BCR or TCRs from the sample is the sum of the number from all the wells. The total number of genomes in each well is measured prior to PCR. This can be done by nanodrop, or other known methods used to quantify DNA. The measured weight of the DNA is divided by the weight of a double stranded genome (for example, in humans ˜6.2 pico grams).


The fraction of B cells or T cells in the sample is the total number of BCR or TCRs in the samples divided by the total number of double stranded DNA molecules added to the reaction. The result needs a minor correction as a small fraction of T cells have both alleles rearranged. This correction factor is approximately 15% for alpha beta T cells, 10% for B cells. For gamma delta T cells, almost all of the cells have both alleles rearranged, so the correction is a factor of two.


These additional methods can determine amplification bias in a multiplex PCR amplification of BCR or TCR genes and be used to estimate the fraction of B or T cells in the starting template.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.


Informal Sequence Listing


Bias Control Sequences for hs-IgH-DJ (243 Sequences)














Name
Sequence
SEQ ID NO







hsIGH_2001_
GCCTTGCCAGCCCGCTCAGGACACTCTGTACAGTGGCCCCGGTCTCTG
SEQ ID NO:


D001_J001_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5579


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ1
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGTACAGT




GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT




CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG




GGCCAGGCAAGGACACTCTGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2002_
GCCTTGCCAGCCCGCTCAGTTCGGAACGTACAGTGGGCCTCGGTCTCT
SEQ ID NO:


D002_J001_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5580


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ1
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGTACAGT




GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT




CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG




GGCCAGGCAAGTTCGGAACGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2003_
GCCTTGCCAGCCCGCTCAGAAGTAACGGTACAGTGGGCCTCGGTCTCT
SEQ ID NO:


D003_J001_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5581


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ1
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGTACAGT




GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT




CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG




GGCCAGGCAAGAAGTAACGGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2004_
GCCTTGCCAGCCCGCTCAGGTCTCCTAGTACAGTGGTCTCTGTGGGTG
SEQ ID NO:


D004_J001_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5582


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ1
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGTACAGT




GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT




CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG




GGCCAGGCAAGGTCTCCTAGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2005_
GCCTTGCCAGCCCGCTCAGAGAGTGTCGTACAGTGAGGCCTCAGGCTC
SEQ ID NO:


D005_J001_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5583


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ1
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGTAC




AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG




TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA




CTGGGCCAGGCAAGAGAGTGTCGTACAGTGCTGATGGCGCGAGGGAGG




C






hsIGH_2006_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


D006_J001_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5584


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ1
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGGTTCCGAAGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2007_
GCCTTGCCAGCCCGCTCAGCGTTACTTGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


D007_J001_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5585


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ1
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGCGTTACTTGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2008_
GCCTTGCCAGCCCGCTCAGTAGGAGACGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


D008_J001_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5586


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ1
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGTAGGAGACGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2009_
GCCTTGCCAGCCCGCTCAGGTGTCTACGTACAGTGAGCCCCCTGTACA
SEQ ID NO:


D009_J001_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5587


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ1
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCT




GGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGC




CAGGTGTACTGGGCCAGGCAAGGTGTCTACGTACAGTGCTGATGGCGC




GAGGGAGGC






hsIGH_2010_
GCCTTGCCAGCCCGCTCAGTGCTACACGTACAGTGGTGGGCACGGACA
SEQ ID NO:


D010_J001_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5588


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ1
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGTGCTACACGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2011_
GCCTTGCCAGCCCGCTCAGAACTGCCAGTACAGTGTGGGCACGGACAC
SEQ ID NO:


D011_J001_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5589


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ1
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGAACTGCCAGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2012_
GCCTTGCCAGCCCGCTCAGTTGGACTGGTACAGTGCGATATTTTGACT
SEQ ID NO:


D012_J001_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5590


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ1
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGTTGGACTGGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2013_
GCCTTGCCAGCCCGCTCAGGTAGACACGTACAGTGTGGACGCGGACAC
SEQ ID NO:


D013_J001_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5591


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ1
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCA




GGGCACCCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATA




GCGGGGAGCCAGGTGTACTGGGCCAGGCAAGGTAGACACGTACAGTGC




TGATGGCGCGAGGGAGGC






hsIGH_2014_
GCCTTGCCAGCCCGCTCAGCACTGTACGTACAGTGTGGGCATGGACAG
SEQ ID NO:


D014_J001_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5592


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ1
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC




CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG




AGCCAGGTGTACTGGGCCAGGCAAGCACTGTACGTACAGTGCTGATGG




CGCGAGGGAGGC






hsIGH_2015_
GCCTTGCCAGCCCGCTCAGGATGATCCGTACAGTGCAAGGGTGAGTCA
SEQ ID NO:


D015_J001_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5593


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ1
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGTACAGTG




GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC




CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG




GCCAGGCAAGGATGATCCGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2016_
GCCTTGCCAGCCCGCTCAGCGCCAATAGTACAGTGTGCCTCTCTCCCC
SEQ ID NO:


D016_J001_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5594


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ1
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGTACAGTG




GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC




CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG




GCCAGGCAAGCGCCAATAGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2017_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTACAGTGGGAGGGTGAGTCA
SEQ ID NO:


D017_J001_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5595


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ1
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGTACAGTG




GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC




CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG




GCCAGGCAAGTCAAGCCTGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2018_
GCCTTGCCAGCCCGCTCAGACGTGTGTGTACAGTGGGAGGGTGAGTCA
SEQ ID NO:


D018_J001_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5596


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ1
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGTACA




GTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGT




CTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTAC




TGGGCCAGGCAAGACGTGTGTGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2019_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTACAGTGAGAGGCCTCTCCA
SEQ ID NO:


D019_J001_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5597


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGTAC




AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG




TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA




CTGGGCCAGGCAAGTCCGTCTAGTACAGTGCTGATGGCGCGAGGGAGG




C






hsIGH_2020_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


D020_J001_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5598


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG




TACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCA




CCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGT




GTACTGGGCCAGGCAAGAAGAGCTGGTACAGTGCTGATGGCGCGAGGG




AGGC






hsIGH_2021_
GCCTTGCCAGCCCGCTCAGTATCGCTCGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


D021_J001_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5599


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGTAC




AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG




TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA




CTGGGCCAGGCAAGTATCGCTCGTACAGTGCTGATGGCGCGAGGGAGG




C






hsIGH_2022_
GCCTTGCCAGCCCGCTCAGTCAGATGCGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


D022_J001_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5600


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGTAC




AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG




TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA




CTGGGCCAGGCAAGTCAGATGCGTACAGTGCTGATGGCGCGAGGGAGG




C






hsIGH_2023_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTACAGTGAGGCAGCTGACTC
SEQ ID NO:


D023_J001_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5601


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ1
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGTACAG




TGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTC




TCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACT




GGGCCAGGCAAGGTGTAGCAGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2024_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTACAGTGAGGCAGCTGACCC
SEQ ID NO:


D024_J001_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5602


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ1
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGTA




CAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACC




GTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGT




ACTGGGCCAGGCAAGTGGCAGTTGTACAGTGCTGATGGCGCGAGGGAG




GC






hsIGH_2025_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTACAGTGTGAGGTAGCTGGC
SEQ ID NO:


D025_J001_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5603


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ1
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGTA




CAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACC




GTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGT




ACTGGGCCAGGCAAGCAGTCCAAGTACAGTGCTGATGGCGCGAGGGAG




GC






hsIGH_2026_
GCCTTGCCAGCCCGCTCAGTACGTACGGTACAGTGCAGCTGGCCTCTG
SEQ ID NO:


D026_J001_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5604


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ1
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGTACAG




TGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTC




TCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACT




GGGCCAGGCAAGTACGTACGGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2027_
GCCTTGCCAGCCCGCTCAGAGTACCGAGTACAGTGAGGGTTGAGGGCT
SEQ ID NO:


D027_J001_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5605


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ1
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGTACAGTGGTCG




ACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA




GGT GAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGGGCCA




GGCAAGAGTACCGAGTACAGTGCTGATGGCGCGAGGGAGGC






hsIGH_2028_
GCCTTGCCAGCCCGCTCAGGACACTCTGGATCATCGCCCCGGTCTCTG
SEQ ID NO:


D001_J002_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5606


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ2
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGGATCAT




CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG




CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT




GGCTGAGCTGAGACACTCTGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2029_
GCCTTGCCAGCCCGCTCAGTTCGGAACGGATCATCGGCCTCGGTCTCT
SEQ ID NO:


D002_J002_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5607


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ2
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGGATCAT




CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG




CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT




GGCTGAGCTGATTCGGAACGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2030_
GCCTTGCCAGCCCGCTCAGAAGTAACGGGATCATCGGCCTCGGTCTCT
SEQ ID NO:


D003_J002_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5608


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ2
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGGATCAT




CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG




CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT




GGCTGAGCTGAAAGTAACGGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2031_
GCCTTGCCAGCCCGCTCAGGTCTCCTAGGATCATCGTCTCTGTGGGTG
SEQ ID NO:


D004_J002_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5609


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ2
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGGATCAT




CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG




CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT




GGCTGAGCTGAGTCTCCTAGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2032_
GCCTTGCCAGCCCGCTCAGAGAGTGTCGGATCATCAGGCCTCAGGCTC
SEQ ID NO:


D005_J002_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5610


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ2
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGGAT




CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG




CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT




TTTGGCTGAGCTGAAGAGTGTCGGATCATCCTGATGGCGCGAGGGAGG




C






hsIGH_2033_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


D006_J002_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5611


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ2
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGAGTTCCGAAGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2034_
GCCTTGCCAGCCCGCTCAGCGTTACTTGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


D007_J002_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5612


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ2
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGACGTTACTTGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2035_
GCCTTGCCAGCCCGCTCAGTAGGAGACGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


D008_J002_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5613


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ2
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGATAGGAGACGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2036_
GCCTTGCCAGCCCGCTCAGGTGTCTACGGATCATCAGCCCCCTGTACA
SEQ ID NO:


D009_J002_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5614


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ2
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCT




GGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGC




CGCAGGGTTTTGGCTGAGCTGAGTGTCTACGGATCATCCTGATGGCGC




GAGGGAGGC






hsIGH_2037_
GCCTTGCCAGCCCGCTCAGTGCTACACGGATCATCGTGGGCACGGACA
SEQ ID NO:


D010_J002_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5615


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ2
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGATGCTACACGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2038_
GCCTTGCCAGCCCGCTCAGAACTGCCAGGATCATCTGGGCACGGACAC
SEQ ID NO:


D011_J002_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5616


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ2
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGAAACTGCCAGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2039_
GCCTTGCCAGCCCGCTCAGTTGGACTGGGATCATCCGATATTTTGACT
SEQ ID NO:


D012_J002_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5617


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ2
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGATTGGACTGGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2040_
GCCTTGCCAGCCCGCTCAGGTAGACACGGATCATCTGGACGCGGACAC
SEQ ID NO:


D013_J002_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5618


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ2
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCG




ACCCGCCCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCC




CCTACCAGCCGCAGGGTTTTGGCTGAGCTGAGTAGACACGGATCATCC




TGATGGCGCGAGGGAGGC






hsIGH_2041_
GCCTTGCCAGCCCGCTCAGCACTGTACGGATCATCTGGGCATGGACAG
SEQ ID NO:


D014_J002_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5619


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ2
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC




CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC




AGCCGCAGGGTTTTGGCTGAGCTGACACTGTACGGATCATCCTGATGG




CGCGAGGGAGGC






hsIGH_2042_
GCCTTGCCAGCCCGCTCAGGATGATCCGGATCATCCAAGGGTGAGTCA
SEQ ID NO:


D015_J002_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5620


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ2
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGGATCATC




GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC




CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG




GCTGAGCTGAGATGATCCGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2043_
GCCTTGCCAGCCCGCTCAGCGCCAATAGGATCATCTGCCTCTCTCCCC
SEQ ID NO:


D016_J002_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5621


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ2
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGGATCATC




GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC




CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG




GCTGAGCTGACGCCAATAGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2044_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGGATCATCGGAGGGTGAGTCA
SEQ ID NO:


D017_J002_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5622


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ2
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGGATCATC




GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC




CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG




GCTGAGCTGATCAAGCCTGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2045_
GCCTTGCCAGCCCGCTCAGACGTGTGTGGATCATCGGAGGGTGAGTCA
SEQ ID NO:


D018_J002_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5623


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ2
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGGATC




ATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGC




AGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTT




TTGGCTGAGCTGAACGTGTGTGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2046_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGGATCATCAGAGGCCTCTCCA
SEQ ID NO:


D019_J002_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5624


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGGAT




CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG




CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT




TTTGGCTGAGCTGATCCGTCTAGGATCATCCTGATGGCGCGAGGGAGG




C






hsIGH_2047_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


D020_J002_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5625


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG




GATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGA




CCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAG




GGTTTTGGCTGAGCTGAAAGAGCTGGGATCATCCTGATGGCGCGAGGG




AGGC






hsIGH_2048_
GCCTTGCCAGCCCGCTCAGTATCGCTCGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


D021_J002_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5626


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGGAT




CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG




CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT




TTTGGCTGAGCTGATATCGCTCGGATCATCCTGATGGCGCGAGGGAGG




C






hsIGH_2049_
GCCTTGCCAGCCCGCTCAGTCAGATGCGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


D022_J002_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5627


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGGAT




CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG




CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT




TTTGGCTGAGCTGATCAGATGCGGATCATCCTGATGGCGCGAGGGAGG




C






hsIGH_2050_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGGATCATCAGGCAGCTGACTC
SEQ ID NO:


D023_J002_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5628


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ2
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGGATCA




TCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCA




GCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTT




TGGCTGAGCTGAGTGTAGCAGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2051_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGGATCATCAGGCAGCTGACCC
SEQ ID NO:


D024_J002_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5629


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ2
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGGA




TCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACC




GCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGG




TTTTGGCTGAGCTGATGGCAGTTGGATCATCCTGATGGCGCGAGGGAG




GC






hsIGH_2052_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGGATCATCTGAGGTAGCTGGC
SEQ ID NO:


D025_J002_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5630


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ2
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGGA




TCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACC




GCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGG




TTTTGGCTGAGCTGACAGTCCAAGGATCATCCTGATGGCGCGAGGGAG




GC






hsIGH_2053_
GCCTTGCCAGCCCGCTCAGTACGTACGGGATCATCCAGCTGGCCTCTG
SEQ ID NO:


D026_J002_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5631


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ2
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGGATCA




TCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCA




GCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTT




TGGCTGAGCTGATACGTACGGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2054_
GCCTTGCCAGCCCGCTCAGAGTACCGAGGATCATCAGGGTTGAGGGCT
SEQ ID NO:


D027_J002_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5632


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ2
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGGATCATCGTCG




ACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGCCACA




TCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTGGCTG




AGCTGAAGTACCGAGGATCATCCTGATGGCGCGAGGGAGGC






hsIGH_2055_
GCCTTGCCAGCCCGCTCAGGACACTCTTATTGGCGGCCCCGGTCTCTG
SEQ ID NO:


D001_J003_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5633


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ3
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTTATTGGC




GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC




TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG




GCACCAGGCCAGACACTCTTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2056_
GCCTTGCCAGCCCGCTCAGTTCGGAACTATTGGCGGGCCTCGGTCTCT
SEQ ID NO:


D002_J003_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5634


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ3
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACTATTGGC




GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC




TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG




GCACCAGGCCATTCGGAACTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2057_
GCCTTGCCAGCCCGCTCAGAAGTAACGTATTGGCGGGCCTCGGTCTCT
SEQ ID NO:


D003_J003_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5635


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ3
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGTATTGGC




GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC




TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG




GCACCAGGCCAAAGTAACGTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2058_
GCCTTGCCAGCCCGCTCAGGTCTCCTATATTGGCGGTCTCTGTGGGTG
SEQ ID NO:


D004_J003_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5636


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ3
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTATATTGGC




GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC




TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG




GCACCAGGCCAGTCTCCTATATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2059_
GCCTTGCCAGCCCGCTCAGAGAGTGTCTATTGGCGAGGCCTCAGGCTC
SEQ ID NO:


D005_J003_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5637


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ3
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCTATT




GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT




GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC




CAGGCACCAGGCCAAGAGTGTCTATTGGCGCTGATGGCGCGAGGGAGG




C






hsIGH_2060_
GCCTTGCCAGCCCGCTCAGGTTCCGAATATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


D006_J003_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5638


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ3
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAATATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCAGTTCCGAATATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2061_
GCCTTGCCAGCCCGCTCAGCGTTACTTTATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


D007_J003_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5639


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ3
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCACGTTACTTTATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2062_
GCCTTGCCAGCCCGCTCAGTAGGAGACTATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


D008_J003_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5640


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ3
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCATAGGAGACTATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2063_
GCCTTGCCAGCCCGCTCAGGTGTCTACTATTGGCGAGCCCCCTGTACA
SEQ ID NO:


D009_J003_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5641


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ3
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCC




TGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCT




TCTCTGTCCAGGCACCAGGCCAGTGTCTACTATTGGCGCTGATGGCGC




GAGGGAGGC






hsIGH_2064_
GCCTTGCCAGCCCGCTCAGTGCTACACTATTGGCGGTGGGCACGGACA
SEQ ID NO:


D010_J003_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5642


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ3
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCATGCTACACTATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2065_
GCCTTGCCAGCCCGCTCAGAACTGCCATATTGGCGTGGGCACGGACAC
SEQ ID NO:


D011_J003_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5643


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ3
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCATATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCAAACTGCCATATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2066_
GCCTTGCCAGCCCGCTCAGTTGGACTGTATTGGCGCGATATTTTGACT
SEQ ID NO:


D012_J003_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5644


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ3
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCATTGGACTGTATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2067_
GCCTTGCCAGCCCGCTCAGGTAGACACTATTGGCGTGGACGCGGACAC
SEQ ID NO:


D013_J003_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5645


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ3
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCC




GTGGCACCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCC




TCCCAGTCTTCTCTGTCCAGGCACCAGGCCAGTAGACACTATTGGCGC




TGATGGCGCGAGGGAGGC






hsIGH_2068_
GCCTTGCCAGCCCGCTCAGCACTGTACTATTGGCGTGGGCATGGACAG
SEQ ID NO:


D014_J003_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5646


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ3
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA




CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG




TCTTCTCTGTCCAGGCACCAGGCCACACTGTACTATTGGCGCTGATGG




CGCGAGGGAGGC






hsIGH_2069_
GCCTTGCCAGCCCGCTCAGGATGATCCTATTGGCGCAAGGGTGAGTCA
SEQ ID NO:


D015_J003_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5647


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ3
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCTATTGGCG




GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT




CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG




CACCAGGCCAGATGATCCTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2070_
GCCTTGCCAGCCCGCTCAGCGCCAATATATTGGCGTGCCTCTCTCCCC
SEQ ID NO:


D016_J003_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5648


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ3
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATATATTGGCG




GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT




CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG




CACCAGGCCACGCCAATATATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2071_
GCCTTGCCAGCCCGCTCAGTCAAGCCTTATTGGCGGGAGGGTGAGTCA
SEQ ID NO:


D017_J003_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5649


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ3
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTTATTGGCG




GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT




CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG




CACCAGGCCATCAAGCCTTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2072_
GCCTTGCCAGCCCGCTCAGACGTGTGTTATTGGCGGGAGGGTGAGTCA
SEQ ID NO:


D018_J003_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5650


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ3
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTTATTG




GCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTG




TCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCC




AGGCACCAGGCCAACGTGTGTTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2073_
GCCTTGCCAGCCCGCTCAGTCCGTCTATATTGGCGAGAGGCCTCTCCA
SEQ ID NO:


D019_J003_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5651


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTATATT




GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT




GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC




CAGGCACCAGGCCATCCGTCTATATTGGCGCTGATGGCGCGAGGGAGG




C






hsIGH_2074_
GCCTTGCCAGCCCGCTCAGAAGAGCTGTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


D020_J003_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5652


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGT




ATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTC




ACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCT




GTCCAGGCACCAGGCCAAAGAGCTGTATTGGCGCTGATGGCGCGAGGG




AGGC






hsIGH_2075_
GCCTTGCCAGCCCGCTCAGTATCGCTCTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


D021_J003_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5653


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCTATT




GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT




GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC




CAGGCACCAGGCCATATCGCTCTATTGGCGCTGATGGCGCGAGGGAGG




C






hsIGH_2076_
GCCTTGCCAGCCCGCTCAGTCAGATGCTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


D022_J003_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5654


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCTATT




GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT




GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC




CAGGCACCAGGCCATCAGATGCTATTGGCGCTGATGGCGCGAGGGAGG




C






hsIGH_2077_
GCCTTGCCAGCCCGCTCAGGTGTAGCATATTGGCGAGGCAGCTGACTC
SEQ ID NO:


D023_J003_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5655


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ3
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCATATTGG




CGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGT




CTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCA




GGCACCAGGCCAGTGTAGCATATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2078_
GCCTTGCCAGCCCGCTCAGTGGCAGTTTATTGGCGAGGCAGCTGACCC
SEQ ID NO:


D024_J003_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5656


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ3
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTTAT




TGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCAC




TGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGT




CCAGGCACCAGGCCATGGCAGTTTATTGGCGCTGATGGCGCGAGGGAG




GC






hsIGH_2079_
GCCTTGCCAGCCCGCTCAGCAGTCCAATATTGGCGTGAGGTAGCTGGC
SEQ ID NO:


D025_J003_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5657


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ3
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAATAT




TGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCAC




TGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGT




CCAGGCACCAGGCCACAGTCCAATATTGGCGCTGATGGCGCGAGGGAG




GC






hsIGH_2080_
GCCTTGCCAGCCCGCTCAGTACGTACGTATTGGCGCAGCTGGCCTCTG
SEQ ID NO:


D026_J003_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5658


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ3
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGTATTGG




CGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGT




CTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCA




GGCACCAGGCCATACGTACGTATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2081_
GCCTTGCCAGCCCGCTCAGAGTACCGATATTGGCGAGGGTTGAGGGCT
SEQ ID NO:


D027_J003_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5659


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ3
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGATATTGGCGGTCG




ACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCCTC




AGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGGCACC




AGGCCAAGTACCGATATTGGCGCTGATGGCGCGAGGGAGGC






hsIGH_2082_
GCCTTGCCAGCCCGCTCAGGACACTCTAGGCTTGAGCCCCGGTCTCTG
SEQ ID NO:


D001_J004_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5660


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ4
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTAGGCTTG




AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT




CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC




TGTGTGGCTGGGACACTCTAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2083_
GCCTTGCCAGCCCGCTCAGTTCGGAACAGGCTTGAGGCCTCGGTCTCT
SEQ ID NO:


D002_J004_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5661


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ4
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACAGGCTTG




AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT




CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC




TGTGTGGCTGGTTCGGAACAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2084_
GCCTTGCCAGCCCGCTCAGAAGTAACGAGGCTTGAGGCCTCGGTCTCT
SEQ ID NO:


D003_J004_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5662


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ4
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGAGGCTTG




AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT




CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC




TGTGTGGCTGGAAGTAACGAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2085_
GCCTTGCCAGCCCGCTCAGGTCTCCTAAGGCTTGAGTCTCTGTGGGTG
SEQ ID NO:


D004_J004_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5663


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ4
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAAGGCTTG




AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT




CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC




TGTGTGGCTGGGTCTCCTAAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2086_
GCCTTGCCAGCCCGCTCAGAGAGTGTCAGGCTTGAAGGCCTCAGGCTC
SEQ ID NO:


D005_J004_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5664


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ4
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCAGGC




TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC




CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG




GTCTGTGTGGCTGGAGAGTGTCAGGCTTGACTGATGGCGCGAGGGAGG




C






hsIGH_2087_
GCCTTGCCAGCCCGCTCAGGTTCCGAAAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


D006_J004_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5665


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ4
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGGTTCCGAAAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2088_
GCCTTGCCAGCCCGCTCAGCGTTACTTAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


D007_J004_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5666


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ4
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGCGTTACTTAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2089_
GCCTTGCCAGCCCGCTCAGTAGGAGACAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


D008_J004_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5667


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ4
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGTAGGAGACAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2090_
GCCTTGCCAGCCCGCTCAGGTGTCTACAGGCTTGAAGCCCCCTGTACA
SEQ ID NO:


D009_J004_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5668


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ4
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGC




CCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCA




GCCCGGGGGTCTGTGTGGCTGGGTGTCTACAGGCTTGACTGATGGCGC




GAGGGAGGC






hsIGH_2091_
GCCTTGCCAGCCCGCTCAGTGCTACACAGGCTTGAGTGGGCACGGACA
SEQ ID NO:


D010_J004_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5669


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ4
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGTGCTACACAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2092_
GCCTTGCCAGCCCGCTCAGAACTGCCAAGGCTTGATGGGCACGGACAC
SEQ ID NO:


D011_J004_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5670


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ4
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGAACTGCCAAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2093_
GCCTTGCCAGCCCGCTCAGTTGGACTGAGGCTTGACGATATTTTGACT
SEQ ID NO:


D012_J004_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5671


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ4
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGTTGGACTGAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2094_
GCCTTGCCAGCCCGCTCAGGTAGACACAGGCTTGATGGACGCGGACAC
SEQ ID NO:


D013_J004_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5672


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ4
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGC




CAGGGCAGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCC




TGGGTCTCAGCCCGGGGGTCTGTGTGGCTGGGTAGACACAGGCTTGAC




TGATGGCGCGAGGGAGGC






hsIGH_2095_
GCCTTGCCAGCCCGCTCAGCACTGTACAGGCTTGATGGGCATGGACAG
SEQ ID NO:


D014_J004_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5673


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ4
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC




AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC




TCAGCCCGGGGGTCTGTGTGGCTGGCACTGTACAGGCTTGACTGATGG




CGCGAGGGAGGC






hsIGH_2096_
GCCTTGCCAGCCCGCTCAGGATGATCCAGGCTTGACAAGGGTGAGTCA
SEQ ID NO:


D015_J004_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5674


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ4
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCAGGCTTGA




GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC




TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT




GTGTGGCTGGGATGATCCAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2097_
GCCTTGCCAGCCCGCTCAGCGCCAATAAGGCTTGATGCCTCTCTCCCC
SEQ ID NO:


D016_J004_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5675


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ4
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAAGGCTTGA




GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC




TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT




GTGTGGCTGGCGCCAATAAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2098_
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGGCTTGAGGAGGGTGAGTCA
SEQ ID NO:


D017_J004_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5676


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ4
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTAGGCTTGA




GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC




TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT




GTGTGGCTGGTCAAGCCTAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2099_
GCCTTGCCAGCCCGCTCAGACGTGTGTAGGCTTGAGGAGGGTGAGTCA
SEQ ID NO:


D018_J004_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5677


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ4
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTAGGCT




TGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACC




GTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGG




TCTGTGTGGCTGGACGTGTGTAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2100_
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGGCTTGAAGAGGCCTCTCCA
SEQ ID NO:


D019_J004_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5678


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ4
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAAGGC




TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC




CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG




GTCTGTGTGGCTGGTCCGTCTAAGGCTTGACTGATGGCGCGAGGGAGG




C






hsIGH_2101_
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


D020_J004_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5679


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ4
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGA




GGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGC




CACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCG




GGGGTCTGTGTGGCTGGAAGAGCTGAGGCTTGACTGATGGCGCGAGGG




AGGC






hsIGH_2102_
GCCTTGCCAGCCCGCTCAGTATCGCTCAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


D021_J004_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5680


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ4
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCAGGC




TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC




CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG




GTCTGTGTGGCTGGTATCGCTCAGGCTTGACTGATGGCGCGAGGGAGG




C






hsIGH_2103_
GCCTTGCCAGCCCGCTCAGTCAGATGCAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


D022_J004_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5681


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ4
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCAGGC




TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC




CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG




GTCTGTGTGGCTGGTCAGATGCAGGCTTGACTGATGGCGCGAGGGAGG




C






hsIGH_2104_
GCCTTGCCAGCCCGCTCAGGTGTAGCAAGGCTTGAAGGCAGCTGACTC
SEQ ID NO:


D023_J004_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5682


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ4
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAAGGCTT




GAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCG




TCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGT




CTGTGTGGCTGGGTGTAGCAAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2105_
GCCTTGCCAGCCCGCTCAGTGGCAGTTAGGCTTGAAGGCAGCTGACCC
SEQ ID NO:


D024_J004_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5683


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ4
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTAGG




CTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCA




CCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGG




GGTCTGTGTGGCTGGTGGCAGTTAGGCTTGACTGATGGCGCGAGGGAG




GC






hsIGH_2106_
GCCTTGCCAGCCCGCTCAGCAGTCCAAAGGCTTGATGAGGTAGCTGGC
SEQ ID NO:


D025_J004_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5684


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ4
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAAGG




CTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCA




CCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGG




GGTCTGTGTGGCTGGCAGTCCAAAGGCTTGACTGATGGCGCGAGGGAG




GC






hsIGH_2107_
GCCTTGCCAGCCCGCTCAGTACGTACGAGGCTTGACAGCTGGCCTCTG
SEQ ID NO:


D026_J004_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5685


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ4
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGAGGCTT




GAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCG




TCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGT




CTGTGTGGCTGGTACGTACGAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2108_
GCCTTGCCAGCCCGCTCAGAGTACCGAAGGCTTGAAGGGTTGAGGGCT
SEQ ID NO:


D027_J004_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5686


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ4
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAAGGCTTGAGTCG




ACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTCTCCC




TGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCTGTGT




GGCTGGAGTACCGAAGGCTTGACTGATGGCGCGAGGGAGGC






hsIGH_2109_
GCCTTGCCAGCCCGCTCAGGACACTCTACACACGTGCCCCGGTCTCTG
SEQ ID NO:


D001_J005_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5687


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ5
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTACACACG




TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT




TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC




CTCTGTCCTGGGACACTCTACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2110
GCCTTGCCAGCCCGCTCAGTTCGGAACACACACGTGGCCTCGGTCTCT
SEQ ID NO:


D002_J005_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5688


IGHD1-_
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ5
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACACACACG




TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT




TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC




CTCTGTCCTGGTTCGGAACACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2111_
GCCTTGCCAGCCCGCTCAGAAGTAACGACACACGTGGCCTCGGTCTCT
SEQ ID NO:


D003_J005_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5689


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ5
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGACACACG




TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT




TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC




CTCTGTCCTGGAAGTAACGACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2112_
GCCTTGCCAGCCCGCTCAGGTCTCCTAACACACGTGTCTCTGTGGGTG
SEQ ID NO:


D004_J005_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5690


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ5
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAACACACG




TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT




TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC




CTCTGTCCTGGGTCTCCTAACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2113_
GCCTTGCCAGCCCGCTCAGAGAGTGTCACACACGTAGGCCTCAGGCTC
SEQ ID NO:


D005_J005_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5691


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ5
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCACAC




ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC




TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC




GTCCTCTGTCCTGGAGAGTGTCACACACGTCTGATGGCGCGAGGGAGG




C






hsIGH_2114_
GCCTTGCCAGCCCGCTCAGGTTCCGAAACACACGTAAAGGAGGAGCCC
SEQ ID NO:


D006_J005_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5692


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ5
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGGTTCCGAAACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2115_
GCCTTGCCAGCCCGCTCAGCGTTACTTACACACGTAAAGGAGGAGCCC
SEQ ID NO:


D007_J005_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5693


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ5
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGCGTTACTTACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2116_
GCCTTGCCAGCCCGCTCAGTAGGAGACACACACGTAAAGGAGGAGCCC
SEQ ID NO:


D008_J005_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5694


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ5
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGTAGGAGACACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2117_
GCCTTGCCAGCCCGCTCAGGTGTCTACACACACGTAGCCCCCTGTACA
SEQ ID NO:


D009_J005_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5695


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ5
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGG




TCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTG




GGCCCAGCGTCCTCTGTCCTGGGTGTCTACACACACGTCTGATGGCGC




GAGGGAGGC






hsIGH_2118_
GCCTTGCCAGCCCGCTCAGTGCTACACACACACGTGTGGGCACGGACA
SEQ ID NO:


D010_J005_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5696


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ5
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGTGCTACACACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2119_
GCCTTGCCAGCCCGCTCAGAACTGCCAACACACGTTGGGCACGGACAC
SEQ ID NO:


D011_J005_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5697


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ5
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGAACTGCCAACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2120_
GCCTTGCCAGCCCGCTCAGTTGGACTGACACACGTCGATATTTTGACT
SEQ ID NO:


D012_J005_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5698


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ5
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGTTGGACTGACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2121_
GCCTTGCCAGCCCGCTCAGGTAGACACACACACGTTGGACGCGGACAC
SEQ ID NO:


D013_J005_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5699


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ5
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACACACACGTGTCGACCTTTTGATATCTGGGGCCAAG




GGACAATGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTC




CTTTCTCTGGGCCCAGCGTCCTCTGTCCTGGGTAGACACACACACGTC




TGATGGCGCGAGGGAGGC






hsIGH_2122_
GCCTTGCCAGCCCGCTCAGCACTGTACACACACGTTGGGCATGGACAG
SEQ ID NO:


D014_J005_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5700


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ5
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA




TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT




CTGGGCCCAGCGTCCTCTGTCCTGGCACTGTACACACACGTCTGATGG




CGCGAGGGAGGC






hsIGH_2123_
GCCTTGCCAGCCCGCTCAGGATGATCCACACACGTCAAGGGTGAGTCA
SEQ ID NO:


D015_J005_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5701


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ5
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCACACACGT




GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT




CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC




TCTGTCCTGGGATGATCCACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2124_
GCCTTGCCAGCCCGCTCAGCGCCAATAACACACGTTGCCTCTCTCCCC
SEQ ID NO:


D016_J005_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5702


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ5
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAACACACGT




GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT




CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC




TCTGTCCTGGCGCCAATAACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2125_
GCCTTGCCAGCCCGCTCAGTCAAGCCTACACACGTGGAGGGTGAGTCA
SEQ ID NO:


D017_J005_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5703


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ5
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTACACACGT




GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT




CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC




TCTGTCCTGGTCAAGCCTACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2126_
GCCTTGCCAGCCCGCTCAGACGTGTGTACACACGTGGAGGGTGAGTCA
SEQ ID NO:


D018_J005_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5704


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ5
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTACACA




CGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCT




CTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCG




TCCTCTGTCCTGGACGTGTGTACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2127_
GCCTTGCCAGCCCGCTCAGTCCGTCTAACACACGTAGAGGCCTCTCCA
SEQ ID NO:


D019_J005_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5705


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ5
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAACAC




ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC




TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC




GTCCTCTGTCCTGGTCCGTCTAACACACGTCTGATGGCGCGAGGGAGG




C






hsIGH_2128_
GCCTTGCCAGCCCGCTCAGAAGAGCTGACACACGTGCAGAGGCCTCTC
SEQ ID NO:


D020_J005_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5706


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ5
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGA




CACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACC




GTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCC




AGCGTCCTCTGTCCTGGAAGAGCTGACACACGTCTGATGGCGCGAGGG




AGGC






hsIGH_2129_
GCCTTGCCAGCCCGCTCAGTATCGCTCACACACGTGCAGAGGCCTCTC
SEQ ID NO:


D021_J005_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5707


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ5
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCACAC




ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC




TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC




GTCCTCTGTCCTGGTATCGCTCACACACGTCTGATGGCGCGAGGGAGG




C






hsIGH_2130_
GCCTTGCCAGCCCGCTCAGTCAGATGCACACACGTGCAGAGGCCTCTC
SEQ ID NO:


D022_J005_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5708


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ5
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCACAC




ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC




TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC




GTCCTCTGTCCTGGTCAGATGCACACACGTCTGATGGCGCGAGGGAGG




C






hsIGH_2131_
GCCTTGCCAGCCCGCTCAGGTGTAGCAACACACGTAGGCAGCTGACTC
SEQ ID NO:


D023_J005_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5709


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ5
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAACACAC




GTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC




TTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGT




CCTCTGTCCTGGGTGTAGCAACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2132_
GCCTTGCCAGCCCGCTCAGTGGCAGTTACACACGTAGGCAGCTGACCC
SEQ ID NO:


D024_J005_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5710


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ5
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTACA




CACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGT




CTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAG




CGTCCTCTGTCCTGGTGGCAGTTACACACGTCTGATGGCGCGAGGGAG




GC






hsIGH_2133_
GCCTTGCCAGCCCGCTCAGCAGTCCAAACACACGTTGAGGTAGCTGGC
SEQ ID NO:


D025_J005_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5711


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ5
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAACA




CACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGT




CTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAG




CGTCCTCTGTCCTGGCAGTCCAAACACACGTCTGATGGCGCGAGGGAG




GC






hsIGH_2134_
GCCTTGCCAGCCCGCTCAGTACGTACGACACACGTCAGCTGGCCTCTG
SEQ ID NO:


D026_J005_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5712


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ5
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGACACAC




GTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC




TTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGT




CCTCTGTCCTGGTACGTACGACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2135_
GCCTTGCCAGCCCGCTCAGAGTACCGAACACACGTAGGGTTGAGGGCT
SEQ ID NO:


D027_J005_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5713


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ5
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAACACACGTGTCG




ACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGG




TAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCCTCTG




TCCTGGAGTACCGAACACACGTCTGATGGCGCGAGGGAGGC






hsIGH_2136_
GCCTTGCCAGCCCGCTCAGGACACTCTTAGACGGAGCCCCGGTCTCTG
SEQ ID NO:


D001_J006_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5714


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJ6
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTTAGACGG




AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG




GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG




AGAAGGGCAGGGACACTCTTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2137_
GCCTTGCCAGCCCGCTCAGTTCGGAACTAGACGGAGGCCTCGGTCTCT
SEQ ID NO:


D002_J006_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5715


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJ6
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACTAGACGG




AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG




GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG




AGAAGGGCAGGTTCGGAACTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2138_
GCCTTGCCAGCCCGCTCAGAAGTAACGTAGACGGAGGCCTCGGTCTCT
SEQ ID NO:


D003_J006_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5716


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJ6
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGTAGACGG




AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG




GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG




AGAAGGGCAGGAAGTAACGTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2139_
GCCTTGCCAGCCCGCTCAGGTCTCCTATAGACGGAGTCTCTGTGGGTG
SEQ ID NO:


D004_J006_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5717


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJ6
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTATAGACGG




AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG




GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG




AGAAGGGCAGGGTCTCCTATAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2140_
GCCTTGCCAGCCCGCTCAGAGAGTGTCTAGACGGAAGGCCTCAGGCTC
SEQ ID NO:


D005_J006_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5718


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJ6
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCTAGA




CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA




GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC




ATGAGAAGGGCAGGAGAGTGTCTAGACGGACTGATGGCGCGAGGGAGG




C






hsIGH_2141_
GCCTTGCCAGCCCGCTCAGGTTCCGAATAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


D006_J006_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5719


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJ6
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAATAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGGTTCCGAATAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2142_
GCCTTGCCAGCCCGCTCAGCGTTACTTTAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


D007_J006_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5720


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJ6
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGCGTTACTTTAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2143_
GCCTTGCCAGCCCGCTCAGTAGGAGACTAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


D008_J006_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5721


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJ6
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGTAGGAGACTAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2144_
GCCTTGCCAGCCCGCTCAGGTGTCTACTAGACGGAAGCCCCCTGTACA
SEQ ID NO:


D009_J006_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5722


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJ6
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTG




GCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAG




AGGGTTCCATGAGAAGGGCAGGGTGTCTACTAGACGGACTGATGGCGC




GAGGGAGGC






hsIGH_2145_
GCCTTGCCAGCCCGCTCAGTGCTACACTAGACGGAGTGGGCACGGACA
SEQ ID NO:


D010_J006_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5723


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJ6
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGTGCTACACTAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2146_
GCCTTGCCAGCCCGCTCAGAACTGCCATAGACGGATGGGCACGGACAC
SEQ ID NO:


D011_J006_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5724


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJ6
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCATAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGAACTGCCATAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2147_
GCCTTGCCAGCCCGCTCAGTTGGACTGTAGACGGACGATATTTTGACT
SEQ ID NO:


D012_J006_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5725


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJ6
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGTTGGACTGTAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2148_
GCCTTGCCAGCCCGCTCAGGTAGACACTAGACGGATGGACGCGGACAC
SEQ ID NO:


D013_J006_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5726


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJ6
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGAC




AGTGGTCTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGA




GGCCAGCAGAGGGTTCCATGAGAAGGGCAGGGTAGACACTAGACGGAC




TGATGGCGCGAGGGAGGC






hsIGH_2149_
GCCTTGCCAGCCCGCTCAGCACTGTACTAGACGGATGGGCATGGACAG
SEQ ID NO:


D014_J006_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5727


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJ6
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT




CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG




CAGAGGGTTCCATGAGAAGGGCAGGCACTGTACTAGACGGACTGATGG




CGCGAGGGAGGC






hsIGH_2150_
GCCTTGCCAGCCCGCTCAGGATGATCCTAGACGGACAAGGGTGAGTCA
SEQ ID NO:


D015_J006_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5728


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJ6
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCTAGACGGA




GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG




TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA




GAAGGGCAGGGATGATCCTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2151_
GCCTTGCCAGCCCGCTCAGCGCCAATATAGACGGATGCCTCTCTCCCC
SEQ ID NO:


D016_J006_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5729


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJ6
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATATAGACGGA




GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG




TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA




GAAGGGCAGGCGCCAATATAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2152_
GCCTTGCCAGCCCGCTCAGTCAAGCCTTAGACGGAGGAGGGTGAGTCA
SEQ ID NO:


D017_J006_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5730


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJ6
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTTAGACGGA




GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG




TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA




GAAGGGCAGGTCAAGCCTTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2153_
GCCTTGCCAGCCCGCTCAGACGTGTGTTAGACGGAGGAGGGTGAGTCA
SEQ ID NO:


D018_J006_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5731


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJ6
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTTAGAC




GGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAG




GGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCA




TGAGAAGGGCAGGACGTGTGTTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2154_
GCCTTGCCAGCCCGCTCAGTCCGTCTATAGACGGAAGAGGCCTCTCCA
SEQ ID NO:


D019_J006_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5732


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJ6
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTATAGA




CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA




GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC




ATGAGAAGGGCAGGTCCGTCTATAGACGGACTGATGGCGCGAGGGAGG




C






hsIGH_2155_
GCCTTGCCAGCCCGCTCAGAAGAGCTGTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


D020_J006_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5733


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJ6
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGT




AGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTC




TGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGT




TCCATGAGAAGGGCAGGAAGAGCTGTAGACGGACTGATGGCGCGAGGG




AGGC






hsIGH_2156_
GCCTTGCCAGCCCGCTCAGTATCGCTCTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


D021_J006_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5734


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJ6
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCTAGA




CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA




GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC




ATGAGAAGGGCAGGTATCGCTCTAGACGGACTGATGGCGCGAGGGAGG




C






hsIGH_2157_
GCCTTGCCAGCCCGCTCAGTCAGATGCTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


D022_J006_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5735


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJ6
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCTAGA




CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA




GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC




ATGAGAAGGGCAGGTCAGATGCTAGACGGACTGATGGCGCGAGGGAGG




C






hsIGH_2158_
GCCTTGCCAGCCCGCTCAGGTGTAGCATAGACGGAAGGCAGCTGACTC
SEQ ID NO:


D023_J006_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5736


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJ6
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCATAGACG




GAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGG




GGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCAT




GAGAAGGGCAGGGTGTAGCATAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2159_
GCCTTGCCAGCCCGCTCAGTGGCAGTTTAGACGGAAGGCAGCTGACCC
SEQ ID NO:


D024_J006_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5737


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJ6
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTTAG




ACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTG




AGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTC




CATGAGAAGGGCAGGTGGCAGTTTAGACGGACTGATGGCGCGAGGGAG




GC






hsIGH_2160_
GCCTTGCCAGCCCGCTCAGCAGTCCAATAGACGGATGAGGTAGCTGGC
SEQ ID NO:


D025_J006_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5738


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJ6
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAATAG




ACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTG




AGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTC




CATGAGAAGGGCAGGCAGTCCAATAGACGGACTGATGGCGCGAGGGAG




GC






hsIGH_2161_
GCCTTGCCAGCCCGCTCAGTACGTACGTAGACGGACAGCTGGCCTCTG
SEQ ID NO:


D026_J006_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5739


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJ6
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGTAGACG




GAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGG




GGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCAT




GAGAAGGGCAGGTACGTACGTAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2162_
GCCTTGCCAGCCCGCTCAGAGTACCGATAGACGGAAGGGTTGAGGGCT
SEQ ID NO:


D027_J006_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5740


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJ6
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGATAGACGGAGTCG




ACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGGTCAG




GCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGAGAAG




GGCAGGAGTACCGATAGACGGACTGATGGCGCGAGGGAGGC






hsIGH_2163_
GCCTTGCCAGCCCGCTCAGGACACTCTCAGCTCTTGCCCCGGTCTCTG
SEQ ID NO:


D001_J007_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5741


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJp1
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTCAGCTCT




TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC




AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG




CTGCATTTCTGGACACTCTCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2164_
GCCTTGCCAGCCCGCTCAGTTCGGAACCAGCTCTTGGCCTCGGTCTCT
SEQ ID NO:


D002_J007_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5742


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJp1
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACCAGCTCT




TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC




AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG




CTGCATTTCTGTTCGGAACCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2165_
GCCTTGCCAGCCCGCTCAGAAGTAACGCAGCTCTTGGCCTCGGTCTCT
SEQ ID NO:


D003_J007_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5743


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJp1
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGCAGCTCT




TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC




AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG




CTGCATTTCTGAAGTAACGCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2166_
GCCTTGCCAGCCCGCTCAGGTCTCCTACAGCTCTTGTCTCTGTGGGTG
SEQ ID NO:


D004_J007_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5744


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJp1
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTACAGCTCT




TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC




AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG




CTGCATTTCTGGTCTCCTACAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2167_
GCCTTGCCAGCCCGCTCAGAGAGTGTCCAGCTCTTAGGCCTCAGGCTC
SEQ ID NO:


D005_J007_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5745


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJp1
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCCAGC




TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT




TTGCTGCATTTCTGAGAGTGTCCAGCTCTTCTGATGGCGCGAGGGAGG




C






hsIGH_2168_
GCCTTGCCAGCCCGCTCAGGTTCCGAACAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


D006_J007_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5746


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJp1
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAACAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGGTTCCGAACAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2169_
GCCTTGCCAGCCCGCTCAGCGTTACTTCAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


D007_J007_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5747


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJp1
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGCGTTACTTCAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2170_
GCCTTGCCAGCCCGCTCAGTAGGAGACCAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


D008_J007_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5748


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJp1
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGTAGGAGACCAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2171_
GCCTTGCCAGCCCGCTCAGGTGTCTACCAGCTCTTAGCCCCCTGTACA
SEQ ID NO:


D009_J007_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5749


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJp1
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTC




ACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCT




GAAGGGTTTTGCTGCATTTCTGGTGTCTACCAGCTCTTCTGATGGCGC




GAGGGAGGC






hsIGH_2172_
GCCTTGCCAGCCCGCTCAGTGCTACACCAGCTCTTGTGGGCACGGACA
SEQ ID NO:


D010_J007_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5750


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJp1
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGTGCTACACCAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2173_
GCCTTGCCAGCCCGCTCAGAACTGCCACAGCTCTTTGGGCACGGACAC
SEQ ID NO:


D011_J007_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5751


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJp1
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCACAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGAACTGCCACAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2174_
GCCTTGCCAGCCCGCTCAGTTGGACTGCAGCTCTTCGATATTTTGACT
SEQ ID NO:


D012_J007_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5752


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJp1
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGTTGGACTGCAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2175_
GCCTTGCCAGCCCGCTCAGGTAGACACCAGCTCTTTGGACGCGGACAC
SEQ ID NO:


D013_J007_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5753


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJp1
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGA




ACCCTGGTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGC




TTTAACTCTGAAGGGTTTTGCTGCATTTCTGGTAGACACCAGCTCTTC




TGATGGCGCGAGGGAGGC






hsIGH_2176_
GCCTTGCCAGCCCGCTCAGCACTGTACCAGCTCTTTGGGCATGGACAG
SEQ ID NO:


D014_J007_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5754


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJp1
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC




TCTGAAGGGTTTTGCTGCATTTCTGCACTGTACCAGCTCTTCTGATGG




CGCGAGGGAGGC






hsIGH_2177_
GCCTTGCCAGCCCGCTCAGGATGATCCCAGCTCTTCAAGGGTGAGTCA
SEQ ID NO:


D015_J007_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5755


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJp1
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCCAGCTCTT




GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC




TGCATTTCTGGATGATCCCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2178_
GCCTTGCCAGCCCGCTCAGCGCCAATACAGCTCTTTGCCTCTCTCCCC
SEQ ID NO:


D016_J007_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5756


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJp1
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATACAGCTCTT




GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC




TGCATTTCTGCGCCAATACAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2179_
GCCTTGCCAGCCCGCTCAGTCAAGCCTCAGCTCTTGGAGGGTGAGTCA
SEQ ID NO:


D017_J007_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5757


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJp1
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTCAGCTCTT




GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA




GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC




TGCATTTCTGTCAAGCCTCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2180_
GCCTTGCCAGCCCGCTCAGACGTGTGTCAGCTCTTGGAGGGTGAGTCA
SEQ ID NO:


D018_J007_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5758


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJp1
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTCAGCT




CTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCC




TCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTT




TGCTGCATTTCTGACGTGTGTCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2181_
GCCTTGCCAGCCCGCTCAGTCCGTCTACAGCTCTTAGAGGCCTCTCCA
SEQ ID NO:


D019_J007_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5759


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJp1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTACAGC




TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT




TTGCTGCATTTCTGTCCGTCTACAGCTCTTCTGATGGCGCGAGGGAGG




C






hsIGH_2182_
GCCTTGCCAGCCCGCTCAGAAGAGCTGCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


D020_J007_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5760


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJp1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGC




AGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGT




CTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGG




GTTTTGCTGCATTTCTGAAGAGCTGCAGCTCTTCTGATGGCGCGAGGG




AGGC






hsIGH_2183_
GCCTTGCCAGCCCGCTCAGTATCGCTCCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


D021_J007_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5761


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJp1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCCAGC




TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT




TTGCTGCATTTCTGTATCGCTCCAGCTCTTCTGATGGCGCGAGGGAGG




C






hsIGH_2184_
GCCTTGCCAGCCCGCTCAGTCAGATGCCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


D022_J007_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5762


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJp1
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCCAGC




TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT




TTGCTGCATTTCTGTCAGATGCCAGCTCTTCTGATGGCGCGAGGGAGG




C






hsIGH_2185_
GCCTTGCCAGCCCGCTCAGGTGTAGCACAGCTCTTAGGCAGCTGACTC
SEQ ID NO:


D023_J007_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5763


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJp1
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCACAGCTC




TTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT




CAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTT




GCTGCATTTCTGGTGTAGCACAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2186_
GCCTTGCCAGCCCGCTCAGTGGCAGTTCAGCTCTTAGGCAGCTGACCC
SEQ ID NO:


D024_J007_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5764


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJp1
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTCAG




CTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT




CCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGT




TTTGCTGCATTTCTGTGGCAGTTCAGCTCTTCTGATGGCGCGAGGGAG




GC






hsIGH_2187_
GCCTTGCCAGCCCGCTCAGCAGTCCAACAGCTCTTTGAGGTAGCTGGC
SEQ ID NO:


D025_J007_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5765


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJp1
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAACAG




CTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT




CCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGT




TTTGCTGCATTTCTGCAGTCCAACAGCTCTTCTGATGGCGCGAGGGAG




GC






hsIGH_2188_
GCCTTGCCAGCCCGCTCAGTACGTACGCAGCTCTTCAGCTGGCCTCTG
SEQ ID NO:


D026_J007_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5766


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJp1
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGCAGCTC




TTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT




CAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTT




GCTGCATTTCTGTACGTACGCAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2189_
GCCTTGCCAGCCCGCTCAGAGTACCGACAGCTCTTAGGGTTGAGGGCT
SEQ ID NO:


D027_J007_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5767


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJp1
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGACAGCTCTTGTCG




ACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGTG




AGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGCTGCA




TTTCTGAGTACCGACAGCTCTTCTGATGGCGCGAGGGAGGC






hsIGH_2190_
GCCTTGCCAGCCCGCTCAGGACACTCTGAGCGATAGCCCCGGTCTCTG
SEQ ID NO:


D001_J008_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5768


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJp2
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGAGCGAT




AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT




CAGCTTGCCAGGACACTCTGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2191_
GCCTTGCCAGCCCGCTCAGTTCGGAACGAGCGATAGGCCTCGGTCTCT
SEQ ID NO:


D002_J008_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5769


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJp2
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGAGCGAT




AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT




CAGCTTGCCAGTTCGGAACGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2192_
GCCTTGCCAGCCCGCTCAGAAGTAACGGAGCGATAGGCCTCGGTCTCT
SEQ ID NO:


D003_J008_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5770


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJp2
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGAGCGAT




AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT




CAGCTTGCCAGAAGTAACGGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2193_
GCCTTGCCAGCCCGCTCAGGTCTCCTAGAGCGATAGTCTCTGTGGGTG
SEQ ID NO:


D004_J008_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5771


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJp2
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGAGCGAT




AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC




CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT




CAGCTTGCCAGGTCTCCTAGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2194_
GCCTTGCCAGCCCGCTCAGAGAGTGTCGAGCGATAAGGCCTCAGGCTC
SEQ ID NO:


D005_J008_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5772


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJp2
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGAGC




GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT




CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG




ACTCAGCTTGCCAGAGAGTGTCGAGCGATACTGATGGCGCGAGGGAGG




C






hsIGH_2195_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


D006_J008_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5773


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJp2
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGGTTCCGAAGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2196_
GCCTTGCCAGCCCGCTCAGCGTTACTTGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


D007_J008_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5774


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJp2
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGCGTTACTTGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2197_
GCCTTGCCAGCCCGCTCAGTAGGAGACGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


D008_J008_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5775


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJp2
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGTAGGAGACGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2198_
GCCTTGCCAGCCCGCTCAGGTGTCTACGAGCGATAAGCCCCCTGTACA
SEQ ID NO:


D009_J008_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5776


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJp2
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTG




GTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCAC




TTAGGGAGACTCAGCTTGCCAGGTGTCTACGAGCGATACTGATGGCGC




GAGGGAGGC






hsIGH_2199_
GCCTTGCCAGCCCGCTCAGTGCTACACGAGCGATAGTGGGCACGGACA
SEQ ID NO:


D010_J008_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5777


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJp2
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGTGCTACACGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2200_
GCCTTGCCAGCCCGCTCAGAACTGCCAGAGCGATATGGGCACGGACAC
SEQ ID NO:


D011_J008_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5778


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJp2
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGAACTGCCAGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2201_
GCCTTGCCAGCCCGCTCAGTTGGACTGGAGCGATACGATATTTTGACT
SEQ ID NO:


D012_J008_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5779


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJp2
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGTTGGACTGGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2202_
GCCTTGCCAGCCCGCTCAGGTAGACACGAGCGATATGGACGCGGACAC
SEQ ID NO:


D013_J008_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5780


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJp2
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAG




GGAACCCTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTC




TGAGTCCACTTAGGGAGACTCAGCTTGCCAGGTAGACACGAGCGATAC




TGATGGCGCGAGGGAGGC






hsIGH_2203_
GCCTTGCCAGCCCGCTCAGCACTGTACGAGCGATATGGGCATGGACAG
SEQ ID NO:


D014_J008_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5781


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJp2
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC




CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC




CACTTAGGGAGACTCAGCTTGCCAGCACTGTACGAGCGATACTGATGG




CGCGAGGGAGGC






hsIGH_2204_
GCCTTGCCAGCCCGCTCAGGATGATCCGAGCGATACAAGGGTGAGTCA
SEQ ID NO:


D015_J008_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5782


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJp2
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGAGCGATA




GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC




TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC




AGCTTGCCAGGATGATCCGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2205_
GCCTTGCCAGCCCGCTCAGCGCCAATAGAGCGATATGCCTCTCTCCCC
SEQ ID NO:


D016_J008_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5783


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJp2
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGAGCGATA




GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC




TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC




AGCTTGCCAGCGCCAATAGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2206_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGAGCGATAGGAGGGTGAGTCA
SEQ ID NO:


D017_J008_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5784


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJp2
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGAGCGATA




GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC




TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC




AGCTTGCCAGTCAAGCCTGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2207_
GCCTTGCCAGCCCGCTCAGACGTGTGTGAGCGATAGGAGGGTGAGTCA
SEQ ID NO:


D018_J008_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5785


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJp2
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGAGCG




ATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTC




TCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGA




CTCAGCTTGCCAGACGTGTGTGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2208_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGAGCGATAAGAGGCCTCTCCA
SEQ ID NO:


D019_J008_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5786


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJp2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGAGC




GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT




CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG




ACTCAGCTTGCCAGTCCGTCTAGAGCGATACTGATGGCGCGAGGGAGG




C






hsIGH_2209_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


D020_J008_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5787


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJp2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG




AGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCAC




CGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGG




GAGACTCAGCTTGCCAGAAGAGCTGGAGCGATACTGATGGCGCGAGGG




AGGC






hsIGH_2210_
GCCTTGCCAGCCCGCTCAGTATCGCTCGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


D021_J008_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5788


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJp2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGAGC




GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT




CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG




ACTCAGCTTGCCAGTATCGCTCGAGCGATACTGATGGCGCGAGGGAGG




C






hsIGH_2211_
GCCTTGCCAGCCCGCTCAGTCAGATGCGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


D022_J008_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5789


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJp2
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGAGC




GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT




CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG




ACTCAGCTTGCCAGTCAGATGCGAGCGATACTGATGGCGCGAGGGAGG




C






hsIGH_2212_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGAGCGATAAGGCAGCTGACTC
SEQ ID NO:


D023_J008_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5790


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJp2
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGAGCGA




TAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCT




CCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGAC




TCAGCTTGCCAGGTGTAGCAGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2213_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGAGCGATAAGGCAGCTGACCC
SEQ ID NO:


D024_J008_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5791


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJp2
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGAG




CGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCG




TCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGA




GACTCAGCTTGCCAGTGGCAGTTGAGCGATACTGATGGCGCGAGGGAG




GC






hsIGH_2214_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGAGCGATATGAGGTAGCTGGC
SEQ ID NO:


D025_J008_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5792


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJp2
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGAG




CGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCG




TCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGA




GACTCAGCTTGCCAGCAGTCCAAGAGCGATACTGATGGCGCGAGGGAG




GC






hsIGH_2215_
GCCTTGCCAGCCCGCTCAGTACGTACGGAGCGATACAGCTGGCCTCTG
SEQ ID NO:


D026_J008_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5793


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJp2
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGAGCGA




TAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCT




CCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGAC




TCAGCTTGCCAGTACGTACGGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2216_
GCCTTGCCAGCCCGCTCAGAGTACCGAGAGCGATAAGGGTTGAGGGCT
SEQ ID NO:


D027_J008_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5794


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJp2
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGAGCGATAGTCG




ACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG




GTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTCAGCT




TGCCAGAGTACCGAGAGCGATACTGATGGCGCGAGGGAGGC






hsIGH_2217_
GCCTTGCCAGCCCGCTCAGGACACTCTGCATCTGAGCCCCGGTCTCTG
SEQ ID NO:


D001_J009_
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5795


IGHD1-
CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



01_IGHJp3
AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT




GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGCATCTG




AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC




GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT




CTGCTACTGCCGACACTCTGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2218_
GCCTTGCCAGCCCGCTCAGTTCGGAACGCATCTGAGGCCTCGGTCTCT
SEQ ID NO:


D002_J009_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5796


IGHD1-
ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



07_IGHJp3
AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGCATCTG




AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC




GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT




CTGCTACTGCCTTCGGAACGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2219_
GCCTTGCCAGCCCGCTCAGAAGTAACGGCATCTGAGGCCTCGGTCTCT
SEQ ID NO:


D003_J009_
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5797


IGHD1-
ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



14_IGHJp3
AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC




GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGCATCTG




AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC




GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT




CTGCTACTGCCAAGTAACGGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2220_
GCCTTGCCAGCCCGCTCAGGTCTCCTAGCATCTGAGTCTCTGTGGGTG
SEQ ID NO:


D004_J009_
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5798


IGHD1-
CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



20_IGHJp3
TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT




GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGCATCTG




AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC




GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT




CTGCTACTGCCGTCTCCTAGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2221_
GCCTTGCCAGCCCGCTCAGAGAGTGTCGCATCTGAAGGCCTCAGGCTC
SEQ ID NO:


D005_J009_
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5799


IGHD1-
TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



26_IGHJp3
AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT




GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGCAT




CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC




CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT




TTTCTGCTACTGCCAGAGTGTCGCATCTGACTGATGGCGCGAGGGAGG




C






hsIGH_2222_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


D006_J009_
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5800


IGHD2-
AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



02_IGHJp3
AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG




TTCCGAAGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCGTTCCGAAGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2223_
GCCTTGCCAGCCCGCTCAGCGTTACTTGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


D007_J009_
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5801


IGHD2-
AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



08_IGHJp3
AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC




GTTACTTGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCCGTTACTTGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2224_
GCCTTGCCAGCCCGCTCAGTAGGAGACGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


D008_J009_
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5802


IGHD2-
AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



15_IGHJp3
AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT




GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT




AGGAGACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCTAGGAGACGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2225_
GCCTTGCCAGCCCGCTCAGGTGTCTACGCATCTGAAGCCCCCTGTACA
SEQ ID NO:


D009_J009_
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5803


IGHD2-
ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



21_IGHJp3
AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT




GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT




CTACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGC




AAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGG




GCCTTTGTTTTCTGCTACTGCCGTGTCTACGCATCTGACTGATGGCGC




GAGGGAGGC






hsIGH_2226_
GCCTTGCCAGCCCGCTCAGTGCTACACGCATCTGAGTGGGCACGGACA
SEQ ID NO:


D010_J009_
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5804


IGHD3-
GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



03_IGHJp3
GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT




GCTACACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCTGCTACACGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2227_
GCCTTGCCAGCCCGCTCAGAACTGCCAGCATCTGATGGGCACGGACAC
SEQ ID NO:


D011_J009_
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5805


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



09_IGHJp3
GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG




AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA




ACTGCCAGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCAACTGCCAGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2228_
GCCTTGCCAGCCCGCTCAGTTGGACTGGCATCTGACGATATTTTGACT
SEQ ID NO:


D012_J009_
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5806


IGHD3-
GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



10_IGHJp3
GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG




GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT




TGGACTGGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCTTGGACTGGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2229_
GCCTTGCCAGCCCGCTCAGGTAGACACGCATCTGATGGACGCGGACAC
SEQ ID NO:


D013_J009_
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5807


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



16_IGHJp3
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA




TCGTTGTAGACACGCATCTGAGTCGACTACTACTACTACTACATGGAC




GTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGC




CACTCTAGGGCCTTTGTTTTCTGCTACTGCCGTAGACACGCATCTGAC




TGATGGCGCGAGGGAGGC






hsIGH_2230_
GCCTTGCCAGCCCGCTCAGCACTGTACGCATCTGATGGGCATGGACAG
SEQ ID NO:


D014_J009_
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5808


IGHD3-
AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



22_IGHJp3
GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA




AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC




ACTGTACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG




GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT




AGGGCCTTTGTTTTCTGCTACTGCCCACTGTACGCATCTGACTGATGG




CGCGAGGGAGGC






hsIGH_2231_
GCCTTGCCAGCCCGCTCAGGATGATCCGCATCTGACAAGGGTGAGTCA
SEQ ID NO:


D015_J009_
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5809


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



04_IGHJp3
ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT




GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGCATCTGA




GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG




GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC




TGCTACTGCCGATGATCCGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2232_
GCCTTGCCAGCCCGCTCAGCGCCAATAGCATCTGATGCCTCTCTCCCC
SEQ ID NO:


D016_J009_
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5810


IGHD4-
GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



11_IGHJp3
GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGCATCTGA




GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG




GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC




TGCTACTGCCCGCCAATAGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2233_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGCATCTGAGGAGGGTGAGTCA
SEQ ID NO:


D017_J009_
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5811


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



17_IGHJp3
ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT




GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGCATCTGA




GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG




GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC




TGCTACTGCCTCAAGCCTGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2234_
GCCTTGCCAGCCCGCTCAGACGTGTGTGCATCTGAGGAGGGTGAGTCA
SEQ ID NO:


D018_J009_
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5812


IGHD4-
GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



23_IGHJp3
ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT




GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGCATC




TGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACC




ACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTT




TTCTGCTACTGCCACGTGTGTGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2235_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGCATCTGAAGAGGCCTCTCCA
SEQ ID NO:


D019_J009_
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5813


IGHD5-
GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



05_IGHJp3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGCAT




CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC




CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT




TTTCTGCTACTGCCTCCGTCTAGCATCTGACTGATGGCGCGAGGGAGG




C






hsIGH_2236_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


D020_J009_
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5814


IGHD5-
CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



12_IGHJp3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG




CATCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGG




GACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTT




TGTTTTCTGCTACTGCCAAGAGCTGGCATCTGACTGATGGCGCGAGGG




AGGC






hsIGH_2237_
GCCTTGCCAGCCCGCTCAGTATCGCTCGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


D021_J009_
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5815


IGHD5-
CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



18_IGHJp3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGCAT




CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC




CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT




TTTCTGCTACTGCCTATCGCTCGCATCTGACTGATGGCGCGAGGGAGG




C






hsIGH_2238_
GCCTTGCCAGCCCGCTCAGTCAGATGCGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


D022_J009_
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5816


IGHD5-
TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



24_IGHJp3
GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT




GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGCAT




CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC




CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT




TTTCTGCTACTGCCTCAGATGCGCATCTGACTGATGGCGCGAGGGAGG




C






hsIGH_2239_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGCATCTGAAGGCAGCTGACTC
SEQ ID NO:


D023_J009_
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5817


IGHD6-
AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



06_IGHJp3
TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT




GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGCATCT




GAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCA




CGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTT




TCTGCTACTGCCGTGTAGCAGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2240_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGCATCTGAAGGCAGCTGACCC
SEQ ID NO:


D024_J009_
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5818


IGHD6-
AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



13_IGHJp3
GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT




GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGCA




TCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGA




CCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTG




TTTTCTGCTACTGCCTGGCAGTTGCATCTGACTGATGGCGCGAGGGAG




GC






hsIGH_2241_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGCATCTGATGAGGTAGCTGGC
SEQ ID NO:


D025_J009_
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5819


IGHD6-
CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



19_IGHJp3
GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT




GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGCA




TCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGA




CCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTG




TTTTCTGCTACTGCCCAGTCCAAGCATCTGACTGATGGCGCGAGGGAG




GC






hsIGH_2242_
GCCTTGCCAGCCCGCTCAGTACGTACGGCATCTGACAGCTGGCCTCTG
SEQ ID NO:


D026_J009_
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5820


IGHD6-
ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



25_IGHJp3
GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT




GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGCATCT




GAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCA




CGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTT




TCTGCTACTGCCTACGTACGGCATCTGACTGATGGCGCGAGGGAGGC






hsIGH_2243_
GCCTTGCCAGCCCGCTCAGAGTACCGAGCATCTGAAGGGTTGAGGGCT
SEQ ID NO:


D027_J009_
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5821


IGHD7-
CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



27_IGHJp3
CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT




GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGCATCTGAGTCG




ACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCA




CCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTCTGCT




ACTGCCAGTACCGAGCATCTGACTGATGGCGCGAGGGAGGC









Bias Control Sequences for hs-IGL














Name
Sequence
SEQ ID NO







hsIGL_0001_
GCCTTGCCAGCCCGCTCAGTAGGAGACGACACTCTGGTCCTGGGCCCAG 
SEQ ID NO:


V001_J001_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG 
5822


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ1_F
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTAGGAGACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0002_
GCCTTGCCAGCCCGCTCAGGTGTCTACGACACTCTCCTGGGCCCAGTCT 
SEQ ID NO:


_V002_J001_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5823


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ1_F
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGTGTCTACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0003_
GCCTTGCCAGCCCGCTCAGGTACAGTGGACACTCTGGTCCTGGGCCCAG 
SEQ ID NO:


V003_J001_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5824


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ1_F
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGTACAGTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0004_
GCCTTGCCAGCCCGCTCAGGGATCATCGACACTCTGGTCCTGGGCCCAG 
SEQ ID NO:


V004_J001_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5825


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ1_F
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGGATCATCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0005_
GCCTTGCCAGCCCGCTCAGTATTGGCGGACACTCTCCTGGGCCCAGTCT
SEQ ID NO:


V005_J001_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5826


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ1_F
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTATTGGCGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0006_
GCCTTGCCAGCCCGCTCAGAGGCTTGAGACACTCTGGTCCTGGGCCCAG
SEQ ID NO:


V006_J001_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5827


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ1_F
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTAGGCTTGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0007_
GCCTTGCCAGCCCGCTCAGACACACGTGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


V007_J001_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5828


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ1_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTACACACGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0008_
GCCTTGCCAGCCCGCTCAGTAGACGGAGACACTCTATCCTGGGCTCAGT
SEQ ID NO:


V008_J001_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5829


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ1_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTAGACGGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0009_
GCCTTGCCAGCCCGCTCAGCAGCTCTTGACACTCTGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J001_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5830


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ1_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTCAGCTCTTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0010_
GCCTTGCCAGCCCGCTCAGGAGCGATAGACACTCTATCCTGGGCTCAGT 
SEQ ID NO:


V010_J001_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
5831


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ1_F
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGAGCGATAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0011_
GCCTTGCCAGCCCGCTCAGGCATCTGAGACACTCTGTCCTGGGCCCAGT 
SEQ ID NO:


V011_J001_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5832


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ1_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGCATCTGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0012_
GCCTTGCCAGCCCGCTCAGTGCTACACGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


V012_J001_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5833


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ1_F
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTGCTACACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0013_
GCCTTGCCAGCCCGCTCAGAACTGCCAGACACTCTCTCTCCTGTAGGAT
SEQ ID NO:


V013_J001_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5834


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ1_F
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTAACTGCCAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0014_
GCCTTGCCAGCCCGCTCAGTTGGACTGGACACTCTTTTTCTTGCAGGTT
SEQ ID NO:


V014_J001_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5835


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ1_F
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTTGGACTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0015_
GCCTTGCCAGCCCGCTCAGGTAGACACGACACTCTTTGCAGTCTCTGAG
SEQ ID NO:


V015_J001_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5836


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ1_F
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGTAGACACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0016_
GCCTTGCCAGCCCGCTCAGCACTGTACGACACTCTTTGCAGGCTCTGCG 
SEQ ID NO:


V016_J001_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
5837


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ1_F
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTCACTGTACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0017_
GCCTTGCCAGCCCGCTCAGGATGATCCGACACTCTTTGCAGGCTCTGAG 
SEQ ID NO:


V017_J001_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
5838


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ1_F
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGATGATCCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0018_
GCCTTGCCAGCCCGCTCAGCGCCAATAGACACTCTTTGCAGGTTCTGTG 
SEQ ID NO:


V018_J001_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
5839


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ1_F
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTCGCCAATAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0019_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGACACTCTTTGCAGGCTCTGTG 
SEQ ID NO:


V019_J001_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
5840


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ1_F
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTCAAGCCTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0020_
GCCTTGCCAGCCCGCTCAGACGTGTGTGACACTCTCCTCTCTTGCAGGC 
SEQ ID NO:


V020_J001_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
5841


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ1_F
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTACGTGTGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0021_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGACACTCTTTGCAGGCTCTGAG 
SEQ ID NO:


V021_J001_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5842


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ1_F
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTCCGTCTAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0022_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGACACTCTCTTTTCTTGCAGTC 
SEQ ID NO:


V022_J001_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
5843


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ1_F
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTAAGAGCTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0023_
GCCTTGCCAGCCCGCTCAGTATCGCTCGACACTCTTGCTGACTCAGCCC 
SEQ ID NO:


V023_J001_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
5844


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ1_F
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTATCGCTCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0024_
GCCTTGCCAGCCCGCTCAGTCAGATGCGACACTCTCTCTCTCCCAGCCT 
SEQ ID NO:


V024_J001_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
5845


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ1_F
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTCAGATGCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0025_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGACACTCTCTCTCTCCCAGCTT 
SEQ ID NO:


V025_J001_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
5846


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ1_F
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGTGTAGCAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0026_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGACACTCTTGTGCTGACTCAGC 
SEQ ID NO:


V026_J001_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
5847


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ1_F
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTGGCAGTTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0027_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGACACTCTTGTGCTGACTCAGC 
SEQ ID NO:


V027_J001_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
5848


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ1_F
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTCAGTCCAAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0028_
GCCTTGCCAGCCCGCTCAGTACGTACGGACACTCTTGTGCTGACTCAGC 
SEQ ID NO:


V028_J001_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
5849


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ1_F
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTACGTACGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0029_
GCCTTGCCAGCCCGCTCAGAGTACCGAGACACTCTTGACTCAGCCATCT 
SEQ ID NO:


V029_J001_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
5850


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ1_F
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTAGTACCGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0030_
GCCTTGCCAGCCCGCTCAGATCCATGGGACACTCTAGGGTCCAATTCTC 
SEQ ID NO:


V030_J001_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5851


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ1_F
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTATCCATGGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0031_
GCCTTGCCAGCCCGCTCAGGTAGCAGTGACACTCTAGGGTCCAATTCCC 
SEQ ID NO:


V031_J001_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5852


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ1_F
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTGTAGCAGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0032_
GCCTTGCCAGCCCGCTCAGATCTTCGTGACACTCTGAGTGGATTCTCAG 
SEQ ID NO:


V032_J001_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
5853


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ1_F
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTATCTTCGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0033_
GCCTTGCCAGCCCGCTCAGTCCACAGTGACACTCTTGACTCAGCCACCT 
SEQ ID NO:


V033_J001_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA 
5854


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ1_F
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTTCCACAGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0034_
GCCTTGCCAGCCCGCTCAGATGACACCGACACTCTTGTCAGTGGTCCAG 
SEQ ID NO:


V034_J001_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG 
5855


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ1_F
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTATGACACCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0035_
GCCTTGCCAGCCCGCTCAGCTTCACGAGACACTCTCGTGCTGACTCAGC
SEQ ID NO:


V035_J001_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5856


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ1_F
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA




GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC




TGGAAAATCTGTTTTCTCTCTTCACGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGL_0036_
GCCTTGCCAGCCCGCTCAGTAGGAGACTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


V001_J002_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5857


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ2_F
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTAGGAGACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0037_
GCCTTGCCAGCCCGCTCAGGTGTCTACTTCGGAACCCTGGGCCCAGTCT
SEQ ID NO:


V002_J002_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5858


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ2_F
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTGTCTACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0038_
GCCTTGCCAGCCCGCTCAGGTACAGTGTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


V003_J002_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5859


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ2_F
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTACAGTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0039_
GCCTTGCCAGCCCGCTCAGGGATCATCTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


V004_J002_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5860


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ2_F
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGGATCATCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0040_
GCCTTGCCAGCCCGCTCAGTATTGGCGTTCGGAACCCTGGGCCCAGTCT
SEQ ID NO:


V005_J002_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5861


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ2_F
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTATTGGCGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0041_
GCCTTGCCAGCCCGCTCAGAGGCTTGATTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


V006_J002_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5862


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ2_F
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAGGCTTGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0042_
GCCTTGCCAGCCCGCTCAGACACACGTTTCGGAACGTCCTGGGCCCAGT 
SEQ ID NO:


V007_J002_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT 
5863


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ2_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTACACACGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0043_
GCCTTGCCAGCCCGCTCAGTAGACGGATTCGGAACATCCTGGGCTCAGT 
SEQ ID NO:


V008_J002_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT 
5864


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ2_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTAGACGGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0044_
GCCTTGCCAGCCCGCTCAGCAGCTCTTTTCGGAACGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J002_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5865


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ2_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCAGCTCTTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0045_
GCCTTGCCAGCCCGCTCAGGAGCGATATTCGGAACATCCTGGGCTCAGT 
SEQ ID NO:


V010_J002_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
5866


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ2_F
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGAGCGATATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0046_
GCCTTGCCAGCCCGCTCAGGCATCTGATTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


_V011_J002_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5867


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ2_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGCATCTGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0047_
GCCTTGCCAGCCCGCTCAGTGCTACACTTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


V012_J002_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5868


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ2_F
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTGCTACACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0048_
GCCTTGCCAGCCCGCTCAGAACTGCCATTCGGAACCTCTCCTGTAGGAT
SEQ ID NO:


V013_J002_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5869


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ2_F
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAACTGCCATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0049_
GCCTTGCCAGCCCGCTCAGTTGGACTGTTCGGAACTTTTCTTGCAGGTT
SEQ ID NO:


V014_J002_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5870


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ2_F
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTTGGACTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0050_
GCCTTGCCAGCCCGCTCAGGTAGACACTTCGGAACTTGCAGTCTCTGAG 
SEQ ID NO:


V015_J002_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5871


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ2_F
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTAGACACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0051_
GCCTTGCCAGCCCGCTCAGCACTGTACTTCGGAACTTGCAGGCTCTGCG 
SEQ ID NO:


V016_J002_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
5872


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ2_F
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCACTGTACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0052_
GCCTTGCCAGCCCGCTCAGGATGATCCTTCGGAACTTGCAGGCTCTGAG 
SEQ ID NO:


V017_J002_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
5873


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ2_F
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGATGATCCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0053_
GCCTTGCCAGCCCGCTCAGCGCCAATATTCGGAACTTGCAGGTTCTGTG 
SEQ ID NO:


V018_J002_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
5874


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ2_F
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCGCCAATATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0054_
GCCTTGCCAGCCCGCTCAGTCAAGCCTTTCGGAACTTGCAGGCTCTGTG 
SEQ ID NO:


V019_J002_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
5875


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ2_F
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCAAGCCTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0055_
GCCTTGCCAGCCCGCTCAGACGTGTGTTTCGGAACCCTCTCTTGCAGGC 
SEQ ID NO:


V020_J002_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
5876


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ2_F
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTACGTGTGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0056_
GCCTTGCCAGCCCGCTCAGTCCGTCTATTCGGAACTTGCAGGCTCTGAG 
SEQ ID NO:


V021_J002_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5877


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ2_F
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCCGTCTATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0057_
GCCTTGCCAGCCCGCTCAGAAGAGCTGTTCGGAACCTTTTCTTGCAGTC 
SEQ ID NO:


V022_J002_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
5878


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ2_F
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAAGAGCTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0058_
GCCTTGCCAGCCCGCTCAGTATCGCTCTTCGGAACTGCTGACTCAGCCC 
SEQ ID NO:


V023_J002_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
5879


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ2_F
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTATCGCTCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0059_
GCCTTGCCAGCCCGCTCAGTCAGATGCTTCGGAACCTCTCTCCCAGCCT 
SEQ ID NO:


V024_J002_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
5880


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ2_F
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCAGATGCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0060_
GCCTTGCCAGCCCGCTCAGGTGTAGCATTCGGAACCTCTCTCCCAGCTT 
SEQ ID NO:


V025_J002_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
5881


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ2_F
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTGTAGCATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0061_
GCCTTGCCAGCCCGCTCAGTGGCAGTTTTCGGAACTGTGCTGACTCAGC 
SEQ ID NO:


V026_J002_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
5882


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ2_F
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTGGCAGTTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0062_
GCCTTGCCAGCCCGCTCAGCAGTCCAATTCGGAACTGTGCTGACTCAGC 
SEQ ID NO:


V027_J002_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
5883


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ2_F
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCAGTCCAATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0063_
GCCTTGCCAGCCCGCTCAGTACGTACGTTCGGAACTGTGCTGACTCAGC 
SEQ ID NO:


V028_J002_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
5884


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ2_F
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTACGTACGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0064_
GCCTTGCCAGCCCGCTCAGAGTACCGATTCGGAACTGACTCAGCCATCT 
SEQ ID NO:


V029_J002_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
5885


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ2_F
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAGTACCGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0065_
GCCTTGCCAGCCCGCTCAGATCCATGGTTCGGAACAGGGTCCAATTCTC 
SEQ ID NO:


V030_J002_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5886


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ2_F
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATCCATGGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0066_
GCCTTGCCAGCCCGCTCAGGTAGCAGTTTCGGAACAGGGTCCAATTCCC 
SEQ ID NO:


V031_J002_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5887


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ2_F
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTAGCAGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0067_
GCCTTGCCAGCCCGCTCAGATCTTCGTTTCGGAACGAGTGGATTCTCAG 
SEQ ID NO:


V032_J002_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
5888


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ2_F
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATCTTCGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0068_
GCCTTGCCAGCCCGCTCAGTCCACAGTTTCGGAACTGACTCAGCCACCT
SEQ ID NO:


V033_J002_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5889


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ2_F
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCCACAGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0069_
GCCTTGCCAGCCCGCTCAGATGACACCTTCGGAACTGTCAGTGGTCCAG
SEQ ID NO:


V034_J002_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5890


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ2_F
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATGACACCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0070_
GCCTTGCCAGCCCGCTCAGCTTCACGATTCGGAACCGTGCTGACTCAGC
SEQ ID NO:


V035_J002_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5891


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ2_F
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCTTCACGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGL_0071_
GCCTTGCCAGCCCGCTCAGTAGGAGACAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


V001_J003_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5892


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ3_F
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTAGGAGACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0072_
GCCTTGCCAGCCCGCTCAGGTGTCTACAAGTAACGCCTGGGCCCAGTCT 
SEQ ID NO:


V002_J003_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5893


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ3_F
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTGTCTACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0073_
GCCTTGCCAGCCCGCTCAGGTACAGTGAAGTAACGGGTCCTGGGCCCAG 
SEQ ID NO:


V003_J003_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5894


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ3_F
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTACAGTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0074_
GCCTTGCCAGCCCGCTCAGGGATCATCAAGTAACGGGTCCTGGGCCCAG 
SEQ ID NO:


V004_J003_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5895


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ3_F
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGGATCATCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0075_
GCCTTGCCAGCCCGCTCAGTATTGGCGAAGTAACGCCTGGGCCCAGTCT 
SEQ ID NO:


V005_J003_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5896


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ3_F
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTATTGGCGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0076_
GCCTTGCCAGCCCGCTCAGAGGCTTGAAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


V006_J003_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5897


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ3_F
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAGGCTTGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0077_
GCCTTGCCAGCCCGCTCAGACACACGTAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


V007_J003_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5898


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ3_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTACACACGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0078_
GCCTTGCCAGCCCGCTCAGTAGACGGAAAGTAACGATCCTGGGCTCAGT
SEQ ID NO:


V008_J003_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5899


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ3_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTAGACGGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0079_
GCCTTGCCAGCCCGCTCAGCAGCTCTTAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


V009_J003_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5900


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ3_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCAGCTCTTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0080_
GCCTTGCCAGCCCGCTCAGGAGCGATAAAGTAACGATCCTGGGCTCAGT
SEQ ID NO:


V010_J003_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5901


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ3_F
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGAGCGATAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0081_
GCCTTGCCAGCCCGCTCAGGCATCTGAAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


_V011_J003_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5902


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ3_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGCATCTGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0082_
GCCTTGCCAGCCCGCTCAGTGCTACACAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


V012_J003_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5903


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ3_F
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTGCTACACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0083_
GCCTTGCCAGCCCGCTCAGAACTGCCAAAGTAACGCTCTCCTGTAGGAT 
SEQ ID NO:


V013_J003_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC 
5904


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ3_F
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAACTGCCAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0084_
GCCTTGCCAGCCCGCTCAGTTGGACTGAAGTAACGTTTTCTTGCAGGTT 
SEQ ID NO:


V014_J003_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT 
5905


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ3_F
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTTGGACTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0085_
GCCTTGCCAGCCCGCTCAGGTAGACACAAGTAACGTTGCAGTCTCTGAG 
SEQ ID NO:


V015_J003_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5906


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ3_F
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTAGACACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0086_
GCCTTGCCAGCCCGCTCAGCACTGTACAAGTAACGTTGCAGGCTCTGCG 
SEQ ID NO:


V016_J003_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
5907


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ3_F
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCACTGTACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0087_
GCCTTGCCAGCCCGCTCAGGATGATCCAAGTAACGTTGCAGGCTCTGAG 
SEQ ID NO:


V017_J003_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
5908


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ3_F
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGATGATCCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0088_
GCCTTGCCAGCCCGCTCAGCGCCAATAAAGTAACGTTGCAGGTTCTGTG 
SEQ ID NO:


V018_J003_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
5909


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ3_F
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCGCCAATAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0089_
GCCTTGCCAGCCCGCTCAGTCAAGCCTAAGTAACGTTGCAGGCTCTGTG 
SEQ ID NO:


V019_J003_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
5910


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ3_F
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCAAGCCTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0090_
GCCTTGCCAGCCCGCTCAGACGTGTGTAAGTAACGCCTCTCTTGCAGGC 
SEQ ID NO:


V020_J003_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
5911


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ3_F
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTACGTGTGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0091_
GCCTTGCCAGCCCGCTCAGTCCGTCTAAAGTAACGTTGCAGGCTCTGAG 
SEQ ID NO:


V021_J003_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5912


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ3_F
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCCGTCTAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0092_
GCCTTGCCAGCCCGCTCAGAAGAGCTGAAGTAACGCTTTTCTTGCAGTC 
SEQ ID NO:


V022_J003_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
5913


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ3_F
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAAGAGCTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0093_
GCCTTGCCAGCCCGCTCAGTATCGCTCAAGTAACGTGCTGACTCAGCCC 
SEQ ID NO:


V023_J003_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
5914


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ3_F
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTATCGCTCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0094_
GCCTTGCCAGCCCGCTCAGTCAGATGCAAGTAACGCTCTCTCCCAGCCT 
SEQ ID NO:


V024_J003_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
5915


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ3_F
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCAGATGCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0095_
GCCTTGCCAGCCCGCTCAGGTGTAGCAAAGTAACGCTCTCTCCCAGCTT 
SEQ ID NO:


V025_J003_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
5916


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ3_F
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTGTAGCAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0096_
GCCTTGCCAGCCCGCTCAGTGGCAGTTAAGTAACGTGTGCTGACTCAGC 
SEQ ID NO:


V026_J003_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
5917


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ3_F
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTGGCAGTTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0097_
GCCTTGCCAGCCCGCTCAGCAGTCCAAAAGTAACGTGTGCTGACTCAGC 
SEQ ID NO:


V027_J003_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
5918


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ3_F
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCAGTCCAAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0098_
GCCTTGCCAGCCCGCTCAGTACGTACGAAGTAACGTGTGCTGACTCAGC 
SEQ ID NO:


V028_J003_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
5919


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ3_F
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTACGTACGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0099_
GCCTTGCCAGCCCGCTCAGAGTACCGAAAGTAACGTGACTCAGCCATCT 
SEQ ID NO:


V029_J003_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
5920


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ3_F
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTAGTACCGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0100_
GCCTTGCCAGCCCGCTCAGATCCATGGAAGTAACGAGGGTCCAATTCTC 
SEQ ID NO:


V030_J003_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5921


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ3_F
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATCCATGGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0101_
GCCTTGCCAGCCCGCTCAGGTAGCAGTAAGTAACGAGGGTCCAATTCCC 
SEQ ID NO:


V031_J003_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5922


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ3_F
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTGTAGCAGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0102_
GCCTTGCCAGCCCGCTCAGATCTTCGTAAGTAACGGAGTGGATTCTCAG 
SEQ ID NO:


V032_J003_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
5923


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ3_F
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATCTTCGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0103_
GCCTTGCCAGCCCGCTCAGTCCACAGTAAGTAACGTGACTCAGCCACCT 
SEQ ID NO:


V033_J003_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA 
5924


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ3_F
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTTCCACAGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0104_
GCCTTGCCAGCCCGCTCAGATGACACCAAGTAACGTGTCAGTGGTCCAG 
SEQ ID NO:


V034_J003_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG 
5925


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ3_F
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTATGACACCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0105_
GCCTTGCCAGCCCGCTCAGCTTCACGAAAGTAACGCGTGCTGACTCAGC 
SEQ ID NO:


V035_J003_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC 
5926


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ3_F
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA




GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC




TGTTTTTGTTTGTTTCTGTCTTCACGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGL_0106_
GCCTTGCCAGCCCGCTCAGTAGGAGACGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


V001_J004_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5927


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ4_P
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTAGGAGACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0107_
GCCTTGCCAGCCCGCTCAGGTGTCTACGTCTCCTACCTGGGCCCAGTCT
SEQ ID NO:


V002_J004_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5928


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ4_P
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGTGTCTACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0108_
GCCTTGCCAGCCCGCTCAGGTACAGTGGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


V003_J004_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5929


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ4_P
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGTACAGTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0109_
GCCTTGCCAGCCCGCTCAGGGATCATCGTCTCCTAGGTCCTGGGCCCAG 
SEQ ID NO:


V004_J004_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5930


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ4_P
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGGATCATCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0110_
GCCTTGCCAGCCCGCTCAGTATTGGCGGTCTCCTACCTGGGCCCAGTCT 
SEQ ID NO:


V005_J004_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5931


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ4_P
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTATTGGCGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0111_
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTCTCCTAGGTCCTGGGCCCAG 
SEQ ID NO:


V006_J004_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG 
5932


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ4_P
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGAGGCTTGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0112_
GCCTTGCCAGCCCGCTCAGACACACGTGTCTCCTAGTCCTGGGCCCAGT 
SEQ ID NO:


V007_J004_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT 
5933


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ4_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGACACACGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0113_
GCCTTGCCAGCCCGCTCAGTAGACGGAGTCTCCTAATCCTGGGCTCAGT 
SEQ ID NO:


V008_J004_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT 
5934


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ4_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTAGACGGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0114_
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTCTCCTAGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J004_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5935


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ4_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGCAGCTCTTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0115_
GCCTTGCCAGCCCGCTCAGGAGCGATAGTCTCCTAATCCTGGGCTCAGT 
SEQ ID NO:


V010_J004_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
5936


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ4_P
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGAGCGATAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0116_
GCCTTGCCAGCCCGCTCAGGCATCTGAGTCTCCTAGTCCTGGGCCCAGT 
SEQ ID NO:


_V011_J004_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5937


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ4_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGCATCTGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0117_
GCCTTGCCAGCCCGCTCAGTGCTACACGTCTCCTAGTCCTGGGCCCAGT 
SEQ ID NO:


V012_J004_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT 
5938


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ4_P
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTGCTACACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0118_
GCCTTGCCAGCCCGCTCAGAACTGCCAGTCTCCTACTCTCCTGTAGGAT 
SEQ ID NO:


V013_J004_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC 
5939


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ4_P
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGAACTGCCAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0119_
GCCTTGCCAGCCCGCTCAGTTGGACTGGTCTCCTATTTTCTTGCAGGTT 
SEQ ID NO:


V014_J004_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT 
5940


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ4_P
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTTGGACTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0120_
GCCTTGCCAGCCCGCTCAGGTAGACACGTCTCCTATTGCAGTCTCTGAG 
SEQ ID NO:


V015_J004_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5941


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ4_P
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGTAGACACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0121_
GCCTTGCCAGCCCGCTCAGCACTGTACGTCTCCTATTGCAGGCTCTGCG 
SEQ ID NO:


V016_J004_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
5942


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ4_P
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGCACTGTACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0122_
GCCTTGCCAGCCCGCTCAGGATGATCCGTCTCCTATTGCAGGCTCTGAG 
SEQ ID NO:


V017_J004_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
5943


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ4_P
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGATGATCCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0123_
GCCTTGCCAGCCCGCTCAGCGCCAATAGTCTCCTATTGCAGGTTCTGTG 
SEQ ID NO:


V018_J004_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
5944


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ4_P
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGCGCCAATAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0124_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTCTCCTATTGCAGGCTCTGTG 
SEQ ID NO:


V019_J004_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
5945


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ4_P
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTCAAGCCTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0125_
GCCTTGCCAGCCCGCTCAGACGTGTGTGTCTCCTACCTCTCTTGCAGGC 
SEQ ID NO:


V020_J004_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
5946


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ4_P
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGACGTGTGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0126_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTCTCCTATTGCAGGCTCTGAG 
SEQ ID NO:


V021_J004_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5947


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ4_P
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTCCGTCTAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0127_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTCTCCTACTTTTCTTGCAGTC 
SEQ ID NO:


V022_J004_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
5948


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ4_P
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGAAGAGCTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0128_
GCCTTGCCAGCCCGCTCAGTATCGCTCGTCTCCTATGCTGACTCAGCCC 
SEQ ID NO:


V023_J004_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
5949


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ4_P
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTATCGCTCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0129_
GCCTTGCCAGCCCGCTCAGTCAGATGCGTCTCCTACTCTCTCCCAGCCT 
SEQ ID NO:


V024_J004_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
5950


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ4_P
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTCAGATGCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0130_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTCTCCTACTCTCTCCCAGCTT 
SEQ ID NO:


V025_J004_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
5951


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ4_P
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGTGTAGCAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0131_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTCTCCTATGTGCTGACTCAGC 
SEQ ID NO:


V026_J004_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
5952


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ4_P
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTGGCAGTTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0132_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTCTCCTATGTGCTGACTCAGC 
SEQ ID NO:


V027_J004_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
5953


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ4_P
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGCAGTCCAAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0133_
GCCTTGCCAGCCCGCTCAGTACGTACGGTCTCCTATGTGCTGACTCAGC 
SEQ ID NO:


V028_J004_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
5954


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ4_P
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTACGTACGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0134_
GCCTTGCCAGCCCGCTCAGAGTACCGAGTCTCCTATGACTCAGCCATCT 
SEQ ID NO:


V029_J004_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
5955


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ4_P
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGAGTACCGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0135_
GCCTTGCCAGCCCGCTCAGATCCATGGGTCTCCTAAGGGTCCAATTCTC 
SEQ ID NO:


V030_J004_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5956


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ4_P
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGATCCATGGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0136_
GCCTTGCCAGCCCGCTCAGGTAGCAGTGTCTCCTAAGGGTCCAATTCCC 
SEQ ID NO:


V031_J004_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5957


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ4_P
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGGTAGCAGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0137_
GCCTTGCCAGCCCGCTCAGATCTTCGTGTCTCCTAGAGTGGATTCTCAG 
SEQ ID NO:


V032_J004_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
5958


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ4_P
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGATCTTCGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0138_
GCCTTGCCAGCCCGCTCAGTCCACAGTGTCTCCTATGACTCAGCCACCT 
SEQ ID NO:


V033_J004_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA 
5959


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ4_P
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGTCCACAGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0139_
GCCTTGCCAGCCCGCTCAGATGACACCGTCTCCTATGTCAGTGGTCCAG 
SEQ ID NO:


V034_J004_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG 
5960


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ4_P
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGATGACACCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0140_
GCCTTGCCAGCCCGCTCAGCTTCACGAGTCTCCTACGTGCTGACTCAGC 
SEQ ID NO:


V035_J004_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC 
5961


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ4_P
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA




GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT




ATTCTGATTTCGATCTTTGCTTCACGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGL_0141_
GCCTTGCCAGCCCGCTCAGTAGGAGACAGAGTGTCGGTCCTGGGCCCAG 
SEQ ID NO:


V001_J005_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG 
5962


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ5_P
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTAGGAGACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0142_
GCCTTGCCAGCCCGCTCAGGTGTCTACAGAGTGTCCCTGGGCCCAGTCT 
SEQ ID NO:


V002_J005_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5963


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ5_P
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGTGTCTACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0143_
GCCTTGCCAGCCCGCTCAGGTACAGTGAGAGTGTCGGTCCTGGGCCCAG 
SEQ ID NO:


V003_J005_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5964


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ5_P
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGTACAGTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0144_
GCCTTGCCAGCCCGCTCAGGGATCATCAGAGTGTCGGTCCTGGGCCCAG 
SEQ ID NO:


V004_J005_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5965


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ5_P
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGGATCATCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0145_
GCCTTGCCAGCCCGCTCAGTATTGGCGAGAGTGTCCCTGGGCCCAGTCT 
SEQ ID NO:


V005_J005_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5966


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ5_P
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTATTGGCGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0146_
GCCTTGCCAGCCCGCTCAGAGGCTTGAAGAGTGTCGGTCCTGGGCCCAG 
SEQ ID NO:


V006_J005_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG 
5967


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ5_P
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCAGGCTTGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0147_
GCCTTGCCAGCCCGCTCAGACACACGTAGAGTGTCGTCCTGGGCCCAGT 
SEQ ID NO:


V007_J005_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT 
5968


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ5_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCACACACGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0148_
GCCTTGCCAGCCCGCTCAGTAGACGGAAGAGTGTCATCCTGGGCTCAGT 
SEQ ID NO:


V008_J005_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT 
5969


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ5_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTAGACGGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0149_
GCCTTGCCAGCCCGCTCAGCAGCTCTTAGAGTGTCGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J005_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5970


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ5_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCCAGCTCTTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0150_
GCCTTGCCAGCCCGCTCAGGAGCGATAAGAGTGTCATCCTGGGCTCAGT 
SEQ ID NO:


V010_J005_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
5971


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ5_P
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGAGCGATAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0151_
GCCTTGCCAGCCCGCTCAGGCATCTGAAGAGTGTCGTCCTGGGCCCAGT 
SEQ ID NO:


_V011_J005_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
5972


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ5_P
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGCATCTGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0152_
GCCTTGCCAGCCCGCTCAGTGCTACACAGAGTGTCGTCCTGGGCCCAGT 
SEQ ID NO:


V012_J005_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT 
5973


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ5_P
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTGCTACACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0153_
GCCTTGCCAGCCCGCTCAGAACTGCCAAGAGTGTCCTCTCCTGTAGGAT 
SEQ ID NO:


V013_J005_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC 
5974


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ5_P
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCAACTGCCAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0154_
GCCTTGCCAGCCCGCTCAGTTGGACTGAGAGTGTCTTTTCTTGCAGGTT 
SEQ ID NO:


V014_J005_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT 
5975


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ5_P
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTTGGACTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0155_
GCCTTGCCAGCCCGCTCAGGTAGACACAGAGTGTCTTGCAGTCTCTGAG 
SEQ ID NO:


V015_J005_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5976


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ5_P
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGTAGACACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0156_
GCCTTGCCAGCCCGCTCAGCACTGTACAGAGTGTCTTGCAGGCTCTGCG 
SEQ ID NO:


V016_J005_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
5977


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ5_P
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCCACTGTACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0157_
GCCTTGCCAGCCCGCTCAGGATGATCCAGAGTGTCTTGCAGGCTCTGAG 
SEQ ID NO:


V017_J005_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
5978


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ5_P
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGATGATCCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0158_
GCCTTGCCAGCCCGCTCAGCGCCAATAAGAGTGTCTTGCAGGTTCTGTG 
SEQ ID NO:


V018_J005_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
5979


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ5_P
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCCGCCAATAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0159_
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGAGTGTCTTGCAGGCTCTGTG 
SEQ ID NO:


V019_J005_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
5980


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ5_P
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTCAAGCCTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0160_
GCCTTGCCAGCCCGCTCAGACGTGTGTAGAGTGTCCCTCTCTTGCAGGC 
SEQ ID NO:


V020_J005_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
5981


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ5_P
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCACGTGTGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0161_
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGAGTGTCTTGCAGGCTCTGAG 
SEQ ID NO:


V021_J005_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
5982


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ5_P
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTCCGTCTAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0162_
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGAGTGTCCTTTTCTTGCAGTC 
SEQ ID NO:


V022_J005_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
5983


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ5_P
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCAAGAGCTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0163_
GCCTTGCCAGCCCGCTCAGTATCGCTCAGAGTGTCTGCTGACTCAGCCC 
SEQ ID NO:


V023_J005_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
5984


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ5_P
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTATCGCTCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0164_
GCCTTGCCAGCCCGCTCAGTCAGATGCAGAGTGTCCTCTCTCCCAGCCT 
SEQ ID NO:


V024_J005_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
5985


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ5_P
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTCAGATGCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0165_
GCCTTGCCAGCCCGCTCAGGTGTAGCAAGAGTGTCCTCTCTCCCAGCTT 
SEQ ID NO:


V025_J005_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
5986


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ5_P
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGTGTAGCAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0166_
GCCTTGCCAGCCCGCTCAGTGGCAGTTAGAGTGTCTGTGCTGACTCAGC 
SEQ ID NO:


V026_J005_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
5987


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ5_P
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTGGCAGTTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0167_
GCCTTGCCAGCCCGCTCAGCAGTCCAAAGAGTGTCTGTGCTGACTCAGC 
SEQ ID NO:


V027_J005_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
5988


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ5_P
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCCAGTCCAAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0168_
GCCTTGCCAGCCCGCTCAGTACGTACGAGAGTGTCTGTGCTGACTCAGC 
SEQ ID NO:


V028_J005_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
5989


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ5_P
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTACGTACGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0169_
GCCTTGCCAGCCCGCTCAGAGTACCGAAGAGTGTCTGACTCAGCCATCT 
SEQ ID NO:


V029_J005_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
5990


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ5_P
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCAGTACCGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0170_
GCCTTGCCAGCCCGCTCAGATCCATGGAGAGTGTCAGGGTCCAATTCTC 
SEQ ID NO:


V030_J005_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5991


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ5_P
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCATCCATGGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0171_
GCCTTGCCAGCCCGCTCAGGTAGCAGTAGAGTGTCAGGGTCCAATTCCC 
SEQ ID NO:


V031_J005_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
5992


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ5_P
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCGTAGCAGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0172_
GCCTTGCCAGCCCGCTCAGATCTTCGTAGAGTGTCGAGTGGATTCTCAG 
SEQ ID NO:


V032_J005_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
5993


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ5_P
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCATCTTCGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0173_
GCCTTGCCAGCCCGCTCAGTCCACAGTAGAGTGTCTGACTCAGCCACCT 
SEQ ID NO:


V033_J005_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA 
5994


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ5_P
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCTCCACAGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0174_
GCCTTGCCAGCCCGCTCAGATGACACCAGAGTGTCTGTCAGTGGTCCAG 
SEQ ID NO:


V034_J005_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG 
5995


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ5_P
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCATGACACCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0175_
GCCTTGCCAGCCCGCTCAGCTTCACGAAGAGTGTCCGTGCTGACTCAGC 
SEQ ID NO:


V035_J005_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC 
5996


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ5_P
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA




GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA




TTTTCTGCTGCTTTTGTTCCTTCACGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGL_0176_
GCCTTGCCAGCCCGCTCAGTAGGAGACGTTCCGAAGGTCCTGGGCCCAG 
SEQ ID NO:


V001_J006_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG 
5997


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ6_F
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTAGGAGACGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0177_
GCCTTGCCAGCCCGCTCAGGTGTCTACGTTCCGAACCTGGGCCCAGTCT 
SEQ ID NO:


V002_J006_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA 
5998


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ6_F
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGTGTCTACGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0178_
GCCTTGCCAGCCCGCTCAGGTACAGTGGTTCCGAAGGTCCTGGGCCCAG 
SEQ ID NO:


V003_J006_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
5999


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ6_F
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGTACAGTGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0179_
GCCTTGCCAGCCCGCTCAGGGATCATCGTTCCGAAGGTCCTGGGCCCAG 
SEQ ID NO:


V004_J006_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG 
6000


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ6_F
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGGATCATCGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0180_
GCCTTGCCAGCCCGCTCAGTATTGGCGGTTCCGAACCTGGGCCCAGTCT
SEQ ID NO:


V005_J006_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6001


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ6_F
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTATTGGCGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0181_
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTTCCGAAGGTCCTGGGCCCAG
SEQ ID NO:


V006_J006_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
6002


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ6_F
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTAGGCTTGAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0182_
GCCTTGCCAGCCCGCTCAGACACACGTGTTCCGAAGTCCTGGGCCCAGT
SEQ ID NO:


V007_J006_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
6003


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ6_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTACACACGTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0183_
GCCTTGCCAGCCCGCTCAGTAGACGGAGTTCCGAAATCCTGGGCTCAGT
SEQ ID NO:


V008_J006_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
6004


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ6_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTAGACGGAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0184_
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTTCCGAAGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J006_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
6005


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ6_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTCAGCTCTTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0185_
GCCTTGCCAGCCCGCTCAGGAGCGATAGTTCCGAAATCCTGGGCTCAGT 
SEQ ID NO:


V010_J006_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
6006


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ6_F
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGAGCGATAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0186_
GCCTTGCCAGCCCGCTCAGGCATCTGAGTTCCGAAGTCCTGGGCCCAGT 
SEQ ID NO:


V011_J006_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
6007


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ6_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGCATCTGAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0187_
GCCTTGCCAGCCCGCTCAGTGCTACACGTTCCGAAGTCCTGGGCCCAGT 
SEQ ID NO:


V012_J006_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT 
6008


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ6_F
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTGCTACACGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0188_
GCCTTGCCAGCCCGCTCAGAACTGCCAGTTCCGAACTCTCCTGTAGGAT
SEQ ID NO:


V013_J006_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
6009


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ6_F
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTAACTGCCAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0189_
GCCTTGCCAGCCCGCTCAGTTGGACTGGTTCCGAATTTTCTTGCAGGTT
SEQ ID NO:


V014_J006_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
6010


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ6_F
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTTGGACTGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0190_
GCCTTGCCAGCCCGCTCAGGTAGACACGTTCCGAATTGCAGTCTCTGAG
SEQ ID NO:


V015_J006_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
6011


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ6_F
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGTAGACACGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0191_
GCCTTGCCAGCCCGCTCAGCACTGTACGTTCCGAATTGCAGGCTCTGCG 
SEQ ID NO:


V016_J006_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
6012


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ6_F
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTCACTGTACGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0192_
GCCTTGCCAGCCCGCTCAGGATGATCCGTTCCGAATTGCAGGCTCTGAG 
SEQ ID NO:


V017_J006_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
6013


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ6_F
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGATGATCCGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0193_
GCCTTGCCAGCCCGCTCAGCGCCAATAGTTCCGAATTGCAGGTTCTGTG 
SEQ ID NO:


V018_J006_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
6014


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ6_F
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTCGCCAATAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0194_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTTCCGAATTGCAGGCTCTGTG 
SEQ ID NO:


V019_J006_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
6015


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ6_F
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTCAAGCCTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0195_
GCCTTGCCAGCCCGCTCAGACGTGTGTGTTCCGAACCTCTCTTGCAGGC 
SEQ ID NO:


V020_J006_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
6016


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ6_F
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTACGTGTGTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0196_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTTCCGAATTGCAGGCTCTGAG 
SEQ ID NO:


V021_J006_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
6017


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ6_F
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTCCGTCTAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0197_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTTCCGAACTTTTCTTGCAGTC 
SEQ ID NO:


V022_J006_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
6018


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ6_F
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTAAGAGCTGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0198_
GCCTTGCCAGCCCGCTCAGTATCGCTCGTTCCGAATGCTGACTCAGCCC 
SEQ ID NO:


V023_J006_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
6019


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ6_F
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTATCGCTCGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0199_
GCCTTGCCAGCCCGCTCAGTCAGATGCGTTCCGAACTCTCTCCCAGCCT 
SEQ ID NO:


V024_J006_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
6020


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ6_F
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTCAGATGCGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0200_
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTTCCGAACTCTCTCCCAGCTT 
SEQ ID NO:


V025_J006_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
6021


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ6_F
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGTGTAGCAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0201_
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTTCCGAATGTGCTGACTCAGC 
SEQ ID NO:


V026_J006_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
6022


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ6_F
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTGGCAGTTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0202_
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTTCCGAATGTGCTGACTCAGC 
SEQ ID NO:


V027_J006_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
6023


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ6_F
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTCAGTCCAAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0203_
GCCTTGCCAGCCCGCTCAGTACGTACGGTTCCGAATGTGCTGACTCAGC 
SEQ ID NO:


V028_J006_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
6024


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ6_F
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTACGTACGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0204_
GCCTTGCCAGCCCGCTCAGAGTACCGAGTTCCGAATGACTCAGCCATCT 
SEQ ID NO:


V029_J006_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
6025


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ6_F
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTAGTACCGAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0205_
GCCTTGCCAGCCCGCTCAGATCCATGGGTTCCGAAAGGGTCCAATTCTC 
SEQ ID NO:


V030_J006_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
6026


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ6_F
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTATCCATGGGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0206_
GCCTTGCCAGCCCGCTCAGGTAGCAGTGTTCCGAAAGGGTCCAATTCCC 
SEQ ID NO:


V031_J006_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
6027


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ6_F
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTGTAGCAGTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0207_
GCCTTGCCAGCCCGCTCAGATCTTCGTGTTCCGAAGAGTGGATTCTCAG 
SEQ ID NO:


V032_J006_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
6028


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ6_F
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTATCTTCGTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0208_
GCCTTGCCAGCCCGCTCAGTCCACAGTGTTCCGAATGACTCAGCCACCT 
SEQ ID NO:


V033_J006_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA 
6029


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ6_F
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTTCCACAGTGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0209_
GCCTTGCCAGCCCGCTCAGATGACACCGTTCCGAATGTCAGTGGTCCAG 
SEQ ID NO:


V034_J006_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG 
6030


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ6_F
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTATGACACCGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0210_
GCCTTGCCAGCCCGCTCAGCTTCACGAGTTCCGAACGTGCTGACTCAGC
SEQ ID NO:


V035_J006_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
6031


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ6_F
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA




GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC




GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG




ACTTTTCTGTCCTTTCTGTCTTCACGAGTTCCGAACTGATGGCGCGAGG




GAGGC






hsIGL_0211_
GCCTTGCCAGCCCGCTCAGTAGGAGACCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


V001_J007_
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
6032


IGLV01-
TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



36_IGLJ7_F
AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT




TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA




GACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTAGGAGACCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0212_
GCCTTGCCAGCCCGCTCAGGTGTCTACCGTTACTTCCTGGGCCCAGTCT
SEQ ID NO:


V002_J007_
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6033


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



40_IGLJ7_F
ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT




GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA




TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC




TACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGTGTCTACCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0213_
GCCTTGCCAGCCCGCTCAGGTACAGTGCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


V003_J007_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
6034


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



44_IGLJ7_F
AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA




GTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGTACAGTGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0214_
GCCTTGCCAGCCCGCTCAGGGATCATCCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


V004_J007_
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
6035


IGLV01-
TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



47_IGLJ7_F
ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT




AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA




TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC




ATCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGGATCATCCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0215_
GCCTTGCCAGCCCGCTCAGTATTGGCGCGTTACTTCCTGGGCCCAGTCT
SEQ ID NO:


V005_J007_
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6036


IGLV01-
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



50-
ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



ORF_IGLJ7_F
GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA




AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA




TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG




GCGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTATTGGCGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0216_
GCCTTGCCAGCCCGCTCAGAGGCTTGACGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


V006_J007_
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
6037


IGLV01-
TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



51_IGLJ7_F
ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT




GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA




AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA




CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT




TGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGAGGCTTGACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0217_
GCCTTGCCAGCCCGCTCAGACACACGTCGTTACTTGTCCTGGGCCCAGT 
SEQ ID NO:


V007_J007_
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT 
6038


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



08_IGLJ7_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA




CGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGACACACGTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0218_
GCCTTGCCAGCCCGCTCAGTAGACGGACGTTACTTATCCTGGGCTCAGT 
SEQ ID NO:


V008_J007_
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT 
6039


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



11_IGLJ7_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC




GGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTAGACGGACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0219_
GCCTTGCCAGCCCGCTCAGCAGCTCTTCGTTACTTGTCCTGGGCCCAGT 
SEQ ID NO:


V009_J007_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT 
6040


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



14_IGLJ7_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT




CTTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGCAGCTCTTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0220_
GCCTTGCCAGCCCGCTCAGGAGCGATACGTTACTTATCCTGGGCTCAGT 
SEQ ID NO:


V010_J007_
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT 
6041


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



18_IGLJ7_F
GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT




ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC




CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG




ATACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGAGCGATACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0221_
GCCTTGCCAGCCCGCTCAGGCATCTGACGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


V011_J007_
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
6042


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



23_IGLJ7_F
GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT




ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC




CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG




GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC




TGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGCATCTGACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0222_
GCCTTGCCAGCCCGCTCAGTGCTACACCGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


V012_J007_
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
6043


IGLV02-
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



33-
GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ORF_IGLJ7_F
ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC




CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG




GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA




CACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTGCTACACCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0223_
GCCTTGCCAGCCCGCTCAGAACTGCCACGTTACTTCTCTCCTGTAGGAT
SEQ ID NO:


V013_J007_
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
6044


IGLV03-
AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



01_IGLJ7_F
TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA




TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT




ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG




CCACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGAACTGCCACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0224_
GCCTTGCCAGCCCGCTCAGTTGGACTGCGTTACTTTTTTCTTGCAGGTT
SEQ ID NO:


V014_J007_
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
6045


IGLV03-
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



09-
AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



FP_IGLJ7_F
TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG




CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC




GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA




CTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTTGGACTGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0225_
GCCTTGCCAGCCCGCTCAGGTAGACACCGTTACTTTTGCAGTCTCTGAG 
SEQ ID NO:


V015_J007_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
6046


IGLV03-
AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



10_IGLJ7_F
TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT




GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA




GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA




TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA




CACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGTAGACACCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0226_
GCCTTGCCAGCCCGCTCAGCACTGTACCGTTACTTTTGCAGGCTCTGCG 
SEQ ID NO:


V016_J007_
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC 
6047


IGLV03-
AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



12_IGLJ7_F
GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT




AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA




TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG




TACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGCACTGTACCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0227_
GCCTTGCCAGCCCGCTCAGGATGATCCCGTTACTTTTGCAGGCTCTGAG 
SEQ ID NO:


V017_J007_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC 
6048


IGLV03-
AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



16_IGLJ7_F
TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT




AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA




CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA




TCCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGATGATCCCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0228_
GCCTTGCCAGCCCGCTCAGCGCCAATACGTTACTTTTGCAGGTTCTGTG 
SEQ ID NO:


V018_J007_
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC 
6049


IGLV03-
AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



19_IGLJ7_F
AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT




GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA




GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA




TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA




ATACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGCGCCAATACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0229_
GCCTTGCCAGCCCGCTCAGTCAAGCCTCGTTACTTTTGCAGGCTCTGTG 
SEQ ID NO:


V019_J007_
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA 
6050


IGLV03-
AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



21_IGLJ7_F
GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT




TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA




TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG




CCTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTCAAGCCTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0230_
GCCTTGCCAGCCCGCTCAGACGTGTGTCGTTACTTCCTCTCTTGCAGGC 
SEQ ID NO:


V020_J007_
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC 
6051


IGLV03-
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



22-
TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



FP_IGLJ7_F
ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG




GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC




CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG




TGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGACGTGTGTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0231_
GCCTTGCCAGCCCGCTCAGTCCGTCTACGTTACTTTTGCAGGCTCTGAG 
SEQ ID NO:


V021_J007_
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC 
6052


IGLV03-
AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



25_IGLJ7_F
TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT




AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA




GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA




TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT




CTACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTCCGTCTACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0232_
GCCTTGCCAGCCCGCTCAGAAGAGCTGCGTTACTTCTTTTCTTGCAGTC 
SEQ ID NO:


V022_J007_
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC 
6053


IGLV03-
CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



27_IGLJ7_F
ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG




ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG




GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT




TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG




CTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGAAGAGCTGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0233_
GCCTTGCCAGCCCGCTCAGTATCGCTCCGTTACTTTGCTGACTCAGCCC 
SEQ ID NO:


V023_J007_
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC 
6054


IGLV04-
TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



03_IGLJ7_F
AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC




AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG




CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA




GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG




CTCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTATCGCTCCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0234_
GCCTTGCCAGCCCGCTCAGTCAGATGCCGTTACTTCTCTCTCCCAGCCT 
SEQ ID NO:


V024_J007_
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA 
6055


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



60_IGLJ7_F
GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA




GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT




TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA




TGCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTCAGATGCCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0235_
GCCTTGCCAGCCCGCTCAGGTGTAGCACGTTACTTCTCTCTCCCAGCTT 
SEQ ID NO:


V025_J007_
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA 
6056


IGLV04-
AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



69_IGLJ7_F
GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC




AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG




GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC




TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA




GCACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGTGTAGCACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0236_
GCCTTGCCAGCCCGCTCAGTGGCAGTTCGTTACTTTGTGCTGACTCAGC 
SEQ ID NO:


V026_J007_
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC 
6057


IGLV05-
CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



37_IGLJ7_F
CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT




CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA




GTTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTGGCAGTTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0237_
GCCTTGCCAGCCCGCTCAGCAGTCCAACGTTACTTTGTGCTGACTCAGC 
SEQ ID NO:


V027_J007_
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC 
6058


IGLV05-
CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



39_IGLJ7_F
CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT




GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC




CAACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGCAGTCCAACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0238_
GCCTTGCCAGCCCGCTCAGTACGTACGCGTTACTTTGTGCTGACTCAGC 
SEQ ID NO:


V028_J007_
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC 
6059


IGLV05-
CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



45_IGLJ7_F
CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT




CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA




AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT




GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT




ACGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTACGTACGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0239_
GCCTTGCCAGCCCGCTCAGAGTACCGACGTTACTTTGACTCAGCCATCT 
SEQ ID NO:


V029_J007_
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA 
6060


IGLV05-
GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



52_IGLJ7_F
GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT




AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG




CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA




TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC




CGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGAGTACCGACGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0240_
GCCTTGCCAGCCCGCTCAGATCCATGGCGTTACTTAGGGTCCAATTCTC 
SEQ ID NO:


V030_J007_
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
6061


IGLV07-
AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



43_IGLJ7_F
TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA




TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT




GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA




TGGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGATCCATGGCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0241_
GCCTTGCCAGCCCGCTCAGGTAGCAGTCGTTACTTAGGGTCCAATTCCC 
SEQ ID NO:


V031_J007_
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC 
6062


IGLV07-
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



46-
TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



FP_IGLJ7_F
TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG




CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT




GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC




AGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGGTAGCAGTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0242_
GCCTTGCCAGCCCGCTCAGATCTTCGTCGTTACTTGAGTGGATTCTCAG 
SEQ ID NO:


V032_J007_
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG 
6063


IGLV08-
TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



61_IGLJ7_F
CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC




TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT




CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA




TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT




CGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGATCTTCGTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0243_
GCCTTGCCAGCCCGCTCAGTCCACAGTCGTTACTTTGACTCAGCCACCT 
SEQ ID NO:


V033_J007_
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
6064


IGLV09-
GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



49_IGLJ7_F
GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA




TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC




TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA




CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC




AGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGTCCACAGTCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0244_
GCCTTGCCAGCCCGCTCAGATGACACCCGTTACTTTGTCAGTGGTCCAG
SEQ ID NO:


V034_J007_
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
6065


IGLV10-
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



54-
AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



FP_IGLJ7_F
AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA




GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA




CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC




ACCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGATGACACCCGTTACTTCTGATGGCGCGAGG




GAGGC






hsIGL_0245_
GCCTTGCCAGCCCGCTCAGCTTCACGACGTTACTTCGTGCTGACTCAGC
SEQ ID NO:


V035_J007_
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
6066


IGLV11-
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



55-
CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



ORF_IGLJ7
CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



F
GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT




GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA




CGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC




GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG




GGAGTTTTTCCCTTTCCTGCTTCACGACGTTACTTCTGATGGCGCGAGG




GAGGC









Bias Control Sequences for hs-IgK














Name
Sequence
SEQ ID NO







hsIGK_0001_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V001_J001_
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT 
6067


IGKV1-05-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



F_IGKJ1
GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC




GAAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGTTCCGAAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0002_
GCCTTGCCAGCCCGCTCAGCGTTACTTGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V002_J001_
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6068


IGKV1-06-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ1
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA




CTTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGACGTTACTTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0003_
GCCTTGCCAGCCCGCTCAGTAGGAGACGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V003_J001_
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT 
6069


IGKV1-08-
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ1
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA




GACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATAGGAGACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0004_
GCCTTGCCAGCCCGCTCAGGTGTCTACGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V004_J001_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT 
6070


IGKV1-09-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



F_IGKJ1
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC




TACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGTGTCTACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0005_
GCCTTGCCAGCCCGCTCAGGTACAGTGGACACTCTCCAATCTCAGGTTC 
SEQ ID NO:


V005_J001_
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT 
6071


IGKV1-12-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ1
GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA




GTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGTACAGTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0006_
GCCTTGCCAGCCCGCTCAGGGATCATCGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V006_J001_
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6072


IGKV1-13-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



FP_IGKJ1
GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT




GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC




ATCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGGATCATCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0007_
GCCTTGCCAGCCCGCTCAGTATTGGCGGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V007_J001_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT 
6073


IGKV1-16-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



F_IGKJ1
ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG




GCGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATATTGGCGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0008_
GCCTTGCCAGCCCGCTCAGAGGCTTGAGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V008_J001_
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6074


IGKV1-17-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ1
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT




TGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAAGGCTTGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0009_
GCCTTGCCAGCCCGCTCAGACACACGTGACACTCTCTAATATCAGATAC 
SEQ ID NO:


V009_J001_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6075


IGKV1-27-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



F_IGKJ1
ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA




CGTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAACACACGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0010_
GCCTTGCCAGCCCGCTCAGTAGACGGAGACACTCTCTAATCGCAGGTGC 
SEQ ID NO:


V010_J001_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6076


IGKV1-33-
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



F_IGKJ1
ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT




GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC




CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC




GGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATAGACGGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0011_
GCCTTGCCAGCCCGCTCAGCAGCTCTTGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V011_J001_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6077


IGKV1-37-
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



O_IGKJ1
GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT




CTTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGACAGCTCTTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0012_
GCCTTGCCAGCCCGCTCAGGAGCGATAGACACTCTCCAATCTCAGGTGC 
SEQ ID NO:


V012_J001_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6078


IGKV1-39-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



FP_IGKJ1
GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC




CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG




ATAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGAGCGATAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0013_
GCCTTGCCAGCCCGCTCAGGCATCTGAGACACTCTCCAATCTCAGGTAC 
SEQ ID NO:


V013_J001_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6079


IGKV1-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



NL1-
ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



F_IGKJ1
GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT




GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC




TGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGCATCTGAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0014_
GCCTTGCCAGCCCGCTCAGTGCTACACGACACTCTAGTGGGGATATTGT 
SEQ ID NO:


V014_J001_
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC 
6080


IGKV2-24-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



F_IGKJ1
CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT




AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT




GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG




CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA




CACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATGCTACACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0015_
GCCTTGCCAGCCCGCTCAGAACTGCCAGACACTCTAGTGGGGATATTGT 
SEQ ID NO:


V015_J001_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC 
6081


IGKV2-28-
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



F_IGKJ1
ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT




GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG




CCAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAAACTGCCAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0016_
GCCTTGCCAGCCCGCTCAGTTGGACTGGACACTCTAGTGCGGATATTGT 
SEQ ID NO:


V016_J001_
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC 
6082


IGKV2-29-
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



FP_IGKJ1
CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT




GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT




GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA




CTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATTGGACTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0017_
GCCTTGCCAGCCCGCTCAGGTAGACACGACACTCTAGTGGGGATGTTGT 
SEQ ID NO:


V017_J001_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC 
6083


IGKV2-30-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



F_IGKJ1
CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT




AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA




CACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGTAGACACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0018_
GCCTTGCCAGCCCGCTCAGCACTGTACGACACTCTGAGGATATTGTGAT 
SEQ ID NO:


V018_J001_
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC 
6084


IGKV2-40-
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



F_IGKJ1
CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG




TACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGACACTGTACGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0019_
GCCTTGCCAGCCCGCTCAGGATGATCCGACACTCTATCTCAGATACCAC 
SEQ ID NO:


V019_J001_
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA 
6085


IGKV3-07-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ1
GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA




TCCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAGATGATCCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0020_
GCCTTGCCAGCCCGCTCAGCGCCAATAGACACTCTCCAATTTCAGATAC 
SEQ ID NO:


V020_J001_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6086


IGKV3-11-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ1
GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA




ATAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGACGCCAATAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0021_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGACACTCTCCAATTTCAGATAC 
SEQ ID NO:


V021_J001_
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT 
6087


IGKV3-15-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ1
GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG




CCTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATCAAGCCTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0022_
GCCTTGCCAGCCCGCTCAGACGTGTGTGACACTCTATCTCAGATACCAC 
SEQ ID NO:


V022_J001_
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA 
6088


IGKV3-20-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ1
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC




CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG




TGTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAACGTGTGTGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0023_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGACACTCTCCAATTTCAGATAC 
SEQ ID NO:


V023_J001_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6089


IGKV3-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



NL4-
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



FNG_IGKJ1
CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT




CTAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATCCGTCTAGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0024_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGACACTCTGGGGACATCGTGAT 
SEQ ID NO:


V024_J001_
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC 
6090


IGKV4-01-
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



F_IGKJ1
ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT




CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT




GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG




CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG




CTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGAAAGAGCTGGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0025_
GCCTTGCCAGCCCGCTCAGTATCGCTCGACACTCTCCATAATCAGATAC 
SEQ ID NO:


V025_J001_
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT 
6091


IGKV5-02-
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



F_IGKJ1
ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT




TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT




GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT




CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG




CTCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA




CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT




CCCTGTGTCTATGAAGTGATATCGCTCGACACTCTCTGATGGCGCGAGG




GAGGC






hsIGK_0026_
GCCTTGCCAGCCCGCTCAGGTTCCGAATTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V001_J002_
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT 
6092


IGKV1-05-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



F_IGKJ2
GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC




GAATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGTTCCGAATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0027_
GCCTTGCCAGCCCGCTCAGCGTTACTTTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V002_J002_
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6093


IGKV1-06-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ2
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA




CTTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGCGTTACTTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0028_
GCCTTGCCAGCCCGCTCAGTAGGAGACTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V003_J002_
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT 
6094


IGKV1-08-
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ2
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA




GACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTAGGAGACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0029_
GCCTTGCCAGCCCGCTCAGGTGTCTACTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V004_J002_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT 
6095


IGKV1-09-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



F_IGKJ2
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC




TACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGTGTCTACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0030_
GCCTTGCCAGCCCGCTCAGGTACAGTGTTCGGAACCCAATCTCAGGTTC 
SEQ ID NO:


V005_J002_
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT 
6096


IGKV1-12-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ2
GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA




GTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGTACAGTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0031_
GCCTTGCCAGCCCGCTCAGGGATCATCTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V006_J002_
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6097


IGKV1-13-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



FP_IGKJ2
GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT




GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC




ATCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGGATCATCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0032_
GCCTTGCCAGCCCGCTCAGTATTGGCGTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V007_J002_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT 
6098


IGKV1-16-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



F_IGKJ2
ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG




GCGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTATTGGCGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0033_
GCCTTGCCAGCCCGCTCAGAGGCTTGATTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V008_J002_
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6099


IGKV1-17-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ2
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT




TGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGAGGCTTGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0034_
GCCTTGCCAGCCCGCTCAGACACACGTTTCGGAACCTAATATCAGATAC 
SEQ ID NO:


V009_J002_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6100


IGKV1-27-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



F_IGKJ2
ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA




CGTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGACACACGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0035_
GCCTTGCCAGCCCGCTCAGTAGACGGATTCGGAACCTAATCGCAGGTGC 
SEQ ID NO:


V010_J002_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6101


IGKV1-33-
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



F_IGKJ2
ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT




GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC




CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC




GGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTAGACGGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0036_
GCCTTGCCAGCCCGCTCAGCAGCTCTTTTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V011_J002_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6102


IGKV1-37-
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



O_IGKJ2
GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT




CTTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGCAGCTCTTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0037_
GCCTTGCCAGCCCGCTCAGGAGCGATATTCGGAACCCAATCTCAGGTGC 
SEQ ID NO:


V012_J002_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6103


IGKV1-39-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



FP_IGKJ2
GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC




CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG




ATATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGAGCGATATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0038_
GCCTTGCCAGCCCGCTCAGGCATCTGATTCGGAACCCAATCTCAGGTAC 
SEQ ID NO:


V013_J002_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6104


IGKV1-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



NL1-
ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



F_IGKJ2
GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT




GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC




TGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGCATCTGATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0039_
GCCTTGCCAGCCCGCTCAGTGCTACACTTCGGAACAGTGGGGATATTGT 
SEQ ID NO:


V014_J002_
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC 
6105


IGKV2-24-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



F_IGKJ2
CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT




AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT




GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG




CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA




CACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTGCTACACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0040_
GCCTTGCCAGCCCGCTCAGAACTGCCATTCGGAACAGTGGGGATATTGT 
SEQ ID NO:


V015_J002_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC 
6106


IGKV2-28-
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



F_IGKJ2
ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT




GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG




CCATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGAACTGCCATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0041_
GCCTTGCCAGCCCGCTCAGTTGGACTGTTCGGAACAGTGCGGATATTGT 
SEQ ID NO:


V016_J002_
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC 
6107


IGKV2-29-
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



FP_IGKJ2
CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT




GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT




GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA




CTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTTGGACTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0042_
GCCTTGCCAGCCCGCTCAGGTAGACACTTCGGAACAGTGGGGATGTTGT 
SEQ ID NO:


V017_J002_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC 
6108


IGKV2-30-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



F_IGKJ2
CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT




AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA




CACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGTAGACACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0043_
GCCTTGCCAGCCCGCTCAGCACTGTACTTCGGAACGAGGATATTGTGAT 
SEQ ID NO:


V018_J002_
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC 
6109


IGKV2-40-
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



F_IGKJ2
CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG




TACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGCACTGTACTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0044_
GCCTTGCCAGCCCGCTCAGGATGATCCTTCGGAACATCTCAGATACCAC 
SEQ ID NO:


V019_J002_
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA 
6110


IGKV3-07-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ2
GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA




TCCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGGATGATCCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0045_
GCCTTGCCAGCCCGCTCAGCGCCAATATTCGGAACCCAATTTCAGATAC 
SEQ ID NO:


V020_J002_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6111


IGKV3-11-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ2
GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA




ATATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGCGCCAATATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0046_
GCCTTGCCAGCCCGCTCAGTCAAGCCTTTCGGAACCCAATTTCAGATAC 
SEQ ID NO:


V021_J002_
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT 
6112


IGKV3-15-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ2
GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG




CCTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTCAAGCCTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0047_
GCCTTGCCAGCCCGCTCAGACGTGTGTTTCGGAACATCTCAGATACCAC 
SEQ ID NO:


V022_J002_
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA 
6113


IGKV3-20-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ2
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC




CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG




TGTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGACGTGTGTTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0048_
GCCTTGCCAGCCCGCTCAGTCCGTCTATTCGGAACCCAATTTCAGATAC 
SEQ ID NO:


V023_J002_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6114


IGKV3-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



NL4-
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



FNG_IGKJ2
CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT




CTATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTCCGTCTATTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0049_
GCCTTGCCAGCCCGCTCAGAAGAGCTGTTCGGAACGGGGACATCGTGAT 
SEQ ID NO:


V024_J002_
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC 
6115


IGKV4-01-
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



F_IGKJ2
ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT




CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT




GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG




CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG




CTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGAAGAGCTGTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0050_
GCCTTGCCAGCCCGCTCAGTATCGCTCTTCGGAACCCATAATCAGATAC 
SEQ ID NO:


V025_J002_
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT 
6116


IGKV5-02-
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



F_IGKJ2
ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT




TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT




GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT




CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG




CTCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA




ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC




TTTGTGTTCCTTTGTGTGGTATCGCTCTTCGGAACCTGATGGCGCGAGG




GAGGC






hsIGK_0051_
GCCTTGCCAGCCCGCTCAGGTTCCGAAAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V001_J003_
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT 
6117


IGKV1-05-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



F_IGKJ3
GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC




GAAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGTTCCGAAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0052_
GCCTTGCCAGCCCGCTCAGCGTTACTTAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V002_J003_
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6118


IGKV1-06-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ3
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA




CTTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGCGTTACTTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0053_
GCCTTGCCAGCCCGCTCAGTAGGAGACAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V003_J003_
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT 
6119


IGKV1-08-
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ3
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA




GACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTAGGAGACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0054_
GCCTTGCCAGCCCGCTCAGGTGTCTACAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V004_J003_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT 
6120


IGKV1-09-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



F_IGKJ3
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC




TACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGTGTCTACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0055_
GCCTTGCCAGCCCGCTCAGGTACAGTGAAGTAACGCCAATCTCAGGTTC 
SEQ ID NO:


V005_J003_
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT 
6121


IGKV1-12-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ3
GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA




GTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGTACAGTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0056_
GCCTTGCCAGCCCGCTCAGGGATCATCAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V006_J003_
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6122


IGKV1-13-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



FP_IGKJ3
GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT




GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC




ATCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGGATCATCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0057_
GCCTTGCCAGCCCGCTCAGTATTGGCGAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V007_J003_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT 
6123


IGKV1-16-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



F_IGKJ3
ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG




GCGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTATTGGCGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0058_
GCCTTGCCAGCCCGCTCAGAGGCTTGAAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V008_J003_
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6124


IGKV1-17-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ3
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT




TGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGAGGCTTGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0059_
GCCTTGCCAGCCCGCTCAGACACACGTAAGTAACGCTAATATCAGATAC 
SEQ ID NO:


V009_J003_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6125


IGKV1-27-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



F_IGKJ3
ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA




CGTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGACACACGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0060_
GCCTTGCCAGCCCGCTCAGTAGACGGAAAGTAACGCTAATCGCAGGTGC 
SEQ ID NO:


V010_J003_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6126


IGKV1-33-
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



F_IGKJ3
ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT




GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC




CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC




GGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTAGACGGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0061_
GCCTTGCCAGCCCGCTCAGCAGCTCTTAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V011_J003_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6127


IGKV1-37-
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



O_IGKJ3
GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT




CTTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGCAGCTCTTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0062_
GCCTTGCCAGCCCGCTCAGGAGCGATAAAGTAACGCCAATCTCAGGTGC 
SEQ ID NO:


V012_J003_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6128


IGKV1-39-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



FP_IGKJ3
GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC




CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG




ATAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGAGCGATAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0063_
GCCTTGCCAGCCCGCTCAGGCATCTGAAAGTAACGCCAATCTCAGGTAC 
SEQ ID NO:


V013_J003_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6129


IGKV1-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



NL1-
ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



F_IGKJ3
GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT




GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC




TGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGCATCTGAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0064_
GCCTTGCCAGCCCGCTCAGTGCTACACAAGTAACGAGTGGGGATATTGT 
SEQ ID NO:


V014_J003_
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC 
6130


IGKV2-24-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



F_IGKJ3
CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT




AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT




GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG




CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA




CACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTGCTACACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0065_
GCCTTGCCAGCCCGCTCAGAACTGCCAAAGTAACGAGTGGGGATATTGT 
SEQ ID NO:


V015_J003_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC 
6131


IGKV2-28-
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



F_IGKJ3
ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT




GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG




CCAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGAACTGCCAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0066_
GCCTTGCCAGCCCGCTCAGTTGGACTGAAGTAACGAGTGCGGATATTGT 
SEQ ID NO:


V016_J003_
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC 
6132


IGKV2-29-
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



FP_IGKJ3
CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT




GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT




GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA




CTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTTGGACTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0067_
GCCTTGCCAGCCCGCTCAGGTAGACACAAGTAACGAGTGGGGATGTTGT 
SEQ ID NO:


V017_J003_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC 
6133


IGKV2-30-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



F_IGKJ3
CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT




AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA




CACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGTAGACACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0068_
GCCTTGCCAGCCCGCTCAGCACTGTACAAGTAACGGAGGATATTGTGAT 
SEQ ID NO:


V018_J003_
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC 
6134


IGKV2-40-
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



F_IGKJ3
CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG




TACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGCACTGTACAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0069_
GCCTTGCCAGCCCGCTCAGGATGATCCAAGTAACGATCTCAGATACCAC 
SEQ ID NO:


V019_J003_
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA 
6135


IGKV3-07-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ3
GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA




TCCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGGATGATCCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0070_
GCCTTGCCAGCCCGCTCAGCGCCAATAAAGTAACGCCAATTTCAGATAC 
SEQ ID NO:


V020_J003_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6136


IGKV3-11-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ3
GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA




ATAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGCGCCAATAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0071_
GCCTTGCCAGCCCGCTCAGTCAAGCCTAAGTAACGCCAATTTCAGATAC 
SEQ ID NO:


V021_J003_
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT 
6137


IGKV3-15-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ3
GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG




CCTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTCAAGCCTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0072_
GCCTTGCCAGCCCGCTCAGACGTGTGTAAGTAACGATCTCAGATACCAC 
SEQ ID NO:


V022_J003_
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA 
6138


IGKV3-20-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ3
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC




CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG




TGTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGACGTGTGTAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0073_
GCCTTGCCAGCCCGCTCAGTCCGTCTAAAGTAACGCCAATTTCAGATAC 
SEQ ID NO:


V023_J003_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6139


IGKV3-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



NL4-
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



FNG_IGKJ3
CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT




CTAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTCCGTCTAAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0074_
GCCTTGCCAGCCCGCTCAGAAGAGCTGAAGTAACGGGGGACATCGTGAT 
SEQ ID NO:


V024_J003_
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC 
6140


IGKV4-01-
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



F_IGKJ3
ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT




CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT




GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG




CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG




CTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGAAGAGCTGAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0075_
GCCTTGCCAGCCCGCTCAGTATCGCTCAAGTAACGCCATAATCAGATAC 
SEQ ID NO:


V025_J003_
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT 
6141


IGKV5-02-
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



F_IGKJ3
ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT




TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT




GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT




CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG




CTCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA




CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT




CATTTGTGCAAGTTTTGTGTATCGCTCAAGTAACGCTGATGGCGCGAGG




GAGGC






hsIGK_0076_
GCCTTGCCAGCCCGCTCAGGTTCCGAAGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V001_J004_
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT 
6142


IGKV1-05-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



F_IGKJ4
GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC




GAAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGTTCCGAAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0077_
GCCTTGCCAGCCCGCTCAGCGTTACTTGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V002_J004_
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6143


IGKV1-06-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ4
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA




CTTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATCGTTACTTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0078_
GCCTTGCCAGCCCGCTCAGTAGGAGACGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V003_J004_
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT 
6144


IGKV1-08-
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ4
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA




GACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTAGGAGACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0079_
GCCTTGCCAGCCCGCTCAGGTGTCTACGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V004_J004_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT 
6145


IGKV1-09-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



F_IGKJ4
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC




TACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGTGTCTACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0080_
GCCTTGCCAGCCCGCTCAGGTACAGTGGTCTCCTACCAATCTCAGGTTC 
SEQ ID NO:


V005_J004_
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT 
6146


IGKV1-12-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ4
GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA




GTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGTACAGTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0081_
GCCTTGCCAGCCCGCTCAGGGATCATCGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V006_J004_
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6147


IGKV1-13-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



FP_IGKJ4
GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT




GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC




ATCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGGATCATCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0082_
GCCTTGCCAGCCCGCTCAGTATTGGCGGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V007_J004_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT 
6148


IGKV1-16-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



F_IGKJ4
ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG




GCGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTATTGGCGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0083_
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V008_J004_
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6149


IGKV1-17-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ4
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT




TGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATAGGCTTGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0084_
GCCTTGCCAGCCCGCTCAGACACACGTGTCTCCTACTAATATCAGATAC 
SEQ ID NO:


V009_J004_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6150


IGKV1-27-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



F_IGKJ4
ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA




CGTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATACACACGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0085_
GCCTTGCCAGCCCGCTCAGTAGACGGAGTCTCCTACTAATCGCAGGTGC 
SEQ ID NO:


V010_J004_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6151


IGKV1-33-
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



F_IGKJ4
ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT




GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC




CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC




GGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTAGACGGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0086_
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V011_J004_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6152


IGKV1-37-
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



O_IGKJ4
GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT




CTTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATCAGCTCTTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0087_
GCCTTGCCAGCCCGCTCAGGAGCGATAGTCTCCTACCAATCTCAGGTGC 
SEQ ID NO:


V012_J004_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6153


IGKV1-39-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



FP_IGKJ4
GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC




CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG




ATAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGAGCGATAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0088_
GCCTTGCCAGCCCGCTCAGGCATCTGAGTCTCCTACCAATCTCAGGTAC 
SEQ ID NO:


V013_J004_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6154


IGKV1-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



NL1-
ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



F_IGKJ4
GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT




GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC




TGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGCATCTGAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0089_
GCCTTGCCAGCCCGCTCAGTGCTACACGTCTCCTAAGTGGGGATATTGT 
SEQ ID NO:


V014_J004_
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC 
6155


IGKV2-24-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



F_IGKJ4
CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT




AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT




GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG




CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA




CACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTGCTACACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0090_
GCCTTGCCAGCCCGCTCAGAACTGCCAGTCTCCTAAGTGGGGATATTGT 
SEQ ID NO:


V015_J004_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC 
6156


IGKV2-28-
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



F_IGKJ4
ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT




GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG




CCAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATAACTGCCAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0091_
GCCTTGCCAGCCCGCTCAGTTGGACTGGTCTCCTAAGTGCGGATATTGT 
SEQ ID NO:


V016_J004_
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC 
6157


IGKV2-29-
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



FP_IGKJ4
CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT




GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT




GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA




CTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTTGGACTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0092_
GCCTTGCCAGCCCGCTCAGGTAGACACGTCTCCTAAGTGGGGATGTTGT 
SEQ ID NO:


V017_J004_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC 
6158


IGKV2-30-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



F_IGKJ4
CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT




AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA




CACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGTAGACACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0093_
GCCTTGCCAGCCCGCTCAGCACTGTACGTCTCCTAGAGGATATTGTGAT 
SEQ ID NO:


V018_J004_
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC 
6159


IGKV2-40-
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



F_IGKJ4
CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG




TACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATCACTGTACGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0094_
GCCTTGCCAGCCCGCTCAGGATGATCCGTCTCCTAATCTCAGATACCAC 
SEQ ID NO:


V019_J004_
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA 
6160


IGKV3-07-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ4
GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA




TCCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATGATGATCCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0095_
GCCTTGCCAGCCCGCTCAGCGCCAATAGTCTCCTACCAATTTCAGATAC 
SEQ ID NO:


V020_J004_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6161


IGKV3-11-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ4
GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA




ATAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATCGCCAATAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0096_
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTCTCCTACCAATTTCAGATAC 
SEQ ID NO:


V021_J004_
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT 
6162


IGKV3-15-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ4
GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG




CCTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTCAAGCCTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0097_
GCCTTGCCAGCCCGCTCAGACGTGTGTGTCTCCTAATCTCAGATACCAC 
SEQ ID NO:


V022_J004_
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA 
6163


IGKV3-20-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ4
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC




CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG




TGTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATACGTGTGTGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0098_
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTCTCCTACCAATTTCAGATAC 
SEQ ID NO:


V023_J004_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6164


IGKV3-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



NL4-
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



FNG_IGKJ4
CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT




CTAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTCCGTCTAGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0099_
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTCTCCTAGGGGACATCGTGAT 
SEQ ID NO:


V024_J004_
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC 
6165


IGKV4-01-
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



F_IGKJ4
ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT




CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT




GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG




CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG




CTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATAAGAGCTGGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0100_
GCCTTGCCAGCCCGCTCAGTATCGCTCGTCTCCTACCATAATCAGATAC 
SEQ ID NO:


V025_J004_
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT 
6166


IGKV5-02-
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



F_IGKJ4
ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT




TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT




GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT




CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG




CTCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA




CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA




GCGTTTTTGTGTTTGAGATTATCGCTCGTCTCCTACTGATGGCGCGAGG




GAGGC






hsIGK_0101_
GCCTTGCCAGCCCGCTCAGGTTCCGAAAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V001_J005_
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT 
6167


IGKV1-05-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



F_IGKJ5
GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC




CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC




GAAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGTTCCGAAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0102_
GCCTTGCCAGCCCGCTCAGCGTTACTTAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V002_J005_
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6168


IGKV1-06-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ5
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA




CTTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTCGTTACTTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0103_
GCCTTGCCAGCCCGCTCAGTAGGAGACAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V003_J005_
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT 
6169


IGKV1-08-
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ5
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA




GACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTAGGAGACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0104_
GCCTTGCCAGCCCGCTCAGGTGTCTACAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V004_J005_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT 
6170


IGKV1-09-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



F_IGKJ5
GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC




TACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGTGTCTACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0105_
GCCTTGCCAGCCCGCTCAGGTACAGTGAGAGTGTCCCAATCTCAGGTTC 
SEQ ID NO:


V005_J005_
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT 
6171


IGKV1-12-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



F_IGKJ5
GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA




GTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGTACAGTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0106_
GCCTTGCCAGCCCGCTCAGGGATCATCAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V006_J005_
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6172


IGKV1-13-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



FP_IGKJ5
GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT




GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC




ATCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGGATCATCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0107_
GCCTTGCCAGCCCGCTCAGTATTGGCGAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V007_J005_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT 
6173


IGKV1-16-
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



F_IGKJ5
ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG




GCGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTATTGGCGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0108_
GCCTTGCCAGCCCGCTCAGAGGCTTGAAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V008_J005_
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6174


IGKV1-17-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



F_IGKJ5
ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC




GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT




TGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTAGGCTTGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0109_
GCCTTGCCAGCCCGCTCAGACACACGTAGAGTGTCCTAATATCAGATAC 
SEQ ID NO:


V009_J005_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6175


IGKV1-27-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



F_IGKJ5
ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA




CGTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTACACACGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0110_
GCCTTGCCAGCCCGCTCAGTAGACGGAAGAGTGTCCTAATCGCAGGTGC 
SEQ ID NO:


V010_J005_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6176


IGKV1-33-
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



F_IGKJ5
ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT




GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC




CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC




GGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTAGACGGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0111_
GCCTTGCCAGCCCGCTCAGCAGCTCTTAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V011_J005_
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6177


IGKV1-37-
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



O_IGKJ5
GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT




GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC




CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT




CTTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTCAGCTCTTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0112_
GCCTTGCCAGCCCGCTCAGGAGCGATAAGAGTGTCCCAATCTCAGGTGC 
SEQ ID NO:


V012_J005_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6178


IGKV1-39-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



FP_IGKJ5
GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT




GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT




GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC




CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG




ATAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGAGCGATAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0113_
GCCTTGCCAGCCCGCTCAGGCATCTGAAGAGTGTCCCAATCTCAGGTAC 
SEQ ID NO:


V013_J005_
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT 
6179


IGKV1-
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



NL1-
ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



F_IGKJ5
GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT




GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC




TGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGCATCTGAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0114_
GCCTTGCCAGCCCGCTCAGTGCTACACAGAGTGTCAGTGGGGATATTGT 
SEQ ID NO:


V014_J005_
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC 
6180


IGKV2-24-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



F_IGKJ5
CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT




AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT




GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG




CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA




CACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTGCTACACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0115_
GCCTTGCCAGCCCGCTCAGAACTGCCAAGAGTGTCAGTGGGGATATTGT 
SEQ ID NO:


V015_J005_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC 
6181


IGKV2-28-
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



F_IGKJ5
ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT




GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG




CCAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTAACTGCCAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0116_
GCCTTGCCAGCCCGCTCAGTTGGACTGAGAGTGTCAGTGCGGATATTGT 
SEQ ID NO:


V016_J005_
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC 
6182


IGKV2-29-
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



FP_IGKJ5
CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT




GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT




GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA




CTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTTGGACTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0117_
GCCTTGCCAGCCCGCTCAGGTAGACACAGAGTGTCAGTGGGGATGTTGT 
SEQ ID NO:


V017_J005_
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC 
6183


IGKV2-30-
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



F_IGKJ5
CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT




AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA




CACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGTAGACACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0118_
GCCTTGCCAGCCCGCTCAGCACTGTACAGAGTGTCGAGGATATTGTGAT 
SEQ ID NO:


V018_J005_
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC 
6184


IGKV2-40-
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



F_IGKJ5
CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT




GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT




GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG




CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG




TACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTCACTGTACAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0119_
GCCTTGCCAGCCCGCTCAGGATGATCCAGAGTGTCATCTCAGATACCAC 
SEQ ID NO:


V019_J005_
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA 
6185


IGKV3-07-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ5
GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA




TCCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTGATGATCCAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0120_
GCCTTGCCAGCCCGCTCAGCGCCAATAAGAGTGTCCCAATTTCAGATAC 
SEQ ID NO:


V020_J005_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT 
6186


IGKV3-11-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ5
GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA




ATAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTCGCCAATAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0121_
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGAGTGTCCCAATTTCAGATAC
SEQ ID NO:


_V021_J005_
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6187


_IGKV3-15-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



F_IGKJ5
GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT




GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG




CCTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTCAAGCCTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0122_
GCCTTGCCAGCCCGCTCAGACGTGTGTAGAGTGTCATCTCAGATACCAC
SEQ ID NO:


V022_J005_
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6188


IGKV3-20-
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



F_IGKJ5
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT




CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT




GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC




CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG




TGTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTACGTGTGTAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0123_
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGAGTGTCCCAATTTCAGATAC
SEQ ID NO:


V023_J005_
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6189


IGKV3-
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



NL4-
GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



FNG_IGKJ5
CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT




GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC




CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT




CTAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTCCGTCTAAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0124_
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGAGTGTCGGGGACATCGTGAT 
SEQ ID NO:


V024_J005_
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC 
6190


IGKV4-01-
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



F_IGKJ5
ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT




CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT




GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG




CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG




CTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTAAGAGCTGAGAGTGTCCTGATGGCGCGAGG




GAGGC






hsIGK_0125_
GCCTTGCCAGCCCGCTCAGTATCGCTCAGAGTGTCCCATAATCAGATAC 
SEQ ID NO:


V025_J005_
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT 
6191


IGKV5-02-
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



F_IGKJ5
ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT




TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT




GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT




CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG




CTCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA




CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA




GTATTGACTTTTAGAGGCTTATCGCTCAGAGTGTCCTGATGGCGCGAGG




GAGGC









Primer Sequences for hs-TCRB-P10
















Gene specific primer
Primer With Universal



Target
sequence
Sequence
SEQ ID NO







TCRBV01
GAATGCCCTGACAGCTCTCGC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TTATA
AATGCCCTGACAGCTCTCGCTTAT 
6192




A






TCRBV02
CTCAGAGAAGTCTGAAATATT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



CGATGATCAATTCTCAGTTG
TCAGAGAAGTCTGAAATATTCGAT 
6193




GATCAATTCTCAGTTG






TCRBV03-1
CCAAATCGMTTCTCACCTAAA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



TCTCCAGACAAAG
CAAATCGMTTCTCACCTAAATCTC 
6194




CAGACAAAG






TCRBV03-2
CACCTGACTCTCCAGACAAAG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



CTCAT
ACCTGACTCTCCAGACAAAGCTCA 
6195




T






TCRBV04-1/2/3
CCTGAATGCCCCAACAGCTCT
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



C
CTGAATGCCCCAACAGCTCTC
6196





TCRBV05-1
GATTCTCAGGGCGCCAGTTCT
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



CTA
ATTCTCAGGGCGCCAGTTCTCTA
6197





TCRBV05-2
CCTAATTGATTCTCAGCTCAC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



CACGTCCATA
CTAATTGATTCTCAGCTCACCACG 
6198




TCCATA






TCRBV05-3
TCAGGGCGCCAGTTCCATG
GGGCTGGCAAGCCACGTTTGGTGT 
SEQ ID NO:




CAGGGCGCCAGTTCCATG
6199





TCRBV05-4
TCCTAGATTCTCAGGTCTCCA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



GTTCCCTA
CCTAGATTCTCAGGTCTCCAGTTC 
6200




CCTA






TCRBV05-5
GAGGAAACTTCCCTGATCGAT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TCTCAGC
AGGAAACTTCCCTGATCGATTCTC 
6201




AGC






TCRBV05-6
CAACTTCCCTGATCGATTCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



AGGTCA
AACTTCCCTGATCGATTCTCAGGT 
6202




CA






TCRBV05-7
AGGAAACTTCCCTGATCAATT
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



CTCAGGTCA
GGAAACTTCCCTGATCAATTCTCA 
6203




GGTCA






TCRBV05-8
GGAAACTTCCCTCCTAGATTT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TCAGGTCG
GAAACTTCCCTCCTAGATTTTCAG 
6204




GTCG






TCRBV06-1
CCCCAATGGCTACAATGTCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



CAGATT
CCCAATGGCTACAATGTCTCCAGA 
6205




TT






TCRBV06-2/3
GGAGAGGTCCCTGATGGCTAC 
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



AA
GAGAGGTCCCTGATGGCTACAA
6206





TCRBV06-4
TCCCTGATGGTTATAGTGTCT 
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



CCAGAGC
CCCTGATGGTTATAGTGTCTCCAG 
6207




AGC






TCRBV06-5
GGAGAAGTCCCCAATGGCTAC 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



AATGTC
GAGAAGTCCCCAATGGCTACAATG 
6208




TC






TCRBV06-6
AAAGGAGAAGTCCCGAATGGC 
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



TACAA
AAGGAGAAGTCCCGAATGGCTACA 
6209




A






TCRBV06-7
GTTCCCAATGGCTACAATGTC 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TCCAGATC
TTCCCAATGGCTACAATGTCTCCA 
6210




GATC






TCRBV06-8
GAAGTCCCCAATGGCTACAAT 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



GTCTCTAGATT
AAGTCCCCAATGGCTACAATGTCT 
6211




CTAGATT






TCRBV06-9
GAGAAGTCCCCGATGGCTACA 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



ATGTA
AGAAGTCCCCGATGGCTACAATGT 
6212




A






TCRBV07-1
GTGATCGGTTCTCTGCACAGA 
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



GGT
TGATCGGTTCTCTGCACAGAGGT
6213





TCRBV07-2
CGCTTCTCTGCAGAGAGGACT 
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



GG
GCTTCTCTGCAGAGAGGACTGG
6214





TCRBV07-3
GGTTCTTTGCAGTCAGGCCTG 
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



A
GTTCTTTGCAGTCAGGCCTGA
6215





TCRBV07-4
CAGTGGTCGGTTCTCTGCAGA 
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



G
AGTGGTCGGTTCTCTGCAGAG
6216





TCRBV07-5
GCTCAGTGATCAATTCTCCAC 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



AGAGAGGT
CTCAGTGATCAATTCTCCACAGAG 
6217




AGGT






TCRBV07-6/7
TTCTCTGCAGAGAGGCCTGAG 
GGGCTGGCAAGCCACGTTTGGTGT 
SEQ ID NO:



G
TCTCTGCAGAGAGGCCTGAGG
6218





TCRBV07-8
CCCAGTGATCGCTTCTTTGCA 
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



GAAA
CCAGTGATCGCTTCTTTGCAGAAA 
6219





TCRBV07-9
CTGCAGAGAGGCCTAAGGGAT 
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



CT
TGCAGAGAGGCCTAAGGGATCT
6220





TCRBV08-1
GAAGGGTACAATGTCTCTGGA 
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



AACAAACTCAAG
AAGGGTACAATGTCTCTGGAAACA 
6221




AACTCAAG






TCRBV08-2
GGGGTACTGTGTTTCTTGAAA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



CAAGCTTGAG
GGGTACTGTGTTTCTTGAAACAAG 
6222




CTTGAG






TCRBV09
CAGTTCCCTGACTTGCACTCT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



GAACTAAAC
AGTTCCCTGACTTGCACTCTGAAC 
6223




TAAAC






TCRBV10-1
ACTAACAAAGGAGAAGTCTCA
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



GATGGCTACAG
CTAACAAAGGAGAAGTCTCAGATG 
6224




GCTACAG






TCRBV10-2
AGATAAAGGAGAAGTCCCCGA
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



TGGCTA
GATAAAGGAGAAGTCCCCGATGGC 
6225




TA






TCRBV10-3
GATACTGACAAAGGAGAAGTC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TCAGATGGCTATAG
ATACTGACAAAGGAGAAGTCTCAG 
6226




ATGGCTATAG






TCRBV11-1/2/3
CTAAGGATCGATTTTCTGCAG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



AGAGGCTC
TAAGGATCGATTTTCTGCAGAGAG 
6227




GCTC






TCRBV12-1
TTGATTCTCAGCACAGATGCC
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



TGATGT
TGATTCTCAGCACAGATGCCTGAT 
6228




GT






TCRBV12-2
ATTCTCAGCTGAGAGGCCTGA
GGGCTGGCAAGCCACGTTTGGTGA 
SEQ ID NO:



TGG
TTCTCAGCTGAGAGGCCTGATGG
6229





TCRBV12-3/4
GGATCGATTCTCAGCTAAGAT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



GCCTAATGC
GATCGATTCTCAGCTAAGATGCCT 
6230




AATGC






TCRBV12-5
CTCAGCAGAGATGCCTGATGC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



AACTTTA
TCAGCAGAGATGCCTGATGCAACT 
6231




TTA






TCRBV13
CTGATCGATTCTCAGCTCAAC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



AGTTCAGT
TGATCGATTCTCAGCTCAACAGTT 
6232




CAGT






TCRBV14
TAGCTGAAAGGACTGGAGGGA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



CGTAT
AGCTGAAAGGACTGGAGGGACGTA 
6233




T






TCRBV15
CCAGGAGGCCGAACACTTCTT
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



TCT
CAGGAGGCCGAACACTTCTTTCT
6234





TCRBV16
GCTAAGTGCCTCCCAAATTCA
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



CCCT
CTAAGTGCCTCCCAAATTCACCCT 
6235





TCRBV17
CACAGCTGAAAGACCTAACGG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



AACGT
ACAGCTGAAAGACCTAACGGAACG 
6236




T






TCRBV18
CTGCTGAATTTCCCAAAGAGG
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



GCC
TGCTGAATTTCCCAAAGAGGGCC
6237





TCRBV19
AGGGTACAGCGTCTCTCGGG
GGGCTGGCAAGCCACGTTTGGTGA 
SEQ ID NO:




GGGTACAGCGTCTCTCGGG
6238





TCRBV20
GCCTGACCTTGTCCACTCTGA
GGGCTGGCAAGCCACGTTTGGTGG 
SEQ ID NO:



CA
CCTGACCTTGTCCACTCTGACA
6239





TCRBV21
ATGAGCGATTTTTAGCCCAAT
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



GCTCCA
TGAGCGATTTTTAGCCCAATGCTC 
6240




CA






TCRBV22
TGAAGGCTACGTGTCTGCCAA
GGGCTGGCAAGCCACGTTTGGTGT 
SEQ ID NO:



GAG
GAAGGCTACGTGTCTGCCAAGAG
6241





TCRBV23
CTCATCTCAATGCCCCAAGAA
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:



CGC
TCATCTCAATGCCCCAAGAACGC
6242





TCRBV24
AGATCTCTGATGGATACAGTG
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



TCTCTCGACA
GATCTCTGATGGATACAGTGTCTC 
6243




TCGACA






TCRBV25
AGATCTTTCCTCTGAGTCAAC
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



AGTCTCCAGAATA
GATCTTTCCTCTGAGTCAACAGTC 
6244




TCCAGAATA






TCRBV26
CACTGAAAAAGGAGATATCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



TGAGGGGTATCATG
ACTGAAAAAGGAGATATCTCTGAG 
6245




GGGTATCATG






TCRBV27
GTTCCTGAAGGGTACAAAGTC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



TCTCGAAAAG
TTCCTGAAGGGTACAAAGTCTCTC 
6246




GAAAAG






TCRBV28
CTGAGGGGTACAGTGTCTCTA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



GAGAGA
TGAGGGGTACAGTGTCTCTAGAGA 
6247




GA






TCRBV29
AGCCGCCCAAACCTAACATTC
GGGCTGGCAAGCCACGTTTGGTGA 
SEQ ID NO:



TCAA
GCCGCCCAAACCTAACATTCTCAA 
6248





TCRBV30
CCCAGGACCGGCAGTTCA
GGGCTGGCAAGCCACGTTTGGTGC 
SEQ ID NO:




CCAGGACCGGCAGTTCA
6249





TCRBVA
TTGATTAGAGACATATCCCTA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



TTGAAAATATTTCCTGGCA
TGATTAGAGACATATCCCTATTGA 
6250




AAATATTTCCTGGCA






TCRBVB
AGATGCCCTGAGTCAGCATAG
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:



TCATTCTAAC
GATGCCCTGAGTCAGCATAGTCAT
6251




TCTAAC






TCRBJ1-1
GTCTTACCTACAACTGTGAGT
CCGGGAGCTGCATGTGTCAGAGGG
SEQ ID NO:



CTGGTGCC
TCTTACCTACAACTGTGAGTCTGG
6252




TGCC






TCRBJ1-2
CCTTACCTACAACGGTTAACC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:



TGGTCCC
CTTACCTACAACGGTTAACCTGGT
6253




CCC






TCRBJ1-3
CTTACTCACCTACAACAGTGA
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:



GCCAACTTCC
TTACTCACCTACAACAGTGAGCCA
6254




ACTTCC






TCRBJ1-4
ATACCCAAGACAGAGAGCTGG
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:



GTTCC
TACCCAAGACAGAGAGCTGGGTTC
6255




C






TCRBJ1-5
AACTTACCTAGGATGGAGAGT
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:



CGAGTCCC
ACTTACCTAGGATGGAGAGTCGAG
6256




TCCC






TCRBJ1-6
CTGTCACAGTGAGCCTGGTCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:



C
TGTCACAGTGAGCCTGGTCCC
6257





TCRBJ2-1
CACGGTGAGCCGTGTCCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




ACGGTGAGCCGTGTCCC
6258





TCRBJ2-2
CCAGTACGGTCAGCCTAGAGC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:



C
CAGTACGGTCAGCCTAGAGCC
6259





TCRBJ2-3
CACTGTCAGCCGGGTGCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




ACTGTCAGCCGGGTGCC
6260





TCRBJ2-4
CACTGAGAGCCGGGTCCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




ACTGAGAGCCGGGTCCC
6261





TCRBJ2-5
ACCAGGAGCCGCGTGCC
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:




CCAGGAGCCGCGTGCC
6262





TCRBJ2-6
CACGGTCAGCCTGCTGCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




ACGGTCAGCCTGCTGCC
6263





TCRBJ2-7
GACCGTGAGCCTGGTGCC
CCGGGAGCTGCATGTGTCAGAGGG
SEQ ID NO:




ACCGTGAGCCTGGTGCC
6264









Primer Sequences for hs-IGH-D
















Gene specific primer
Primer with Universal



Target
sequence
Sequence
SEQ ID NO







IGHD1-
CGCTAGCTGGGGCTCACAGTG
GGGCTGGCAAGCCACGTTTGGTGCG
SEQ ID NO:


14_ver10
CTCA
CTAGCTGGGGCTCACAGTGCTCA
6265





IGHD2-
CACTGGGCTCAGAGTCCTCTC
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:


02_ver10
CCACAC
CTGGGCTCAGAGTCCTCTCCCACAC
6266





IGHD2-
CCTATACAGCACTGGGCTCAG
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:


15_ver10
AGTCCTCTCTGAGAC
TATACAGCACTGGGCTCAGAGTCCT
6267




CTCTGAGAC






IGHD3-
CCTAAGCCAGGGGCAGACCCG
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:


03_ver10
AGT
TAAGCCAGGGGCAGACCCGAGT
6268





IGHD3-
ACAGTGTCACAGAGTCCATCA
GGGCTGGCAAGCCACGTTTGGTGAC
SEQ ID NO:


10_ver10
AAAACCCATGCCTGG
AGTGTCACAGAGTCCATCAAAAACC
6269




CATGCCTGG






IGHD3-
CACTATCCACATAAGCGAGGG
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:


16_ver10
ACAGACCCGAGT
CTATCCACATAAGCGAGGGACAGAC
6270




CCGAGT






IGHD4-
TGCCCTCGATGGCAGGCGGA
GGGCTGGCAAGCCACGTTTGGTGTG
SEQ ID NO:


04_ver10

CCCTCGATGGCAGGCGGA
6271





IGHD4-
CCTCTTCCAGGACAGTCCTCA
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:


11_ver10
GTGGCATCACAG
TCTTCCAGGACAGTCCTCAGTGGCA
6272




TCACAG






IGHD4-
CAGACCCACCTGCCCTCAATG
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:


23_ver10
GCAG
GACCCACCTGCCCTCAATGGCAG
6273





IGHD5-
TCTCCAGGGAGACACTGTGCA
GGGCTGGCAAGCCACGTTTGGTGTC
SEQ ID NO:


12_ver10
TGTCTGGTACCTAA
TCCAGGGAGACACTGTGCATGTCTG
6274




GTACCTAA






IGHD5-
GGGACACAGTGCATGTCTGGT
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:


24_ver10
CCCTGA
GACACAGTGCATGTCTGGTCCCTGA
6275





IGHD6-
GGACCCCTATTCCAGACACCA
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:


13_ver10
GACAGAGGC
ACCCCTATTCCAGACACCAGACAGA
6276




GGC






IGHD6-
CCCCACTCCAGACACCAGACA
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:


19_ver10
GAGGG
CCACTCCAGACACCAGACAGAGGG
6277





IGHD7-
GGGGTCTCCCACGTGTTTTGG
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:


27_ver10
GGCTAAC
GGTCTCCCACGTGTTTTGGGGCTAA
6278




C






IGHD1-
GCTAGCTGGGGCTGCCAGTCC
GGGCTGGCAAGCCACGTTTGGTGGC
SEQ ID NO:


26_ver10
TCA
TAGCTGGGGCTGCCAGTCCTCA
6279









Primer Sequences for IGK and IGL
















Gene specific
Primer with Universal
SEQ ID


Target
primer sequence
Sequence
NO







IGK_V_01-
TCTGCATCTGTAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


05_F_D10
GAGTCACCATCACTTG
TGTCTGCATCTGTAGGAGACA
NO: 6280




GAGTCACCATCACTTG






IGK_V_01-
TCTGCATCTACAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


08_F_D10
GAGTCACCATCACTTG
TGTCTGCATCTACAGGAGACA
NO: 6281




GAGTCACCATCACTTG






IGK_V_01-
CTGCATCTGTAAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


35_P_D10
GTGTCACCATCACTTG
TGCTGCATCTGTAAGGAGACA
NO: 6282




GTGTCACCATCACTTG






IGK_V_1D-
TCTGCATCTACAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


08_F_D10
GAGTCACCATCAGTTG
TGTCTGCATCTACAGGAGACA
NO: 6283




GAGTCACCATCAGTTG






IGK_V_1D-
ACTGCATCTGTAGGAGAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


22_P_D10
GAGTCACCATCACTTG
TGACTGCATCTGTAGGAGAGA
NO: 6284




GAGTCACCATCACTTG






IGK_V_1D-
GCATCTGTAAGGAGACAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


35_P_D10
GTCACCATCACTTG
TGGCATCTGTAAGGAGACAGC
NO: 6285




GTCACCATCACTTG






IGK_V_1D-
GTCTGCATCTGTAGGAGAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


42_F_D10
AGAGTCAGTATCATTTG
TGGTCTGCATCTGTAGGAGAC
NO: 6286




AGAGTCAGTATCATTTG






IGK_V_02-
GGAGAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


04_P_D10
CCTG
TGGGAGAGCCGGCCTCCATCT
NO: 6287




CCTG






IGK_V_02-
CCTGGAGAGCCAGCCTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


10_P_D10
TCTCCTG
TGCCTGGAGAGCCAGCCTCCA
NO: 6288




TCTCCTG






IGK_V_02-
CTGGAGAGCCGGCCTCCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


18_P_D10
CTCTTG
TGCTGGAGAGCCGGCCTCCAT
NO: 6289




CTCTTG






IGK_V_02-
TCTTCCTTGGAGAGCCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


19_P_D10
CTCCATTTCCTG
TGTCTTCCTTGGAGAGCCATC
NO: 6290




CTCCATTTCCTG






IGK_V_02-
GGACAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


24_F_D10
CCTG
TGGGACAGCCGGCCTCCATCT
NO: 6291




CCTG






IGK_V_02-
TGGAGAGCCGGCCTCCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


28_F_D10
TCCTG
TGTGGAGAGCCGGCCTCCATC
NO: 6292




TCCTG






IGK_V_02-
ATAATATTTGTACATAACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


38_P_D10
TTGTACTTCATCTCCTG
TGATAATATTTGTACATAACT
NO: 6293




TTGTACTTCATCTCCTG






IGK_V_2D-
CCCCTGGAAAGCCAGCCTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


14_P_D10
TATCTCCTG
TGCCCCTGGAAAGCCAGCCTC
NO: 6294




TATCTCCTG






IGK_V_2D-
CTCTTCCTTGGAGAGCCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


19_P_D10
CCTCCATTTCCTG
TGCTCTTCCTTGGAGAGCCAT
NO: 6295




CCTCCATTTCCTG






IGK_V_2D-
GGACAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


24_O_D10
CCTT
TGGGACAGCCGGCCTCCATCT
NO: 6296




CCTT






IGK_V_2D-
CCTGGAGAGCAGGCCTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


26_F_D10
TGTCCTG
TGCCTGGAGAGCAGGCCTCCA
NO: 6297




TGTCCTG






IGK_V_03-
CCAGGGGAAAGAGCCACCC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


07_F_D10
TCTCCTG
TGCCAGGGGAAAGAGCCACCC
NO: 6298




TCTCCTG






IGK_V_03-
TCCAGGGGAAAGAGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


07_P_D10
CTCTCCTG
TGTCCAGGGGAAAGAGTCACC
NO: 6299




CTCTCCTG






IGK_V_03-
TCTTTGTCTCTGGAGAAAA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


25_P_D10
AAGCCACCCTGACTTG
TGTCTTTGTCTCTGGAGAAAA
NO: 6300




AAGCCACCCTGACTTG






IGK_V_03-
TCTCTAGGGGAAAAAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


31_P_D10
CCCTCACCTA
TGTCTCTAGGGGAAAAAGCCA
NO: 6301




CCCTCACCTA






IGK_V_03-
GGGGAAGGAGCCACCCTCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


34_P_D10
CCTG
TGGGGGAAGGAGCCACCCTCA
NO: 6302




CCTG






IGK_V_04-
GGGCGAGAGGGCCACCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


01_F_D10
AACTG
TGGGGCGAGAGGGCCACCATC
NO: 6303




AACTG






IGK_V_05-
GCGACTCCAGGAGACAAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


02_F_D10
TCAACATCTCCTG
TGGCGACTCCAGGAGACAAAG
NO: 6304




TCAACATCTCCTG






IGK_V_06-
CTGTGACTCCAAAGGAGAA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


21_O_D10
AGTCACCATCACCTG
TGCTGTGACTCCAAAGGAGAA
NO: 6305




AGTCACCATCACCTG






IGK_V_6D-
ACTCCAGGGGAGAAAGTCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


41_F_D10
CCATCACCTG
TGACTCCAGGGGAGAAAGTCA
NO: 6306




CCATCACCTG






IGK_V_07-
CAGGACAGAGGGCCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


03_P_D10
CACCTG
TGCAGGACAGAGGGCCACCAT
NO: 6307




CACCTG






IGL_V_R1-
GCAGGACACTCACTCCCCC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


20_P_D10
ACCTG
TGGCAGGACACTCACTCCCCC
NO: 6308




ACCTG






IGL_V_R1-
TGGGCCAGAGGGTCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


63_P_D10
CTCCTG
TGTGGGCCAGAGGGTCACCAT
NO: 6309




CTCCTG






IGL_V_R1-
GGGCAGGTGGGTACCAGCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


68_P_D10
CCTG
TGGGGCAGGTGGGTACCAGCT
NO: 6310




CCTG






IGL_V_R1-
CGTGGGACAGAAGGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


70_P_D10
CTCTCCTG
TGCGTGGGACAGAAGGTCACC
NO: 6311




CTCTCCTG






IGL_V_R4-
TCTCTGGGAGCATCTTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


59_P_D10
GACTCACCTG
TGTCTCTGGGAGCATCTTCCA
NO: 6312




GACTCACCTG






IGL_V_R4-
CACCTCCGGATCAGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


64_P_D10
CTCTCCTG
TGCACCTCCGGATCAGCCAGA
NO: 6313




CTCTCCTG






IGL_V_R4-
CCGGGAGCATGAGCCAGAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


65_P_D10
TTACCTG
TGCCGGGAGCATGAGCCAGAC
NO: 6314




TTACCTG






IGL_V_R4-
CTCTGCACATCTGAGAAAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


66-
GCTATAAGACTTCCCTG
TGCTCTGCACATCTGAGAAAT
NO: 6315


1_P_D10

GCTATAAGACTTCCCTG






IGL_V_R5-
TGTGGGAGCCTCGGTCAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


58_P_D10
CTTACCTC
TGTGTGGGAGCCTCGGTCAAG
NO: 6316




CTTACCTC






IGL_V_01-
CCCAGGCAGAGGGTCACCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


36_F_D10
TCTCCTG
TGCCCAGGCAGAGGGTCACCA
NO: 6317




TCTCCTG






IGL_V_01-
CCAGGGCAGAGGGTCACCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


40_F_D10
TCTCCTG
TGCCAGGGCAGAGGGTCACCA
NO: 6318




TCTCCTG






IGL_V_01-
CCGGGCAGAGGGTCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


44_F_D10
CTCTTG
TGCCGGGCAGAGGGTCACCAT
NO: 6319




CTCTTG






IGL_V_01-
CCCCAGGACAGAAGGTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


51_F_D10
CATCTCCTG
TGCCCCAGGACAGAAGGTCAC
NO: 6320




CATCTCCTG






IGL_V_01-
CCACAAGGCAGAGGCTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


62_P_D10
TGTCTCCTG
TGCCACAAGGCAGAGGCTCAC
NO: 6321




TGTCTCCTG






IGL_V_02-
GTCTCCTGGACAGTCAGTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


08_F_D10
ACCATCTCCTG
TGGTCTCCTGGACAGTCAGTC
NO: 6322




ACCATCTCCTG






IGL_V_02-
GTCTCCTGGACAGTCGATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


14_F_D10
ACCATCTCCTG
TGGTCTCCTGGACAGTCGATC
NO: 6323




ACCATCTCCTG






IGL_V_02-
TCCTGGACAGTCGGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


33_O_D10
ATCTCCTG
TGTCCTGGACAGTCGGTCACC
NO: 6324




ATCTCCTG






IGL_V_02-
CTGGGACTTGGGGTAAACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


34_P_D10
GTCACCATCTTCTG
TGCTGGGACTTGGGGTAAACA
NO: 6325




GTCACCATCTTCTG






IGL_V_03-
CCAGGACAGACAGCCAGCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


01_F_D10
TCACCTG
TGCCAGGACAGACAGCCAGCA
NO: 6326




TCACCTG






IGL_V_03-
CTTTGGGACGTACGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


02_P_D10
GATCATCTG
TGCTTTGGGACGTACGGCCAG
NO: 6327




GATCATCTG






IGL_V_03-
CTTTGGGACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


04_P_D10
GATCACCTG
TGCTTTGGGACAGATGGCCAG
NO: 6328




GATCACCTG






IGL_V_03-
CCAGGACAGGCAGCCATGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


06_P_D10
TCACCTG
TGCCAGGACAGGCAGCCATGA
NO: 6329




TCACCTG






IGL_V_03-
TGGGACAGAGGGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


07_P_D10
CACCTA
TGTGGGACAGAGGGCCAGGAT
NO: 6330




CACCTA






IGL_V_03-
GGGACAGGCGGCCAGGATT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


09_FP_D10
ACCTG
TGGGGACAGGCGGCCAGGATT
NO: 6331




ACCTG






IGL_V_03-
CCAGGACAAACGGCCAGGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


10_F_D10
TCACCTG
TGCCAGGACAAACGGCCAGGA
NO: 6332




TCACCTG






IGL_V_03-
CACAGCACAGATGGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


12_F_D10
ATCACCTG
TGCACAGCACAGATGGCCAGG
NO: 6333




ATCACCTG






IGL_V_03-
CCAGGACAGACAGCCAGGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


13_P_D10
TCAGCTG
TGCCAGGACAGACAGCCAGGA
NO: 6334




TCAGCTG






IGL_V_03-
CCCCAGGACAGATGACCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


15_P_D10
GATCACCTG
TGCCCCAGGACAGATGACCAG
NO: 6335




GATCACCTG






IGL_V_03-
CCCTAGGACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


16_F_D10
GATCACCTG
TGCCCTAGGACAGATGGCCAG
NO: 6336




GATCACCTG






IGL_V_03-
GTGTCTGTGGACAGTCAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


17_P_D10
AAGGGTAACCTG
TGGTGTCTGTGGACAGTCAGC
NO: 6337




AAGGGTAACCTG






IGL_V_03-
GGCCTTGGGACAGACAGTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


19_F_D10
AGGATCACATG
TGGGCCTTGGGACAGACAGTC
NO: 6338




AGGATCACATG






IGL_V_03-
CCCCAGGAAAGACGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


21_F_D10
GATTACCTG
TGCCCCAGGAAAGACGGCCAG
NO: 6339




GATTACCTG






IGL_V_03-
CCCAGGACAGAAAGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


22_FP_D10 
ATCACCTG
TGCCCAGGACAGAAAGCCAGG
NO: 6340




ATCACCTG






IGL_V_03-
CAGTAGCTCCAGGACAGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


24_P_D10
GACTAGGATCACCTG
TGCAGTAGCTCCAGGACAGAT
NO: 6341




GACTAGGATCACCTG






IGL_V_03-
CAGGACAGACGGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


25_F_D10
CACCTG
TGCAGGACAGACGGCCAGGAT
NO: 6342




CACCTG






IGL_V_03-
CCTGGGACAGTCAGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


26_P_D10
GTAACCTG
TGCCTGGGACAGTCAGCCAGG
NO: 6343




GTAACCTG






IGL_V_03-
CGGGACAGACAGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


27_F_D10
CACCTG
TGCGGGACAGACAGCCAGGAT
NO: 6344




CACCTG






IGL_V_03-
CCCAGGACAGACACCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


29_P_D10
ATCACCTG
TGCCCAGGACAGACACCCAGG
NO: 6345




ATCACCTG






IGL_V_03-
CCCCATTACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


30_P_D10
GATCACCTG
TGCCCCATTACAGATGGCCAG
NO: 6346




GATCACCTG






IGL_V_03-
GCCTTGGGATAGACAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


31_P_D10
GGATCACCTG
TGGCCTTGGGATAGACAGCCA
NO: 6347




GGATCACCTG






IGL_V_03-
CCTTGGGACAAATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


32_O_D10
GATCACCTG
TGCCTTGGGACAAATGGCCAG
NO: 6348




GATCACCTG






IGL_V_04-
CTGGGAGCCTCGATCAAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


03_F_D10
TCACCTG
TGCTGGGAGCCTCGATCAAGC
NO: 6349




TCACCTG






IGL_V_04-
CCTGGGATCCTCGGTCAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


60_F_D10
CTCACCTG
TGCCTGGGATCCTCGGTCAAG
NO: 6350




CTCACCTG






IGL_V_04-
GGGAGCCTCGGTCAAGCTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


69_F_D10
ACCTG
TGGGGAGCCTCGGTCAAGCTC
NO: 6351




ACCTG






IGL_V_05-
TCCTGGAGAATCCGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


37_F_D10
CTCACCTG
TGTCCTGGAGAATCCGCCAGA
NO: 6352




CTCACCTG






IGL_V_05-
TCTCCTGGAGCATCAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


39_F_D10
GATTCACCTG
TGTCTCCTGGAGCATCAGCCA
NO: 6353




GATTCACCTG






IGL_V_05-
TCCTGGAGCATCAGCCAGT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


45_F_D10
CTCACCTG
TGTCCTGGAGCATCAGCCAGT
NO: 6354




CTCACCTG






IGL_V_05-
TCCTGGAGCATCAGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


48_O_D10
CTCACCTG
TGTCCTGGAGCATCAGCCAGA
NO: 6355




CTCACCTG






IGL_V_05-
GCATCTTCTGGAGCATCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID


52_F_D10
TCAGACTCACCTG
TGGCATCTTCTGGAGCATCAG
NO: 6356




TCAGACTCACCTG






IGL_V_06-
TCCGGGGAAGACGGTAACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


57_F_D10
ATCTCCTG
TGTCCGGGGAAGACGGTAACC
NO: 6357




ATCTCCTG






IGL_V_07-
CCCAGGAGGGACAGTCACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


35_P_D10
CTCACCTA
TGCCCAGGAGGGACAGTCACT
NO: 6358




CTCACCTA






IGL_V_07-
CCCAGGAGGGACAGTCACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


43_F_D10
CTCACCTG
TGCCCAGGAGGGACAGTCACT
NO: 6359




CTCACCTG






IGL_V_08-
CCCCTGGAGGGACAGTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID


61_F_D10
ACTCACTTG
TGCCCCTGGAGGGACAGTCAC
NO: 6360




ACTCACTTG






IGL_V_09-
TGGGAGCCTCGGTCACACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID


49_F_D10
CACCTG
TGTGGGAGCCTCGGTCACACT
NO: 6361




CACCTG






IGL_V_10-
CTTGAGACAGACCGCCACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID


54_F_D10
CTCACCTG
TGCTTGAGACAGACCGCCACA
NO: 6362




CTCACCTG






IGK_J_01_
TTCTACTCACGTTTGATTT
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
CCACCTTGGTCCC
GGTTCTACTCACGTTTGATTT
NO: 6363




CCACCTTGGTCCC






IGK_J_02_
AAGTACTTACGTTTGATCT
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
CCAGCTTGGTCCC
GGAAGTACTTACGTTTGATCT
NO: 6364




CCAGCTTGGTCCC






IGK_J_03_
ACAGATGTACTTACGTTTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
ATATCCACTTTGGTCCC
GGACAGATGTACTTACGTTTG
NO: 6365




ATATCCACTTTGGTCCC






IGK_J_04_
CACTTACGTTTGATCTCCA
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
CCTTGGTCCC
GGCACTTACGTTTGATCTCCA
NO: 6366




CCTTGGTCCC






IGK_J_05_
GAAAAATTACTTACGTTTA
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
ATCTCCAGTCGTGTCCC
GGGAAAAATTACTTACGTTTA
NO: 6367




ATCTCCAGTCGTGTCCC






IGL_J_01_
CTTACCTAGGACGGTGACC
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
TTGGTCCC
GGCTTACCTAGGACGGTGACC
NO: 6368




TTGGTCCC






IGL_J_02_
ACCTAGGACGGTCAGCTTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
GTCCC
GGACCTAGGACGGTCAGCTTG
NO: 6369




GTCCC






IGL_J_04_
AAGAAGAGACTCATCTAAA
CCGGGAGCTGCATGTGTCAGA
SEQ ID


O_D10
ATGATCAGCTGGGTTCC
GGAAGAAGAGACTCATCTAAA
NO: 6370




ATGATCAGCTGGGTTCC






IGL_J_05_
ATCTAGGACGGTCAGCTCC
CCGGGAGCTGCATGTGTCAGA
SEQ ID


O_D10
GTCCC
GGATCTAGGACGGTCAGCTCC
NO: 6371




GTCCC






IGL_J_06_
GAGGACGGTCACCTTGGTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
CC
GGGAGGACGGTCACCTTGGTG
NO: 6372




CC






IGL_J_07_
AGGACGGTCAGCTGGGTGC
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
C
GGAGGACGGTCAGCTGGGTGC
NO: 6373




C






IGK_J_del_
CTGCAGACTCATGAGGAGT
CCGGGAGCTGCATGTGTCAGA
SEQ ID


F_D10
CGCCC
GGCTGCAGACTCATGAGGAGT
NO: 6374




CGCCC








Claims
  • 1. A method for determining non-uniform nucleic acid amplification potential among members of a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules obtained from lymphoid cells of a mammalian subject, the method comprising: (a) amplifying a plurality of synthetic template oligonucleotides comprising sequences of rearranged nucleic acid molecules encoding one or more adaptive immune receptors using a set of oligonucleotide primers in a single multiplex PCR reaction to obtain a plurality of amplified synthetic template oligonucleotides;(b) sequencing said plurality of amplified synthetic template oligonucleotides to determine, for each unique synthetic template oligonucleotide comprising said plurality, (i) a synthetic template oligonucleotide sequence and (ii) a frequency of occurrence of said synthetic template oligonucleotide sequence; and(c) comparing a frequency of occurrence of each of said synthetic template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of synthetic template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said synthetic template oligonucleotide sequences and said expected distribution indicates a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers.
  • 2. The method of claim 1, wherein said predetermined molar ratios are equimolar.
  • 3. The method of claim 2, wherein said expected distribution comprises a uniform amplification level for said set of template oligonucleotides amplified by said set of oligonucleotide primers.
  • 4. The method of claim 1, wherein each amplified synthetic template nucleic acid molecule is less than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80 or 70 nucleotides in length.
  • 5. The method of claim 1, further comprising: for each member of the set of oligonucleotide primers that exhibits non-uniform amplification potential relative to the expected distribution, adjusting the relative representation of the oligonucleotide primer member in the set of oligonucleotide amplification primers.
  • 6. The method of claim 5, wherein adjusting comprises increasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.
  • 7. The method of claim 5, wherein adjusting comprises decreasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.
  • 8. The method of claim 1, wherein said set of oligonucleotide primers does not include oligonucleotide primers that specifically hybridize to a V-region pseudogene or orphon or to a J-region pseudogene or orphon.
  • 9. The method of claim 1, further comprising: for each member of the set of oligonucleotide amplification primers that exhibits non-uniform amplification potential relative to the expected distribution, calculating a proportionately increased or decreased frequency of occurrence of the amplified template nucleic acid molecules, the amplification of which is promoted by said member, thereby correcting for non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.
  • 10. The method of claim 1 wherein said plurality of synthetic template oligonucleotides each comprise an oligonucleotide sequence of a general formula: 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  [I]
  • 11. The method of claim 10 wherein the plurality of synthetic template oligonucleotides comprises a number of at least a or at least b unique oligonucleotide sequences, whichever is larger, wherein a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one synthetic template oligonucleotide for each unique V-region oligonucleotide sequence and at least one synthetic template oligonucleotide for each unique J-region oligonucleotide sequence.
  • 12. The method of claim 11, wherein a ranges from 1 to a number of maximum V gene segments in the mammalian genome of the subject.
  • 13. The method of claim 11, wherein b ranges from 1 to a number of maximum J gene segments in the mammalian genome of the subject.
  • 14. The method of claim 11, wherein a is 1 or b is 1.
  • 15. The method of claim 11, wherein the plurality of template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the mammalian subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the mammalian subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment.
  • 16. The method of claim 10, wherein J comprises an oligonucleotide sequence comprising a constant region of the adaptive immune receptor J region encoding gene sequence.
  • 17. The method of claim 1, wherein the one or more adaptive immune receptors is selected from the group consisting of TCRB, TCRG, TCRA, TCRD, IGH, IGK, and IGL.
  • 18. The method of claim 10, wherein the V oligonucleotide sequence of (a) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor V-region polypeptide.
  • 19. The method of claim 10, wherein the J oligonucleotide sequence of (b) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor J-region polypeptide.
  • 20. The method of claim 10, further comprising a stop codon sequence between V and B2.
  • 21. The method of claim 1, wherein each synthetic template oligonucleotide in the plurality of synthetic template oligonucleotides is present in an equimolar amount.
  • 22. The method of claim 10 wherein the plurality of synthetic template oligonucleotides have a plurality of sequences of general formula (I) that is selected from: (1) the plurality of oligonucleotide sequences of general formula (I) in which the V and J oligonucleotide sequences have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOs. in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13;(2) the plurality of oligonucleotide sequences of general formula (I) in which the V and J oligonucleotide sequences have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOs. in FIGS. 6a and 6b as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5;(3) the plurality of oligonucleotide sequences of general formula (I) in which the V and J oligonucleotide sequences have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOs. in FIGS. 7a-7m as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9;(4) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:3157-4014;(5) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4015-4084;(6) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4085-5200;(7) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:5579-5821;(8) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 5822-6066; and(9) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 6067-6191.
  • 23. The method of claim 10, wherein V is an oligonucleotide sequence comprising at least 30, 60, 90, 120, 150, 180, or 210 contiguous nucleotides of the adaptive immune receptor V region encoding gene sequence, or the complement thereof.
  • 24. The method of claim 10, wherein V is an oligonucleotide sequence comprising not more than 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor V region encoding gene sequence, or the complement thereof.
  • 25. The method of claim 10, wherein J is an oligonucleotide sequence comprising at least 16-30, 31-60, 61-90, 91-120, or 120-150 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof.
  • 26. The method of claim 10, wherein J is an oligonucleotide sequence comprising not more than 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof.
  • 27. The method of claim 10, wherein each synthetic template oligonucleotide is less than 1000, 900, 800, 700, 600, 500, 400, 300 or 200 nucleotides in length.
  • 28. The method of claim 1 wherein said a set of oligonucleotide primers comprise a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers.
  • 29. The method of claim 28, wherein a′ ranges from 1 to a number of maximum V gene segments in the mammalian genome, and b′ ranges from 1 to a number of maximum number of J gene segments in the mammalian genome.
  • 30. The method of claim 29, wherein a′ is a.
  • 31. The method of claim 29, wherein b′ is b.
  • 32. The method of claim 28, wherein each V-segment oligonucleotide primer and each J-segment oligonucleotide primer in the oligonucleotide primer set is capable of specifically hybridizing to at least one template oligonucleotide in the plurality of template oligonucleotides.
  • 33. The method of claim 28, wherein each V-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment.
  • 34. The method of claim 28, wherein each J-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/726,489, filed Nov. 14, 2012 and U.S. Provisional Application No. 61/644,294, filed on May 8, 2012, the entire disclosures of which are hereby incorporated by reference in their entireties for all purposes.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/040221 5/8/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/169957 11/14/2013 WO A
US Referenced Citations (273)
Number Name Date Kind
3270960 Phillips Sep 1966 A
3773919 Boswell et al. Nov 1973 A
4474754 Shimizu et al. Oct 1984 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4800159 Mullis et al. Jan 1989 A
4942124 Church Jul 1990 A
4965188 Mullis et al. Oct 1990 A
5075217 Weber Dec 1991 A
5126022 Soane et al. Jun 1992 A
5149625 Church et al. Sep 1992 A
5168038 Tecott et al. Dec 1992 A
5189147 Saito et al. Feb 1993 A
5210015 Gelfand et al. May 1993 A
5213960 Chang May 1993 A
5231012 Mosmann et al. Jul 1993 A
5296351 Morley Mar 1994 A
5298396 Kotzin et al. Mar 1994 A
5326696 Chang Jul 1994 A
5336598 Kotzin et al. Aug 1994 A
5364759 Caskey et al. Nov 1994 A
5399491 Kacian et al. Mar 1995 A
5418134 Morley May 1995 A
5449752 Fujii et al. Sep 1995 A
5498392 Wilding et al. Mar 1996 A
5506126 Seed et al. Apr 1996 A
5587128 Wilding et al. Dec 1996 A
5627052 Schrader May 1997 A
5635354 Kourilsky et al. Jun 1997 A
5635400 Brenner Jun 1997 A
5667967 Steinman et al. Sep 1997 A
5698396 Pfreundschuh Dec 1997 A
5699798 Hochman et al. Dec 1997 A
5776708 Kotzin et al. Jul 1998 A
5776737 Dunn Jul 1998 A
5837447 Gorski Nov 1998 A
5846719 Brenner et al. Dec 1998 A
5854033 Lizardi Dec 1998 A
5858195 Ramsey Jan 1999 A
5925517 Tyagi et al. Jul 1999 A
5935793 Wong Aug 1999 A
5969108 McCafferty et al. Oct 1999 A
5981176 Wallace Nov 1999 A
5981179 Lorinez et al. Nov 1999 A
6001229 Ramsey Dec 1999 A
6010607 Ramsey Jan 2000 A
6033546 Ramsey Mar 2000 A
6054034 Soane et al. Apr 2000 A
6087096 Dau et al. Jul 2000 A
6090592 Adams et al. Jul 2000 A
6143496 Brown et al. Nov 2000 A
6172214 Brenner Jan 2001 B1
6174670 Wittwer et al. Jan 2001 B1
6258540 Lo et al. Jul 2001 B1
6258568 Nyren Jul 2001 B1
6300070 Boles et al. Oct 2001 B1
6416948 Pilarski et al. Jul 2002 B1
6440706 Vogelstein et al. Aug 2002 B1
6458530 Morris et al. Oct 2002 B1
6489103 Griffiths et al. Dec 2002 B1
6569627 Wittwer et al. May 2003 B2
6596492 Avery et al. Jul 2003 B2
6605272 Novak et al. Aug 2003 B2
6613525 Nelson et al. Sep 2003 B2
6667159 Walt Dec 2003 B1
6753147 Vogelstein et al. Jun 2004 B2
6787308 Balasubramanian et al. Sep 2004 B2
6794499 Wengel et al. Sep 2004 B2
6806079 Pope et al. Oct 2004 B1
6858412 Willis et al. Feb 2005 B2
6919434 Goto et al. Jul 2005 B1
6964850 Bevilacqua Nov 2005 B2
7068874 Wang et al. Jun 2006 B2
7112423 Van Ness et al. Sep 2006 B2
7115400 Adessi et al. Oct 2006 B1
7148040 Meagher et al. Dec 2006 B2
7157228 Hashmi et al. Jan 2007 B2
7157274 Bohm et al. Jan 2007 B2
7208795 Carver et al. Apr 2007 B2
7306906 Maruyama et al. Dec 2007 B2
7313308 Turner et al. Dec 2007 B2
7323305 Leamon et al. Jan 2008 B2
7329731 Jakobsen et al. Feb 2008 B2
7351578 Cheo et al. Apr 2008 B2
7365179 Brenner Apr 2008 B2
7375211 Kou May 2008 B2
7393665 Brenner Jul 2008 B2
7537897 Brenner et al. May 2009 B2
7544473 Brenner Jun 2009 B2
7572582 Wengel et al. Aug 2009 B2
7662557 McCafferty et al. Feb 2010 B2
7666604 Jakobsen et al. Feb 2010 B2
7691994 Brewer et al. Apr 2010 B2
7700323 Willis et al. Apr 2010 B2
7741463 Gormley et al. Jun 2010 B2
7749697 Oleksiewicz et al. Jul 2010 B2
7785783 Morley et al. Aug 2010 B2
7833716 Becker et al. Nov 2010 B2
7842457 Berka et al. Nov 2010 B2
7862999 Zheng et al. Jan 2011 B2
7892550 Dennis et al. Feb 2011 B2
7907800 Foquet et al. Mar 2011 B2
7915015 Vogelstein et al. Mar 2011 B2
7956043 Krieg et al. Jun 2011 B2
7960116 Eid et al. Jun 2011 B2
8012690 Berka et al. Sep 2011 B2
8021842 Brenner Sep 2011 B2
8030023 Adams et al. Oct 2011 B2
8048627 Dressman et al. Nov 2011 B2
8053188 Gullberg et al. Nov 2011 B2
8053235 Buckner et al. Nov 2011 B2
8137569 Harnack et al. Mar 2012 B2
8137936 Macevicz Mar 2012 B2
8153375 Travers et al. Apr 2012 B2
8158359 Leamon et al. Apr 2012 B2
8236503 Faham et al. Aug 2012 B2
8283294 Kastrup et al. Oct 2012 B2
8309312 Lang et al. Nov 2012 B2
8313625 Rothberg et al. Nov 2012 B2
8318433 Brenner Nov 2012 B2
8394590 Kwong et al. Mar 2013 B2
8445205 Brenner May 2013 B2
8481292 Casbon et al. Jul 2013 B2
8507205 Faham Aug 2013 B2
8628927 Faham Jan 2014 B2
8691510 Faham Apr 2014 B2
8699361 Jim et al. Apr 2014 B2
8748103 Faham Jun 2014 B2
8795970 Faham Aug 2014 B2
8826321 Cronin et al. Sep 2014 B2
9012148 Han et al. Apr 2015 B2
20020076725 Toyosaki-Maeda et al. Jun 2002 A1
20020110807 Pilarski et al. Aug 2002 A1
20030120061 Zhang Jun 2003 A1
20030162197 Morley et al. Aug 2003 A1
20030207300 Matray et al. Nov 2003 A1
20040033490 Laird et al. Feb 2004 A1
20040146901 Morris et al. Jul 2004 A1
20040170977 Laird Sep 2004 A1
20040235061 Wilkie et al. Nov 2004 A1
20040248172 Samoszuk et al. Dec 2004 A1
20050037356 Gullberg et al. Feb 2005 A1
20050064421 Gehrmann et al. Mar 2005 A1
20050142577 Jones et al. Jun 2005 A1
20050250147 Macevicz Nov 2005 A1
20050255482 Morley et al. Nov 2005 A1
20050260570 Mao et al. Nov 2005 A1
20060019304 Hardenbol et al. Jan 2006 A1
20060046258 Lapidus et al. Mar 2006 A1
20060085139 Collette et al. Apr 2006 A1
20060088876 Bauer Apr 2006 A1
20060134125 Luxembourg et al. Jun 2006 A1
20060147925 Morley et al. Jul 2006 A1
20060199210 Weichselbaum et al. Sep 2006 A1
20060228350 Wu et al. Oct 2006 A1
20060233812 Burnie et al. Oct 2006 A1
20060234234 Van Dongen et al. Oct 2006 A1
20060259248 Collette et al. Nov 2006 A1
20060263789 Kincaid Nov 2006 A1
20070020640 McCloskey et al. Jan 2007 A1
20070020670 Loken et al. Jan 2007 A1
20070105105 Clelland et al. May 2007 A1
20070117134 Kou May 2007 A1
20070160994 Lim et al. Jul 2007 A1
20070161001 Leshkowitz Jul 2007 A1
20070172873 Brenner et al. Jul 2007 A1
20070238099 Cohen et al. Oct 2007 A1
20070243564 Lawson et al. Oct 2007 A1
20070264653 Berlin et al. Nov 2007 A1
20070286849 Chaturvedi Dec 2007 A1
20080069770 Hercend et al. Mar 2008 A1
20080108509 Haupl et al. May 2008 A1
20080166704 Marche et al. Jul 2008 A1
20080166718 Lim et al. Jul 2008 A1
20080199916 Zheng et al. Aug 2008 A1
20080248484 Bauer Oct 2008 A1
20080274904 Gormley et al. Nov 2008 A1
20080280774 Burczynski et al. Nov 2008 A1
20080286777 Candeias et al. Nov 2008 A1
20090053184 Morgan et al. Feb 2009 A1
20090098555 Roth et al. Apr 2009 A1
20090105959 Braverman et al. Apr 2009 A1
20090181859 Muraguchi Jul 2009 A1
20090197257 Harris Aug 2009 A1
20090208955 Robins et al. Aug 2009 A1
20090226975 Sabot et al. Sep 2009 A1
20090233301 Lee Sep 2009 A1
20090264299 Drmanac et al. Oct 2009 A1
20090280489 Devinder et al. Nov 2009 A1
20090286237 Fitzgerald et al. Nov 2009 A1
20090298060 Lal et al. Dec 2009 A1
20100008920 Schneck et al. Jan 2010 A1
20100021896 Han Jan 2010 A1
20100021984 Edd Jan 2010 A1
20100027896 Geva et al. Feb 2010 A1
20100034834 Robbins et al. Feb 2010 A1
20100035764 Chen et al. Feb 2010 A1
20100040606 Lantto et al. Feb 2010 A1
20100042329 Hood et al. Feb 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100151471 Faham et al. Jun 2010 A1
20100159456 Albitar Jun 2010 A1
20100167353 Walder et al. Jul 2010 A1
20100173394 Colston, Jr. Jul 2010 A1
20100255471 Clarke Oct 2010 A1
20100261204 Goolsby et al. Oct 2010 A1
20100285975 Mathies Nov 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20100323348 Hamady et al. Dec 2010 A1
20100330571 Robins et al. Dec 2010 A1
20110003291 Pasqual et al. Jan 2011 A1
20110014659 Balazs et al. Jan 2011 A1
20110104671 Dornan et al. May 2011 A1
20110105343 Puledran et al. May 2011 A1
20110129830 Ladner et al. Jun 2011 A1
20110160078 Fodor et al. Jun 2011 A1
20110195253 Hinz et al. Aug 2011 A1
20110207134 Faham et al. Aug 2011 A1
20110207135 Faham et al. Aug 2011 A1
20110207617 Faham et al. Aug 2011 A1
20110251099 Visvanathan et al. Oct 2011 A1
20120035062 Schultz et al. Feb 2012 A1
20120058902 Livingston et al. Mar 2012 A1
20120071331 Casbon et al. Mar 2012 A1
20120073667 Schultz et al. Mar 2012 A1
20120135409 Faham May 2012 A1
20120143531 Davey et al. Jun 2012 A1
20120172241 Rearick et al. Jul 2012 A1
20120173158 Hubbell Jul 2012 A1
20120220466 Fire et al. Aug 2012 A1
20130005584 Faham Jan 2013 A1
20130017957 Faham et al. Jan 2013 A1
20130065768 Zheng Mar 2013 A1
20130136799 Faham et al. May 2013 A1
20130150252 Faham Jun 2013 A1
20130196328 Pepin Aug 2013 A1
20130202718 Pepin Aug 2013 A1
20130236895 Faham Sep 2013 A1
20130253842 Sherwood et al. Sep 2013 A1
20130267427 Faham Oct 2013 A1
20130288237 Robins et al. Oct 2013 A1
20130302801 Asbury Nov 2013 A1
20130324422 Faham et al. Dec 2013 A1
20130344066 Faham Dec 2013 A1
20140057799 Johnson et al. Feb 2014 A1
20140127699 Han May 2014 A1
20140155277 Wiley Jun 2014 A1
20140186848 Robins et al. Jul 2014 A1
20140194295 Robins et al. Jul 2014 A1
20140206548 Robins et al. Jul 2014 A1
20140206549 Robins et al. Jul 2014 A1
20140213463 Robins et al. Jul 2014 A1
20140221220 Robins et al. Aug 2014 A1
20140234835 Pepin Aug 2014 A1
20140235454 Faham Aug 2014 A1
20140255929 Zheng Sep 2014 A1
20140255944 Carlton Sep 2014 A1
20140256567 Robins et al. Sep 2014 A1
20140256592 Faham Sep 2014 A1
20140315725 Faham et al. Oct 2014 A1
20140322716 Robins et al. Oct 2014 A1
20140336059 Faham et al. Nov 2014 A1
20140342360 Faham et al. Nov 2014 A1
20140342367 Faham et al. Nov 2014 A1
20140349883 Faham et al. Nov 2014 A1
20140356339 Faham et al. Dec 2014 A1
20150031043 Faham et al. Jan 2015 A1
20150031553 Faham et al. Jan 2015 A1
20150031555 Johnson et al. Jan 2015 A1
20150038346 Faham et al. Feb 2015 A1
20150051089 Robins et al. Feb 2015 A1
20150065352 Faham et al. Mar 2015 A1
Foreign Referenced Citations (131)
Number Date Country
0303459 Feb 1989 EP
0799897 Oct 1997 EP
1544308 Jun 2005 EP
1549764 Jul 2005 EP
0972081 Jun 2007 EP
1544308 Jan 2009 EP
2062982 May 2009 EP
2088432 Aug 2009 EP
4262799 Sep 1992 JP
2006-501842 Jan 2006 JP
2007-515955 Jun 2007 JP
2007-536939 Dec 2007 JP
2008-099588 May 2008 JP
WO 9301838 Feb 1993 WO
WO 2005059176 Jun 1995 WO
WO 9528481 Oct 1995 WO
WO 9713877 Apr 1997 WO
WO 9718330 May 1997 WO
WO 9746706 Dec 1997 WO
WO 9801738 Jan 1998 WO
WO 9844151 Oct 1998 WO
WO 9919717 Apr 1999 WO
WO 0224322 Mar 2002 WO
WO 03044225 May 2003 WO
WO 03052101 Jun 2003 WO
WO 03059155 Jul 2003 WO
WO 03044225 Dec 2003 WO
WO 2004003820 Jan 2004 WO
WO 03059155 Mar 2004 WO
WO 2004033728 Apr 2004 WO
WO 2004034031 Apr 2004 WO
WO 2004044209 May 2004 WO
WO 2004046098 Jun 2004 WO
WO 2004063706 Jul 2004 WO
WO 2004033728 Aug 2004 WO
WO 2004046098 Aug 2004 WO
WO 2004096985 Nov 2004 WO
WO 2005005651 Jan 2005 WO
WO 2004063706 May 2005 WO
WO 2005042774 May 2005 WO
WO 2005042774 Jun 2005 WO
WO 2005053603 Jun 2005 WO
WO 2004003820 Jul 2005 WO
WO 2005084134 Sep 2005 WO
WO 2005005651 Nov 2005 WO
WO 2005111242 Nov 2005 WO
WO 2004096985 Mar 2006 WO
WO 2004034031 Jul 2006 WO
WO 2006076205 Jul 2006 WO
WO 2005053603 Sep 2006 WO
WO 2006110855 Oct 2006 WO
WO 2006116155 Nov 2006 WO
WO 2006138284 Dec 2006 WO
WO 2006116155 Nov 2007 WO
WO 2007134220 Nov 2007 WO
WO 2008026927 Mar 2008 WO
WO 2008026927 Mar 2008 WO
WO 2008039694 Apr 2008 WO
WO 2008039694 Apr 2008 WO
WO 2008108803 Sep 2008 WO
WO 2008108803 Dec 2008 WO
WO 2008147879 Dec 2008 WO
WO 2009015296 Jan 2009 WO
WO 2009019657 Feb 2009 WO
WO 2009019657 Feb 2009 WO
WO 2009021215 Feb 2009 WO
WO 2005084134 Apr 2009 WO
WO 2006076205 Apr 2009 WO
WO 2009045898 Apr 2009 WO
WO 2009070767 Jun 2009 WO
WO 2009095567 Aug 2009 WO
WO 2009108860 Sep 2009 WO
WO 2009108866 Sep 2009 WO
WO 2009070767 Oct 2009 WO
WO 2009108866 Oct 2009 WO
WO 2009137255 Nov 2009 WO
WO 2009137832 Nov 2009 WO
WO 2009145925 Dec 2009 WO
WO 2009151628 Dec 2009 WO
WO 2009151628 Dec 2009 WO
WO 2009158521 Dec 2009 WO
WO 2009158521 Dec 2009 WO
WO 2009108860 Jan 2010 WO
WO 2009137255 Jan 2010 WO
WO 2010011894 Jan 2010 WO
WO 2009137832 Apr 2010 WO
WO 2010036352 Apr 2010 WO
WO 2010053587 May 2010 WO
WO 2010151416 Dec 2010 WO
WO 2011083296 Jul 2011 WO
WO 2011083996 Jul 2011 WO
WO 2011106738 Sep 2011 WO
WO 2011106738 Sep 2011 WO
WO 2011107595 Sep 2011 WO
WO 2011139371 Nov 2011 WO
WO 2011139372 Nov 2011 WO
WO 2011140433 Nov 2011 WO
WO 2012027503 Mar 2012 WO
WO 2012048340 Apr 2012 WO
WO 2012048340 Apr 2012 WO
WO 2012048341 Apr 2012 WO
WO 2012061832 May 2012 WO
WO 2012083069 Jun 2012 WO
WO 2012083225 Jun 2012 WO
WO 2012142213 Oct 2012 WO
WO 2012159754 Nov 2012 WO
WO 2013036459 Mar 2013 WO
WO 2013055595 Apr 2013 WO
WO 2013059725 Apr 2013 WO
WO 2013066726 May 2013 WO
WO 2013085855 Jun 2013 WO
WO 2013086450 Jun 2013 WO
WO 2013086462 Jun 2013 WO
WO 2013090390 Jun 2013 WO
WO 2013090469 Jun 2013 WO
WO 2013096480 Jun 2013 WO
WO 2013134162 Sep 2013 WO
WO 2013134302 Sep 2013 WO
WO 2013155119 Oct 2013 WO
WO 2013158936 Oct 2013 WO
WO 2013181428 Dec 2013 WO
WO 2013188471 Dec 2013 WO
WO 2014018460 Jan 2014 WO
WO 2014026031 Feb 2014 WO
WO 2014062945 Apr 2014 WO
WO 2014062959 Apr 2014 WO
WO 2014066184 May 2014 WO
WO 2014130685 Aug 2014 WO
WO 2015002908 Jan 2015 WO
WO 2015013461 Jan 2015 WO
WO 2015058159 Apr 2015 WO
Non-Patent Literature Citations (589)
Entry
US 8,642,750, 02/2014, Robins et al. (withdrawn).
Akatsuka, Y. et al., “Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: Application for assessment of clonal composition”, Tissue Antigens, 53:122-134 (1999).
Al-Lazikani, B. et al., “Standard Conformations for the Canonical Structures of Immunoglobulins,” J. Mol. Biol., 273:927-948 (1997).
Alexandre, D. et al. “H. sapiens rearranged T-cell receptor gamma chain gene, V2-JP1”, GenBank accession No. X57737, NCBI, Nov. 14, 2006, 8 pages [online] [retrieved on Jun. 26, 2013] Retrieved from the internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/x57737>.
Alexandre, D. et al. “H. sapiens rearranged T-cell receptor gamma chain gene, V3RS-J1 (hybrid joint)”, GenBank accession No. X57740, NCBI, Feb. 11, 1997, 8 pages [online] [retrieved on Jun. 26, 2013] Retrieved from the internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/x57740>.
Arstila, T.P., et al., “A direct estimate of the human αβ T cell receptor diversity,” Science, 286(5441):958-961 (1999).
Bahloul, M. et al., “Clinical impact of molecular diagnostics in low-grade lymphoma,” Best Practice & Research Clinical Haematology, 18(1):97-111 (2005).
Benichou, J. et al., “Rep-Seq: uncovering the immunological repertoire through next-generation sequencing”, Immunology, 135(3):183-191 (2012).
Bernardin, F. et al., “Estimate of the total number of CD8+ clonal expansions in healthy adults using a new DNA heteroduplex-tracking assay for CDR3 repertoire analysis”, Journal of Immunological Methods, 274(1-2):159-175 (2003).
Berquam-Vrieze, K. et al., “Cell of origin strongly influences genetic selection in a mouse model of T-ALL”, Blood, 118:4646-4656 (2011).
Blow, N., “PCR's next frontier,” Nature Methods, 4(10):869-875 (2007).
Bolotin, D.A. et al., “Next generation sequencing for TCR repertoire profiling: Platform-specific features and correction algorithms”, Eur. J. Immunol., 42:3073-3083 (2012).
Bonarius, H.P.J. et al., “Monitoring the T-Cell Receptor Repertoire at Single-Clone Resolution”, PLOS One, 1(e55):1-10 (2006).
Boyd, S.D. et al., Individual Variation in the Germline Ig Gene Repertoire Inferred from Variable Region Gene Rearrangements, The Journal of Immunology, 184(12):6986-6992 (2010).
Boyd, S.D. et al., “Measurement and Clinical Monitoring of Human Lymphocyte Clonality by Massively Parallel V-D-J Pyrosequencing,” Science Translational Medicine, 1:12ra23, 40 pages, Supplementary Materials (2009).
Bradfield, S.M. et al., “Graft-versus-leukemia effect in acute lymphoblastic leukemia: the importance of tumor burden and early detection,” Leukemia,18:1156-1158 (2004).
Brenan, C. et al., “High throughput, nanoliter quantitative PCR,” Drug Discovery Today: Technologies, 2(3):247-253 (2005).
Buck, G.A. et al., “Design Strategies and Performance of Custom DNA Sequencing Primers”, Biotechniques, 27(3):528-536 (1999).
Butkus, B., “Hutch Team Uses ddPCR to Quantify T-Cell Response in Tumors; Adaptive Biotech Eyes Marker”, PCR Insider, Dec. 12, 2013, 3 pages http://www.genomeweb.com/print/1323296.
Campana, D., “Progress of Minimal Residual Disease Studies in Childhood Acute Leukemia,” Curr Hematol Malig Rep, 5:169-176 (2010).
Caporaso, J.G. et al., “Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample”, PNAS, 108(Suppl. 1):4516-4522 (2010).
Carlson, C.S. et al., “Using synthetic templates to design an unbiased multiplex PCR assay”, Nature Communications, 4:2680, pp. 1-9 (2013).
Cavé, H. et al., “Clinical Significance of minimal residual disease in childhood acute lymphoblastic leukemia,” The New England Journal of Medicine, 339:591-598 (1998).
Chen, Y. et al., “T-cell receptor gene expression in tumour-infiltrating lymphocytes and peripheral blood lymphocytes of patients with nasopharyngeal carcinoma”, British Journal of Cancer, 72(1):117-22 (1995).
Chothia, C. et al., “Canonical structures for the hypervariable regions of immunoglobulins,” J. Mol. Biol., 196:901-917, Abstract only (1987).
Chothia, C. et al., “Conformations of immunoglobulin hypervariable regions,” Nature, 342:877-883 (1989).
Ciudad, J. et al., “Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL,” British Journal of Haematology, 104:695-705 (1999).
Coustan-Smith, E. et al., “Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia,” Blood, 96(8):2691-2696 (2000).
Coustan-Smith, E. et al., “Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia,” Lancet Oncology, 10:147-156 (2009).
Coustan-Smith, E. et al., “Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia”, Blood, 100(1):52-58 (2002).
Curran-Everett, D., “Multiple comparisons: philosophies and illustrations”, Am J Physiol Regulatory Integrative Comp Physiol., 279:R1-R8 (2000).
Dash, P. et al., “Paired analysis of TCR[alpha] and TCR[beta] chains at the single-cell level in mice”, Journal of Clinical Investigation, 121(1):288-295 (2011).
De Jonge, H.J.M., et al., “Evidence Based Selection of Housekeeping Genes,” PLoS One, 9(e989):1-5 (2007).
DeNucci, C.C. et al., “Integrin function in T-cell homing to lymphoid and nonlymphoid sites: getting there and staying there,” Critical Reviews in Immunology, 29(2):87-109 (2009).
Dheda, K., et al., “Validation of housekeeping genes for normalizing RNA expression in real-time PCR,” Bio Techniques, 37:112-119 (2004).
Dik, W., et al. “New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling,” JEM, 201(11):1715-1723 (2005).
Dobosy, J. et al., “RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers,” BMC Biotechnology, 11(80):1-18 (2011).
Droese, J., et al., “Validation of BIOMED-2 multiplex PCR tubes for detection of TCRB gene rearrangements in T-cell malignancies,” Leukemia, 18:1531-1538 (2004).
Duby, A.D. et al., “Human T-cell receptor aberrantly rearranged beta-chain J1.5-Dx-J2.1 gene,” PNAS, GenBank accession No. M13574.1, bases 1 to 100, 4 pages (1986).
Edwards and Gibbs, “Multiplex PCR: advantages, development, and applications,” Genome Research, 3:S65-S75 (1994).
Elnifro, E.M., et al., “Multiplex PCR: Optimization and Application in Diagnostic Virology”, Clinical Microbiology Reviews, 13(4):559-570 (2000).
Emerson, R.O. et al., “High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer”, Journal of Pathology, 231:433-440 (2013).
Faham, M. et al., “Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia”, Blood, 120(26):5173-5180 (2012).
Flohr, T., et al., “Minimal residual disease-directed risk stratification using real-time quantitative PCT analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia”, Leukemia, 22:771-782 (2008).
Freeman, J.D., et al., “Profiling the T-Cell Receptor Beta-Chain Repertoire by Massively Parallel Sequencing”, Genome Research, 19(10):1817-1824 (2009).
Gerlinger, M. et al., “Ultra deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas”, Journal of Pathology, 231:424-432 (2013).
Gonzalez, S.F., et al., “Trafficking of B Cell Antigen in Lymph Nodes,” Ann. Rev. Immunol., 29:215-233 (2011).
Hodges, E. et al., “Diagnostic role of tests for T cell receptor (TCR) genes”, J Clin Pathol., 56(1):1-11 (2003).
Hwang, H.Y. et al., “Identification of a Commonly used CDR3 Region of Infiltrating T Cells Expressing Vβ13 and Vβ15 Derived from Psoriasis Patients”, The Journal of Investigative Dermatology, 120(3):359-364 (2003).
Jochems and Schlom, “Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity,” Experimental Biology and Medicine, 236:567-579 (2011).
Kalinina, O. et al., “Nanoliter scale PCR with TaqMan detection,” Nucleic Acids Research, 25(10):1999-2004 (1997).
Kalos, M. et al., “T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia”, Science Translational Medicine, 3(95ra73):1-11 (2011).
Kaplinski and Remm, “MultiPLX Automatic Grouping and Evaluation of PCR Primers”, Methods in Molecular Biology, 402(PCR Primer Design):287-303 (2004).
Klarenbeek, P.L. et al., “Human T-cell memory consists mainly of unexpanded clones”, Immunology Letters, 133:42-48 (2010).
Katz, S.C. et al., “T Cell Infiltrate Predicts Long-Term Survival Following Resection of Colorectal Cancer Liver Metastases,” Ann. Surg. Oncol., 16:2524-2530 (2009).
Kehrl, J.H. et al., “Chemoattractant Receptor Signaling and Its Role in Lymphocyte Motility and Trafficking,” Current Topics in Microbiology and Immunology, 334:107-127 (2009).
Kiianitsa, et al., “Development of Tools for T-Cell Repertoire Analysis (TCRB Spectratyping) for the Canine Model of Hematopoietic Cell Transplantation”, Blood, ASH—Annual Meeting Abstracts, 110:Abstract 4873, 2 pages (2007).
Kneba, M., et al., “Analysis of Rearranged T-cell Receptor β-Chain Genes by Polymerase Chain Reaction (PCR) DNA Sequencing and Automated High Resolution PCR Fragment Analysis”, Blood, 86:3930-3937 (1995).
Ladányi, A., et al., “Prognostic impact of B-cell density in cutaneous melanoma”, Cancer Immunol. Immunother, 60(12):1729-1738 (2011).
Ladetto, M. et al., “Real-Time Polymerase Chain Reaction of Immunoglobulin Rearrangements for Quantitative Evaluation of Minimal Residual Disease in Multiple Myeloma”, American Society for Blood and Marrow Transplantation, 6(3):241-253 (2000).
Ladetto, M. et al., “Real-time polymerase chain reaction in multiple myeloma: Quantitative analysis of tumor contamination of stem cell harvests”, Experimental Hematology, 30:529-536 (2002).
Logan, A.C. et al., “High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment”, PNAS, 108(52):21194-21199 (2011).
Lowe, T., et al., “A computer program for selection of oligonucleotide primers for polymerase chain reactions,” Nucleic Acids Research, 18(7):1757-1761 (1990).
Lúcio, P. et al., “Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL”, Leukemia, 13:419-427 (1999).
Mahmoud, S.M.A. et al., “Tumor-Infiltrating CDS+ Lymphocytes Predict Clinical Outcome in Breast Cancer”, Journal of Clinical Oncology, 29(15):1949-1955 (2011).
Marelli-Berg, F.M., et al., “Memory T-cell trafficking: new directions for busy commuters,” Immunology, 130:158-165 (2010).
Mariani, S. et al., “Comprehensive assessment of the TCRBV repertoire in small T-cell samples by means of an improved and convenient multiplex PCR method,” Experimental Hematology, 37(6):728-738 (2009).
Markoulatos, P. et al., “Multiplex Polymerase Chain Reaction: A Practical Approach”, Journal of Clinical Laboratory Analysis, 16:47-51 (2002).
Maryanski, J.L. et al., “A quantitative, single-cell PCR analysis of an antigen-specific TCR repertoire 8 selected during an in vivo CD8 response: direct evidence for a wide range of clone sizes with uniform tissue distribution”, Molecular Immunology, 36:745-753 (1999).
Maślanka, K. et al., “Molecular Analysis of T-Cell Repertoires: Spectratypes Generated by Multiplex Polymerase Chain Reaction and Evaluated by Radioactivity or Fluorescence”, Human Technology, 44(1):28-34 (1995).
Merriam-Webster, 4 pages (definition of “substantial,” accessed Apr. 25, 2014).
Merriam-Webster, 2 pages, (definition of “e.g.,” accessed Apr. 25, 2014).
Miqueu, P. et al., “Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases,” Molecular Immunology, 44:1057-1064 (2007).
Monod, M.Y. et al., “IMGT/JunctionAnalysis: the first tool for the analysis of the immunogloblulin and T cell receptor complex V-J and V-D-J JUNCTIONs”, Bioinformatics, 20(Suppl 1):i379-385 (2004).
Slightom, J.L. et al., “Homo sapiens germline beta T-cell receptor locus,” NCBI Accession No. L36092 NCBI, 254 pages (2009) Retrieved from the Internet: <URL:http://www.ncbi.nlm.nih.gov/nuccore/L36092>.
Nicot, N. et al., “Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress,” Journal of Experimental Botany, 56(421):2907-2914 (2005).
Nolan, T. et al., “Quantification of mRNA using real-time RT-PCR,” Nature Protocols, 1(3):1559-1582 (2006).
PCT International Search Report and Written Opinion, PCT/US2010/021264, mailed Apr. 14, 2010, 7 pages.
PCT International Preliminary Report on Patentability, PCT/US2010/021264, mailed Jul. 19, 2011, 5 pages.
PCT International Search Report and Written Opinion, PCT/US2010/037477, mailed Sep. 24, 2010, 10 pages.
PCT International Preliminary Report on Patentability, PCT/US2010/037477, dated Jan. 4, 2012, 7 pages.
PCT International Search Report and Written Opinion, PCT/US2012/061193, mailed Mar. 28, 2013, 13 pages.
PCT International Preliminary Report on Patentability, PCT/US2012/061193, mailed Apr. 22, 2014, 8 pages.
PCT International Search Report and Written Opinion, PCT/US2012/068617, mailed Mar. 28, 2013, 10 pages.
PCT International Preliminary Report on Patentability, PCT/US2012/068617, mailed Jun. 10, 2014, 6 pages.
PCT International Search Report and Written Opinion, PCT/US2013/062925, mailed Nov. 25, 2013, 12 pages.
PCT Second Written Opinion for PCT/US2013/062925 mailed Jan. 23, 2015, 7 pages.
PCT International Search Report and Written Opinion, PCT/US2011/049012, mailed Apr. 10, 2012, 9 pages.
PCT International Preliminary Report on Patentability, PCT/US2011/049012, dated Feb. 26, 2013, 5 pages.
PCT International Search Report and Written Opinion, PCT/US2013/045994, mailed Oct. 25, 2013, 15 pages.
PCT International Preliminary Report on Patentability, PCT/US2013/045994, dated Dec. 16, 2014, 10 pages.
PCT International Search Report and Written Opinion, PCT/US2011/026373, mailed Oct. 20, 2011, 17 pages.
PCT International Preliminary Report on Patentability, PCT/US2011/026373, dated Aug. 28, 2012, 11 pages.
PCT International Search Report and Written Opinion, PCT/US2014/030859, mailed Jul. 18, 2014, 7 pages.
Pekin, D. et al., “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics”, Lab Chip, 11(3):2156 (2011).
Perkel, J., “Overcoming the Challenges of Multiplex PCR,” Biocompare Editorial Article, Oct. 23, 2012, 6 Pages, can be retrieved at URL:http://www.biocompare.com/Editorial-Articles/117895-Multiplex-PCR/>.
Pohl, G. and Shih, “Principle and applications of digital PCR,” Expert Rev. Mol. Diagn., 4(1):41-47 (2004).
Puisieux, I. et al., “Oligoclonality of Tumor-Infiltrating Lymphocytes from Human Melanomas,” The Journal of Immunology, 153:2807-2818 (1994).
Rasmussen, T. et al., Quantitation of minimal residual disease in multiple myeloma using an allele-specific real-time PCR assay, Experimental Hematology, 28:1039-1045 (2000).
Robins, H.S. et al., “Digital Genomic Quantification of Tumor Infiltrating Lymphocytes”, Science Translational Medicine, 5:214ra169, 19 pages, Supplementary Materials (2013).
Robins, H. et al., “Detecting and monitoring lymphoma with high-throughput sequencing”, Oncotarget, 2:287-288 (2011).
Robins, H. et al., “Overlap and Effective Size of the Human CD8+ T Cell Receptor Repertoire”, Science Transitional Medicine, 2(47, 47ra64):17 pages, Supplemental Materials (2010).
Robins, H. et al., “The Computational Detection of Functional Nucleotide Sequence Motifs in the Coding Regions of Organisms”, Exp Bioi Med, 233(6):665-73 (2008).
Robins, H., et al., “Ultra-sensitive detection of rare T cell clones”, Journal of Immunological Methods, 375:14-19 (2012).
Rock, E.P. et al., “CDR3 Length in Antigen-specific Immune Receptors”, J. Exp. Med., 179:323-328 (1994).
Rosenberg, S.A. et al., “New Approach to the Adoptive Immunotherapy of Cancer with Tumor-Infiltrating Lymphocytes”, Science, 233(4770):1318-1321 (1986).
Roshal, M. et al., “Immaturity Associated Antigens Are Lost During Induction for T Cell Lymphoblastic Leukemia: Implications for Minimal Residual Disease Detection”, Cytometry Part B (Clinical Cytometry), 78:139-146 (2010).
Rozen, S., et al., “Primer3 on the WWW for General Users and for Biologist Programmers,” Methods in Molecular Biology, Bioinformatics Methods and Protocols, 132:365-386 (2000).
Saada, R. et al., “Models for antigen receptor gene rearrangement: CDR3 length”, Immunology and Cell Biology, 85:323-332 (2007).
Santalucia, Jr., J., “Physical Principles and Visual-OMP Software for Optimal PCR Design,” Methods in Molecular Biology, 402(PCR Primer Design):3-33, 40 pages (2007).
Santamaria, P. et al., “Beta-Cell-Cytotoxic CDS T Cells from Nonobese Diabetic Mice Use Highly Homologous T Cell Receptor a-Chain CDR3 Sequences”, The Journal of Immunology, 154(5):2494-2503 (1995).
Schlissel, M.S. et al., “Leukemia and lymphoma: a cost of doing business for adaptive immunity”, Genes Dev., 20(12):1539-44 (2006).
Schrappe, M. et al., “Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study”, Blood, 118(8):2077-2084 (2011).
Sherwood, A., et al., “Deep Sequencing of the Human TCRγ and TCRβ Repertoires Suggests that TCR β Rearranges After αβ and γδ T Cell Commitment,” Science Translational Medicine, 3(90):1-7 (2011).
Silver, N. et al., “Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR”, BMC Molecular Biology, 7(33):1-9 (2006).
Standard Sequencing Primers, Max Planck Genome Center Cologne, Jan. 15, 2011, downloaded from https://genomecentre.mpipz.mpg.de/SeqOrderDB/export/sequencing-primers.html.
Stein and Nombela-Arrieta, “Chemokine control of lymphocyte trafficking: a general overview,” Immunology, 116(10):1-12 (2005).
Steinmetz, O.M. et al., “Chemokines and B cells in renal inflammation and allograft rejection,” Frontiers in Bioscience (Schol. Ed.), 1:13-22 (2009).
Straten, Per thor, et al., “T-cell clonotypes in cancer”, Journal of Translational Medicine, 2(1):11 (2004).
Supplementary European Search Report for European Application No. 10732172.1, dated May 29, 2012, 5 pages.
Szczepanski, T. et al., “Minimal residual disease in leukemia patients”, Lancet Oncology, 2:409-417 (2001).
Tewhey, R. et al., “Corrigendum: Microdroplet-based PCR enrichment for large-scale targeted sequencing”, Nature Biotechnology, 28(2):178, 1 page (2010).
Tewhey, R. et al., “Microdroplet-based PCR enrichment for large-scale targeted sequencing,” Nature Biotechnology, 27(11):1025-1031 (2009).
Triebel, F. et al., “A Unique V-J-C-Rearranged Gene Encodes A γ Protein Expressed on the Majority of CD3+ T Cell Receptor -a/fr Circulating Lymphocytes”, J. Exp. Med., 167:694-699 (1988).
Van Der Velden, VHJ et al., “Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data,” Leukemia, 21:604-611 (2007).
Van Der Velden, VHJ et al., “Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting,” Leukemia, 21:706-713 (2007).
Van Der Velden, V.H.J., et al., “Detection of minimal residual disease in hematologic malignancies by realtime quantitative PCR: principles, approaches, and laboratory aspects,” Leukemia, 17:1013-1034 (2003).
Van Der Velden, V.H.J., et al., “Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia”, Leukemia, 15:1485-1487 (2001).
Van Dongen, J.J.M. et al., “Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and I-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMHC-CT98-3936”, Leukemia, 17:2257-2317 (2003).
Van Dongen, J.J.M. et al., “Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood,” The Lancet, 352:1731-1738 (1998).
Venturi, V. et al., “The molecular basis for public T-cell responses?” Nature Reviews, 8:231-238 (2008).
Venturi, V. et al., “TCR β-Chain Sharing in Human CD8+ T Cell Responses to Cytomegalovirus and EBV1”, The Journal of Immunology, 181:7853-7862 (2008).
Verhagen, O.J.H.M., et al., “Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia,” Leukemia, 14:1426-1435 (2000).
Volgelstein and Kinzler, “Digital PCR,” Genetics, PNAS, 96:9236-9241 (1999).
Wang, X. et al., “Quantitative Measurement of Pathogen Specific Human Memory T Cell Repertoire Diversity using a CDR3 B-Specific Microarray”, BMC Genomics, 8(329): 1-13 (2007).
Ward and Marelli-Berg, “Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation,” Biochem. J., 418:13-27 (2009).
Weinstein, J.A. et al., “High-Throughput Sequencing of the Zebrafish Antibody Repertoire”, Science, 324:807-810 (2009).
Wood, B., “9-Color and 10-Color Flow Cytometry in the Clinical Laboratory,” Arch Pathol Lab Med, 130:680-690 (2006).
Wu, H.D. et al., “The Lymphocytic Infiltration in Calcific Aortic Stenosis Predominantly Consists of Clonally Expanded T Cells”, The Journal of Immunology, 178(8):5329-5339 (2007).
Wu, Y-C. et al., “High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations”, Blood Journal, 116(7):1070-1078, 22 pages (2010).
Xu, W. et al., “A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis,” PLoS One, 7(1):e22900, pp. 1-10 (2012).
Yassai, M.B. et al., “A clonotype nomenclature for T cell receptors”, Immunogenetics, 61:493-502 (2009).
Zhong, Q. et al., “Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR”, Lab Chip, 11:2167-2174 (2011).
Alatrakchi et al. “T-cell clonal expansion in patients with B-cell lymphoproliferative disorders”, Journal of Immunotherapy, 21(5):363-370 (1998).
Altman, et al. “Phenotypic analysis of antigen-specific T lymphocytes”, The Journal of Immunology, 187(1):7-9 (2011).
Andreasson, et al. The human IgE-encoding transcriptome to assess antibody repertoires and repertoire evolution, J Mol Biol., 362(2):212-27 (2006). Epub Aug. 14, 2006.
Assaf, et al. “High Detection Rate of T-Cell Receptor Beta Chain Rearrangements in T-Cell Lymphoproliferations by Family Specific Polymerase Chain Reaction in Combination with the Genescan Technique and DNA Sequencing”, Blood, 96(2)640-646 (2000).
Ateya, et al. “The good, the bad, and the tiny: a review of microflow cytometry”, Anal Bioanal Chem., 391(5):1485-98 (2008). doi: 10.1007/s00216-007-1827-5. Epub Jan. 29, 2008.
Babrzadeh et al. “Development on High-throughput Sequencing Technology: emPCR Titration and Barcode Design”, Stanford School of Medicine, 2 pages (2011).
Bagnara, et al. “IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia”, British Journal of Haematology, 133(1):50-58 (2006).
Batzoglou, S. “The many faces of sequence alignment”, Briefings in Bioinformatics, 6:6-22 (2005).
Becker-André and Hahlbrock. “Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY)”, Nucleic Acids Res., 17(22):9437-46 (1989).
Becton-Dickinson, CD marker handbook. bdbiosciences.com/go/mousecdmarkers, pp. 1-47 (2010).
Becton-Dickinson T-Cell Research Tools, “Novel multicolor flow cytometry tools for the study of CD4+ T-cell differentiation and plasticity”, 16 pages (2009).
Beishuizen, et al. “Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis”, Blood, 83(8):2238-2247 (1994).
Ben-Ezra, et al. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction, The Journal of Histochemistry and Cytochemistry, 39(3):351-354 (1991).
Béné and Kaeda, “How and why minimal residual disease studies are necessary in leukemia: a review from WP10 and WP12 of the European LeukaemiaNet”, Haematologica, 94(8):1135-1150 (2009).
Bentley, et al. “Accurate whole human genome sequencing using reversible terminator chemisry”, Nature, 456(7218):53-59 (2008). doi: 10.1038/nature07517.
Bereczki, et al. “Optimization of PCR amplification for B- and T-cell clonality analysis on formalin-fixed and paraffin-embedded samples”, Pathology Oncology Research, 13(3):209-214 (2007). Epub Oct. 7, 2007.
Berget, et al. “Detection of clonality in follicular lymphoma using formalin-fixed, paraffin-embedded tissue samples and BIOMED-2 immunoglobulin primers”, J Clin Pathol., 64(1):37-41 (2011). doi: 10.1136/jcp.2010.081109. Epub Oct. 28, 2010.
Bernard et al. “Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping”, Anal Biochem., 273(2):221-228 (1999).
Bertness, et al. “T-Cell Receptor Gene Rearrangements as Clinical Markers of Human T-Cell Lymphomas”, The New England Journal of Medicine, 313:534-538 (1985).
Biggerstaff, et al. “Enumeration of leukocyte infiltration in solid tumors by confocal laser scanning microscopy”, BMC Immunol., 7: 16 (2006).
Bonner et al. “Fluorescence activated cell sorting”, Rev Sci Instrum., 43(3):404-409, Abstract Only (1972).
Boria, et al. “Primer sets for cloning the human repertoire of T cell receptor variable regions”, BMC Immunology, 9:50 (2008).
Boyce, et al. “Human regulatory T-cell isolation and measurement of function”, BD Biosciences, pp. 1-20 (2010).
Brehm-Stecher and Johnson. “Single-cell microbiology: tools, technologies, and applications”, Microbiology and Molecular Biology Reviews, 68(3):538-559 (2004).
Brisco, et al. “Determining the repertoire of IGH gene rearrangements to develop molecular markers for minimal residual disease in B-lineage acute lymphoblastic leukemia”, J Mol Diagn., 11(3):194-200 (2009).
Brüggemann, et al. “Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia”, Blood, 107(3):1116-23 (2006). Epub Sep. 29, 2005.
Brüggemann, et al. “Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, Sep. 18-20, 2008”, Leukemia, 24(3):521-35 (2010). doi: 10.1038/leu.2009.268. Epub Dec. 24, 2009.
Bystrykh. “Generalized DNA Barcode Design Based on Hamming Codes”, PLoS ONE, 7(5):e36852, 1-8 (2012).
Campana. “Minimal residual disease in acute lymphoblastic leukemia”, Semin Hematol.,46(1):100-106 (2009).
Campbell et al. “Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing,” PNAS, 105(35):13081-13086 (2008).
Casbon et al. “A method for counting PCR template molecules with application to next-generation sequencing,” Nucleic Acids Research, 39(12): e81 (2011).
Chen et al. “A novel approach for the analysis of T-cell reconstitution by using a T-cell receptor β-based oligonucleotide microarray in hematopoietic stem cell transplantation”, Exp Hematol., 35(5):831-841 (2007).
Choi, et al. “Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone”, Blood, 110(2):632-9 (2007).
Choi, et al. “Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous VH -VH gene replacements and VH-DJH gene rearrangements”, Blood, 87(6):2506-2512 (1996).
Churchill and Waterman. “The Accuracy of DNA Sequences: Estimating Sequence Quality”, Genomics, 14:89-98 (1992).
Chute, et al. “Detection of immunoglobulin heavy chain gene rearrangements in classic hodgkin lymphoma using commercially available BIOMED-2 primers”, Diagn Mol Pathol., 17(2):65-72 (2008). doi: 10.1097/PDM.0b013e318150d695.
Costabile, et al. “Molecular approaches in the diagnosis of primary immunodeficiency diseases”, Human Mutation, 27(12):1163-73 (2006).
Craig et al. “Identification of genetic variants using bar-coded multiplex sequencing,” Nature Methods, 5(10): 887-893 (2008) and Supplemental Materials.
Cronn et al. “Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology”, Nucleic Acids Research, 36(19):e122, 1-11 (2008).
Curran et al. “Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing autoantigens”, The Journal of Immunology, 172:1935-1944 (2004).
Currier and Robinson. “Spectratype/immunoscope analysis of the expressed TCR repertoire”, Current Protocols in Immunology, Supplement 38:10.28.1-10.28.24 (2000).
Davi, et al. “Lymphocytic progenitor cell origin and clonal evolution of human B-lineage acute lymphoblastic leukemia”, Blood, 88(2):609-621 (1996).
Davis, et al. “Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis”, Nat Rev Immunol., 11(8):551-558 (2011). doi: 10.1038/nri3020.
Davis, et al. “Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry”, Nucleic Acids Research, 26(17):3915-3924 (1998).
Dean, et al. “Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification”, Genome Res., 11(6):1095-1099 (2001).
Dedhia, et al. “Evaluation of DNA extraction methods and real time PCR optimization on formalin-fixed paraffin-embedded tissues”, Asian Pac J Cancer Prev., 8(1):55-59 (2007).
Deng et al. “Gene profiling involved in immature CD4+ T lymphocyte responsible for systemic lupus erythematosus”, Molecular Immunology, 43:1497-1507 (2006).
Deschoolmeester, et al. “Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients”, BMC Immunology, 11:19, 12 pages (2010). doi: 10.1186/1471-2172-11-19.
Diederichsen, et al. “Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells”, Cancer Immunol Immunother., 52(7):423-428 (2003). Epub Apr. 15, 2003.
Diviacco, et al. “A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates”, Gene, 122(2):313-320 (1992).
Dohm, et al. “Substantial biases in ultra-short read data sets from high throughput DNA sequencing”, Nucleic Acids Research, 36:e105, 10 pages (2008).
Dou, et al. “Analysis of T cell receptor Vβgene usage during the course of disease in patients with chronic hepatitis B”, Journal of Biomedical Science, 5(6):428-434 (1998).
Drmanac, et al. “Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays”, Science, 327(5961):78-81 (2010). doi: 10.1126/science.1181498. Epub Nov. 5, 2009.
Droege, et al. “The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets”, J Biotechnol., 136(1-2):3-10 (2008). doi: 10.1016/j.jbiotec.2008.03.021. Epub Jun. 21, 2008.
Du et al. “TCR spectratyping revealed T lymphocytes associated with graft-versus-host disease after allogeneic hematopoietic stem cell transplantation”, Leukemia & Lymphoma, 48(8):1618-1627 (2007).
Dunn, et al. “Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human glioma”, Cancer Immun., 7:12, 16 pages (2007).
Eason et al. “Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae genedeletion strains,” PNAS, 101(30): 11046-11051 (2004).
Edd et al. “Controlled encapsulation of single cells into monodisperse picoliter drops”, Lab Chip, 8(8):1262-1264 (2008).
Eid et al. “Real-time DNA sequencing from single polymerase molecules”, Science, 323(5910):133-138 (2009). doi: 10.1126/science.1162986. Epub Nov. 20, 2008.
Flaherty et al. “Ultrasensitive detection of rare mutations using next-generation targeted resequencing”, Nucleic Acids Research, 40(1): e2, 12 pages (2012).
Frank. “BARCRAWL and BARTAB: software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing,” BMC Bioinformatics, 10:362 (2009).
Freeman, et al. “Quantitative RT-PCR: Pitfalls and Potential”, Biotechniques, 6(1):112-125 (1999).
Fridman, et al. “Prognostic and predictive impact of intra- and peritumoral immune infiltrates”, Cancer Research, 71(17):5601-5605 (2011). doi: 10.1158/0008-5472.CAN-11-1316. Epub Aug. 16, 2011.
Fritz et al. “Alterations in the spinal cord T cell repertoire during relapsing experimental autoimmune encephalomyelitis,” J Immunol, 164:6662-6668 (2000).
Fu et al. “Counting individual DNA molecules by the stochastic attachment of diverse labels”, PNAS, 108(22): 9026-9031 and Supporting Materials, 8 pages (2011).
García-Castillo and Núnez, et al. “Detection of clonal immunoglobulin and T-cell receptor gene recombination in hematological malignancies: monitoring minimal residual disease”, Cardiovascular & Haematological Disorders-Drug Targets, 9:124-135 (2009).
Gerlinger and Swanton. “How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine”, British Journal of Cancer, 103(8):1139-1143 (2010). doi: 10.1038/sj.bjc.6605912. Epub Sep. 28, 2010.
Germano, et al. “Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring”, Leukemia, 17(8):1573-1582 (2003).
Gilbert, et al. “The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when?”, PLoS One, 2(6):e537, 12 pages (2007).
Giuggio, et al. “Evolution of the intrahepatic T cell repertoire during chronic hepatitis C virus infection”, Viral Immunology, 18(1):179-89 (2005).
Gloor et al. “Microbiome profiling by Illumine sequencing of combinatorial sequence-tagged PCR products,” PLoS ONE, 5(10): e15406, 15 pages (2010).
Golembowski, et al. “Clonal evolution in a primary cutaneous follicle center B cell lymphoma revealed by single cell analysis in sequential biopsies”, Immunobiology, 201(5):631-644 (2000).
Gonzalez, et al. “Incomplete DJH rearrangements of the IgH gene are frequent in multiple myeloma patients: immunobiological characteristics and clinical implications”, Leukemia, 17:1398-1403 (2003).
Gorski, et al. “Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status”, J Immunol., 152(10):5109-5119 (1994).
Gratama and Kern. “Flow cytometric enumeration of antigen-specific T lymphocytes”, Cytometry A, 58(1):79-86 (2004).
Green, et al. “Clonal diversity of Ig and T-cell-receptor gene rearrangements identifies a subset of childhood B-precursor acute lymphoblastic leukemia with increased risk of relapse”, Blood, 92(3):952-958 (1998).
Gunderson et al. “Decoding Randomly Ordered DNA Arrays”, Genome Research, 14:870-877 (2004).
Guo, et al. “Sequence changes at the V-D junction of the VH1 heavy chain of anti-phosphocholine antibodies alter binding to and protection against Streptococcus pneumoniae”, Int Immunol., 9(5):665-677 (1997).
Gurrieri, et al. “Chronic lymphocytic leukemia B cells can undergo somatic hypermutation and intraclonal immunoglobulin VHDJh gene diversification”, J Exp Med., 196(5):629-639 (2002).
Halldórsdóttir, et al. “Application of BIOMED-2 clonality assays to formalin-fixed paraffin embedded follicular lymphoma specimens: superior performance of the IGK assays compared to IGH for suboptimal specimens”, Leukemia & Lymphoma, 48(7):1338-1343 (2007).
Hamady, et al. “Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex”, Nature Methods, 5(3):235-237 (2008). doi: 10.1038/nmeth.1184. Epub Feb. 10, 2008.
Han et al. “Immunorepertoire analysis by multiplex PCR amplification and high throughput sequencing”, The Journal of Immunology, 182:42.6, 1 page (2009).
Harismendy et al. “Evaluation of next generation sequencing platforms for population targeted sequencing studies”, Genome Biology, 10:R32, 13 pages (2009).
Hawkins, et al. “Whole genome amplification—applications and advances”, Curr Opin Biotechnol., 13(1):65-67 (2002).
He, et al. “IgH gene rearrangements as plasma biomarkers in Non-Hodgkin's lymphoma patients”, Oncotarget, 2(3):178-185 (2011).
Heger, M. “Studies Highlight Challenges of Immune Repertoire Sequencing's Clinical Applicability”, available at http://www.genomeweb.com/sequencing/studies-highlight-challenges-immune-repertoire-sequencings-clinical-applicabilit?hq—e=el&hq—m=966798&hq—I=10&hq—v=2357e2f0b3. Accessed Apr. 6, 2011.
Hensel et al. “Simultaneous identification of bacterial virulence genes by negative selection”, Science, 269(5222): 400-403 (1995).
Holt. “Q &A: BC cancer agency's Robert Holt on sequencing the immune repertoire in immune reconstitution,” Genome Web (www.genomeweb.com) Jun. 30, 2009.
Holt and Jones. “The new paradigm of flow cell sequencing”, Genome Research, 18:839-846 (2008).
Hosono, et al. “Unbiased whole-genome amplification directly from clinical samples”, Genome Res., 13(5):954-964 (2003). Epub Apr. 14, 2003.
Hoven, et al. “Detection and isolation of antigen-specific B cells by the fluorescence activated cell sorter (FACS)”, J Immunol Methods, 117(2):275-284, Abstract Only, 2 pages (1989).
Howe, et al. “T cell receptor clonotype analysis of T cell responses: Diagnostic application of a clonotypic database”, Blood, 102:Abstract 3918 (2003).
Huh, et al. “Microfluidics for flow cytometric analysis of cells and particles”, Physiol Meas., 26(3):R73-98, Abstract Only (2005). Epub Feb. 1, 2005.
Huijsmans, et al. “Comparative analysis of four methods to extract DNA from paraffin-embedded tissues: effect on downstream molecular applications”, BMC Res Notes, 3:239, 9 pages (2010). doi: 10.1186/1756-0500-3-239.
Illumina. Data Sheet: Sequencing. Genomic Sequencing. Pub. No. 770.2008-016 Reference states: “Current as of Jan. 30, 2009.” (2010.
Ishii et al. “Isolation and expression profiling of genes upregulated in the peripheral blood cells of systemic lupus erythematosus patients,” DNA Research, 12:429-439 (2005).
Jacobi et al. “Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95”, Arthritis & Rheumatism, 58(6):1762-1773 (2008).
Jacobi et al. “Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus” Arthritis & Rheumatism, 48(5):1332-1342 (2003).
Jalla, et al. “Enumeration of lymphocyte subsets using flow cytometry: Effect of storage before and after staining in a developing country setting”, Indian J Clin Biochem., 19(2):95-99 (2004). doi: 10.1007/BF02894264.
Jena, et al. “Amplification of genes, single transcripts and cDNA libraries from one cell and direct sequence analysis of amplified products derived from one molecule”, J. Immunol. Methods, 190:199-213 (1996).
Kato et al. “Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus,” Arthritis & Rheumatism, 43(12):2712-2721 (2000).
Kedzierska, et al. “Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity”, Mol Immunol., 45(3):607-618 (2008). Epub Aug. 24, 2007.
Kim, et al. “An efficient and reliable DNA extraction method for preimplantation genetic diagnosis: a comparison of allele drop out and amplification rates using different single cell lysis methods”, Fertility and Sterility, 92: 814-818 (2009).
Kim, et al. “Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy”, Science, 316(5830):1481-1484 (2007).
Kinde et al. “Detection and quantification of rare mutations with massively parallel sequencing,” PNAS, 108(23): 9530-9535 and Supporting Information, 16 pages (2011).
Kivioja et al. “Counting absolute numbers of molecules using unique molecular identifiers,” Nature Methods, 9(1): 72-76 (2012).
Kobari, et al. “T cells accumulating in the inflamed joints of a spontaneous murine model of rheumatoid arthritis become restricted to common clonotypes during disease progression”, Int Immunol., 16(1):131-138 (2004).
Koch, et al. “Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ,” Ann Surg., 244(6):986-992; discussion 992-993 (2006).
Langerak, et al. “Immunoglobulin/T-cell receptor clonality diagnostics”, Expert Opin. Med. Diagn., 1(3):451-461 (2007).
Langerak, et al. “Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936”, Leukemia, 21(2):222-229 (2007).
Laplaud et al. “Blood T-cell receptor β chain transcriptome in multiple sclerosis. Characterization of the T cells with altered CDR3 length distribution”, Brain, 127:981-995 (2004).
Laplaud et al. “Serial blood T cell repertoire alterations in multiple sclerosis patients; correlation with clinical and MRI parameters”, Journal of Neuroimmunology, 177(1-2):151-160 (2006).
Lassmann, et al. “Application of BIOMED-2 primers in fixed and decalcified bone marrow biopsies: analysis of immunoglobulin H receptor rearrangements in B-cell non-Hodgkin's lymphomas”, J Mol Diagn., 7(5):582-591 (2005).
Lee, et al. “Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients”, Nat Med., 5(6):677-685, Abstract Only (1999).
Lee, et al. “Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer”, Br J Cancer, 99(10):1704-1711 (2008). doi: 10.1038/sj.bjc.6604738. Epub Oct. 21, 2008.
Leisner, et al. “One-pot, mix-and-read peptide-MHC tetramers”, PLoS One, 3(2):e1678, 11 pages (2008). doi: 10.1371/journal.pone.0001678.
Leone, et al. “Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA”, Nucleic Acids Research, 26(9):2150-2155 (1998).
Li, et al. “Utilization of Ig heavy chain variable, diversity, and joining gene segments in children with B-lineage acute lymphoblastic leukemia: implications for the mechanisms of VDJ recombination and for pathogenesis”, Blood, 103(12):4602-4609 (2004).
Li, et al. “An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells”, Anal. Bioanal. Chem., 397: 1853-1859 (2010).
Li, et al. “Clonal rearrangements in childhood and adult precursor B acute lymphoblastic leukemia: a comparative polymerase chain reaction study using multiple sets of primers”, Eur J Haematol., 63(4):211-218 (1999).
Li, et al. “Detailed clonality analysis of relapsing precursor B acute lymphoblastic leukemia: implications for minimal residual disease detection”, Leukemia Research, 25:1033-1045 (2001).
Li, et al. “Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection”, Blood, 102:4520-4526 (2003).
Liedtke, et al. “A comparison of methods for RNA extraction from lymphocytes for RT-PCR”, PCR Methods and Applications, 4(3):185-187 (1994).
Liu, et al. “CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells”, J Exp Med., 203(7):1701-1711 (2006). Epub Jul. 3, 2006.
Lovisa, et al. “IGH and IGK gene rearrangements as PCR targets for pediatric Burkitt's lymphoma and mature B-ALL MRD analysis”, Lab Invest., 89(10):1182-1186 (2009).
Luo et al. “Analysis of the interindividual conservation of T cell receptor α- and β-chain variable regions gene in the peripheral blood of patients with systemic lupus erythematosus”, Clinical & Experimental Immunology, 154(3):316-324 (2008).
Manrao, et al. “Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase”, Nat Biotechnol. , 30(4):349-353 (2012). doi: 10.1038/nbt.2171.
Mardis. “Next-generation DNA sequencing methods”, Annu. Rev. Genomics Hum. Genet., 9:387-402 (2008). doi: 10.1146/annurev.genom.9.081307.164359.
Margulies, et al. “Genome sequencing in microfabricated high-density picolitre reactors”, Nature, 437(7057):376-380 (2005). Epub Jul. 31, 2005.
Mato et al. “Correlation of clonal T cell expansion with disease activity in systemic lupus erythematosus”, Int Immunol., 9(4):547-554 (1997).
Matolcsy, et al. “Clonal evolution of B cells in transformation from low- to high-grade lymphoma”, Eur. J. Immunol., 29(4):1253-1264 (1999).
Matsumoto et al. “CDR3 spectratyping analysis of the TCR repertoire in Myasthenia Gravis”, The Journal of Immunology, 176:5100-5107 (2006).
Matsumoto et al. “Complementarity-determining region 3 spectratyping analysis of the TCR repertoire in multiple sclerosis”, The Journal of Immunology, 170:4846-4853 (2003).
McCloskey et al. “Encoding PCR products with batch-stamps and barcodes,” Biochem. Genet., 45: 761-767 (2007).
Meleshko, et al. “Rearrangements of IgH, TCRD and TCRG genes as clonality marker of childhood acute lymphoblastic leukemia”, Experimental Oncology, 27(4):319-324 (2005).
Menezes et al. “A public T cell clonotype within a heterogeneous autoreactive repertoire is dominant in driving EAE”, J Clin Invest, 117(8):2176-2185 (2007).
Metzker, “Sequencing Technologies—The Next Generation”, Nature Reviews, Genetics, 11:31-46 (2010).
Meyer et al. “Targeted high-throughput sequencing of tagged nucleic acid samples,” Nucleic Acids Research, 35(15): e97 (2007).
Michalek, et al. “Detection and long-term in vivo monitoring of individual tumor-specific T cell clones in patients with metastatic melanoma”, J Immunol., 178(11):6789-6795 (2007).
Miltenyi, et al. “High gradient magnetic cell separation with MACS”, Cytometry, 11(2):231-238 (1990).
Miner et al. “Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR”, Nucleic Acids Research, 32(17): e135, 4 pages (2004).
Moody, et al. “Antigen-specific B cell detection reagents: use and quality control”, Cytometry A., 73(11):1086-1092 (2008). doi: 10.1002/cyto.A.20599.
Morozova et al. “Applications of New Sequencing Technologies for Transcriptome Analysis”, Annu. Rev. Genomics Hum. Genet., 10:135-151 (2009).
Morrissy et al. “Next-generation tag sequencing for cancer gene expression profiling”, Genome Research, 19:1825-1835 (2009).
Moss, et al. “The human T cell receptor in health and disease”, Annu. Rev. Immunol., 10:71-96 (1992).
Muraro et al. “Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders”, Brain, 126(Pt 1):20-31 (2003).
Naito, et al. “CD8+T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer”, Cancer Research, 58(16):3491-3494 (1998).
Nardi, et al. “Quantitative monitoring by polymerase colony assay of known mutations resistant to ABL kinase inhibitors”, Oncogene, 27(6):775-782 (2008). Epub Aug. 6, 2007, 1-8.
Neale, et al. “Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia”, Leukemia, 18(5):934-938 (2004).
Needleman and Wunsch. “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, J Mol Biol., 48(3):443-453 (1970).
Nelson. “CD20+B cells: the other tumor-infiltrating lymphocytes”, The Journal of Immunology, 185(9):4977-4982 (2010). doi: 10.4049/jimmuno1.1001323.
Newman, et al. “Identification of an antigen-specific B cell population”, J Immunol Methods, 272(1-2):177-187, Abstract Only (2003).
Nguyen et al. “Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire” BMC Genomics, 12:106, 13 pages (2011).
Nosho, et al. “Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature revieve”, J Pathol., 222(4):350-366 (2010). doi: 10.1002/path.2774.
Novak, et al. “Single-cell multiplex gene detection and sequencing With microfluidically generated agarose emulsions”, Angewandte Chemie, 50(2):390-395, with supplemental materials (2011).
Oble, et al. “Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma”, Cancer Immunity, 9:3, 20 pages (2009).
Ogle, et al. “Direct measurement of lymphocyte receptor diversity”, Nucleic Acids Research, 31(22):e139, 6 pages (2003).
Ohtani. “Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer”, Cancer Immunity, 7:4, 9 pages (2007).
Okajima et al. “Analysis of T cell receptor Vβ diversity in peripheral CD4+and CD8+T lymphocytes in patients with autoimmune throid diseases”, Clinical & Experimental Immunology, 155:166-172 (2008).
Okello et al. “Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues”, Anal Biochem., 400(1):110-117 (2010). doi: 10.1016/j.ab.2010.01.014. Epub Jan. 15, 2010.
Packer and Muraro. “Optimized clonotypic analysis of T-cell receptor repertoire in immune reconstitution”, Experimental Hematology, 35(3):516-521 (2007).
Pan, et al. “A new FACS approach isolates hESC derived endoderm using transcription factors”, PLoS One, 6(3):e17536, 9 pages (2011). doi: 10.1371/journal.pone.0017536.
Panzer-Grümayer et al. “Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection”, Clin Cancer Research, 11(21):7720-7727 (2005).
Parameswaran et al. “A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing”, Nucleic Acids Research, 35(19): e130, 9 pages (2007).
PCT/US2009/006053, International Search Report dated Jun. 15, 2010, 6 pages.
PCT/US2011/000791, International Search Report and Written Opinion dated Sep. 22, 2011, 13 pages.
PCT/US2011/000792, International Search Report and Written Opinion dated Oct. 19, 2011, 12 pages.
PCT/US2012/069310, International Search Report and Written Opinion dated Feb. 26, 2013, 7 pages.
Pels et al. “Clonal evolution as pathogenetic mechanism in relapse of primary CNS lymphoma”, Neurology, 63(1):167-169 (2004).
Pira et al. “Human naive CD4 T-cell clones specific for HIV envelope persist for years in vivo in the absence of antigenic challenge”, J Acquir Immune Defic Syndr., 40(2):132-139 (2005).
Pop and Salzberg. “Bioinformatics challenges of new sequencing technology”, NIH, Trends Genet., 24(3): 142-149 (2008).
Qui et al. “DNA sequence-based “bar codes” for tracking the origins of expressed sequence tags from a maize cDNA library constructed using multiple mRNA sources,” Plant Physiology, 133(2): 475-481 (2003).
Ray, et al. “Single cell multiplex PCR amplification of five dystrophin gene exons combined with gender determination”, Molecular Human Reproduction, 7(5): 489-494 (2001).
Reddy and Georgiou. “Systems analysis of adaptive immunity by utilization of high-throughput technologies”, Current Opinion in Biotechnology, 22(4):584-589 (2011).
Reinartz et al. “Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms”, Brief Funct Genomic Proteomic., 1(1):95-104 (2002).
Ria, et al. “Collagen-specific T-cell repertoire in blood and synovial fluid varies with disease activity in early rheumatoid arthritis”, Arthritis Res Ther., 10(6):R135, 18 pages (2008). Epub Nov. 17, 2008.
Rickinson and Moss. “Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection”, Annu Rev Immunol., 15:405-431 (1997).
Risitano et al. “In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCRβ-CDR3 sequencing”, Lancet, 364:355-364 (2004).
Robins, H. et al. “Ultra-sensitive detection of rare T cell clones”, Immunol Methods, 375(1-2):14-19 (2012).
Rosenquist, et al. “Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-B acute lymphoblastic leukemia”, Eur J Haematol., 63(3):171-179 (1999).
Rougemont, et al. “Probabilistic base calling of Solexa sequencing data”, BMC Bioinformatics, 9:431, 12 pages (2008).
Ryan et al. “Clonal evolution of lymphoblastoid cell lines”, Laboratory Investigation, 86(11):1193-1200 (2006). Epub Oct. 2, 2006.
Salzberg. “Mind the gaps,” Nature Methods, 7(2): 105-106 (2010).
Sato et al. “Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer”, PNAS, 102(51):18538-18543 (2005). Epub Dec. 12, 2005.
Satoh et al. “Pretreatment with restriction enzyme or bovine serum albumin for effective PCR amplification of Epstein-Barr virus DNA in DNA extracted from paraffin-embedded gastric carcinoma tissue”, J Clin Microbiol., 36(11):3423-3425 (1998).
Schaufelberger et al. “An uneven expression of T cell receptor V genes in the arterial wall and peripheral blood in giant cell arteritis”, Inflammation, 31(6):372-383 (2008).
Schmitt et al. “Detection of ultra-rare mutations by next-generation sequencing,” PNAS, 109(36): 14508-14513 and Supporting Information, 9 pages (2012).
Schøller et al. “Analysis of T cell receptor αβ variability in lymphocytes infiltrating melanoma primary tumours and metastatic lesions”, Cancer Immunol Immunother. 39(4):239-248 (1994).
Schreiber et al. “Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion”, Science, 331(6024):1565-1570 (2011). doi: 10.1126/science.1203486.
Schwab et al. “CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery”, Brain, 132:1236-1246 (2009).
Schweiger et al. “Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis”, PLoS One, 4(5):e5548, 7 pages (2009). doi: 10.1371/journal.pone.0005548. Epub May 14, 2009.
Sehouli et al. “Epigenetic quantification of tumor-infiltrating T-lymphocytes” Epigenetics, 6(2):236-246 (2011). Epub Feb. 1, 2011.
Sfanos et al. “Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing”, Clinical Cancer Research, 14(11):3254-3261 (2008). doi: 10.1158/1078-0432.CCR-07-5164.
Shen et al. “Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing”, PLoS One, 3(12):e4012, 6 pages (2008).
Shendure and Ji. “Next-generation DNA sequencing”, Nature Biotechnology, 26(10):1135-1145 (2008).
Shiroguchi et al. “Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes,” PNAS, 109(4):1347-1352 (2012).
Shoemaker et al. “Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy,” Nature Genetics, 14(4): 450-456 (1996).
Sing et al. “A molecular comparison of T Lymphocyte populations infiltrating the liver and circulating in the blood of patients with chronic hepatitis B: evidence for antigen-driven selection of a public complementarity-determining region 3 (CDR3) motif”, Hepatology, 33(5):1288-1298 (2001).
Skulina et al. “Multiple Sclerosis: Brain-infiltrating CD8+T cells persist as clonal expansions in the cerebrospinal fluid and blood”, PNAS, 101(8):2428-2433 (2004).
Smith, et al. “Comparison of biosequences”, Advances in Applied Mathematics, 2:482-489 (1981).
Smith et al. “Rapid whole-genome mutational profiling using next-generation sequencing technologies”, Genome Research, 18:1638-1642 (2008).
Sramkova, et al. “Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia”, Pediatr. Blood Cancer, 48(1):93-100 (2007).
Srinivasan et al. “Effect of fixatives and tissue processing on the content and integrity of nucleic acids”, Am J Pathol., 161(6):1961-1971 (2002).
Steenbergen, et al. “Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia”, Blood, 82(2):581-589 (1993).
Steward et al. “A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia”, Blood, 83(5):1355-1362 (1994).
Struyk et al. “T cell receptors in rheumatoid arthritis”, Arthritis & Rheumatism, 38(5):577-589 (1995).
Sumida et al. “T cell receptor repertoire of infiltrating T cells in lips of Sjogren's syndrome patients”, J Clin Invest., 89:681-685 (1992).
Sumida et al. “T cell receptor Vα repertoire of infiltrating T cells in labial salivary glands from patients with Sjogren's syndrome”, J Rheumatol., 21:1655-1661 (1994).
Swarup and Rajeswari. “Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases”, FEBS Letters, 581(5):795-799 (2007). Epub Feb. 2, 2007.
Szczepanski et al. “Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease”, Blood, 99(7):2315-2523 (2002).
Szczepanski et al. “Why and how to quantify minimal residual disease in acute lymphoblastic leukemia?”, Leukemia, 21(4):622-626 (2007). Epub Feb. 15, 2007.
Tackenberg et al. “Clonal expansions of CD4+B helper T cells in autoimmune myasthenia gravis”, European Journal of Immunology, 37(3):849-863 (2007).
Tajiri et al. “Cell-microarray analysis of antigen-specific B-cells: single cell analysis of antigen receptor expression and specificity”, Cytometry Part A, 71A: 961-967 (2007).
ten Bosch et al. “Keeping Up With the Next Generation Massively Parallel Sequencing in Clinical Diagnostics”, Journal of Molecular Diagnostics, 10(6):484-492 (2008).
Thiel, et al. “Antigen-specific cytometry—new tools arrived!”, Clin Immunol., 111(2):155-161, Abstract Only (2004).
Thornhill et al. “A comparison of different lysis buffers to assess allele dropout from single cells for preimplantation genetic diagnosis”, Prenatal Diagnosis, 21:490-497 (2001).
Tokimitsu et al. “Single lymphocyte analysis with a microwell array chip”, Cytometry Part A, 71A:1003-1010 (2007).
Umibe et al. “Clonal expansion of T cells infiltrating in the airways of non-atopic asthmatics”, Clinical & Experimental Immunology, 119(3):390-397 (2000).
Unrau and Deugau. “Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA ‘indexers’”, Gene., 145(2):163-169, Abstract Only, 2 pages (1994).
Uppaluri et al. “Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers”, Cancer Immunity, 8:16, 10 pages (2008).
Varley and Mitra. “Nested patch PCR enables highly multiplexed mutation discovery in candidate genes”, Genome Research, 18: 1844-1850 (2008).
Vlassov, et al. Circulating nucleic acids as a potential source for cancer biomarkers, Curr Mol Med., 10(2):142-165 (2010).
Wang, et al. “Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples”, Nucleic Acids Research, 32(9):e76, 10 pages (2004).
Wang, et al. “High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets”, PNAS, 107(4): 1518-1523 (2010).
Warren et al. “Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes”, Genome Res., 21(5):790-797 (2011). doi: 10.1101/gr.115428.110. Epub Feb. 24, 2011.
Warren et al. “Profiling model T-cell metagenomes with short reads”, Bioinformatics, 25(4):458-464 (2009).
Weiss et al. “Clonal Rearrangements of T-Cell Receptor Genes in Mycosis Fungoides and Dermatopathic Lymphadenopathy”, The New England Journal of Medicine, 313(9):539-544 (1985).
Wells, et al. “Strategies for preimplantation genetic diagnosis of single gene disorders by DNA amplification”, Prenatal Diagnosis, 18(13):1389-1401 (1998).
Westermann and Pabst. “Distribution of lymphocyte subsets and natural killer cells in the human body”, Clin Investig., 70(7):539-544 (1992).
Wetmur and Chen. “An emulsion polymerase chain reaction-based method for molecular haplotyping”, Methods in Molecular Biology, 410: 351-361 (1996).
Wetmur and Chen. “Linking emulsion PCR haplotype analysis”, chapter 11, Park, D.J. (ed.), PCR Protocols, Methods in Molecular Biology, 687: 165-175 (2011).
Wetmur et al. “Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes”, Nucleic Acids Research, 33(8):2615-2619 (2005).
Wlodarski et al. “Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome”, Blood, 108(8):2632-2641 (2006).
Wlodarski et al. “Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia”, Blood, 106:2769-2779 (2005).
Wood, et al. “Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens”, Nucleic Acids Research, 38(14):e151, 11 pages (2010). doi: 10.1093/nar/gkq510. Epub Jun. 4, 2010.
Yin et al. “Antiretroviral therapy restores diversity in the T-cell receptor Vβrepertoire of CD4 T-cell subpopulations among human immunodeficiency virus type 1-infected children and adolescents”, Clinical and Vaccine Immunology, 16(9):1293-1301 (2009).
Yon and Fried. “Precise gene fusion by PCR”, Nucleic Acids Research, 17(12):4895, 1 page (1989).
Yu and Fu. “Tumor-infiltrating T lymphocytes: friends or foes?”, Lab Invest., 86(3):231-245 (2006).
Zaliova, et al. “Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring”, Leukemia, 23(5):944-951 (2009).
Zeng et al. “High-performance single cell genetic analysis using microfluidic emulsion generator arrays”, Anal. Chem., 82(8):3183-3190 (2010).
Zhou et al. “High throughput analysis of TCR-β rearrangement and gene expression in single cells”, Laboratory Investigation, 86:314-621 (2006).
Zhou et al. “Isolation of purified and live Foxp3+regulatory T cells using FACS sorting on scatter plot”, J Mol Cell Biol., 2(3):164-169 (2010). doi: 10.1093/jmcb/mjq007. Epub Apr. 29, 2010.
Zimmerman and Mannhalter. “Technical aspects of quantitative competitive PCR”, Biotechniques, 21:268-279 (1996).
Abbott, et al. “Design and use of signature primers to detect carry-over of amplified material”, J Virol Methods, 46(1):51-59, Abstract Only (1994).
Altschul, et al. “Basic local alignment search tool”, J Mol Biol., 215(3):403-410 (1990).
Arden, et al. “Human T-cell receptor variable gene segment families”, Immunogenetics, 42(6):455-500, Abstract Only (1995).
Armand, P. et al., “Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma”, Brit. J. Haematol., vol. 163, pp. 123-126 (2013).
Aslanzadeh. “Preventing PCR amplification carryover contamination in a clinical laboratory”, Ann Clin Lab Sci., 34(4):389-396 (2004).
Barbas, et al. “Assembly of combinatorial antibody libraries on phage surfaces: the gene III site”, PNAS, 88(18):7978-7982, Abstract Only (1991).
Barker, et al. “A second type II restriction endonuclease from Thermus aquaticus with an unusual sequence specificity”, Nucleic Acids Res., 12(14):5567-5581 (1984).
Baum and McCune et al. “Direct measurement of T-cell receptor repertoire diversity with AmpliCot”, Nat Methods, 3(11):895-901 (2006).
Benecke. “DNA typing in forensic medicine and in criminal investigations: a current survey”, Naturwissenschaften, 84(5):181-188 (1997).
Berger, et al. “The clonotypic T cell receptor is a source of tumor-associated antigens in cutaneous T cell lymphoma”, Annals of the New York Academy of Sciences, 941:106-122, Abstract Only (2001).
Berzofsky, et al. “Progress on new vaccine strategies for the immunotherapy and prevention of cance”, J Clin Invest., 113(11):1515-1525 (2004).
Biagi, et al. “Responses to human CD40 ligand/human interleukin-2 autologo cell vaccine in patients with B-cell chronic lymphocytic leukemia”, Clin Cancer Res., 11(19 Pt 1):6916-6923 (2005).
Borst, et al. “False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy”, Eur J Clin Microbiol Infect Dis., 23(4):289-299, Abstract Only (2004). Epub Mar. 10, 2004.
Bousso. “Generation of MHC-peptide tetramers: a new opportunity for dissecting T-cell immune responses”, Microbes Infect., 2(4):425-429, Abstract Only (2000).
Bravo and Irizarry. “Model-Based Quality Assessment and Base-Calling for Second-Generation Sequencing Data”, Biometrics, 66(3): 665-674 (2010).
Brenner, et al. “In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs”, PNAS, 97(4):1665-1670 (2000).
Brody, et al. “Active and passive immunotherapy for lymphoma: proving principles and improving results”, J Clin Oncol., 29(14):1864-1875, Abstract Only (2011). doi: 10.1200/JCO.2010.33.4623. Epub Apr. 11, 2011.
Brody, et al., “Immunotransplant for mantle cell lymphoma: Phase I/II study preliminary results”, Journal of Clinical Oncology, ASCO Annual Meeting Abstracts Part 1, vol. 29, No. 15, 1 page (2011).
Brody, et al. “Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant”, Immunotherapy, 1(5):809-824 (2009). doi: 10.2217/imt.09.50.
Brown, et al. “Current techniques for single-cell lysis”, J. R. Soc. Interface, 5:S131-S138 (2008).
Buccisano, et al. “Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia”, Blood, 119(2):332-341 (2012). doi: 10.1182/blood-2011-08-363291. Epub Oct. 28, 2011.
Buccisano, et al. “Monitoring of minimal residual disease in acute myeloid leukemia”, Curr Opin Oncol., 21(6):582-588, Abstract Only (2009). doi: 10.1097/CC0.0b013e3283311856.
Campana, et al. “Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia”, Hematol Oncol Clin North Am., 23(5):1083-1098 (2009). doi: 10.1016/j.hoc.2009.07.010.
Carlotti, et al. “Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone”, Blood, 113(15):3553-3557 (2009). doi: 10.1182/blood-2008-08-174839. Epub Feb. 6, 2009.
Casali, et al. “Human monoclonals from antigen-specific selection of B lymphocytes and transformation by EBV”, Science, 234(4775):476-479, Abstract Only (1986).
Catherwood, MA. et al., “Improved clonality assessment in germinal centre/post germinal centre non-Hodgkin's lymphomas with high rates of somatic hypermutation”, J. Clin. Pathol., 60:524-528, Abstract (2007).
Chattopadhyay, et al. “A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles”, Nat Med., 11(10):1113-1117 (2005). Epub Sep. 25, 2005.
Chen, et al. “Microfluidic cell sorter with integrated piezoelectric actuator”, Biomed Microdevices, 11(6):1223-1231 (2009). doi: 10.1007/s10544-009-9341-5.
Chen, et al. “Total Gene Synthesis: Novel Single-Step and Convergent Strategies Applied to the Construction of a 779 Base Pair Bacteriorhodopsis”, Gene. J. Am. Chem Soc., 116:8799-8800, Abstract Only (1994).
Chiu, et al. “Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study”, BMJ, 342:c7401, 9 pages (2011). doi: 10.1136/bmj.c7401.
Cleary, et al. “Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis”, Nat Methods, 1(3):241-248 (2004). Epub Nov. 18, 2004.
Cronin, et al. “Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology”, Biomark Med., 5(3):293-305 (2011). (Abstract only). doi: 10.2217/bmm.11.37.
Deiman, et al. “Characteristics and applications of nucleic acid sequence-based amplification (NASBA)”, Mol Biotechnol., 20(2):163-179, Abstract Only (2002).
Diehl, et al. “BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions”, Nat Methods, 3(7):551-559, Abstract Only (2006).
Ding, et al. “Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing”, Nature, 481(7382):506-510 (2012). doi: 10.1038/nature10738.
Dressman, et al. “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations”, PNAS, 100(15):8817-8822 (2003). Epub Jul. 11, 2003.
Eichler, et al. “Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome”, Hum Mol Genet., 5(3):319-330 (1996).
Eichler, et al. “Length of uninterrupted CGG repeats determines instability in the FMR1 gene”, Nat Genet., 8(1):88-94, Abstract Only (1994).
Eis, et al. “An invasive cleavage assay for direct quantitation of specific RNAs”, Nat Biotechnol., 19(7):673- 676, Abstract Only (2001).
EP Application No. 11777704.5, European Search Report dated Jul. 26, 2013, 6 pages.
Ferrero, et al. “Multiple myeloma shows no. intra-disease clustering of immunoglobulin heavy chain genes”, Haematologica, 97(6):849-853 (2012). doi: 10.3324/haemato1.2011.052852. Epub Dec. 29, 2011.
Frampton, et al. “Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing”, Nat Biotechnol., 31(11):1023-1031 (2013). doi: 10.1038/nbt.2696. Epub Oct. 20, 2013.
Fuller, et al. “The challenges of sequencing by synthesis”, Nat Biotechnol., 7(11):1013-23 (2009) (Abstract only). doi: 10.1038/nbt.1585. Epub Nov. 6, 2009.
Gauss, et al. “Mechanistic constraints on diversity in human V(D)J recombination”, Mol Cell Biol., 16(1):258-269 (1996).
Gawad, et al. “Massive evolution of the immunoglobulin heavy chain loc in children with B precursor acute lymphoblastic leukemia”, Blood, 120(22):4407-4417 (2012). doi: 10.1182/blood-2012-05-429811. Epub Aug. 28, 2012.
Godelaine, et al. “Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide”, J Immunol., 171(9):4893-4897 (2003).
Gonzalez et al., “Incomplete DJH rearrangements as a novel tumor target for minimal residual disease quantitation in multiple myeloma using real-time PCR”, Leukemia, 17:1051-1057 (2003).
Gottenberg, et al. “Markers of B-lymphocyte activation are elevated in patients with early rheumatoid arthritis and correlated with disease activity in the ESPOIR cohort”, Arthritis Res Ther., 11(4):R114 (2009). doi: 10.1186/ar2773. Epub Jul. 23, 2009.
Gratama, et al. “Measuring antigen-specific immune responses”, 2008 update. Cytometry A., 73(11):971-974 (2008). doi: 10.1002/cyto.A.20655.
Greenberg, et al. “Profile of immunoglobulin heavy chain variable gene repertoires and highly selective detection of malignant clonotypes in acute lymphoblastic leukemia” J Leukoc Biol., 57(6):856-864 (1995).
Greenman, et al. “Patterns of somatic mutation in human cancer genomes”, Nature, 446(7132):153-158 (2007).
Gribben, JG. “Stem cell transplantation in chronic lymphocytic leukemia”, Biol. Blood Marrow Transplant., 15(1 Suppl):53-8 (2009). doi: 10.1016/j.bbmt.2008.10.022.
Gulliksen, et al. “Real-time nucleic acid sequence-based amplification in nanoliter volumes”, Anal Chem., 76(1):9-14, Abstract Only (2004).
Hadrup, et al. “Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers”, Nat Methods, 6(7):520-526 (2009) (Abstract Only). doi: 10.1038/nmeth.1345. Epub Jun. 21, 2009.
Hanahan, et al. “Hallmarks of cancer: the next generation”, Cell, 144(5):646-674 (2011). doi: 10.1016/j.ce11.2011.02.013.
Hill, et al. “Using ecological diversity measures with bacterial communities”, FEMS Microbiol Ecol., 43(1):1-11 (2003). doi: 10.1111/j.1574-6941.2003.tb01040.x.
Hirohata, et al. “Regulation of human B cell function by sulfasalazine and its metabolites”, Int Immunopharmacol., 2(5):631-640, Abstract Only (2002).
Hoogenboom, et al. “Multi-subunit proteins on the surface of filamentophage: methodologies for displaying antibody (Fab) heavy and light chains”, Nucleic Acids Res., 19(15):4133-4137 (1991).
Hoogendoorn, et al. “Primary allogeneic T-cell responses against mantle cell lymphoma antigen-presenting cells for adoptive immunotherapy after stem cell transplantation”, Clin Cancer Res., 11(14):5310-5318 (2005).
Hoos, et al. “Improved endpoints for cancer immunotherapy trials”, J Natl Cancer Inst., 102(18):1388-1397 (2010). doi: 10.1093/jnci/djq310. Epub Sep. 8, 2010.
Hoover and Lubkowski. “DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis”, Nucleic Acids Res., 30(10):e43, 7 pages (2002).
Huang, et al. “Isolation of cell-free DNA from maternal plasma using manual and automated systems”, Methods Mol Biol., 444:203-208, Abstract Only (2008). doi: 10.1007/978-1-59745-066-9—15.
Huse, et al. “Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda”, Science, 246(4935):1275-1281, Abstract Only (1989).
Iancu, et al. “Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination”, J Biomed Biotechnol., 2011:452606 (2011). doi: 10.1155/2011/452606. Epub Nov. 14, 2010.
Illumina. Genome analyzer pipeline software version 1.0 user guide. Part #1004759, 176 pages (2008).
Illumina. TruSeq Sample Preparation Kit and Data Sheet. Illumina, Inc., San Diego, CA, 4 pages (2011).
Jaffe, et al. “Classification of lymphoid neoplasms: the microscope as a tool for disease discovery”, Blood, 112(12):4384-4399 (2008). doi: 10.1182/blood-2008-07-077982.
Jung, et al. “Unraveling V(D)J recombination; insights into gene regulation”, Cell, 116(2):299-311 (2004).
Kircher, et al. “Improved base calling for the Illumina Genome Analyzer using machine learning strategies”, Genome Biol., 10(8):R83, 9 pages (2009). doi: 10.1186/gb-2009-10-8-r83. Epub Aug. 14, 2009.
Klebanoff, et al. “Therapeutic cancer vaccines: are we there yet?”, Immunol Rev., 239(1):27-44 (2011). doi: 10.1111/j.1600-065X.2010.00979.x.
Klenerman, et al. “Tracking T cells with tetramers: new tales from new tools”, Nat Rev Immunol., 2(4):263-272 (2002).
Kneba, et al. “Characterization of clone-specific rearrangement T-cell receptor gamma-chain genes in lymphomas and leukemias by the polymerase chain reaction and DNA sequencing”, Blood, 84(2):574-581 (1994).
Kohlmann, et al. “Integration of next-generation sequencing into clinical practice: are we there yet?”, Semin Oncol., 39(1):26-36, Abstract Only (2012). doi: 10.1053/j.seminonco1.2011.11.008.
Krueger, et al. “Large scale loss of data in low-diversity illumine sequencing libraries can be recovered by deferred cluster calling”, PLoS One, 6(1):e16607, 7 pages (2011). doi: 10.1371/journal.pone.0016607.
Ku, et al. “Exome sequencing: dual role as a discovery and diagnostic tool”, Ann Neurol., 71(1):5-14, Abstract Only (2012). doi: 10.1002/ana.22647.
Kumar, et al. “PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis”, Sci Rep., 2:684, 8 pages (2012). Epub Sep. 21, 2012.
Kwak, et al. “Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors”, N Engl J Med., 327(17):1209-1215 (1992).
Ladetto, et al., “Next-generation sequencing and real-time quantitative PCR for minimal residual disease (MRD) detection using the immunoglobulin heavy chain variable region: a methodical comparison in acute lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL) and multiple myeloma (MM)”, Blood, vol. 120 , No. 21, Abstract 788 (Conference Abstract), Entire Abstract (2012).
Lefranc. “IMGT, the international ImMunoGeneTics database”, Nucleic Acids Res., 31(1):307-310 (2003).
Lennon, et al. “A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454”, Genome Biol., 11(2):R15, 9 pages (2010). doi: 10.1186/gb-2010-11-2-r15. Epub Feb. 5, 2010.
Leary, et al. “Development of personalized tumor biomarkers ing massively parallel sequencing”, Sci Transl Med., 2(20):20ra14 (2010). doi: 10.1126/scitranslmed.3000702.
Leproust, et al. “Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process”, Nucleic Acids Res., 38(8):2522-2540 (2010). doi: 10.1093/nar/gkq163. Epub Mar. 22, 2010.
Lessin, et al. “Molecular diagnosis of cutaneous T-cell lymphoma: polymerase chain reaction amplification of T-cell antigen receptor beta-chain gene rearrangements”, J Invest Dermatol., 96(3):299-302 (1991).
Li, et al. “β cell-specific CD4+T cell clonotypes in peripheral blood and the pancreatic islets are distinct”, J lmmunol. , 183(11):7585-7591 (2009). doi: 10.4049/jimmuno1.0901587. Epub Nov. 16, 2009.
Logan, et al., “High-throughput immunoglobulin gene sequencing quantifies minimal residual disease in CLL with 10e-6 sensitivity and strongly predicts relapse after allogeneic hematopoietic cell transplantation”, Blood, vol. 118 (21), Abstract 2542 (2011).
Logan, et al., “Massively parallel immunoglobulin gene sequencing provides ultra-sensitive minimal residual disease detection and predicts post-transplant relapse in acute lymphoblastic leukemia by three to six months”, Blood, vol. 118 (21), Abstract 4104 (2011).
Lossos, et al. “Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes”, PNAS, 99(13):8886-8891 (2002).
Lowman, et al. “Monovalent phage display: a method for selecting variant proteins from random libraries”, Methods: A Companion to Methods in Enzymology, 3:205-216, Abstract Only (1991).
Lyamichev, et al. “Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes”, Nat Biotechnol., 17(3):292-396 (1999).
MacKay, et al. “Real-time PCR in virology”, Nucleic Acids Res., 30(6):1292-305 (2002).
Malyguine, et al. “ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials”, Cells, 1(2):111-126 (2012). doi: 10.3390/cells1020111.
Martin-Jimenez, et al. “Molecular characterization of heavy chain immunoglobulin gene rearrangements in Waldenström's macroglobulinemia and IgM monoclonal gammopathy of undetermined significance”, Haematologica, 92(5):635-642 (2007).
Matsubara, et al. “Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes”, Biosens Bioelectron, 20(8):1482-1490, Abstract Only (2005).
Mazumder, et al., “Detection of multiple myeloma cells in peripheral blood using high-throughput sequencing assay” Blood, vol. 120 , No. 21, Abstract 321 (Conference Abstract), Entire Abstract (2012).
Meier, et al. “The influence of different stimulation conditions on the assessment of antigen-induced CD154 expression on CD4+ T cells”, Cytometry A., (11):1035-1042 (2008). doi: 10.1002/cyto.a.20640.
Mitra, et al. “Fluorescent in situ sequencing on polymerase colonies”, Anal Biochem., 320(1):55-65, Abstract Only (2003).
Miyashita, et al. “N-Methyl substituted 2′,4′- BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization”, Chem Commun (Camb), (36):3765-3767, Abstract Only (2007). Epub Jul. 9, 2007.
Moen, et al. “Immunoglobulin G and A antibody responses to Bacteroides forsyth and Prevotella intermedia in sera and synovial fluids of arthritis patients”, Clin Diagn Lab Immunol., 10(6):1043-1050 (2003).
Molloy, et al. “Soluble T cell receptors: novel immunotherapies”, Curr Opin Pharmacol., 5(4):438-443 (2005) (Abstract Only).
Morgan, et al. “Cancer regression in patients after transfer of genetically engineered lymphocytes”, Science, 314(5796):126-129 (2006). Epub Aug. 31, 2006.
Moura, et al. “Alterations on peripheral blood B-cell subpopulations in very early arthritis patients”, Rheumatology (Oxford), 49(6):1082-1092 (2010). doi: 10.1093/rheumatology/keq029. Epub Mar. 7, 2010.
Murugan, et al. “Statistical inference of the generation probability of T-cell receptors from sequence repertoires”, PNAS, 109(40):16161-16166 (2012). doi: 10.1073/pnas.1212755109. Epub Sep. 17, 2012.
Nakano, et al. “Single-molecule PCR using water-in-oil emulsion”, J Biotechnol., 102(2):117-124, Abstract Only (2003).
Navarrete, et al. “Upfront immunization with autologous recombinant idiotype Fab fragment without prior cytoreduction in indolent B-cell lymphoma”, Blood, 117(5):1483-1491 (2011). doi: 10.1182/blood-2010-06-292342. Epub Nov. 2, 2010.
Nielsen, et al. “Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone”, Chem. Soc. Rev., 26:73-78, Abstract Only (1997).
Oelke, et al. “Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells”, Nat Med., 9(5):619-624 (2003). Epub Apr. 21, 2003.
Ottensmeier, et al. “Analysis of VH genes in follicular and diffuse lymphoma shows ongoing somatic mutation and multiple isotype transcripts in early disease with changes during disease progression”, Blood, 91(11):4292-4299 (1998).
Palmowski, et al. “The use of HLA tetramers to design a vaccination strategy for melanoma patients”, Immunol Rev., 188:155-163 (2002) (Abstract Only).
Palomaki, et al. “DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study”, Genet Med., 14(3):296-305 (2012). doi: 10.1038/gim.2011.73. Epub Feb. 2, 2012.
Parmigiani, et al. “Design and analysis issues in genome-wide somatic mutation studies of cancer”, Genomics, 93(1):17-21 (2009). doi: 10.1016/j.ygeno.2008.07.005. Epub Aug. 23, 2008.
Peet. “The Measurement of Species Diversity”, Annual Review of Ecology and Systematics, 5:285-307, Abstract Only (1974).
Petrosino, et al. “Metagenomic pyrosequencing and microbial identification”, Clin Chem., 55(5):856-866 (2009). doi: 10.1373/clinchem.2008.107565. Epub Mar. 5, 2009.
PCT/US2009/006053, Written Opinion dated Jun. 15, 2010, 4 pages.
PCT/US2009/006053, International Preliminary Report on Patentability dated May 10, 2011, 5 pages.
PCT/US2011/000791, International Preliminary Report on Patentability dated Nov. 6, 2012, 10 pages.
PCT/US2011/000792, International Preliminary Report on Patentability dated Nov. 6, 2012, 8 pages.
PCT/US2012/053530, International Search Report and Written Opinion dated Feb. 26, 2013, 13 pages.
PCT/US2012/053530, International Preliminary Report on Patentability dated Fmarch 12, 2014, 7 pages.
PCT/US2012/058989, International Search Report and Written Opinion dated Mar. 29, 2013, 12 pages.
PCT/US2012/058989, International Preliminary Report on Patentability dated Apr. 15, 2014, 8 pages.
PCT/US2012/061977, International Search Report and Written Opinion dated Feb. 25, 2013, 11 pages.
PCT/US2012/061977, International Preliminary Report on Patentability dated May 6, 2014, 7 pages.
PCT/US2012/067656, International Search Report and Written Opinion dated Mar. 13, 2013, 6 pages.
PCT/US2012/067656, International Preliminary Report on Patentability dated Jun. 10, 2014, 4 pages.
PCT/US2012/068631, International Search Report and Written Opinion dated Feb. 26, 2013, 8 pages.
PCT/US2012/068631, International Preliminary Report on Patentability dated Jun. 10, 2014, 7 pages.
PCT/US2012/069187, International Search Report and Written Opinion dated Feb. 22, 2013, 8 pages.
PCT/US2012/069187, International Preliminary Report on Patentability dated May 5, 2015, 6 pages.
PCT/US2012/069310, International Preliminary Report on Patentability dated Jun. 17, 2014, 6 pages.
PCT/US2012/070674, International Search Report and Written Opinion dated Feb. 22, 2013, 8 pages.
PCT/US2012/070674, International Preliminary Report on Patentability dated Aug. 5, 2014, 6 pages.
PCT/US2013/028942, International Search Report and Written Opinion dated May 9, 2013, 10 pages.
PCT/US2013/028942, International Preliminary Report on Patentability dated May 5, 2015, 9 pages.
PCT/US2013/029181, International Search Report and Written Opinion dated May 31, 2013, 6 pages.
PCT/US2013/029181, International Preliminary Report on Patentability dated Sep. 9, 2014, 5 pages.
PCT/US2013/035857, International Search Report and Written Opinion dated Aug. 7, 2013, 10 pages.
PCT/US2013/035857, International Preliminary Report on Patentability dated Oct. 14, 2014, 8 pages.
PCT/US2013/045276, International Search Report and Written Opinion dated Jan. 29, 2014, 11 pages.
PCT/US2013/045276, International Preliminary Report on Patentability dated Dec. 16, 2014, 2014, 7 pages.
PCT/US2013/051539, International Search Report and Written Opinion dated Nov. 27, 2013, 9 pages.
PCT/US2013/051539, International Preliminary Report on Patentability dated Jan. 27, 2015, 7 pages.
PCT/US2013/065493, International Search Report and Written Opinion dated Jan. 20, 2014, 14 pages.
PCT/US2013/065493, International Preliminary Report on Patentability dated Apr. 21, 2015, 10 pages.
PCT/US2013/065757, International Search Report and Written Opinion dated Jan. 21, 2014, 10 pages.
PCT/US2013/065757, International Preliminary Report on Patentability dated Apr. 28, 2015, 6 pages.
PCT/US2014/017416, International Search Report dated May 12, 2014, 9 pages.
PCT/US2014/047909, International Search Report dated Nov. 17, 2014.
Polstra, et al. “Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes”, BMC Infect Dis., 2:18 (2002). Epub Sep. 4, 2002.
Pourmand, et al. “Direct electrical detection of DNA synthesis”, PNAS, 103(17):6466-6470 (2006). Epub Apr. 13, 2006.
Ramsden, et al. “V(D)J recombination: Born to be wild”, Semin Cancer Biol., 20(4):254-260 (2010). doi: 10.1016/j.semcancer.2010.06.002. Epub Jul. 1, 2010.
Reddy, et al. “Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells”, Nat Biotechnol., 28(9):965-969 (2010) (Abstract Only). doi: 10.1038/nbt.1673. Epub Aug. 29, 2010.
Ronaghi, et al. “A sequencing method based on real-time pyrophosphate”, Science, 281(5375):363, 365, 5 pages (1998).
Rothberg, et al. “An integrated semiconductor device enabling non-optical genome sequencing”, Nature, 475(7356):348-352 (2011). doi: 10.1038/nature10242.
Sebastian, E. et al., “Molecular Characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma”, Am. J. Pathol., 181:1879-1888, Abstract (2012). (Epub: Sep. 28, 2012).
Seitz, et al. “Reconstitution of paired T cell receptor α- and β-chains from microdissected single cells of human inflammatory tissues”, PNAS, 103:12057-12062 (2006).
Seo, et al. “Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides”, PNAS, 102(17):5926-5931 (2005). Epub Apr. 13, 2005.
SG Application No. 11201403212R, Written Opinion mailed Mar. 27, 2015, 12 pages.
Shendure, et al. “Accurate multiplex polony sequencing of an evolved bacterial genome”, Science, 309(5741):1728-1732, Abstract Only (2005). Epub Aug. 4, 2005.
Shumaker, et al. “Mutation detection by solid phase primer extension”, Hum Mutat., 7(4):346-354, Abstract Only (1996).
Sia, et al. “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies”, Electrophoresis, 24(21):3563-3576, Abstract Only (2003).
Sims, et al. “Fluorogenic DNA sequencing in PDMS microreactors”, Nat Methods, 8(7):575-580 (2011). doi: 10.1038/nmeth.1629.
Sims, et al. “MHC-peptide tetramers for the analysis of antigen-specific T cells”, Expert Rev Vaccines, 9(7):765-774 (2010). doi: 10.1586/erv.10.66.
Sobrino, et al. “SNPs in forensic genetics: a review on SNP typing methodologies”, Forensic Sci Int., 154(2-3):181-194, Abstract Only (2005). Epub Jan. 11, 2005.
Steenbergen, et al. “Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease”, Blood, 86(2):692-702, Abstract Only (1995).
Stemmer, et al. “Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides”, Gene, 164(1):49-53 (1995).
Stickler, et al. “An in vitro human cell-based assay to rank the relative immunogenicity of proteins”, Toxicol Sci., 77(2):280-289 (2004). Epub Dec. 22, 2003.
Stratton. “Exploring the genomes of cancer cells: progress and promise”, Science, 331(6024):1553-1558 (2011). doi: 10.1126/science.1204040.
Takamatsu , et al., “A comparison between next-generation sequencing and a SO-qP CR for minimal residual disease detection in multiple myeloma”, J. Clin. Oncol., 31(Supplement 1): Abstract 8601 (Conference Abstract), Entire Abstract (2013).
Tautz, et al. “Cryptic simplicity in DNA is a major source of genetic variation”, Nature, 322(6080):652-656 (1986).
Tawfik, et al. “Man-made cell-like compartments for molecular evolution”, Nat Biotechnol., 16(7):652-656, Abstract Only (1998).
Thor Straten, et al. “T-cell clonotypes in cancer”, J Transl Med., 2(1):11, 10 pages (2004).
Tschumper, et al. “Comprehensive assessment of potential multiple myeloma immunoglobulin heavy chain V-D-J intraclonal variation using massively parallel pyrosequencing”, Oncotarget, 3(4):502-513 (2012).
Turcotte and Rosenberg. “Immunotherapy for metastatic solid cancers”, Adv Surg., 45:341-360 (2011).
Urban, et al. “A systematic and quantitative analysis of PCR template contamination”, J Forensic Sci., 45(6):1307-1311 (2000).
Urquhart, et al. “Rate-controlled delivery systems in drug and hormone research”, Annu Rev Pharmacol Toxicol., 24:199-236, Abstract Only (1984).
Venturi, et al. “A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing”, J Immunol., 186(7):4285-4294 (2011). doi: 10.4049/jimmuno1.1003898. Epub Mar. 7, 2011.
Vester, et al. “LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA”, Biochemistry, 43(42):13233-13241, Abstract Only (2004).
Vogelstein et al. “Cancer genome landscapes”, Science, 339(6127):1546-58 (2013). doi: 10.1126/science.1235122.
Wälchli, et al. “A practical approach to T-cell receptor cloning and expression”, PLoS One, 6(11):e27930, 11 pages (2011). doi: 10.1371/journal.pone.0027930. Epub Nov. 21, 2011.
Welch and Link. “Genomics of AML: clinical applications of next-generation sequencing”, American Society of Hematology, 2011:30-35 (2011). doi: 10.1182/asheducation-2011.1.30.
Wells, et al. “Rapid evolution of peptide and protein binding properties in vitro”, Curr Opin Biotechnol., 3(4):355-362, Abstract Only (1992).
Weusten, et al. “Principles of quantitation of viral loads ing nucleic acid sequence-based amplification in combination with homogeneo detection ing molecular beacons”, Nucleic Acids Res., 30(6):e26, 7 pages (2002).
Whiteford, et al. “Swift: primary data analysis for the Illumina Solexa sequencing platform”, Bioinformatics, 25(17):2194-2199 (2009). doi: 10.1093/bioinformatics/btp383. Epub Jun. 23, 2009.
Williams, et al. “Amplification of complex gene libraries by emulsion PCR”, Nat Methods, 3(7):545-550 (2006).
Wolda. “Similarity Indices, Sample Size and Diversity”, Oecologia (Berl), 50:296-302 (1981).
Wolfl, et al. “Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities”, Blood, 110(1):201-210 (2007). Epub Mar. 19, 2007.
Wolfl, et al. “Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities”, Cytometry A., 73(11):1043-1049 (2008). doi: 10.1002/cyto.A.20594.
Xiong, et al. “Chemical gene synthesis: strategies, softwares, error corrections, and applications”, FEMS Microbiol Rev., 32(3):522-540 (2008). doi: 10.1111/j.1574-6976.2008.00109.x. Epub Apr. 2, 2008.
Xiong, et al. “Non-polymerase-cycling-assembly-based chemical gene synthesis: strategies, methods, and progress”, Biotechnol Adv., 26(2):121-134, Abstract Only (2008). Epub Nov. 7, 2007.
Yao, et al. “Analysis of the CDR3 length repertoire and the diversity of TCRα chain in human peripheral blood T Lymphocyts”, Cell Mol Immunol., 4(3):215-220 (2007).
Yeh, et al. “Regulating DNA translocation through functionalized soft nanopores”, Nanoscale, 4(8):2685-4693, Abstract Only (2012). doi: 10.1039/c2nr30102d. Epub Mar. 15, 2012.
York, et al. “Highly parallel oligonucleotide purification and functionalization using reversible chemistry”, Nucleic Acids Res., 40(1):e4, 7 pages (2012). doi: 10.1093/nar/gkr910. Epub Oct. 29, 2011.
Zagnoni, et al. “Droplet Microfluidics for High-throughput Analysis of Cells and Particles”, Methods in Cell Biology, Chapter 2, 102:23-48 (2011).
Brisco, et al. “Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction”, Lancet, 343:196-200 (1994).
EP Application No. 12841014.9, Extended European Search Report dated May 4, 2015, 11 pages.
PCT/US2013/062925, International Preliminary Report on Patentability mailed Apr. 16, 2015, 30 pages.
Robins H.S. et al., “Comprehensive Assessment of T-Cell Receptor—Chain Diversity in T Cells”, Blood, vol. 114, No. 19, Nov. 5, 2009, pp. 4099-4107.
Reischul U. et al., “Quantitative PCR: A Survey of the Present Technology”, Molecular Biotechnology, Humana Press, Inc., US, vol. 3, Feb. 1, 1995, pp. 55-71.
Henegariu O. et al., “Multiplex PCR: Critical Parameters and Step-by-Step Protocol”, Biotechniques, Informa Healthcare, US, vol. 23, No. 3, Sep. 1, 1997, pp. 504-511.
Sint, Daniela et al., “Advances in Multiplex PCR: Balancing Primer Efficiencies and Improving Detection Success”, Methods in Ecology and Evolution, vol. 3, No. 5, Jun. 28, 2012, pp. 898-905.
Larimore K. et al., “Shaping of Human Germline IgH Repertoires Revealed by Deep Sequencing”, The Journal of Immunology, vol. 189, No. 6, Sep. 15, 2012, pp. 3221-3230.
International Search Report and Written Opinion, PCT/US2013/040221, dated Sep. 23, 2013, 17 pages.
International Preliminary Report on Patentability, PCT/US2013/040221, dated Apr. 24, 2014, 43 pages.
Related Publications (1)
Number Date Country
20150017652 A1 Jan 2015 US
Provisional Applications (2)
Number Date Country
61644294 May 2012 US
61726489 Nov 2012 US