COMPOSITIONS AND METHODS FOR CANCER GENE DISCOVERY

Abstract
The present invention features transgenic non-human mammalian animals being genetically modified to develop cancer. The invention also relates to methods for identifying genes or genetic elements that are potentially related to human cancers using an chromosomally unstable animal model. Information on such genetic alterations can be used to predict cancer therapeutic outcomes and to stratify patient populations to maximize therapeutic efficacy.
Description
FIELD OF THE INVENTION

The present invention relates generally to the use of a genome unstable animal cancer model for cancer gene discovery.


BACKGROUND INFORMATION

Cancer is a genetic disease driven by the stochastic acquisition of mutations and shaped by natural selection. Genomic instability, a hallmark of many human cancers, propagates these mutations, allowing cells to overcome critical barriers to unregulated growth, and may therefore herald a defining event in malignant transformation. Genomic instability is manifested by chromosomal aberrations, such as translocations and amplifications. How and when during the course of tumor progression significant genomic instability arises, and whether a cancer can be cured or even contained after that point, represent pivotal and largely unanswered questions.


Animal models for human carcinomas are valuable tools for the investigation and development of cancer therapies. Murine models having oncogenes incorporated into its genome, or tumor suppressor genes suppressed have been widely used for human cancer research. However, an impediment towards maximal utilization of murine models for guiding human cancer gene discovery efforts is the relatively benign cytogenetic profiles of most standard genetically engineered mouse models of cancer (see, e.g., N. Bardeesy, et al., Proc Natl Acad Sci USA 103 (15), 5947 (2006); M. Kim, et al., Cell 125 (7), 1269 (2006); L. Zender, et al., Cell 125 (7), 1253 (2006); A. Sweet-Cordero, et al., Genes Chromosomes Cancer 45 (4), 338 (2006)). These models do not reflect the global chromosomal aberrations associated with many types of human cancers.


Several cancer-prone murine models have recently been developed that more closely simulate the rampant chromosomal instability of human cancers. For example, Artandi et al. describe the development of epithelial cancers in a telomerase-definition p53-mutant mouse model (Nature 406 (6796), 641 (2000)); Zhu et. al describe oncogene translocation and amplification in a mouse model that is deficient in both p53 and nonhomologous end-joining (NHEJ) (Cell 109 (7), 811 (2002)); Olive et. al describe a Li-Fraumeni Syndrome mouse model having dominant p53 mutant alleles (Cell 119 (6), 847 (2004)); Lang et. al describe a Li-Fraumeni Syndrome mouse model having p53 missense mutations (Cell 119 (6), 861 (2004)); and Hingorani et. al describe a mouse model of pancreatic ductal adenocarcinoma, expressing mutant forms of TP53 and KRAS2 (Cancer Cell 7 (5), 469 (2005)). However, the frequency of chromosomal aberrations in these mouse models are relatively low, and the transgenic mice do not necessarily develop malignant cancer. To facilitate oncogenomic anlayses, there is a need to create new mammal models that are genetically modified to develop cancer, having chromosomal aberrations at a frequency that is comparable to human cancers.


SUMMARY OF THE INVENTION

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the cancer process. Here, we engineered lymphoma-prone mice with chromosomal instability to assess the utility of animal models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number alterations. Integrating with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN as commonly deleted or mutated tumor suppressors in human T-cell acute lymphoblastic leukemia/lymphoma (T-ALL). More generally, the murine cancers acquire widespread recurrent clonal amplifications and deletions targeting loci syntenic to alterations present in not only human T-ALL but also diverse tumors of hematopoietic, mesenchymal and epithelial types. These results thus support the view that murine and human tumors experience common biological processes driven by orthologous genetic events as they evolve towards a malignant phenotype. The highly concordant nature of genomic events encourages the use of genome unstable animal cancer models in the discovery of biologically relevant driver events in human cancer.


In one aspect, the invention provides a non-human transgenic mammal that is genetically modified to develop cancer, such that the genome of a cancer cell from the mammal comprises chromosomal structural aberrations at a frequency that is at least 5-fold higher than the frequency of chromosomal structural aberrations in such mammal without the genetic modification. In certain embodiments, the mammal is a rodent. In certain embodiments, the mammal is a mouse.


In certain embodiments, the mammal comprises engineered inactivation of: at least one allele of one or more genes encoding a protein involved in DNA repair function (such as a protein involved in non-homologous end joining (NHEJ), a protein involved in homologous recombination, or a DNA repair helicase), and at least one allele of one or more genes encoding a component that synthesizes and maintains telomere length. Alternatively, the mammal may comprise engineered inactivation of: at least one allele of one or more genes encoding a protein involved in DNA repair function and at least one allele of one or more genes encoding a DNA damage checkpoint protein. Alternatively, the mammal may comprise engineered inactivation of: at least one allele of one or more genes encoding a DNA damage checkpoint protein and at least one allele of one or more genes encoding a component that synthesizes and maintains telomere length.


In certain embodiments, the genome of the mammal further comprises at least one additional cancer-promoting modification, such as an activated oncogene, an inactivated tumor suppressor gene, or both.


In another aspect, the invention provides a method of identifying a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer, comprising the step of: identifying a DNA copy number alteration in a population of cancer cells from a non-human mammal that is engineered to produce chromosomal instability. The chromosomal region of the DNA copy number alteration is a chromosomal region of interest for identifying a gene or genetic element that is potentially related to human cancer.


In certain embodiments, the DNA copy number alteration is recurrent in two or more cancer cells from the non-human mammal. The DNA copy number alteration can be a DNA gain or a DNA loss.


In another aspect, the invention provides a method of identifying a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer, comprising the step of: identifying a chromosomal structural aberration in a population of cancer cells from a non-human mammal that is engineered to produce genome instability. A chromosomal region containing the chromosomal structural aberration is a chromosomal region of interest for identifying a gene or genetic element that is potentially related to human cancer.


In certain embodiments, the method further comprises the steps of: (1) identifying a DNA copy number alteration in the population of cancer cells from the non-human mammal, and (2) identifying a chromosomal region in the genome of the cancer cell of the non-human mammal that contains a chromosomal structural aberration and a DNA copy number alteration. The chromosomal region containing a chromosomal structural aberration and a DNA copy number alteration is a chromosomal region of interest for identifying a gene and genetic element that is potentially related to human cancer. In certain embodiments, the method further comprises the step of determining the uniform copy number segment boundary of the DNA copy number alteration.


In another aspect, the invention provides a method for identifying a potential human cancer-related gene, comprising the steps of: (a) identifying a chromosomal region of interest (e.g., comprising a gene or genetic element that is potentially related to human cancer); (b) identifying a gene or genetic element within the chromosomal region of interest in the non-human mammal, and (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b). The human gene or genetic element is a potential human cancer-related gene or genetic element. In certain embodiments, the human gene is orthologous, paralogous, or homologous to the gene or genetic element identified in step (b). In certain embodiments, the method further comprises the step of detecting a mutation in the non-human mammalian gene or genetic element identified in step (b), the human gene or genetic element identified in step (c), or both.


In another aspect, the invention provides a method of identifying a potential human cancer-related gene or genetic element, comprising the steps of: (a) detecting a DNA copy number alteration in a population of cancer cells from a non-human mammal that is engineered to produce genome instability, (b) identifying a gene or genetic element located within the boundaries of the DNA copy number alteration detected in step (a), and (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a DNA copy number alteration or of a chromosomal structural aberration in a human cancer cell. The human gene or genetic element identified in step (c) is a gene or genetic element potentially related to human cancer.


In another aspect, the invention provides a method of identifying a potential human cancer-related gene or genetic element, comprising the steps of (a) detecting a chromosomal structural aberration in a population of cancer cells from a non-human mammal that is engineered to produce genome instability, (b) identifying a gene or genetic element located at the site of the chromosomal structural aberration detected in step (a), and (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a DNA copy number alteration or at the site of a chromosomal structural aberration in a human cancer cell. The human gene or genetic element identified in step (c) is a gene or genetic element potentially related to human cancer. In certain embodiments, the method further comprises the step of detecting a mutation in the non-human mammalian gene or genetic element identified in step (b), the human gene or genetic element identified in step (c), or both.


In certain embodiments, the method further comprises the step of defining the minimum common region (MCR) of a recurrent gene copy number alteration. In certain embodiments, the MCR is defined by boundaries of overlap between two or more samples. In certain embodiments, the MCR is defined by the boundaries of a single tumor against a background of larger alteration in at least one other tumor.


In another aspect, the invention provides a method for identifying subjects with T-cell acute lymphoblastic leukemia (T-ALL) who may have a decreased response to γ-secretase inhibitor therapy, comprising detecting the expression or activity of FBXW7 in a tumor cell from the subject. A decreased expression or activity of FBXW7, as compared to a control, is indicative that the subject may have a decreased response to γ-secretase inhibitor therapy.


In certain embodiments, the method further comprises detecting the expression or activity of NOTCH1 in a tumor cell from the subject. An increased expression or activity of NOTCH1, as compared to a control, is indicative that the subject may have a decreased response to γ-secretase inhibitor therapy.


In another aspect, the invention provides a method for identifying subjects with T-ALL that may benefit from treatment with a PI3K pathway inhibitor, comprising detecting the expression or activity of PTEN in a tumor cell from the subject. A decreased expression or activity of PTEN, as compared to a control, is indicative that the subject may benefit from a treatment with a PI3K inhibitor. In certain embodiments, the method further comprises treating the subject with a PI3K inhibitor.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, comprising: determining the expression or activity level of at least one cancer gene or candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject. An increase in the expression or activity the gene, as compared to a control, indicates that the subject is afflicted with cancer or at risk for developing cancer. Alternatively, if there is a decrease in the expression or activity of a cancer gene or candidate cancer gene located in a deleted MCR in Table 1, as compared to a control, the decreased expression or activity level also indicates that the subject is afflicted with cancer or at risk for developing cancer.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one amplified minimal common region (MCR) listed in Table 1 in a biological sample from the subject. An increased copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer. Alternatively, a decreased copy number of a deleted MCR (also listed in Table 1) in the sample, as compared to the normal copy number of the MCR, also indicates that the subject is afflicted with cancer or at risk for developing cancer. The normal copy number of an MCR is typically one per chromosome.


In another aspect, the invention provides a method for monitoring the progression of cancer in a subject, the method comprising: a) determining in a biological sample from the subject at a first point in time, the expression or activity level of a cancer gene or a candidate cancer gene listed in Table 1; b) repeating step a) at a subsequent point in time; and c) comparing the expression or activity of the gene in steps a) and b), and therefrom monitoring the progression of cancer in the subject.


In another aspect, the invention provides a method of assessing the efficacy of a test agent for treating a cancer in a subject, comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject in the presence of the test agent; and b) determining the expression or activity level of the gene in a biological sample from the subject in the absence of the test agent. A decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the test agent's potential efficacy for treating the cancer in the subject. Alternatively, if the test agent increases the expression or activity of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1, the test agent is also potentially effective for treating the cancer in a subject.


In another aspect, the invention provides a method of assessing the efficacy of a therapy for treating cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject prior to providing at least a portion of the therapy to the subject; and b) determining the expression or activity level of the gene in a biological sample from the subject following provision of the portion of the therapy. A decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the therapy's efficacy for treating the cancer in the subject. Alternatively, if the therapy increases the expression or activity of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1, the therapy is also potentially effective for treating the cancer in a subject.


In another aspect, the invention provides a method of treating a subject afflicted with cancer comprising administering to the subject an agent that decreases the expression or activity level of at least one cancer gene or candidate cancer gene located in am amplified MCR in Table 1. Alternatively, the invention provides a method of treating a subject afflicted with cancer comprising administering to the subject an agent that increases the expression or activity level of at least one cancer gene or candidate cancer gene located in a deleted MCR in Table 1.


In certain embodiments, the agent is an antibody, or its antigen-binding fragment thereof, that specifically binds to a cancer gene or candidate cancer gene listed in Table 1.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one minimal common region (MCR) listed in Table 5 in a biological sample from the subject. A change of copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer. The normal copy number of an MCR is typically one per chromosome.


In certain embodiments, the cancer is lymphoma. In certain embodiments, the lymphoma is T-ALL.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, by comparing the copy number of an MCR, identified using a genome-unstable non-human mammal model (including a genome-unstable mouse model of the invention), with the normal copy number of the MCR. The normal copy number of an MCR is typically one per chromosome.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1: Spectral Karyotype (SKY) profiles of TKO tumors. G-band and SKY images of representative metaphases for selected TKO tumors with and without telomere dysfunction. FIG. 1A represents G0 (mTerc +/+ or +/−) and FIG. 1B represents G1-G4 (mTerc−/−) TKO tumors. The pictures show an overall increase in frequency of chromosome structural aberrations in TKO tumors with telomere dysfunction. Nonreciprocal translocations and chromosomal fragments are marked by arrows. FIG. 1C shows representative array-CGH Log 2 ratio plots of syntenic murine TKO (left; A689) and human (right; HPB-ALL) TCRB deletions. Y axis, log 2 ratio of copy number (normal set at log 2=0); amplifications are above and deletions are below this axis; X axis, chromosome position.



FIG. 2. Characterization of the TKO model. FIG. 2A is a graph showing Kaplan-Meier curve of thymic lymphoma-free survival for G3-G4 TKO mice on p53 wildtype, heterozygous and null background. FIG. 2B shows the loss of heterozygosity for p53 using PCR; N, normal; T, tumor. FIG. 2C is a representative FACS profile of TKO tumor, using antibodies against cell surface markers CD4 and CD8. FIG. 2D is a representative SKY images from metaphase spreads from G0 (top) and G1-G4 (bottom) thymic lymphomas. Of equal number of metaphase spreads (90), 410 aberrations per 4533 chromosomes (9%) were found among G0 versus 1257 per 3659 (34%) among G1-G4 TKO tumors. No significant differences in ploidy level were observed. FIG. 2E is a plot showing quantification of total number of cytogenetic aberrations detected by SKY in G0 (blue) and G1-G4 (red) thymic lymphomas. Darker color indicates proportion of events representing non-reciprocal translocations and lighter color indicates proportion representing dicentric/Robertsonian-like rearrangements. FIG. 2F is a recurrence plot of CNAs defined by array-CGH for 35 TKO lymphomas. X axis represents physical location of each chromosomes, and Y axis represents % of tumors exhibiting copy number alterations. The percentage of tumors harboring gains, amplifications, losses and deletions for each locus is depicted according to the following scheme: dark red (gains with a log 2 ratio=>0.3) and green (loss with a log 2 ratio<=−0.3) are plotted along with bright red (Amplifications with a log2 ratio=>0.6) and bright green (deletions with log2 ratio<=−0.6). Location of physiologically-relevant CNAs at Tcrβ, Tcrα/δ, and Tcrγ is indicated with arrows, and other loci discussed in the text (Notch1, Pten) are indicated by asterisks.



FIG. 3: Notch1 array-CGH and SKY. FIG. 3A shows a representative array-CGH Log 2 ratio plot from murine TKO lymphoma A1052 showing focal amplification targeting the 3′-end of Notch1 and its location relative to other genes in the region (http://genome.ucsc.edu/), NBCI mouse build 34. Y axis, log 2 ratio of copy number (normal set at log 2=0); amplifications are above and deletions are below this axis; X axis, chromosome position. FIG. 3B are SKY analyses of murine TKO tumors A1052 and A895 cells that harbor chromosome 2 amplifications which target the 3′ end of Notch1. Upper panels: metaphase spreads from the indicated tumors showing non-reciprocal translocations involving murine chromosome 2, marked by arrows; the asterisk indicates an abnormal band chr2A3. Lower panels: representative SKY images of individual rearranged chromosomes involving chromosome 2 and other chromosomes, as indicated. Each panel is a composite of raw spectral image (left), DAPI image (middle), and computer-interpreted spectral image (right) for the indicated rearranged chromosome. FIG. 3C shows breakpoint separating two contiguous BAC probes overlapping at Notch1, using FISH. Red signal, BAC probe RP24-369L23; green signal, BAC probe RP23-412O13.



FIG. 4. NOTCH1 alterations in both murine and human T-ALLs. FIG. 4A is a graphic illustration of Location of sequence alterations affecting Notch1 in murine TKO and human T-ALL tumors. Each marker is indicative of an individual cell line/patient. FIG. 4B shows Western blotting analysis of murine full-length Notch1 (FL; top), cleaved active Notch1 (V1744; middle), and tubulin loading control (bottom). High levels of activated Notch1 protein were expressed in many TKO tumors, including those harboring 3′ translocations (in blue: A577, A1052, A1252) and truncating deletion mutations (in red: A494, A1040), in which faster migrating V1744 forms are apparent. Human ALL-SIL (left) and normal mouse thymus (right) samples were loaded for controls. FIG. 4C shows that high levels of Notch1 mRNA correlate with high mRNA levels of known downstream targets of Notch1 protein, as assessed by expression profiling of TKO tumors. Each bar represents an individual probe set. Samples in blue lettering harbor 3′ translocations near Notch1; samples in red lettering harbor truncating deletion mutations, as indicated for FIG. 4B.



FIG. 5. FBXW7 alterations are common in human T-ALL and conserved in the murine TKO tumors. FIG. 5A are a group of Log 2 ratio array-CGH plots showing conservation of CNAs resulting in deletion of FBXW7 in both mouse TKO and human T-ALL cell lines; the genomic location of Fbxw7 is indicated in green. Y axis, log 2 ratio of copy number (normal set at log 2=0); amplifications are above and deletions are below this axis; X axis, chromosome position. FIG. 5B shows relative expression level of mouse Fbxw7 mRNA, as assessed by real-time qPCR in the indicated murine TKO tumors. FIG. 5C is a graphic illustration of location of mutations in human FBXW7 identified in a panel of human T-ALL patients and cell lines. Each marker represents an individual cell line/patient.



FIG. 6: Focal deletion of Pten in TKO tumors. FIG. 6A is a representative array-CGH Log 2 ratio plot from a TKO lymphoma showing focal deletion encompassing Pten, and its location relative to other genes in the region (http://genome.ucsc.edu/, NBCI mouse build 34). Y axis, log 2 ratio of copy number (normal set at log 2=0); amplifications are above and deletions are below this axis; X axis, chromosome position. FIG. 6B summarizes the result of real-time qPCR (showing deletion in several tumors), with a graphic illustration of real-time qPCR with primer sets to the indicated regions (arrows) and the location of array-CGH 60-mer oligo probes (Agilent 44K array). A494 is shown as a control without evidence of deletion.



FIG. 7. Conservation of PTEN genetic alterations in human and mouse T-ALLs. FIG. 7A are a group of Log 2 ratio array-CGH plots demonstrating conservation of CNAs resulting in deletion of PTEN in both mouse TKO and human T-ALL cell lines; the genomic location of Pten is indicated in green. Y axis, log 2 ratio of copy number (normal set at log 2=0); amplifications are above and deletions are below this axis; X axis, chromosome position. FIG. 7B is a Western blotting analysis, showing the expression level of PTEN, phospho-Akt, and Akt in a panel of murine TKO and human T-ALL cell lines. BE13 and PEER are synonymous lines. Tubulin was probed simultaneously as a loading control. Samples in red harbor confirmed sequence mutations; samples in blue harbor aCGH-detected deletions. FIG. 7C are a group of Log 2 ratio array-CGH plots showing the effects of CNAs on other members of the Pten-Akt axis in murine TKO tumors. The location of each gene (Akt1, Tsc1) is shown in green.



FIG. 8: TKO cells with Pten mutation/deletion are sensitive to inhibition of phospho-Akt by the drug triciribine. Cells were plated in triplicate and exposed to the indicated doses of triciribine or vehicle alone for 48 hours and then quantified by MTS assay for viable cells. The fraction of surviving cells is plotted relative to survival in vehicle alone (set at 1). Tumor A1040 retains wildtype Pten expression and A1005 harbors a point mutation in one copy of Pten, whereas cell lines A577, A1240, A1252, and A494 are deficient for Pten expression.



FIG. 9. Substantial overlap between genomic alterations of murine TKO lymphomas and human tumors of diverse origins. FIG. 9A summarizes the result of statistical analysis of the cross-species overlap. We obtained Human array-CGH profiles from the indicated tumor types. We further defined MCRs as described in the Examples section (in particular, Example 4). Characteristics of each set are listed on the left portion of the panel. The number of TKO MCRs (amp, amplifications; del, deletions) with syntenic overlap with corresponding human CGH dataset is indicated on the right side of the panel, with p value for each based on 10,000 permutations. FIG. 9B are a group of Pie-chart representation of numbers of TKO MCRs (indicated within each segment) with syntenic overlap identified in one or multiple human tumor types (indicated by different colors of the segments); left, amplifications; right, deletions. For example, 21 of the 61 syntenic amplifications in FIG. 9A were observed in 2 different human tumor CGH datasets. FIG. 9C are a group of Venn diagram representation of the degree of overlap between murine TKO MCRs and MCRs from human cancers of T-ALL, multiple myeloma, or solid tumors (encompassing glioblastoma, melanoma, and pancreatic, lung, and colon adenocarcinoma).





DETAILED DESCRIPTION OF THE INVENTION

In vivo cancer models used for the discovery of cancer-related genes and therapeutic cancer targets typically produce cancer cells with benign chromosomal profiles, i.e., nearly normal chromosomal stability. In contrast, in naturally occurring human cancer, cancer cell genomes display widespread instability as evidenced by chromosomal structural aberrations. Accordingly, the present invention provides an in vivo cancer model with a destabilized genome (“genome unstable”).


The genomes of cancer cells from the genome unstable model of the invention simulate the chromosomal instability displayed by human cancer cell genomes The genome unstable cancer model of the invention, thus, provides significant advantages for the discovery of genes and genetic elements involved in human cancer initiation, maintenance and progression. The chromosomal aberrations in cancer cells from the model, particularly recurrent aberrations, permit investigation of chromosomal events in cancer that is not possible in cancer models with “benign” chromosomal profiles. Such chromosomal aberrations also focus attention on particular regions of the genome more likely to harbor cancer-related elements. The validation herein of a genome unstable mouse cancer model that generates chromosomal and genetic events that mirror those in multiple types of human cancers provides an important new tool for the discovery of cancer-related genes and therapeutic targets of relevance to human cancer. Although useful by itself to discover genes and genetic elements relevant to human cancer, the genome unstable model of the invention also can be used as a background for establishing other cancer models, including known cancer models. Layering genetic modifications in known oncogenes and/or tumor suppressors onto the genome unstable model of the invention provides improved models that more closely replicate naturally occurring cancer. Even more importantly, the genome unstable model of the invention permits cross-species comparison with human cancer genomes to identify shared chromosomal and genetic events. Such shared events provide a powerful guide for the discovery of cancer-related genes and therapeutic targets.


1. DEFINITIONS

Throughout this specification and embodiments, the word “comprise” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.


Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, cell and cancer biology, virology, immunology, microbiology, genetics and protein and nucleic acid chemistry described herein are those well known and commonly used in the art.


2. ANIMAL MODELS

Most standard genetically engineered mouse models of cancer have relatively benign cytogenetic profiles. These genomically stable models do not reflect the widespread chromosomal instability that is typical of human genomes in cancer. It has been reported that in most “genome-stable” murine tumor models, about 20 to 40 chromosomal aberrations were detected per genome, or, less than 0.1 chromosomal rearrangements per chromosome.


Accordingly, in one aspect, the invention provides a non-human animal that is genetically modified to develop cancer, wherein the genomes of cancer cells from the animal display enhanced chromosomal instability as evidenced by a frequency of chromosomal structural aberration that approaches or matches that seen in human cancer cells. In various embodiments, the frequency of chromosomal structural aberrations in a population of cancer cells from the non-human animal model is at least 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold or 10-fold higher than the frequency of chromosomal structural aberrations in such mammal without the genetic modification, whether defined on a per-genome or per-chromosome basis.


The frequency of chromosomal abnormalities can be based on the average number of such abnormalities per genome or per chromosome, or the average number of a particular type of chromosomal abnormality per genome, or the average number of aberrations in a particular chromosome. Methods of measuring chromosomal alterations are known in the art (see, e.g., R. C. O'Hagan, et al., Cancer Res 63 (17), 5352 (2003); N. Bardeesy, et al., Proc Natl Acad Sci USA 103 (15), 5947 (2006); M. Kim, et al., Cell 125 (7), 1269 (2006); L. Zender, et al., Cell 125 (7), 1253 (2006)), and are further disclosed below. Cancer cells from the genome unstable non-human animal model of the invention will have an enhanced frequency of chromosomal aberrations compared to cells derived from comparable non-human animal models lacking the genome destabilizing mechanisms described above, by at least one of the aforementioned parameters.


A chromosomal structural aberration may be any chromosomal abnormality resulting from DNA gains or losses, DNA amplification, DNA deletion, and DNA translocation. Exemplary chromosomal structural aberrations include, for example, sister chromatid exchanges, multi-centric chromosomes, inversions, gains, losses, reciprocal and non-reciprocal translocations (NRTs), p-p robertsonian-like translocations of homologous and/or non-homologous chromosomes, p-q chromosome arm fusions, and q-q chromosome arm fusions.


The genetic modifications in the genome unstable animal model of the invention can be in any gene or genetic element that renders the animal cancer-prone and affects genome structure or genome stability, so that the modifications destabilize the genome, as evidenced by an increased frequency of chromosomal structural aberrations in the genomes and/or chromosomes of cancer that develops in the animal compared to genomes and/or chromosomes in comparable animal models lacking such genome destabilizing mechanisms. Genetic elements include [DNA that is not translated to produce a protein product such as micro RNA, expression control sequences including DNA transcription factor binding sites, RNA transcription initiation sites, promoters, enhancers, response elements and the like. In some embodiments the genetic modifications inactivate a gene or genetic element involved in chromosomal structural stability or integrity. Inactivation may be by directly inactivating the gene or genetic element, by suppressing the expression, or by inactivating or inhibiting the activity of a gene product, which can be a nucleic acid product including RNA or a protein gene product


In some embodiments, the genetic modifications comprise inactivation of at least one allele of one or more genes or genetic elements involved in DNA repair and inactivation of at least one allele of one or more genes or genetic elements involved in a DNA damage checkpoint. In some embodiments, the genetic modifications further comprise inactivation of at least one allele of a gene or genetic element involved in telomere maintenance. In any of the foregoing embodiments, both alleles of the DNA repair related, DNA damage checkpoint related and/or telomere maintenance related genes or genetic elements may be inactivated.


Any gene or genetic element involved in DNA repair or in a DNA damage checkpoint can be inactivated in the genome unstable model of the invention. Many such genes and genetic elements in humans an other mammals will be known to those of skill in the art. See, for example, R. D. Wood et al., Human DNA Repair Genes, Science, 291: 1284-1289 (February 2001); R A Bulman, S D Bouffler, R Cox and T A Dragani, Locations of DNA Damage Response and Repair Genes in the Mouse and Correlation with Cancer Risk Modifiers, National Radiological Protection Board Report, October 2004 (ISBN 0-85951-544-3). The mouse DNA repair gene database is available at the UK Health Protection Agency website.


They include, for example, genes encoding base excision repair (BER) proteins such as ung, smug1, mbd4, tdg, off1, myh, nth1, mpg, ape1, ape2, lig3, xrcc1, adprt, adprtl2 and adprtl3 or species homologs thereof; mismatch excision repair proteins such as msh2, msh3, msh4, msh5, msh6, pms1, pms3, mlh1, mlh3, pms2l3 and pms2l4 or species homologs thereof; nucleotide excision repair (NER) proteins, non-homologous end joining (NHEJ) proteins, homologous recombination proteins, DNA polymerases, editing and processing nucleases and DNA repair helicases, among others. Wood et al., supra.


Exemplary NHEJ proteins include Ligase4, XRCC4, H2AX, DNAPKcs, Ku70, Ku80, Artemis, Cernunnos/XLF, MRE11, NBS1, and RAD50. Exemplary homologous recombination proteins include RAD51, RAD52, RAD54, XRCC3, RAD51C, BRCA1, BRCA2 (FANCD1), FANCA, FANCB, FANCC, FANCD2; FANCE, FANCF, FANCG, FANCJ (BRIP1/BACH1), FANCL, and FANCM. Exemplary DNA repair helicases include BLM and WRN.


Any gene or genetic element involved in a DNA damage checkpoint can be used in the genome unstable model of the invention. Information about many such genes and genetic elements is readily available and will be well-known those of skill in the art. Exemplary DNA checkpoint proteins include sensor proteins such as RAD1, RAD9, RAD17, HUS1, MRE11, Rad50, and NBS1; mediators such as ATRIP; phosphoinositide 3-kinase related kinase (PIKK) family proteins such as ATM, ATR, SMG-1 and DNA-PK; checkpoint kinases such as Chk1 and Chk2; and effector proteins such as p53, p63, p73, CDC25A, B and C, p21 and 14-3-3β,γ,ξ,σ,ε,η,τ APC; BRCA1, MDM2, MDM4, NBS1, RAD24, RAD 25, RAD50, MDC1, SMC1, and claspin.


In one embodiment of the genome unstable model of the invention, the non-human transgenic animal further comprises engineered inaction of at least one allele of one or more genes or genetic elements involved in synthesizing or maintaining telomere length. In some embodiments, the non-human transgenic mammal is engineered for decreased telomerase activity, for example by inactivation of telomerase reverse transcriptase, Tert, or telomerase RNA (Terc). In some embodiments the genetic modification decreases the activity of a protein affecting telomere structure such as capping function. Exemplary proteins that affect telomere structure include TRF1, TRF2, POT1a, POT1b, RAP1, TIN2, and TPP1.


The non-human genome unstable model of the invention may be any animal, including, fish, birds, mammals, reptiles, amphibians. Preferably, the animal is a mammal, including rodents, primates, cats, dogs, goats, horses, sheep, pigs, cows. In preferred embodiments, the mammal is a mouse.


The genome unstable animal models of the invention include animals in which all or only some portion of cells comprise the genetic modifications that create genome instability. In some embodiments, the germ cells of the animal comprise the genetic modifications.


In some embodiments, the genome unstable model comprises inactivation of one or both alleles of atm, terc or p53 or any combination of those genes. In a particular embodiment, one or both alleles of all three genes are inactivated. In some embodiments both alleles of atm are inactivated. In a particular embodiment, both alleles of all three genes are inactivated.


Also within the invention are tissues and cells from the genome unstable model of the invention, including somatic cells, germ cells, stem cells including embryonic stem cells, differentiated cells and undifferentiated cells. The cells may be cancer cells, non-cancer cells, or pre-cancer cells.


Inactivation of a gene or a genetic element in the genome unstable animal model of the invention can be achieved by any means, many of which are well-known to those of skill in the art. Such means include deletion of all or part of the gene or genetic element or introducing an inactivating mutation (lesion) in the gene or genetic element. Deletion of all or a portion of a gene or genetic element may be by knock-out such as by homologous recombination or techniques using Cre recombinase (e.g., a Cre-Lox system). Deletions including knock-outs can be conditional knock-outs, where alteration of a nucleic acid sequences can occur upon, for example, exposure of the animal to a substance that promotes gene alteration, introduction of an enzyme that promotes recombination at the gene site (e.g., Cre in the Cre-lox system), or other method for directing the gene alteration. Conditional or constitutive knock-outs can be tissue-specific, temporally-specific (e.g., occurring during a particular developmental stage) or both.


Inactivating mutations may be introduced using any means, many of which are well known. Such methods include site directed mutagenesis for example using homologous recombination or PCR. Such mutations may be introduced in the 5′ untranslated region (UTR) of a gene, including in an expression control region, in a coding region (intron or exon) or in the 3′ UTR.


The expression or activity of a gene or genetic element also may be accomplished by any means including but not limited to RNA interference, antisense including triple helix formation and ribozymes including RNaseP, leadzymes, hairpin ribozymes and hammerhead ribozymes.


In some embodiments, the genome unstable animal model of the invention further comprises one or more additional cancer-promoting genetic modifications including but not limited to the introduction of one or more activated oncogenes, modifications to increase the expression of one or more oncogenes, targeted inactivation of one or more tumor-suppressors, or combinations of the foregoing. Such additional cancer-promoting modifications may be inducible, tissue specific, temporally specific or any combination of the three. For example, an oncogene can be introduced into the genome using an expression cassette that includes in the 5′-3′ direction of transcription, a transcriptional and translational initiation region that is associated with gene expression in a specific tissue type, an oncogene, and a transcriptional and translational termination region functional in the host animal. One or more introns may also be present. In addition to the oncogene of interest, a detectable marker, such as GFP (and its variants), luciferase, and lacZ may be optionally operably linked to the oncogene and co-expressed. Similarly, a tumor-suppressor-gene may be inactivated using, for example, gene targeting technology.


Introducing additional cancer-promoting modifications into a genome-unstable animal model described herein creates a powerful tool for cancer gene discovery. For example, Kras activation and p53 mutation in pancreas are known to cause pancreas cancer in human. A genome-unstable model having pancreas-specific Kras activation, p53 inactivation (and optionally, a decreased telomere function) would greatly facilitate the discovery of pancreas cancer gene in human.


The cancer in the genome unstable model any type of cancer, including carcinoma, sarcoma, myeloma, leukemia, lymphoma or mixed cancer types. The cancer can arise from any tissue type including epithelial tissue, mesenchymal tissue, nervous tissue and hematopoietic tissue and be located in any organ or tissue of the body. The frequency of chromosomal aberrations can be determined in cells from any of the aforementioned cancers and can be from a primary tumor, a secondary tumor, a metastatic tumor, a tumor recurrence perhaps normal cells derived from said genomically unstable model that were genetically manipulated in vitro, through additional oncogene activation and tumor suppressor gene inactivation introduced by those knowledgeable in the art, to become cancerous


The genome unstable mouse model of the invention may develop any cancer including but not limited to acral lentiginous melanoma, actinic keratoses, adenocarcinoma, adenoid cystic carcinoma, adenomas, adenosarcoma, adenosquamous carcinoma, adrenocortical carcinoma, AIDS-related lymphoma, anal cancer, anaplastic glioma, astrocytic tumors, astrocytomas, bartholin gland carcinoma, basal cell carcinoma, biliary tract cancer, bone cancer, bile duct cancer, bladder cancer, brain stem glioma, brain tumors, breast cancer, bronchial gland carcinomas, capillary carcinoma, carcinoids, carcinoma, carcinosarcoma, cavernous, central nervous system lymphoma, cerebral astrocytoma, cervical cancer, connective tissue cancer, cholangiocarcinoma, chondosarcoma, choroid plexus papilloma/carcinoma, clear cell carcinoma, colon cancer, colorectal cancer, cutaneous T-cell lymphoma, cystadenoma, endodermal sinus tumor, endometrial hyperplasia, endometrial stromal sarcoma, endometrioid adenocarcinoma, ependymal, ependymoma, epitheloid, esophageal cancer, Ewing's sarcoma, extragonadal germ cell tumor, eye cancer, fibrolamellar, focal nodular hyperplasia, gallbladder cancer, gangliogliomas, gastric cancer, gastrinoma, germ cell tumors, gestational trophoblastic tumor, glioblastoma multiforme, glioma, glucagonoma, head and neck cancer, hemangiblastomas, hemangioendothelioma, hemangiomas, hepatic adenoma, hepatic adenomatosis, hepatocellular carcinoma, Hodgkin's lymphoma, hypopharyngeal cancer, hypothalamic and visual pathway glioma, childhood, insulinoma, intaepithelial neoplasia, interepithelial squamous cell neoplasia, intraocular melanoma, intra-epithelial neoplasm, invasive squamous cell carcinoma, large cell carcinoma, islet cell carcinoma, Kaposi's sarcoma, kidney cancer, laryngeal cancer, leiomyosarcoma, lentigo maligna melanomas, leukemia-related disorders, lip and oral cavity cancer, liver cancer, lung cancer, lymphoma, malignant mesothelial tumors, malignant thymoma, medulloblastoma, medulloepithelioma, melanoma, meningeal, merkel cell carcinoma, mesothelial, metastatic carcinoma, mucoepidermoid carcinoma, multiple myeloma/plasma cell neoplasm, mycosis fungoides, myelodysplastic syndrome, myeloproliferative disorders, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, neurofibromatosis, neuroepithelial adenocarcinoma nodular melanoma, non-Hodgkin's lymphoma, non-small cell lung cancer, oat cell carcinoma, oligodendroglial, oligoastrocytomas, oral cancer, oropharyngeal cancer, osteosarcoma, pancreatic polypeptide, ovarian cancer, ovarian germ cell tumor, pancreatic cancer, papillary serous adenocarcinoma, pineal cell, pituitary tumors, plasmacytoma, pseudosarcoma, pulmonary blastoma, parathyroid cancer, penile cancer, pheochromocytoma, pineal and supratentorial primitive neuroectodermal tumors, pituitary tumor, plasma cell neoplasm, pleuropulmonary blastoma, prostate cancer, rectal cancer, renal cell carcinoma, cancer of the respiratory system, retinoblastoma, rhabdomyosarcoma, sarcoma, serous carcinoma, skin cancer, small cell carcinoma, small intestine cancer, soft tissue carcinomas, somatostatin-secreting tumor, squamous carcinoma, squamous cell carcinoma, stomach cancer, stromal tumors, submesothelial, superficial spreading melanoma, supratentorial primitive neuroectodermal tumors, testicular cancer, thyroid cancer, undifferentiatied carcinoma, urethral cancer, uterine sarcoma, uveal melanoma, verrucous carcinoma, vaginal cancer, vipoma, vulvar cancer, Waldenstrom's macroglobulinemia, well differentiated carcinoma, and Wilm's tumor.


The animal models described herein are typically obtained using transgenic technologies. Transgenic technologies are well known in the art. For example, transgenic mouse can be prepared in a number of ways. A exemplary method for making the subject transgenic animals is by zygote injection. This method is described, for example in U.S. Pat. No. 4,736,866. The method involves injecting DNA into a fertilized egg, or zygote, and then allowing the egg to develop in a pseudo-pregnant mother. The zygote can be obtained using male and female animals of the same strain or from male and female animals of different strains. The transgenic animal that is born is called a founder, and it is bred to produce more animals with the same DNA insertion. In this method of making transgenic animals, the exogenous DNA typically randomly integrates into the genome by a non-homologous recombination event. One to many thousands of copies of the DNA may integrate at one site in the genome.


3. METHODS OF IDENTIFYING CANCER-RELATED GENES

In another aspect, the invention provides methods for identifying genes and genetic elements involved in cancer initiation, maintenance and/or progression in humans utilizing the genome unstable model of the invention. The gene discovery and identification methods are based on the surprising discovery described herein that chromosomal structural aberrations, copy number alterations and mutations in cancer cells in a genome unstable mouse model have syntenic counterparts (i.e., occurring in evolutionarily related chromosomal regions) in human cancer cells.


Accordingly, in one embodiment, the invention provides a method of identifying a chromosomal region of interest for the identification of a gene that is potentially related to human cancer, comprising the step of identifying a DNA copy number alteration in a population of cancer cells from a non-human, genome-unstable mammal described above. The chromosomal region where the DNA copy number alteration occurred is a chromosomal region of interest for the identification of a gene or genetic element (such as microRNAs) that is potentially related to human cancer.


A DNA copy number alteration may be a DNA gain (such as amplification of a genomic region) or a DNA loss (such as deletion of a genomic region). Methods of evaluating the copy number of a particular genomic region are well known in the art, and include, hybridization and amplification based assays. According to the methods of the invention, DNA copy number alterations may be identified using copy number profiling, such as comparative genomic hybridization (CGH) (including both dual channel hybridization profiling and single channel hybridization profiling (e.g. SNP-CGH)). Other suitable methods including fluorescent in situ hybridization (FISH), PCR, nucleic acid sequencing, and loss of heterozygosity (LOH) analysis may be used in accordance with the invention.


In one embodiment of the invention, the DNA copy number alterations in a genome are determined by copy number profiling.


In some embodiments of the invention, the DNA copy number alterations are identified using CGH. In comparative genomic hybridization methods, a “test” collection of nucleic acids (e.g. from a tumor or cancerous cells) is labeled with a first label, while a second collection (e.g. from a normal cell or tissue) is labeled with a second label. The ratio of hybridization of the nucleic acids is determined by the ratio of the first and second labels binding to each fiber in an array. Differences in the ratio of the signals from the two labels, for example, due to gene amplification in the test collection, is detected and the ratio provides a measure of the gene copy number, corresponding to the specific probe used. A cytogenetic representation of DNA copy-number variation can be generated by CGH, which provides fluorescence ratios along the length of chromosomes from differentially labeled test and reference genomic DNAs.


In some embodiments of the present invention, the DNA copy number alterations are analyzed by microarray-based CGH (array-CGH). Microarray technology offers high resolution. For example, the traditional CGH generally has a 20 Mb limited mapping resolution; whereas in microarray-based CGH, the fluorescence ratios of the differentially labeled test and reference genomic DNAs provide a locus-by-locus measure of DNA copy-number variation, thereby achieving increased mapping resolution. Details of various microarray methods can be found in the literature. See, for example, U.S. Pat. No. 6,232,068; Pollack et al., Nat. Genet., 23(1):41-6, (1999), Pastinen (1997) Genome Res. 7: 606-614; Jackson (1996) Nature Biotechnology 14:1685; Chee (1995) Science 274: 610; WO 96/17958, Pinkel et al. (1998) Nature Genetics 20: 207-211 and others.


The DNA used to prepare the CGH arrays is not critical. For example, the arrays can include genomic DNA, e.g. overlapping clones that provide a high resolution scan of a portion of the genome containing the desired gene or of the gene itself. Genomic nucleic acids can be obtained from, e.g., HACs, MACs, YACs, BACs, PACs, PIs, cosmids, plasmids, inter-Alu PCR products of genomic clones, restriction digests of genomic clones, cDNA clones, amplification (e.g., PCR) products, and the like. Arrays can also be obtained using oligonucleotide synthesis technology. For example, see, e.g., light-directed combinatorial synthesis of high density oligonucleotide arrays U.S. Pat. No. 5,143,854 and PCT Patent Publication Nos. WO 90/15070 and WO 92/10092.


The sensitivity of the hybridization assays may be enhanced through use of a nucleic acid amplification system that multiplies the target nucleic acid being detected. Examples of such systems include the polymerase chain reaction (PCR) system and the ligase chain reaction (LCR) system. Other suitable methods include are the nucleic acid sequence based amplification (NASBAO, Cangene, Mississauga, Ontario) and Q Beta Replicase systems.


In one embodiment of the invention, the DNA copy number alterations in a genome are determined by single channel profiling, such as single nucleotide polymorphism (SNP)-CGH. Traditional CGH data consists of two channel intensity data corresponding to the two alleles. The comparison of normalized intensities between a reference and subject sample is the foundation of traditional array-CGH. Single channel profiling (such as SNP-CGH) is different in that a combination of two genotyping parameters are analyzed: normalized intensity measurement and allelic ratio. Collectively, these parameters provide a more sensitive and precise profile of chromosomal aberrations. SNP-CGH also provides genetic information (haplotypes) of the locus undergoing aberration. Importantly, SNP-CGH has the capability of identifying copy-neutral LOH events, such as gene conversion, which cannot be detected with array-CGH.


In another embodiment, FISH is used to determine the DNA copy number alterations in a genome. Fluorescence in situ hybridization (FISH) is known to those of skill in the art (see Angerer, 1987 Meth. Enzymol., 152: 649). Generally, in situ hybridization comprises the following major steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target DNA, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid fragments.


In a typical in situ hybridization assay, cells or tissue sections are fixed to a solid support, typically a glass slide. If a nucleic acid is to be probed, the cells are typically denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of labeled probes specific to the nucleic acid sequence encoding the protein. The targets (e.g., cells) are then typically washed at a predetermined stringency or at an increasing stringency until an appropriate signal to noise ratio is obtained.


The probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters. Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, to enable specific hybridization with the target nucleic acid(s) under stringent conditions.


In some applications it is necessary to block the hybridization capacity of repetitive sequences. Thus, in some embodiments, tRNA, human genomic DNA, or Cot-1 DNA is used to block non-specific hybridization.


In another embodiment, Southern blotting is used to determine the DNA copy number alterations in a genome. Methods for doing Southern blotting are known to those of skill in the art (see Current Protocols in Molecular Biology, Chapter 19, Ausubel, et al., Eds., Greene Publishing and Wiley-Interscience, New York, 1995, or Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed. vol. 1-3, Cold Spring Harbor Press, NY, 1989). In such an assay, the genomic DNA (typically fragmented and separated on an electrophoretic gel) is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal genomic DNA (e.g., genomic DNA from the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.


In one embodiment, amplification-based assays, such as PCR, are used to determine the DNA copy number alterations in a genome. In such amplification-based assays, the genomic region where a copy number alteration occurred serves as a template in an amplification reaction. In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the copy number of the genomic region.


Methods of “quantitative” amplification are well known to those of skill in the art. For example, quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction. Detailed protocols for quantitative PCR are provided, for example, in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.


Real time PCR can be used in the methods of the invention to determine DNA copy number alterations. (See, e.g., Gibson et al., Genome Research 6:995-1001, 1996; Heid et al., Genome Research 6:986-994, 1996). Real-time PCR evaluates the level of PCR product accumulation during amplification. To measure DNA copy number, total genomic DNA is isolated from a sample. Real-time PCR can be performed, for example, using a Perkin Elmer/Applied Biosystems (Foster City, Calif.) 7700 Prism instrument. Matching primers and fluorescent probes can be designed for genes of interest using, for example, the primer express program provided by Perkin Elmer/Applied Biosystems (Foster City, Calif.). Optimal concentrations of primers and probes can be initially determined by those of ordinary skill in the art, and control (for example, beta-actin) primers and probes may be obtained commercially from, for example, Perkin Elmer/Applied Biosystems (Foster City, Calif.). To quantitate the amount of the specific nucleic acid of interest in a sample, a standard curve is generated using a control. Standard curves may be generated using the Ct values determined in the real-time PCR, which are related to the initial concentration of the nucleic acid of interest used in the assay. Standard dilutions ranging from 10-106 copies of the gene of interest are generally sufficient. In addition, a standard curve is generated for the control sequence. This permits standardization of initial content of the nucleic acid of interest in a tissue sample to the amount of control for comparison purposes.


Methods of real-time quantitative PCR using TaqMan probes are well known in the art. Detailed protocols for real-time quantitative PCR are provided, for example, for RNA in: Gibson et al., 1996, A novel method for real time quantitative RT-PCR. Genome Res., 10:995-1001; and for DNA in: Heid et al., 1996, Real time quantitative PCR. Genome Res., 10:986-994.


A TaqMan-based assay also can be used to quantify a particular genomic region for DNA copy number alterations. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5′ fluorescent dye and a 3′ quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3′ end. When the PCR product is amplified in subsequent cycles, the 5′ nuclease activity of the polymerase, for example, AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5′ fluorescent dye and the 3′ quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, for example, http://www2.perkin-elmer.com).


Other suitable amplification methods include, but are not limited to ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560, Landegren et al. (1988) Science 241:1077, and Barringer et al. (1990) Gene 89:117), transcription amplification (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173), self-sustained sequence replication (Guatelli et al. (1990) Proc. Nat. Acad. Sci. USA 87:1874), dot PCR, and linker adapter PCR, etc.


In one embodiment, DNA sequencing is used to determine the DNA copy number alterations in a genome. Methods for DNA sequencing are known to those of skill in the art.


In one embodiment, karyotyping (such as spectral karyotyping, SKY) is used to determine the chromosomal structural aberrations in a genome. Methods for karyotyping are known to those of skill in the art. For example, for SKY, a collection of DNA probes, each complementary to a unique region of one chromosome, may be prepared and labeled with a fluorescent color that is designated for a specific chromosome. DNA amplification, deletion, translocations or other structural abnormalities may be determined based on fluorescence emission of the probes.


In certain embodiments, tumor samples from two or more genome-unstable animal models of the invention are analyzed for DNA copy number alterations, and the common genomic regions where the copy number alterations occurred in at least two of the samples are identified. Such recurrent DNA copy number alterations are of particular interest.


A minimum common region (MCR) of the recurrent DNA copy number alteration may be defined when copy number alterations of two or more samples are compared. In one embodiment, the MCR is defined by the boundaries of overlap between two samples, or by boundaries of a single tumor against a background of larger alterations in at least one other tumor.


Methods for determining MCRs is known in the art (see, e.g., D. R. Carrasco, et al., Cancer Cell 9 (4), 313 (2006); A. J. Aguirre, et al., Proc Natl Acad Sci USA 101 (24), 9067 (2004)). Briefly, a “segmented” dataset was generated by determining uniform copy number segment boundaries and then replacing raw log 2 ratio for each probe by the mean log 2 ratio of the segment containing the probe. A threshold representing minimal copy number alterations (CNAs) is then chosen to filter out noise. For example, the median log 2 ratio of a two-fold change for the platform may be chosen as a threshold. In an exemplary embodiment, the thresholds representing CNAs are +/−0.6 (Agilent 22K a-CGH platform) and +/−0.8 (Agilent 44K/244K a-CGH platform), and the width of MCR is less than 10 Mb.


The boundaries of MCRs can be mapped by any method that is known in the art, such as southern blotting, or PCR.


Genes and genetic elements located within an MCR are potentially related to human cancer and such genes and genetic elements can be subject to additional analyses to further characterize them. For example, a gene that is initially identified by array-CGH may be quantitatively amplified. Quantitative amplification of either the identified genomic DNA or the corresponding RNA can confirm DNA gain or loss. Alternatively, if the sequence encodes a protein, the mRNA level, protein level, or activity level of the encoded protein may be measured. An increase in RNA/protein/activity level, as compared to a control, confirms DNA amplification; a decrease in RNA/protein/activity level, as compared to a control, confirms DNA deletion.


The gene or genetic element identified through initial screening may also be re-sequenced to confirm amplification or deletion. Further, DNA sequencing and protein expression profiling may also be used to identify genetic mutations that may be associated with tumorigenesis.


In another aspect, the invention provides a method of identifying a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer, comprising the step of identifying a chromosomal structural aberration in a population of cancer cells from a genome-unstable animal models of the invention. A chromosomal region containing the chromosomal structural aberration is a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer.


In some embodiments, the chromosomal structural aberration is detected using karyotyping, such as SKY. In some embodiments, the method further comprises determining the DNA copy number alteration, as described above. A chromosomal region containing the both chromosomal structural aberration and a DNA copy number alteration is a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer.


In another aspect, the invention provides a method of identifying a potential human cancer-related gene or genetic element, comprising the steps of (a) identifying a chromosomal region of interest as described herein; (b) identifying a gene or a genetic element within the chromosomal region of interest in the non-human animal, and (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b).


Additionally, many public and private databases provide cancer gene information (for example, Sanger's Cancer Gene Census, at http://www.sanger.ac.uk/genetics/CGP/Census), and the information may be used to map known cancer genes to a particular chromosomal region.


If a gene or a genetic element is found to be potentially relevant to human cancer, the corresponding human gene may be identified by homolog mapping, ortholog mapping, paralog mapping, among other methods. As used herein, a homolog is a gene related to a second gene by descent from a common ancestral DNA sequence, an ortholog is a gene in a different species that evolved from a common ancestral gene by speciation, and a paralogs is a gene related by duplication within a genome.


In one embodiment, human homologs are identified by using, for example, the NCBI homologene website, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene.


In some embodiments, the method further comprises detecting a mutation in the identified non-human gene or genetic element. In another embodiment, a mutation in the corresponding human gene or genetic element is identified. In another embodiment, mutations in the both the non-human gene or genetic element and the human gene or genetic element are identified, and the mutations are compared.


In another aspect, the invention provides a method of identifying a potential human cancer-related gene or genetic element, comprising the steps of (a) detecting a DNA copy number alteration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce genome instability, (b) identifying a gene or genetic element located within the boundaries of the copy number alteration detected in step (a), (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a copy number alteration or of a chromosomal structural aberration in a human cancer cell. The human gene or genetic element identified in step (c) is a gene potentially related to human cancer.


Methods for detecting a copy number alteration or a chromosomal structural aberration have been described above in detail. Methods for identifying a gene or genetic element located within the boundaries of the copy number alteration are also described above in detail.


In one embodiment, a copy number alteration or a chromosomal structure aberration in the non-human animal model of the invention is compared with a copy number alteration or a chromosomal structural aberration in human cancer cell. A potentially relevant human cancer related gene or genetic element is identified based on synteny. Synteny describes the preserved order and orientation of genes between related species. Comparisons of non-human animal model and human cancer syntenic chromosomal regions may reveal the conserved nature of certain genetic modification in tumorgenesis.


The cross-species comparison based on synteny has several advantages. First is the ability to narrow the chromosomal regions of interest—certain genomic modification is more focal in one species than the other, and a cross-species comparison may eliminate such species-specific event. Second, a minimal common region (MCR) typically contains a number of genes; a cross-species comparison of syntenic regions allows an efficient way to reduce the gene numbers because the syntenic regions of the genome between non-human mammals (in particular, mice) and humans may be in relatively small portions. Genes located within syntenic MCRs may be highly relevant to human cancers.


In another aspect, the invention provides a method of identifying a potential human cancer-related gene or genetic element, comprising the steps of (a) detecting a chromosomal structural aberration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce genome instability, (b) identifying a gene or genetic element located within the boundaries of the copy number alteration detected in step (a), (c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a copy number alteration or of a chromosomal structural aberration in a human cancer cell. The human gene or genetic element identified in step (c) is a gene potentially related to human cancer.


4. DIAGNOSIS AND METHODS OF TREATMENT

In one aspect, the present invention provides a method for identifying subjects with T-cell acute lymphoblastic leukemia (T-ALL) who may have a decreased or increased response to γ-secretase inhibitor therapy, based on the discovery that inactivation of FBXW7 is associated with human T-cell malignancy.


In one embodiment, the method for identifying subjects with T-ALL who may have a decreased response to a γ-secretase inhibitor therapy comprises: detecting in a cancer cell from the subject the expression level or activity level of FBXW7; a decreased expression/activity of FBXW7, as compared to a control, indicates that the subject may have a decreased response to a γ-secretase inhibitor therapy. The expression or activity level of NOTCH1 in the cancer cell may also be determined simultaneously; an increased expression/activity of NOTCH1, as compared to a control, further indicates that the subject may have a decreased response to a γ-secretase inhibitor therapy. Conversely, an increased expression/activity of FBXW7 (together with a decreased expression/activity of NOTCH1, optionally), as compared to a control, indicates that the subject may be sensitive to a γ-secretase inhibitor therapy.


γ-Secretase is a complex composed of at least four proteins, namely presenilins (presenilin 1 or -2), nicastrin, PEN-2, and APH-1. Several proteins have been identified as substrates for γ-secretase cleavage, include Notch and the Notch ligands Delta1 and Jagged2, ErbB4, CD44, and E-cadherin (Wong, G. T. et. al, J. Biol. Chem., Vol. 279, Issue 13, 12876-12882, Mar. 26, 2004). The cleavage of Notch by γ-secretase has been studied most extensively. Notch plays an evolutionarily conserved role in regulating cell growth and lineage specification particularly during embryonic development. Notch is activated by several ligands (Delta, Jagged, and Serrate) and is then proteolytically processed by a series of ligand-dependent and -independent cleavages. γ-Secretase catalyzes the terminal cleavage event (S3 cleavage), which releases a fragment known as the Notch intracellular domain (NICD). The NICD fragment then translocates to the nucleus where it acts as a nuclear transcription factor. As expected from its role in Notch S3 cleavage, γ-secretase inhibitors have been shown to block NICD production in vitro. In vivo, Notch function appears to be critical for the proper differentiation of T and B lymphocytes, and γ-secretase inhibitors reduce the thymocyte number and block thymocyte differentiation at an early stage in fetal thymic organ cultures.


The FBXW7 gene (also called hCDC4) encodes a key component of the E3 ubiquitin ligase that is implicated in the control of chromosome stability (Mao J. et. al, Nature 432, 775-779 (2004)). FBXW7 is responsible for binding the PEST domain of intracellular NOTCH1, leading to ubiquitination and degradation by the proteasome. Because there exists a statistically significant anti-correlation between PEST domain mutations in NOTCH1 and FBXW7 mutation in human T-ALL, T-ALL cells having a reduced expression/activity of FBXW7 will less likely to respond to γ-secretase inhibitors.


One of the recurring problems of cancer therapy is that a patient in remission (after the initial treatment by surgery, chemotherapy, radiotherapy, or combination thereof) may experience relapse. The recurring cancer in those patients is frequently resistant to the apparently successful initial treatment. In fact, certain cancers in patients initially diagnosed with the disease may be already resistant to conventional cancer therapy even without first being exposed to such treatment. γ-secretase inhibitor therapy can be physically exhausting for the patient. Side effects of secretase inhibitors include weight loss, changes in gastrointestinal tract architecture, accumulation of necrotic cell debris, dilation of crypts and infiltration of inflammatory cells, nausea, vomiting, weakness, diarrhea elevation in white blood cell count, and esophageal failure (Siemers E. et al, 2005 May-June; 28(3):126-32; Wong, G T. et al, J Biol Chem. 2004 Mar. 26; 279 (13):12876-82). Thus there is a need to determine whether a cancer patient may benefit from a chemotherapeutic treatment prior to the commencement of the treatment.


In one embodiment, a cancer patient is screened based on the expression level of FBXW7 and optionally, NOTCH1, in a cancer cell sample.


The expression level of FBXW7 or NOTCH1 may be measured by DNA level, mRNA level, protein level, activity level, or other quantity reflected in or derivable from the gene or protein expression data. For example, a genetic alteration may result in a decreased expression of FBXW7. Common genetic alterations include deletion of at lease one FBXW7 gene from the genome, or a mutation in at least one allele of an FBXW7 gene. The mutation may be a mis-sense mutation; a non-sense mutation; an insertion, deletion, or substitution of one or more nucleotides; a truncation from the 5′ terminal (either untranslated region or coding region), 3′ terminal (either untranslated region or coding region), or both; a substitution of one or more nucleotides in the 5′ untranslated region, 3′ untranslated region, coding region (which results in an amino acid change), or combinations of the three. Exemplary genetic alterations include a mutation in the third WD40 domain or the fourth WD40 domain of the FBXW7, G423V, R465C, R465H, R479L. R479Q, R505C and D527G mutations. A genetic alteration may also result in an increased expression of NOTCH1, such as translocation or copy number amplification of NOTCH1 gene.


The mRNA level of FBXW7 or NOTCH 1 may be measured using any art-known method, such as PCR, northern blotting, RNase Protection Assay, or microarray hybridization. For example, Real-time polymerase chain reaction, also called quantitative real time PCR (QRT-PCR) or kinetic polymerase chain reaction, is widely used in the art to measure mRNA level of a target gene. The QRT-PCR procedure follows the general pattern of polymerase chain reaction, but the DNA is quantified after each round of amplification. Two common methods of quantification are the use of fluorescent dyes that intercalate with double-strand DNA, and modified DNA oligonucleotide probes that fluoresce when hybridized with a complementary DNA. QRT-PCR can be combined with reverse transcription polymerase chain reaction to quantify low abundance messenger RNA (mRNA), enabling one to quantify relative gene expression at a particular time, or in a particular cell or tissue type.


The expression level of FBXW7 or NOTCH1 may also be measured by protein level using any art-known method. Traditional methodologies for protein quantification include 2-D gel electrophoresis, mass spectrometry and antibody binding. Frequently used methods for assaying target protein levels in a biological sample include antibody-based techniques, such as immunoblotting (western blotting), immunohistological assay, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), or protein chips. Gel electrophoresis, immunoprecipitation and mass spectrometry may be carried out using standard techniques. Additionally, NOTCH1 expression may be measured by detection of cleaved, intranuclear (ICN) form of NOTCH1 protein in cells.


The expression level of FBXW7 or NOTCH1 may also be measured by the activity level of the gene product using any art-known method, such as transcriptional activity of NOTCH1 or ligase activity of FBXW7. For example, NOTCH1 activity may be measured by a increased binding of ICN of NOTCH1. Alternatively, the expression level of a transcriptional downstream target of NOTCH1 may be measured as an indicator of NOTCH1 activity, such as c-Myc, PTCRA, Hes1, etc.


In certain embodiments, it is useful to compare the expression/activity level of FBXW7 or NOTCH1 to a control. The control may be a measure of the expression level of FBXW7 or NOTCH1 in a quantitative form (e.g., a number, ratio, percentage, graph, etc.) or a qualitative form (e.g., band intensity on a gel or blot, etc.). A variety of controls may be used. Levels of FBXW7 or NOTCH1 expression from a non-cancer cell of the same cell type from the subject may be used as a control. Levels of FBXW7 or NOTCH1 expression from the same cell type from a healthy individual may also be used as a control. Alternatively, the control may be expression levels of FBXW7 or NOTCH1 from the individual being treated at a time prior to treatment or at a time period earlier during the course of treatment. Still other controls may include expression levels present in a database (e.g., a table, electronic database, spreadsheet, etc.) or a pre-determined threshold.


The present invention further discloses methods of treating a T-ALL subject who will likely be sensitive a treatment with γ-secretase inhibitors (identified using the methods described above), comprising administering to the patients a γ-secretase inhibitor. γ-secretase inhibitors are known in the art, exemplary γ-secretase inhibitors include LY450139 Dihydrate and LY411575.


The present invention further discloses methods of treating a T-ALL subject who will has a decreased expression/activity of FBXW7 (identified using the methods described above) with an agent that increases the expression/activity of FBXW7. The agent may be a recombinant FBXW7 protein or a functionally active fragment or derivative thereof, a nuclei acid that encodes FBXW7 protein or a functionally active fragment or derivative thereof, or an agent that activates FBXW7. A “functionally active” PBXW7 fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type FBXW7 protein, such as antigenic or immunogenic activity, ability to bind natural cellular substrates, etc. The functional activity of FBXW7 proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science, Coligan et al., eds., John Wiley & Sons, Inc., Somerset, N.J. (1998)).


In another aspect, the present invention provides a method for identifying subject with T-ALL who may benefit from treatment with a phosphatidylinositol 3-kinase (PI3K) pathway inhibitor, based on the discovery that PTEN inactivation is associated with human T-cell malignancy.


PTEN has been characterized as a tumor suppressor gene that regulates cell cycle. PTEN functions as a phosphodiesterase and an inhibitor of the PI3K/AKT pathway, by removing the 3′ phosphate group of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). When PTEN is inactivated, increased production of PIP3 activates AKT (protein kinase B). The AKT pathway promotes tumor progression by enhancing cell proliferation, growth, survival, and motility, and by suppressing apoptosis. AKT is activated by two phosphorylation events catalyzed by the phosphoinositide dependent kinase PDK1, an enzyme that is activated by PI3K.


In one embodiment, the method for identifying subject with T-ALL who may benefit from treatment with a PI3K pathway inhibitor comprises: detecting in a tumor cell from the subject the expression level or activity level of PTEN. A decreased expression/activity of FBXW7, as compared to a control, indicates that the subject may benefit from a PI3K inhibitor therapy.


The phospho-AKT level in the cancer cell from the subject may also be determined simultaneously; an increased phospho-AKT level, as compared to a control, further indicates that the subject may benefit from a PI3K inhibitor therapy.


The expression level of PTEN may be measured by DNA level, mRNA level, protein level, activity level, or other quantity reflected in or derivable from the gene or protein expression data. For example, a genetic alteration may result in a decreased expression of PTEN. Common genetic alterations include deletion of at least one PTEN gene from the genome, or a mutation in at least one allele of a PTEN gene. The mutation may be a mis-sense mutation; a non-sense mutation; an insertion, deletion, or substitution of one or more nucleotides; a truncation from the 5′ terminal (either untranslated region or coding region), 3′ terminal (either untranslated region or coding region), or both; a substitution of one or more nucleotides in the 5′ untranslated region, 3′ untranslated region, coding region (which results in an amino acid change), or combinations of the three.


The expression level of PTEN may also be measured by mRNA level using any method known in the art, such as PCR, Northern blotting, RNase Protection Assay, and microarray hybridization.


The expression level of PTEN may also be measured by protein level using any method known in the art, such as 2-D gel electrophoresis, mass spectrometry and antibody binding


The expression level of PTEN may also be measured by the activity level of PTEN using any art-known method, such as measuring the phosphatase activity. Additionally, the expression or activity of other proteins involved in the PI3K/AKT pathway may also be measured as a proxy for PTEN activity. For example, the phospho-AKT level in a cell generally reflects the PTEN activity, therefore may be measured as a marker for PTEN activity.


In certain embodiments, a control may be used to compare the expression/activity level of PTEN. As described in detail above, a control may be derived from a non-cancer cell of the same type from the subject, same cell type from a healthy individual, a predetermined value, etc.


The present invention further discloses methods of treating a T-ALL subject who may benefit from a treatment with PI3K inhibitors (identified using the methods described above), comprising administering to the patients a PI3K inhibitor. PI3K inhibitors are well know in the art (e.g., Pinna, L A and Cohen, P T W (eds.) Inhibitors of Protein Kinases and Protein Phosphates, Springer (2004) and Abelson, J N, Simon, M I, Hunter, T, Sefton, B M (eds.) Methods in Enzymology, Volume 201: Protein Phosphorylation, Part B: Analysis of Protein Phosphorylation, Protein Kinase Inhibitors, and Protein Academic Press (2007)).


The present invention further discloses methods of treating a T-ALL subject who will has a decreased expression/activity of PTEN (identified using the methods described above) with an agent that increases the expression/activity of PTEN. The agent may be a recombinant PTEN protein or a functionally active fragment or derivative thereof, a nuclei acid that encodes PTEN protein or a functionally active fragment or derivative thereof, or an agent that activates PTEN.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, comprising: determining the expression or activity level of at least one cancer gene or candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject. An increase in the expression or activity the gene, as compared to a control, indicates that the subject is afflicted with cancer or at risk for developing cancer. Alternatively, if there is a decrease in the expression or activity of a cancer gene or candidate cancer gene located in a deleted MCR in Table 1, as compared to a control, the decreased expression or activity level also indicates that the subject is afflicted with cancer or at risk for developing cancer.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one amplified minimal common region (MCR) listed in Table 1 in a biological sample from the subject. An increased copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer. Alternatively, a decreased copy number of a deleted MCR (also listed in Table 1) in the sample, as compared to the normal copy number of the MCR, also indicates that the subject is afflicted with cancer or at risk for developing cancer. The normal copy number of an MCR is typically one per chromosome.


In another aspect, the invention provides a method for monitoring the progression of cancer in a subject, the method comprising: a) determining in a biological sample from the subject at a first point in time, the expression or activity level of a cancer gene or a candidate cancer gene listed in Table 1; b) repeating step a) at a subsequent point in time; and c) comparing the expression or activity of the gene in steps a) and b), and therefrom monitoring the progression of cancer in the subject.


In another aspect, the invention provides a method of assessing the efficacy of a test agent for treating a cancer in a subject, comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject in the presence of the test agent; and b) determining the expression or activity level of the gene in a biological sample from the subject in the absence of the test agent. A decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the test agent's potential efficacy for treating the cancer in the subject. Alternatively, if the test agent increases the expression or activity of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1, the test agent is also potentially effective for treating the cancer in a subject.


In another aspect, the invention provides a method of assessing the efficacy of a therapy for treating cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject prior to providing at least a portion of the therapy to the subject; and b) determining the expression or activity level of the gene in a biological sample from the subject following provision of the portion of the therapy. A decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the therapy's efficacy for treating the cancer in the subject. Alternatively, if the therapy increases the expression or activity of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1, the therapy is also potentially effective for treating the cancer in a subject.


In another aspect, the invention provides a method of treating a subject afflicted with cancer comprising administering to the subject an agent that decreases the expression or activity level of at least one cancer gene or candidate cancer gene located in am amplified MCR in Table 1. Alternatively, the invention provides a method of treating a subject afflicted with cancer comprising administering to the subject an agent that increases the expression or activity level of at least one cancer gene or candidate cancer gene located in a deleted MCR in Table 1.


In certain embodiments, the agent is an antibody, or its antigen-binding fragment thereof, that specifically binds to a cancer gene or candidate cancer gene listed in Table 1. Optionally, the antibody may be conjugated to a toxin, or a chemotherapeutic agent.


Alternatively, the agent may be an RNA interfering molecule (such as an shRNA or siRNA molecule) that inhibits expression of a cancer gene or candidate cancer gene in an amplified MCR in Table 1, or an antisense RNA molecule complementary to a cancer gene or candidate cancer gene in an amplified MCR in Table 1.


Alternatively, the agent may be a peptide or peptidomimetic, a small organic molecule, or an aptamer.


Preferrably, the agent is administered in a pharmaceutically acceptable formulation.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one minimal common region (MCR) listed in Table 5 in a biological sample from the subject. A change of copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer. The normal copy number of an MCR is typically one per chromosome.


In certain embodiments, the cancer is lymphoma. In certain embodiments, the lymphoma is T-ALL.


In another aspect, the invention provides a method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, by comparing the copy number of an MCR, identified using a genome-unstable non-human mammal model (including a genome-unstable mouse model of the invention), with the normal copy number of the MCR. The normal copy number of an MCR is typically one per chromosome.


EXAMPLES
Example 1
Generation and Characterization of Murine T Cell Lymphomas with Highly Complex Genomes

In this example, we created a murine lymphoma model system that combines the genome-destabilizing impact of Atm deficiency and telomere dysfunction to effect T lymphomagenesis in a p53-dependent manner.


We interbred mTerc Atm p. 53 heterozygous mice and maintained them in pathogen-free conditions. We intercrossed the null alleles of mTerc, Atm and p53 to generate various genotypic combinations from this “triple”-mutant colony (for simplicity, hereafter designated as “TKO” for all genotypes from this colony).


We monitored animals for signs of ill-health every other day. Moribund animals were euthanized and subjected to complete autopsy; mice found dead were subject to necropsy specifically for signs of lymphoma. We performed all animal uses and manipulations according to approved IACUC protocol. Tumors were harvested from TKO mice and partitioned in the following manner. One section was snap-frozen for DNA and RNA extraction, a second portion was processed for histology, and the remaining portion was disaggregated for in vitro culture. Suspensions of tumor cells were maintained in RPMI supplemented with 50 μM beta-mercaptoethanol, 10% Cosmic Calf serum (HyClone), 0.5 ng/ml recombinant IL-2, and 4 ng/ml recombinant IL-7 (both from Peprotech). Tumor cells were immunostained with antibodies against CD4, CD8, CD3, and B220/CD45R (eBioscience) and subjected to FACS analysis.


We prepared DNA frozen tumors with the PureGene kit according to manufacturer's instructions (Gentra Systems). We prepared RNA by an initial extraction with Trizol (Invitrogen) according to the manufacturer's instructions. Pelleted total RNA was then digested with RQ1 DNase (Promega) and subsequently purified through RNA purification columns (Gentra). Proteins were obtained either from cell lines or tumor pieces by dis-aggregation in lysis buffer (according to Cell Signaling Technology) followed by sonication in a bath sonicator for 30 s. Lysates were clarified by centrifugation prior to quantification according to manufacturer's instructions (BioRad Protein Assay) and separation on 4-12% NuPage gels (Invitrogen).


We found that TKO mice which are p53+/− or p53−/− succumbed to lethal lymphoma with shorter latency and higher penetrance relative to TKO animals wildtype for p53 (FIG. 2A). Moreover, lymphomas from TKO mice heterozygous for p53 showed reduction to homozygosity in 14 specimens (out of 15 specimens examined) (FIG. 2B), indicating strong genetic pressure to inactivate p53 during lymphomagenesis in this context. Phenotypically, these TKO tumors resembled lymphomas in the conventional Atm−/− mouse model with effacement of thymic architecture by CD4+/CD8+ (less commonly CD4−/CD8− or mixed single/double positive) lymphoma cells (FIG. 2C). Taken together, the genetic and molecular observations strongly suggest that an Atm-independent p53-dependent telomere checkpoint is operative to constrain lymphoma development.


To quantify chromosomal rearrangements, we used Spectral Karyotype (SKY) analyses according to the following protocol. Metaphase preparations were typically obtained within 48 hours of establishment, although in a few instances establishment of the cell line was required to obtain good quality metaphases. Harvested cells were incubated in 105 mM KCl hypotonic buffer for 15 min prior to fixation in 3:1 methanol-acetic acid. Spectral karyotyping was done using the SkyPaint Kit and SkyView analytical software (Applied Spectral Imaging, Carlsbad, Calif.) according to manufacturer's protocols. Chromosome aberrations were defined using the rules from the Committee on Standard Genetic Nomenclature for Mice. T-test comparison between G0 and G1-G4 cytogenetics is based on 90 SKY profiles each set (ten metaphase spreads for each of TKO lymphomas).



FIG. 1, FIG. 2D, and Table 3 summarize the SKY analyses of chromosomal rearrangement in 9 telomere deficient (G1-G4 mTerc−/−) TKO lymphomas and 9 telomere intact (G0 mTerc+/+ or mTerc+/−) TKO lymphomas. Relative to G0 tumors, G1-G4 TKO lymphomas displayed an overall greater frequency of chromosome structural aberrations of various types (0.34 versus 0.09 per chromosome, respectively, p<0.0001, t test) including a multitude of multi-centric chromosomes, non-reciprocal translocations (NRTs), p-p robertsonian-like translocations of homologous and/or non-homologous chromosomes, p-q fusions, and q-q fusions. When examined on a chromosome-by-chromosome basis, several chromosomes (specifically, 2, 6, 8, 14, 15, 16, 17, and 19) were involved in significantly more dicentric and robertsonian-like rearrangement events in G1-G4 relative to G0 TKO tumors (p<0.05; t test; FIG. 2E). Without being bound by a particular theory, the recurrent non-random nature of these chromosomal rearrangements in the TKO model may provide adaptive mechanisms to tolerate telomere dysfunction and/or play causal roles in lymphoma development (e.g., chromosome 2, see below).


Example 2
TKO Lymphomas Harbor Genomic Alterations Syntenic to Those in Human T Cell Malignancy

To assess the degree of syntenic overlap in the murine lymphoma-prone TKO instability model and in human T-ALL and other cancers, we applied and integrated multiple genome analysis technologies to survey cancer-associated alterations for comparison with T-ALL and a diverse set of major human cancers.


Synteny describes the preserved order and orientation of genes between species. Disruption of synteny, caused by chromosome rearrangement, is an indication of divergent evolution. Comparisons of TKO mouse model and human T-ALL syntenic chromosomal regions may reveal the conserved nature of certain genetic modification in tumorigenesis.


Because TKO lymphomas harbored a large number of complex nonreciprocal translocations (NRTs), we sought to determine whether these genome-unstable tumors possess increased numbers of recurrent amplifications and deletions. To this end, we compiled high-resolution genome-wide array-CGH profiles for 35 TKO tumors (Table 3) and 26 human T-ALL cell lines and tumors (Tables 4A and 4B) for comparison.


T-ALL cell lines used in this example, and in Examples 3-7 are listed in Table 4A. A subset was subjected to both array-CGH (described in detail below) and re-sequencing, as indicated.


We used two cohorts of clinical human T-ALL samples in this example. A cohort of 8 samples (Table 4B) comprised of cryopreserved lymphoblasts or lymphoblast cell lysates, obtained with informed consent and IRB approval at the time of diagnosis from pediatric patients with T-ALL treated on Dana-Farber Cancer Institute study 00-001. We subjected these samples to genome-wide array-CGH profiling.


For genome-wide array-CGH profiling, we used the following protocol. Genomic DNA processing, labeling and hybridization to Agilent CGH arrays were performed as per manufacturer's protocol (http://www.home.agilent.com/agilent/home.jspx). Murine tumors were profiled against individual matched normal DNA (e.g., non-tumor cell of the same cell type from the same individual) or, when not available, pooled DNA of matching strain background. Labeled DNAs were hybridized onto 44K or 244K microarrays for mouse, and 22K or 44K microarrays for human. The Mouse 44K array contained 42,404 60-mer elements for which unique map positions were defined (National Center for Biotechnology Information, Mouse Build 34). The median interval between mapped elements was 21.8 kb, 97.1% of intervals of <0.3 megabases (Mb), and 99.3% are <1 Mb. The 244K array contained 224,641 elements for which unique map positions were defined based on the same mouse genome build. The Human 22K array contained 22,500 elements designed for expression profiling for which 16,097 unique map positions were defined with a median interval between mapped elements of 54.8 kb. The Human 44K microarray contained 42,494 60-mer oligonucleotide probes for which unique map positions were defined (National Center for Biotechnology Information, Human Build 35). The 244K array contained 226,932 60-mer oligonucleotide probes for which unique map positions were defined based on the same human genome build.


Profiles generated on 244K density arrays were extracted for the same 42K probes on the 44K microarrays to allow combination of profiles generated on the two different platforms. Fluorescence ratios of scanned images were normalized and calculated as the average of two paired (dye swap), and copy number profile was generated based on Circular Binary Segmentation, an algorithm that uses permutation to determine the significance of change points in the raw data (A. B. Olshen, et al., Biostatistics 5 (4), 557 (2004)).


TKO profiles revealed marked genome complexity with all chromosomes exhibiting recurrent CNAs—both regional and focal in nature (FIG. 2F). Many CNAs were highly recurrent, observed in more than 40% of samples (e.g., amplicons targeting distinct regions on mouse chromosomes 1, 2, 3, 4, 5, 9, 10, 12, 14, 15, 16, and 17; and deletions on 6, 11, 12, 13, 14, 16 and 19). These patterns of genomic alteration corresponded well with the SKY analyses showing predominant involvement of these chromosomes in rearrangement events. Attesting to the robustness and resolution of this platform, highly recurrent physiological deletions of the T cell receptor (Tcr) loci were readily detected (FIG. 2F, arrows) as expected for clonal CD4/CD8-positive T-cells, e.g., chromosome 6 Tcrβ locus sustained focal deletion in 28/35 tumors, as well as focal deletions of chromosome 14 Tcrα/Tcrβ locus and chromosome 13 Tcrδ locus (FIG. 1C; FIG. 2F).


The pathogenetic relevance of these recurrent genomic events, and of this instability model, is supported by integrated array-CGH and SKY analyses of a high amplitude genomic event on chromosome 2 in several independent TKO tumors. These CNAs shared a common boundary defined by array-CGH and contained a recurrent NRT involving the A3 band of chromosome 2 with different partner chromosomes by SKY (FIG. 3).


Example 3
Frequent NOTCH1 Rearrangement in TKO Mouse Model

For further comparison of genomic events in the TKO model and in human T-All, we used a separate series of 38 human clinical specimens (Table 4C) for re-sequencing of NOTCH 1, FBXW7 and PTEN (see Examples 5-6). These T-ALL samples were collected from 8 children and adolescents diagnosed at the Royal Free Hospital, London, and 30 adult patients enrolled in the MRC UKALL-XII trial. Appropriate informed consent was obtained from the patients (if over 18 years of age) or their guardians (if under 18 years), and the study had Ethics Committee approval.


1. HPLC and Sequencing. Gene mutation status was established by denaturing high-performance liquid chromatography (see, e.g., M. R. Mansour, et al., Leukemia 20 (3), 537 (2006)), and by bidirectional sequencing. Briefly, genomic DNA was extracted using the Qiagen (Hilden, Germany) genomic purification kit. PCR primers were designed to amplify exons and flanking intronic sequences. PCR amplification and direct sequencing were done according to art-known methods (for details, see H. Davies, et al., Cancer Res 65 (17), 7591 (2005)). Sequence traces were analysed using a combination of manual analysis and software-based analyses, where deviation from normal is indicated by the presence of two overlapping sequencing traces (indicating the presence of one normal allelic and one mutant allelic DNA sequence), or the presence of a single sequence trace that deviates from normal (indicating the presence of only a mutant DNA allele). All variants were confirmed by bidirectional sequencing of a second independently amplified PCR product.


2. Expression profiling. Biotinylated target cRNA was generated from total sample RNA from a TKO model and hybridized to mouse oligonucleotide probe arrays against normal control murine thymus RNA (Mouse Development Oligo Microarray, Agilent, Palo Alto, Calif.) according to manufacturer's protocols. Expression values for each gene were mapped to genomic positions based on National Center for Biotechnology Information Build 34 of the mouse genome.


3. Real-Time PCR. To confirm genetic loci, Real-time PCR was performed with a Quantitect SYBR green kit (Qiagen USA, Valencia, Calif.) using 2 ng DNA from each tumor run in triplicate, on Applied Biosystems or Stratagene MX3000 realtime thermocyclers. Each triplicate run was performed twice; quantification was performed using the standard curve method and the average fold change for the combined run was calculated. Primer sequences are listed in Table 8.


4. Western Blotting. Western blots were performed on clarified tumor lysates on PVDF membranes using the following antibodies: PTEN (9552), Akt (9272), phospho-Akt (9271), Notch1, activated Notch1 Val1744 (2421) (Cell Signaling Technology, Ipswich, Mass.), and tubulin (Sigma Chemical, St. Louis, Mo.), according to the manufacturer's instructions and developed with HRP-labeled secondary antibodies (Pierce; Rockford, Ill.) and enhanced chemiluminescent substrate.


5. Common Boundary Analysis of NOTCH1. Detailed structural analysis of the common boundary of CNAs revealed Notch1 locus alterations with rearrangement close to the 3′ region of the Notch1 gene in four TKO tumors, and focal amplifications encompassing Notch1 in two additional tumors (FIG. 3; data not shown). Notch1 activation by C-terminal structural alteration and point mutations is a signature event of human T-ALL (see, A. P. Weng, et al., Science 306 (5694), 269 (2004), F. Radtke, et al., Nat Immunol 5 (3), 247 (2004), L. W. Ellisen, et al., Cell 66 (4), 649 (1991)). Although the structure of the rearrangements in the TKO samples did not precisely mirror NOTCH1 translocations in human T-ALL (L. W. Ellisen, et al., Cell 66 (4), 649 (1991)), their common shared boundary involving Notch1 suggested potential relevance of the TKO tumors. Accordingly, we performed Notch1 re-sequencing in several TKO lymphomas without evidence of genomic rearrangement at this locus and uncovered truncating insertion/deletion mutations and non-conservative amino acid substitutions in the Notch1 PEST and heterodimerization (HD) domains, as well as one case of an intragenic 379 by deletion within exon 34 encoding the PEST domain (sample A1040) (FIG. 4A; Table 3). This mutation spectrum is similar to that observed in human T-ALL, as the PEST and HD domains are two hot spots of NOTCH1 mutation (FIG. 4A, see below) (A. P. Weng, et al., Science 306 (5694), 269 (2004). Biochemically, various types of genomic rearrangements, intragenic deletions and mutations promoted activation of Notch1, as evidenced by Western blot assays designed to detect full-length protein and the active cleaved form (V1744) of Notch1 proteins (FIG. 4B) as well as by transcriptional profiles showing up-regulation of several Notch1 transcriptional targets including Ptcra, Hes1, Dtx1, and Cd3e that correlated well with mRNA levels of Notch1 (F. Radtke, et al., Nat Immunol 5 (3), 247 (2004)) (FIG. 4C).


Example 4
Determining Synteny Across Species by Ortholog Mapping of Genes within the Minimal Common Regions of Copy Number Alterations

In this Example, We further assessed the CNAs in the TKO mouse model by defining and characterization the minimal common regions of CNAs.


Synteny describes the preserved order and orientation of genes between species. Disruption of synteny, caused by chromosome rearrangement, is an indication of divergent evolution. Comparisons of TKO mouse model and human T-ALL syntenic chromosomal regions may reveal the conserved nature of certain genetic modification in tumorigenesis.


The observation of physiological deletion of TCR loci and human-like pattern of Notch1 genomic and mutational events prompted us to assess the extent to which the highly unstable genome of the TKO model engendered CNAs targeting loci syntenic to CNAs in human T-ALL using ortholog mapping of genes resident within the minimal common regions (MCRs) of copy number alterations.


1. Definition of MCRs. To facilitate this comparison, we first defined the MCRs in TKO genome by an established algorithm (see, e.g., D. R. Carrasco, et al., Cancer Cell 9 (4), 313 (2006); A. J. Aguirre, et al., Proc Natl Acad Sci USA 101 (24), 9067 (2004)) with criteria of CNA width<=10 Mb and amplitude>0.75 (log 2 scale). Briefly, a “segmented” dataset was generated by determining uniform copy number segment boundaries according to the method of Olshen (A. B. Olshen, et al., Biostatistics 5 (4), 557 (2004) and then replacing raw log 2 ratio for each probe by the mean log 2 ratio of the segment containing the probe. For 22K and 44K profiles, thresholds representing minimal CNA were chosen at ±0.15 and ±0.3, respectively.


Thresholds representing CNAs were chosen at ±0.4 and ±0.6, respectively. Higher thresholds were used for 44K profiles comparing to 22K profiles to adjust for signal-to-noise detection difference in platform performance. For examples 3-6, w selected minimal common region (MCR) by requiring at least one sample to show an extreme CNA event, defined by a log 2 ratio of ±0.60 and ±0.75 for 22K and 44K profiles, respectively, and the width of MCR is less than 10 Mb.


2. Homolog Mapping. We identified human homologs of genes identifies in regions of chromosomal structural alteration of CNAs within mouse TKO MCRs using NCBI HOMOLOGENE database. In parallel, we identified CNAs in seven human tumor datasets (pancreatic, glioblastoma, melanoma, lung, colorectal and multiple myeloma). The human homolog gene list was then used to merge with genes within CNAs of each of the seven human tumor datasets.


3. Cancer Gene Mapping. For cancer gene mapping, the mouse homologs were obtained based on Sanger's Cancer Gene Census55 (http://www.sanger.ac.uk/genetics/CGP/Census). The mouse cancer genes were then mapped to TKO's MCRs.


We obtained a list of 160 MCRs with average sizes of 2.12 Mb (0.15-9.82 Mb) and 2.33 Mb (0.77-9.6 Mb) for amplifications and deletions, respectively (Table 5). This frequency of genomic alterations is comparable to that of most human cancer genomes (e.g. FIG. 9A) and significantly above the typical 20 to 40 events detected in most genetically engineered ‘genome-stable’ murine tumor models (e.g., R. C. O'Hagan, et al., Cancer Res 63 (17), 5352 (2003); N. Bardeesy, et al., Proc Natl Acad Sci USA 103 (15), 5947 (2006); M. Kim, et al., Cell 125 (7), 1269 (2006); L. Zender, et al., Cell 125 (7), 1253 (2006)). When compared to similarly defined MCR list in human T-ALL, 18 of the 160 MCRs (11%) overlapped with defined genomic events present in the human counterpart (Table 1).


In Table 1, each murine TKO MCR with syntenic overlap with an MCR in the human T-ALL dataset is listed, separated by amplification and deletion, along with its chromosomal location (Cytoband/Chr) and base number (Start and End, in Mb). The minimal size of each MCR is indicated in bp. Peak ratio refers to the maximal log 2 array-CGH ratio for each MCR. Rec refers to the number of tumors in which the MCR was defined. Cancer genes and candidate cancer genes located in the amplified MCRs and deleted MCRs are also listed. The NCBI accession numbers and identification numbers for these cancer genes and candidate cancer genes are listed in Table 9.


To calculate the statistic significance of MCR overlap between mouse TKO and each of the human cancers of different histological types, we implemented a permutation test to determine the expected frequency of achieving the same degree of overlap between two genomes by chance alone. Specifically, we randomly generated simulated mouse genome containing the same number and sizes of amplification MCRs in the corresponding chromosomes as the actual TKO genome a similar set was created for each of the human cancer genomes. The number of overlapping amplifications between mouse and each human genome was calculated and stored. This simulation process was repeated 10,000 times. The p value for significance of amplification overlap was then calculated by dividing the frequency of randomly achieving the same or greater degree of overlap as actually observed during the 10,000 permutations by 10,000. p values for deletion overlap were calculated in a similar fashion.


We concluded that this degree of overlap was not by chance. First, statistic significance (p=0.001 and 0.004 for deletions and amplifications, respectively) supports this conclusion, as demonstrated by the rigorous permutation testing to validate the significance of the cross-species overlap. Second, we identified several genes already known or implicated in T-ALL biology, such as Crebbp, Ikaros, and Abl, present within these identified syntenic MCRs. Together, these data support the relevance of this engineered murine model to a related uman cancer and its usefulness.


Example 5
Frequent Fbxw7 Inactivation in T-ALL

In this example, We identified Fbxw7 gene as a target of frequent inactivation or deletion in the TKO mouse model.


We observed that a few TKO tumors with minimal Notch1 expression exhibited elevated Notch4 or Jagged1 (Notch ligand) mRNA levels (data not shown). To investigate this observation, we conducted a more detailed examination of the genomic and expression status of known components in the Notch pathway The four core elements of the Notch signaling system include the Notch receptor, DSL (Delta, Serrate, Lag-2) ligands, CSL (CBF1, Suppressor of hairless, Lag-1) transcriptional cofactors, and target genes. Upon binding ligand the Notch signaling converts CSL from a transcriptional repressor to a transcriptional activator. TKO sample A577 was one of the two tumors harboring a syntenic MCR encompassing the Fbxw7 gene (MCR #18, Table 1). In human T-ALL, focal FBXW7 deletions including one case with a single-probe event were detected (FIG. 5A, right panel). Although extremely focal, the syntenic overlap across species made it unlikely that such deletion events represented copy number polymorphism. Indeed, FBXW7 re-sequencing in a cohort of human T-ALL clinical specimens (n=38) and cell lines (n=23) (Tables 4A, 4C, 6) revealed that FBXW7 was mutated or deleted in 11/23 of the human cell lines (48%) and 11/38 of the clinical samples (29%), marking this gene as one of those most commonly mutated in human T-ALL (Table 2). Consistent with reduced expression of Fbxw7 relative to non-neoplastic thymus in 19 of the 24 TKO lymphomas (FIG. 5B), these FBXW7 mutations in human T-ALL were predominantly mis-sense mutations, and particularly clustered in evolutionarily conserved residues of the third and fourth WD40 domains of the protein (FIG. 5C). Furthermore, re-sequencing of FBXW7 in matched normal bone marrows from several patients in complete remission showed that the two most frequently mutated positions (R465, R479) were acquired somatically (data not shown); along the same line, none of the identified mutations were found in public SNP databases, attesting to the likelihood that these mutations were somatic in nature. Finally, 19 of the 21 mutations were heterozygous, consistent with previous reports that Fbxw7 may act as a haplo-insufficient tumour suppressor gene.


FBXW7 is a key component of the E3 ubiquitin ligase responsible for binding the PEST domain of intracellular NOTCH1, leading to ubiquitination and degradation by the proteasome (N. Gupta-Rossi, et al., J Biol Chem 276 (37), 34371 (2001); C. Oberg, et al., J Biol Chem 276 (38), 35847 (2001); G. Wu, et al., Mol Cell Biol 21 (21), 7403 (2001)). PEST domain mutations in human T-ALL are thought to prolong the half-life of intracellular NOTCH1, raising the possibility that loss of FBXW7 function may cause similar effects on this pathway. To address this, we additionally characterized the human cell lines and clinical samples for NOTCH1 mutations (Table 2; Tables 4A, 4C, 6). Interestingly, there was no association between known functional mutations of NOTCH1 (HD-N, HD-C and PEST domains) and FBXW7 mutations (p=0.16). However, among samples with NOTCH1 mutations, FBXW7 mutations were found less frequently in samples with a mutated PEST domain (4/19; 21%) than samples with mutations of only the HD-N or HD-C domain (13/20; 65%; p=0.009 by Fisher exact test). One explanation of this observation is that mutations of FBXW7 and the PEST domain of NOTCH1 target the same degradation pathway, and little selective advantage accrues to the majority of leukaemias from mutating both components. At the same time, the lack of NOTCH1 and FBXW7 mutual exclusivity may suggest non-overlapping activities by FBXW7 on pathways other than NOTCH signaling.


Example 6
Pten Inactivation is a Common Event in Mouse and Human T-Cell Malignancy

In this example, We identified Pten gene as a target of frequent inactivation or deletion in the TKO mouse model.


Focal deletion on chromosome 19, centering on the Pten gene, was among the most common genomic event in TKO lymphomas (Table 1, FIG. 2F). Using array-CGH, coupled with real-time PCR verification, we documented homozygous deletions of Pten in 15/35 (43%) TKO lymphomas (FIG. 6, FIG. 7A). PTEN is a well-known tumor suppressor and its inactivation in the murine thymus is known to generate T cell tumors (A. Suzuki, et al., Curr Biol 8 (21), 1169 (1998)). Correspondingly, array-CGH confirmed that 4 of the 26 human T-ALL samples (2 cell lines and 2 primary tumors) had sustained PTEN locus rearrangements. Additionally, re-sequencing of the 61 T-ALL cell lines and clinical specimens (Table 4) uncovered inactivating PTEN mutations in 9 cases (none of which were found in public SNP databases), but with no clear correlation with status of NOTCH1 mutations (Table 2, Table 6). In addition, we observed that PTEN mutations occurred more frequently in cell lines (7/23; 30.4%) than in clinical specimens (2/38; 5.2%) (Table 6). As these clinical specimens were derived from newly diagnosed cases whilst the cell lines were established primarily from relapses, without being bound by a particular theory, this difference in mutation frequency may suggest that PTEN inactivation is a later event associated with progression, among other possibilities.


In addition to these genomic and genetic alterations, Northern and Western blot analyses and transcriptome profiling of the TKO and human T-ALL samples revealed a broader collection of tumors with low to undetectable PTEN expression (FIG. 7B, data not shown) with elevated phosphor-AKT. In addition to low PTEN expression, there appears to be additional mechanisms driving AKT activation as evidenced by the presence of focal Akt1 amplification and Tsc1 loss in two TKO samples (FIG. 7C; data not shown). Lastly, the biological significance of Pten status in TKO lymphoma is supported by their sensitivity to Akt inhibition in a Pten dependent manner (FIG. 8) in response to triciribine, a drug known to block Akt phosphorylation and shown to inhibit cells dependent on the Akt pathway. Briefly, twenty thousand cells were plated in triplicate in 96-well format and were incubated in standard media with varying doses of triciribine (BioMol, Plymouth Meeting, Pa.) or an equivalent concentration of vehicle (DMSO; Sigma Chemical, St. Louis, Mo.) for 2 days at 37° C., 5% CO2. At the end of the incubation period, cell growth was quantified with MTS assay (AqueousOne Cell Titer System; Promega, Madison, Wis.) and absorbance read at OD490. Relative cell growth was plotted against growth of the cell line in the equivalent amount DMSO alone. Experiments were repeated 3-5 times for each cell line and dose. As shown in FIG. 8, TKO cells with Pten mutations or deletions were sensitive to tricibine.


Example 7
Broad Comparison of TKO Genome with Diverse Human Cancers

In examples 3-6, Applicant identified and characterized Fbxw7 and Pten using the TKO mouse model. Both Fbxw7 and Pten have been previously identified as tumor suppressor genes. Thus their identification as mutated in human T-ALL provided proof of principle for the Applicants' approach and demonstrated that the mouse model described herein provides a powerful tool to cancer gene discovery. In this example, Applicants extended the cross-species genomic analyses to other human cancers.


While above cross-species comparison showed numerous concordant lesions in cancers of T cell origin, the fact that this instability model is driven by mechanisms of fundamental relevance (e.g., telomere dysfunction and p53 mutation) to many cancer types, including non-hematopoietic malignancies, suggested potentially broader relevance to other human cancers. A case in point is the Pten example above, in that PTEN is a bona fide tumor suppressor for multiple cancer types49,50. To assess this, we extended the cross-species comparative genomic analyses to 6 other human cancer types (n=421) of hematopoietic, mesenchymal and epithelial origins, including multiple myeloma (n=67)53, glioblastoma (n=38) (unpublished) and melanoma (n=123) (unpublished), as well as adenocarcinomas of the pancreas (n=30) (unpublished), lung (n=63)54 and colon (n=74) (unpublished).


Compared against similarly defined MCR lists (i.e. MCR width<=10 Mb; see Example 4 and FIG. 5A) of each of these cancer types, Applicants found that 102 (61 amplifications and 41 deletions) of the 160 MCRs (64%) in the TKO genomes matched with at least one MCR in one human array-CGH dataset (FIG. 5A), with strong statistical significance attesting to non-randomness of this degree of overlap. Confidence in the genetic relevance of these syntenic events was further bolstered by the observation that more than half of these syntenic MCRs (38 of 61 amplifications or 62%; 22 of 41 deletions or 53%) overlapped with MCRs recurrent in two or more human tumor types (FIG. 5B). Moreover, a significant proportion of the TKO MCRs are evolutionarily conserved in human tumors of non-hematopoietic origin (FIG. 5C). Among the 61 amplifications with syntenic hits, 58 of them (95%) were observed in solid tumors, while the remaining 3 were uniquely found in myeloma (FIG. 5C). Similarly, 33 of the 41 (80%) syntenic deletions were present in solid tumors (FIG. 5C). In particular, Applicants found that p53 was present in a deletion MCR in 5 of 7 human cancer types, while Myc was the target of an amplification that overlapped with 6 human cancers. This substantial overlap with diverse human cancers was unexpected.


Next, Applicants determined whether these syntenic MCRs targeted known cancer genes to provide an additional level of validation for these TKO genomic events. Among the 363 genes listed on the Cancer Gene Census55, 237 genes have a mouse homolog based on NCBI homologene (see Example 4). Of these, 24 known cancer genes were found to be resident within one of the 104 syntenic MCRs (Table 7). These included 17 oncogenes in amplifications and 7 tumor suppressor genes in deletions. The majority of these syntenic MCRs do not contain known cancer genes, raising the strong possibility that re-sequencing focused on resident genes of syntenic MCRs may provide a high-yield strategy to identify somatic mutations in human cancers, a thesis supported by the FBXW7 and PTEN examples.


The practice of the various aspects of the present invention may employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Current Protocols in Molecular Biology, by Ausubel et al., Greene Publishing Associates (1992, and Supplements to 2003); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986); Coffin et al., Retroviruses, Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y. (1997); Bast et al., Cancer Medicine, 5th ed., Frei, Emil, editors, BC Decker Inc., Hamilton, Canada (2000); Lodish et al., Molecular Cell Biology, 4th ed., W. H. Freeman & Co., New York (2000); Griffiths et al., Introduction to Genetic Analysis, 7th ed., W. H. Freeman & Co., New York (1999); Gilbert et al., Developmental Biology, 6th ed., Sinauer Associates, Inc., Sunderland, Mass. (2000); and Cooper, The Cell—A Molecular Approach, 2nd ed., Sinauer Associates, Inc., Sunderland, Mass. (2000). All patents, patent applications and references cited herein are incorporated in their entirety by reference.


REFERENCES



  • R. C. O'Hagan, C. W. Brennan, A. Strahs et al., Cancer Res 63 (17), 5352 (2003).

  • N. Bardeesy, A. J. Aguirre, G. C. Chu et al., Proc Natl Acad Sci USA 103 (15), 5947 (2006).

  • M. Kim, J. D. Gans, C. Nogueira et al., Cell 125 (7), 1269 (2006).

  • L. Zender, M. S. Spector, W. Xue et al., Cell 125 (7), 1253 (2006).

  • A. Sweet-Cordero, G. C. Tseng, H. You et al., Genes Chromosomes Cancer 45 (4), 338 (200S. E. Artandi, S. Chang, S. L. Lee et al., Nature 406 (6796), 641 (2000).

  • C. Zhu, K. D. Mills, D. O. Ferguson et al., Cell 109 (7), 811 (2002).

  • G. A. Lang, T. Iwakuma, Y. A. Suh et al., Cell 119 (6), 861 (2004).

  • K. P. Olive, D. A. Tuveson, Z. C. Ruhe et al., Cell 119 (6), 847 (2004).

  • S. R. Hingorani, L. Wang, A. S. Multani et al., Cancer Cell 7 (5), 469 (2005).

  • A. P. Weng, A. A. Ferrando, W. Lee et al., Science 306 (5694), 269 (2004).

  • F. Radtke, A. Wilson, S. J. Mancini et al., Nat Immunol 5 (3), 247 (2004).

  • L. W. Ellisen, J. Bird, D.C. West et al., Cell 66 (4), 649 (1991).

  • J. H. Mao, J. Perez-Losada, D. Wu et al., Nature 432 (7018), 775 (2004).

  • N. Gupta-Rossi, O. Le Bail, H. Gonen et al., J Biol Chem 276 (37), 34371 (2001).

  • C. Oberg, J. Li, A. Pauley et al., J Biol Chem 276 (38), 35847 (2001).

  • G. Wu, S. Lyapina, I. Das et al., Mol Cell Biol 21 (21), 7403 (2001).

  • A. Suzuki, J. L. de la Pompa, V. Stambolic et al., Curr Biol 8 (21), 1169 (1998).

  • L. Yang, H. C. Dan, M. Sun et al., Cancer Res 64 (13), 4394 (2004).

  • D. R. Carrasco, G. Tonon, Y. Huang et al., Cancer Cell 9 (4), 313 (2006).

  • A. B. Olshen, E. S. Venkatraman, R. Lucito et al., Biostatistics 5 (4), 557 (2004).

  • A. J. Aguirre, C. Brennan, G. Bailey et al., Proc Natl Acad Sci USA 101 (24), 9067 (2004).

  • M. R. Mansour, D. C. Linch, L. Foroni et al., Leukemia 20 (3), 537 (2006).

  • H. Davies, C. Hunter, R. Smith et al., Cancer Res 65 (17), 7591 (2005).

  • Wong, G. T. et. al, J. Biol. Chem., Vol. 279, Issue 13, 12876-12882, Mar. 26, 2004



SEQUENCES

Mm Dvl1 cDNA (Homo sapiens)










SEQ ID NO: 1










1
atggcggaga ccaagattat ctaccacatg gacgaggagg agacgccgta




cctggtcaag





61
ctgcccgtgg cccccgagcg cgtcacgctg gccgacttca agaacgtgct



cagcaaccgg





121
cccgtgcacg cctacaaatt cttctttaag tccatggacc aggacttcgg



ggtggtgaag





181
gaggagatct ttgatgacaa tgccaagctt ccctgcttca acggccgcgt



ggtctcctgg





241
ctggtcctgg ctgagggtgc tcactcggat gcggggtccc agggcacgga



cagccacaca





301
gacctgcccc cgcctcttga gcggacaggc ggcatcgggg actcccggcc



cccctccttc





361
cacccaaatg tggccagcag ccgtgacggg atggacaacg agacaggcac



ggagtccatg





421
gtcagtcacc ggcgggagcg tgcccgacgc cggaaccgcg aggaggccgc



ccggaccaat





481
gggcacccaa ggggagaccg acggcgggat gtggggctgc ccccagacag



cgcgtccacc





541
gccctcagca gcgagcttga gtccagcagc tttgtggact cggacgagga



tggcagcacg





601
agcaggctca gcagctccac ggagcagagc acctcatcca gactcatccg



gaagcacaaa





661
cgccggcgga ggaagcagcg ccttcggcag gcggaccggg cctcctcctt



cagcagcata





721
accgactcca ccatgtccct caacatcgtc actgtcacgc tcaacatgga



aagacatcac





781
tttctgggca tcagcatcgt ggggcagagc aacgaccgtg gagacggcgg



catctacatt





841
ggctccatca tgaagggcgg ggctgtggcc gctgacggcc gcatcgagcc



cggcgacatg





901
ttgctgcagg tgaatgacgt gaactttgag aacatgagca atgacgatgc



cgtgcgggtg





961
ctgcgggaga tcgtttccca gacggggccc atcagcctca ctgtggccaa



gtgctgggac





1021
ccaacgcccc gaagctactt caccgtccca cgggctgacc cggtgcggcc



catcgacccc





1081
gccgcctggc tgtcccacac ggcggcactg acaggagccc tgccccgcta



cgagctggaa





1141
gaggcgccgc tgacggtgaa gagtgacatg agcgccgtcg tccgggtcat



gcagctgcca





1201
gactcgggac tggagatccg cgaccgcatg tggctcaaga tcaccatcgc



caatgccgtc





1261
atcggggcgg acgtggtgga ctggctgtac acacacgtgg agggcttcaa



ggagcggcgg





1321
gaggcccgga agtacgccag cagcttgctg aagcacggct tcctgcggca



cacggtcaac





1381
aagatcacct tctccgagca gtgctactac gtcttcgggg atctctgcag



caatctcgcc





1441
accctgaacc tcaacagtgg ctccagtggg acttcggatc aggacacgct



ggccccgctg





1501
ccccacccgg ctgccccctg gcctctgggt cagggctacc cctaccagta



cccgggaccc





1561
ccaccctgct tcccgcctgc ctaccaggac ccgggcttta gctatggcag



cggcagcacc





1621
gggagtcagc agagtgaagg gagcaaaagc agtgggtcca cccggagcag



ccgccgggcc





1681
ccgggccgtg agaaggagcg tcgggcggcg ggagctgggg gcagtggcag



tgaatcggat





1741
cacacggcac cgagtggggt ggggagcagc tggcgagagc gtccggccgg



ccagctcagc





1801
cgtggcagca gcccacgcag tcaggcctcg gctaccgccc cggggctccc



cccgccccac





1861
cccacgacca aggcctatac agtggtgggg gggccacccg ggggaccccc



tgtccgggag





1921
ctggctgccg tccccccgga attgacaggc agccgccagt ccttccagaa



ggctatgggg





1981
aacccctgcg agttcttcgt ggacatcatg tga







Mm DVL1 protein (Homo sapiens)









SEQ ID NO: 2








1
maetkiiyhm deeetpylvk lpvapervtl adfknvlsnr



pvhaykfffk smdqdfgvvk





61
eeifddnakl pcfngrvvsw lvlaegahsd agsqgtdsht



dlppplertg gigdsrppsf





121
hpnvassrdg mdnetgtesm vshrrerarr rnreeaartn



ghprgdrrrd vglppdsast





181
alsselesss fvdsdedgst srlsssteqs tssrlirkhk



rrrrkqrlrq adrassfssi





241
tdstmslniv tvtlnmerhh flgisivgqs ndrgdggiyi



gsimkggava adgriepgdm





301
llqvndvnfe nmsnddavrv lreivsqtgp isltvakcwd



ptprsyftvp radpvrpidp





361
aawlshtaal tgalpryele eapltvksdm savvrvmqlp



dsgleirdrm wlkitianav





421
igadvvdwly thvegfkerr earkyassll khgflrhtvn



kitfseqcyy vfgdlcsnla





481
tlnlnsgssg tsdqdtlapl phpaapwplg qgypyqypgp



ppcfppayqd pgfsygsgst





541
gsqqsegsks sgstrssrra pgrekerraa gaggsgsesd



htapsgvgss wrerpagqls





601
rgssprsqas atapglppph pttkaytvvg gppggppvre



laavppeltg srqsfqkamg





661
npceffvdim







Ccnl2 cDNA (Homo sapiens)










SEQ ID NO: 3










1
atggcggcgg cggcggcggc ggctggtgct gcagggtcgg cagctcccgc




ggcagcggcc





61
ggcgccccgg gatctggggg cgcaccctca gggtcgcagg gggtgctgat



cggggacagg





121
ctgtactccg gggtgctcat caccttggag aactgcctcc tgcctgacga



caagctccgt





181
ttcacgccgt ccatgtcgag cggcctcgac accgacacag agaccgacct



ccgcgtggtg





241
ggctgcgagc tcatccaggc ggccggtatc ctgctccgcc tgccgcaggt



ggccatggct





301
accgggcagg tgttgttcca gcggttcttt tataccaagt ccttcgtgaa



gcactccatg





361
gagcatgtgt caatggcctg tgtccacctg gcttccaaga tagaagaggc



cccaagacgc





421
atacgggacg tcatcaatgt gtttcaccgc cttcgacagc tgagagacaa



aaagaagccc





481
gtgcctctac tactggatca agattatgtt aatttaaaga accaaattat



aaaggcggaa





541
agacgagttc tcaaagagtt gggtttctgc gtccatgtga agcatcctca



taagataatc





601
gttatgtacc ttcaggtgtt agagtgtgag cgtaaccaac acctggtcca



gacctcatgg





661
aattacatga acgacagcct tcgcaccgac gtcttcgtgc ggttccagcc



agagagcatc





721
gcctgtgcct gcatttatct tgctgcccgg acgctggaga tccctttgcc



caatcgtccc





781
cattggtttc ttttgtttgg agcaactgaa gaagaaattc aggaaatctg



cttaaagatc





841
ttgcagcttt atgctcggaa aaaggttgat ctcacacacc tggagggtga



agtggaaaaa





901
agaaagcacg ctatcgaaga ggcaaaggcc caagcccggg gcctgttgcc



tgggggcaca





961
caggtgctgg atggtacctc ggggttctct cctgccccca agctggtgga



atcccccaaa





1021
gaaggtaaag ggagcaagcc ttccccactg tctgtgaaga acaccaagag



gaggctggag





1081
ggcgccaaga aagccaaggc ggacagcccc gtgaacggct tgccaaaggg



gcgagagagt





1141
cggagtcgga gccggagccg tgagcagagc tactcgaggt ccccatcccg



atcagcgtct





1201
cctaagagga ggaaaagtga cagcggctcc acatctggtg ggtccaagtc



gcagagccgc





1261
tcccggagca ggagtgactc cccaccgaga caggcccccc gcagcgctcc



ctacaaaggc





1321
tctgagattc ggggctcccg gaagtccaag gactgcaagt acccccagaa



gccacacaag





1381
tctcggagcc ggagttcttc ccgttctcga agcaggtcac gggagcgggc



ggataatccg





1441
ggaaaataca agaagaaaag tcattactac agagatcagc gacgagagcg



ctcgaggtcg





1501
tatgaacgca caggccgtcg ctatgagcgg gaccaccctg ggcacagcag



gcatcggagg





1561
tga







CCNL2 protein (Homo sapiens)









SEQ ID NO: 4








1
maaaaaaaga agsaapaaaa gapgsggaps gsqgvligdr



lysgvlitle ncllpddklr





61
ftpsmssgld tdtetdlrvv gceliqaagi llrlpqvama



tgqvlfqrff ytksfvkhsm





121
ehvsmacvhl askieeaprr irdvinvfhr lrqlrdkkkp



vpllldqdyv nlknqiikae





181
rrvlkelgfc vhvkhphkii vmylqvlece rnqhlvqtsw



nymndslrtd vfvrfqpesi





241
acaciylaar tleiplpnrp hwfllfgate eeiqeiclki



lqlyarkkvd lthlegevek





301
rkhaieeaka qargllpggt qvldgtsgfs papklvespk



egkgskpspl svkntkrrle





361
gakkakadsp vnglpkgres rsrsrsreqs ysrspsrsas



pkrrksdsgs tsggsksqsr





421
srsrsdsppr qaprsapykg seirgsrksk dckypqkphk



srsrsssrsr srsreradnp





481
gkykkkshyy rdqrrersrs yertgrryer dhpghsrhrr







Aurkaip1 cDNA (Homo sapiens)









SEQ ID NO: 5








1
atgctcctgg ggcgcctgac ttcccagctg ttgagggccg



ttccttgggc aggcggccgc





61
ccgccttggc ccgtctctgg agtgctgggc agccgggtct



gcgggcccct ttacagcaca





121
tcgccggccg gcccaggtag ggcggcctct ctccctcgca



agggggccca gctggagctg





181
gaggagatgc tggtccccag gaagatgtcc gtcagccccc



tggagagctg gctcacggcc





241
cgctgcttcc tgcccagact ggataccggg accgcaggga



ctgtggctcc accgcaatcc





301
taccagtgtc cgcccagcca gataggggaa ggggccgagc



agggggatga aggcgtcgcg





361
gatgcgcctc aaattcagtg caaaaacgtg ctgaagatcc



gccggcggaa gatgaaccac





421
cacaagtacc ggaagctggt gaagaagacg cggttcctgc



ggaggaaggt ccaggaggga





481
cgcctgagac gcaagcagat caagttcgag aaagacctga



ggcgcatctg gctgaaggcg





541
gggctaaagg aagcccccga aggctggcag acccccaaga



tctacctgcg gggcaaatga







AURKAIP1 Protein (Homo sapiens)









SEQ ID NO: 6








1
mllgrltsql lravpwaggr ppwpvsgvlg srvcgplyst



spagpgraas lprkgaqlel





61
eemlvprkms vspleswlta rcflprldtg tagtvappqs



yqcppsqige gaeqgdegva





121
dapqiqcknv lkirrrkmnh hkyrklvkkt rflrrkvqeg



rlrrkqikfe kdlrriwlka





181
glkeapegwq tpkiylrgk







Myb cDNA (Homo sapiens)










SEQ ID NO: 7










1
atggcccgaa gaccccggca cagcatatat agcagtgacg aggatgatga




ggactttgag





61
atgtgtgacc atgactatga tgggctgctt cccaagtctg gaaagcgtca



cttggggaaa





121
acaaggtgga cccgggaaga ggatgaaaaa ctgaagaagc tggtggaaca



gaatggaaca





181
gatgactgga aagttattgc caattatctc ccgaatcgaa cagatgtgca



gtgccagcac





241
cgatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccaa



agaagaagat





301
cagagagtga tagagcttgt acagaaatac ggtccgaaac gttggtctgt



tattgccaag





361
cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca



cttgaatcca





421
gaagttaaga aaacctcctg gacagaagag gaagacagaa ttatttacca



ggcacacaag





481
agactgggga acagatgggc agaaatcgca aagctactgc ctggacgaac



tgataatgct





541
atcaagaacc actggaattc tacaatgcgt cggaaggtcg aacaggaagg



ttatctgcag





601
gagtcttcaa aagccagcca gccagcagtg gccacaagct tccagaagaa



cagtcatttg





661
atgggttttg ctcaggctcc gcctacagct caactccctg ccactggcca



gcccactgtt





721
aacaacgact attcctatta ccacatttct gaagcacaaa atgtctccag



tcatgttcca





781
taccctgtag cgttacatgt aaatatagtc aatgtccctc agccagctgc



cgcagccatt





841
cagagacact ataatgatga agaccctgag aaggaaaagc gaataaagga



attagaattg





901
ctcctaatgt caaccgagaa tgagctaaaa ggacagcagg tgctaccaac



acagaaccac





961
acatgcagct accccgggtg gcacagcacc accattgccg accacaccag



acctcatgga





1021
gacagtgcac ctgtttcctg tttgggagaa caccactcca ctccatctct



gccagcggat





1081
cctggctccc tacctgaaga aagcgcctcg ccagcaaggt gcatgatcgt



ccaccagggc





1141
accattctgg ataatgttaa gaacctctta gaatttgcag aaacactcca



atttatagat





1201
tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc



ttctttaact





1261
tccacccccc tcattggtca caaattgact gttacaacac catttcatag



agaccagact





1321
gtgaaaactc aaaaggaaaa tactgttttt agaaccccag ctatcaaaag



gtcaatctta





1381
gaaagctctc caagaactcc tacaccattc aaacatgcac ttgcagctca



agaaattaaa





1441
tacggtcccc tgaagatgct acctcagaca ccctctcatc tagtagaaga



tctgcaggat





1501
gtgatcaaac aggaatctga tgaatctgga attgttgctg agtttcaaga



aaatggacca





1561
cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaatc



aggaaacttc





1621
ttctgctcac accactggga aggggacagt ctgaataccc aactgttcac



gcagacctcg





1681
cctgtggcag atgcaccgaa tattcttaca agctccgttt taatggcacc



agcatcagaa





1741
gatgaagaca atgttctcaa agcatttaca gtacctaaaa acaggtccct



ggcgagcccc





1801
ttgcagcctt gtagcagtac ctgggaacct gcatcctgtg gaaagatgga



ggagcagatg





1861
acatcttcca gtcaagctcg taaatacgtg aatgcattct cagcccggac



gctggtcatg





1921
tga







MYB Protein (Homo sapiens)









SEQ ID NO: 8








1
marrprhsiy ssdeddedfe mcdhdydgll pksgkrhlgk



trwtreedek lkklveqngt





61
ddwkvianyl pnrtdvqcqh rwqkvlnpel ikgpwtkeed



qrvielvqky gpkrwsviak





121
hlkgrigkqc rerwhnhlnp evkktswtee edriiyqahk



rlgnrwaeia kllpgrtdna





181
iknhwnstmr rkveqegylq esskasqpav atsfqknshl



mgfaqappta qlpatgqptv





241
nndysyyhis eaqnvsshvp ypvalhvniv nvpqpaaaai



qrhyndedpe kekrikelel





301
llmstenelk gqqvlptqnh tcsypgwhst tiadhtrphg



dsapvsclge hhstpslpad





361
pgslpeesas parcmivhqg tildnvknll efaetlqfid



sflntssnhe nsdlempslt





421
stplighklt vttpfhrdqt vktqkentvf rtpaikrsil



essprtptpf khalaaqeik





481
ygplkmlpqt pshlvedlqd vikqesdesg ivaefqengp



pllkkikqev esptdksgnf





541
fcshhwegds lntqlftqts pvadapnilt ssvlmapase



dednvlkaft vpknrslasp





601
lqpcsstwep ascgkmeeqm tsssqarkyv nafsartlvm







Ahi1 cDNA (Homo sapiens)










SEQ ID NO: 9










1
atgcctacag ctgagagtga agcaaaagta aaaaccaaag ttcgctttga




agaattgctt





61
aagacccaca gtgatctaat gcgtgaaaag aaaaaactga agaaaaaact



tgtcaggtct





121
gaagaaaaca tctcacctga cactattaga agcaatcttc actatatgaa



agaaactaca





181
agtgatgatc ccgacactat tagaagcaat cttccccata ttaaagaaac



tacaagtgat





241
gatgtaagtg ctgctaacac taacaacctg aagaagagca cgagagtcac



taaaaacaaa





301
ttgaggaaca cacagttagc aactgaaaat cctaatggtg atgctagtgt



agaggaagac





361
aaacaaggaa agccaaataa aaaggtgata aagacggtgc cccagttgac



tacacaagac





421
ctgaaaccgg aaactcctga gaataaggtt gattctacac accagaaaac



acatacaaag





481
ccacagccag gcgttgatca tcagaaaagt gagaaggcaa atgagggaag



agaagagact





541
gatttagaag aggatgaaga attgatgcaa gcatatcagt gccatgtaac



tgaagaaatg





601
gcaaaggaga ttaagaggaa aataagaaag aaactgaaag aacagttgac



ttactttccc





661
tcagatactt tattccatga tgacaaacta agcagtgaaa aaaggaaaaa



gaaaaaggaa





721
gttccagtct tctctaaagc tgaaacaagt acattgacca tctctggtga



cacagttgaa





781
ggtgaacaaa agaaagaatc ttcagttaga tcagtttctt cagattctca



tcaagatgat





841
gaaataagct caatggaaca aagcacagaa gacagcatgc aagatgatac



aaaacctaaa





901
ccaaaaaaaa caaaaaagaa gactaaagca gttgcagata ataatgaaga



tgttgatggt





961
gatggtgttc atgaaataac aagccgagat agcccggttt atcccaaatg



tttgcttgat





1021
gatgaccttg tcttgggagt ttacattcac cgaactgata gacttaagtc



agattttatg





1081
atttctcacc caatggtaaa aattcatgtg gttgatgagc atactggtca



atatgtcaag





1141
aaagatgata gtggacggcc tgtttcatct tactatgaaa aagagaatgt



ggattatatt





1201
cttcctatta tgacccagcc atatgatttt aaacagttaa aatcaagact



tccagagtgg





1261
gaagaacaaa ttgtatttaa tgaaaatttt ccctatttgc ttcgaggctc



tgatgagagt





1321
cctaaagtca tcctgttctt tgagattctt gatttcttaa gcgtggatga



aattaagaat





1381
aattctgagg ttcaaaacca agaatgtggc tttcggaaaa ttgcctgggc



atttcttaag





1441
cttctgggag ccaatggaaa tgcaaacatc aactcaaaac ttcgcttgca



gctatattac





1501
ccacctacta agcctcgatc cccattaagt gttgttgagg catttgaatg



gtggtcaaaa





1561
tgtccaagaa atcattaccc atcaacactg tacgtaactg taagaggact



gaaagttcca





1621
gactgtataa agccatctta ccgctctatg atggctcttc aggaggaaaa



aggtaaacca





1681
gtgcattgtg aacgtcacca tgagtcaagc tcagtagaca cagaacctgg



attagaagag





1741
tcaaaggaag taataaagtg gaaacgactc cctgggcagg cttgccgtat



cccaaacaaa





1801
cacctcttct cactaaatgc aggagaacga ggatgttttt gtcttgattt



ctcccacaat





1861
ggaagaatat tagcagcagc ttgtgccagc cgggatggat atccaattat



tttatatgaa





1921
attccttctg gacgtttcat gagagaattg tgtggccacc tcaatatcat



ttatgatctt





1981
tcctggtcaa aagatgatca ctacatcctt acttcatcat ctgatggcac



tgccaggata





2041
tggaaaaatg aaataaacaa tacaaatact ttcagagttt tacctcatcc



ttcttttgtt





2101
tacacggcta aattccatcc agctgtaaga gagctagtag ttacaggatg



ctatgattcc





2161
atgatacgga tatggaaagt tgagatgaga gaagattctg ccatattggt



ccgacagttt





2221
gatgttcaca aaagttttat caactcactt tgttttgata ctgaaggtca



tcatatgtat





2281
tcaggagatt gtacaggggt gattgttgtt tggaatacct atgtcaagat



taatgatttg





2341
gaacattcag tgcaccactg gactataaat aaggaaatta aagaaactga



gtttaaggga





2401
attccaataa gttatttgga gattcatccc aatggaaaac gtttgttaat



ccataccaaa





2461
gacagtactt tgagaattat ggatctccgg atattagtag caaggaagtt



tgtaggagca





2521
gcaaattatc gggagaagat tcatagtact ttgactccat gtgggacttt



tctgtttgct





2581
ggaagtgagg atggtatagt gtatgtttgg aacccagaaa caggagaaca



agtagccatg





2641
tattctgact tgccattcaa gtcacccatt cgagacattt cttatcatcc



atttgaaaat





2701
atggttgcat tctgtgcatt tgggcaaaat gagccaattc ttctgtatat



ttacgatttc





2761
catgttgccc agcaggaggc tgaaatgttc aaacgctaca atggaacatt



tccattacct





2821
ggaatacacc aaagtcaaga tgccctatgt acctgtccaa aactacccca



tcaaggctct





2881
tttcagattg atgaatttgt ccacactgaa agttcttcaa cgaagatgca



gctagtaaaa





2941
cagaggcttg aaactgtcac agaggtgata cgttcctgtg ctgcaaaagt



caacaaaaat





3001
ctctcattta cttcaccacc agcagtttcc tcacaacagt ctaagttaaa



gcagtcaaac





3061
atgctgaccg ctcaagagat tctacatcag tttggtttca ctcagaccgg



gattatcagc





3121
atagaaagaa agccttgtaa ccatcaggta gatacagcac caacggtagt



ggctctttat





3181
gactacacag cgaatcgatc agatgaacta accatccatc gcggagacat



tatccgagtg





3241
tttttcaaag ataatgaaga ctggtggtat ggcagcatag gaaagggaca



ggaaggttat





3301
tttccagcta atcatgtggc tagtgaaaca ctgtatcaag aactgcctcc



tgagataaag





3361
gagcgatccc ctcctttaag ccctgaggaa aaaactaaaa tagaaaaatc



tccagctcct





3421
caaaagcaat caatcaataa gaacaagtcc caggacttca gactaggctc



agaatctatg





3481
acacattctg aaatgagaaa agaacagagc catgaggacc aaggacacat



aatggataca





3541
cggatgagga agaacaagca agcaggcaga aaagtcactc taatagagta a







AHl1 Protein (Homo sapiens)









SEQ ID NO: 10








1
mptaeseakv ktkvrfeell kthsdlmrek kklkkklvrs



eenispdtir snlhymkett





61
sddpdtirsn lphikettsd dvsaantnnl kkstrvtknk



lrntqlaten pngdasveed





121
kqgkpnkkvi ktvpqlttqd lkpetpenkv dsthqkthtk



pqpgvdhqks ekanegreet





181
dleedeelmq ayqchvteem akeikrkirk klkeqltyfp



sdtlfhddkl ssekrkkkke





241
vpvfskaets tltisgdtve geqkkessvr svssdshqdd



eissmeqste dsmqddtkpk





301
pkktkkktka vadnnedvdg dgvheitsrd spvypkclld



ddlvlgvyih rtdrlksdfm





361
ishpmvkihv vdehtgqyvk kddsgrpvss yyekenvdyi



lpimtqpydf kqlksrlpew





421
eeqivfnenf pyllrgsdes pkvilffeil dflsvdeikn



nsevqnqecg frkiawaflk





481
llgangnani nsklrlqlyy pptkprspls vveafewwsk



cprnhypstl yvtvrglkvp





541
dcikpsyrsm malqeekgkp vhcerhhess svdtepglee



skevikwkrl pgqacripnk





601
hlfslnager gcfcldfshn grilaaacas rdgypiilye



ipsgrfmrel cghlniiydl





661
swskddhyil tsssdgtari wkneinntnt frvlphpsfv



ytakfhpavr elvvtgcyds





721
miriwkvemr edsailvrqf dvhksfinsl cfdteghhmy



sgdctgvivv wntyvkindl





781
ehsvhhwtin keiketefkg ipisyleihp ngkrllihtk



dstlrimdlr ilvarkfvga





841
anyrekihst ltpcgtflfa gsedgivyvw npetgeqvam



ysdlpfkspi rdisyhpfen





901
mvafcafgqn epillyiydf hvaqqeaemf kryngtfplp



gihqsqdalc tcpklphqgs





961
fqidefvhte ssstkmqlvk qrletvtevi rscaakvnkn



lsftsppavs sqqsklkqsn





1021
mltaqeilhq fgftqtgiis ierkpcnhqv dtaptvvaly



dytanrsdel tihrgdiirv





1081
ffkdnedwwy gsigkgqegy fpanhvaset lyqelppeik



erspplspee ktkiekspap





1141
qkqsinknks qdfrlgsesm thsemrkeqs hedqghimdt



rmrknkqagr kvtlie







Runx1 cDNA (Homo sapiens)









SEQ ID NO: 11








1
atggcttcag acagcatatt tgagtcattt ccttcgtacc



cacagtgctt catgagagaa





61
tgcatacttg gaatgaatcc ttctagagac gtccacgatg



ccagcacgag ccgccgcttc





121
acgccgcctt ccaccgcgct gagcccaggc aagatgagcg



aggcgttgcc gctgggcgcc





181
ccggacgccg gcgctgccct ggccggcaag ctgaggagcg



gcgaccgcag catggtggag





241
gtgctggccg accacccggg cgagctggtg cgcaccgaca



gccccaactt cctctgctcc





301
gtgctgccta cgcactggcg ctgcaacaag accctgccca



tcgctttcaa ggtggtggcc





361
ctaggggatg ttccagatgg cactctggtc actgtgatgg



ctggcaatga tgaaaactac





421
tcggctgagc tgagaaatgc taccgcagcc atgaagaacc



aggttgcaag atttaatgac





481
ctcaggtttg tcggtcgaag tggaagaggg aaaagcttca



ctctgaccat cactgtcttc





541
acaaacccac cgcaagtcgc cacctaccac agagccatca



aaatcacagt ggatgggccc





601
cgagaacctc gaagacatcg gcagaaacta gatgatcaga



ccaagcccgg gagcttgtcc





661
ttttccgagc ggctcagtga actggagcag ctgcggcgca



cagccatgag ggtcagccca





721
caccacccag cccccacgcc caaccctcgt gcctccctga



accactccac tgcctttaac





781
cctcagcctc agagtcagat gcaggataca aggcagatcc



aaccatcccc accgtggtcc





841
tacgatcagt cctaccaata cctgggatcc attgcctctc



cttctgtgca cccagcaacg





901
cccatttcac ctggacgtgc cagcggcatg acaaccctct



ctgcagaact ttccagtcga





961
ctctcaacgg cacccgacct gacagcgttc agcgacccgc



gccagttccc cgcgctgccc





1021
tccatctccg acccccgcat gcactatcca ggcgccttca



cctactcccc gacgccggtc





1081
acctcgggca tcggcatcgg catgtcggcc atgggctcgg



ccacgcgcta ccacacctac





1141
ctgccgccgc cctaccccgg ctcgtcgcaa gcgcagggag



gcccgttcca agccagctcg





1201
ccctcctacc acctgtacta cggcgcctcg gccggctcct



accagttctc catggtgggc





1261
ggcgagcgct cgccgccgcg catcctgccg ccctgcacca



acgcctccac cggctccgcg





1321
ctgctcaacc ccagcctccc gaaccagagc gacgtggtgg



aggccgaggg cagccacagc





1381
aactccccca ccaacatggc gccctccgcg cgcctggagg



aggccgtgtg gaggccctac





1441
tga







RUNX1 Protein (Homo sapiens)









SEQ ID NO: 12








1
masdsifesf psypqcfmre cilgmnpsrd vhdastsrrf



tppstalspg kmsealplga





61
pdagaalagk lrsgdrsmve vladhpgelv rtdspnflcs



vlpthwrcnk tlpiafkvva





121
lgdvpdgtlv tvmagndeny saelrnataa mknqvarfnd



lrfvgrsgrg ksftltitvf





181
tnppqvatyh raikitvdgp reprrhrqkl ddqtkpgsls



fserlseleq lrrtamrvsp





241
hhpaptpnpr aslnhstafn pqpqsqmqdt rqiqpsppws



ydqsyqylgs iaspsvhpat





301
pispgrasgm ttlsaelssr lstapdltaf sdprqfpalp



sisdprmhyp gaftysptpv





361
tsgigigmsa mgsatryhty lpppypgssq aqggpfqass



psyhlyygas agsyqfsmvg





421
gerspprilp pctnastgsa llnpslpnqs dvveaegshs



nsptnmapsa rleeavwrpy







Ets2 cDNA (Homo sapiens)









SEQ ID NO: 13








1
atgaatgatt tcggaatcaa gaatatggac caggtagccc



ctgtggctaa cagttacaga





61
gggacactca agcgccagcc agcctttgac acctttgatg



ggtccctgtt tgctgttttt





121
ccttctctaa atgaagagca aacactgcaa gaagtgccaa



caggcttgga ttccatttct





181
catgactccg ccaactgtga attgcctttg ttaaccccgt



gcagcaaggc tgtgatgagt





241
caagccttaa aagctacctt cagtggcttc aaaaaggaac



agcggcgcct gggcattcca





301
aagaacccct ggctgtggag tgagcaacag gtatgccagt



ggcttctctg ggccaccaat





361
gagttcagtc tggtgaacgt gaatctgcag aggttcggca



tgaatggcca gatgctgtgt





421
aaccttggca aggaacgctt tctggagctg gcacctgact



ttgtgggtga cattctctgg





481
gaacatctgg agcaaatgat caaagaaaac caagaaaaga



cagaagatca atatgaagaa





541
aattcacacc tcacctccgt tcctcattgg attaacagca



atacattagg ttttggcaca





601
gagcaggcgc cctatggaat gcagacacag aattacccca



aaggcggcct cctggacagc





661
atgtgtccgg cctccacacc cagcgtactc agctctgagc



aggagtttca gatgttcccc





721
aagtctcggc tcagctccgt cagcgtcacc tactgctctg



tcagtcagga cttcccaggc





781
agcaacttga atttgctcac caacaattct gggactccca



aagaccacga ctcccctgag





841
aacggtgcgg acagcttcga gagctcagac tccctcctcc



agtcctggaa cagccagtcg





901
tccttgctgg atgtgcaacg ggttccttcc ttcgagagct



tcgaagatga ctgcagccag





961
tctctctgcc tcaataagcc aaccatgtct ttcaaggatt



acatccaaga gaggagtgac





1021
ccagtggagc aaggcaaacc agttatacct gcagctgtgc



tggccggctt cacaggaagt





1081
ggacctattc agctgtggca gtttctcctg gagctgctat



cagacaaatc ctgccagtca





1141
ttcatcagct ggactggaga cggatgggag tttaagctcg



ccgaccccga tgaggtggcc





1201
cgccggtggg gaaagaggaa aaataagccc aagatgaact



acgagaagct gagccggggc





1261
ttacgctact attacgacaa gaacatcatc cacaagacgt



cggggaagcg ctacgtgtac





1321
cgcttcgtgt gcgacctcca gaacttgctg gggttcacgc



ccgaggaact gcacgccatc





1381
ctgggcgtcc agcccgacac ggaggactga







ETS2 Protein (Homo sapiens)









SEQ ID NO: 14








1
mndfgiknmd qvapvansyr gtlkrqpafd tfdgslfavf



pslneeqtlq evptgldsis





61
hdsancelpl ltpcskavms qalkatfsgf kkeqrrlgip



knpwlwseqq vcqwllwatn





121
efslvnvnlq rfgmngqmlc nlgkerflel apdfvgdilw



ehleqmiken qektedgyee





181
nshltsvphw insntlgfgt eqapygmqtq nypkggllds



mcpastpsvl sseqefqmfp





241
ksrlssvsvt ycsvsqdfpg snlnlltnns gtpkdhdspe



ngadsfessd sllqswnsqs





301
slldvqrvps fesfeddcsq slclnkptms fkdyiqersd



pveqgkpvip aavlagftgs





361
gpiqlwqfll ellsdkscqs fiswtgdgwe fkladpdeva



rrwgkrknkp kmnyeklsrg





421
lryyydknii hktsgkryvy rfvcdlqnll gftpeelhai



lgvqpdted







Tmprss2 cDNA (Homo sapiens)









SEQ ID NO: 15








1
atggctttga actcagggtc accaccagct attggacctt



actatgaaaa ccatggatac





61
caaccggaaa acccctatcc cgcacagccc actgtggtcc



ccactgtcta cgaggtgcat





121
ccggctcagt actacccgtc ccccgtgccc cagtacgccc



cgagggtcct gacgcaggct





181
tccaaccccg tcgtctgcac gcagcccaaa tccccatccg



ggacagtgtg cacctcaaag





241
actaagaaag cactgtgcat caccttgacc ctggggacct



tcctcgtggg agctgcgctg





301
gccgctggcc tactctggaa gttcatgggc agcaagtgct



ccaactctgg gatagagtgc





361
gactcctcag gtacctgcat caacccctct aactggtgtg



atggcgtgtc acactgcccc





421
ggcggggagg acgagaatcg gtgtgttcgc ctctacggac



caaacttcat ccttcagatg





481
tactcatctc agaggaagtc ctggcaccct gtgtgccaag



acgactggaa cgagaactac





541
gggcgggcgg cctgcaggga catgggctat aagaataatt



tttactctag ccaaggaata





601
gtggatgaca gcggatccac cagctttatg aaactgaaca



caagtgccgg caatgtcgat





661
atctataaaa aactgtacca cagtgatgcc tgttcttcaa



aagcagtggt ttctttacgc





721
tgtatagcct gcggggtcaa cttgaactca agccgccaga



gcaggatcgt gggcggtgag





781
agcgcgctcc cgggggcctg gccctggcag gtcagcctgc



acgtccagaa cgtccacgtg





841
tgcggaggct ccatcatcac ccccgagtgg atcgtgacag



ccgcccactg cgtggaaaaa





901
cctcttaaca atccatggca ttggacggca tttgcgggga



ttttgagaca atctttcatg





961
ttctatggag ccggatacca agtagaaaaa gtgatttctc



atccaaatta tgactccaag





1021
accaagaaca atgacattgc gctgatgaag ctgcagaagc



ctctgacttt caacgaccta





1081
gtgaaaccag tgtgtctgcc caacccaggc atgatgctgc



agccagaaca gctctgctgg





1141
atttccgggt ggggggccac cgaggagaaa gggaagacct



cagaagtgct gaacgctgcc





1201
aaggtgcttc tcattgagac acagagatgc aacagcagat



atgtctatga caacctgatc





1261
acaccagcca tgatctgtgc cggcttcctg caggggaacg



tcgattcttg ccagggtgac





1321
agtggagggc ctctggtcac ttcgaagaac aatatctggt



ggctgatagg ggatacaagc





1381
tggggttctg gctgtgccaa agcttacaga ccaggagtgt



acgggaatgt gatggtattc





1441
acggactgga tttatcgaca aatgagggca gacggctaa







TMPRSS2 Protein (Homo sapiens)









SEQ ID NO: 16








1
malnsgsppa igpyyenhgy qpenpypaqp tvvptvyevh



paqyypspvp qyaprvltqa





61
snpvvctqpk spsgtvctsk tkkalcitlt lgtflvgaal



aagllwkfmg skcsnsgiec





121
dssgtcinps nwcdgvshcp ggedenrcvr lygpnfilqm



yssqrkswhp vcqddwneny





181
graacrdmgy knnfyssqgi vddsgstsfm klntsagnvd



iykklyhsda csskavvslr





241
ciacgvnlns srqsrivgge salpgawpwq vslhvqnvhv



cggsiitpew ivtaahcvek





301
plnnpwhwta fagilrqsfm fygagyqvek vishpnydsk



tknndialmk lqkpltfndl





361
vkpvclpnpg mmlqpeqlcw isgwgateek gktsevlnaa



kvllietqrc nsryvydnli





421
tpamicagfl qgnvdscqgd sggplvtskn niwwligdts



wgsgcakayr pgvygnvmvf





481
tdwiyrqmra dg







Ripk4 cDNA (Homo sapiens)










SEQ ID NO: 17










1
atggagggcg acggcgggac cccatgggcc ctggcgctgc tgcgcacctt cgacgcgggc






61
gagttcacgg gctgggagaa ggtgggctcg ggcggcttcg ggcaggtgta



caaggtgcgc





121
catgtccact ggaagacctg gctggccatc aagtgctcgc ccagcctgca cgtcgacgac





181
agggagcgca tggagctttt ggaagaagcc aagaagatgg agatggccaa



gtttcgctac





241
atcctgcctg tgtatggcat ctgccgcgaa cctgtcggcc tggtcatgga gtacatggag





301
acgggctccc tggaaaagct gctggcttcg gagccattgc catgggatct



ccggttccga





361
atcatccacg agacggcggt gggcatgaac ttcctgcact gcatggcccc



gccactcctg





421
cacctggacc tcaagcccgc gaacatcctg ctggatgccc actaccacgt



caagatttct





481
gattttggtc tggccaagtg caacgggctg tcccactcgc atgacctcag catggatggc





541
ctgtttggca caatcgccta cctccctcca gagcgcatca gggagaagag



ccggctcttc





601
gacaccaagc acgatgtata cagctttgcg atcgtcatct ggggcgtgct



cacacagaag





661
aagccgtttg cagatgagaa gaacatcctg cacatcatgg tgaaggtggt



gaagggccac





721
cgccccgagc tgccgcccgt gtgcagagcc cggccgcgcg cctgcagcca



cctgatacgc





781
ctcatgcagc ggtgctggca gggggatccg cgagttaggc ccaccttcca



agaaattact





841
tctgaaaccg aggacctgtg tgaaaagcct gatgacgaag tgaaagaaac



tgctcatgat





901
ctggacgtga aaagcccccc ggagcccagg agcgaggtgg tgcctgcgag



gctcaagcgg





961
gcctctgccc ccaccttcga taacgactac agcctctccg agctgctctc acagctggac





1021
tctggagttt cccaggctgt cgagggcccc gaggagctca gccgcagctc



ctctgagtcc





1081
aagctgccat cgtccggcag tgggaagagg ctctcggggg tgtcctcggt



ggactccgcc





1141
ttctcttcca gaggatcact gtcgctgtcc tttgagcggg aaccttcaac cagcgatctg





1201
ggcaccacag acgtccagaa gaagaagctt gtggatgcca tcgtgtccgg ggacaccagc





1261
aaactgatga agatcctgca gccgcaggac gtggacctgg cactggacag



cggtgccagc





1321
ctgctgcacc tggcggtgga ggccgggcaa gaggagtgcg ccaagtggct gctgctcaac





1381
aatgccaacc ccaacctgag caaccgtagg ggctccaccc cgttgcacat



ggccgtggag





1441
aggagggtgc ggggtgtcgt ggagctcctg ctggcgcgga agatcagtgt caacgccaag





1501
gatgaggacc agtggacagc cctccacttt gcagcccaga acggggacga



gtctagcaca





1561
cggctgctgt tggagaagaa cgcctcggtc aacgaggtgg actttgaggg



ccggacgccc





1621
atgcacgtgg cctgccagca cgggcaggag aatatcgtgc gcatcctgct gcgccgaggc





1681
gtggacgtga gcctgcaggg caaggatgcc tggctgccac tgcactacgc



tgcctggcag





1741
ggccacctgc ccatcgtcaa gctgctggcc aagcagccgg gggtgagtgt gaacgcccag





1801
acgctggatg ggaggacgcc attgcacctg gccgcacagc gcgggcacta



ccgcgtggcc





1861
cgcatcctca tcgacctgtg ctccgacgtc aacgtctgca gcctgctggc acagacaccc





1921
ctgcacgtgg ccgcggagac ggggcacacg agcactgcca ggctgctcct



gcatcggggc





1981
gctggcaagg aggccatgac ctcagacggc tacaccgctc tgcacctggc tgcccgcaac





2041
ggacacctgg ccactgtcaa gctgcttgtc gaggagaagg ccgatgtgct



ggcccgggga





2101
cccctgaacc agacggcgct gcacctggct gccgcccacg ggcactcgga



ggtggtggag





2161
gagttggtca gcgccgatgt cattgacctg ttcgacgagc aggggctcag cgcgctgcac





2221
ctggccgccc agggccggca cgcacagacg gtggagactc tgctcaggca



tggggcccac





2281
atcaacctgc agagcctcaa gttccagggc ggccatggcc ccgccgccac gctcctgcgg





2341
cgaagcaaga cctag







RIPK4 Protein (Homo sapiens)









SEQ ID NO: 18








1
megdggtpwa lallrtfdag eftgwekvgs ggfgqvykvr



hvhwktwlai kcspslhvdd





61
rermelleea kkmemakfry ilpvygicre pvglvmeyme



tgslekllas eplpwdlrfr





121
iihetavgmn flhcmappll hldlkpanil ldahyhvkis



dfglakcngl shshdlsmdg





181
lfgtiaylpp erireksrlf dtkhdvysfa iviwgvltqk



kpfadeknil himvkvvkgh





241
rpelppvcra rpracshlir lmqrcwqgdp rvrptfqeit



setedlcekp ddevketahd





301
ldvksppepr sevvparlkr asaptfdndy slsellsqld



sgvsqavegp eelsrssses





361
klpssgsgkr lsgvssvdsa fssrgslsls ferepstsdl



gttdvqkkkl vdaivsgdts





421
klmkilqpqd vdlaldsgas llhlaveagq eecakwllln



nanpnlsnrr gstplhmave





481
rrvrgvvell larkisvnak dedqwtalhf aaqngdesst



rllleknasv nevdfegrtp





541
mhvacqhgqe nivrillrrg vdvslqgkda wlplhyaawq



ghlpivklla kqpgvsvnaq





601
tldgrtplhl aaqrghyrva rilidlcsdv nvcsllaqtp



lhvaaetght starlllhrg





661
agkeamtsdg ytalhlaarn ghlatvkllv eekadvlarg



plnqtalhla aahghsevve





721
elvsadvidl fdeqglsalh laaqgrhaqt vetllrhgah



inlqslkfqg ghgpaatllr





781
rskt







Erg cDNA (Homo sapiens)









SEQ ID NO: 19








1
atggccagca ctattaagga agccttatca gttgtgagtg



aggaccagtc gttgtttgag





61
tgtgcctacg gaacgccaca cctggctaag acagagatga



ccgcgtcctc ctccagcgac





121
tatggacaga cttccaagat gagcccacgc gtccctcagc



aggattggct gtctcaaccc





181
ccagccaggg tcaccatcaa aatggaatgt aaccctagcc



aggtgaatgg ctcaaggaac





241
tctcctgatg aatgcagtgt ggccaaaggc gggaagatgg



tgggcagccc agacaccgtt





301
gggatgaact acggcagcta catggaggag aagcacatgc



cacccccaaa catgaccacg





361
aacgagcgca gagttatcgt gccagcagat cctacgctat



ggagtacaga ccatgtgcgg





421
cagtggctgg agtgggcggt gaaagaatat ggccttccag



acgtcaacat cttgttattc





481
cagaacatcg atgggaagga actgtgcaag atgaccaagg



acgacttcca gaggctcacc





541
cccagctaca acgccgacat ccttctctca catctccact



acctcagaga gactcctctt





601
ccacatttga cttcagatga tgttgataaa gccttacaaa



actctccacg gttaatgcat





661
gctagaaaca cagggggtgc agcttttatt ttcccaaata



cttcagtata tcctgaagct





721
acgcaaagaa ttacaactag gccagattta ccatatgagc



cccccaggag atcagcctgg





781
accggtcacg gccaccccac gccccagtcg aaagctgctc



aaccatctcc ttccacagtg





841
cccaaaactg aagaccagcg tcctcagtta gatccttatc



agattcttgg accaacaagt





901
agccgccttg caaatccagg cagtggccag atccagcttt



ggcagttcct cctggagctc





961
ctgtcggaca gctccaactc cagctgcatc acctgggaag



gcaccaacgg ggagttcaag





1021
atgacggatc ccgacgaggt ggcccggcgc tggggagagc



ggaagagcaa acccaacatg





1081
aactacgata agctcagccg cgccctccgt tactactatg



acaagaacat catgaccaag





1141
gtccatggga agcgctacgc ctacaagttc gacttccacg



ggatcgccca ggccctccag





1201
ccccaccccc cggagtcatc tctgtacaag tacccctcag



acctcccgta catgggctcc





1261
tatcacgccc acccacagaa gatgaacttt gtggcgcccc



accctccagc cctccccgtg





1321
acatcttcca gtttttttgc tgccccaaac ccatactgga



attcaccaac tgggggtata





1381
taccccaaca ctaggctccc caccagccat atgccttctc



atctgggcac ttactactaa







ERG Protein (Homo sapiens)









SEQ ID NO: 20








1
mastikeals vvsedqslfe caygtphlak temtassssd



ygqtskmspr vpqqdwlsqp





61
parvtikmec npsqvngsrn spdecsvakg gkmvgspdtv



gmnygsymee khmpppnmtt





121
nerrvivpad ptlwstdhvr qwlewavkey glpdvnillf



qnidgkelck mtkddfqrlt





181
psynadills hlhylretpl phltsddvdk alqnsprlmh



arntggaafi fpntsvypea





241
tqrittrpdl pyepprrsaw tghghptpqs kaaqpspstv



pktedqrpql dpyqilgpts





301
srlanpgsgq iqlwqfllel lsdssnssci twegtngefk



mtdpdevarr wgerkskpnm





361
nydklsralr yyydknimtk vhgkryaykf dfhgiaqalq



phppesslyk ypsdlpymgs





421
yhahpqkmnf vaphppalpv tsssffaapn pywnsptggi



ypntrlptsh mpshlgtyy







Gnb2 cDNA (Homo sapiens)









SEQ ID NO: 21








1
atgagtgagc tggagcaact gagacaggag gccgagcagc



tccggaacca gatccgggat





61
gcccgaaaag catgtgggga ctcaacactg acccagatca



cagctgggct ggacccagtg





121
gggagaatcc agatgaggac ccggaggacc ctccgtgggc



acctggcaaa gatctatgcc





181
atgcactggg ggaccgactc aaggctgctg gtcagcgcct



cccaggatgg gaagctcatc





241
atctgggaca gctacaccac caacaaggtc cacgccatcc



cgctgcgctc ctcctgggta





301
atgacctgtg cctacgcgcc ctcagggaac tttgtggcct



gtggggggtt ggacaacatc





361
tgctccatct acagcctcaa gacccgcgag ggcaacgtca



gggtcagccg ggagctgcct





421
ggccacactg ggtacctgtc gtgttgccgc ttcctggatg



acaaccaaat catcaccagc





481
tctggggata ccacctgtgc cctgtgggac attgagacag



gccagcagac agtgggtttt





541
gctggacaca gtggggatgt gatgtccctg tccctggccc



ccgatggccg cacgtttgtg





601
tcaggcgcct gtgatgcctc tatcaagctg tgggacgtgc



gggattccat gtgccgacag





661
accttcatcg gccatgaatc cgacatcaat gcagtggctt



tcttccccaa cggctacgcc





721
ttcaccaccg gctctgacga cgccacgtgc cgcctcttcg



acctgcgggc cgatcaggag





781
ctcctcatgt actcccatga caacatcatc tgtggcatca



cctctgttgc cttctcgcgc





841
agcggacggc tgctgctcgc tggctacgac gacttcaact



gcaacatctg ggatgccatg





901
aagggcgacc gtgcaggagt cctcgctggc cacgacaacc



gcgtgagctg cctcggggtc





961
accgacgatg gcatggctgt ggccacgggc tcctgggact



ccttcctcaa gatctggaac





1021
taa







GNB2 Protein (Homo sapiens)









SEQ ID NO: 22








1
mseleqlrqe aeqlrnqird arkacgdstl tqitagldpv



griqmrtrrt lrghlakiya





61
mhwgtdsrll vsasqdgkli iwdsyttnkv haiplrsswv



mtcayapsgn fvacggldni





121
csiyslktre gnvrvsrelp ghtgylsccr flddnqiits



sgdttcalwd ietgqqtvgf





181
aghsgdvmsl slapdgrtfv sgacdasikl wdvrdsmcrq



tfighesdin avaffpngya





241
fttgsddatc rlfdlradqe llmyshdnii cgitsvafsr



sgrlllagyd dfncniwdam





301
kgdragvlag hdnrvsclgv tddgmavatg swdsflkiwn







Perq1 cDNA (Homo sapiens)










SEQ ID NO: 23










1
atggcagcag agacactcaa ctttgggcct gagtggctca gggccctgtc cgggggcggc






61
agcgtggcct ccccaccccc gtcccctgcc atgcccaaat acaagctggc



tgactaccgt





121
tatgggcgag aggaaatgct ggctctctac gtcaaggaga acaaggtccc ggaagagctg





181
caggacaagg agttcgccgc ggtgctgcag gacgagccac tgcagcccct



ggctctggag





241
ccgctgactg aggaggaaca gagaaacttc tccctgtcag tgaacagcgt ggctgtgctg





301
aggctgatgg ggaaaggggc tggccccccc ctggctggca cctcccgagg



caggggcagc





361
acgcggagcc gaggccgcgg ccgtggtgac agctgctttt accaaagaag catcgaagaa





421
ggcgatgggg cctttggacg aagcccccgg gaaatccagc gcagccagag



ctgggatgac





481
agaggcgaga ggcggtttga gaagtcagca aggcgggatg gagcacgatg



tggctttgag





541
gagggagggg ctggcccaag gaaggagcac gcccgctcag acagcgagaa



ctggcgctcc





601
ctacgggagg aacaggagga ggaggaggag ggcagctgga ggctcggagc



agggccccgg





661
cgagacggcg accgctggcg ctccgccagc cctgatggtg gtccccgctc tgctggctgg





721
cgggaacatg gggaacggcg gcgcaagttt gaatttgatt tgcgagggga tcgaggaggg





781
tgtggtgaag aggaggggcg gggaggggga ggcagctctc acctgcggcg



gtgccgagcg





841
cctgaaggct ttgaggagga caaggatggg ctcccagagt ggtgcctgga cgatgaggat





901
gaagaaatgg gcacctttga tgcctctggg gccttcttgc ctctcaagaa gggccccaag





961
gagcccattc ctgaggagca ggagctggac ttccaagggt tggaggagga ggaggaacct





1021
tccgaagggc tagaggagga agggcctgag gcaggtggga aagagctgac



cccactgcct





1081
cctcaggagg agaagtccag ctccccatcc ccactgccca ccctgggccc



actctggggg





1141
acaaacgggg atggggacga aactgcagag aaagagcccc cagcggccga



agatgatatt





1201
cgggggatcc agctgagtcc cggggtgggc tcctctgctg gcccacccgg



agatctggag





1261
gatgatgaag gcttgaagca cctgcagcag gaggcggaga agctggtggc



ctccctgcag





1321
gacagctcct tggaggagga gcagttcacg gctgccatgc agacccaggg



cctgcgccac





1381
tctgcagccg ccactgccct cccgctcagc catggggctg cccggaagtg gttctacaag





1441
gacccacagg gcgagatcca aggccccttc acgacacagg agatggcaga



gtggttccag





1501
gccggctact tttccatgtc actgctggtg aagcggggct gcgatgaggg cttccagccg





1561
ctgggcgagg tgatcaagat gtggggccgc gtgccctttg ccccagggcc ctcacctccc





1621
ccactgctgg gaaacatgga ccaggagcgg ctgaagaagc aacaggagct



ggccgcggcg





1681
gccttgtacc agcagctgca gcaccagcag tttctccagc tggtcagcag ccgccagctc





1741
ccgcagtgcg cgctccgaga aaaggcagct ctgggggacc tgacaccgcc



accaccgccg





1801
ccgccacagc agcagcagca gcagctcacg gcattcctgc agcagctcca



ggcgctcaaa





1861
ccccccagag gcggggacca gaacctgctc ccgacgatga gccggtcctt gtcggtgcca





1921
gattcgggcc gcctctggga cgtacatacc tcagcctcat cacagtcagg tggtgaggcc





1981
agtctttggg acataccaat taactcttcg actcagggtc caattctaga acaactccag





2041
ctgcaacata aattccagga gcgcagagaa gtggagctca gggcgaagcg



ggaggaagag





2101
gaacgcaagc gtcgagagga gaagcgccgc cagcagcagc aggaggagca



gaagcggcgg





2161
caggaggagg aagagctgtt tcggcgcaag cacgtgcggc agcaggagct



attgctgaag





2221
ttgctacagc agcagcaggc ggtccctgtg ccccccgcac ccagctcccc gcccccactc





2281
tgggctggcc tggccaagca ggggctgtcc atgaagacgc tcctggagtt gcagctggag





2341
ggcgagcggc agctgcacaa acagccccca cctcgggagc cagctcgggc



ccaggccccc





2401
aaccaccgag tgcagcttgg gggcctgggc actgcccccc tgaaccagtg



ggtgtctgag





2461
gctgggccac tgtggggcgg gccagacaag agtgggggcg gcagcagcgg



cctggggctc





2521
tgggaggaca cccccaagag cggcgggagc ctggtccgtg gcctcggcct



gaagaacagc





2581
cggagcagcc catctctcag tgactcatac agccacctat cgggtcggcc cattcgcaaa





2641
aagacggagg aagaagagaa gctgctgaag ctgctgcagg gcattcccag



gccccaggac





2701
ggcttcaccc agtggtgcga gcagatgctg cacacgctga gcgccacggg cagcctggac





2761
gtgcccatgg ctgtagcgat cctcaaggag gtggaatccc cctatgatgt ccacgattat





2821
atccgttcct gcctggggga cacgctggaa gccaaagaat ttgccaaaca attcctggag





2881
cggagggcca agcagaaagc cagccagcag cggcagcagc agcaggaggc



atggctgagc





2941
agcgcctcgc tgcagacggc cttccaggcc aaccacagca ccaaactcgg



ccccggggag





3001
ggcagcaagg ccaagaggcg ggcactgatg ctgcactcag accccagcat



cctggggtac





3061
tccctgcacg gatcttctgg tgagatcgag agcgtggatg actactga







PERQ1 Protein (Homo sapiens)









SEQ ID NO: 24








1
maaetlnfgp ewlralsggg svaspppspa mpkykladyr



ygreemlaly vkenkvpeel





61
qdkefaavlq deplqplale plteeeqrnf slsvnsvavl



rlmgkgagpp lagtsrgrgs





121
trsrgrgrgd scfyqrsiee gdgafgrspr eiqrsqswdd



rgerrfeksa rrdgarcgfe





181
eggagprkeh arsdsenwrs lreeqeeeee gswrlgagpr



rdgdrwrsas pdggprsagw





241
rehgerrrkf efdlrgdrgg cgeeegrggg gsshlrrcra



pegfeedkdg lpewcldded





301
eemgtfdasg aflplkkgpk epipeeqeld fqgleeeeep



segleeegpe aggkeltplp





361
pqeeksssps plptlgplwg tngdgdetae keppaaeddi



rgiqlspgvg ssagppgdle





421
ddeglkhlqq eaeklvaslq dssleeeqft aamqtqglrh



saaatalpls hgaarkwfyk





481
dpqgeiqgpf ttqemaewfq agyfsmsllv krgcdegfqp



lgevikmwgr vpfapgpspp





541
pllgnmdqer lkkqqelaaa alyqqlqhqq flqlvssrql



pqcalrekaa lgdltppppp





601
ppqqqqqqlt aflqqlqalk pprggdqnll ptmsrslsvp



dsgrlwdvht sassqsggea





661
slwdipinss tqgpileqlq lqhkfqerre velrakreee



erkrreekrr qqqqeeqkrr





721
qeeeelfrrk hvrqqelllk llqqqqavpv ppapsspppl



waglakqgls mktllelqle





781
gerqlhkqpp preparaqap nhrvqlgglg taplnqwvse



agplwggpdk sgggssglgl





841
wedtpksggs lvrglglkns rsspslsdsy shlsgrpirk



kteeeekllk llqgiprpqd





901
gftqwceqml htlsatgsld vpmavailke vespydvhdy



irsclgdtle akefakqfle





961
rrakqkasqq rqqqqeawls saslqtafqa nhstklgpge



gskakrralm lhsdpsilgy





1021
slhgssgeie svddy







Tox cDNA (Homo sapiens)










SEQ ID NO: 25










1
atggacgtaa gattttatcc acctccagcc cagcccgccg ctgcgcccga




cgctccctgt





61
ctgggacctt ctccctgcct ggacccctac tattgcaaca agtttgacgg



tgagaacatg





121
tatatgagca tgacagagcc gagccaggac tatgtgccag ccagccagtc



ctaccctggt





181
ccaagcctgg aaagtgaaga cttcaacatt ccaccaatta ctcctccttc



cctcccagac





241
cactcgctgg tgcacctgaa tgaagttgag tctggttacc attctctgtg



tcaccccatg





301
aaccataatg gcctgctacc atttcatcca caaaacatgg acctccctga



aatcacagtc





361
tccaatatgc tgggccagga tggaacactg ctttctaatt ccatttctgt



gatgccagat





421
atacgaaacc cagaaggaac tcagtacagt tcccatcctc agatggcagc



catgagacca





481
aggggccagc ctgcagacat caggcagcag ccaggaatga tgccacatgg



ccagctgact





541
accattaacc agtcacagct aagtgctcaa cttggtttga atatgggagg



aagcaatgtt





601
ccccacaact caccatctcc acctggaagc aagtctgcaa ctccttcacc



atccagttca





661
gtgcatgaag atgaaggcga tgatacctct aagatcaatg gtggagagaa



gcggcctgcc





721
tctgatatgg ggaaaaaacc aaaaactccc aaaaagaaga agaagaagga



tcccaatgag





781
ccccagaagc ctgtgtctgc ctatgcgtta ttctttcgtg atactcaggc



cgccatcaag





841
ggccaaaatc caaacgctac ctttggcgaa gtctctaaaa ttgtggcttc



aatgtgggac





901
ggtttaggag aagagcaaaa acaggtctat aaaaagaaaa ccgaggctgc



gaagaaggag





961
tacctgaagc aactcgcagc atacagagcc agccttgtat ccaagagcta



cagtgaacct





1021
gttgacgtga agacatctca acctcctcag ctgatcaatt cgaagccgtc



ggtgttccat





1081
gggcccagcc aggcccactc ggccctgtac ctaagttccc actatcacca



acaaccggga





1141
atgaatcctc acctaactgc catgcatcct agtctcccca ggaacatagc



ccccaagccg





1201
aataaccaaa tgccagtgac tgtctctata gcaaacatgg ctgtgtcccc



tcctcctccc





1261
ctccagatca gcccgcctct tcaccagcat ctcaacatgc agcagcacca



gccgctcacc





1321
atgcagcagc cccttgggaa ccagctcccc atgcaggtcc agtctgcctt



acactcaccc





1381
accatgcagc aaggatttac tcttcaaccc gactatcaga ctattatcaa



tcctacatct





1441
acagctgcac aagttgtcac ccaggcaatg gagtatgtgc gttcggggtg



cagaaatcct





1501
cccccacaac cggtggactg gaataacgac tactgcagta gtgggggcat



gcagagggac





1561
aaagcactgt accttacttg a







TOX Protein (Homo sapiens)










SEQ ID NO: 26










1
mdvrfypppa qpaaapdapc lgpspcldpy ycnkfdgenm ymsmtepsqd




yvpasqsypg





61
pslesedfni ppitppslpd hslvhlneve sgyhslchpm nhngllpfhp



qnmdlpeitv





121
snmlgqdgtl lsnsisvmpd irnpegtqys shpqmaamrp rggpadirqq



pgmmphgqlt





181
tinqsqlsaq lglnmggsnv phnspsppgs ksatpspsss vhedegddts



kinggekrpa





241
sdmgkkpktp kkkkkkdpne pqkpvsayal ffrdtqaaik gqnpnatfge



vskivasmwd





301
glgeeqkqvy kkkteaakke ylkqlaayra slvsksysep vdvktsqppq



linskpsvfh





361
gpsqahsaly lsshyhqqpg mnphltamhp slprniapkp nnqmpvtvsi



anmavspppp





421
lqispplhqh lnmqqhqplt mqqplgnqlp mqvqsalhsp tmqqgftlqp



dyqtiinpts





481
taaqvvtqam eyvrsgcrnp ppqpvdwnnd ycssggmqrd kalylt







Set cDNA (Homo sapiens)










SEQ ID NO: 27










1
atggccccta aacgccagtc tccactcccg cctcaaaaga agaaaccaag




accacctcct





61
gctctgggac cggaggagac atcggcctct gcaggcttgc cgaagaaggg



agaaaaagaa





121
cagcaagaag cgattgaaca cattgatgaa gtacaaaatg aaatagacag



acttaatgaa





181
caagccagtg aggagatttt gaaagtagaa cagaaatata acaaactccg



ccaaccattt





241
tttcagaaga ggtcagaatt gatcgccaaa atcccaaatt tttgggtaac



aacatttgtc





301
aaccatccac aagtgtctgc actgcttggg gaggaagatg aagaggcact



gcattatttg





361
accagagttg aagtgacaga atttgaagat attaaatcag gttacagaat



agatttttat





421
tttgatgaaa atccttactt tgaaaataaa gttctctcca aagaatttca



tctgaatgag





481
agtggtgatc catcttcgaa gtccaccgaa atcaaatgga aatctggaaa



ggatttgacg





541
aaacgttcga gtcaaacgca gaataaagcc agcaggaaga ggcagcatga



ggaaccagag





601
agcttcttta cctggtttac tgaccattct gatgcaggtg ctgatgagtt



aggagaggtc





661
atcaaagatg atatttggcc aaacccatta cagtactact tggttcccga



tatggatgat





721
gaagaaggag aaggagaaga agatgatgat gatgatgaag aggaggaagg



attagaagat





781
attgacgaag aaggggatga ggatgaaggt gaagaagatg aagatgatga



tgaaggggag





841
gaaggagagg aggatgaagg agaagatgac taa







SET Protein (Homo sapiens)










SEQ ID NO: 28










1
mapkrqsplp pqkkkprppp algpeetsas aglpkkgeke qqeaiehide




vqneidrlne





61
qaseeilkve qkynklrqpf fqkrseliak ipnfwvttfv nhpqvsallg



eedeealhyl





121
trvevtefed iksgyridfy fdenpyfenk vlskefhlne sgdpsskste



ikwksgkdlt





181
krssqtqnka srkrqheepe sfftwftdhs dagadelgev ikddiwpnpl



qyylvpdmdd





241
eegegeeddd ddeeeegled ideegdedeg eededddege egeedegedd







Fnbp1 cDNA (Homo sapiens)










SEQ ID NO: 29










1
atgagctggg gcaccgagct ctgggatcag tttgacaact tagaaaaaca




cacacagtgg





61
ggaattgata ttcttgagaa atatatcaag tttgtgaaag aaaggacaga



gattgaactc





121
agctatgcaa agcaactcag gaatctttca aagaagtacc aacctaaaaa



gaactcgaag





181
gaggaagaag aatacaagta tacgtcatgt aaagctttca tttccaacct



gaacgaaatg





241
aatgattacg cagggcagca tgaagttatc tccgagaaca tggcatcaca



gatcattgtg





301
gacttggcac gctatgttca ggaactgaaa caggagagga aatcaaactt



tcacgatggc





361
cgtaaagcac agcagcacat cgagacttgc tggaagcagc ttgaatctag



taaaaggcga





421
tttgaacgcg attgcaaaga ggcggacagg gcgcagcagt actttgagaa



aatggacgct





481
gacatcaatg tcacaaaagc ggatgttgaa aaggcccgac aacaagctca



aatacgtcac





541
caaatggcag aggacagcaa agcagattac tcatccattc tccagaaatt



caaccatgag





601
cagcatgaat attaccatac tcacatcccc aacatcttcc agaaaataca



agagatggag





661
gaaaggagga ttgtgagaat gggagagtcc atgaagacat atgcagaggt



tgatcggcag





721
gtgatcccaa tcattgggaa gtgcctggat ggaatagtaa aagcagccga



atcaattgat





781
cagaaaaatg attcacagct ggtaatagaa gcttataaat cagggtttga



gcctcctgga





841
gacattgaat ttgaggatta cactcagcca atgaagcgca ctgtgtcaga



taacagcctt





901
tcaaattcca gaggagaagg caaaccagac ctcaaatttg gtggcaaatc



caaaggaaag





961
ttatggccgt tcatcaaaaa aaataagctt atgtcccttt taacatcccc



ccatcagcct





1021
ccccctcccc ctcctgcctc tgcctcaccc tctgctgttc ccaacggccc



ccagtctccc





1081
aagcagcaaa aggaacccct ctcccatcgc ttcaacgagt tcatgacctc



caaacccaaa





1141
atccactgct tcaggagcct aaagcgtggg ctttctctca agctgggtgc



aacaccggag





1201
gatttcagca acctcccacc tgaacaaaga aggaaaaagc tgcagcagaa



agtcgatgag





1261
ttaaataaag aaattcagaa ggagatggat caaagagatg ccataacaaa



aatgaaagat





1321
gtctacctaa agaatcctca gatgggagac ccagccagtt tggatcacaa



attagcagaa





1381
gtcagccaaa atatagagaa actgcgagta gagacccaga aatttgaggc



ctggctggct





1441
gaggttgaag gccggctccc agcacgcagc gagcaggcgc gccggcagag



cggactgtac





1501
gacagccaga acccacccac agtcaacaac tgcgcccagg accgtgagag



cccagatggc





1561
agttacacag aggagcagag tcaggagagt gagatgaagg tgctggccac



ggattttgac





1621
gacgagtttg atgatgagga gcccctccct gccataggga cgtgcaaagc



tctctacaca





1681
tttgaaggtc agaatgaagg aacgatttcc gtagttgaag gagaaacatt



gtatgtcata





1741
gaggaagaca aaggcgatgg ctggacccgc attcggagaa atgaagatga



agagggttat





1801
gtccccactt catatgtcga agtctgtttg gacaaaaatg ccaaagattc



ctag







FNBP1 Protein (Homo sapiens)










SEQ ID NO: 30










1
mswgtelwdq fdnlekhtqw gidilekyik fvkerteiel syakqlrnls




kkyqpkknsk





61
eeeeykytsc kafisnlnem ndyagqhevi senmasqiiv dlaryvqelk



qerksnfhdg





121
rkaqqhietc wkqlesskrr ferdckeadr aqqyfekmda dinvtkadve



karqqaqirh





181
qmaedskady ssilqkfnhe qheyyhthip nifqkiqeme errivrmges



mktyaevdrq





241
vipiigkcld givkaaesid qkndsqlvie ayksgfeppg diefedytqp



mkrtvsdnsl





301
snsrgegkpd lkfggkskgk lwpfikknkl mslltsphqp pppppasasp



savpngpqsp





361
kqqkeplshr fnefmtskpk ihcfrslkrg lslklgatpe dfsnlppeqr



rkklqqkvde





421
lnkeiqkemd qrdaitkmkd vylknpqmgd pasldhklae vsqnieklrv



etqkfeawla





481
evegrlpars eqarrqsgly dsqnpptvnn caqdrespdg syteeqsqes



emkvlatdfd





541
defddeeplp aigtckalyt fegqnegtis vvegetlyvi eedkgdgwtr



irrnedeegy





601
vptsyvevcl dknakds







Abl1 cDNA (Homo sapiens)










SEQ ID NO: 31










1
atgttggaga tctgcctgaa gctggtgggc tgcaaatcca agaaggggct




gtcctcgtcc





61
tccagctgtt atctggaaga agcccttcag cggccagtag catctgactt



tgagcctcag





121
ggtctgagtg aagccgctcg ttggaactcc aaggaaaacc ttctcgctgg



acccagtgaa





181
aatgacccca accttttcgt tgcactgtat gattttgtgg ccagtggaga



taacactcta





241
agcataacta aaggtgaaaa gctccgggtc ttaggctata atcacaatgg



ggaatggtgt





301
gaagcccaaa ccaaaaatgg ccaaggctgg gtcccaagca actacatcac



gccagtcaac





361
agtctggaga aacactcctg gtaccatggg cctgtgtccc gcaatgccgc



tgagtatctg





421
ctgagcagcg ggatcaatgg cagcttcttg gtgcgtgaga gtgagagcag



tcctggccag





481
aggtccatct cgctgagata cgaagggagg gtgtaccatt acaggatcaa



cactgcttct





541
gatggcaagc tctacgtctc ctccgagagc cgcttcaaca ccctggccga



gttggttcat





601
catcattcaa cggtggccga cgggctcatc accacgctcc attatccagc



cccaaagcgc





661
aacaagccca ctgtctatgg tgtgtccccc aactacgaca agtgggagat



ggaacgcacg





721
gacatcacca tgaagcacaa gctgggcggg ggccagtacg gggaggtgta



cgagggcgtg





781
tggaagaaat acagcctgac ggtggccgtg aagaccttga aggaggacac



catggaggtg





841
gaagagttct tgaaagaagc tgcagtcatg aaagagatca aacaccctaa



cctggtgcag





901
ctccttgggg tctgcacccg ggagcccccg ttctatatca tcactgagtt



catgacctac





961
gggaacctcc tggactacct gagggagtgc aaccggcagg aggtgaacgc



cgtggtgctg





1021
ctgtacatgg ccactcagat ctcgtcagcc atggagtacc tggagaagaa



aaacttcatc





1081
cacagagatc ttgctgcccg aaactgcctg gtaggggaga accacttggt



gaaggtagct





1141
gattttggcc tgagcaggtt gatgacaggg gacacctaca cagcccatgc



tggagccaag





1201
ttccccatca aatggactgc acccgagagc ctggcctaca acaagttctc



catcaagtcc





1261
gacgtctggg catttggagt attgctttgg gaaattgcta cctatggcat



gtccccttac





1321
ccgggaattg acctgtccca ggtgtatgag ctgctagaga aggactaccg



catggagcgc





1381
ccagaaggct gcccagagaa ggtctatgaa ctcatgcgag catgttggca



gtggaatccc





1441
tctgaccggc cctcctttgc tgaaatccac caagcctttg aaacaatgtt



ccaggaatcc





1501
agtatctcag acgaagtgga aaaggagctg gggaaacaag gcgtccgtgg



ggctgtgagt





1561
accttgctgc aggccccaga gctgcccacc aagacgagga cctccaggag



agctgcagag





1621
cacagagaca ccactgacgt gcctgagatg cctcactcca agggccaggg



agagagcgat





1681
cctctggacc atgagcctgc cgtgtctcca ttgctccctc gaaaagagcg



aggtcccccg





1741
gagggcggcc tgaatgaaga tgagcgcctt ctccccaaag acaaaaagac



caacttgttc





1801
agcgccttga tcaagaagaa gaagaagaca gccccaaccc ctcccaaacg



cagcagctcc





1861
ttccgggaga tggacggcca gccggagcgc agaggggccg gcgaggaaga



gggccgagac





1921
atcagcaacg gggcactggc tttcaccccc ttggacacag ctgacccagc



caagtcccca





1981
aagcccagca atggggctgg ggtccccaat ggagccctcc gggagtccgg



gggctcaggc





2041
ttccggtctc cccacctgtg gaagaagtcc agcacgctga ccagcagccg



cctagccacc





2101
ggcgaggagg agggcggtgg cagctccagc aagcgcttcc tgcgctcttg



ctccgcctcc





2161
tgcgttcccc atggggccaa ggacacggag tggaggtcag tcacgctgcc



tcgggacttg





2221
cagtccacgg gaagacagtt tgactcgtcc acatttggag ggcacaaaag



tgagaagccg





2281
gctctgcctc ggaagagggc aggggagaac aggtctgacc aggtgacccg



aggcacagta





2341
acgcctcccc ccaggctggt gaaaaagaat gaggaagctg ctgatgaggt



cttcaaagac





2401
atcatggagt ccagcccggg ctccagcccg cccaacctga ctccaaaacc



cctccggcgg





2461
caggtcaccg tggcccctgc ctcgggcctc ccccacaagg aagaagctgg



aaagggcagt





2521
gccttaggga cccctgctgc agctgagcca gtgaccccca ccagcaaagc



aggctcaggt





2581
gcaccagggg gcaccagcaa gggccccgcc gaggagtcca gagtgaggag



gcacaagcac





2641
tcctctgagt cgccagggag ggacaagggg aaattgtcca ggctcaaacc



tgccccgccg





2701
cccccaccag cagcctctgc agggaaggct ggaggaaagc cctcgcagag



cccgagccag





2761
gaggcggccg gggaggcagt cctgggcgca aagacaaaag ccacgagtct



ggttgatgct





2821
gtgaacagtg acgctgccaa gcccagccag ccgggagagg gcctcaaaaa



gcccgtgctc





2881
ccggccactc caaagccaca gtccgccaag ccgtcgggga cccccatcag



cccagccccc





2941
gttccctcca cgttgccatc agcatcctcg gccctggcag gggaccagcc



gtcttccacc





3001
gccttcatcc ctctcatatc aacccgagtg tctcttcgga aaacccgcca



gcctccagag





3061
cggatcgcca gcggcgccat caccaagggc gtggtcctgg acagcaccga



ggcgctgtgc





3121
ctcgccatct ctaggaactc cgagcagatg gccagccaca gcgcagtgct



ggaggccggc





3181
aaaaacctct acacgttctg cgtgagctat gtggattcca tccagcaaat



gaggaacaag





3241
tttgccttcc gagaggccat caacaaactg gagaataatc tccgggagct



tcagatctgc





3301
ccggcgacag caggcagtgg tccagcggcc actcaggact tcagcaagct



cctcagttcg





3361
gtgaaggaaa tcagtgacat agtgcagagg tag







ABL1 Protein (Homo sapiens)










SEQ ID NO: 32










1
mleiclklvg ckskkglsss sscyleealq rpvasdfepq glseaarwns




kenllagpse





61
ndpnlfvaly dfvasgdntl sitkgeklrv lgynhngewc eaqtkngqgw



vpsnyitpvn





121
slekhswyhg pvsrnaaeyl lssgingsfl vresesspgq rsislryegr



vyhyrintas





181
dgklyvsses rfntlaelvh hhstvadgli ttlhypapkr nkptvygvsp



nydkwemert





241
ditmkhklgg gqygevyegv wkkysltvav ktlkedtmev eeflkeaavm



keikhpnlvq





301
llgvctrepp fyiitefmty gnlldylrec nrqevnavvl lymatqissa



meylekknfi





361
hrdlaarncl vgenhlvkva dfglsrlmtg dtytahagak fpikwtapes



laynkfsiks





421
dvwafgvllw eiatygmspy pgidlsqvye llekdyrmer pegcpekvye



lmracwqwnp





481
sdrpsfaeih qafetmfqes sisdevekel gkqgvrgavs tllqapelpt



ktrtsrraae





541
hrdttdvpem phskgqgesd pldhepavsp llprkergpp egglnederl



lpkdkktnlf





601
salikkkkkt aptppkrsss fremdgqper rgageeegrd isngalaftp



ldtadpaksp





661
kpsngagvpn galresggsg frsphlwkks stltssrlat geeegggsss



krflrscsas





721
cvphgakdte wrsvtlprdl qstgrqfdss tfgghksekp alprkragen



rsdqvtrgtv





781
tppprlvkkn eeaadevfkd imesspgssp pnltpkplrr qvtvapasgl



phkeeagkgs





841
algtpaaaep vtptskagsg apggtskgpa eesrvrrhkh ssespgrdkg



klsrlkpapp





901
pppaasagka ggkpsqspsq eaageavlga ktkatslvda vnsdaakpsq



pgeglkkpvl





961
patpkpqsak psgtpispap vpstlpsass alagdqpsst afiplistrv



slrktrqppe





1021
riasgaitkg vvldstealc laisrnseqm ashsavleag knlytfcvsy



vdsiqqmrnk





1081
fafreainkl ennlrelqic patagsgpaa tqdfskllss vkeisdivqr







Nup214 cDNA (Homo sapiens)










SEQ ID NO: 33










1
atgggagacg agatggatgc catgattccc gagcgggaga tgaaggattt




tcagtttaga





61
gcgctaaaga aggtgagaat ctttgactcc cctgaggaat tgcccaagga



acgctcgagt





121
ctgcttgctg tgtccaacaa atatggtctg gtcttcgctg gtggagccag



tggcttgcag





181
atttttccta ctaaaaatct tcttattcaa aataaacccg gagatgatcc



caacaaaata





241
gttgataaag tccaaggctt gctagttcct atgaaattcc caatccatca



cctggccttg





301
agctgtgata acctcacact ctctgcgtgc atgatgtcca gtgaatatgg



ttccattatt





361
gctttttttg atgttcgcac attctcaaat gaggctaaac agcaaaaacg



cccatttgcc





421
tatcataagc ttttgaaaga tgcaggaggc atggtgattg atatgaagtg



gaaccccact





481
gtcccctcca tggtggcagt ttgtctggct gatggtagta ttgctgtcct



gcaagtcacg





541
gaaacagtga aagtatgtgc aactcttcct tccacggtag cagtaacctc



tgtgtgctgg





601
agccccaaag gaaagcagct ggcagtggga aaacagaatg gaactgtggt



ccagtatctt





661
cctactttgc aggaaaaaaa agtcattcct tgtcctccgt tttatgagtc



agatcatcct





721
gtcagagttc tggatgtgct gtggattggt acctacgtct tcgccatagt



gtatgctgct





781
gcagatggga ccctggaaac gtctccagat gtggtgatgg ctctactacc



gaaaaaagaa





841
gaaaagcacc cagagatatt tgtgaacttt atggagccct gttatggcag



ctgcacggag





901
agacagcatc attactacct cagttacatt gaggaatggg atttagtgct



ggcagcatct





961
gcggcttcaa cagaagttag tatccttgct cgacaaagtg atcagattaa



ttgggaatct





1021
tggctactgg aggattctag tcgagctgaa ttgcctgtga cagacaagag



tgatgactcc





1081
ttgcccatgg gagttgtcgt agactataca aaccaagtgg aaatcaccat



cagtgatgaa





1141
aagactcttc ctcctgctcc agttctcatg ttactttcaa cagatggtgt



gctttgtcca





1201
ttttatatga ttaatcaaaa tcctggggtt aagtctctca tcaaaacacc



agagcgactt





1261
tcattagaag gagagcgaca gcccaagtca ccaggaagta ctcccactac



cccaacctcc





1321
tctcaagccc cacagaaact ggatgcttct gcagctgcag cccctgcctc



tctgccacct





1381
tcatcacctg ctgctcccat tgccactttt tctttgcttc ctgctggtgg



agcccccact





1441
gtgttctcct ttggttcttc atctttgaag tcatctgcta cggtcactgg



ggagccccct





1501
tcatattcca gtggctccga cagctccaaa gcagccccag gccctggccc



atcaaccttc





1561
tcttttgttc ccccttctaa agcctcccta gcccccaccc ctgcagcgtc



tcctgtggct





1621
ccatcagctg cttcattctc ctttggatca tctggtttta agcctaccct



ggaaagcaca





1681
ccagtgccaa gtgtgtctgc tccaaatata gcaatgaagc cctccttccc



accctcaacc





1741
tctgctgtca aagtcaacct tagtgaaaag tttactgctg cagctacctc



tactcctgtt





1801
agtagctccc agagcgcacc cccgatgtcg ccattctctt ctgcctccaa



gccagctgct





1861
tctggaccac tcagccaccc cacacctctc tcagcaccac ctagttccgt



gccattgaag





1921
tcctcagtct tgccctcacc atcaggacga tctgctcagg gcagttcaag



cccagtgccc





1981
tcaatggtac agaaatcacc caggataacc cctccagcgg caaagccagg



ctctccccag





2041
gcaaagtcac ttcagcctgc tgttgcagaa aagcagggac atcagtggaa



agattcagat





2101
cctgtaatgg ctggaattgg ggaggagatt gcacactttc agaaggagtt



ggaagagtta





2161
aaagcccgaa cttccaaagc ctgtttccaa gtgggcactt ctgaggagat



gaagatgctg





2221
cgaacagaat cagatgactt gcataccttt cttttggaga ttaaagagac



cacagagtcg





2281
cttcatggag atataagtag cctgaaaaca actttacttg agggctttgc



tggtgttgag





2341
gaagccagag aacaaaatga aagaaatcgt gactctggtt atctgcattt



gctttataaa





2401
agaccactgg atcccaagag tgaagctcag cttcaggaaa ttcggcgcct



tcatcagtat





2461
gtgaaatttg ctgtccaaga tgtgaatgat gttctagact tggagtggga



tcagcatctg





2521
gaacaaaaga aaaaacaaag gcacctgctt gtgccagagc gagagacact



gtttaacacc





2581
ctagccaaca atcgggaaat catcaaccaa cagaggaaga ggctgaatca



cctggtggat





2641
agtcttcagc agctccgcct ttacaaacag acttccctgt ggagcctgtc



ctcggctgtt





2701
ccttcccaga gcagcattca cagttttgac agtgacctgg aaagcctgtg



caatgctttg





2761
ttgaaaacca ccatagaatc tcacaccaaa tccttgccca aagtaccagc



caaactgtcc





2821
cccatgaaac aggcacaact gagaaacttc ttggccaaga ggaagacccc



accagtgaga





2881
tccactgctc cagccagcct gtctcgatca gcctttctgt ctcagagata



ttatgaagac





2941
ttggatgaag tcagctcaac gtcatctgtc tcccagtctc tggagagtga



agatgcacgg





3001
acgtcctgta aagatgacga ggcagtggtt caggcccctc ggcacgcccc



cgtggttcgc





3061
actccttcca tccagcccag tctcttgccc catgcagcac cttttgctaa



atctcacctg





3121
gttcatggtt cttcacctgg tgtgatggga acttcagtgg ctacatctgc



tagcaaaatt





3181
attcctcaag gggccgatag cacaatgctt gccacgaaaa ccgtgaaaca



tggtgcacct





3241
agtccttccc accccatctc agccccgcag gcagctgccg cagcagcact



caggcggcag





3301
atggccagtc aggcaccagc tgtaaacact ttgactgaat caacgttgaa



gaatgtccct





3361
caagtggtaa atgtgcagga attgaagaat aaccctgcaa ccccttctac



agccatgggt





3421
tcttcagtgc cctactccac agccaaaaca cctcacccag tgttgacccc



agtggctgct





3481
aaccaagcca agcaggggtc tctaataaat tcccttaagc catctgggcc



tacaccagca





3541
tccggtcagt tatcatctgg tgacaaagct tcagggacag ccaagataga



aacagctgtg





3601
acttcaaccc catctgcttc tgggcagttc agcaagcctt tctcattttc



tccatcaggg





3661
actggcttta attttgggat aatcacacca acaccgtctt ctaatttcac



tgctgcacaa





3721
ggggcaacac cctccactaa agagtcaagc cagccggacg cattctcatc



tggtggggga





3781
agcaaacctt cttatgaggc cattcctgaa agctcacctc cctcaggaat



cacatccgca





3841
tcaaacacca ccccaggaga acctgccgca tctagcagca gacctgtggc



accttctgga





3901
actgctcttt ccaccacctc tagtaagctg gaaaccccac cgtccaagct



gggagagctt





3961
ctgtttccaa gttctttggc tggagagact ctgggaagtt tttcaggact



gcgggttggc





4021
caagcagatg attctacaaa accaaccaat aaggcttcat ccacaagcct



aactagtacc





4081
cagccaacca agacgtcagg cgtgccctca gggtttaatt ttactgcccc



cccggtgtta





4141
gggaagcaca cggagccccc tgtgacatcc tctgcaacca ccacctcagt



agcaccacca





4201
gcagccacca gcacttcctc aactgccgtt tttggcagtc tgccagtcac



cagtgcagga





4261
tcctctgggg tcatcagttt tggtgggaca tctctaagtg ctggcaagac



tagtttttca





4321
tttggaagcc aacagaccaa tagcacagtg cccccatctg ccccaccacc



aactacagct





4381
gccactcccc ttccaacatc attccccaca ttgtcatttg gtagcctcct



gagttcagca





4441
actaccccct ccctgcctat gtccgctggc agaagcacag aagaggccac



ttcatcagct





4501
ttgcctgaga agccaggtga cagtgaggtc tcagcatcag cagcctcact



tctagaggag





4561
caacagtcag cccagcttcc ccaggctcct ccgcaaactt ctgactctgt



taaaaaagaa





4621
cctgttcttg cccagcctgc agtcagcaac tctggcactg cagcatctag



tactagtctt





4681
gtagcacttt ctgcagaggc taccccagcc accacggggg tccctgatgc



caggacggag





4741
gcagtaccac ctgcttcctc cttttctgtg cctgggcaga ctgctgtcac



agcagctgct





4801
atctcaagtg caggccctgt ggccgtcgaa acatcaagta cccccatagc



ctccagcacc





4861
acgtccattg ttgctcccgg cccatctgca gaggcagcag catttggtac



cgtcacttct





4921
ggctcatccg tctttgctca gcctcctgct gccagttcta gctcagcttt



caaccagctc





4981
accaacaaca cagccactgc cccctctgcc acgcccgtgt ttgggcaagt



ggcagccagc





5041
accgcaccaa gtctgtttgg gcagcagact ggtagcacag ccagcacagc



agctgccaca





5101
ccacaggtca gcagctcagg gtttagcagc ccagcttttg gtaccacagc



cccaggggtc





5161
tttggacaga caaccttcgg gcaggcctca gtctttgggc agtcggcgag



cagtgctgca





5221
agtgtctttt ccttcagtca gcctgggttc agttccgtgc ctgccttcgg



tcagcctgct





5281
tcctccactc ccacatccac cagtggaagt gtctttggtg ccgcctcaag



taccagtagc





5341
tccagttcct tctcatttgg acagtcttct cccaacacag gaggggggct



gtttggccaa





5401
agcaacgctc ctgcttttgg gcagagtcct ggctttggac agggaggctc



tgtctttggt





5461
ggtacctcag ctgccaccac aacagcagca acctctgggt tcagcttttg



ccaagcttca





5521
ggttttgggt ctagtaatac tggttctgtg tttggtcaag cagccagtac



tggtggaata





5581
gtctttggcc agcaatcatc ctcttccagt ggtagcgtgt ttgggtctgg



aaacactgga





5641
agagggggag gtttcttcag tggccttgga ggaaaaccca gtcaggatgc



agccaacaaa





5701
aacccattca gctcggccag tgggggcttt ggatccacag ctacctcaaa



tacctctaac





5761
ctatttggaa acagtggggc caagacattt ggtggatttg ccagctcgtc



gtttggagag





5821
cagaaaccca ctggcacttt cagctctgga ggaggaagtg tggcatccca



aggctttggg





5881
ttttcctctc caaacaaaac aggtggcttc ggtgctgctc cagtgtttgg



cagccctcct





5941
acttttgggg gatcccctgg gtttggaggg gtgccagcat tcggttcagc



cccagccttt





6001
acaagccctc tgggctcgac gggaggcaaa gtgttcggag agggcactgc



agctgccagc





6061
gcaggaggat tcgggtttgg gagcagcagc aacaccacat ccttcggcac



gctcgcgagt





6121
cagaatgccc ccactttcgg atcactgtcc caacagactt ctggttttgg



gacccagagt





6181
agcggattct ctggttttgg atcaggcaca ggagggttca gctttgggtc



aaataactcg





6241
tctgtccagg gttttggtgg ctggcgaagc tga







NUP214 Protein (Homo sapiens)










SEQ ID NO: 34










1
mgdemdamip eremkdfqfr alkkvrifds peelpkerss llavsnkygl




vfaggasglq





61
ifptknlliq nkpgddpnki vdkvqgllvp mkfpihhlal scdnltlsac



mmsseygsii





121
affdvrtfsn eakqqkrpfa yhkllkdagg mvidmkwnpt vpsmvavcla



dgsiavlqvt





181
etvkvcatlp stvavtsvcw spkgkqlavg kqngtvvqyl ptlqekkvip



cppfyesdhp





241
vrvldvlwig tyvfaivyaa adgtletspd vvmallpkke ekhpeifvnf



mepcygscte





301
rqhhyylsyi eewdlvlaas aastevsila rqsdqinwes wlledssrae



lpvtdksdds





361
lpmgvvvdyt nqveitisde ktlppapvlm llstdgvlcp fyminqnpgv



ksliktperl





421
slegerqpks pgstpttpts sqapqkldas aaaapaslpp sspaapiatf



sllpaggapt





481
vfsfgssslk ssatvtgepp syssgsdssk aapgpgpstf sfvppskasl



aptpaaspva





541
psaasfsfgs sgfkptlest pvpsvsapni amkpsfppst savkvnlsek



ftaaatstpv





601
sssqsappms pfssaskpaa sgplshptpl sappssvplk ssvlpspsgr



saqgssspvp





661
smvqksprit ppaakpgspq akslqpavae kqghqwkdsd pvmagigeei



ahfqkeleel





721
kartskacfq vgtseemkml rtesddlhtf lleikettes lhgdisslkt



tllegfagve





781
eareqnernr dsgylhllyk rpldpkseaq lqeirrlhqy vkfavqdvnd



vldlewdqhl





841
eqkkkqrhll vperetlfnt lannreiinq qrkrlnhlvd slqqlrlykq



tslwslssav





901
psqssihsfd sdleslcnal lkttieshtk slpkvpakls pmkqaqlrnf



lakrktppvr





961
stapaslsrs aflsqryyed ldevsstssv sqslesedar tsckddeavv



qaprhapvvr





1021
tpsiqpsllp haapfakshl vhgsspgvmg tsvatsaski ipqgadstml



atktvkhgap





1081
spshpisapq aaaaaalrrq masqapavnt ltestlknvp qvvnvqelkn



npatpstamg





1141
ssvpystakt phpvltpvaa nqakqgslin slkpsgptpa sgqlssgdka



sgtakietav





1201
tstpsasgqf skpfsfspsg tgfnfgiitp tpssnftaaq gatpstkess



qpdafssggg





1261
skpsyeaipe ssppsgitsa snttpgepaa sssrpvapsg talsttsskl



etppsklgel





1321
lfpsslaget lgsfsglrvg qaddstkptn kasstsltst qptktsgvps



gfnftappvl





1381
gkhteppvts satttsvapp aatstsstav fgslpvtsag ssgvisfggt



slsagktsfs





1441
fgsqqtnstv ppsappptta atplptsfpt lsfgsllssa ttpslpmsag



rsteeatssa





1501
lpekpgdsev sasaasllee qqsaqlpqap pqtsdsvkke pvlaqpavsn



sgtaasstsl





1561
valsaeatpa ttgvpdarte avppassfsv pgqtavtaaa issagpvave



tsstpiasst





1621
tsivapgpsa eaaafgtvts gssvfaqppa assssafnql tnntatapsa



tpvfgqvaas





1681
tapslfgqqt gstastaaat pqvsssgfss pafgttapgv fgqttfgqas



vfgqsassaa





1741
svfsfsqpgf ssvpafgqpa sstptstsgs vfgaasstss sssfsfgqss



pntggglfgq





1801
snapafgqsp gfgqggsvfg gtsaatttaa tsgfsfcqas gfgssntgsv



fgqaastggi





1861
vfgqqsssss gsvfgsgntg rgggffsglg gkpsqdaank npfssasggf



gstatsntsn





1921
lfgnsgaktf ggfasssfge qkptgtfssg ggsvasqgfg fsspnktggf



gaapvfgspp





1981
tfggspgfgg vpafgsapaf tsplgstggk vfgegtaaas aggfgfgsss



nttsfgtlas





2041
qnaptfgsls qqtsgfgtqs sgfsgfgsgt ggfsfgsnns svqgfggwrs







Trp53 cDNA (Homo sapiens)










SEQ ID NO: 35










1
atggaggagc cgcagtcaga tcctagcgtc gagccccctc tgagtcagga




aacattttca





61
gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc



ccaagcaatg





121
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga



cccaggtcca





181
gatgaagctc ccagaatgcc agaggctgct ccccccgtgg cccctgcacc



agcagctcct





241
acaccggcgg cccctgcacc agccccctcc tggcccctgt catcttctgt



cccttcccag





301
aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg



gacagccaag





361
tctgtgactt gcacgtactc ccctgccctc aacaagatgt tttgccaact



ggccaagacc





421
tgccctgtgc agctgtgggt tgattccaca cccccgcccg gcacccgcgt



ccgcgccatg





481
gccatctaca agcagtcaca gcacatgacg gaggttgtga ggcgctgccc



ccaccatgag





541
cgctgctcag atagcgatgg tctggcccct cctcagcatc ttatccgagt



ggaaggaaat





601
ttgcgtgtgg agtatttgga tgacagaaac acttttcgac atagtgtggt



ggtgccctat





661
gagccgcctg aggttggctc tgactgtacc accatccact acaactacat



gtgtaacagt





721
tcctgcatgg gcggcatgaa ccggaggccc atcctcacca tcatcacact



ggaagactcc





781
agtggtaatc tactgggacg gaacagcttt gaggtgcgtg tttgtgcctg



tcctgggaga





841
gaccggcgca cagaggaaga gaatctccgc aagaaagggg agcctcacca



cgagctgccc





901
ccagggagca ctaagcgagc actgcccaac aacaccagct cctctcccca



gccaaagaag





961
aaaccactgg atggagaata tttcaccctt cagatccgtg ggcgtgagcg



cttcgagatg





1021
ttccgagagc tgaatgaggc cttggaactc aaggatgccc aggctgggaa



ggagccaggg





1081
gggagcaggg ctcactccag ccacctgaag tccaaaaagg gtcagtctac



ctcccgccat





1141
aaaaaactca tgttcaagac agaagggcct gactcagact ga







TRP53 Protein (Homo sapiens)










SEQ ID NO: 36










1
meepqsdpsv epplsqetfs dlwkllpenn vlsplpsqam ddlmlspddi




eqwftedpgp





61
deaprmpeaa ppvapapaap tpaapapaps wplsssvpsq ktyqgsygfr



lgflhsgtak





121
svtctyspal nkmfcqlakt cpvqlwvdst pppgtrvram aiykqsqhmt



evvrrcphhe





181
rcsdsdglap pqhlirvegn lrveylddrn tfrhsvvvpy eppevgsdct



tihynymcns





241
scmggmnrrp iltiitleds sgnllgrnsf evrvcacpgr drrteeenlr



kkgephhelp





301
pgstkralpn ntssspqpkk kpldgeyftl qirgrerfem frelnealel



kdaqagkepg





361
gsrahsshlk skkgqstsrh kklmfktegp dsd







Bcl6 cDNA (Homo sapiens)










SEQ ID NO: 37










1
atggcctcgc cggctgacag ctgtatccag ttcacccgcc atgccagtga




tgttcttctc





61
aaccttaatc gtctccggag tcgagacatc ttgactgatg ttgtcattgt



tgtgagccgt





121
gagcagttta gagcccataa aacggtcctc atggcctgca gtggcctgtt



ctatagcatc





181
tttacagacc agttgaaatg caaccttagt gtgatcaatc tagatcctga



gatcaaccct





241
gagggattct gcatcctcct ggacttcatg tacacatctc ggctcaattt



gcgggagggc





301
aacatcatgg ctgtgatggc cacggctatg tacctgcaga tggagcatgt



tgtggacact





361
tgccggaagt ttattaaggc cagtgaagca gagatggttt ctgccatcaa



gcctcctcgt





421
gaagagttcc tcaacagccg gatgctgatg ccccaagaca tcatggccta



tcggggtcgt





481
gaggtggtgg agaacaacct gccactgagg agcgcccctg ggtgtgagag



cagagccttt





541
gcccccagcc tgtacagtgg cctgtccaca ccgccagcct cttattccat



gtacagccac





601
ctccctgtca gcagcctcct cttctccgat gaggagtttc gggatgtccg



gatgcctgtg





661
gccaacccct tccccaagga gcgggcactc ccatgtgata gtgccaggcc



agtccctggt





721
gagtacagcc ggccgacttt ggaggtgtcc cccaatgtgt gccacagcaa



tatctattca





781
cccaaggaaa caatcccaga agaggcacga agtgatatgc actacagtgt



ggctgagggc





841
ctcaaacctg ctgccccctc agcccgaaat gccccctact tcccttgtga



caaggccagc





901
aaagaagaag agagaccctc ctcggaagat gagattgccc tgcatttcga



gccccccaat





961
gcacccctga accggaaggg tctggttagt ccacagagcc cccagaaatc



tgactgccag





1021
cccaactcgc ccacagagtc ctgcagcagt aagaatgcct gcatcctcca



ggcttctggc





1081
tcccctccag ccaagagccc cactgacccc aaagcctgca actggaagaa



atacaagttc





1141
atcgtgctca acagcctcaa ccagaatgcc aaaccagagg ggcctgagca



ggctgagctg





1201
ggccgccttt ccccacgagc ctacacggcc ccacctgcct gccagccacc



catggagcct





1261
gagaaccttg acctccagtc cccaaccaag ctgagtgcca gcggggagga



ctccaccatc





1321
ccacaagcca gccggctcaa taacatcgtt aacaggtcca tgacgggctc



tccccgcagc





1381
agcagcgaga gccactcacc actctacatg caccccccga agtgcacgtc



ctgcggctct





1441
cagtccccac agcatgcaga gatgtgcctc cacaccgctg gccccacgtt



ccctgaggag





1501
atgggagaga cccagtctga gtactcagat tctagctgtg agaacggggc



cttcttctgc





1561
aatgagtgtg actgccgctt ctctgaggag gcctcactca agaggcacac



gctgcagacc





1621
cacagtgaca aaccctacaa gtgtgaccgc tgccaggcct ccttccgcta



caagggcaac





1681
ctcgccagcc acaagaccgt ccataccggt gagaaaccct atcgttgcaa



catctgtggg





1741
gcccagttca accggccagc caacctgaaa acccacactc gaattcactc



tggagagaag





1801
ccctacaaat gcgaaacctg cggagccaga tttgtacagg tggcccacct



ccgtgcccat





1861
gtgcttatcc acactggtga gaagccctat ccctgtgaaa tctgtggcac



ccgtttccgg





1921
caccttcaga ctctgaagag ccacctgcga atccacacag gagagaaacc



ttaccattgt





1981
gagaagtgta acctgcattt ccgtcacaaa agccagctgc gacttcactt



gcgccagaag





2041
catggcgcca tcaccaacac caaggtgcaa taccgcgtgt cagccactga



cctgcctccg





2101
gagctcccca aagcctgctg a







BCL6 Protein (Homo sapiens)










SEQ ID NO: 38










1
maspadsciq ftrhasdvll nlnrlrsrdi ltdvvivvsr eqfrahktvl




macsglfysi





61
ftdqlkcnls vinldpeinp egfcilldfm ytsrlnlreg nimavmatam



ylqmehvvdt





121
crkfikasea emvsaikppr eeflnsrmlm pqdimayrgr evvennlplr



sapgcesraf





181
apslysglst ppasysmysh lpvssllfsd eefrdvrmpv anpfpkeral



pcdsarpvpg





241
eysrptlevs pnvchsniys pketipeear sdmhysvaeg lkpaapsarn



apyfpcdkas





301
keeerpssed eialhfeppn aplnrkglvs pqspqksdcq pnsptescss



knacilqasg





361
sppaksptdp kacnwkkykf ivlnslnqna kpegpeqael grlsprayta



ppacqppmep





421
enldlqsptk lsasgedsti pqasrlnniv nrsmtgsprs sseshsplym



hppkctscgs





481
qspqhaemcl htagptfpee mgetqseysd sscengaffc necdcrfsee



aslkrhtlqt





541
hsdkpykcdr cqasfrykgn lashktvhtg ekpyrcnicg aqfnrpanlk



thtrihsgek





601
pykcetcgar fvqvahlrah vlihtgekpy pceicgtrfr hlqtlkshlr



ihtgekpyhc





661
ekcnlhfrhk sqlrlhlrqk hgaitntkvq yrvsatdlpp elpkac







Negr1 cDNA (Homo sapiens)










SEQ ID NO: 39










1
atggacatga tgctgttggt gcagggtgct tgttgctcga accagtggct




ggcggcggtg





61
ctcctcagcc tgtgctgcct gctaccctcc tgcctcccgg ctggacagag



tgtggacttc





121
ccctgggcgg ccgtggacaa catgatggtc agaaaagggg acacggcggt



gcttaggtgt





181
tatttggaag atggagcttc aaagggtgcc tggctgaacc ggtcaagtat



tatttttgcg





241
ggaggtgata agtggtcagt ggatcctcga gtttcaattt caacattgaa



taaaagggac





301
tacagcctcc agatacagaa tgtagatgtg acagatgatg gcccatacac



gtgttctgtt





361
cagactcaac atacacccag aacaatgcag gtgcatctaa ctgtgcaagt



tcctcctaag





421
atatatgaca tctcaaatga tatgaccgtc aatgaaggaa ccaacgtcac



tcttacttgt





481
ttggccactg ggaaaccaga gccttccatt tcttggcgac acatctcccc



atcagcaaaa





541
ccatttgaaa atggacaata tttggacatt tatggaatta caagggacca



ggctggggaa





601
tatgaatgca gtgcggaaaa tgatgtgtca ttcccagatg tgaggaaagt



aaaagttgtt





661
gtcaactttg ctcctactat tcaggaaatt aaatctggca ccgtgacccc



cggacgcagt





721
ggcctgataa gatgtgaagg tgcaggtgtg ccgcctccag cctttgaatg



gtacaaagga





781
gagaagaagc tcttcaatgg ccaacaagga attattattc aaaattttag



cacaagatcc





841
attctcactg ttaccaacgt gacacaggag cacttcggca attatacctg



tgtggctgcc





901
aacaagctag gcacaaccaa tgcgagcctg cctcttaacc ctccaagtac



agcccagtat





961
ggaattaccg ggagcgctga tgttcttttc tcctgctggt accttgtgtt



gacactgtcc





1021
tctttcacca gcatattcta cctgaagaat gccattctac aataa







NEGR1 Protein (Homo sapiens)









SEQ ID NO: 40








1
mdmmllvqga ccsnqwlaav llslccllps clpagqsvdf



pwaavdnmmv rkgdtavlrc





61
yledgaskga wlnrssiifa ggdkwsvdpr vsistlnkrd



yslqiqnvdv tddgpytcsv





121
qtqhtprtmq vhltvqvppk iydisndmtv negtnvtltc



latgkpepsi swrhispsak





181
pfengqyldi ygitrdqage yecsaendvs fpdvrkvkvv



vnfaptiqei ksgtvtpgrs





241
glircegagv pppafewykg ekklfngqqg iiiqnfstrs



iltvtnvtqe hfgnytcvaa





301
nklgttnasl plnppstaqy gitgsadvlf scwylvltls



sftsifylkn ailq







Baalc cDNA (Homo sapiens)









SEQ ID NO: 41








1
atgggctgcg gcgggagccg ggcggatgcc atcgagcccc



gctactacga gagctggacc





61
cgggagacag aatccacctg gctcacctac accgactcgg



acgcgccgcc cagcgccgcc





121
gccccggaca gcggccccga agcgggcggc ctgcactcgg



gcatgctgga agatggactg





181
ccctccaatg gtgtgccccg atctacagcc ccaggtggaa



tacccaaccc agagaagaag





241
acgaactgtg agacccagtg cccaaatccc cagagcctca



gctcaggccc tctgacccag





301
aaacagaatg gccttcagac cacagaggct aaaagagatg



ctaagagaat gcctgcaaaa





361
gaagtcacca ttaatgtaac agatagcatc caacagatgg



acagaagtcg aagaatcaca





421
aagaactgtg tcaactag







BAALC Protein (Homo sapiens)









SEQ ID NO: 42








1
mgcggsrada iepryyeswt retestwlty tdsdappsaa



apdsgpeagg lhsgmledgl





61
psngvprsta pggipnpekk tncetqcpnp qslssgpltq



kqnglqttea krdakrmpak





121
evtinvtdsi qqmdrsrrit kncvn







Fzd6 cDNA (Homo sapiens)










SEQ ID NO: 43










1
atggaaatgt ttacattttt gttgacgtgt atttttctac ccctcctaag




agggcacagt





61
ctcttcacct gtgaaccaat tactgttccc agatgtatga aaatggccta



caacatgacg





121
tttttcccta atctgatggg tcattatgac cagagtattg ccgcggtgga



aatggagcat





181
tttcttcctc tcgcaaatct ggaatgttca ccaaacattg aaactttcct



ctgcaaagca





241
tttgtaccaa cctgcataga acaaattcat gtggttccac cttgtcgtaa



actttgtgag





301
aaagtatatt ctgattgcaa aaaattaatt gacacttttg ggatccgatg



gcctgaggag





361
cttgaatgtg acagattaca atactgtgat gagactgttc ctgtaacttt



tgatccacac





421
acagaatttc ttggtcctca gaagaaaaca gaacaagtcc aaagagacat



tggattttgg





481
tgtccaaggc atcttaagac ttctggggga caaggatata agtttctggg



aattgaccag





541
tgtgcgcctc catgccccaa catgtatttt aaaagtgatg agctagagtt



tgcaaaaagt





601
tttattggaa cagtttcaat attttgtctt tgtgcaactc tgttcacatt



ccttactttt





661
ttaattgatg ttagaagatt cagataccca gagagaccaa ttatatatta



ctctgtctgt





721
tacagcattg tatctcttat gtacttcatt ggatttttgc taggcgatag



cacagcctgc





781
aataaggcag atgagaagct agaacttggt gacactgttg tcctaggctc



tcaaaataag





841
gcttgcaccg ttttgttcat gcttttgtat tttttcacaa tggctggcac



tgtgtggtgg





901
gtgattctta ccattacttg gttcttagct gcaggaagaa aatggagttg



tgaagccatc





961
gagcaaaaag cagtgtggtt tcatgctgtt gcatggggaa caccaggttt



cctgactgtt





1021
atgcttcttg ctatgaacaa agttgaagga gacaacatta gtggagtttg



ctttgttggc





1081
ctttatgacc tggatgcttc tcgctacttt gtactcttgc cactgtgcct



ttgtgtgttt





1141
gttgggctct ctcttctttt agctggcatt atttccttaa atcatgttcg



acaagtcata





1201
caacatgatg gccggaacca agaaaaacta aagaaattta tgattcgaat



tggagtcttc





1261
agcggcttgt atcttgtgcc attagtgaca cttctcggat gttacgtcta



tgagcaagtg





1321
aacaggatta cctgggagat aacttgggtc tctgatcatt gtcgtcagta



ccatatccca





1381
tgtccttatc aggcaaaagc aaaagctcga ccagaattgg ctttatttat



gataaaatac





1441
ctgatgacat taattgttgg catctctgct gtcttctggg ttggaagcaa



aaagacatgc





1501
acagaatggg ctgggttttt taaacgaaat cgcaagagag atccaatcag



tgaaagtcga





1561
agagtactac aggaatcatg tgagtttttc ttaaagcaca attctaaagt



taaacacaaa





1621
aagaagcact ataaaccaag ttcacacaag ctgaaggtca tttccaaatc



catgggaacc





1681
agcacaggag ctacagcaaa tcatggcact tctgcagtag caattactag



ccatgattac





1741
ctaggacaag aaactttgac agaaatccaa acctcaccag aaacatcaat



gagagaggtg





1801
aaagcggacg gagctagcac ccccaggtta agagaacagg actgtggtga



acctgcctcg





1861
ccagcagcat ccatctccag actctctggg gaacaggtcg acgggaaggg



ccaggcaggc





1921
agtgtatctg aaagtgcgcg gagtgaagga aggattagtc caaagagtga



tattactgac





1981
actggcctgg cacagagcaa caatttgcag gtccccagtt cttcagaacc



aagcagcctc





2041
aaaggttcca catctctgct tgttcacccg gtttcaggag tgagaaaaga



gcagggaggt





2101
ggttgtcatt cagatacttg a







FZD6 Protein (Homo sapiens)









SEQ ID NO: 44








1
memftflltc iflpllrghs lftcepitvp rcmkmaynmt



ffpnlmghyd qsiaavemeh





61
flplanlecs pnietflcka fvptcieqih vvpperklce



kvysdckkli dtfgirwpee





121
lecdrlqycd etvpvtfdph teflgpqkkt eqvqrdigfw



cprhlktsgg qgykflgidq





181
cappcpnmyf ksdelefaks figtvsifcl catlftfltf



lidvrrfryp erpiiyysvc





241
ysivslmyfi gfllgdstac nkadeklelg dtvvlgsqnk



actvlfmlly fftmagtvww





301
viltitwfla agrkwsceai eqkavwfhav awgtpgfltv



mllamnkveg dnisgvcfvg





361
lydldasryf vllplclcvf vglslllagi islnhvrqvi



qhdgrnqekl kkfmirigvf





421
sglylvplvt llgcyvyeqv nritweitwv sdhcrqyhip



cpyqakakar pelalfmiky





481
lmtlivgisa vfwvgskktc tewagffkrn rkrdpisesr



rvlqesceff lkhnskvkhk





541
kkhykpsshk lkvisksmgt stgatanhgt savaitshdy



lgqetlteiq tspetsmrev





601
kadgastprl reqdcgepas paasisrlsg eqvdgkgqag



svsesarseg rispksditd





661
tglaqsnnlq vpsssepssl kgstsllvhp vsgvrkeqgg



gchsdt







Crebbp cDNA (Homo sapiens)










SEQ ID NO: 45










1
atggctgaga acttgctgga cggaccgccc aaccccaaaa gagccaaact




cagctcgccc





61
ggtttctcgg cgaatgacag cacagatttt ggatcattgt ttgacttgga



aaatgatctt





121
cctgatgagc tgatacccaa tggaggagaa ttaggccttt taaacagtgg



gaaccttgtt





181
ccagatgctg cttccaaaca taaacaactg tcggagcttc tacgaggagg



cagcggctct





241
agtatcaacc caggaatagg aaatgtgagc gccagcagcc ccgtgcagca



gggcctgggt





301
ggccaggctc aagggcagcc gaacagtgct aacatggcca gcctcagtgc



catgggcaag





361
agccctctga gccagggaga ttcttcagcc cccagcctgc ctaaacaggc



agccagcacc





421
tctgggccca cccccgctgc ctcccaagca ctgaatccgc aagcacaaaa



gcaagtgggg





481
ctggcgacta gcagccctgc cacgtcacag actggacctg gtatctgcat



gaatgctaac





541
tttaaccaga cccacccagg cctcctcaat agtaactctg gccatagctt



aattaatcag





601
gcttcacaag ggcaggcgca agtcatgaat ggatctcttg gggctgctgg



cagaggaagg





661
ggagctggaa tgccgtaccc tactccagcc atgcagggcg cctcgagcag



cgtgctggct





721
gagaccctaa cgcaggtttc cccgcaaatg actggtcacg cgggactgaa



caccgcacag





781
gcaggaggca tggccaagat gggaataact gggaacacaa gtccatttgg



acagcccttt





841
agtcaagctg gagggcagcc aatgggagcc actggagtga acccccagtt



agccagcaaa





901
cagagcatgg tcaacagttt gcccaccttc cctacagata tcaagaatac



ttcagtcacc





961
aacgtgccaa atatgtctca gatgcaaaca tcagtgggaa ttgtacccac



acaagcaatt





1021
gcaacaggcc ccactgcaga tcctgaaaaa cgcaaactga tacagcagca



gctggttcta





1081
ctgcttcatg ctcataagtg tcagagacga gagcaagcaa acggagaggt



tcgggcctgc





1141
tcgctcccgc attgtcgaac catgaaaaac gttttgaatc acatgacgca



ttgtcaggct





1201
gggaaagcct gccaagttgc ccattgtgca tcttcacgac aaatcatctc



tcattggaag





1261
aactgcacac gacatgactg tcctgtttgc ctccctttga aaaatgccag



tgacaagcga





1321
aaccaacaaa ccatcctggg gtctccagct agtggaattc aaaacacaat



tggttctgtt





1381
ggcacagggc aacagaatgc cacttcttta agtaacccaa atcccataga



ccccagctcc





1441
atgcagcgag cctatgctgc tctcggactc ccctacatga accagcccca



gacgcagctg





1501
cagcctcagg ttcctggcca gcaaccagca cagcctcaaa cccaccagca



gatgaggact





1561
ctcaaccccc tgggaaataa tccaatgaac attccagcag gaggaataac



aacagatcag





1621
cagcccccaa acttgatttc agaatcagct cttccgactt ccctgggggc



cacaaaccca





1681
ctgatgaacg atggctccaa ctctggtaac attggaaccc tcagcactat



accaacagca





1741
gctcctcctt ctagcaccgg tgtaaggaaa ggctggcacg aacatgtcac



tcaggacctg





1801
cggagccatc tagtgcataa actcgtccaa gccatcttcc caacacctga



tcccgcagct





1861
ctaaaggatc gccgcatgga aaacctggta gcctatgcta agaaagtgga



aggggacatg





1921
tacgagtctg ccaacagcag ggatgaatat tatcacttat tagcagagaa



aatctacaag





1981
atacaaaaag aactagaaga aaaacggagg tcgcgtttac ataaacaagg



catcttgggg





2041
aaccagccag ccttaccagc cccgggggct cagccccctg tgattccaca



ggcacaacct





2101
gtgagacctc caaatggacc cctgtccctg ccagtgaatc gcatgcaagt



ttctcaaggg





2161
atgaattcat ttaaccccat gtccttgggg aacgtccagt tgccacaagc



acccatggga





2221
cctcgtgcag cctccccaat gaaccactct gtccagatga acagcatggg



ctcagtgcca





2281
gggatggcca tttctccttc ccgaatgcct cagcctccga acatgatggg



tgcacacacc





2341
aacaacatga tggcccaggc gcccgctcag agccagtttc tgccacagaa



ccagttcccg





2401
tcatccagcg gggcgatgag tgtgggcatg gggcagccgc cagcccaaac



aggcgtgtca





2461
cagggacagg tgcctggtgc tgctcttcct aaccctctca acatgctggg



gcctcaggcc





2521
agccagctac cttgccctcc agtgacacag tcaccactgc acccaacacc



gcctcctgct





2581
tccacggctg ctggcatgcc atctctccag cacacgacac cacctgggat



gactcctccc





2641
cagccagcag ctcccactca gccatcaact cctgtgtcgt cttccgggca



gactcccacc





2701
ccgactcctg gctcagtgcc cagtgctacc caaacccaga gcacccctac



agtccaggca





2761
gcagcccagg cccaggtgac cccgcagcct caaaccccag ttcagccccc



gtctgtggct





2821
acccctcagt catcgcagca acagccgacg cctgtgcacg cccagcctcc



tggcacaccg





2881
ctttcccagg cagcagccag cattgataac agagtcccta ccccctcctc



ggtggccagc





2941
gcagaaacca attcccagca gccaggacct gacgtacctg tgctggaaat



gaagacggag





3001
acccaagcag aggacactga gcccgatcct ggtgaatcca aaggggagcc



caggtctgag





3061
atgatggagg aggatttgca aggagcttcc caagttaaag aagaaacaga



catagcagag





3121
cagaaatcag aaccaatgga agtggatgaa aagaaacctg aagtgaaagt



agaagttaaa





3181
gaggaagaag agagtagcag taacggcaca gcctctcagt caacatctcc



ttcgcagccg





3241
cgcaaaaaaa tctttaaacc agaggagtta cgccaggccc tcatgccaac



cctagaagca





3301
ctgtatcgac aggacccaga gtcattacct ttccggcagc ctgtagatcc



ccagctcctc





3361
ggaattccag actattttga catcgtaaag aatcccatgg acctctccac



catcaagcgg





3421
aagctggaca cagggcaata ccaagagccc tggcagtacg tggacgacgt



ctggctcatg





3481
ttcaacaatg cctggctcta taatcgcaag acatcccgag tctataagtt



ttgcagtaag





3541
cttgcagagg tctttgagca ggaaattgac cctgtcatgc agtcccttgg



atattgctgt





3601
ggacgcaagt atgagttttc cccacagact ttgtgctgct atgggaagca



gctgtgtacc





3661
attcctcgcg atgctgccta ctacagctat cagaataggt atcatttctg



tgagaagtgt





3721
ttcacagaga tccagggcga gaatgtgacc ctgggtgacg acccttcaca



gccccagacg





3781
acaatttcaa aggatcagtt tgaaaagaag aaaaatgata ccttagaccc



cgaacctttc





3841
gttgattgca aggagtgtgg ccggaagatg catcagattt gcgttctgca



ctatgacatc





3901
atttggcctt caggttttgt gtgcgacaac tgcttgaaga aaactggcag



acctcgaaaa





3961
gaaaacaaat tcagtgctaa gaggctgcag accacaagac tgggaaacca



cttggaagac





4021
cgagtgaaca aatttttgcg gcgccagaat caccctgaag ccggggaggt



ttttgtccga





4081
gtggtggcca gctcagacaa gacggtggag gtcaagcccg ggatgaagtc



acggtttgtg





4141
gattctgggg aaatgtctga atctttccca tatcgaacca aagctctgtt



tgcttttgag





4201
gaaattgacg gcgtggatgt ctgctttttt ggaatgcacg tccaagaata



cggctctgat





4261
tgcccccctc caaacacgag gcgtgtgtac atttcttatc tggatagtat



tcatttcttc





4321
cggccacgtt gcctccgcac agccgtttac catgagatcc ttattggata



tttagagtat





4381
gtgaagaaat tagggtatgt gacagggcac atctgggcct gtcctccaag



tgaaggagat





4441
gattacatct tccattgcca cccacctgat caaaaaatac ccaagccaaa



acgactgcag





4501
gagtggtaca aaaagatgct ggacaaggcg tttgcagagc ggatcatcca



tgactacaag





4561
gatattttca aacaagcaac tgaagacagg ctcaccagtg ccaaggaact



gccctatttt





4621
gaaggtgatt tctggcccaa tgtgttagaa gagagcatta aggaactaga



acaagaagaa





4681
gaggagagga aaaaggaaga gagcactgca gccagtgaaa ccactgaggg



cagtcagggc





4741
gacagcaaga atgccaagaa gaagaacaac aagaaaacca acaagaacaa



aagcagcatc





4801
agccgcgcca acaagaagaa gcccagcatg cccaacgtgt ccaatgacct



gtcccagaag





4861
ctgtatgcca ccatggagaa gcacaaggag gtcttcttcg tgatccacct



gcacgctggg





4921
cctgtcatca acaccctgcc ccccatcgtc gaccccgacc ccctgctcag



ctgtgacctc





4981
atggatgggc gcgacgcctt cctcaccctc gccagagaca agcactggga



gttctcctcc





5041
ttgcgccgct ccaagtggtc cacgctctgc atgctggtgg agctgcacac



ccagggccag





5101
gaccgctttg tctacacctg caacgagtgc aagcaccacg tggagacgcg



ctggcactgc





5161
actgtgtgcg aggactacga cctctgcatc aactgctata acacgaagag



ccatgcccat





5221
aagatggtga agtgggggct gggcctggat gacgagggca gcagccaggg



cgagccacag





5281
tcaaagagcc cccaggagtc acgccggctg agcatccagc gctgcatcca



gtcgctggtg





5341
cacgcgtgcc agtgccgcaa cgccaactgc tcgctgccat cctgccagaa



gatgaagcgg





5401
gtggtgcagc acaccaaggg ctgcaaacgc aagaccaacg ggggctgccc



ggtgtgcaag





5461
cagctcatcg ccctctgctg ctaccacgcc aagcactgcc aagaaaacaa



atgccccgtg





5521
cccttctgcc tcaacatcaa acacaagctc cgccagcagc agatccagca



ccgcctgcag





5581
caggcccagc tcatgcgccg gcggatggcc accatgaaca cccgcaacgt



gcctcagcag





5641
agtctgcctt ctcctacctc agcaccgccc gggaccccca cacagcagcc



cagcacaccc





5701
cagacgccgc agccccctgc ccagccccaa ccctcacccg tgagcatgtc



accagctggc





5761
ttccccagcg tggcccggac tcagcccccc accacggtgt ccacagggaa



gcctaccagc





5821
caggtgccgg cccccccacc cccggcccag ccccctcctg cagcggtgga



agcggctcgg





5881
cagatcgagc gtgaggccca gcagcagcag cacctgtacc gggtgaacat



caacaacagc





5941
atgcccccag gacgcacggg catggggacc ccggggagcc agatggcccc



cgtgagcctg





6001
aatgtgcccc gacccaacca ggtgagcggg cccgtcatgc ccagcatgcc



tcccgggcag





6061
tggcagcagg cgccccttcc ccagcagcag cccatgccag gcttgcccag



gcctgtgata





6121
tccatgcagg cccaggcggc cgtggctggg ccccggatgc ccagcgtgca



gccacccagg





6181
agcatctcac ccagcgctct gcaagacctg ctgcggaccc tgaagtcgcc



cagctcccct





6241
cagcagcaac agcaggtgct gaacattctc aaatcaaacc cgcagctaat



ggcagctttc





6301
atcaaacagc gcacagccaa gtacgtggcc aatcagcccg gcatgcagcc



ccagcctggc





6361
ctccagtccc agcccggcat gcaaccccag cctggcatgc accagcagcc



cagcctgcag





6421
aacctgaatg ccatgcaggc tggcgtgccg cggcccggtg tgcctccaca



gcagcaggcg





6481
atgggaggcc tgaaccccca gggccaggcc ttgaacatca tgaacccagg



acacaacccc





6541
aacatggcga gtatgaatcc acagtaccga gaaatgttac ggaggcagct



gctgcagcag





6601
cagcagcaac agcagcagca acaacagcag caacagcagc agcagcaagg



gagtgccggc





6661
atggctgggg gcatggcggg gcacggccag ttccagcagc ctcaaggacc



cggaggctac





6721
ccaccggcca tgcagcagca gcagcgcatg cagcagcatc tccccctcca



gggcagctcc





6781
atgggccaga tggcggctca gatgggacag cttggccaga tggggcagcc



ggggctgggg





6841
gcagacagca cccccaacat ccagcaagcc ctgcagcagc ggattctgca



gcaacagcag





6901
atgaagcagc agattgggtc cccaggccag ccgaacccca tgagccccca



gcaacacatg





6961
ctctcaggac agccacaggc ctcgcatctc cctggccagc agatcgccac



gtcccttagt





7021
aaccaggtgc ggtctccagc ccctgtccag tctccacggc cccagtccca



gcctccacat





7081
tccagcccgt caccacggat acagccccag ccttcgccac accacgtctc



accccagact





7141
ggttcccccc accccggact cgcagtcacc atggccagct ccatagatca



gggacacttg





7201
gggaaccccg aacagagtgc aatgctcccc cagctgaaca cccccagcag



gagtgcgctg





7261
tccagcgaac tgtccctggt cggggacacc acgggggaca cgctagagaa



gtttgtggag





7321
ggcttgtag







CREBBP Protein (Homo sapiens)










SEQ ID NO: 46










1
maenlldgpp npkraklssp gfsandstdf gslfdlendl pdelipngge




lgllnsgnlv





61
pdaaskhkql sellrggsgs sinpgignvs asspvqqglg gqaqgqpnsa



nmaslsamgk





121
splsqgdssa pslpkqaast sgptpaasqa lnpqaqkqvg latsspatsq



tgpgicmnan





181
fnqthpglln snsghslinq asqgqaqvmn gslgaagrgr gagmpyptpa



mqgasssvla





241
etltqvspqm tghaglntaq aggmakmgit gntspfgqpf sqaggqpmga



tgvnpqlask





301
qsmvnslptf ptdikntsvt nvpnmsqmqt svgivptqai atgptadpek



rkliqqqlvl





361
llhahkcqrr eqangevrac slphcrtmkn vlnhmthcqa gkacqvahca



ssrqiishwk





421
nctrhdcpvc lplknasdkr nqqtilgspa sgiqntigsv gtgqqnatsl



snpnpidpss





481
mqrayaalgl pymnqpqtql qpqvpgqqpa qpqthqqmrt lnplgnnpmn



ipaggittdq





541
qppnlisesa lptslgatnp lmndgsnsgn igtlstipta appsstgvrk



gwhehvtqdl





601
rshlvhklvq aifptpdpaa lkdrrmenlv ayakkvegdm yesansrdey



yhllaekiyk





661
iqkeleekrr srlhkqgilg nqpalpapga qppvipqaqp vrppngplsl



pvnrmqvsqg





721
mnsfnpmslg nvqlpqapmg praaspmnhs vqmnsmgsvp gmaispsrmp



qppnmmgaht





781
nnmmaqapaq sqflpqnqfp sssgamsvgm gqppaqtgvs qgqvpgaalp



nplnmlgpqa





841
sqlpcppvtq splhptpppa staagmpslq httppgmtpp qpaaptqpst



pvsssgqtpt





901
ptpgsvpsat qtqstptvqa aaqaqvtpqp qtpvqppsva tpqssqqqpt



pvhaqppgtp





961
lsqaaasidn rvptpssvas aetnsqqpgp dvpvlemkte tqaedtepdp



geskgeprse





1021
mmeedlqgas qvkeetdiae qksepmevde kkpevkvevk eeeesssngt



asqstspsqp





1081
rkkifkpeel rqalmptlea lyrqdpeslp frqpvdpqll gipdyfdivk



npmdlstikr





1141
kldtgqyqep wqyvddvwlm fnnawlynrk tsrvykfcsk laevfeqeid



pvmqslgycc





1201
grkyefspqt lccygkqlct iprdaayysy qnryhfcekc fteiqgenvt



lgddpsqpqt





1261
tiskdqfekk kndtldpepf vdckecgrkm hqicvlhydi iwpsgfvcdn



clkktgrprk





1321
enkfsakrlq ttrlgnhled rvnkflrrqn hpeagevfvr vvassdktve



vkpgmksrfv





1381
dsgemsesfp yrtkalfafe eidgvdvcff gmhvqeygsd cpppntrrvy



isyldsihff





1441
rprclrtavy heiligyley vkklgyvtgh iwacppsegd dyifhchppd



qkipkpkrlq





1501
ewykkmldka faeriihdyk difkqatedr ltsakelpyf egdfwpnvle



esikeleqee





1561
eerkkeesta asettegsqg dsknakkknn kktnknkssi srankkkpsm



pnvsndlsqk





1621
lyatmekhke vffvihlhag pvintlppiv dpdpllscdl mdgrdafltl



ardkhwefss





1681
lrrskwstlc mlvelhtqgq drfvytcnec khhvetrwhc tvcedydlci



ncyntkshah





1741
kmvkwglgld degssqgepq skspqesrrl siqrciqslv hacqcrnanc



slpscqkmkr





1801
vvqhtkgckr ktnggcpvck qlialccyha khcqenkcpv pfclnikhkl



rqqqiqhrlq





1861
qaqlmrrrma tmntrnvpqq slpsptsapp gtptqqpstp qtpqppaqpq



pspvsmspag





1921
fpsvartqpp ttvstgkpts qvpappppaq pppaaveaar qiereaqqqq



hlyrvninns





1981
mppgrtgmgt pgsqmapvsl nvprpnqvsg pvmpsmppgq wqqaplpqqq



pmpglprpvi





2041
smqaqaavag prmpsvqppr sispsalqdl lrtlkspssp qqqqqvlnil



ksnpqlmaaf





2101
ikqrtakyva nqpgmqpqpg lqsqpgmqpq pgmhqqpslq nlnamqagvp



rpgvppqqqa





2161
mgglnpqgqa lnimnpghnp nmasmnpqyr emlrrqllqg qqqqqqqqqq



qqqqqqgsag





2221
maggmaghgq fqqpqgpggy ppamqqqqrm qqhlplqgss mgqmaaqmgq



lgqmgqpglg





2281
adstpniqqa lggrilqqqg mkgqigspgq pnpmspqqhm lsgqpgashl



pgqqiatsls





2341
nqvrspapvq sprpqsqpph sspspriqpq psphhvspqt gsphpglavt



massidqghl





2401
gnpeqsamlp qlntpsrsal sselslvgdt tgdtlekfve gl







C2ta cDNA (Homo sapiens)










SEQ ID NO: 47










1
atgcgttgcc tggctccacg ccctgctggg tcctacctgt cagagcccca




aggcagctca





61
cagtgtgcca ccatggagtt ggggccccta gaaggtggct acctggagct



tcttaacagc





121
gatgctgacc ccctgtgcct ctaccacttc tatgaccaga tggacctggc



tggagaagaa





181
gagattgagc tctactcaga acccgacaca gacaccatca actgcgacca



gttcagcagg





241
ctgttgtgtg acatggaagg tgatgaagag accagggagg cttatgccaa



tatcgcggaa





301
ctggaccagt atgtcttcca ggactcccag ctggagggcc tgagcaagga



cattttcaag





361
cacataggac cagatgaagt gatcggtgag agtatggaga tgccagcaga



agttgggcag





421
aaaagtcaga aaagaccctt cccagaggag cttccggcag acctgaagca



ctggaagcca





481
gctgagcccc ccactgtggt gactggcagt ctcctagtgg gaccagtgag



cgactgctcc





541
accctgccct gcctgccact gcctgcgctg ttcaaccagg agccagcctc



cggccagatg





601
cgcctggaga aaaccgacca gattcccatg cctttctcca gttcctcgtt



gagctgcctg





661
aatctccctg agggacccat ccagtttgtc cccaccatct ccactctgcc



ccatgggctc





721
tggcaaatct ctgaggctgg aacaggggtc tccagtatat tcatctacca



tggtgaggtg





781
ccccaggcca gccaagtacc ccctcccagt ggattcactg tccacggcct



cccaacatct





841
ccagaccggc caggctccac cagccccttc gctccatcag ccactgacct



gcccagcatg





901
cctgaacctg ccctgacctc ccgagcaaac atgacagagc acaagacgtc



ccccacccaa





961
tgcccggcag ctggagaggt ctccaacaag cttccaaaat ggcctgagcc



ggtggagcag





1021
ttctaccgct cactgcagga cacgtatggt gccgagcccg caggcccgga



tggcatccta





1081
gtggaggtgg atctggtgca ggccaggctg gagaggagca gcagcaagag



cctggagcgg





1141
gaactggcca ccccggactg ggcagaacgg cagctggccc aaggaggcct



ggctgaggtg





1201
ctgttggctg ccaaggagca ccggcggccg cgtgagacac gagtgattgc



tgtgctgggc





1261
aaagctggtc agggcaagag ctattgggct ggggcagtga gccgggcctg



ggcttgtggc





1321
cggcttcccc agtacgactt tgtcttctct gtcccctgcc attgcttgaa



ccgtccgggg





1381
gatgcctatg gcctgcagga tctgctcttc tccctgggcc cacagccact



cgtggcggcc





1441
gatgaggttt tcagccacat cttgaagaga cctgaccgcg ttctgctcat



cctagacggc





1501
ttcgaggagc tggaagcgca agatggcttc ctgcacagca cgtgcggacc



ggcaccggcg





1561
gagccctgct ccctccgggg gctgctggcc ggccttttcc agaagaagct



gctccgaggt





1621
tgcaccctcc tcctcacagc ccggccccgg ggccgcctgg tccagagcct



gagcaaggcc





1681
gacgccctat ttgagctgtc cggcttctcc atggagcagg cccaggcata



cgtgatgcgc





1741
tactttgaga gctcagggat gacagagcac caagacagag ccctgacgct



cctccgggac





1801
cggccacttc ttctcagtca cagccacagc cctactttgt gccgggcagt



gtgccagctc





1861
tcagaggccc tgctggagct tggggaggac gccaagctgc cctccacgct



cacgggactc





1921
tatgtcggcc tgctgggccg tgcagccctc gacagccccc ccggggccct



ggcagagctg





1981
gccaagctgg cctgggagct gggccgcaga catcaaagta ccctacagga



ggaccagttc





2041
ccatccgcag acgtgaggac ctgggcgatg gccaaaggct tagtccaaca



cccaccgcgg





2101
gccgcagagt ccgagctggc cttccccagc ttcctcctgc aatgcttcct



gggggccctg





2161
tggctggctc tgagtggcga aatcaaggac aaggagctcc cgcagtacct



agcattgacc





2221
ccaaggaaga agaggcccta tgacaactgg ctggagggcg tgccacgctt



tctggctggg





2281
ctgatcttcc agcctcccgc ccgctgcctg ggagccctac tcgggccatc



ggcggctgcc





2341
tcggtggaca ggaagcagaa ggtgcttgcg aggtacctga agcggctgca



gccggggaca





2401
ctgcgggcgc ggcagctgct ggagctgctg cactgcgccc acgaggccga



ggaggctgga





2461
atttggcagc acgtggtaca ggagctcccc ggccgcctct cttttctggg



cacccgcctc





2521
acgcctcctg atgcacatgt actgggcaag gccttggagg cggcgggcca



agacttctcc





2581
ctggacctcc gcagcactgg catttgcccc tctggattgg ggagcctcgt



gggactcagc





2641
tgtgtcaccc gtttcagggc tgccttgagc gacacggtgg cgctgtggga



gtccctgcag





2701
cagcatgggg agaccaagct acttcaggca gcagaggaga agttcaccat



cgagcctttc





2761
aaagccaagt ccctgaagga tgtggaagac ctgggaaagc ttgtgcagac



tcagaggacg





2821
agaagttcct cggaagacac agctggggag ctccctgctg ttcgggacct



aaagaaactg





2881
gagtttgcgc tgggccctgt ctcaggcccc caggctttcc ccaaactggt



gcggatcctc





2941
acggcctttt cctccctgca gcatctggac ctggatgcgc tgagtgagaa



caagatcggg





3001
gacgagggtg tctcgcagct ctcagccacc ttcccccagc tgaagtcctt



ggaaaccctc





3061
aatctgtccc agaacaacat cactgacctg ggtgcctaca aactcgccga



ggccctgcct





3121
tcgctcgctg catccctgct caggctaagc ttgtacaata actgcatctg



cgacgtggga





3181
gccgagagct tggctcgtgt gcttccggac atggtgtccc tccgggtgat



ggacgtccag





3241
tacaacaagt tcacggctgc cggggcccag cagctcgctg ccagccttcg



gaggtgtcct





3301
catgtggaga cgctggcgat gtggacgccc accatcccat tcagtgtcca



ggaacacctg





3361
caacaacagg attcacggat cagcctgaga t







C2TA Protein (Homo sapiens)










SEQ ID NO: 48










1
mrclaprpag sylsepqgss qcatmelgpl eggylellns dadplclyhf




ydqmdlagee





61
eielysepdt dtincdqfsr llcdmegdee treayaniae ldqyvfqdsq



leglskdifk





121
higpdevige smempaevgq ksqkrpfpee lpadlkhwkp aepptvvtgs



llvgpvsdcs





181
tlpclplpal fnqepasgqm rlektdqipm pfsssslscl nlpegpiqfv



ptistlphgl





241
wqiseagtgv ssifiyhgev pqasqvppps gftvhglpts pdrpgstspf



apsatdlpsm





301
pepaltsran mtehktsptq cpaagevsnk lpkwpepveq fyrslqdtyg



aepagpdgil





361
vevdlvqarl ersssksler elatpdwaer qlaqgglaev llaakehrrp



retrviavlg





421
kagqgksywa gavsrawacg rlpqydfvfs vpchclnrpg dayglqdllf



slgpqplvaa





481
devfshilkr pdrvllildg feeleaqdgf lhstcgpapa epcslrglla



glfqkkllrg





541
ctllltarpr grlvqslska dalfelsgfs meqaqayvmr yfessgmteh



qdraltllrd





601
rplllshshs ptlcravcql seallelged aklpstltgl yvgllgraal



dsppgalael





661
aklawelgrr hqstlqedqf psadvrtwam akglvqhppr aaeselafps



fllqcflgal





721
wlalsgeikd kelpqylalt prkkrpydnw legvprflag lifqpparcl



gallgpsaaa





781
svdrkqkvla rylkrlqpgt lrarqllell hcaheaeeag iwqhvvqelp



grlsflgtrl





841
tppdahvlgk aleaagqdfs ldlrstgicp sglgslvgls cvtrfraals



dtvalweslq





901
qhgetkllqa aeekftiepf kakslkdved lgklvqtqrt rsssedtage



lpavrdlkkl





961
efalgpvsgp qafpklvril tafsslqhld ldalsenkig degvsqlsat



fpqlksletl





1021
nlsqnnitdl gayklaealp slaasllrls lynncicdvg aeslarvlpd



mvslrvmdvq





1081
ynkftaagaq qlaaslrrcp hvetlamwtp tipfsvqehl qqqdsrislr







Mxi1 cDNA (Homo sapiens)









SEQ ID NO: 49








1
atggagcggg tgaagatgat caacgtgcag cgtctgctgg



aggctgccga gtttttggag





61
cgccgggagc gagagtgtga acatggctac gcctcttcat



tcccgtccat gccgagcccc





121
cgactgcagc attcaaagcc cccacggagg ttgagccggg



cacagaaaca cagcagcggg





181
agcagcaaca ccagcactgc caacagatct acacacaatg



agctggaaaa gaatcgacga





241
gctcatctgc gcctttgttt agaacgctta aaagttctga



ttccactagg accagactgc





301
acccggcaca caacacttgg tttgctcaac aaagccaaag



cacacatcaa gaaacttgaa





361
gaagctgaaa gaaaaagcca gcaccagctc gagaatttgg



aacgagaaca gagattttta





421
aagtggcgac tggaacagct gcagggtcct caggagatgg



aacgaatacg aatggacagc





481
attggatcaa ctatttcttc agatcgttct gattcagagc



gagaggagat tgaagtggat





541
gttgaaagca cagagttctc ccatggagaa gtggacaata



taagtaccac cagcatcagt





601
gacattgatg accacagcag cctgccgagt attgggagtg



acgagggtta ctccagtgcc





661
agtgtcaaac tttcattcac ttcatag







MXI1 Protein (Homo sapiens)









SEQ ID NO: 50








1
mervkminvq rlleaaefle rrerecehgy assfpsmpsp



rlqhskpprr lsraqkhssg





61
ssntstanrs thneleknrr ahlrlclerl kvliplgpdc



trhttlglln kakahikkle





121
eaerksqhql enlereqrfl kwrleqlqgp qemerirmds



igstissdrs dsereeievd





181
vestefshge vdnisttsis diddhsslps igsdegyssa



svklsfts







Hes3 cDNA (Homo sapiens)









SEQ ID NO: 51








1
atggagaaaa agcgccgggc acgcatcaat gtgtcactgg



agcagctcaa gtcgctgctg





61
gagaaacact actcgcacca gatccggaag cgcaaattgg



agaaggccga catcctggag





121
ttgagcgtga agtacatgag aagccttcag aactccttgc



aagggctctg gcctgtgccc





181
aggggagccg agcaaccgtc gggcttccgc agctgcctgc



ccggcgtgag ccagctcctt





241
cggcgcggag atgaggtcgg cagcggcctg cgctgccccc



tggtgcccga gagcgccgcc





301
ggcagcacca tggacagcgc cgggttgggc caggaggcgc



ccgcgctgtt ccgcccttgc





361
acccctgccg tctgggctcc tgctccggcc gccggcggcc



cgcggtcccc accacccctg





421
ctcctcctcc ccgaaagtct ccctggctcg tccgccagcg



tccccccgcc gcagccagcg





481
tcgagtcgct gcgccgagag tcccgggctg ggcctgcgcg



tgtggcggcc ctggggaagc





541
cccggggatg acctgaactg a







HES3 Protein (Homo sapiens)









SEQ ID NO: 52








1
mekkrrarin vsleqlksll ekhyshqirk rklekadile



lsvkymrslq nslqglwpvp





61
rgaeqpsgfr sclpgvsqll rrgdevgsgl rcplvpesaa



gstmdsaglg qeapalfrpc





121
tpavwapapa aggprspppl lllpeslpgs sasvpppqpa



ssrcaespgl glrvwrpwgs





181
pgddln







Rpl22 cDNA (Homo sapiens)









SEQ ID NO: 53








1
atggctcctg tgaaaaagct tgtggtgaag gggggcaaaa



aaaagaagca agttctgaag





61
ttcactcttg attgcaccca ccctgtagaa gatggaatca



tggatgctgc caattttgag





121
cagtttttgc aagaaaggat caaagtgaac ggaaaagctg



ggaaccttgg tggaggggtg





181
gtgaccatcg aaaggagcaa gagcaagatc accgtgacat



ccgaggtgcc tttctccaaa





241
aggtatttga aatatctcac caaaaaatat ttgaagaaga



ataatctacg tgactggttg





301
cgcgtagttg ctaacagcaa agagagttac gaattacgtt



acttccagat taaccaggac





361
gaagaagagg aggaagacga ggattaa







RPL22 Protein (Homo sapiens)









SEQ ID NO: 54








1
mapvkklvvk ggkkkkqvlk ftldcthpve dgimdaanfe



qflqerikvn gkagnlgggv





61
vtierskski tvtsevpfsk rylkyltkky lkknnlrdwl



rvvanskesy elryfqinqd





121
eeeeeded







Chd5 cDNA (Homo sapiens)










SEQ ID NO: 55










1
atgcggggcc cagtgggcac cgaggaggag ctgccgcggc tgttcgccga




ggagatggag





61
aatgaggacg agatgtcaga agaagaagat ggtggtcttg aagccttcga



tgactttttc





121
cctgtggagc ccgtgagcct tcctaagaag aagaaaccca agaagctcaa



ggaaaacaag





181
tgtaaaggga agcggaagaa gaaagagggg agcaatgatg agctatcaga



gaatgaagag





241
gatctggaag agaagtcgga gagtgaaggc agtgactact ccccgaataa



aaagaagaag





301
aagaaactca aggacaagaa ggagaaaaaa gccaagcgaa aaaagaagga



tgaggatgag





361
gatgataatg atgatggatg cttaaaggag cccaagtcct cggggcagct



catggccgag





421
tggggcctgg acgacgtgga ctacctgttc tcggaggagg attaccacac



gctgaccaac





481
tacaaggcct tcagccagtt cctcaggcca ctcattgcca agaagaaccc



gaagatcccc





541
atgtccaaaa tgatgaccgt cctgggtgcc aagtggcggg agttcagcgc



caacaacccc





601
ttcaagggca gctccgcggc agcagcggcg gcggcggtgg ctgcggctgt



agagacggtc





661
accatctccc ctccgctagc cgtcagcccc ccgcaggtgc cccagcctgt



gcctatccgc





721
aaggccaaga ccaaggaggg caaagggcct ggagtgagga agaagatcaa



aggctccaaa





781
gatgggaaga aaaagggcaa agggaaaaag acggccgggc tcaagttccg



cttcgggggg





841
atcagcaaca agaggaagaa aggctcctcg agtgaagaag atgagaggga



ggagtcggac





901
ttcgacagcg ccagcatcca cagtgcctcc gtgcgctccg aatgctctgc



agccctgggc





961
aagaagagca agaggaggcg caagaagaag aggattgatg atggtgacgg



ctatgagaca





1021
gaccaccagg attactgtga ggtgtgccag cagggtgggg agatcatcct



gtgcgacacc





1081
tgcccgaggg cctaccatct cgtatgcctg gacccagagc tggagaaggc



tcccgagggc





1141
aagtggagct gcccccactg tgagaaggag gggatccagt gggagccgaa



ggacgacgac





1201
gatgaagagg aggagggcgg ctgcgaggag gaggaggacg accacatgga



gttctgccgc





1261
gtgtgcaagg acgggggcga gctgctctgc tgcgacgcct gcccctcctc



ctaccacctg





1321
cattgcctca acccgccgct gcccgagatc ccaaacggtg aatggctctg



cccgcgctgt





1381
acttgccccc cactgaaggg caaagtccag cggattctac actggaggtg



gacggagccc





1441
cctgccccct tcatggtggg gctgccgggg cctgacgtgg agcccagcct



ccctccacct





1501
aagcccctgg agggcatccc tgagagagag ttctttgtca agtgggcagg



gctgtcctac





1561
tggcattgct cctgggtgaa ggagctacag ctggagctgt accacacggt



gatgtatcgc





1621
aactaccaaa gaaagaacga catggatgag ccgcccccct ttgactacgg



ctctggggat





1681
gaagacggca agagcgagaa gaggaagaac aaggaccccc tctatgccaa



gatggaggag





1741
cgcttctacc gctatggcat caagccagag tggatgatga ttcaccgaat



cctgaaccat





1801
agctttgaca agaaggggga tgtgcactac ctgatcaagt ggaaagacct



gccctacgac





1861
cagtgcacct gggagatcga tgacatcgac atcccctact acgacaacct



caagcaggcc





1921
tactggggcc acagggagct gatgctggga gaagacacca ggctgcccaa



gaggctgctc





1981
aagaagggca agaagctgag ggacgacaag caggagaagc cgccggacac



gcccattgtg





2041
gaccccacgg tcaagttcga caagcagcca tggtacatcg actccacagg



cggcacactg





2101
cacccgtacc agctggaggg cctcaactgg ctgcgcttct cttgggccca



gggcactgac





2161
accatcctgg ccgatgagat gggtctgggc aagacggtgc agaccatcgt



gttcctttac





2221
tccctctaca aggagggcca ctccaaaggg ccctacctgg ttagcgcgcc



cctctccacc





2281
atcatcaact gggaacgcga gtttgagatg tgggcgcccg acttctacgt



ggtcacctac





2341
acgggggaca aggagagccg ctcggtgatt cgggagaacg agttttcctt



tgaggacaac





2401
gccattcgga gtgggaagaa ggtattccgt atgaagaaag aagtgcagat



caaattccac





2461
gtgctgctca cctcctatga gctcatcacc attgaccagg ccatcctggg



ctccatcgag





2521
tgggcctgcc tggtggtaga tgaggcccac cgcctcaaga acaaccagtc



caagtttttt





2581
agggtcttaa acagctacaa gattgattac aagctgctgc tgacagggac



cccccttcag





2641
aacaacctgg aggagctgtt ccatctcctc aacttcctga ctccagagag



gttcaacaac





2701
ctggagggct tcctggagga gtttgctgac atctccaagg aagaccagat



caagaagctg





2761
catgacctgc tggggccgca catgctcagg cggctcaagg ctgacgtgtt



caagaacatg





2821
ccggccaaga ccgagctcat tgtccgggtg gagctgagcc agatgcagaa



gaagtactac





2881
aagttcatcc tcacacggaa ctttgaggca ctgaactcca aggggggcgg



gaaccaagta





2941
tcgctgctca acatcatgat ggacctgaaa aagtgctgca accaccccta



cctcttccct





3001
gtggctgccg tggaggcccc tgtcttgccc aatggctcct acgatggaag



ctccctggtc





3061
aagtcttcag ggaagctcat gctgctacag aagatgctga agaaactgcg



ggatgagggg





3121
caccgtgtgc tcatcttctc ccagatgacc aagatgctgg acctcctgga



ggacttcctg





3181
gagtacgaag gctacaagta tgagcggatt gatggtggca tcaccggggg



cctccggcag





3241
gaggcaatcg acagattcaa tgcccccggg gcccagcagt tctgcttcct



cctctcaacc





3301
cgggcaggtg gtctgggcat caacctggcc acggcggaca ctgtcatcat



ctacgactcg





3361
gactggaacc cgcacaatga catccaggcc ttcagccgcg cccaccgcat



cggccagaac





3421
aagaaggtga tgatctaccg cttcgtgact cgggcctcgg tggaggagcg



catcacgcag





3481
gtggccaagc gcaagatgat gctcacccac ctggtggtgc ggcccggcct



cggctccaag





3541
tcggggtcca tgaccaagca ggagctggac gacatcctca agttcggcac



ggaggaactc





3601
ttcaaggacg acgtggaggg catgatgtct cagggccaga ggccggtcac



acccatccct





3661
gatgtccagt cctccaaagg ggggaacttg gccgccagtg caaagaagaa



gcacggtagc





3721
accccgccag gtgacaacaa ggacgtggag gacagcagtg tgatccacta



tgacgatgcg





3781
gccatctcca agctgctgga ccggaaccag gacgctacag atgacacgga



gctacagaac





3841
atgaacgagt acctgagctc cttcaaggtg gcgcagtacg tggtgcgcga



ggaggacggc





3901
gtggaggagg tggagcggga aatcatcaag caggaggaga acgtggaccc



cgactactgg





3961
gagaagctgc tgcggcacca ctatgagcag cagcaggagg acctggcccg



caacctgggc





4021
aagggcaagc gcatccgcaa gcaggtcaac tacaacgatg cctcccagga



ggaccaggag





4081
tggcaggatg agctctctga taaccagtca gaatattcca ttggctctga



ggatgaggat





4141
gaggactttg aagagaggcc ggaagggcag agtggacgac gacaatcccg



gaggcagctg





4201
aagagtgaca gggacaagcc cctgcccccg cttctcgccc gagttggtgg



caacatcgag





4261
gtgctgggct tcaatgcccg acagcggaag gcctttctga acgccatcat



gcgctggggc





4321
atgcccccgc aggacgcctt caactcccac tggctggtgc gggaccttcg



agggaagagc





4381
gagaaggagt ttagagccta tgtgtccctc ttcatgcggc acctgtgtga



gccgggggcg





4441
gatggtgcag agaccttcgc agacggcgtg ccccgggagg gcctctccag



gcagcacgtg





4501
ctgacccgca tcggggtcat gtcactagtt aggaagaagg ttcaggagtt



tgagcatgtc





4561
aacgggaagt acagcacccc agacttgatc cctgaggggc ccgaggggaa



gaagtcgggc





4621
gaggtgatct cctcggaccc caacacacca gtgcccgcca gccctgccca



cctcctgcca





4681
gccccgctgg gcctgccaga caaaatggaa gcccagctgg gctacatgga



tgagaaagac





4741
cccggggcac agaagccaag gcagcccctg gaagtccagg cccttccagc



cgccttggat





4801
agagtggaga gtgaggacaa gcacgagagc ccagccagca aggagagagc



ccgagaggag





4861
cggccagagg agacggagaa ggccccgccc tccccggagc agctgccgag



agaggaggtg





4921
cttcctgaga aggagaagat cctggacaag ctggagctga gcttgatcca



cagcagaggg





4981
gacagttccg aactcaggcc agatgacacc aaggctgagg agaaggagcc



cattgaaaca





5041
cagcaaaatg gtgacaaaga ggaagatgac gaggggaaga aggaggacaa



gaaggggaaa





5101
ttcaagttca tgttcaacat cgcggacggg ggcttcacgg agttgcacac



gctgtggcag





5161
aacgaggagc gggctgctgt atcctctggg aaaatctacg acatctggca



ccggcgccat





5221
gactactggc tgctggcggg catcgtgacg cacggctacg cccgctggca



ggacatccag





5281
aatgacccac ggtacatgat cctcaacgag cccttcaagt ctgaggtcca



caagggcaac





5341
tacctggaga tgaagaacaa gttcctggcc cgcaggttta agctgctgga



gcaggcgttg





5401
gtcattgagg agcagctccg gagggccgcg tacctgaaca tgacgcagga



ccccaaccac





5461
cccgccatgg ccctcaacgc ccgcctggct gaagtggagt gcctcgccga



gagccaccag





5521
cacctgtcca aggagtccct tgctgggaac aagcctgcca atgccgtcct



gcacaaggtc





5581
ctgaaccagc tggaggagct gctgagcgac atgaaggccg acgtgacccg



gctgccatcc





5641
atgctgtccc gcatcccccc ggtggccgcc cggctgcaga tgtcggagcg



cagcatcctg





5701
agccgcctga ccaaccgcgc cggggacccc accatccagc agggcgcttt



cggctcctcc





5761
cagatgtaca gcaacaactt tgggcccaac ttccggggcc ctggaccggg



agggattgtc





5821
aactacaacc agatgcccct ggggccctat gtgaccgata tctag







CHD5 Protein (Homo sapiens)










SEQ ID NO: 56










1
mrgpvgteee lprlfaeeme nedemseeed ggleafddff pvepvslpkk




kkpkklkenk





61
ckgkrkkkeg sndelsenee dleekseseg sdyspnkkkk kklkdkkekk



akrkkkdede





121
ddnddgclke pkssgqlmae wglddvdylf seedyhtltn ykafsqflrp



liakknpkip





181
mskmmtvlga kwrefsannp fkgssaaaaa aavaaavetv tispplavsp



pqvpqpvpir





241
kaktkegkgp gvrkkikgsk dgkkkgkgkk taglkfrfgg isnkrkkgss



seedereesd





301
fdsasihsas vrsecsaalg kkskrrrkkk riddgdgyet dhqdycevcq



qggeiilcdt





361
cprayhlvcl dpelekapeg kwscphceke giqwepkddd deeeeggcee



eeddhmefcr





421
vckdggellc cdacpssyhl hclnpplpei pngewlcprc tcpplkgkvq



rilhwrwtep





481
papfmvglpg pdvepslppp kplegipere ffvkwaglsy whcswvkelq



lelyhtvmyr





541
nyqrkndmde pppfdygsgd edgksekrkn kdplyakmee rfyrygikpe



wmmihrilnh





601
sfdkkgdvhy likwkdlpyd qctweiddid ipyydnlkqa ywghrelmlg



edtrlpkrll





661
kkgkklrddk qekppdtpiv dptvkfdkqp wyidstggtl hpyqleglnw



lrfswaqgtd





721
tilademglg ktvqtivfly slykeghskg pylvsaplst iinwerefem



wapdfyvvty





781
tgdkesrsvi renefsfedn airsgkkvfr mkkevqikfh vlltsyelit



idqailgsie





841
waclvvdeah rlknnqskff rvlnsykidy kllltgtplq nnleelfhll



nfltperfnn





901
legfleefad iskedqikkl hdllgphmlr rlkadvfknm paktelivrv



elsqmqkkyy





961
kfiltrnfea lnskgggnqv sllnimmdlk kccnhpylfp vaaveapvlp



ngsydgsslv





1021
kssgklmllq kmlkklrdeg hrvlifsqmt kmldlledfl eyegykyeri



dggitgglrq





1081
eaidrfnapg aqqfcfllst ragglginla tadtviiyds dwnphndiqa



fsrahrigqn





1141
kkvmiyrfvt rasveeritq vakrkmmlth lvvrpglgsk sgsmtkqeld



dilkfgteel





1201
fkddvegmms qgqrpvtpip dvqsskggnl aasakkkhgs tppgdnkdve



dssvihydda





1261
aisklldrnq datddtelqn mneylssfkv aqyvvreedg veevereiik



qeenvdpdyw





1321
ekllrhhyeq qqedlarnlg kgkrirkqvn yndasqedqe wqdelsdnqs



eysigseded





1381
edfeerpegq sgrrqsrrql ksdrdkplpp llarvggnie vlgfnarqrk



aflnaimrwg





1441
mppqdafnsh wlvrdlrgks ekefrayvsl fmrhlcepga dgaetfadgv



preglsrqhv





1501
ltrigvmslv rkkvqefehv ngkystpdli pegpegkksg evissdpntp



vpaspahllp





1561
aplglpdkme aqlgymdekd pgaqkprqpl evqalpaald rvesedkhes



paskeraree





1621
rpeetekapp speqlpreev lpekekildk lelslihsrg dsselrpddt



kaeekepiet





1681
qqngdkeedd egkkedkkgk fkfmfniadg gftelhtlwq neeraavssg



kiydiwhrrh





1741
dywllagivt hgyarwqdiq ndprymilne pfksevhkgn ylemknkfla



rrfklleqal





1801
vieeqlrraa ylnmtqdpnh pamalnarla eveclaeshq hlskeslagn



kpanavlhkv





1861
lnqleellsd mkadvtrlps mlsrippvaa rlqmsersil srltnragdp



tiqqgafgss





1921
qmysnnfgpn frgpgpggiv nynqmplgpy vtdi







Ikaros cDNA (Homo sapiens)










SEQ ID NO: 57










1
atggatgctg atgagggtca agacatgtcc caagtttcag ggaaggaaag




cccccctgta





61
agcgatactc cagatgaggg cgatgagccc atgccgatcc ccgaggacct



ctccaccacc





121
tcgggaggac agcaaagctc caagagtgac agagtcgtgg ccagtaatgt



taaagtagag





181
actcagagtg atgaagagaa tgggcgtgcc tgtgaaatga atggggaaga



atgtgcggag





241
gatttacgaa tgcttgatgc ctcgggagag aaaatgaatg gctcccacag



ggaccaaggc





301
agctcggctt tgtcgggagt tggaggcatt cgacttccta acggaaaact



aaagtgtgat





361
atctgtggga tcatttgcat cgggcccaat gtgctcatgg ttcacaaaag



aagccacact





421
ggagaacggc ccttccagtg caatcagtgc ggggcctcat tcacccagaa



gggcaacctg





481
ctccggcaca tcaagctgca ttccggggag aagcccttca aatgccacct



ctgcaactac





541
gcctgccgcc ggagggacgc cctcactggc cacctgagga cgcactccgt



tggtaaacct





601
cacaaatgtg gatattgtgg ccgaagctat aaacagcgaa gctctttaga



ggaacataaa





661
gagcgctgcc acaactactt ggaaagcatg ggccttccgg gcacactgta



cccagtcatt





721
aaagaagaaa ctaatcacag tgaaatggca gaagacctgt gcaagatagg



atcagagaga





781
tctctcgtgc tggacagact agcaagtaac gtcgccaaac gtaagagctc



tatgcctcag





841
aaatttcttg gggacaaggg cctgtccgac acgccctacg acagcagcgc



cagctacgag





901
aaggagaacg aaatgatgaa gtcccacgtg atggaccaag ccatcaacaa



cgccatcaac





961
tacctggggg ccgagtccct gcgcccgctg gtgcagacgc ccccgggcgg



ttccgaggtg





1021
gtcccggtca tcagcccgat gtaccagctg cacaagccgc tcgcggaggg



caccccgcgc





1081
tccaaccact cggcccagga cagcgccgtg gagaacctgc tgctgctctc



caaggccaag





1141
ttggtgccct cggagcgcga ggcgtccccg agcaacagct gccaagactc



cacggacacc





1201
gagagcaaca acgaggagca gcgcagcggt ctcatctacc tgaccaacca



catcgccccg





1261
cacgcgcgca acgggctgtc gctcaaggag gagcaccgcg cctacgacct



gctgcgcgcc





1321
gcctccgaga actcgcagga cgcgctccgc gtggtcagca ccagcgggga



gcagatgaag





1381
gtgtacaagt gcgaacactg ccgggtgctc ttcctggatc acgtcatgta



caccatccac





1441
atgggctgcc acggcttccg tgatcctttt gagtgcaaca tgtgcggcta



ccacagccag





1501
gaccggtacg agttctcgtc gcacataacg cgaggggagc accgcttcca



catgagctaa







IKAROS Protein (Homo sapiens)










SEQ ID NO: 58










1
mdadegqdms qvsgkesppv sdtpdegdep mpipedlstt sggqqssksd




rvvasnvkve





61
tqsdeengra cemngeecae dlrmldasge kmngshrdqg ssalsgvggi



rlpngklkcd





121
icgiicigpn vlmvhkrsht gerpfqcnqc gasftqkgnl lrhiklhsge



kpfkchlcny





181
acrrrdaltg hlrthsvgkp hkcgycgrsy kqrssleehk erchnylesm



glpgtlypvi





241
keetnhsema edlckigser slvldrlasn vakrkssmpq kflgdkglsd



tpydssasye





301
kenemmkshv mdqainnain ylgaeslrpl vqtppggsev vpvispmyql



hkplaegtpr





361
snhsaqdsav enllllskak lvpsereasp snscqdstdt esnneeqrsg



liyltnhiap





421
harnglslke ehraydllra asensqdalr vvstsgeqmk vykcehcrvl



fldhvmytih





481
mgchgfrdpf ecnmcgyhsq dryefsshit rgehrfhms







Ptprn2 cDNA (Homo sapiens)










SEQ ID NO: 59










1
atggggccgc cgctcccgct gctgctgctg ctactgctgc tgctgccgcc




acgcgtcctg





61
cctgccgccc cttcgtccgt cccccgcggc cggcagctcc cggggcgtct



gggctgcctg





121
ctcgaggagg gcctctgcgg agcgtccgag gcctgtgtga acgatggagt



gtttggaagg





181
tgccagaagg ttccggcaat ggacttttac cgctacgagg tgtcgcccgt



ggccctgcag





241
cgcctgcgcg tggcgttgca gaagctttcc ggcacaggtt tcacgtggca



ggatgactat





301
actcagtatg tgatggacca ggaacttgca gacctcccga aaacctacct



gaggcgtcct





361
gaagcatcca gcccagccag gccctcaaaa cacagcgttg gcagcgagag



gaggtacagt





421
cgggagggcg gtgctgccct ggccaacgcc ctccgacgcc acctgccctt



cctggaggcc





481
ctgtcccagg ccccagcctc agacgtgctc gccaggaccc atacggcgca



ggacagaccc





541
cccgctgagg gtgatgaccg cttctccgag agcatcctga cctatgtggc



ccacacgtct





601
gcgctgacct accctcccgg gccccggacc cagctccgcg aggacctcct



gccgcggacc





661
ctcggccagc tccagccaga tgagctcagc cctaaggtgg acagtggtgt



ggacagacac





721
catctgatgg cggccctcag tgcctatgct gcccagaggc ccccagctcc



ccccggggag





781
ggcagcctgg agccacagta ccttctgcgt gcaccctcaa gaatgcccag



gcctttgctg





841
gcaccagccg ccccccagaa gtggccttca cctctgggag attccgaaga



cccctccagc





901
acaggcgatg gagcacggat tcataccctc ctgaaggacc tgcagaggca



gccggctgag





961
gtgaggggcc tgagtggcct ggagctggac ggcatggctg agctgatggc



tggcctgatg





1021
caaggcgtgg accatggagt agctcgaggc agccctggga gagcggccct



gggagagtct





1081
ggagaacagg cggatggccc caaggccacc ctccgtggag acagctttcc



agatgacgga





1141
gtgcaggacg acgatgatag actttaccaa gaggtccatc gtctgagtgc



cacactcggg





1201
ggcctcctgc aggaccacgg gtctcgactc ttacctggag ccctcccctt



tgcaaggccc





1261
ctcgacatgg agaggaagaa gtccgagcac cctgagtctt ccctgtcttc



agaagaggag





1321
actgccggag tggagaacgt caagagccag acgtattcca aagatctgct



ggggcagcag





1381
ccgcattcgg agcccggggc cgctgcgttt ggggagctcc aaaaccagat



gcctgggccc





1441
tcgaaggagg agcagagcct tccagcgggt gctcaggagg ccctcagcga



cggcctgcaa





1501
ttggaggtcc agccttccga ggaagaggcg cggggctaca tcgtgacaga



cagagacccc





1561
ctgcgccccg aggaaggaag gcggctggtg gaggacgtcg cccgcctcct



gcaggtgccc





1621
agcagtgcgt tcgctgacgt ggaggttctc ggaccagcag tgaccttcaa



agtgagcgcc





1681
aatgtccaaa acgtgaccac tgaggatgtg gagaaggcca cagttgacaa



caaagacaaa





1741
ctggaggaaa cctctggact gaaaattctt caaaccggag tcgggtcgaa



aagcaaactc





1801
aagttcctgc ctcctcaggc ggagcaagaa gactccacca agttcatcgc



gctcaccctg





1861
gtctccctcg cctgcatcct gggcgtcctc ctggcctctg gcctcatcta



ctgcctccgc





1921
catagctctc agcacaggct gaaggagaag ctctcgggac tagggggcga



cccaggtgca





1981
gatgccactg ccgcctacca ggagctgtgc cgccagcgta tggccacgcg



gccaccagac





2041
cgacctgagg gcccgcacac gtcacgcatc agcagcgtct catcccagtt



cagcgacggg





2101
ccgatcccca gcccctccgc acgcagcagc gcctcatcct ggtccgagga



gcctgtgcag





2161
tccaacatgg acatctccac cggccacatg atcctgtcct acatggagga



ccacctgaag





2221
aacaagaacc ggctggagaa ggagtgggaa gcgctgtgcg cctaccaggc



ggagcccaac





2281
agctcgttcg tggcccagag ggaggagaac gtgcccaaga accgctccct



ggctgtgctg





2341
acctatgacc actcccgggt cctgctgaag gcggagaaca gccacagcca



ctcagactac





2401
atcaacgcta gccccatcat ggatcacgac ccgaggaacc ccgcgtacat



cgccacccag





2461
ggaccgctgc ccgccaccgt ggctgacttt tggcagatgg tgtgggagag



cggctgcgtg





2521
gtgatcgtca tgctgacacc cctcgcggag aacggcgtcc ggcagtgcta



ccactactgg





2581
ccggatgaag gctccaatct ctaccacatc tatgaggtga acctggtctc



cgagcacatc





2641
tggtgtgagg acttcctggt gaggagcttc tatctgaaga acctgcagac



caacgagacg





2701
cgcaccgtga cgcagttcca cttcctgagt tggtatgacc gaggagtccc



ttcctcctca





2761
aggtccctcc tggacttccg cagaaaagta aacaagtgct acaggggccg



ttcttgtcca





2821
ataattgttc attgcagtga cggtgcaggc cggagcggca cctacgtcct



gatcgacatg





2881
gttctcaaca agatggccaa aggtgctaaa gagattgata tcgcagcgac



cctggagcac





2941
ttgagggacc agagacccgg catggtccag acgaaggagc agtttgagtt



cgcgctgaca





3001
gccgtggctg aggaggtgaa cgccatcctc aaggcccttc cccagtga







PTPRN2 Protein (Homo sapiens)










SEQ ID NO: 60










1
mgpplpllll lllllpprvl paapssvprg rqlpgrlgcl leeglcgase




acvndgvfgr





61
cqkvpamdfy ryevspvalq rlrvalqkls gtgftwqddy tqyvmdqela



dlpktylrrp





121
eassparpsk hsvgserrys reggaalana lrrhlpflea lsqapasdvl



arthtaqdrp





181
paegddrfse siltyvahts altyppgprt qlredllprt lgqlqpdels



pkvdsgvdrh





241
hlmaalsaya aqrppappge gslepqyllr apsrmprpll apaapqkwps



plgdsedpss





301
tgdgarihtl lkdlqrqpae vrglsgleld gmaelmaglm qgvdhgvarg



spgraalges





361
geqadgpkat lrgdsfpddg vqddddrlyq evhrlsatlg gllqdhgsrl



lpgalpfarp





421
ldmerkkseh pesslsseee tagvenvksq tyskdllgqq phsepgaaaf



gelqnqmpgp





481
skeeqslpag aqealsdglq levqpseeea rgyivtdrdp lrpeegrrlv



edvarllqvp





541
ssafadvevl gpavtfkvsa nvqnvttedv ekatvdnkdk leetsglkil



qtgvgskskl





601
kflppqaeqe dstkfialtl vslacilgvl lasgliyclr hssqhrlkek



lsglggdpga





661
dataayqelc rqrmatrppd rpegphtsri ssvssqfsdg pipspsarss



asswseepvq





721
snmdistghm ilsymedhlk nknrlekewe alcayqaepn ssfvaqreen



vpknrslavl





781
tydhsrvllk aenshshsdy inaspimdhd prnpayiatq gplpatvadf



wqmvwesgcv





841
vivmltplae ngvrqcyhyw pdegsnlyhi yevnlvsehi wcedflvrsf



ylknlqtnet





901
rtvtqfhfls wydrgvpsss rslldfrrkv nkcyrgrscp iivhcsdgag



rsgtyvlidm





961
vlnkmakgak eidiaatleh lrdqrpgmvq tkeqfefalt avaeevnail



kalpq







Tcrb cDNA (Partial Sequence) (Homo sapiens)










SEQ ID NO: 61










1
atgggctgaa gtctccactg tggtgtggtc cattgtctca ggctccatgg




atactggaat





61
tacccagaca ccaaaatacc tggtcacagc aatggggagt aaaaggacaa



tgaaacgtga





121
gcatctggga catgattcta tgtattggta cagacagaaa gctaagaaat



ccctggagtt





181
catgttttac tacaactgta aggaattcat tgaaaacaag actgtgccaa



atcacttcac





241
acctgaatgc cctgacagct ctcgcttata ccttcatgtg gtcgcactgc



agcaagaaga





301
ctcagctgcg tatctctgca ccagcagcca aga







TCRB Protein (Homo sapiens)










SEQ ID NO: 62










1
mgtsllcwma lcllgadhad tgvsqnprhn itkrgqnvtf rcdpisehnr




lywyrqtlgq





61
gpefltyfqn eaqleksrll sdrfsaerpk gsfstleiqr teqgdsamyl



casslaglnq





121
pqhfgdgtrl sil







Gnaq cDNA (Homo sapiens)










SEQ ID NO: 63










1
atgactctgg agtccatcat ggcgtgctgc ctgagcgagg aggccaagga




agcccggcgg





61
atcaacgacg agatcgagcg gcagctccgc agggacaagc gggacgcccg



ccgggagctc





121
aagctgctgc tgctcgggac aggagagagt ggcaagagta cgtttatcaa



gcagatgaga





181
atcatccatg ggtcaggata ctctgatgaa gataaaaggg gcttcaccaa



gctggtgtat





241
cagaacatct tcacggccat gcaggccatg atcagagcca tggacacact



caagatccca





301
tacaagtatg agcacaataa ggctcatgca caattagttc gagaagttga



tgtggagaag





361
gtgtctgctt ttgagaatcc atatgtagat gcaataaaga gtttatggaa



tgatcctgga





421
atccaggaat gctatgatag acgacgagaa tatcaattat ctgactctac



caaatactat





481
cttaatgact tggaccgcgt agctgaccct gcctacctgc ctacgcaaca



agatgtgctt





541
agagttcgag tccccaccac agggatcatc gaatacccct ttgacttaca



aagtgtcatt





601
ttcagaatgg tcgatgtagg gggccaaagg tcagagagaa gaaaatggat



acactgcttt





661
gaaaatgtca cctctatcat gtttctagta gcgcttagtg aatatgatca



agttctcgtg





721
gagtcagaca atgagaaccg aatggaggaa agcaaggctc tctttagaac



aattatcaca





781
tacccctggt tccagaactc ctcggttatt ctgttcttaa acaagaaaga



tcttctagag





841
gagaaaatca tgtattccca tctagtcgac tacttcccag aatatgatgg



accccagaga





901
gatgcccagg cagcccgaga attcattctg aagatgttcg tggacctgaa



cccagacagt





961
gacaaaatta tctactccca cttcacgtgc gccacagaca ccgagaatat



ccgctttgtc





1021
tttgctgccg tcaaggacac catcctccag ttgaacctga aggagtacaa



tctggtctaa







GNAQ Protein (Homo sapiens)










SEQ ID NO: 64










1
mtlesimacc lseeakearr indeierqlr rdkrdarrel kllllgtges




gkstfikqmr





61
iihgsgysde dkrgftklvy gniftamqam iramdtlkip ykyehnkaha



qlvrevdvek





121
vsafenpyvd aikslwndpg iqecydrrre yqlsdstkyy lndldrvadp



aylptqqdvl





181
rvrvpttgii eypfdlqsvi frmvdvggqr serrkwihcf envtsimflv



alseydqvlv





241
esdnenrmee skalfrtiit ypwfqnssvi lflnkkdlle ekimyshlvd



yfpeydgpqr





301
daqaarefil kmfvdlnpds dkiiyshftc atdtenirfv faavkdtilq



lnlkeynlv







Pten cDNA (Homo sapiens)










SEQ ID NO: 65










1
atgacagcca tcatcaaaga gatcgttagc agaaacaaaa ggagatatca




agaggatgga





61
ttcgacttag acttgaccta tatttatcca aacattattg ctatgggatt



tcctgcagaa





121
agacttgaag gcgtatacag gaacaatatt gatgatgtag taaggttttt



ggattcaaag





181
cataaaaacc attacaagat atacaatctt tgtgctgaaa gacattatga



caccgccaaa





241
tttaattgca gagttgcaca atatcctttt gaagaccata acccaccaca



gctagaactt





301
atcaaaccct tttgtgaaga tcttgaccaa tggctaagtg aagatgacaa



tcatgttgca





361
gcaattcact gtaaagctgg aaagggacga actggtgtaa tgatatgtgc



atatttatta





421
catcggggca aatttttaaa ggcacaagag gccctagatt tctatgggga



agtaaggacc





481
agagacaaaa agggagtaac tattcccagt cagaggcgct atgtgtatta



ttatagctac





541
ctgttaaaga atcatctgga ttatagacca gtggcactgt tgtttcacaa



gatgatgttt





601
gaaactattc caatgttcag tggcggaact tgcaatcctc agtttgtggt



ctgccagcta





661
aaggtgaaga tatattcctc caattcagga cccacacgac gggaagacaa



gttcatgtac





721
tttgagttcc ctcagccgtt acctgtgtgt ggtgatatca aagtagagtt



cttccacaaa





781
cagaacaaga tgctaaaaaa ggacaaaatg tttcactttt gggtaaatac



attcttcata





841
ccaggaccag aggaaacctc agaaaaagta gaaaatggaa gtctatgtga



tcaagaaatc





901
gatagcattt gcagtataga gcgtgcagat aatgacaagg aatatctagt



acttacttta





961
acaaaaaatg atcttgacaa agcaaataaa gacaaagcca accgatactt



ttctccaaat





1021
tttaaggtga agctgtactt cacaaaaaca gtagaggagc cgtcaaatcc



agaggctagc





1081
agttcaactt ctgtaacacc agatgttagt gacaatgaac ctgatcatta



tagatattct





1141
gacaccactg actctgatcc agagaatgaa ccttttgatg aagatcagca



tacacaaatt





1201
acaaaagtct ga







PTEN Protein (Homo sapiens)










SEQ ID NO: 66










1
mtaiikeivs rnkrryqedg fdldltyiyp niiamgfpae rlegvyrnni




ddvvrfldsk





61
hknhykiynl caerhydtak fncrvaqypf edhnppqlel ikpfcedldq



wlseddnhva





121
aihckagkgr tgvmicayll hrgkflkaqe aldfygevrt rdkkgvtips



qrryvyyysy





181
llknhldyrp vallfhkmmf etipmfsggt cnpqfvvcql kvkiyssnsg



ptrredkfmy





241
fefpqplpvc gdikveffhk qnkmlkkdkm fhfwvntffi pgpeetsekv



engslcdqei





301
dsicsierad ndkeylvltl tkndldkank dkanryfspn fkvklyftkt



veepsnpeas





361
sstsvtpdvs dnepdhyrys dttdsdpene pfdedqhtqi tkv







Fbxw7 cDNA (Homo sapiens)










SEQ ID NO: 67










1
atgaatcagg aactgctctc tgtgggcagc aaaagacgac gaactggagg




ctctctgaga





61
ggtaaccctt cctcaagcca ggtagatgaa gaacagatga atcgtgtggt



agaggaggaa





121
cagcaacagc aactcagaca acaagaggag gagcacactg caaggaatgg



tgaagttgtt





181
ggagtagaac ctagacctgg aggccaaaat gattcccagc aaggacagtt



ggaagaaaac





241
aataatagat ttatttcggt agatgaggac tcctcaggaa accaagaaga



acaagaggaa





301
gatgaagaac atgctggtga acaagatgag gaggatgagg aggaggagga



gatggaccag





361
gagagtgacg attttgatca gtctgatgat agtagcagag aagatgaaca



tacacatact





421
aacagtgtca cgaactccag tagtattgtg gacctgcccg ttcaccaact



ctcctcccca





481
ttctatacaa aaacaacaaa aatgaaaaga aagttggacc atggttctga



ggtccgctct





541
ttttctttgg gaaagaaacc atgcaaagtc tcagaatata caagtaccac



tgggcttgta





601
ccatgttcag caacaccaac aacttttggg gacctcagag cagccaatgg



ccaagggcaa





661
caacgacgcc gaattacatc tgtccagcca cctacaggcc tccaggaatg



gctaaaaatg





721
tttcagagct ggagtggacc agagaaattg cttgctttag atgaactcat



tgatagttgt





781
gaaccaacac aagtaaaaca tatgatgcaa gtgatagaac cccagtttca



acgagacttc





841
atttcattgc tccctaaaga gttggcactc tatgtgcttt cattcctgga



acccaaagac





901
ctgctacaag cagctcagac atgtcgctac tggagaattt tggctgaaga



caaccttctc





961
tggagagaga aatgcaaaga agaggggatt gatgaaccat tgcacatcaa



gagaagaaaa





1021
gtaataaaac caggtttcat acacagtcca tggaaaagtg catacatcag



acagcacaga





1081
attgatacta actggaggcg aggagaactc aaatctccta aggtgctgaa



aggacatgat





1141
gatcatgtga tcacatgctt acagttttgt ggtaaccgaa tagttagtgg



ttctgatgac





1201
aacactttaa aagtttggtc agcagtcaca ggcaaatgtc tgagaacatt



agtgggacat





1261
acaggtggag tatggtcatc acaaatgaga gacaacatca tcattagtgg



atctacagat





1321
cggacactca aagtgtggaa tgcagagact ggagaatgta tacacacctt



atatgggcat





1381
acttccactg tgcgttgtat gcatcttcat gaaaaaagag ttgttagcgg



ttctcgagat





1441
gccactctta gggtttggga tattgagaca ggccagtgtt tacatgtttt



gatgggtcat





1501
gttgcagcag tccgctgtgt tcaatatgat ggcaggaggg ttgttagtgg



agcatatgat





1561
tttatggtaa aggtgtggga tccagagact gaaacctgtc tacacacgtt



gcaggggcat





1621
actaatagag tctattcatt acagtttgat ggtatccatg tggtgagtgg



atctcttgat





1681
acatcaatcc gtgtttggga tgtggagaca gggaattgca ttcacacgtt



aacagggcac





1741
cagtcgttaa caagtggaat ggaactcaaa gacaatattc ttgtctctgg



gaatgcagat





1801
tctacagtta aaatctggga tatcaaaaca ggacagtgtt tacaaacatt



gcaaggtccc





1861
aacaagcatc agagtgctgt gacctgttta cagttcaaca agaactttgt



aattaccagc





1921
tcagatgatg gaactgtaaa actatgggac ttgaaaacgg gtgaatttat



tcgaaaccta





1981
gtcacattgg agagtggggg gagtggggga gttgtgtggc ggatcagagc



ctcaaacaca





2041
aagctggtgt gtgcagttgg gagtcggaat gggactgaag aaaccaagct



gctggtgctg





2101
gactttgatg tggacatgaa gtga







FBXW7 Protein (Homo sapiens)










SEQ ID NO: 68










1
mnqellsvgs krrrtggslr gnpsssqvde eqmnrvveee qqqqlrqqee




ehtarngevv





61
gveprpggqn dsqqgqleen nnrfisvded ssgnqeeqee deehageqde



edeeeeemdq





121
esddfdqsdd ssredehtht nsvtnsssiv dlpvhqlssp fytkttkmkr



kldhgsevrs





181
fslgkkpckv seytsttglv pcsatpttfg dlraangqgq qrrritsvqp



ptglqewlkm





241
fqswsgpekl laldelidsc eptqvkhmmq viepqfqrdf isllpkelal



yvlsflepkd





301
llqaaqtcry wrilaednll wrekckeegi deplhikrrk vikpgfihsp



wksayirqhr





361
idtnwrrgel kspkvlkghd dhvitclqfc gnrivsgsdd ntlkvwsavt



gkclrtlvgh





421
tggvwssqmr dniiisgstd rtlkvwnaet gecihtlygh tstvrcmhlh



ekrvvsgsrd





481
atlrvwdiet gqclhvlmgh vaavrcvqyd grrvvsgayd fmvkvwdpet



etclhtlqgh





541
tnrvyslqfd gihvvsgsld tsirvwdvet gncihtltgh qsltsgmelk



dnilvsgnad





601
stvkiwdikt gqclqtlqgp nkhqsavtcl qfnknfvits sddgtvklwd



lktgefirnl





661
vtlesggsgg vvwrirasnt klvcavgsrn gteetkllvl dfdvdmk













TABLE 1







MCR overlap between murine TKO and human T-ALL datasets











Mouse
Cancer




TKO
Genes
Human T-ALL
























Peak

or




Peak


MCR #
Cytoband
Start
End
Size (bp)
Ratio
Rec
Candidates
Chr
Start
End
Size (bp)
Ratio










Amplified MCRs



















1
4E2
153362787
154677539
1,314,752
0.88
13
Dvl1; Ccnl2;
1
1286939.5
1536335.5
249,396
1.11









Aurkaip1


2
10A3
18124375
22105516
3,981,141
1.91
11
Myb; Ahi1
6
135471648.5
135829074.5
357,426
1.07


3
16C4
91250715
97408345
6,157,630
1.38
21
Runx1; Ets2;
21
40837575.5
42285661.5
1,448.086
0.95









Tmprss2;









Ripk4; Erg


4
5G2
136128574
138413308
2,284,734
0.87
14
Gnb2; Perq1
7
99901102.5
99949527
48,425
1.09


5
4A1
5601642
13568807
7,967,165
1.00
11
Tox
8
59880732.5
60101149.5
220,417
0.82


6
2B
29315580
31992174
2,676,594
1.78
7
Set; Fnbp1;
9
130710910.5
131134550.5
423,640
2.06









Abl1;









NUP214







Deleted MCRs



















7
11B3-B4
68759068
72041187
3,282,119
−0.93
4
Trp53; Bcl6b
17
6494426.5
7767821.5
1,273,395
−0.76


8
3H4
155474073
158861389
3,387,316
−0.75
3
Negr1
1
71919083.5
72444137.5
525,054
−0.92


9
15B3.1
33212025
41060793
7,848,768
−0.93
2
Baalc; Fzd6
8
104310865.5
104499581.5
188,716
−0.93


10
16A1
3264231
10275117
7,010,886
−0.97
21
Crebbp; C2ta
16
3195168
11549999.5
8,354,832
−1.09


11
19C3-D2
46457272
56116765
9,659,493
−0.77
8
Mxi1
10
111672720.5
112043485.5
370,765
−0.90


12
4E2
150778332
154677539
3,899,207
−0.83
2
Hes3;
1
5983967.5
6318619.5
334,652
−0.85









RPL22;









CHD5


13
11A1
8844892
12372703
3,527,811
−3.73
14
Ikaros
7
49539939.5
50229252.5
689,313
−0.75


14
12F2
111667310
115272402
3,605,092
−1.43
9
Ptprn2
7
156125925.5
158194699.5
2,068,774
−0.84


15
6B1
41191601
41690238
498,637
−5.48
28
TCRβ
7
141785426.5
142078458.5
293,032
−3.07


16
19A
11295986
15610191
4,314,205
−0.77
4
Gnaq
9
77572992.5
77916022.5
343,030
−0.76


17
19C1
31573449
32118682
545,233
−4.48
13
Pten
10
89594719.5
90035234.5
440,515
−3.30


18
3E3-F1
79297034
87003791
7,706,757
−0.93
2
Fbxw7
4
153078068.5
154979435.5
1,901,367
−1.74





Each murine TKO MCR with syntenic overlap with an MCR in the human T-ALL dataset is listed, separated by amplification and deletion, along with its chromosomal location (Cytoband/Chr) and base number (Start and End, in Mb).


The minimal size of each MCR is indicated in bp.


Peak ratio refers to the maximal log2 array-CGH ratio for each MCR.


Rec refers to the number of tumors in which the MCR was defined.













TABLE 2







Summary of mutations in human T-ALL cell lines and primary


samples


Each case has been characterized for mutations in NOTCH1, FBXW7


and PTEN. The table shows the breakdown of cell lines and primary


T-ALL samples by two pairwise comparisons NOTCH1 × FBXW7


and NOTCH1 × PTEN. Thus each case appears twice in the table,


once in the FBXW7 column and once in the PTEN column.










FBXW7













Mut'd/
PTEN












Wildtype
Del'd*
Wildtype
Mutated












Cell lines













NOTCH1
Wildtype
5
3
7
1



HD only
1
6
4
3



PEST only
3
1
3
1



HD + PEST
3
1
2
2








Primary Samples













NOTCH1
Wildtype
12
2
12
2



HD only
6
7
13
0



PEST only
2
1
3
0



HD + PEST
7
1
8
0





*mutated or deleted













TABLE 3







Murine TKO tumors used in this study.











Genotype

Characterization














TUMOR
mTerc
Atm
p53
Surface marker phenotype
aCGH
SKY
Notch1 Status





A701
WT
null
het
nd
yes
yes



KM343
WT
null
het
CD4+/− CD8+
yes
yes


CA342
WT
null
het
mixed CD4+ CD8+ and CD4−
yes
yes
ins CC after 6961A






CD8+


A494
G0
null
WT
CD4+ CD8+
yes
yes
ex34 deletion


A934
G0
null
?
nd
yes
yes


A1005
G0
null
het
CD4− CD8+
yes
yes
aa1685 S to C


A1252
G0
null
het
CD4− CD8+
yes
yes
ampl/trans?


CA373
G0
null
?
nd
yes
yes


CA325
G0
null
WT
CD4+ CD8+/−
yes
yes
del6848-6850CTA, ins









GGGG


CA318
G0
null
?
nd
yes
no
del 7094A, insCCCCC


CA290
G0
null
het
CD4− CD8+
yes
yes
del 7082G, insAA


CA235
G0
null
het
nd
yes
no


CA250
G0
null
het
nd
yes
no


CA371
G0
null
het
nd
yes
no


A1118
G1
null
het
nd
yes
no
aa1685 S to C


A725
G1
null
WT
CD4+ CD8+
yes
yes
del @ nt7260


A933
G1
null
het
CD4− CD8+
yes
no


A1040
G2
null
het
CD4− CD8+
yes
no


A1240
G2
null
het
CD4− CD8−
yes
yes
aa1685 S to C


A689
G4
null
het
CD4+ CD8+
yes
no
del nt7219-7593 of ORF


A785
G3
null
WT
CD4+ CD8+
yes
no


A570
G3
null
het
nd
yes
no


A764
G4
null
het
nd
yes
no


A543
G4
null
het
nd
yes
no


A577
G4
null
het
CD4+ CD8+
yes
yes
ampl/trans?


A897
G4
null
null
nd
yes
no


A878
G3
null
het
Mixed CD4− CD8+ and CD4+
yes
yes
del @ nt7461






CD8+


A791
G3
null
het
nd
yes
yes
del @ nt7083


A1060
G3
null
het
Mixed CD4+ CD8− and CD4+
yes
yes
aa1683 F to S






CD8+


A895
G4
null
null
CD4+CD8+
yes
yes
ampl/trans?


A684
G4
null
het
nd
yes
yes


A1052
G3
null
WT
nd
yes
yes
ampl/trans?


CA456
G0
WT
null
CD4+/− CD8+
yes
no
amplification


CA427
G0
het
null
CD4+/− CD8+
yes
no
amplification


KM168
G0
WT
null
nd
yes
no
















TABLE 4A







T-ALL cell lines

















Array-


Sample
Type
Age
Sex
Sequenced*
CGH*















BE-13
cell line
4
F
yes
yes


CCRF-
cell line
4
F
yes
yes


CEM


CML-T1
cell line
36
F
yes
no


CTV-1
cell line
40
F
yes
no


DND41
cell line
13
M
yes
yes


DU528
cell line
16
M
yes
yes


HBP-ALL
cell line
14
M
yes
yes


J-RT3-T3-5
cell line
14
M
yes
no


KARPAS-
cell line
2
M
yes
no


45


KE-37
cell line
27
M
yes
no


KopTK1
cell line
pediatric

yes
yes


LOUCY
cell line
38
F
yes
yes


ML-2
cell line
26
M
yes
no


MOLT-13
cell line
2
F
yes
yes


MOLT-16
cell line
5
F
yes
yes


MOLT-4
cell line
19
M
yes
yes


P12-
cell line
7
M
yes
no


ICHIKAWA


PF-382
cell line
6
F
yes
yes


RPMI-
cell line
16
F
yes
yes


8402


SupT11
cell line
74
M
yes
yes


SupT13
cell line
pediatric

yes
yes


SupT7
cell line
pediatric

yes
yes


TALL-1
cell line
28
M
yes
yes


Jurkat
cell line
14
M
no
yes


ALL-SIL
cell line
17
M
no
yes





*indicates whether samples were used for either aCGH and/or re-squencing efforts













TABLE 4B







T-ALL tumors profiled by array-CGH*












Sample
Type
Age
Sex
















XC018-PB
clinical
10
M



TL037
clinical
11
M



MD108
clinical
15
F



CO155
clinical
15
F



RS128
clinical
4
F



MP496
clinical
13
F



JB238-PB
clinical
4
M



BN066-
normal



D28
remission







*Clinical samples profiled by aCGH; samples not subjected to re-sequencing













TABLE 4C







Clinical specimens Sequenced*












Sample
Type
Age
Sex
















PD2716a
clinical
17
F



PD2717a
clinical
19
M



PD2718a
clinical
16
M



PD2719a
clinical
14
M



PD2720a
clinical
9
M



PD2721a
clinical
33
M



PD2722a
clinical
26
F



PD2724a
clinical
55
M



PD2725a
clinical
46
M



PD2726a
clinical
25
M



PD2727a
clinical
39
M



PD2728a
clinical
24
M



PD2729a
clinical
42
M



PD2730a
clinical
26
F



PD2731a
clinical
19
M



PD2732a
clinical
46
F



PD2733a
clinical
21
M



PD2734a
clinical
37
F



PD2735a
clinical
27
M



PD2736a
clinical
16
M



PD2737a
clinical
36
M



PD2738a
clinical
8
M



PD2739a
clinical
31
M



PD2740a
clinical
35
M



PD2741a
clinical
37
M



PD2742a
clinical
44
M



PD2743a
clinical
2
M



PD2744a
clinical
25
M



PD2745a
clinical
39
F



PD2746a
clinical
32
M



PD2747a
clinical
32
M



PD2748a
clinical
7
M



PD2749a
clinical
19
M



PD2750a
clinical
44
M



PD2751a
clinical
17
M



PD2752a
clinical
30
M



PD2753a
clinical
15
M



PD2754a
clinical
17
M







*Clinical specimens used for re-sequencing; samples not profiled by aCGH













TABLE 5







List of 160 MCRs defined in TKO genomes












Position
Cytobands
Peak

















mid
chn
start
end
start
end
Ratio
Recurrence
Width (bp)
# of Genes



















141
1
1.05E+08
1.06E+08
1qE2.1
1qE2.1
1.044
9
1,110,166
5


68
1
1.28E+08
1.28E+08
1qE3
1qE3
0.945
10
362,010
5


67
1
1.28E+08
1.28E+08
1qE3
1qE3
2.099
13
142,785
4


70
1
1.31E+08
1.36E+08
1qE4
1qE4
0.888
10
5,086,790
100


69
1
1.36E+08
1.39E+08
1qE4
1qE4
0.888
11
2,430,212
14


149
1
 1.5E+08
 1.5E+08
1qG1
1qG1
1.041
13
31,937
2


86
2
18256403
19011398
2qA3
2qA3
1.552
11
754,995
7


85
2
26220146
26426743
2qA3
2qA3
2.521
13
206,597
10


87
2
29076116
29113534
2qB
2qB
0.946
7
37,418
1


88
2
29315580
31992174
2qB
2qB
1.782
7
2,676,594
60


89
2
32141443
33152477
2qB
2qB
1.258
6
1,011,034
35


5
2
86526803
87088323
2qD
2qD
0.937
5
561,520
33


105
2
1.29E+08
1.31E+08
2qF1
2qF1
1.191
6
2,182,234
49


73
2
1.49E+08
1.57E+08
2qG3
2qH1
0.907
7
8,124,884
176


72
2
1.57E+08
1.58E+08
2qH1
2qH1
0.898
8
89,827
2


42
2
1.78E+08
1.78E+08
2qH4
2qH4
1.043
5
56,696
4


45
4
5601642
13568807
4qA1
4qA1
1.001
11
7,967,165
50


48
4
43960797
44207047
4qB1
4qB1
0.855
14
246,250
2


49
4
46581252
48074866
4qB1
4qB1
0.966
15
1,493,614
12


46
4
59204015
59696580
4qB3
4qB3
1.312
15
492,565
6


47
4
61574346
61615586
4qB3
4qB3
1.759
16
41,240
4


50
4
67845996
69605630
4qC1
4qC2
0.962
15
1,759,634
6


107
4
73573051
82835399
4qC3
4qC3
0.844
15
9,262,348
24


8
4
1.06E+08
1.06E+08
4qC7
4qC7
0.928
16
121,051
4


6
4
1.47E+08
1.51E+08
4qE2
4qE2
0.821
15
4,128,560
67


7
4
1.53E+08
1.55E+08
4qE2
4qE2
0.881
13
1,314,752
53


118
5
29600288
31438940
5qB1
5qB1
0.882
11
1,838,652
30


75
5
44135455
44256743
5qB3
5qB3
1.188
12
121,288
2


9
5
85392518
85451062
5qE1
5qE1
0.882
11
58,544
2


14
5
1.02E+08
1.02E+08
5qE5
5qE5
0.841
9
185,602
3


12
5
1.05E+08
1.08E+08
5qE5
5qF
1.956
10
2,704,253
33


15
5
1.13E+08
1.15E+08
5qF
5qF
0.839
12
2,276,889
54


11
5
1.35E+08
1.36E+08
5qG2
5qG2
1.472
13
905,844
15


13
5
1.36E+08
1.38E+08
5qG2
5qG2
0.867
14
2,284,734
75


10
5
1.48E+08
 1.5E+08
5qG3
5qG3
0.958
15
1,707,628
22


120
6
98525054
1.03E+08
6qD3
6qD3
1.417
1
4,114,423
14


121
8
30677625
34627880
8qA3
8qA4
0.752
6
3,950,255
31


111
8
74189294
74204190
8qC1
8qC1
0.895
5
14,896
2


17
9
29333867
32712352
9qA4
9qA4
1.776
12
3,378,485
21


20
9
44813433
45348832
9qA5.2
9qA5.2
0.850
7
535,399
15


16
9
46329619
47484838
9qA5.3
9qA5.3
1.555
15
1,155,219
5


123
9
53345703
54059125
9qA5.3
9qA5.3
0.752
4
713,422
14


124
9
56482435
56638553
9qB
9qB
0.887
5
156,118
2


125
9
59310802
59590013
9qB
9qB
0.752
5
279,211
3


76
10
18124375
22105516
10qA3
10qA3
1.914
11
3,981,141
37


77
10
39797713
39991041
10qB1
10qB1
0.933
10
193,328
4


114
10
75079313
75286215
10qC1
10qC1
0.918
5
206,902
5


127
10
93180073
99904446
10qC2
10qD1
0.854
5
6,724,373
56


104
10
1.27E+08
1.27E+08
10qD3
10qD3
0.854
11
299,603
18


143
11
3094931
4168597
11qA1
11qA1
0.757
2
1,073,666
33


100
11
32195496
36843135
11qA4
11qA5
0.872
7
4,647,639
29


101
11
40488257
44855717
11qA5
11qB1.1
0.898
6
4,367,460
23


102
11
45787203
48749988
11qB1.1
11qB1.2
0.932
7
2,962,785
32


128
11
1.17E+08
1.18E+08
11qE2
11qE2
0.755
7
822,168
21


129
11
1.18E+08
1.19E+08
11qE2
11qE2
0.808
8
726,438
14


78
12
38086004
46238385
12qB1
12qB3
0.981
11
8,152,381
20


79
12
47390537
52540991
12qB3
12qC1
1.466
10
5,150,454
44


80
12
55790095
55837560
12qC1
12qC1
0.942
11
47,465
5


51
12
75416967
76481214
12qC3
12qC3
0.828
11
1,064,247
17


53
13
3825590
10409879
13qA1
13qA1
1.243
3
6,584,289
34


54
13
23330778
24380522
13qA3.1
13qA3.1
1.039
1
1,049,744
17


56
13
46322053
47532316
13qA5
13qA5
0.976
1
1,210,263
10


25
13
99644459
1.01E+08
13qD1
13qD1
1.195
2
1,193,251
13


26
13
1.03E+08
 1.1E+08
13qD2.1
13qD2.2
1.811
2
6,946,446
47


57
14
40458276
41162221
14qB
14qB
2.846
25
703,945
9


58
14
41747861
44316485
14qC1
14qC1
2.997
24
2,568,624
30


59
14
46887800
48318364
14qC1
14qC1
1.980
22
1,430,564
63


62
14
61322898
67876948
14qD1
14qD2
0.957
15
6,554,050
72


60
14
73311656
73991889
14qD3
14qD3
1.042
14
680,233
11


61
14
81055230
81965738
14qE1
14qE1
2.163
14
910,508
2


64
14
90605302
91070049
14qE2.1
14qE2.1
2.038
14
464,747
1


65
14
92428111
93598116
14qE2.1
14qE2.1
1.919
14
1,170,005
5


66
14
94810852
97523812
14qE2.2
14qE2.3
1.526
14
2,712,960
10


63
14
1.16E+08
1.17E+08
14qE5
14qE5
0.982
16
966,790
12


28
15
4902782
6271853
15qA1
15qA1
1.578
17
1,369,071
9


30
15
23144859
32967402
15qA2
15qB3.1
1.233
18
9,822,543
41


29
15
54425386
63790043
15qD1
15qD1
1.498
20
9,364,657
68


27
15
95452330
1.03E+08
15qF1
15qF3
1.028
20
7,131,911
192


33
16
42899450
43217357
16qB4
16qB4
0.988
12
317,907
5


31
16
48142711
55198270
16qB5
16qC1.1
0.989
13
7,055,559
27


32
16
55961953
56077653
16qC1.1
16qC1.1
0.913
13
115,700
4


34
16
74969013
76202427
16qC3.1
16qC3.1
1.030
16
1,233,414
4


83
16
83801341
84228153
16qC3.3
16qC3.3
1.293
18
426,812
7


82
16
86584797
87663238
16qC3.3
16qC3.3
1.178
18
1,078,441
11


81
16
91250715
97408345
16qC4
16qC4
1.378
21
6,157,630
53


36
17
11029895
11172149
17qA1
17qA1
0.997
5
142,254
2


35
17
12996985
13092851
17qA1
17qA1
1.423
9
95,866
6


37
17
28187374
28772915
17qA3.3
17qA3.3
1.272
14
585,541
4


40
17
31307004
32045121
17qB1
17qB1
0.920
6
738,117
46


39
17
33888591
33972790
17qB1
17qB1
1.647
6
84,199
2


41
17
48468702
54249820
17qC
17qC
0.834
4
5,781,118
65


84
18
44249076
44496478
18qB3
18qB3
0.907
3
247,402
6


92
19
3307019
4813998
19qA
19qA
1.091
3
1,506,979
64


93
19
8172318
9587961
19qA
19qA
1.242
4
1,415,643
23


94
19
9746944
12276560
19qA
19qA
1.449
4
2,529,616
107


103
19
38219064
38791620
19qC3
19qC3
0.763
3
572,556
7


95
19
43353084
43585182
19qC3
19qC3
0.961
2
232,098
5


96
19
44700687
44972460
19qC3
19qC3
1.023
2
271,773
3


97
19
45365601
46170449
19qC3
19qC3
0.876
2
804,848
20


140
19
54723418
54846569
19qD2
19qD2
0.898
2
123,151
5


98
19
59483972
60620320
19qD3
19qD3
1.339
3
1,136,348
13


221
1
29038485
29089894
1qA5
1qA5
−1.092
1
51,409
2


193
2
26426743
30018849
2qA3
2qB
−0.884
1
3,592,106
70


209
2
33052450
33773524
2qB
2qB
−0.948
3
721,074
9


177
2
1.67E+08
1.68E+08
2qH3
2qH3
−1.072
2
694,349
12


194
2
1.69E+08
 1.7E+08
2qH3
2qH3
−0.871
2
548,165
3


195
2
1.72E+08
1.72E+08
2qH3
2qH3
−0.786
3
64,794
2


196
3
53093840
57750461
3qC
3qD
−1.000
3
4,656,621
39


237
3
72799409
73392410
3qE3
3qE3
−0.841
3
593,001
2


191
3
78211040
78797254
3qE3
3qE3
−0.841
5
586,214
4


197
3
79297034
87003791
3qE3
3qF1
−0.932
2
7,706,757
56


186
3
1.55E+08
1.59E+08
3qH4
3qH4
−0.752
3
3,387,316
13


198
4
1.11E+08
1.12E+08
4qD1
4qD1
−0.921
2
654,234
8


212
4
1.37E+08
1.37E+08
4qD3
4qD3
−1.153
3
217,944
2


224
4
1.51E+08
1.55E+08
4qE2
4qE2
−0.834
2
3,899,207
78


150
5
21196088
21737788
5qA3
5qA3
−1.044
2
541,700
1


151
6
41191601
41690238
6qB1
6qB1
−5.480
28
498,637
21


235
6
73593839
80776018
6qC1
6qC3
−0.787
3
7,182,179
20


229
7
1.26E+08
1.26E+08
7qF3
7qF3
−1.048
2
106,584
3


225
7
1.37E+08
 1.4E+08
7qF5
7qF5
−0.895
3
2,633,930
38


213
8
76735909
76808515
8qC1
8qC1
−0.881
4
72,606
2


201
10
3207257
9357502
10qA1
10qA1
−0.976
1
6,150,245
38


183
11
8844892
12372703
11qA1
11qA1
−3.730
14
3,527,811
18


184
11
16565410
17157549
11qA2
11qA2
−0.947
7
592,139
11


230
11
25513879
33407529
11qA3.2
11qA4
−0.916
5
7,893,650
61


226
11
44209892
44304867
11qB1.1
11qB1.1
−0.935
5
94,975
2


189
11
68759068
72041187
11qB3
11qB4
−0.932
4
3,282,119
125


218
11
92848956
93404029
11qD
11qD
−0.927
3
555,073
2


227
12
93606364
93916807
12qE
12qE
−0.870
3
310,443
3


154
12
96250531
96496843
12qE
12qE
−0.895
5
246,312
4


153
12
98783592
1.04E+08
12qE
12qF1
−1.602
15
5,234,816
66


155
12
1.12E+08
1.15E+08
12qF2
12qF2
−1.427
9
3,605,092
25


179
13
18627216
18826113
13qA2
13qA2
−3.237
12
198,897
1


180
13
37254725
37524185
13qA3.3
13qA3.3
−0.986
9
269,460
3


181
13
48176346
50100290
13qA5
13qA5
−1.190
9
1,923,944
31


156
13
97118503
98856406
13qD1
13qD1
−0.875
8
1,737,903
2


203
13
1.14E+08
1.15E+08
13qD2.3
13qD2.3
−0.913
8
405,653
1


157
14
24250524
24460588
14qA3
14qA3
−1.187
6
210,064
6


240
14
44277623
45455380
14qC1
14qC1
−0.833
4
1,177,757
22


214
14
46642257
46906069
14qC1
14qC1
−2.581
7
263,812
7


215
14
46983329
47000386
14qC1
14qC1
−0.874
3
17,057
3


158
14
47563191
48727495
14qC1
14qC1
−4.918
20
1,164,304
41


204
14
63792812
64013139
14qD1
14qD1
−1.202
8
220,327
4


234
14
 1.1E+08
1.19E+08
14qE4
14qE5
−0.990
3
8,712,984
54


205
15
3059822
10112117
15qA1
15qA1
−0.999
2
7,052,295
52


206
15
33212025
41060793
15qB3.1
15qB3.1
−0.935
2
7,848,768
59


228
15
91904361
93343014
15qE3
15qE3
−0.997
2
1,438,653
9


159
16
3264231
10275117
16qA1
16qA1
−0.971
21
7,010,886
74


160
16
15680940
16190296
16qA2
16qA2
−0.779
10
509,356
16


161
16
17292404
18721258
16qA3
16qA3
−0.958
11
1,428,854
35


162
16
19589196
21020820
16qA3
16qB1
−0.892
9
1,431,624
20


208
18
11094974
11165506
18qA1
18qA1
−0.791
3
70,532
2


239
19
11295986
15610191
19qA
19qA
−0.773
4
4,314,205
106


164
19
26046566
28527676
19qC1
19qC1
−0.851
7
2,481,110
21


165
19
28881381
29036087
19qC1
19qC1
−0.851
5
154,706
4


163
19
31573449
32118682
19qC1
19qC1
−4.479
13
545,233
8


166
19
33295876
35125747
19qC1
19qC2
−3.887
6
1,829,871
22


187
19
36783412
41421335
19qC2
19qC3
−0.951
6
4,637,923
62


220
19
46457272
56116765
19qC3
19qD2
−0.768
8
9,659,493
65


185
19
59063578
59662870
19qD3
19qD3
−0.768
9
599,292
3
















TABLE 6







Mutations in human T-ALL cell lines and primary samples.










Sample
FBXW7 mutation
NOTCH1 mutation
PTEN mutation





BE-13
Homozygous Deletion
Hom c.4802T > C p.L1601P



CCRF-CEM
Het c.1393C > T p.R465C
Het c.4784insCGCGCCTTCCCCACAACAGCTCCTTCCACTTCCTGC




p.R1595 > PRLPHNSSSHFL


CML-T1
Het c.1394G > A p.R465H


CTV-1
Het c.1513C > T p.R505C
Het c.7571C > A p.S2524*


DND41

Hom c.4781T > C p.L1594P


DU528
Het c.1394G > A p.R465H


HBP-ALL
Het c.1580A > G p.D527G
Het c.4724T > C p.L1575P, Het c.7329insGGGCCGTGGACG




p.D2443fs*39


J-RT3-T3-5
Het c.1513C > T p.R505C

Het c.696_697 >





GGCCCATGG p.R233fs*11


KARPAS-45
Het c.1513C > T p.R505C
Het c.5129T > C p.L1710P
Hom c.1000C > T p.R334*


KE-37

Het c.7378C > T p.Q2460*


KopTK1

Het c.4802T > C p.L1601P, Het c.7544_7545delCT p.P2515fs*4


LOUCY


ML-2

Het c.7544_7545delCT p.P2515fs*4


MOLT-13
Het c.1394G > A p.R465H
Het c.5036T > C p.L1679P


MOLT-16


MOLT-4

Het c.7544_7545delCT p.P2515fs*4
Hom c.797delA p.K266fs*9


P12-
Hom c.1513C > T p.R505C
Het c.5165ins-
Hom c.818G > A p.W273*




CCCGGTTGGGCAGCCTCAACATCCCCTACAAGATCGAGGCCG


ICHIKAWA

p.V1722 > ARWGSLNIPYLIEA


PF-382

Het c.4724T > C p.L1575P, Het c.7480insGCCTCTTAGCT p.P2494fs*3
Hom Exon 5 + 2 ins GCCG p.?


RPMI-8402
Hom c.1394G >
Het c.4754insCCGTGGAGCTGATGCCGCCGGAGC
Het c.477G > T p.R159S, Het



A p.R465H
p.Q1585 > PVELMPPE
c.702_703insCCCCCGGCCC





p.D235fs*10


SupT11


SupT13


SupT7

Het c.4778insGGGTGC p.F1593 > LGA, Het c.7285insGC p.H2429fs*8
Het c.699_700insAAGG





p.E234fs*9


TALL-1


PD2716a


PD2717a

Het c.4802T > C p.L1601P, Het c.7472insAA p.Y2491fs*1


PD2718a


PD2719a

Het c.4757T > C p.L1586P, Het c.7331insGGGCATC p.V2444fs*37


PD2720a
Het c.1513C > T p.R505C
Het c.7253C > T p.P2418L


PD2721a

Het c.5036T > A p.L16797Q


PD2722a
Het c.1393C > T p.R465C
Het c.4781T > C p.L1594P, Het c.7333C > T p.Q2445*


PD2724a

Het c.4781T > C p.L1594P


PD2725a

Het c.4780insTTCGATA p.L1594_R1595 > FDR


PD2726a


PD2727a
Het c.1436G > T p.R479L
Het c.4844insTGTGCCG p.Q1615_F1618 > LCR


PD2728a


PD2729a
Het c.1268G > T p.G423V
Het c.4751insGTACCCACCCTAAGG p.E1584insGTHPKE


PD2730a


Het c.697_698insCACGCTA





p.R233fs*3


PD2731a


PD2732a
Het c.1393C > T p.R465C
Het c.4858_4859 > CCAGGGT p.Y1620 > PGS


PD2733a

Het c.5164insCCCCCGGGCAGT p.V1722 > PPGSL


PD2734a
Het. c.1436G > A p.R479Q
Het c.4802T > C p.L1601P


PD2735a

Het c.4757T > C p.L1586P, Het c.7544_7545delCT p.P2515fs*4


PD2736a


PD2737a
Het c.1393C > T p.R465C
Het c.4776_8delCTT 4776insGAC p.H1592Q F1593T


PD2738a

Het c.7478insCCCTTGACAGGC p.V2495*


PD2739a


PD2740a
Het c.1393C > T p.R465C
Het c.4852_4854delTTC p.F1618del


PD2741a

Het c.4790T > A p.L1597H


PD2742a

Het c.5025insGGG p.S1675_I1676insG,




Het c.7330insAGGAAAAG p.V2444fs*37


PD2743a


PD2744a

Het c.4724T > C p.L1575P, Het c.4757T > C p.L1586P, Het c.7390delG




p.A2464fs*13


PD2745a

Het c.4850T > A p.I1617N, Het c.7305insGGGTG p.S2436fs*2


PD2746a
Het c.1393C > T p.R465C
Het c.4779insGTCGCC p.L1594 > VA


PD2747a

Het c.4771insCCA p.F1591 > SI, Het c.7538C > T p.P2513L


PD2748a

Het c.7372insTAGGGGTTA p.L2458fs*1


PD2749a


PD2750a


PD2751a


PD2752a
Het Exon 7 + 1G > AA p.?


PD2753a


Het c.694 > GGGAGG





p.R232fs*25


PD2754a
Het c.2001insG



p.S668fs*26
















TABLE 7







List of known cancer genes mapped to syntenic MCRs in TKO tumors









Gene

Gene


Symbols
Gene Symbols
Name










Oncogenes









Myc
myelocytomatosis oncogene
29


Btg1
B-cell translocation gene 1, anti-proliferative
127


Set
SET translocation
88


Fnbp1
formin binding protein 1
88


Abl1
v-abl Abelson murine leukemia oncogene 1
88


Nup214
nucleoporin 214
88


(BC039282)


Notch1
Notch gene homolog 1
85


Cdk4
cyclin-dependent kinase 4
104


Ddit3
DNA-damage inducible transcript 3
104


Bcr
breakpoint cluster region homolog
114


Patz1
POZ (BTB) and AT hook containing zinc finger 1
143


(Zfp278)


Tpr
translocated promoter region
149


Rpl22
ribosomal protein L22
6


Nr4a3
nuclear receptor subfamily 4, group A, member 3
49


Mll1(Mll)
myeloid/lymphoid or mixed-lineage leukemia 1
20


Gphn
gephyrin
51


Fli1
Friend leukemia integration 1
17







Tumor Suppressors









Crebbp
CREB binding protein
159


Trp53
transformation related protein 53
189


Pten
phosphatase and tensin homolog
163


Fbxw7
F-box and WD-40 domain protein 7,
197



archipelago homolog (Drosophila)


Npm1
nucleophosmin 1
230


Fas
Fas (TNF receptor superfamily member)
166


(Tnfrsf6)


Tsc1
tuberous sclerosis 1
193
















TABLE 8







primers used for real-time PCR












alternative





primer
name
sequence
COMMENT





D19MIT13A

TCTGGCACAAAGAGTTCGTG (SEQ ID NO: 69)
PAPSS2 gene



D19MIT13B

CTTTTGCAGGAGCAGGTAGG (SEQ ID NO: 70)





RM120
AW107648
AACAGGATATGTTTCTTGGCG (SEQ ID NO: 71)
ATAD1


RM121

GGGTTATAGATTGCGGGAGA (SEQ ID NO: 72)





RM127

CAGCCGCTGCGAGGATTATCCGTCTTC (SEQ ID
PTEN exon 1




NO: 73)


RM128

GCGGTCGCTGATGCCCCTCGCTCTG (SEQ ID




NO: 74)





RM122
PMC270016P1
AAAAGTTCCCCTGCTGATGATTTGT (SEQ ID NO:
Between PTEN exon 5&6




75)


RM123

TGTTTTTGACCAATTAAAGTAGGCTGTG (SEQ ID




NO: 76)





119211 FOR

TGCAGTATAGAGCGTGCAGA (SEQ ID NO: 77)
PTEN EXON 8


119211 REV

AGTATCGGTTGGCCTTGTCT (SEQ ID NO: 78)
















TABLE 9







NCBI accession and reference numbers for cancer genes or


candidate cancer genes listed in Table 1











Murine mRNA NM
Murine Entrez
Human Gene


Gene Name
designation
Gene ID
ID













Mm Dvl1
NM_010091
13542
1855


ccnl2
NM_207678
56036
81669


aurkaip1
NM_025338
66077
54998


myb
NM_010848
17863
4602


ahi1
NM_026203
52906
54806


runx1
NM_009821;
12394
861



NM_001111021;



NM_001111022;



NM_001111023


ets2
NM_011809
23872
2114


tmprss2
NM_015775
50528
7113


ripk4
NM_023663
72388
54101


erg
NM_133659
13876
2078


gnb2
NM_010312
14693
2783


perq1
NM_031408
57330
64599


tox
NM_145711
252838
9760


set
NM_023871
56086
6418


fnbp1
NM_001038700;
14269
23048



NM_019406


abl1
NM_001112703;
11350
25



NM_009594


nup214
NM_172268
227720
8021


trp53
NM_011640.3
22059
7157


bcl6
NM_009744
12053
604


negr1
NM_001039094;
320840
257194



NM_177274


baalc
NM_080640
118452
79870


fzd6
NM_008056
14368
8323


crebbp
NM_001025432
12914
1387


c2ta
NM_007575
12265
4261


mxi1
NM_010847;
17859
4601



NM_001008542;



NM_001008543


hes3
NM_008237
15207
390992


rpl22
NM_009079
19934
6146


chd5
NM_001081376
269610
26038


ikaros
NM_009578
22778
10320


ptprn2
NM_011215
19276
5799


tcrb

21577
6957


gnaq
NM_008139
14682
2776


pten
NM_008960
19211
5728


fbxw7
NM_080428
50754
55294








Claims
  • 1. A non-human transgenic mammal that is genetically modified to develop cancer, such that the genome of a cancer cell from the mammal comprises chromosomal structural aberrations at a frequency that is at least 5-fold higher than the frequency of chromosomal structural aberrations in such mammal without the genetic modification.
  • 2. The non-human transgenic mammal according to claim 1 which is a rodent.
  • 3. The non-human transgenic mammal according to claim 1, which is a mouse.
  • 4. The non-human transgenic mammal according to claim 1 that comprises engineered inactivation of (a) at least one allele of one or more genes encoding a protein involved in DNA repair function and at least one allele of one or more genes encoding a component that synthesizes and maintains telomere length; or(b) at least one allele of one or more genes encoding a protein involved in DNA repair function and at least one allele of one or more genes encoding a DNA damage checkpoint protein; or(c) at least one allele of one or more genes encoding a DNA damage checkpoint protein and at least one allele of one or more genes encoding a component that synthesizes and maintains telomere length.
  • 5. The non-human transgenic mammal according to claim 4, wherein the one or more genes encoding a protein involved in DNA repair function is selected from the group consisting of a protein involved in non-homologous end joining (NHEJ), a protein involved in homologous recombination, and a DNA repair helicase.
  • 6. The non-human transgenic mammal according to claim 5, wherein the protein involved is NHEJ selected from the group consisting of Ligase4, XRCC4, H2AX, DNAPKcs, Ku70, Ku80, Artemis, Cernunnos/XLF, MRE11, NBS1, and RAD50.
  • 7. The non-human transgenic mammal according to claim 5, wherein the protein involved in homologous recombination is selected from the group consisting of RAD51, RAD52, RAD54, XRCC3, RAD51C, BRCA1, BRCA2 (FANCD1), FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCJ (BRIP1/BACH1), FANCL, and FANCM.
  • 8. The non-human transgenic mammal according to claim 5, wherein the DNA repair helicase is selected from the group consisting of BLM and WRN.
  • 9. The non-human transgenic mammal according to claim 4, wherein the one or more genes encoding a DNA damage checkpoint protein is selected from the group consisting of p53, p21, APC, ATM, ATR, BRCA1, MDM2, MDM4, CHK1, CHK2, MRE11, NBS1, RAD50, MDC1, SMC1, ATRIP, and claspin.
  • 10. The non-human transgenic mammal according to claim 4, wherein one or more genes encoding a component that synthesizes or maintains telomere length is a protein maintaining telomere structure.
  • 11. The non-human transgenic mammal according to claim 10, wherein the protein maintaining telomere structure is selected from the group consisting of TRF1, TRF2, POT1a, POT1b, RAP 1, TIN2, and TPP1.
  • 12. The non-human transgenic mammal according to claim 1, wherein the mammal is engineered for decreased telomerase activity.
  • 13. The non-human transgenic mammal according to claim 4 or 12, wherein at least one allele of a telomerase reverse transcriptase (tert) gene is inactivated.
  • 14. The non-human transgenic mammal according to claim 13, wherein both alleles of the telomerase reverse transcriptase (tert) gene are inactivated.
  • 15. The non-human transgenic mammal according to claim 4 or 12, wherein at lease one allele of a telomerase RNA (terc) gene is inactivated.
  • 16. The non-human transgenic mammal according to claim 15, wherein both alleles of the telomerase RNA (terc) gene are inactivated.
  • 17. The non-human transgenic mammal according to any one of claims 1, 12 or 15, wherein at least one allele of p53 is inactivated.
  • 18. The non-human transgenic mammal according to claim 17, wherein both alleles of p53 are inactivated.
  • 19. The non-human transgenic mammal according to any one of claims 1, 12, 15 or 17, wherein at least one allele of the ataxia telangiectasia mutated (atm) gene is inactivated.
  • 20. The non-human transgenic mammal according to any one of claims 1, 12, 15 or 17, wherein both alleles of the ataxia telangiectasia mutated (atm) gene are inactivated.
  • 21. The non-human transgenic mammal according to claim 1, wherein the genome of the mammal comprises at least one additional cancer-promoting modification.
  • 22. The non-human transgenic mammal according to claim 21, wherein the at least one additional cancer-promoting modification is an activated oncogene, an inactivated tumor suppressor gene, or both.
  • 23. The non-human transgenic mammal according to claim 22, wherein the activated oncogene or the inactivated tumor suppressor gene is a recombinant gene.
  • 24. The non-human transgenic mammal according to claim 21, wherein the additional cancer-producing modification is inducible.
  • 25. The non-human transgenic mammal according to claim 21, wherein the additional cancer-producing modification is tissue-specific.
  • 26. The non-human transgenic mammal according to claims 22, 24, or 25, wherein the additional cancer-producing modification is Kras activation.
  • 27. The non-human transgenic mammal according to claim 26, wherein the activation of Kras is pancreas-specific.
  • 28. A method of identifying a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer, comprising the step of identifying a DNA copy number alteration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce chromosomal instability, wherein the chromosomal region of the DNA copy number alteration is a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer.
  • 29-61. (canceled)
  • 62. A method of identifying a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer, comprising the step of identifying a chromosomal structural aberration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce genome instability, wherein a chromosomal region containing the chromosomal structural aberration is a chromosomal region of interest for the identification of a gene or genetic element that is potentially related to human cancer.
  • 63-67. (canceled)
  • 68. A method for identifying a potential human cancer-related gene, comprising the steps of (a) identifying a chromosomal region of interest by the method of claim 28 or 62;(b) identifying a gene or genetic element within the chromosomal region of interest in the non-human mammal, and(c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b), wherein the human gene or genetic element is a potential human cancer-related gene or genetic element.
  • 69-70. (canceled)
  • 71. A method of identifying a potential human cancer-related gene or genetic element, comprising the steps of: (a) detecting a DNA copy number alteration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce genome instability,(b) identifying a gene or genetic element located within the boundaries of the DNA copy number alteration detected in step (a),(c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a DNA copy number alteration or of a chromosomal structural aberration in a human cancer cell;wherein the human gene or genetic element identified in step (c) is a gene or genetic element potentially related to human cancer.
  • 72. (canceled)
  • 73. A method of identifying a potential human cancer-related gene or genetic element, comprising the steps of (a) detecting a chromosomal structural aberration in a population of cancer cells from a non-human mammal, wherein the genome of the non-human mammal is engineered to produce genome instability,(b) identifying a gene or genetic element located at the site of the chromosomal structural aberration detected in step (a),(c) identifying a human gene or genetic element that corresponds to the gene or genetic element identified in step (b) and that is located within the boundaries of a DNA copy number alteration or at the site of a chromosomal structural aberration in a human cancer cell, wherein the human gene or genetic element identified in step (c) is a gene or genetic element potentially related to human cancer.
  • 74-85. (canceled)
  • 86. A method for identifying subjects with T-cell acute lymphoblastic leukemia (T-ALL) who may have a decreased response to γ-secretase inhibitor therapy, comprising: detecting the expression or activity of FBXW7 in a tumor cell from the subject, wherein a decreased expression or activity of FBXW7, as compared to a control, is indicative that the subject may have a decreased response to γ-secretase inhibitor therapy.
  • 87-110. (canceled)
  • 111. A method for identifying subjects with T-ALL that may benefit from treatment with a PI3K pathway inhibitor, comprising: detecting the expression or activity of PTEN in a tumor cell from the subject, wherein a decreased expression or activity of PTEN, as compared to a control, is indicative that the subject may benefit from a treatment with a PI3K inhibitor.
  • 112-129. (canceled)
  • 130. A method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, comprising: determining the expression or activity level of at least one cancer gene or candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject; wherein an increase in the expression or activity the gene, as compared to a control, indicates that the subject is afflicted with cancer or at risk for developing cancer.
  • 131. A method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, comprising: determining the expression or activity level of at least one cancer gene or candidate cancer gene located in a deleted MCR in Table 1 in a biological sample from the subject; wherein a decrease in the expression or activity the gene, as compared to a control, indicates that the subject is afflicted with cancer or at risk for developing cancer.
  • 132-133. (canceled)
  • 134. A method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one amplified minimal common region (MCR) listed in Table 1 in a biological sample from the subject; wherein an increased copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer.
  • 135. A method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one deleted minimal common region (MCR) listed in Table 1 in a biological sample from the subject; wherein a decreased copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer.
  • 136-137. (canceled)
  • 138. A method for monitoring the progression of cancer in a subject, the method comprising: a) determining in a biological sample from the subject at a first point in time, the expression or activity level of a cancer gene or a candidate cancer gene listed in Table 1;b) repeating step a) at a subsequent point in time; andc) comparing the expression or activity of the gene in steps a) and b), and therefrom monitoring the progression of cancer in the subject.
  • 139-140. (canceled)
  • 141. A method of assessing the efficacy of a test agent for treating a cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject in the presence of the test agent; andb) determining the expression or activity level of the gene in a biological sample from the subject in the absence of the test agent, wherein a decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the test agent's potential efficacy for treating the cancer in the subject.
  • 142. A method of assessing the efficacy of a test agent for treating a cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1 in a biological sample from the subject in the presence of the test agent; andb) determining the expression or activity level of the gene in a biological sample from the subject in the absence of the test agent, wherein an increased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the test agent's potential efficacy for treating the cancer in the subject.
  • 143-144. (canceled)
  • 145. A method of assessing the efficacy of a therapy for treating cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in an amplified MCR in Table 1 in a biological sample from the subject prior to providing at least a portion of the therapy to the subject; andb) determining the expression or activity level of the gene in a biological sample from the subject following provision of the portion of the therapy,wherein a decreased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the therapy's efficacy for treating the cancer in the subject.
  • 146. A method of assessing the efficacy of a therapy for treating cancer in a subject, the method comprising: a) determining the expression or activity level of at least one cancer gene or a candidate cancer gene located in a deleted MCR in Table 1 in a biological sample from the subject prior to providing at least a portion of the therapy to the subject; andb) determining the expression or activity level of the gene in a biological sample from the subject following provision of the portion of the therapy,wherein an increased expression or activity of the gene in step (a), as compared to that of (b), is indicative of the therapy's efficacy for treating the cancer in the subject.
  • 147-148. (canceled)
  • 149. A method of treating a subject afflicted with cancer comprising administering to the subject an agent that decreases the expression or activity level of at least one cancer gene or candidate cancer gene located in am amplified MCR in Table 1.
  • 150. A method of treating a subject afflicted with cancer comprising administering to the subject an agent that increases the expression or activity level of at least one cancer gene or candidate cancer gene located in a deleted MCR in Table 1.
  • 151-153. (canceled)
  • 154. A method of assessing whether a subject is afflicted with cancer or at risk for developing cancer, the method comprising: determining the copy number of at least one minimal common region (MCR) listed in Table 5 in a biological sample from the subject; wherein a change of copy number of the MCR in the sample, as compared to the normal copy number of the MCR, indicates that the subject is afflicted with cancer or at risk for developing cancer.
  • 155-156. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Application No. 60/931,294, filed on May 21, 2007, the contents of which is hereby incorporated by reference in its entirety.

GOVERNMENT SUPPORT

The work described herein was funded, in whole or in part, by Grant Number CA84628 (RO1) and CA84313 (UO1). The United States government may have certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US08/06583 5/21/2008 WO 00 6/11/2010
Provisional Applications (1)
Number Date Country
60931294 May 2007 US