COMPOSITIONS AND METHODS FOR DETECTING PICOBIRNAVIRUS

Information

  • Patent Application
  • 20230227924
  • Publication Number
    20230227924
  • Date Filed
    December 23, 2020
    4 years ago
  • Date Published
    July 20, 2023
    a year ago
Abstract
Provided herein are compositions, methods, and kits for detecting human picobirnavims (PBV). In certain embodiments, provided herein are PBV specific nucleic acid probes and primers, and methods for detecting PBV nucleic acid.
Description
INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

Incorporated by reference in its entirety herein is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: One 137,768 Byte ASCII (Text) file named “38035-253_ST25.TXT,” created on Jun. 9, 2022.


TECHNICAL FIELD

Provided herein are compositions, methods, and kits for detecting human picobirnavirus (PBV). In certain embodiments, provided herein are PBV specific nucleic acid probes and primers, and methods for detecting PBV nucleic acid.


BACKGROUND

Picobirnaviruses (PBV) are segmented, double stranded RNA viruses found in a range of hosts and are primarily known to be associated with gastroenteritis and diarrhea. The Picobirnavirus name is derived from Latin being small (pico), having two segments (bi), and viral nucleic made up of RNA, which is double stranded in this case. The virus is non-enveloped and the 2 RNA bands can be larger in size (Genogroup I: 2.3-2.6 kb and 1.5-1.9 kb) or smaller (Genogroup II: 1.75 and 1.55 kb). It was initially discovered in fecal samples from both humans and pigmy rats in Brazil.


PBV's have been found in humans as the ‘sole’ pathogen in cases of watery diarrhea and gastroenteritis, often in immunocompromised patients. However, they have also been found in a wide range of animal species worldwide, whether they have diarrhea or not. Indeed, these are genetically distinct viruses that appear to be rapidly evolving via reassortment, due to their segmented nature. For example, the close relatedness of porcine and human strains points to the likelihood of a crossover events or circulation between these hosts, much like influenza. Indeed, unlike other viruses that have co-evolved with their host, PBV strains do not segregate into distinct clades by host. Rather, the simple capsid appears to have obtained a generalized means of infecting animal cells and there does not appear to be a species restriction. Thus again, detection of PBVs in farm animals, birds, reptiles, domestic pets, wild birds, and in sewage in every part of the world, coupled with the documented examples of interspecies transmission (Argentina, Hungary, Venezuela, India) suggests PBVs have zoonotic potential and may present a public health threat (1-4). Accordingly, what is needed are compositions, methods, and kits for diagnosing PBVs, particularly in human subjects.


SUMMARY

Provided herein are materials and methods for detecting PBV in a sample. In some aspects, provided herein are primers for amplifying PBVin a sample. In some embodiments, the primer comprises a sequence with 80% or more sequence identity to SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, or complements thereof.


In some aspects, provided herein are probes for detecting PBVin a sample. In some embodiments, the probe comprises a sequence with 80% or more sequence identity to SEQ ID NO: 6, SEQ ID NO: 9, or complements thereof.


In some aspects, provided herein are compositions for amplifying PBVin a sample. In some embodiments, the composition comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof and at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof. In some embodiments, the composition comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof and at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof.


In some embodiments, the composition comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 6 or a complement thereof. In some embodiments, the composition comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 9 or a complement thereof.


In some aspects, provided herein are methods for detecting PBV in a sample. In some embodiments, the methods comprise contacting the sample with at least one primer and/or at least one probe. In some embodiments, the PBV comprises at least one sequence selected from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, and SEQ ID NO: 11.


In some aspects, provided herein are kits for detecting PBV in a sample. In some embodiments, the kit comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 6 or a complement thereof. In some embodiments, the kit comprises at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 9 or a complement thereof.


In some aspects, provided herein are isolated polynucleotides having 50% or more sequence identity to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. In some aspects, provided herein are vectors and host cells comprising the same.


In some aspects, provided herein are isolated polypeptides having 80% or more sequence identity to SEQ ID NO: 7, SEQ ID NO: 11, or fragments thereof. In some aspects, provided herein are host cells comprising the same.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B show representative drawings of the structure of PBV. Picobirnaviruses (PBV) are segmented, double stranded RNA viruses consisting of two segments and a capsid (FIG. 1A). Segment 1 is approximately 2.5 kb long and encodes a hypothetical, hydrophilic protein (ORF1) of ˜200 aa in one reading frame, and the capsid protein in another (˜500 aa). Segment 2 is approximately 1.7 kb long and encodes only the RDRP (FIG. 1B).



FIG. 2A shows a coverage plot for segment 1 (capsid) of the novel PBV described herein obtained by next-generation sequencing of the index case (MRN3406) sputum sample.



FIG. 2B shows a coverage plot for segment 2 (RDRP) of of the novel PBV described herein (e.g. ABT-PBV) obtained by next-generation sequencing of the index case (MRN3406) sputum sample.



FIG. 3 shows the pairwise alignment of the amino acid sequence of the capsid for the novel PBV strain (MRN3406) described herein with the capsid from various other strains.



FIG. 4 shows the pairwise alignment of the amino acid sequence of the RDRP for the novel PBV strain (MRN3406) described herein with the RDRP sequence from various other strains.



FIG. 5A-5B show neighbor-joining radial trees of the capsid protein determined from a 521 amino acid gapped alignment (FIG. 3A) and a 156 amino acid gap-stripped alignment (FIG. 3B).



FIG. 6 shows an example of an RDRP tree from Smits, et al which is based on the typical, conserved 165 nt (55 aa) segment interrogated to infer phylogenetic relationships among strains. This tree highlights pig and human sequences obtained from respiratory tracts, such as VS2000252/2005 shown in red (5).



FIG. 7A shows a partial-length RDRP neighbor-joining tree of the same 55 aa region in FIG. 6, rooted on human Genotype II strain, AF246940 (4-GA-91) and includes the ABT-PBV strain. RDRP sequences retrieved from GenBank (n=841) were reduced to n=215, to include a diversity of strains and those with implications for respiratory disease. The ABT-PBV branch has been expanded to show it groups with strains KM285233 & KM285234, each obtained in 2009 from swabs of upper respiratory tracts from two patients in Cambodia. GU968930 branches with 99% bootstrap support with VS2000252/2005 shown in FIG. 6. FIG. 7B shows linear and radial trees from an alignment of 132 sequences spanning 348 aa (ABT coordinates: 126-473). The ABT-PBV sequence continues to branch with Cambodian respiratory strains over the longer region analyzed.



FIG. 8A shows an amino acid alignment of the RDRP qPCR target region. Note the identity (*) of the ABT-PBV RDRP protein with Cambodian proteins (AK92636.1 & AKG92637.1). FIG. 8B shows the nucleotide alignment of the RDRP qPCR target region and relative position of primers and probes within the amplicon. MRN3406=Novel ABT-PBV strain; KM285233 & KM285234 are respiratory strains.



FIG. 9 outlines the scheme and expected results for two independent, quantitative RT-PCR reactions detecting infections of six different picobirnavirus strains. Column 1 depicts amplification curves of serially diluted positive controls detecting capsid with a single FAM-labeled probe. Only the novel ABT-PBV or highly identical strains will be detected. Columns 2-4 depict curves for a 2nd multiplex PCR reaction detecting the RDRP segment. Universal primers generate an amplicon for which a universal probe (FAM; column 2) detects all 6 PBV strains, a Cy5 probe detects only ABT PBV, and a Cy3 probe detects only the respiratory PBV strains from Cambodia.



FIG. 10 shows an ethidium bromide stained agarose gel of in vitro transcripts (IVT). Lanes 1-3 are aichivirus VP0 sequences, lanes 4-8 & 10 are RDRP sequences derived from 6 different PBV strains, and lane 9 is the capsid sequence derived from the ABT-PBV strain. IVTs serve as positive controls in the qPCR assay.



FIG. 11A-B shows actual rtPCR results for 10-fold serial dilutions of the ABT-PBV capsid IVT (9: PVABTCA) using the capsid primers and probes, as depicted in FIG. 9, column 1. Amplification curves are shown in FIG. 11A. The linear regression plot is shown in FIG. 11B.



FIG. 12 shows actual rtPCR results for 10-fold serial dilutions of RDRP IVT for various in vitro transcripts, as depicted in FIG. 9, columns 2-4. RDRP from all 6 strains are detected by FAM (column 1), whereas only those similar to ABT-PBV (8: MRN3406) are detected by Cy5 and to the Cambodian (6: KM285233) strain are detected by Cy3.



FIG. 13 summarizes the hits detected in a screen of n=130 sputum samples obtained from US and Colombian individuals hospitalized with severe respiratory illness.



FIG. 14 shows a linear tree for capsid (as in FIG. 5A) from an alignment of 147 sequences spanning 242 aa (ABT coordinates: 91-333), and includes the newly sequenced respiratory strains identified by the qPCR assay. The new respiratory sequences cluster into distinct groups but are distant from with Cambodian respiratory strains and branch with GI tract-derived strains.



FIG. 15 shows a linear tree for RDRP (as in FIG. 7B) from an alignment of 143 sequences spanning 348 aa (ABT coordinates: 126-473), and includes the newly sequenced respiratory strains identified by the qPCR assay. The new respiratory sequences cluster into distinct groups and are found on the same branch with Cambodian respiratory strains without any GI tract-derived strains.





DETAILED DESCRIPTION

In some aspects, provided herein are provided herein are materials and methods for detecting any picobirnavirus infection in a subject. For example, provided herein are materials and methods for detecting picobirnaviruses associated with gastroenterirtis, diarrhea, or respiratory illness. In other embodiments, provided herein are materials and methods for detecting specific picobirnaviruses associated with respiratory illness in a subject.


PBVs have recently been detected in respiratory secretions, both in pigs and in humans (5). For example, novel PBV strains were detected in 2 patients with severe, acute respiratory illness in a surveillance study conducted in Uganda (6). It is possible that the significance of these viruses' role in respiratory disease is just beginning to be appreciated. One question raised is whether these viruses actually infect animals or are found in intestinal bacteria or other eukaryotic parasites. Their ability to auto-proteolyze their capsid and invade liposomes suggests they are in fact vertebrate viruses, unlike the related partitiviruses that infect unicellular organisms and fungi. Studies in pigs and chickens suggest the virus can persist chronically, with periods of large shedding interspersed by periods of silence, and that some hosts can serve as asymptomatic reservoirs. This implies the virus is adapted to the host and may underscore why pathogenicity (e.g. diarrhea) is seen often in the immunocompromised or those co-infected with other enteric viruses like rotavirus, calicivirus, and astrovirus, and thus PBVs may be opportunistic pathogens.


Diagnosis has been previously made by PAGE and silver stain detection of the two RNA segments, although PCR is now a simpler approach in widespread use. Segment 1 is approximately 2.5 kb long and encodes a hypothetical, hydrophilic protein (ORF1) of ˜200 aa in one reading frame, and the capsid protein in another (˜500 aa). Segment 2 is approximately 1.7 kb long and encodes only the RDRP. Given the high genetic diversity of PBVs, even degenerate primer sets in the conserved RDRP region (280 bp) yield limited success. Phylogenetic analyses are often on the basis of only 168 nt/55 aa in the RDRP7. Their heterologous nature is further pronounced by the documented detection of multiple PBV strains in individuals. Unbiased NGS is now the preferred means of detection and sequencing. At present there are only 6 complete PBV genomes in NCBI (e.g. both segments). All of these are from enteric-derived samples; ours would be the first from respiratory specimens.


Section headings as used in this section and the entire disclosure herein are merely for organizational purposes and are not intended to be limiting.


1. Definitions

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present disclosure. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting.


The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “an” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not.


For the recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the number 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated.


As used herein, the term “amplicon” refers to a nucleic acid generated via an amplification reaction. The amplicon is typically double stranded DNA; however, it may be RNA and/or a DNA:RNA hybrid. The amplicon comprises DNA complementary to a sample nucleic acid. In some embodiments, primer pairs are configured to generate amplicons from a sample nucleic acid. As such, the base composition of any given amplicon may include the primer pair, the complement of the primer pair, and the region of a sample nucleic acid that was amplified to generate the amplicon. In one embodiment, the incorporation of the designed primer pair sequences into an amplicon may replace the native sequences at the primer binding site, and complement thereof. In certain embodiments, after amplification of the target region using the primers, the resultant amplicons having the primer sequences are used for subsequent analysis (e.g. base composition determination, for example, via direct sequencing). In some embodiments, the amplicon further comprises a length that is compatible with subsequent analysis. An example of an amplicon is a DNA or an RNA product (usually a segment of a gene, DNA or RNA) produced as a result of PCR, real-time PCR, RT-PCR, competitive RT-PCR, ligase chain reaction (LCR), gap LCR, strand displacement amplification (SDA), nucleic acid sequence-based amplification (NASBA), transcription-mediated amplification (TMA), or the like.


As used herein, the phrases “amplification,” “amplification method,” or “amplification reaction,” are used interchangeably and refer to a method or process that increases the representation of a population of specific nucleic acid (all types of DNA or RNA) sequences (such as a target sequence or a target nucleic acid) in a sample. Examples of amplification methods that can be used in the present disclosure include, but are not limited to, PCR, real-time PCR, RT-PCR, competitive RT-PCR, and the like, all of which are known to one skilled in the art.


As used herein, the phrase “amplification conditions” refers to conditions that promote annealing and/or extension of primer sequences. Such conditions are well-known in the art and depend on the amplification method selected. For example, PCR amplification conditions generally comprise thermal cycling, e.g., cycling of the reaction mixture between two or more temperatures. In isothermal amplification reactions, amplification occurs without thermal cycling although an initial temperature increase may be required to initiate the reaction. Amplification conditions encompass all reaction conditions including, but not limited to, temperature and temperature cycling, buffer, salt, ionic strength, pH, and the like.


As used herein, the phrase “amplification reagents” refers to reagents used in amplification reactions and may include, but is not limited to, buffers, reagents, enzymes having reverse transcriptase, and/or polymerase, or exonuclease activities; enzyme cofactors such as magnesium or manganese; salts; and deoxynucleotide triphosphates (dNTPs), such as deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), deoxythymidine triphosphate (dTTP), and deoxyuridine triphosphate (dUTP). Amplification reagents may readily be selected by one skilled in the art depending on the amplification method employed.


A “coding sequence” is a polynucleotide sequence which is transcribed into mRNA and translated into a polypeptide when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by and include a translation start codon at the 5′-terminus and one or more translation stop codons at the 3′-terminus. A coding sequence can include, but is not limited to, mRNA, cDNA, and recombinant polynucleotide sequences.


The term “control sequence” refers to polynucleotide sequences which are necessary to effect the expression of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism. In prokaryotes, such control sequences generally include promoter, ribosomal binding site and terminators; in eukaryotes, such control sequences generally include promoters, terminators and, in some instances, enhancers. The term “control sequence” thus is intended to include at a minimum all components whose presence is necessary for expression, and also may include additional components whose presence is advantageous, for example, leader sequences.


A “conformational epitope” is an epitope that is comprised of specific juxtaposition of amino acids in an immunologically recognizable structure, such amino acids being present on the same polypeptide in a contiguous or non-contiguous order or present on different polypeptides.


As used herein, the phrase, “directly detectable,” when used in reference to a detectable label or detectable moiety, means that the detectable label or detectable moiety does not require further reaction or manipulation to be detectable. For example, a fluorescent moiety is directly detectable by fluorescence spectroscopy methods. In contrast, the phrase “indirectly detectable,” when used herein in reference to a detectable label or detectable moiety, means that the detectable label or detectable moiety becomes detectable after further reaction or manipulation. For example, a hapten becomes detectable after reaction with an appropriate antibody attached to a reporter, such as a fluorescent dye.


“Encoded by” refers to a nucleic acid sequence which codes for a polypeptide sequence. Also encompassed are polypeptide sequences which are immnunologically identifiable with a polypeptide encoded by the sequence. Thus, a “polypeptide,” “protein,” or “amino acid” sequence as claimed herein may have at least 60% similarity, more preferably at least about 70% similarity, and most preferably about 80% similarity to a particular polypeptide or amino acid sequence specified below.


As used herein, “epitope” means an antigenic determinant of a polypeptide. Conceivably, an epitope can comprise three amino acids in a spatial conformation which is unique to the epitope. Generally, an epitope consists of at least five such amino acids, and more usually, it consists of at least eight to ten amino acids. Methods of examining spatial conformation are known in the art and include, for example, x-ray crystallography and two-dimensional nuclear magnetic resonance.


The terms, “fluorophore,” “fluorescent moiety,” “fluorescent label,” and “fluorescent dye” are used interchangeably herein and refer to a molecule that absorbs a quantum of electromagnetic radiation at one wavelength, and emits one or more photons at a different, typically longer, wavelength in response thereto. Numerous fluorescent dyes of a wide variety of structures and characteristics are suitable for use in the practice of the present disclosure. Methods and materials are known for fluorescently labeling nucleic acid molecules (See, R. P. Haugland, “Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals 1992-1994,” 5th Ed., 1994, Molecular Probes, Inc.). Preferably, a fluorescent label or moiety absorbs and emits light with high efficiency (e.g., has a high molar absorption coefficient at the excitation wavelength used, and a high fluorescence quantum yield), and is photostable (e.g., does not undergo significant degradation upon light excitation within the time necessary to perform the analysis). Rather than being directly detectable themselves, some fluorescent dyes transfer energy to another fluorescent dye in a process called fluorescence resonance energy transfer (FRET), and the second dye produces the detected signal. Such FRET fluorescent dye pairs are also encompassed by the term “fluorescent moiety.” The use of physically- linked fluorescent reporters/quencher moieties is also within the scope of the present disclosure. In these aspects, when the fluorescent reporter and quencher moiety are held in close proximity, such as at the ends of a probe, the quencher moiety prevents detection of a fluorescent signal from the reporter moiety. When the two moieties are physically separated, such as after cleavage by a DNA polymerase, the fluorescent signal from the reporter moiety becomes detectable.


A “fragment” of a specified polypeptide refers to an amino acid sequence which comprises at least about 3-5 amino acids, more preferably at least about 8-10 amino acids, and even more preferably at least about 15-20 amino acids, derived from the specified polypeptide. A “fragment” of a specified polynucleotide refers to a nucleotide sequence which comprises at least 10 base pairs. For example, a fragment may comprise at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 70, at least 75, at least 80, at least 85, at least 90, at least 95, or at least 100 base pairs.


As used herein, the term “hybridization” refers to the formation of complexes between nucleic acid sequences which are sufficiently complementary to form complexes via Watson-Crick base pairing or non-canonical base pairing. For example, when a primer “hybridizes” with a target sequence (template), such complexes (or hybrids) are sufficiently stable to serve the priming function required by, e.g., the DNA polymerase, to initiate DNA synthesis. It will be appreciated by one skilled in the art that hybridizing sequences need not have perfect complementarity to provide stable hybrids. In many situations, stable hybrids will form where fewer than about 10% of the bases are mismatches. Accordingly, as used herein, the term “complementary” refers to an oligonucleotide that forms a stable duplex with its complement under assay conditions, generally where there is about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94% about 95%, about 96%, about 97%, about 98%, or about 99% greater homology. Those skilled in the art understand how to estimate and adjust the stringency of hybridization conditions such that sequences having at least a desired level of complementarity will stably hybridize, while those having lower complementarity will not. Examples of hybridization conditions and parameters can be found, for example in, Sambrook et al., “Molecular Cloning: A Laboratory Manual” 1989, Second Edition, Cold Spring Harbor Press: Plainview, N.Y.; F. M. Ausubel, “Current Protocols in Molecular Biology” 1994, John Wiley & Sons: Secaucus, N.J.


The term “immunologically identifiable with/as” refers to the presence of epitope(s) and polypeptide(s) which also are present in and are unique to the designated polypeptide(s). Immunological identity may be determined by antibody binding and/or competition in binding. These techniques are known to the skilled artisan and also are described herein. The uniqueness of an epitope also can be determined by computer searches of known data banks, such as GenBank, for the polynucleotide sequences which encode the epitope, and by amino acid sequence comparisons with other known proteins.


A polypeptide is “immunologically reactive” with an antibody when it binds to an antibody due to antibody recognition of a specific epitope contained within the polypeptide. Immunological reactivity may be determined by antibody binding, more particularly by the kinetics of antibody binding, and/or by competition in binding using as competitor(s) a known polypeptide(s) containing an epitope against which the antibody is directed. The methods for determining whether a polypeptide is immunologically reactive with an antibody are known in the art.


The term “isolated” means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or DNA or polypeptide, which is separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotide could be part of a vector and/or such polynucleotide or polypeptide could be part of a composition, and still be isolated in that the vector or composition is not part of its natural environment.


As used herein, the terms “labeled” and “labeled with a detectable label (or agent or moiety)” are used interchangeably herein and specify that an entity (e.g., a primer or a probe) can be visualized, for example following binding to another entity (e.g., an amplification product or amplicon). Preferably, the detectable label is selected such that it generates a signal which can be measured and whose intensity is related to (e.g., proportional to) the amount of bound entity. A wide variety of systems for labeling and/or detecting nucleic acid molecules, such as primer and probes, are well-known in the art. Labeled nucleic acids can be prepared by incorporation of, or conjugation to, a label that is directly or indirectly detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, chemical, or other means. Suitable detectable agents include, but are not limited to, radionuclides, fluorophores, chemiluminescent agents, microparticles, enzymes, colorimetric labels, magnetic labels, haptens, Molecular Beacons, aptamer beacons, and the like.


As used herein, the terms “nucleic acid,” “nucleic acid sequence,” “oligonucleotide,” and “polynucleotide” refer to at least two nucleotides covalently linked together. The depiction of a single strand also defines the sequence of the complementary strand. Thus, an oligonucleotide also encompasses the complementary strand of a depicted single strand. An oligonucleotide also encompasses substantially identical nucleic acids and complements thereof. Oligonucleotides can be single-stranded or double-stranded, or can contain portions of both double-stranded and single-stranded sequences. The oligonucleotide can be DNA, both genomic and complimentary DNA (cDNA), RNA, or a hybrid, where the nucleic acid can contain combinations of deoxyribo- and ribonucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine. Oligonucleotides can be obtained by chemical synthesis methods or by recombinant methods. A particular oligonucleotide sequence can encompass conservatively modified variants thereof (e.g., codon substitutions), alleles, orthologs, single nucleotide polymorphisms (SNPs), and complementary sequences as well as the sequence explicitly indicated.


“Operably linked” refers to a situation wherein the components described are in a relationship permitting them to function in their intended manner. Thus, for example, a control sequence “operably linked” to a coding sequence is ligated in such a manner that expression of the coding sequence is achieved under conditions compatible with the control sequences.


“Polypeptide” and “protein” are used interchangeably herein and indicate a molecular chain of amino acids linked through covalent and/or noncovalent bonds. The terms do not refer to a specific length of the product. Thus, peptides, oligopeptides and proteins are included within the definition of polypeptide. The terms include post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. In addition, protein fragments, analogs, mutated or variant proteins, fusion proteins and the like are included within the meaning of polypeptide.


The term “primer” or “oligonucleotide primer” as used interchangeably herein as used herein, refers to an oligonucleotide capable of acting as a point of initiation for DNA synthesis under suitable conditions. Suitable conditions include those in which hybridization of the oligonucleotide to a template nucleic acid occurs, and synthesis or amplification of the target sequence occurs, in the presence of four different nucleoside triphosphates and an agent for extension (e.g., a DNA polymerase) in an appropriate buffer and at a suitable temperature. A “forward oligonucleotide primer” or “sense primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation for DNA synthesis at the 5′ end of a target nucleic acid sequence. A “reverse oligonucleotide primer” or “anti-sense primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation for DNA synthesis at the 3′ end of a target nucleic acid sequence.The phrase “forward primer” refers to a primer that hybridizes (or anneals) with the target sequence (e.g., template strand). The phrase “reverse primer” refers to a primer that hybridizes (or anneals) to the complementary strand of the target sequence. The forward primer hybridizes with the target sequence 5′ with respect to the reverse primerThe phrase “forward primer” refers to a primer that hybridizes (or anneals) with the target sequence (e.g., template strand). The phrase “reverse primer” refers to a primer that hybridizes (or anneals) to the complementary strand of the target sequence. The forward primer hybridizes with the target sequence 5′ with respect to the reverse primer.


As used herein, the phrase “primer set” refers to two or more primers which together are capable of priming the amplification of a target sequence or target nucleic acid of interest (e.g., a target sequence within the PBV). In certain embodiments, the term “primer set” refers to a pair of primers including a 5′ (upstream) primer (or forward primer) that hybridizes with the 5′-end of the target sequence or target nucleic acid to be amplified and a 3′ (downstream) primer (or reverse primer) that hybridizes with the complement of the target sequence or target nucleic acid to be amplified. Such primer sets or primer pairs are particularly useful in PCR amplification reactions.


The term “probe” or “oligonucleotide primer” as used interchangeably herein refers to an oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid, preferably in an amplified nucleic acid, under conditions that promote hybridization, to form a detectable hybrid. A probe may contain a detectable moiety (e.g., a label) which either may be attached to the end(s) of the probe or may be internal. The nucleotides of the probe which hybridize to the target nucleic acid sequence need not be strictly contiguous, as may be the case with a detectable moiety internal to the sequence of the probe. Detection may either be direct (i.e., resulting from a probe hybridizing directly to the target sequence or amplified nucleic acid) or indirect (i.e., resulting from a probe hybridizing to an intermediate molecular structure that links the probe to the target sequence or amplified nucleic acid). An oligonucleotide probe may comprise target-specific sequences and other sequences that contribute to three-dimensional conformation of the probe (e.g., as described in, e.g., U.S. Pat. Nos. 5,118,801 and 5,312,728).


As used herein, the phrase “primer and probe set” refers to a combination including two or more primers which together are capable of priming the amplification of a target sequence or target nucleic acid, and least one probe which can detect the target sequence or target nucleic acid. The probe generally hybridizes to a strand of an amplification product (or amplicon) to form an amplification product/probe hybrid, which can be detected using routine techniques known to those skilled in the art.


“Purified polypeptide” or “purified polynucleotide” refers to a polypeptide or polynucleotide of interest or fragment thereof which contains less than about 50%, preferably less than about 70%, and more preferably, less than about 90% of cellular components with which the polypeptide or polynucleotide of interest or fragment thereof is naturally associated. Methods for purifying are known in the art.


The terms “recombinant polypeptide” or “recombinant protein”, used interchangeably herein, describe a polypeptide which by virtue of its origin or manipulation is not associated with all or a portion of the polypeptide with which it is associated in nature and/or is linked to a polypeptide other than that to which it is linked in nature. A recombinant or encoded polypeptide or protein is not necessarily translated from a designated nucleic acid sequence. It also may be generated in any manner, including chemical synthesis or expression of a recombinant expression system.


“Recombinant host cells,” “host cells,” “cells,” “cell lines,” “cell cultures,” and other such terms denoting microorganisms or higher eukaryotic cell lines cultured as unicellular entities refer to cells which can be, or have been, used as recipients for recombinant vector or other transferred DNA, and include the original progeny of the original cell which has been transfected.


As used herein “replicon” means any genetic element, such as a plasmid, a chromosome or a virus, that behaves as an autonomous unit of polynucleotide replication within a cell.


As used herein, the term “sample” generally refers to a biological material being tested for and/or suspected of containing an analyte of interest, such as an PBV sequence. The sample may be derived from any biological source, such as, a cervical, vaginal or anal swab or brush, or a physiological fluid including, but not limited to, whole blood, serum, plasma, interstitial fluid, saliva, ocular lens fluid, cerebral spinal fluid, sweat, urine, milk, ascites fluid, mucus, nasal fluid, sputum, synovial fluid, peritoneal fluid, vaginal fluid, menses, amniotic fluid, semen, and so forth. The sample may be used directly as obtained from the biological source or following a pretreatment to modify the character of the sample. For example, such pretreatment may include preparing plasma from blood, diluting viscous fluids, and so forth. Methods of pretreatment may also involve filtration, precipitation, dilution, distillation, mixing, concentration, lyophilization, inactivation of interfering components, the addition of reagents, lysing, etc. Moreover, it may also be beneficial to modify a solid sample to form a liquid medium or to release the analyte. Preferably, the sample may be plasma.


The term “sequence identity” refers to the degree of similarity between two sequences (e.g., nucleic acid (e.g., oligonucleotide or polynucleotide sequences) or amino acid sequences). To determine the percent identity of two nucleic acid or amino acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


“Statistically significant” as used herein refers to the likelihood that a relationship between two or more variables is caused by something other than random chance. Statistical hypothesis testing is used to determine whether the result of a data set is statistically significant. In statistical hypothesis testing, a statistically significant result is attained whenever the observed p-value of a test statistic is less than the significance level defined of the study. The p-value is the probability of obtaining results at least as extreme as those observed, given that the null hypothesis is true. Examples of statistical hypothesis analysis include Wilcoxon signed-rank test, t-test, Chi-Square or Fisher's exact test. “Significant” as used herein refers to a change that has not been determined to be statistically significant (e.g., it may not have been subject to statistical hypothesis testing).


“Subject” and “patient” as used herein interchangeably refers to any vertebrate, including, but not limited to, a mammal (e.g., cow, pig, camel, llama, horse, goat, rabbit, sheep, hamsters, guinea pig, cat, dog, rat, and mouse, a non-human primate (for example, a monkey, such as a cynomolgous or rhesus monkey, chimpanzee, etc.) and a human). In some embodiments, the subject may be a human or a non-human. The subject or patient may be undergoing other forms of treatment. In some embodiments, the subject is suspected of having a respiratory illness.


The term “synthetic peptide” as used herein means a polymeric form of amino acids of any length, which may be chemically synthesized by methods well-known to those skilled in the art. These synthetic peptides are useful in various applications.


The phrases “target sequence” and “target nucleic acid” are used interchangeably herein and refer to that which the presence or absence of which is desired to be detected. In the context of the present disclosure, a target sequence preferably includes a nucleic acid sequence to which one or more primers will complex. The target sequence can also include a probe-hybridizing region with which a probe will form a stable hybrid under appropriate amplification conditions. As will be recognized by one of ordinary skill in the art, a target sequence may be single-stranded or double-stranded.


The term “transformation” refers to the insertion of an exogenous polynucleotide into a host cell, irrespective of the method used for the insertion. For example, direct uptake, transduction or f-mating are included. The exogenous polynucleotide may be maintained as a non-integrated vector, for example, a plasmid, or alternatively, may be integrated into the host genome.


“Treat,” “treating” or “treatment” are each used interchangeably herein to describe reversing, alleviating, or inhibiting the progress of a disease and/or injury, or one or more symptoms of such disease, to which such term applies. Depending on the condition of the subject, the term also refers to preventing a disease, and includes preventing the onset of a disease, or preventing the symptoms associated with a disease. A treatment may be either performed in an acute or chronic way. The term also refers to reducing the severity of a disease or symptoms associated with such disease prior to affliction with the disease. Such prevention or reduction of the severity of a disease prior to affliction refers to administration of a pharmaceutical composition to a subject that is not at the time of administration afflicted with the disease. “Preventing” also refers to preventing the recurrence of a disease or of one or more symptoms associated with such disease. “Treatment” and “therapeutically,” refer to the act of treating, as “treating” is defined above.


“Variant” is used herein to describe a peptide or polypeptide that differs in sequence by the insertion, deletion, or conservative substitution of amino acids, but retain at least one biological activity. Representative examples of “biological activity” include the ability to be bound by a specific antibody or to promote an immune response. Variant is also used herein to describe a protein with a sequence that is substantially identical to a referenced protein with a sequence that retains at least one biological activity. A conservative substitution of an amino acid, i.e., replacing an amino acid with a different amino acid of similar properties (e.g., hydrophilicity, degree, and distribution of charged regions) is recognized in the art as typically involving a minor change. These minor changes can be identified, in part, by considering the hydropathic index of amino acids, as understood in the art. Kyte et al., J. Mol. Biol. 157:105-132 (1982). The hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes can be substituted and still retain protein function. In one aspect, amino acids having hydropathic indexes of ±2 are substituted. The hydrophilicity of amino acids can also be used to reveal substitutions that would result in proteins retaining biological function. A consideration of the hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide, a useful measure that has been reported to correlate well with antigenicity and immunogenicity. U.S. Pat. No. 4,554,101, incorporated fully herein by reference. Substitution of amino acids having similar hydrophilicity values can result in peptides retaining biological activity, for example immunogenicity, as is understood in the art. Substitutions may be performed with amino acids having hydrophilicity values within ±2 of each other. Both the hydrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties. “Variant” also can be used to describe a polypeptide or a fragment thereof that has been differentially processed, such as by proteolysis, phosphorylation, or other post-translational modification, yet retains its antigen reactivity.


A “vector” is a replicon to which another polynucleotide segment is attached, such as to bring about the replication and/or expression of the attached segment.


Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. For example, any nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those that are well known and commonly used in the art. The meaning and scope of the terms should be clear; in the event, however of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.


2. Novel Picobirnavirus

In some aspects, provided herein is a novel strain of picobirnavirus. The novel picobirnavirus strain described herein is referred to interchangeably herein as ABT-PBV, the inde. In some embodiments, the strain may be present in respiratory specimens. In some embodiments, the strain may cause respiratory illness.


PBV comprises two segments (FIG. 1A-1B). Segment 1 is approximately 2.5 kb long and encodes a hypothetical, hydrophilic protein (ORF1) of ˜200 aa in one reading frame, and the capsid protein in another (˜500 aa). Segment 2 is approximately 1.7 kb long and encodes the RDRP.


In some aspects, the present disclosure provides polynucleotide sequences derived from PBV and polypeptides encoded thereby. The polynucleotide(s) may be in the form of mRNA or DNA. Polynucleotides in the form of DNA, cDNA, genomic DNA, and synthetic DNA are within the scope of the present disclosure. In some aspects, the polynucleotide is in the form of DNA. In other aspects, the polynucleotide is in the form of cDNA. In yet other aspects, the polynucleotide is in the form of genomic DNA. In still yet further aspect, the polynucleotide is in the form of synthetic DNA.


The DNA may be double-stranded or single-stranded, and if single stranded may be the coding (sense) strand or non-coding (anti-sense) strand. The coding sequence which encodes the polypeptide may be identical to the coding sequence provided herein or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same polypeptide as the DNA provided herein.


The polynucleotides provided herein may include only the coding sequence for the polypeptide, or the coding sequence for the polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence, or the coding sequence for the polypeptide (and optionally additional coding sequence) and non-coding sequence, such as a non-coding sequence 5′ and/or 3′ of the coding sequence for the polypeptide.


In addition, the disclosure includes variant polynucleotides containing modifications such as polynucleotide deletions, substitutions or additions; and any polypeptide modification resulting from the variant polynucleotide sequence. A polynucleotide of the present disclosure also may have a coding sequence which is a naturally-occurring variant of the coding sequence provided herein.


In addition, the coding sequence for the polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the polypeptide. The polynucleotides may also encode for a proprotein which is the protein plus additional 5′ amino acid residues. A protein having a prosequence is a proprotein and may in some cases be an inactive form of the protein. Once the prosequence is cleaved an active protein remains. Thus, the polynucleotide of the present disclosure may encode for a protein, or for a protein having a prosequence or for a protein having both a presequence (leader sequence) and a prosequence.


The polynucleotides of the present disclosure may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present disclosure. The marker sequence may be a hexa-histidine tag supplied by a pQE-9 vector to provide for purification of the polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein. See, for example, I. Wilson et al., Cell 37:767 (1984).


For the novel PBV described herein, the complete sequence of segment is provided in SEQ ID NO: 1. In some embodiments, provided herein are isolated polynucleotides having 50% or more sequence identity (e.g. at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 1 or a fragment thereof.


For the novel PBV described herein, the nucleotide sequence of the capsid is provided in SEQ ID NO: 6. In some embodiments, provided herein are isolated polynucleotides having 50% or more sequence identity (e.g. at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 6 or a fragment thereof. For example, provided herein are isolated polynucleotides of SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, and SEQ ID NO: 45.


The complete sequence of segment 2 is provided in SEQ ID NO: 9. In some embodiments, provided herein are isolated polynucleotides having 50% or more sequence identity (e.g. at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 9 or a fragment thereof.


The nucleotide sequence of the RNA-dependent RNA polymerase (RDRP) is provided in SEQ ID NO: 10. In some embodiments, provided herein are isolated polynucleotides having 50% or more sequence identity (e.g. at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 10 or a fragment thereof. For example, provided herein are isolated polynucleotides of SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, and SEQ ID NO: 63.


The present disclosure further relates to PBV polypeptides. The PBV polypeptides may be encoded by any one of the polynucleotides provided herein. The PBV polypeptides may have the deduced amino acid sequence as provided herein, as well as fragments, analogs and derivatives of such polypeptides. The polypeptides of the present disclosure may be recombinant polypeptides, natural purified polypeptides or synthetic polypeptides. The fragment, derivative or analog of such a polypeptide may be one in which one or more of the amino acid residues is substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code; or it may be one in which one or more of the amino acid residues includes a substituent group; or it may be one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol); or it may be one in which the additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are within the scope of the present disclosure. The polypeptides and polynucleotides of the present disclosure are provided in an isolated form, are purified or are in isolated form and purified.


Thus, a polypeptide of the present disclosure may have an amino acid sequence that is identical to that of the naturally-occurring polypeptide or that is different by minor variations due to one or more amino acid substitutions. The variation may be a “conservative change” typically in the range of about 1 to 5 amino acids, wherein the substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine or threonine with serine. In contrast, variations may include nonconservative changes, e.g., replacement of a glycine with a tryptophan. Similar minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without changing biological or immunological activity may be found using computer programs well known in the art, for example, DNASTAR software (DNASTAR Inc., Madison Wis.).


The amino acid sequence of the capsid is provided in SEQ ID NO: 7. Accodingly, further provided herein are isolated polypeptides having an amino acid sequence with 80% or more sequence identity (e.g. at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 7 or a fragment thereof.


The amino acid sequence of the RNA-dependent RNA polymerase (RDRP) is provided in SEQ ID NO: 11. Accodingly, further provided herein are isolated polypeptides having an amino acid sequence with 80% or more sequence identity (e.g. at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 11 or a fragment thereof.


Further provided herein are isolated polypeptides having 80% or more sequence identity (e.g. at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the polypeptide encoded by SEQ ID NO: 1 or a fragment thereof.


Further provided herein are isolated polypeptides having 80% or more sequence identity (e.g. at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the polypeptide encoded by SEQ ID NO: 9 or a fragment thereof.


In some aspects, further provided herein are vectors comprising a polynucleotide as disclosed herein. Any suitable vector may be used so long as it is replicable and viable in a host. For example, in some embodiments provided herein are vectors comprising a polynucleotide having at least 50% sequence identity (e.g. 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. The polynucleotides of the present disclosure may be included in any one of a variety of expression vehicles, in particular vectors or plasmids for expressing a polypeptide.


In some embodiments, the vector further comprises one or more regulatory sequences, such as a promoter. The promoer may be operably linked to the polynucleotide sequence. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, SP6, T7, gpt, lambda P sub R, P sub L and trp. Eukaryotic promoters include cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.


Generally, vectors will include origins of replication and selectable markers permitting transformation of a host cell, e.g., the ampicillin resistance gene of E. coli and the S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.


Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a routine matter of choice.


Useful expression vectors for bacterial use comprise a selectable marker and bacterial origin of replication derived from plasmids comprising genetic elements of the well-known cloning vector pBR322 (ATCC 37017). Other vectors include but are not limited to PKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wis.). These pBR322 “backbone” sections are combined with an appropriate promoter and the structural sequence to be expressed. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. The following vectors are provided by way of example. Bacterial: pINCY (Incyte Pharmaceuticals Inc., Palo Alto, Calif.), pSPORT1 (Life Technologies, Gaithersburg, Md.), pQE70, pQE60, pQE-9 (Qiagen) pBs, phagescript, psiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK2330-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).


In some embodiments, the vector is a mammalian vector. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, 5′ flanking nontranscribed sequences, and selectable markers such as the neomycin phosphotransferase gene. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Representative, useful vectors include pRc/CMV and pcDNA3 (available from Invitrogen, San Diego, Calif.).


The desired polynucleotide may be inserted into the vector by a variety of procedures. In general, the polynucleotide is inserted into appropriate restriction endonuclease sites by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art. The polynucleotide in the expression vector may be operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. The expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. In addition, the expression vectors preferably contain a gene to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.


Transcription may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that acts on a protmoter increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin (bp 100 to 270), a cytomegalovirus early promoter enhancer, a polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.


In some embodiments, further provided herein are host cells comprising a polynucleotide or a polypeptide as described herein. In some embodiments, provided herein are host cells comprising a vector as described herein. For example, provided herein are host cells that have been transformed with a vector comprising a polynucleotide having at least 50% sequence identity (e.g. 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. The vector containing the appropriate polynucleotide sequence, as well as an appropriate promoter or control sequences, may be employed to transform an appropriate host to permit the host to express a polypeptide as described herein.


In some embodiments provided herein are host cells comprising a polypeptide as described herein. For example, in some embodiments provided herein are host cells expressing a polypeptide having at least 80% sequence identity (e.g. 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 7, SEQ ID NO: 11, or fragments thereof. In yet other embodiments provided herein are host cells expressing a polypeptide having at least 80% sequence identity to the polypeptide sequence encoded by SEQ ID NO: 1, SEQ ID NO: 9, or fragments thereof.


The host cell used herein can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (L. Davis et al., “Basic Methods in Molecular Biology”, 2nd edition, Appleton and Lang, Paramount Publishing, East Norwalk, Conn. [1994]). As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Salmonella typhimurium; Streptomyces sp.; fungal cells, such as yeast; insect cells such as Drosophila and Sf9; animal cells such as chinese hamster ovary (CHO), COS or Bowes melanoma; plant cells, etc. In some embodiments, the host cells is a mammalian host cell. Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings provided herein.


The vectors in host cells can be used in a conventional manner to produce the gene product encoded by the polynucleotide sequence. Alternatively, the polypeptides of the disclosure can be synthetically produced by conventional peptide synthesizers.


Polypeptides can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems also can be employed to produce such proteins using RNAs derived from the DNA constructs of the present disclosure. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, (Cold Spring Harbor, N.Y., 1989), which is hereby incorporated by reference.


Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is derepressed by appropriate means (e.g., temperature shift or chemical induction), and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents; such methods are well-known to the ordinary artisan.


The PBV-derived polypeptides may be recovered and purified from cell cultures by known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography or lectin chromatography. It is preferred to have low concentrations (approximately 0.1-5 mM) of calcium ion present during purification (Price et al., J. Biol. Chem. 244:917 [1969]). Protein refolding steps can be used, as necessary, in completing configuration of the protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.


The polypeptides of the present disclosure may be naturally purified products expressed from a high expressing cell line, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present disclosure may be glycosylated with mammalian or other eukaryotic carbohydrates or may be non-glycosylated. The polypeptides of the disclosure may also include an initial methionine amino acid residue.


The present disclosure further includes modified versions of the polypeptides described herein, such polypeptides comprising inactivated glycosylation sites, removal of sequences such as cysteine residues, removal of the site for proteolytic processing, and the like.


3. Primers and Probes

In some aspects, provided herein are primers, probes, and sets comprising the same for detecting human picobirnavirus (PBV) in a subject.


In some embodiments, provided herein are primers for amplifying PBV in a sample. In some embodiments, the primer is any suitable primer derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. In some embodiments, the primer is any suitable primer that is a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. In some embodiments, the primer has 80% or more sequence identity (e.g. 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to the sequence of SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof.


In some embodiments, the primer has a sequence of SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 13 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 14 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 16 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 17 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 18 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 19 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 20 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 21 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 22 or a complement thereof. In some embodiments, the primer has a sequence of SEQ ID NO: 23 or a complement thereof.


In some embodiments, the primer is labeled with a detectable label. One or more primers (e.g., the one or more primers can be: (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; (ii) a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (iii) SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, complements thereof) may be labeled with a detectable label.


In some aspects, provided herein are probes for detecting PBV in a sample. In some embodiments, the probe is any suitable probe derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. In some embodiments, the probe is a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. In some embodiments, provided herein is a probe for detecting PBV in a sample, the probe has a sequence having 80% or more sequence identity to a sequence of SEQ ID NO: 15, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28 or complements thereof. For example, the probe may have 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 15, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28 or complements thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 15, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28 or complements thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 15 or a complement thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 24 or a complement thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 25 or a complement thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 26 or a complement thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 27 or a complement thereof. In some embodiments, the probe has a sequence of SEQ ID NO: 28 or a complement thereof.


In some embodiments, the probe is labeled with a detectable label. In some aspects, one or more probes can be: (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; (ii) a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (iii) SEQ ID NO: 15, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, or complements thereof) are labeled with a detectable label.


In some aspects, provided herein are compositions for amplifying PBV in a sample. The composition may comprise any two or more primers as disclosed herein (e.g. a primer set). In some embodiments, the composition comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to the sequence of SEQ ID NO: 13, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18 or a complement thereof, and at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 14, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23 or a complement thereof.


In some embodiments, the composition comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 13 or a complement thererof and at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 14 or a complement thereof.


In some embodiments, the composition comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, or a complement thererof and at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof. In some embodiments, the composition comprises one forward primer and one reverse primer. In some embodiments, the composition comprises two or more forward primers (e.g. 2, 3, 4, 5, or more) and two or more reverse primers (e.g. 2, 3, 4, 5, or more).


In some embodiments, the composition further comprises at least one probe. The composition may further comprise any probe described herein. In some embodiments, the composition further comprises a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 15 or a complement thereof. In some embodiments, the composition further comprises a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, or complements thereof. In some embodiments, the composition comprises one probe. In some embodiments, the composition comprises two or more probes (e.g. 2, 3, 4, 5, or more).


In some aspects, provided herein are compositions for amplifying and detecting PBV in a sample. The composition may comprise any suitable combination of primers and probes described herein (e.g. a primer and probe set). In some embodiments, the composition comprises at least one forward primer, at least one reverse primer and at least one probe can be: (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (ii) a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. The composition may comprise one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The composition may comprise one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The composition may comprise one probe or more than one (e.g. 2, 3, 4, 5, ore more) probes. Any or all of the at least one forward primer, at least one reverse primer and at least one probe may be labeled with one or more detectable labels.


In some embodiments, the composition comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 13 or a complement thereof, at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 14 or a complement thereof, and a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 15 or a complement thereof. For example, the composition may comprise a forward primer having the sequence of SEQ ID NO: 13 or a complement thereof, the reverse primer having the sequence of SEQ ID NO: 14 or a complement thereof, and the probe having the sequence of SEQ ID NO: 15 or a complement thereof. Such compositions would be useful for detecting the capsid of PBV. The primers and/or probes can be labeled with one or more detectable labels.


In some embodiments, the composition comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, or complements thereof, at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof, and a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, or complements thereof. The composition may comprise one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The composition may comprise one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The composition may comprise one probe or more than one (e.g. 2, 3, 4, 5, ore more) probes. Such a composition would be useful for detecting the RDRP of PBV.


One or more oligonucleotide analogues can be prepared based on the primers and probes of the present disclosure. Such analogues may contain alternative structures such as peptide nucleic acids or “PNAs” (e.g., molecules with a peptide-like backbone instead of the phosphate sugar backbone of naturally occurring nucleic acids) and the like. These alternative structures are also encompassed by the primers and probes of the present disclosure. Similarly, it is understood that the primers and probes of the present disclosure may contain deletions, additions and/or substitutions of nucleic acid bases, to the extent that such alterations do not negatively affect the properties of these sequences. In particular, the alterations should not result in a significant decrease of the hybridizing properties of the primers and probes described herein. The primers and probes of the present disclosure may be prepared by any of a variety of methods known in the art (See, for example, Sambrook et al., “Molecular Cloning. A Laboratory Manual,” 1989, 2. Supp. Ed., Cold Spring Harbour Laboratory Press: New York, N.Y.; “PCR Protocols. A Guide to Methods and Applications ,” 1990, M. A. Innis (Ed.), Academic Press: New York, N.Y.; P. Tijssen “Hybridization with Nucleic Acid Probes—Laboratory Techniques in Biochemistry and Molecular Biology (Parts I and II),” 1993, Elsevier Science; “PCR Strategies,” 1995, M. A. Innis (Ed.), Academic Press: New York, N.Y.; and “Short Protocols in Molecular Biology,” 2002, F. M. Ausubel (Ed.), 5. Supp. Ed., John Wiley & Sons: Secaucus, N.J.). For example, primers and probes described herein may be prepared by chemical synthesis and polymerization based on a template as described, for example, in Narang et al., Meth. Enzymol, 1979, 68: 90-98; Brown et al., Meth. Enzymol., 1979, 68: 109-151 and Belousov et al., Nucleic Acids Res., 1997, 25: 3440-3444).


Syntheses may be performed on oligo synthesizers, such as those commercially available from Perkin Elmer/Applied Biosystems, Inc. (Foster City, Calif.), DuPont (Wilmington, Del.) or Milligen (Bedford, Mass.). Alternatively, the primers and probes of the present disclosure may be custom made and ordered from a variety of commercial sources well-known in the art, including, for example, the Midland Certified Reagent Company (Midland, Tex.), ExpressGen, Inc. (Chicago, Ill.), Operon Technologies, Inc. (Huntsville, Ala.), BioSearch Technologies, Inc. (Novato, Calif.), and many others.


Purification of the primers and probes of the present disclosure, where necessary or desired, may be carried out by any of a variety of methods well-known in the art. Purification of primers and probes can be performed either by native acrylamide gel electrophoresis, by anion-exchange HPLC as described, for example, by Pearson et al., J. Chrom., 1983, 255: 137-149 or by reverse phase HPLC (See, McFarland et al., Nucleic Acids Res., 1979, 7: 1067-1080).


As previously mentioned, modified primers and probes may be prepared using any of several means known in the art. Non-limiting examples of such modifications include methylation, substitution of one or more of the naturally occurring nucleotides with an analog, and internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.), or charged linkages (e.g., phosphorothioates, phosphorodithioates, etc). Primers and probes may contain one or more additional covalently linked moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc), intercalators (e.g., acridine, psoralen, etc), chelators (e.g., to chelate metals, radioactive metals, oxidative metals, etc), and alkylators. Primers and probes may also be derivatized by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidate linkage. Furthermore, primers and/or probes of the present disclosure may be modified with a detectable label.


As discussed briefly previously herein, in some embodiments, the primers and/or the probes may be labeled with a detectable label or moiety before being used in one or more amplification/detection methods. Preferably, for use in the methods described herein, one or more probes are labeled with a detectable label or moiety. The role of a detectable label is to allow visualization and/or detection of amplified target sequences (e.g., amplicons). Preferably, the detectable label is selected such that it generates a signal which can be measured and whose intensity is related (e.g., proportionally) to the amount of amplification product in the test sample being analyzed.


The association between one or more labeled probes and the detectable label can be covalent or non-covalent. Labeled probes can be prepared by incorporation of, or conjugation to, a detectable moiety. Labels can be attached directly to the nucleic acid sequence or indirectly (e.g., through a linker). Linkers or spacer arms of various lengths are known in the art and are commercially available, and can be selected to reduce steric hindrance, or to confer other useful or desired properties to the resulting labeled molecules (See, for example, Mansfield et al., Mol. Cell. Probes, 1995, 9: 145-156).


Methods for labeling oligonucleotides, such as primers and/or probes, are well-known to those skilled in the art. Reviews of labeling protocols and label detection techniques can be found in, for example, L. J. Kricka, Ann. Clin. Biochem., 2002, 39: 114-129; van Gijlswijk et al, Expert Rev. Mol. Diagn., 2001, 1: 81-91; and Joos et al, J. Biotechnol., 1994, 35: 135-153. Standard nucleic acid labeling methods include: incorporation of radioactive agents, direct attachments of fluorescent dyes (See, Smith et al., Nucl. Acids Res., 1985, 13: 2399-2412) or enzymes (See, Connoly et al., Nucl. Acids. Res., 1985, 13: 4485-4502); chemical modifications of nucleic acid molecules rendering them detectable immunochemically or by other affinity reactions (See, Broker et al., Nucl. Acids Res., 1978, 5: 363-384; Bayer et al., Methods of Biochem. Analysis, 1980, 26: 1-45; Langer et al., Proc. Natl. Acad. Sci. USA, 1981, 78: 6633-6637; Richardson et al., Nucl. Acids Res., 1983, 11: 6167-6184; Brigati et al., Virol., 1983, 126: 32-50; Tchen et al., Proc. Natl. Acad. Sci. USA, 1984, 81: 3466-3470; Landegent et al., Exp. Cell Res., 1984, 15: 61-72; and A. H. Hopman et al., Exp. Cell Res., 1987, 169: 357-368); and enzyme-mediated labeling methods, such as random priming, nick translation, PCR, and tailing with terminal transferase (For a review on enzymatic labeling, see, for example, Temsamani et al., Mol. Biotechnol., 1996, 5: 223-232). Any of a wide variety of detectable labels can be used in the present disclosure.


Suitable detectable labels include, but are not limited to, various ligands, radionuclides or radioisotopes (e.g., 32P, 35S, 3H, 14C, 125I, 131I, and the like); fluorescent dyes; chemiluminescent agents (e.g., acridinium esters, stabilized dioxetanes, and the like); spectrally resolvable inorganic fluorescent semiconductor nanocrystals (e.g., quantum dots), metal nanoparticles (e.g., gold, silver, copper and platinum) or nanoclusters; enzymes (e.g., horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase); colorimetric labels (e.g., dyes, colloidal gold, and the like); magnetic labels (e.g., Dynabeads™); and biotin and dioxigenin, or other haptens and proteins for antisera or monoclonal antibodies are available. In certain embodiments, the contemplated probes are fluorescently labeled.


Numerous known fluorescent labeling moieties of a wide variety of chemical structures and physical characteristics are suitable for use in the practice of this disclosure. Suitable fluorescent dyes include, but are not limited to, Quasar® dyes available from Biosearch Technologies, Novato, Calif.), fluorescein and fluorescein dyes (e.g., fluorescein isothiocyanine (FITC), naphthofluorescein, 4′,5′-dichloro-2′,7′-dimethoxy-fluorescein, 6-carboxyfluoresceins (e.g., FAM), VIC, NED, carbocyanine, merocyanine, styryl dyes, oxonol dyes, phycoerythrin, erythrosin, eosin, rhodamine dyes (e.g., carboxytetramethylrhodamine or TAMRA, carboxyrhodamine 6G, carboxy-X-rhodamine (ROX), lissamine rhodamine B, rhodamine 6G, rhodamine Green, rhodamine Red, tetramethylrhodamine or TMR), coumarin and coumarin dyes (e.g., methoxycoumarin, dialkylaminocoumarin, hydroxycoumarin and aminomethylcoumarin or AMCA), Oregon Green Dyes (e.g., Oregon Green 488, Oregon Green 500, Oregon Green 514), Texas Red, Texas Red-X, Spectrum Red™, Spectrum Green™, cyanine dyes (e.g., Cy-3™, Cy-5™, Cy-3.5™, Cy-5.5™), Alexa Fluor dyes (e.g., Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660 and Alexa Fluor 680), BODIPY dyes (e.g., BODIPY FL, BODIPY R6G, BODIPY TMR, BODIPY TR, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 630/650, BODIPY 650/665), IRDyes (e.g., IRD40, IRD 700, IRD 800), and the like. Examples of other suitable fluorescent dyes that can be used and methods for linking or incorporating fluorescent dyes to oligonucleotides, such as probes, can be found in RP Haugland, “The Handbook of Fluorescent Probes and Research Chemicals”, Publisher, Molecular Probes, Inc., Eugene, Oreg. (June 1992)). Fluorescent dyes, as well as labeling kits, are commercially available from, for example, Amersham Biosciences, Inc. (Piscataway, N.J.), Molecular Probes Inc. (Eugene, Oreg.), and New England Biolabs Inc. (Beverly, Mass.). Rather than being directly detectable themselves, some fluorescent groups (donors) transfer energy to another fluorescent group (acceptor) in a process of fluorescence resonance energy transfer (FRET), and the second group produces the detectable fluorescent signal. In these embodiments, the probe may, for example, become detectable when hybridized to an amplified target sequence. Examples of FRET acceptor/donor pairs suitable for use in the present disclosure include, for example, fluorescein/tetramethylrhodamine, IAEDANS/FITC, IAEDANS/5-(iodoacetomido)fluorescein, B-phycoerythrin/Cy-5, and EDANS/Dabcyl, among others.


FRET pairs also include the use of physically-linked fluorescent reporter/quencher pairs. For example, a detectable label and a quencher moiety may be individually attached to either the 5′ end or the 3′ end of a probe, therefore placing the detectable label and the quencher moiety at opposite ends of the probe, or apart from one another along the length of the probe. During such time as the probe is not bound to its target sequence, the detectable label and quencher moiety are reversibly maintained within such proximity that the quencher blocks the detection of the detectable label. Upon binding of the probe to a target sequence, the detectable label and quencher moiety are separated thus permitting detection of the detectable label under appropriate conditions.


The use of such systems in TaqMan® assays (as described, for example, in U.S. Pat. Nos. 5,210,015, 5,804,375, 5,487,792, and 6,214,979) or as Molecular Beacons (as described, for example in, Tyagi et al, Nature Biotechnol., 1996, 14: 303-308; Tyagi et al, Nature Biotechnol, 1998, 16: 49-53; Kostrikis et al., Science, 1998, 279: 1228-1229; Sokol et al., Proc. Natl Acad. Sci. USA, 1998, 95: 11538-11543; Marras et al., Genet. Anal, 1999, 14: 151-156; and U.S. Pat. Nos. 5,846,726, 5,925,517, 6,277,581 and 6,235,504) is well-known to those skilled in the art. With the TaqMan® assay format, products of the amplification reaction can be detected as they are formed in a “real-time” manner: amplification product/probe hybrids are formed and detected while the reaction mixture is under amplification conditions.


In some embodiments of the present disclosure, the PCR detection probes are TaqMan®-like probes that are labeled at the 5′-end with a fluorescent moiety and at the 3′-end with a quencher moiety or alternatively the fluorescent moiety and quencher moiety are in reverse order, or further they may be placed along the length of the sequence to provide adequate separation when the probe hybridizes to a target sequence to allow satisfactory detection of the fluorescent moiety. Suitable fluorophores and quenchers for use with TaqMan®-like probes are disclosed in U.S. Pat. Nos. 5,210,015, 5,804,375, 5,487,792, and 6,214,979, and WO 01/86001. Examples of quenchers include, but are not limited, to DABCYL (e.g., 4-(4′-dimethylaminophenylazo)-benzoic acid) succinimidyl ester, diarylrhodamine carboxylic acid, succinimidyl ester (or QSY-7), and 4′,5′-dinitrofluorescein carboxylic acid, succinimidyl ester (or QSY-33) (all of which are available from Molecular Probes (which is part of Invitrogen, Carlsbad, Calif.)), quencher 1 (Q1; available from Epoch Biosciences, Bothell, Wash.), or “Black hole quenchers” BHQ-I, BHQ-2, and BHQ-3 (available from BioSearch Technologies, Inc., Novato, Calif.). In certain embodiments, the PCR detection probes are TaqMan®-like probes that are labeled at the 5′ end with FAM and at the 3′ end with a Black Hole Quencher® or Black Hole Quencher® plus (Biosearch Technologies, Novato, Calif.).


A “tail” of normal or modified nucleotides can also be added to probes for detectability purposes. A second hybridization with nucleic acid complementary to the tail and containing one or more detectable labels (such as, for example, fluorophores, enzymes, or bases that have been radioactively labeled) allows visualization of the amplicon/probe hybrids.


The selection of a particular labeling technique may depend on the situation and may be governed by several factors, such as the ease and cost of the labeling method, spectral spacing between different detectable labels used, the quality of sample labeling desired, the effects of the detectable moiety on the hybridization reaction (e.g., on the rate and/or efficiency of the hybridization process), the nature of the amplification method used, the nature of the detection system, the nature and intensity of the signal generated by the detectable label, and the like.


4. Methods of Detecting PBV

In some aspects, provided herein are methods of detecting PBV in a sample.


In some embodiments, provided herein are methods of detecting PBV in a sample, comprising contacting the sample with at least one primer and/or at least one probe. In some embodiments, the methods are performed using PCR. In some embodiments, the methods are performed using fluorescence in-situ hybridization (FISH). For example, the primer(s) and/or probe(s) may be suitable for PCR or FISH techniques. The at least one primer and/or the at least one probe may be labeled with at least one detectable label. In some embodiments, the PBV comprises the sequence of SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, or a combination thereof.


The methods comprise contacting the sample with any suitable combination of primers and probes as described herein. The present disclosure provides methods for detecting the presence of PBV in a test sample. Further, PBV levels may be quantified per test sample by comparing test sample detection values against standard curves generated using serial dilutions of previously quantified suspensions of one or more PBV sequences or other standardized PBV profiles.


In some embodiments, the method comprises contacting the sample with a composition described herein. For example, the method may comprise contacting the sample with a primer and probe set described herein. For example, the method may comprise contacting the sample with at least one forward primer, at least one reverse primer, and at least one probe can be: (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (ii) a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. Any or all of the at least one forward primer, at least one reverse primer and at least one probe may be labeled with one or more detectable labels.


In some embodiments, the method may comprise contacting the sample with a primer and probe set suitable for detecting the capsid of PBV. For example, the method may comprise contacting the sample with a forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 13 or a complement thereof, a reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 14 or a complement thereof, and a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 15 or a complement thereof.


In some embodiments, the method comprises contacting the sample with a primer and probe set suitable for detecting the RDRP of PBV. For example, the method may comprise contacting the sample with at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, or complements thereof, at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof, and a probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, or complements thereof. The method may comprise contacting the sample with one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The method may comprise contacting the sample with one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The method may comprise contacting the sample with one probe or more than one (e.g. 2, 3, 4, 5, ore more) probes.


In some embodiments, methods for detecting PBV in a sample comprise contacting the sample with at least one forward primer and at least one reverse primer under amplification conditions to generate a first target sequence, and detecting hybridization between the first target sequence and fat least one probe as an indication of the presence of PBV in the sample. The amplification conditions may comprise submitting the sample to an amplification reaction carried out in the presence of suitable amplification reagents. In some embodiments, the amplification reaction comprises PCR, real-time PCR, or reverse-transcriptase PCR.


The use of primers or primer sets of the present disclosure to amplify PBV target sequences in test samples is not limited to any particular nucleic acid amplification technique or any particular modification thereof. In fact, the primers and primer sets of the present disclosure can be employed in any of a variety of nucleic acid amplification methods that are known in the art (See, for example, Kimmel et al., Methods Enzymol., 1987, 152: 307-316; Sambrook et al., “Molecular Cloning. A Laboratory Manual”, 1989, 2.Supp. Ed., Cold Spring Harbour Laboratory Press: New York, N.Y.; “Short Protocols in Molecular Biology”, F. M. Ausubel (Ed.), 2002, 5. Supp. Ed., John Wiley & Sons: Secaucus, N.J.).


Such nucleic acid amplification methods include, but are not limited to, the Polymerase Chain Reaction (PCR). PCR is described in a number of references, such as, but not limited to, “PCR Protocols: A Guide to Methods and Applications”, M. A. Innis (Ed.), 1990, Academic Press: New York; “PCR Strategies”, M. A. Innis (Ed.), 1995, Academic Press: New York; “Polymerase chain reaction: basic principles and automation in PCR. A Practical Approach”, McPherson et al. (Eds.), 1991, IRL Press: Oxford; Saiki et al., Nature, 1986, 324: 163; and U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,889,818. Variations of PCR including, TaqMan®-based assays (See, Holland et al., Proc. Natl. Acad. Sci., 1991, 88: 7276-7280), and reverse transcriptase polymerase chain reaction (or RT-PCR, described in, for example, U.S. Pat. Nos. 5,322,770 and 5,310,652) are also included.


Generally, in PCR, a pair of primers is added to a test sample obtained from a subject (and thus contacted with the test sample) in excess to hybridize to the complementary strands of the target nucleic acid. The primers are each extended by a DNA polymerase using the target sequence as a template. The extension products become targets themselves after dissociation (denaturation) from the original target strand. New primers are then hybridized and extended by the polymerase, and the cycle is repeated to exponentially increase the number of amplicons. Examples of DNA polymerases capable of producing primer extension products in PCR reactions include, but are not limited to, E. coli DNA polymerase I, Klenow fragment of DNA polymerase I, T4 DNA polymerase, thermostable DNA polymerases isolated from Thermus aquaticus (Taq), available from a variety of sources (e.g., Perkin Elmer, Waltham, Mass.), Thermus thermophilus (USB Corporation, Cleveland, Ohio), Bacillus stereothermophilus (Bio-Rad Laboratories, Hercules, Calif.), AmpliTaq Gold® Enzyme (Applied Biosystems, Foster City, Calif.), recombinant Thermus thermophilus (rTth) DNA polymerase (Applied Biosystems, Foster City, Calif.) or Thermococcus litoralis (“Vent” polymerase, New England Biolabs, Ipswich, Mass.). RNA target sequences may be amplified by first reverse transcribing (RT) the mRNA into cDNA, and then performing PCR (RT-PCR), as described above. Alternatively, a single enzyme may be used for both steps as described in U.S. Pat. No. 5,322,770.


In addition to the enzymatic thermal amplification methods described above, isothermal enzymatic amplification reactions can be employed to amplify PBV sequences using primers and primer sets of the present disclosure (Andras et al., Mol. Biotechnol., 2001, 19: 29-44). These methods include, but are not limited to, Transcription-Mediated Amplification (TMA; TMA is described in Kwoh et al., Proc. Natl. Acad. ScL USA, 1989, 86: 1173-1177; Giachetti et al., J. Clin. Microbiol, 2002, 40: 2408-2419; and U.S. Pat. No. 5,399,491); Self-Sustained Sequence Replication (3SR; 3SR is described in Guatelli et al., Proc. Natl. Acad. Sci. USA, 1990, 87: 1874-1848; and Fahy et al., PCR Methods and Applications, 1991, 1: 25-33); Nucleic Acid Sequence Based Amplification (NASBA; NASBA is described in, Kievits et al., J. Virol. Methods, 1991, 35: 273-286; and U.S. Pat. No. 5,130,238) and Strand Displacement Amplification (SDA; SDA is described in Walker et al., PNAS, 1992, 89: 392-396; EP 0 500 224 A2).


In certain embodiments of the present disclosure, the probes described herein are used to detect amplification products generated by the amplification reaction. The probes described herein may be employed using a variety of well-known homogeneous or heterogeneous methodologies.


Homogeneous detection methods include, but are not limited to, the use of FRET labels that are attached to the probes and that emit a signal in the presence of the target sequence, Molecular Beacons (See, Tyagi et al., Nature Biotechnol., 1996, 14: 303-308; Tyagi et al., Nature Biotechnol, 1998, 16: 49-53; Kostrikis et al., Science, 1998, 279: 1228-1229; Sokol et al., Proc. Natl. Acad. Sci. USA, 1998, 95: 11538-11543; Marras et al., Genet. Anal, 1999, 14: 151-156; and U.S. Pat. Nos. 5,846,726, 5,925,517, 6,277,581 and 6,235,504), and the TaqMan® assays (See, U.S. Pat. Nos. 5,210,015; 5,804,375; 5,487,792 and 6,214,979 and WO 01/86001). Using these detection techniques, products of the amplification reaction can be detected as they are formed, namely, in a real time manner. As a result, amplification product/probe hybrids are formed and detected while the reaction mixture is under amplification conditions.


In certain embodiments, the probes of the present disclosure are used in a TaqMan® assay. In a TaqMan® assay, analysis is performed in conjunction with thermal cycling by monitoring the generation of fluorescence signals. The assay system has the capability of generating quantitative data allowing the determination of target copy numbers. For example, standard curves can be generated using serial dilutions of previously quantified suspensions of one or more PBV sequences, against which unknown samples can be compared. The TaqMan® assay is conveniently performed using, for example, AmpliTaq Gold™ DNA polymerase, which has endogenous 5′ nuclease activity, to digest a probe labeled with both a fluorescent reporter dye and a quencher moiety, as described above. Assay results are obtained by measuring changes in fluorescence that occur during the amplification cycle as the probe is digested, uncoupling the fluorescent and quencher moieties and causing an increase in the fluorescence signal that is proportional to the amplification of the target sequence.


Other examples of homogeneous detection methods include hybridization protection assays (HPA). In such assays, the probes are labeled with acridinium ester (AE), a highly chemiluminescent molecule (See, Weeks et al, Clin. Chem., 1983, 29: 1474-1479; Berry et al., Clin. Chem., 1988, 34: 2087-2090), using a non-nucleotide-based linker arm chemistry (See, U.S. Pat. Nos. 5,585,481 and 5,185,439). Chemiluminescence is triggered by AE hydrolysis with alkaline hydrogen peroxide, which yields an excited N-methyl acridone that subsequently deactivates with emission of a photon. In the absence of a target sequence, AE hydrolysis is rapid. However, the rate of AE hydrolysis is greatly reduced when the probe is bound to the target sequence. Thus, hybridized and un-hybridized AE-labeled probes can be detected directly in solution without the need for physical separation.


Heterogeneous detection systems are also well-known in the art and generally employ a capture agent to separate amplified sequences from other materials in the reaction mixture. Capture agents typically comprise a solid support material (e.g., microtiter wells, beads, chips, and the like) coated with one or more specific binding sequences. A binding sequence may be complementary to a tail sequence added to oligonucleotide probes of the disclosure. Alternatively, a binding sequence may be complementary to a sequence of a capture oligonucleotide, itself comprising a sequence complementary to a tail sequence of a probe. After separation of the amplification product/probe hybrids bound to the capture agents from the remaining reaction mixture, the amplification product/probe hybrids can be detected using any detection methods, such as those described herein.


In some embodiments, the methods further comprise administering an appropriate therapy to the subject if PBV is detected in the sample. For example, the method may further comprise administering an appropriate anti-viral agent to the subject if PBV is detected in the sample.


5. Kits

In another embodiment, the present disclosure provides kits including materials and reagents useful for the detection of PBV according to methods described herein. The description of the primers, probes, and compositions herein are also applicable to those same aspects of the methods for detecting PBV described herein. The kits can be used by diagnostic laboratories, experimental laboratories, or practitioners. In certain embodiments, the kits comprise at least one of the primer sets or primer and probe sets described in herein and optionally, amplification reagents. Each kit preferably comprises amplification reagents for a specific amplification method. Thus, a kit adapted for use with NASBA preferably contains primers with an RNA polymerase promoter linked to the target binding sequence, while a kit adapted for use with SDA preferably contains primers including a restriction endonuclease recognition site 5′ to the target binding sequence. Similarly, when the kit is adapted for use in a 5′ nuclease assay, such as the TaqMan® assay, the probes of the present disclosure can contain at least one fluorescent reporter moiety and at least one quencher moiety.


In some embodiments, the kit comprises at least one forward primer, at least one reverse primer, at least one probe, and amplification reagents and instructions for amplifying and detecting PBV in a sample. Any of the primers and/or probe contained in kit may comprise a detectable label.


In some embodiments, the kit comprises at least one forward primer, at least one reverse primer, and at least one probe can be: (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (ii) a complement derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof. The kit may comprise one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The kit may comprise one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The kit may comprise one probe or more than one (e.g. 2, 3, 4, 5, or more) probes. Any one or more primers and/or probes may be labeled with a detectable label.


In some embodiments, the kit comprises at least one forward primer having 80% or more sequence identity (e.g. 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 13 or a complement thereof, and at least one reverse primer having 80% or more (e.g. a reverse primer (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; (ii) complement derived from from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (iii) having 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to SEQ ID NO: 14 or a complement thereof. In some embodiments, the kit may further comprise at least one probe having 80% or more sequence identity (e.g. a probe (i) derived from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; (ii) complement derived from from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or (iii) having 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 15 or a complement thereof. Any one or more primers and/or probe may be labeled with a detectable label. The kit may comprise one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The kit may comprise one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The kit may comprise one probe or more than one (e.g. 2, 3, 4, 5, or more) probes. Any one or more primers and/or probes may be labeled with a detectable label.


In some embodiments, the kit comprises at least one forward primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, or complements thereof, at least one reverse primer having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or complements thereof. The kit may further comprise at least one probe having a sequence with at least 80% sequence identity (e.g., 80%, 85%, 90%, 91%, 92%, 93%, 93%, 95%, 96%, 97%, 98%, 99%, or 100%) to SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, or complements thereof. The kit may comprise one forward primer or more than one (e.g. 2, 3, 4, or more) forward primers. The kit may comprise one reverse primer or more than one (e.g. 2, 3, 4, 5, or more) reverse primers. The kit may comprise one probe or more than one (e.g. 2, 3, 4, 5, ore more) probes. Any one or more primers and/or probes may be labeled with a detectable label.


Suitable amplification reagents additionally include, for example, one or more of: buffers, reagents, enzymes having reverse transcriptase and/or polymerase activity or exonuclease activity, enzyme cofactors such as magnesium or manganese; salts; deoxynucleotide triphosphates (dNTPs) suitable for carrying out the amplification reaction. Depending on the procedure, kits may further comprise one or more of: wash buffers, hybridization buffers, labeling buffers, detection means, and other reagents. The buffers and/or reagents are preferably optimized for the particular amplification/detection technique for which the kit is intended. Protocols for using these buffers and reagents for performing different steps of the procedure may also be included in the kit. Furthermore, kits may be provided with an internal control as a check on the amplification efficiency, to prevent occurrence of false negative test results due to failures in the amplification, to check on cell adequacy, sample extraction, etc. An optimal internal control sequence is selected in such a way that it will not compete with the target nucleic acid sequence in the amplification reaction. Such internal control sequences are known in the art. Kits may also contain reagents for the isolation of nucleic acids from test samples prior to amplification before nucleic acid extraction.


The reagents may be supplied in a solid (e.g., lyophilized) or liquid form. Kits of the present disclosure may optionally comprise different containers (e.g., vial, ampoule, test tube, flask, or bottle) for each individual buffer and/or reagent. Each component will generally be suitable as aliquoted in its respective container or provided in a concentrated form. Other containers suitable for conducting certain steps of the amplification/detection assay may also be provided. The individual containers are preferably maintained in close confinement for commercial sale.


Kits may also comprise instructions for using the amplification reagents and primer sets or primer and probe described herein: for processing the test sample, extracting nucleic acid molecules, and/or performing the test; and for interpreting the results obtained as well as a notice in the form prescribed by a governmental agency. Such instructions optionally may be in printed form or on CD, DVD, or other format of recorded media. By way of example, and not of limitation, examples of the present disclosures shall now be given.


The present disclosure has multiple aspects, illustrated by the following non-limiting examples.


EXAMPLE 1
Discovery of a Novel Picobirnavirus

Samples: A panel of 24 samples were sourced from MRN Diagnostics, consisting of sputum, bronchial alveolar lavages (BAL), and endotracheal aspirates (ETA). Patients providing sputum were confirmed to be hospitalized and ill with respiratory symptoms. The study participants were enrolled at a site in Colombia, South America drawing from individuals in 4 different cities as shown in Table 1.












TABLE 1









STORAGE












TEMP

SHIPPED

















SAMPLE
DONOR

GEN-
COUNTRY

COLLECTION
SAMPLE
DEGREES
NUMBER OF
VOLUME


ID
ID
AGE
DER
OF ORIGIN
CITY
DATE
TYPE
CELCIUS
ALIQUOTS
(ML)























0text missing or illegible when filed
5text missing or illegible when filed 18

text missing or illegible when filed

F
COLOMBIA
BARRANQUILLA
Nov. 16, 2016
BAL

text missing or illegible when filed 20 C.

1
x
1
ml
1


0text missing or illegible when filed 0text missing or illegible when filed 3text missing or illegible when filed
8140307
50
M
COLOMBIA
CUCUTA
Aug. 14, 2016
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


0text missing or illegible when filed 0text missing or illegible when filed 340text missing or illegible when filed

text missing or illegible when filed 78text missing or illegible when filed

74
M
COLOMBIA
BARRANQUILLA
Oct. 11, 2016
Sputum

text missing or illegible when filed 20 C.

1
x
2
ml
2


0text missing or illegible when filed 0text missing or illegible when filed 3406
578text missing or illegible when filed

text missing or illegible when filed

M
COLOMBIA
BARRANQUILLA
Oct. 11, 2016
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


0text missing or illegible when filed 4text missing or illegible when filed
51673
51
F
COLOMBIA
BARRANQUILLA
Jan. 10, 2017
BAL

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 64337
51674
6text missing or illegible when filed
F
COLOMBIA
BARRANQUILLA
Jan. 8, 2017
BAL

text missing or illegible when filed 20 C.

1
x
3
ml
3


0text missing or illegible when filed
518text missing or illegible when filed 8

text missing or illegible when filed 1

M
COLOMBIA
BARRANQUILLA
Feb. 9, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 4text missing or illegible when filed 44
51873

text missing or illegible when filed

M
COLOMBIA
BARRANQUILLA
Feb. 9, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


0text missing or illegible when filed 064241
51888
46
F
COLOMBIA
BARRANQUILLA
Feb. 9, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
2
ml
2


088text missing or illegible when filed 4text missing or illegible when filed 42
423
91
M
COLOMBIA
Medellin
Dec, 2016
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 64text missing or illegible when filed 40

text missing or illegible when filed 1

77
F
COLOMBIA
Medellin
Jan, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 4338

text missing or illegible when filed 4


text missing or illegible when filed

F
COLOMBIA
Medellin
Jan, 2017
endotracheal

text missing or illegible when filed 20 C.

1
x
2
ml
2









aspirate


08text missing or illegible when filed 64text missing or illegible when filed
545

text missing or illegible when filed

F
COLOMBIA
Medellin
Jan, 2017
endotracheal

text missing or illegible when filed 20 C.

1
x
5
ml
5









aspirate


0text missing or illegible when filed 64text missing or illegible when filed 42
550
72
M
COLOMBIA
Medellin
Jan, 2017
endotracheal

text missing or illegible when filed 20 C.

1
x
2
ml
2









aspirate


08text missing or illegible when filed 64242
51941
48
M
COLOMBIA
BARRANQUILLA
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 6424text missing or illegible when filed
51945

text missing or illegible when filed

M
COLOMBIA
BARRANQUILLA
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 42text missing or illegible when filed
5195text missing or illegible when filed
48
M
COLOMBIA
BARRANQUILLA
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


08text missing or illegible when filed 6427text missing or illegible when filed
51978
4text missing or illegible when filed
F
COLOMBIA
BARRANQUILLA
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
2
ml
2


08text missing or illegible when filed 43text missing or illegible when filed 2
52051
23
M
COLOMBIA
BARRANQUILLA
Feb. 20, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
1
ml
1


0886436text missing or illegible when filed
52064
74
M
COLOMBIA
VALLEDUPAR
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
3
ml
3


088text missing or illegible when filed 436text missing or illegible when filed
52065
74
M
COLOMBIA
VALLEDUPAR
Feb. 16, 2017
Sputum

text missing or illegible when filed 20 C.

1
x
3
ml
3


0886439text missing or illegible when filed
52094
4text missing or illegible when filed
F
COLOMBIA
BARRANQUILLA
Feb. 21, 2017
BAL

text missing or illegible when filed 20 C.

1
x
3
ml
3


0886441text missing or illegible when filed
52117

text missing or illegible when filed 4

M
COLOMBIA
BARRANQUILLA
Feb. 19, 2017
BAL

text missing or illegible when filed 20 C.

1
x
2.5
ml
2.5


0886441text missing or illegible when filed
52118
73
M
COLOMBIA
BARRANQUILLA
Feb. 19, 2017
BAL

text missing or illegible when filed 20 C.

1
x
3.5
ml
3.5






text missing or illegible when filed indicates data missing or illegible when filed







Extraction: Sputum samples (n=15) were pre-treated with a cocktail of nucleases and physically disrupted using disposable pestles. Total nucleic acid was extracted on the automated m2000sp (Abbott Molecular).


Library prep: Nucleic acid was converted to cDNA and barcoded Nextera libraries.


mNGS sequencing: Two sets of libraries were sequenced. Library concentrations and MiSeq run metrics were as follows:


Run 1:












MLP 0% Phix















Calibrated
Peak





Size
Conversion
Conc.
Molarity


[bp]
factor
[ng/μl]
[nmol/l]
Loaded [ ]
Cluster/PF
Flow Cell





230
0.1518
0.197
1.30
14 pM
607 K/82%
C3DTN









Run 2:


















MLP 0%

Calibrated
Peak





PhixSize
Conversion
Conc.
Molarity


[bp]
factor
[ng/μl]
[nmol/l]
Loaded [ ]
Cluster/PF
Flow Cell







220
0.1452
0.23
1.58
14 pM
703 K/86.4%
C3DTJ









Summary of mNGS results: Below is a brief summary of the pathogens that were found to be enriched/present in the samples and suspected to play a role in the respiratory illness. NGS reads were analyzed by SURPI (Naccache, et al 2104) and an Abbott data analysis pipeline named DiVir. Notable and perhaps expected of gram negative enterobacteria with known roles in nosocomial infections, including respiratory infections, there were >10K reads found in ˜20% (3/14) patients. Rather surprising, however, was the presence of Aichivirus A in sample #9-4352: this is a picornavirus causing gastroenteritis, for which 80% of the genome by was obtained by mNGS. HHV-1 has been observed in respiratory infections, particularly in the immunocompromised. Other viruses were detected at low levels making it difficult to argue for causality, but they are noted below, with read numbers in parenthesis.













Sample
Pathogen(s) detected (# of viral reads)







1-Sputum-4279

Burkholderia cenocepacia



2-Sputum-3406
Porcine picbirnavirus-3 (2)


3-Sputum-4940
Influenza A (8)


4-Sputum-4942



5-Sputum-4242

Citrobacter sp, Klebsiella sp



6-Sputum-4246



7-Sputum-4256

Citrobacter sp, Klebsiella sp, Acinetobacter sp



8-Sputum-3405_CtRL9

Klebsiella sp, Acinetobacter sp, HHV-4 (15)



8-Sputum-4366
HHV-4 (79)


9-Sputum-4352
Aichivirus A (65), HHV-4 (42), HHV-7 (61)


10-Sputum-4946



11-Sputum-4938

Stenotrophomonas sp, HHV-1 (6045)



12-Sputum-4947
HHV-1 (30)


13-Sputum-4395



14-Sputum-4418



15-Sputum-4419










MRN3406: Sample #2 was enriched for Pasteurellaceae family bacteria, such as Haemophilus parainfluenzae and Haemophilus influenzae, but <10K reads were observed for other bacteria in other patients. H. parainfluenzae is normal flora of the respiratory tract, but is an opportunistic pathogen that has been associated with endocarditis, bronchitis, otitis, conjunctivitis, pneumonia, abscesses and genital tract infections.


Divergent picobirnavirus reads were identified among reads without a match in NT in sample MRN3406.
































text missing or illegible when filed  query








bit

align

text missing or illegible when filed


text missing or illegible when filed


gap
coverage
subject


subject
subject


score
evalue
length
id
pos

text missing or illegible when filed

opens
per hsp
tax ids
subject titles
virus
start
end
















text missing or illegible when filed  Query: M00641:16:000000000-C3DIN:1:2107:23091:15563text missing or illegible when filed 2/2:F1




















107
9.88E−29
50
70
88
15
0
100
145856
RNA-dependent
Human
422
471











RNA polymerase
picobirnavirus


105
4.01E−28
50
70
80
15
0
100
442302
RNA-dependent
Porcine
428
477











RNA polymerase
picobirnavirus








text missing or illegible when filed  Query: contig_4566_161_394:F1




















106
3.text missing or illegible when filed 4E−28
53
37.7
64.2
33
0
100
442302
capsid protein
Porcine
183
235












picobirnavirus


104
9.16text missing or illegible when filed E−28
53
43.4
58.5
30
0
100
145856
hypothetical protein
Human
181
233











HPV_s1gp2
picobirnavirus






text missing or illegible when filed indicates data missing or illegible when filed







There were 2 porcine picobirnavirus-3 reads detected by SNAP to nt (SURPI). This was investigated further since there were also related PBV reads detected in RAPsearch (SURPI) and DiVir 2.0 data.



















SAMPLE
DONOR


COUNTRY

COLLECTION
SAMPLE


ID
ID
AGE
GENDER
OF ORIGIN
CITY
DATE
TYPE







08853406
S789
29
M
COLUMBIA
BARRANQUILLA
Oct. 11, 2016
Sputum









This sample was obtained from a 24-year-old male hospitalized in Colombia in October of 2016 for respiratory illness. The summary table below illustrates that hits to picobirnavirus were detected in all of our divergent virus prediction algorithms. Notable is that contigs were formed that produced extended reads. After this first MiSeq run, >50% of the sequence was assembled, with reads mapping throughout the genome and to each protein. Only 462,336 total reads were obtained for the MRN3406 sample in this initial run.















Haemophilus parainfluenzae, Neisseria





meningitidis, Haemophilus



Bacteria

influenzae, Neisseria gonorrhoeae








SNAP to virus
Porcine picobirnavirus 3


RAPsearch viral in nr
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus


RAPsearch not in nr
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus


ARM1 virus to nt virus
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus


ARM2 psiBLAST 49dn
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus


ARM2 psiBLAST 50-84
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus


Extended reads
Human picobirnavirus, Fox picobirnavirus,



Otarine picobirnavirus









Examples of hits detected by RAPsearch: The very low (negative) expect (e) values and high Bit scores indicate high confidence protein matches to the virus species listed.




















E-




Qlen
Mismatch
Gaps
value
Bit score
Species




















45
9
0
−12.8
81.2629
Fox picobirnavirus


50
16
0
−11.86
78.1814
Human picobirnavirus


43
14
0
−7.34
63.1586
Otarine picobirnavirus









Examples of hits detected by DiVir: The very low e-values and long query lengths indicate high confidence protein matches to the virus species listed.


ARM1 (BLASTn):














Qlen
E-value
Species

















178
8.88E−43
Human picobirnavirus RNA segment 2, complete




sequence


59
1.61E−07
Porcine picobirnavirus strain segment S, complete




sequence










ARM2 (psiBLAST): Bit scores were >100 for most hits, with e-values<10-24. Note that strong hits to both the capsid and the RDRP are detected.















bit





score
evalue
Species Association
Species


















101
3.61E−26
capsid protein
Porcine picobirnavirus]


128
1.24E−35
RNA-dependent RNA
Human picobirnavirus]




polymerase









Resequencing: The MRN3406 library was re-sequenced on 2 separate runs and each time fewer than expected reads were obtained. Regardless, these additional datasets allowed 95% of the genome to be completed. The final gap in RDRP was filled by RT-PCR, which upon lowering mapping stringency, was found to have been present in the NGS data all along. An accounting of PBV reads versus the total reads for each run yielded consistent results:


Run 1 (C3DTN) 140 of 462,336 (0.03%)=302 reads/million


Run 2 (C5968) 420 of 1,408,024 (0.03%)=298 reads/million


Run 3 (C7DWY) 116 of 456,878 (0.025%)=253 reads/million


Combined runs 1-3: 676 of 2,327,238 (0.03%)=290 reads/million


Generally speaking, these reads per million (rpm) are rather high values for viruses, especially from sputum, so it is conceivable the titers are well in excess of 105 copies/ml.


The complete genome was assembled. The total reference length is 4119 nt and the average coverage depth is 19×. A linear coverage plot of segments 1 and 2 are shown in FIG. 2A and FIG. 2B, respectively.


Using the complete genome sequences as references, the number of reads mapped and the percent genome coverage in CLC Bio Genomics Workbench software from those predicted by RAPsearch and DiVir 2.0 was assessed.



















ORF1-
RAPsearch
RAPsearch
RAPsearch
DiVir
DiVir
DiVir
Raw


Cap
viral in nr
not in nr
combined
ARM1
ARM2
combined
Data







Run #1
6/37%
11/31%
17/47%
0/0%
15/44%
15/44%
66/83%


Run #2
11/48% 
29/45%
40/66%
3/1%
25/59%
28/65%
170/96% 


Run #3
 1/7%
 7/22%
 8/23%
0/0%
 2/14%
 2/14%
53/82%



























RAPsearch
RAPsearch
RAPsearch
DiVir
DiVir
DiVir
Raw


RDRP
viral in nr
not in nr
combined
ARM1
ARM2
combined
Data







Run #1
51/71%
13/28%
64/82%
22/45%
29/68%
51/76%
74/82%


Run #2
156/85% 
31/55%
187/88% 
64/77%
111/77% 
175/79% 
250/90% 


Run #3
50/71%
 5/19%
55/78%
22/58%
28/56%
50/66%
63/78%









Both divergent virus prediction tools worked well to identify comparable numbers of reads and genome coverage. Indeed, most of the available RDRP reads were found by both, whereas fewer capsid reds were found since this is less conserved. Note that DiVir removes reverse complements and reads with stop codons, so it is expected to have fewer total reads.


Nucleotide and Sequences


The complete nucleotide sequence of segment 1 (2251 nt) was identified as:









(SEQ ID NO: 1)


AATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTC





TACACTCTAAGAACACCAGCTACCGCACATAGTTTAGTGCAAATAGCTA





GGATCAGAGATAGTAAAGTGGGATTATCTGAAAGGAGGTTAAATTAATG





ACAGGTAATCAAATTAAATATGGTGAATTACAAGAAAATATTCGCCATA





ACACTACAACAGAAGTTGAAACCAATAGACACAACGTCGTGACTGAAGG





TGAAACCAACAGACATAACGTTGTTACAGAGGTTGAAACTAATCGACAC





AATACTGTGACTGAAAGTATTGGATGGTACGATGCTGTATCAAAACGAA





TCTCAGCAAATGCTTCAATGAGTCAAGCGGGTGCAGCTTGGGCTAATGT





TGCAATTAATCAACAAAATGCAGATACAAAGCGATTTGAAGCTGAACGC





AATGCTGAAATAAATCAGCAAAATGCGGACACTAGAACATTTAGTGCAC





GTAGTGAGGATGCAGCTAGATATGCTCATTCTTACAATGAAGATCGTAA





AACTACAGCTGAAATTGAGCGAATGAACACACAAAATTCGCAAGGATGG





GTGAAATCAATCACTGATGCAATCAGCTCACCTATCAAAGCATTACCAT





TATTAGGAGGATAAATTTTATGGTAAAGAATAACAACAAAAAGCGTTTT





CAGGATAAAAGTGATAAGTATTCTAGAAAACCTAAGTTCAAGGTTGAAA





AGAAAGATATCTTGGACGATGACAAATTGGAAGGATCTAAGTTTGGCAA





AGTTAATGACATATCCTGGTATCAGAAGAATGCTGATTTACTCAGAGCT





GCTGGTAACTTGTCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTAT





CTAACGCAAACTTTAACGTTAAGCTTGCTGCTGATGAGCAACGTGTTCC





TGGTATTGCAACTATACATACTATTACAGGACCTGGACTCAGTCGCGAC





GCACACTCTGGTGTCAACGTGGCAATGCGTAACTTATATTCTTTTGTTC





GTCATGCAAATAGTGGTCATAGTAACTATGATCCTGTAGATCTAATGTT





ATATCTACCTGCTATGGATGCAGCATACATGCTCTACTACCGTGCTGTT





CGTGCATATGGCGCAATGTTCACATTTAATACTGTGAATCGCTATGCTC





CAAAAGCTCTTGTGGAAGCGTTAGGTTTTGATTATGAAGATGTCAACTC





AAACCTTGCTACATTCAGATATGCAATTAACGCATACGCTGCAAGAATC





AACGCATACGCTGTGCCTACGAATATGCCTATCTTCAAACGACATGCAT





GGCTCTTTTCATCTATCTATACAGATGAAAACGTATCTAAAGCTCAGAT





TTATGCATTTACTTCTGATCATTATAGAGTATTTGATGAGAAGTATTCT





AAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAAACAAAGTTAACTGTTA





AAGATTGGATTACAGTAGCAAATGAGGTTGCTGATCCAATTACAGTTTC





AGAAGATTTAGGTATTATCTCAGGTGACTTAATTAAAGCATTTGGTAAG





GAAAACTTACACATGTTAGCTACCTTGGCTGATAACTACGTTGTATTAC





CAACATATGTACCTGAAGTTATGGATCAAATTCATAACTTGCAAGCAGT





AGGTCAGATTGATCTAGAAAGTAACAATATTGAACAAGATCCAAACATT





GGTAAGGGTAACTTGATTTACAACCCAGTTGTAACTGTCAATAATAATC





CAATGGCTTACGCAAATCGTATTATGGATTTCAAAATTGATACACCTAC





TCCAGATGATGTCGTTGTAGCTTCACGATTAGCTGTGGCATTAGAACCA





GGCGCTACAACCGGTAAGGCAGTATTCACTGCTATGGGTACAGAATTTG





TGACTAAAGTTGGTATTCACACATTCTACAAGGGAAATAATGGATTACT





TAAGTCTATTGAACAGACTTTCAATACTTTTGATTCTACTGAAGGTGGT





CTCACTGACGCCGCATCAGTTAGTTTGCACATGTCTGCCTACACAAAGG





CCTCTAAGTTTGTACACTTTCCAATTCAATATATGTGTATGGGTAGCCC





TACTCAACCTGACAAACGTGAAGTCAGAATCTTTGGCGAATTGGGCACG





TACACTATTATTAATGGGGTCACTCTTAATAAGTTACACGACGTGTGTG





TATTAAGTTTATTTGATGTACCTATTAAGCTTTAGATGCATTAGGG.






The sequence of the 5′ UTR for segment 1 (length 144 nt, coordinates 1 . . . 144) was identified as:









(SEQ ID NO: 2)


AATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTC


TACACTCTAAGAACACCAGCTACCGCACATAGTTTAGTGCAAATAGCTA


GGATCAGAGATAGTAAAGTGGGATTATCTGAAAGGAGGTTAAATTA.






The 5′UTR length (144 nt) and base composition (66% AT-rich) are consistent with other reports describing 44-169 base 5′UTRs and sequences with only 22-38% G+C content.


In Woo P C Y et al., the authors describe a short open reading frame (ORF1) in a subset of the otarine PBVs sequenced, which precedes what all others are calling ORF1 and ORF2 (capsid)8. This is the only known publication that asserts there are 3 ORFs on segment 1. The sequence disclosed herein also possesses a methionine start codon at nt 14 in the presumed 5′UTR that yields a 61 aa protein (SEQ ID NO: 3). It bears minimal aa identity to the otarine PBV sequence and the human PBV in Wakuda, et al9.


The sequence of ORF1 (length 132 nt, coordinates 14 . . . 145), 61 aa (+2 frame) was identified as: MVYKSLKPYNTFYTLRTPATAHSLVQIARIRDSKVGLSERRLN (SEQ ID NO: 3).


The nucleotide sequence of ORF1 (length 507 nt, coordinates 145 . . . 651), 169 aa (+1 frame) was identified as:









(SEQ ID NO: 4)


ATGACAGGTAATCAAATTAAATATGGTGAATTACAAGAAAATATTCGCC





ATAACACTACAACAGAAGTTGAAACCAATAGACACAACGTCGTGACTGA





AGGTGAAACCAACAGACATAACGTTGTTACAGAGGTTGAAACTAATCGA





CACAATACTGTGACTGAAAGTATTGGATGGTACGATGCTGTATCAAAAC





GAATCTCAGCAAATGCTTCAATGAGTCAAGCGGGTGCAGCTTGGGCTAA





TGTTGCAATTAATCAACAAAATGCAGATACAAAGCGATTTGAAGCTGAA





CGCAATGCTGAAATAAATCAGCAAAATGCGGACACTAGAACATTTAGTG





CACGTAGTGAGGATGCAGCTAGATATGCTCATTCTTACAATGAAGATCG





TAAAACTACAGCTGAAATTGAGCGAATGAACACACAAAATTCGCAAGGA





TGGGTGAAATCAATCACTGATGCAATCAGCTCACCTATCAAAGCATTAC





CATTATTAGGAGGATAA.






The ORF1 protein has a predicted molecular weight of 18.7 kDa and an acidic pI of 5.93


ORF1_aa Sequence









(SEQ ID NO: 5)


MTGNQIKYGELQENIRHNTTTEVETNRHNVVTEGETNRHNVVTEVETNR






HNTVTESIGWYDAVSKRISANASMSQAGAAWANVAINQQNADTKRFEAE






RNAEINQQNADTRTFSARSEDAARYAHSYNEDRKTTAEIERMNTQNSQG





WVKSITDAISSPIKALPLLGG






The ExxRxNxxxE repeated motif underlined above has been observed in other picobirnaviruses (Da Costa, et al)10.


The top hit (BLASTp vs vvrsaa) shows porcine PBV 33% identity, 47% positive (partial: 132/168 aa aligned).


The sequence of the capsid (ORF2), length of 1563 nt, coordinates (657 . . . 2219), 521 aa (+3 frame) was identified as:


>2_PBV-MRN3406 Capsid V2 Positions 703 to 2304









(SEQ ID NO: 6)


ATGGTAAAGAATAACAACAAAAAGCGTTTTCAGGATAAAAGTGATAAGT





ATTCTAGAAAACCTAAGTTCAAGGTTGAAAAGAAAGATATCTTGGACGA





TGACAAATTGGAAGGATCTAAGTTTGGCAAAGTTAATGACATATCCTGG





TATCAGAAGAATGCTGATTTACTCAGAGCTGCTGGTAACTTGTCTTTTG





CTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAACTTTAACGT





TAAGCTTGCTGCTGATGAGCAACGTGTTCCTGGTATTGCAACTATACAT





ACTATTACAGGACCTGGACTCAGTCGCGACGCACACTCTGGTGTCAACG





TGGCAATGCGTAACTTATATTCTTTTGTTCGTCATGCAAATAGTGGTCA





TAGTAACTATGATCCTGTAGATCTAATGTTATATCTACCTGCTATGGAT





GCAGCATACATGCTCTACTACCGTGCTGTTCGTGCATATGGCGCAATGT





TCACATTTAATACTGTGAATCGCTATGCTCCAAAAGCTCTTGTGGAAGC





GTTAGGTTTTGATTATGAAGATGTCAACTCAAACCTTGCTACATTCAGA





TATGCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTA





CGAATATGCCTATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTA





TACAGATGAAAACGTATCTAAAGCTCAGATTTATGCATTTACTTCTGAT





CATTATAGAGTATTTGATGAGAAGTATTCTAAAGGTGGACGCCTTGTGG





CTAAAGCCTGGAAAACAAAGTTAACTGTTAAAGATTGGATTACAGTAGC





AAATGAGGTTGCTGATCCAATTACAGTTTCAGAAGATTTAGGTATTATC





TCAGGTGACTTAATTAAAGCATTTGGTAAGGAAAACTTACACATGTTAG





CTACCTTGGCTGATAACTACGTTGTATTACCAACATATGTACCTGAAGT





TATGGATCAAATTCATAACTTGCAAGCAGTAGGTCAGATTGATCTAGAA





AGTAACAATATTGAACAAGATCCAAACATTGGTAAGGGTAACTTGATTT





ACAACCCAGTTGTAACTGTCAATAATAATCCAATGGCTTACGCAAATCG





TATTATGGATTTCAAAATTGATACACCTACTCCAGATGATGTCGTTGTA





GCTTCACGATTAGCTGTGGCATTAGAACCAGGCGCTACAACCGGTAAGG





CAGTATTCACTGCTATGGGTACAGAATTTGTGACTAAAGTTGGTATTCA





CACATTCTACAAGGGAAATAATGGATTACTTAAGTCTATTGAACAGACT





TTCAATACTTTTGATTCTACTGAAGGTGGTCTCACTGACGCCGCATCAG





TTAGTTTGCACATGTCTGCCTACACAAAGGCCTCTAAGTTTGTACACTT





TCCAATTCAATATATGTGTATGGGTAGCCCTACTCAACCTGACAAACGT





GAAGTCAGAATCTTTGGCGAATTGGGCACGTACACTATTATTAATGGGG





TCACTCTTAATAAGTTACACGACGTGTGTGTATTAAGTTTATTTGATGT





ACCTATTAAGCTT.






The capsid protein has a predicted molecular weight of 57.8 kDa and a basic pI of 8.42.


The capsid sequence was identified as:


>2_PBV-MRN3406 Capsid V2 Positions 703 to 2304









(SEQ ID NO: 7)


MVKNNKKRFQDKSKYSRKPKSREKKDILDDDKLEGSKFGKVNDISWYQK





NADLLRAAGNLSFANALGSGIDLSNANFNVKLAADEQRVPGIATIHTIT





GPGLSRDAHSGVNVAMRNLYSFVRHANSGHSNYDPVDLMLYLPAMDAAY





MLYYRAVRAYGAMFTFNTVNRYAPKALVEALGFDYEDVNSNLATFRYAI





NAYAARINAYAVPTNMPIFKRHAWLFSSIYTDENVSKAQIYAFTSDHYR





VFDEKYSKGGRLVAKAWKTKLTVKDWITVANEVADPITVSEDLGIISGD





LIKAFGKENLHMLATLADNYVVLPTYVPEVMDQIHNLQAVGQIDLESNN





IEQDPNIGKGNLIYNPVVTVNNNPMAYANRIMDFKIDTPTPDDVVVASR





LAVALEPGATTGKAVFTAMGTEFVTKVGIHTFYKGNNGLLKSIEQTFNT





FDSTEGGLTDAASVSLHMSAYTKASKFVHFPIQYMCMGSPTQPDKREVR





IFGELGTYTIINGVTLNKLHDVCVLSLFDVPIKL.






The top hit (BLASTp vs nrVirusX) showed Marmot PBV at 37% identity, 55% positive (entire). This low degree of amino acid identity compared to other capsid proteins is expected given the observed diversity reported in the literature.


The sequence of the 3′UTR (length 8 nt, coordinates 2220 . . . 2227) was identified as: TGATGCGG (SEQ ID NO: 8).


The complete nucleotide sequence (1892 nt) for segment 2 was identified as:









(SEQ ID NO: 9)


CTAAATGAATAGAAAAGTAGTCAAGTTAGGTAATTATTTTAAATTACCG





AATCCCGGATTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATG





AAGAGTATCGTACTCCATTTTTCAAAGATAAATCTTTGTCCGATGTATT





ACAAGGCTGGTTAGTGCACCTAGCCCCTCTCAAGAGTGAGTGGCCTGGT





TTACACCAGTTTGAATTAGACCTAGCGGAAAAGGTCGGGCCTTTAAGCA





TCCAGAAACCTTTAGATGAGCGGTTTAAGGATATTGAGGCTTATTACAA





AGGTATTCTCCTACCTTCCAAACCAATCAGTGAAACAGCAATCCGATCT





GTTTTAACTGAATGGAATAGGGCACGTGGCTTGTCGGTACGCAGTGTCT





CCAAAACGTGGGATAACATGAAGAAATCTACATCTTCAGGTTCTCCATT





CTTTACTAAACGTAAAGCAGTCGGAAAATATACGATGTATATGGAGCCA





TGTTTTGACAAAAGAACGCAAGAAGTTCATTTTAAGAACTCAAACCGTT





GGGATCCAATTGCGGTCTTAGGTTGGCGTGGACAAGAAGGTGGACCTGA





TTTTGAGGATGTAAAGCAAAGGGTTGTATGGATGTTCCCTGCTTCGGTA





AACCTACAAGAGTTACGTGTTTACCAACCTCTAATCGAAACAGCGCAAC





GTTTCAACTTAGTTCCTGCTTGGGTTGGCATGGATAGTGTTGATTTGCA





CATCACACGTATGTTTGATACGAAAGGCGAAGACGATGTCGTAATATGT





ACAGATTTCTCAAAATTTGACCAACATTTTAATGCTGATATGGCTCGCG





GTGCATCCGAAATATTGGATGGCCTCTTTAACGGGAGCAGAGATTTTGT





ACAATGGATGTGGGATATATATCACATCAAATACACGATACCTCTATTA





GACTCAGAAGATCATGCCTGGTTTGGCAGACATGGTATGGGCTCTGGTT





CAGGTGGAACCAATGCCGATGAAACATTAGCTCATAGAGCTTTGCAGTA





CGAAGCTGCTTTATCACAGAACCAAACATTAAACCCTTATTCACAATGT





CTAGGTGATGATGGAGTACTAACATATCCTGGAATTAAAGTGGATGATG





TAATGCGATCATATACTGCACATGGTCAAGAGATGAATGAGTCAAAACA





GTATGTGAGCAAACATGAATGCATATATCTTCGTAGATGGCATCATATT





AATTATCGTGTCGATGATGTATGTGTCGGAGTTTACGCAACAACTCGTG





CTTTGGGTAGATTGTGTGAACAAGAGAGATATTTTGACCCAGAGATATG





GTCAAAAGAAATGGTAGCTTTACGTCAGCTATCGATACTTGAGAATGTG





AAATACCACCCTCTCAAGGAAGAATTTGTTAAATATTGCATGAAAGGGG





ATAAGTACAGACTGGGACTGGACTTACCAGGCTTCTTGGAGAACATAGA





TGGACTCGCAAAGCAAGCTACTGATCTAATGCCGGACTTTTTAGGTTAC





GTTAAATCACAACAGAAATCTGTCGGTGGTATATCAGAATGGTGGATAG





TAAAATATCTACGTAGTCTAAAGTAAAGATTGGGATGGTGCAGTAAACC





ATTAGAATTCTAACGAATTCTAACTGCACCATCCCAATCTTTACTTTAG





ACTACGTAGATATTTTACTATCCACCACTCTGATATACCACCGACAGAT





TTCTGTTGTGATTTAACGTAACCTAAAAAGTCCGGCATCAGATCAGTAG





CTTGCTTTGCGAGTCCATCTATGTTCTCCAAGAAGCCTGGTAAGTCCAG





TCCCAGTCTGTACTTATCCCCTTTCATGCAATATTTAACAAATTCTTCC





TTGAGAGGGTGGTATTTCACATTCTCAAGT.







FIG. 3 shows a pairwise amino acid alignment (50 aa sliding window) of the ABT PBV capsid coding sequence to representative picobirnavirus strains. The mean (solid line) and median (dotted line) identities overall are approximately 35%.


The nucleotide sequence of the RNA-dependent RNA polymerase (RDRP), length 1587 nt, coordinates (5 . . . 1591), 529 aa was identified as:


>RDRP_nt Sequence









(SEQ ID NO: 10)


ATGAATAGAAAAGTAGTCAAGTTAGGTAATTATTTTAAATTACCGAATC





CCGGATTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGA





GTATCGTACTCCATTTTTCAAAGATAAATCTTTGTCCGATGTATTACAA





GGCTGGTTAGTGCACCTAGCCCCTCTCAAGAGTGAGTGGCCTGGTTTAC





ACCAGTTTGAATTAGACCTAGCGGAAAAGGTCGGGCCTTTAAGCATCCA





GAAACCTTTAGATGAGCGGTTTAAGGATATTGAGGCTTATTACAAAGGT





ATTCTCCTACCTTCCAAACCAATCAGTGAAACAGCAATCCGATCTGTTT





TAACTGAATGGAATAGGGCACGTGGCTTGTCGGTACGCAGTGTCTCCAA





AACGTGGGATAACATGAAGAAATCTACATCTTCAGGTTCTCCATTCTTT





ACTAAACGTAAAGCAGTCGGAAAATATACGATGTATATGGAGCCATGTT





TTGACAAAAGAACGCAAGAAGTTCATTTTAAGAACTCAAACCGTTGGGA





TCCAATTGCGGTCTTAGGTTGGCGTGGACAAGAAGGTGGACCTGATTTT





GAGGATGTAAAGCAAAGGGTTGTATGGATGTTCCCTGCTTCGGTAAACC





TACAAGAGTTACGTGTTTACCAACCTCTAATCGAAACAGCGCAACGTTT





CAACTTAGTTCCTGCTTGGGTTGGCATGGATAGTGTTGATTTGCACATC





ACACGTATGTTTGATACGAAAGGCGAAGACGATGTCGTAATATGTACAG





ATTTCTCAAAATTTGACCAACATTTTAATGCTGATATGGCTCGCGGTGC





ATCCGAAATATTGGATGGCCTCTTTAACGGGAGCAGAGATTTTGTACAA





TGGATGTGGGATATATATCACATCAAATACACGATACCTCTATTAGACT





CAGAAGATCATGCCTGGTTTGGCAGACATGGTATGGGCTCTGGTTCAGG





TGGAACCAATGCCGATGAAACATTAGCTCATAGAGCTTTGCAGTACGAA





GCTGCTTTATCACAGAACCAAACATTAAACCCTTATTCACAATGTCTAG





GTGATGATGGAGTACTAACATATCCTGGAATTAAAGTGGATGATGTAAT





GCGATCATATACTGCACATGGTCAAGAGATGAATGAGTCAAAACAGTAT





GTGAGCAAACATGAATGCATATATCTTCGTAGATGGCATCATATTAATT





ATCGTGTCGATGATGTATGTGTCGGAGTTTACGCAACAACTCGTGCTTT





GGGTAGATTGTGTGAACAAGAGAGATATTTTGACCCAGAGATATGGTCA





AAAGAAATGGTAGCTTTACGTCAGCTATCGATACTTGAGAATGTGAAAT





ACCACCCTCTCAAGGAAGAATTTGTTAAATATTGCATGAAAGGGGATAA





GTACAGACTGGGACTGGACTTACCAGGCTTCTTGGAGAACATAGATGGA





CTCGCAAAGCAAGCTACTGATCTAATGCCGGACTTTTTAGGTTACGTTA





AATCACAACAGAAATCTGTCGGTGGTATATCAGAATGGTGGATAGTAAA





ATATCTACGTAGTCTAAAG.






The RDRP protein has a predicted molecular weight of 61.1 kDa and a pI of 7.69


The RDRP sequence was identified as:









(SEQ ID NO: 11)


MNRKVVKLGNYFKLPNPGLKTYLLKTKRGNDEEYRTPFFKDKSLSDVLQ





GWLVHLAPLKSEWPGLHQFELDLAEKVGPLSIQKPLDERFKDIEAYYKG





ILLPSKPISETAIRSVLTEWNRARGLSVRSVSKTWDNMKKSTSSGSPFF





TKRKAVGKYTMYMEPCFDKRTQEVHFKNSNRWDPIAVLGWRGQEGGPDF





EDVKQRVVWMFPASVNLQELRVYQPLIETAQRFNLVPAWVGMDSVDLHI





TRMFDTKGEDDVVICTDFSKFDQHFNADMARGASEILDGLFNGSRDFVQ





WMWDIYHIKYTIPLLDSEDHAWFGRHGMGSGSGGTNADETLAHRALQYE





AALSQNQTLNPYSQCLGDDGVLTYPGIKVDDVMRSYTAHGQEMNESKQY





VSKHECIYLRRWHHINYRVDDVCVGVYATTRALGRLCEQERYFDPEIWS





KEMVALRQLSILENVKYHPLKEEFVKYCMKGDKYRLGLDLPGFLENIDG





LAKQATDLMPDFLGYVKSQQKSVGGISEWWIVKYLRSLK.






Top Blast hits shows otarine/skink/Dromedary PBV at 64% identity, 75% positive (entire).


The RDRP length is consistent with other reports (529-539 aa), as is the amino acid identity to other group I PBVs (44-70%).


The nucleotide sequence of the 3′UTR (length 301 nt, coordinates 1592 . . . 1892) was identified as:









(SEQ ID NO: 12)


TAAAGATTGGGATGGTGCAGTAAACCATTAGAATTCTAACGAATTCTAA





CTGCACCATCCCAATCTTTACTTTAGACTACGTAGATATTTTACTATCC





ACCACTCTGATATACCACCGACAGATTTCTGTTGTGATTTAACGTAACC





TAAAAAGTCCGGCATCAGATCAGTAGCTTGCTTTGCGAGTCCATCTATG





TTCTCCAAGAAGCCTGGTAAGTCCAGTCCCAGTCTGTACTTATCCCCTT





TCATGCAATATTTAACAAATTCTTCCTTGAGAGGGTGGTATTTCACATT





CTCAAGT.






This 3′UTR sequence is much longer than other reports (30-50 nts) and likely represents a more complete sequence than others have been able to obtain.



FIG. 4 shows a pairwise amino acid alignment (50 aa sliding window) of the ABT_PBV RDRP coding sequence to representative picobirnavirus strains. The mean (solid line) and median (dotted line) identities overall are approximately 60%.


Phylogenetic Analysis


Phylogenetic analysis was performed on the capsid and RDRP proteins. All available picobirnavirus sequences deposited in GenBank were retrieved. 1566 sequences were downloaded and parsed to separate files by annotation. There were 814 RDRP sequences, 427 capsid, and 325 ORF1 sequences. ABT_PBV sequences were added to each file and a multiple sequence alignment was performed with CLUSTAL-W in BioEdit. Alignments for capsid and RDRP were reduced to the ABT_PBV sequence set as the mask; ORF1 is highly divergent and was not analyzed. Duplicate accessions, those from the same study/location/host that were highly identical, and those without coverage in the desired alignment region were removed through an iterative process to create trees of manageable size.


Capsid: For capsid, the number of references were reduced from 427 to 132 full-length (521 aa) sequences (mostly marmot PBV were removed). Protdist neighbor-joining trees were rooted on the midpoint in Tree Explorer. Two trees were produced, the first in which gaps were not stripped (521 aa alignment) and another in which gaps were stripped (156 aa). Consistent with Knox, et al, branching patterns for picobirnaviruses strains were maintained when comparing these ‘complete’ trees11. The ABT-PBV capsid (red) consistently branched with marmot (KY928866, KY928801; Himalayas), and Dromedary camel (KM573779; United Arab Emirates) PBV sequences (blue). Other sequences consistently on this branch were PBVs of California sea lions (Otarine), gorillas, and humans (blue), as well as horses, pigs and chickens (green). As noted before, capsid sequences are much less conserved and there is not a standard analysis region for the protein reported in the literature.


The strains branching with ABT_PBV capsid are listed below with reported information of the source and any disease association.



















Acession
Type
Source
Disease
Host
Isolate





KY214427
porcine
feces


Sus scro
text missing or illegible when filed

BEL/15V010/2605


KY928766
marmot
fecal sample


Marmota himalayana

c223431_text missing or illegible when filed 1_i1_libraryA_2618


KY928875
marmot
fecal sample


Marmota himalayana

c326text missing or illegible when filed 15_text missing or illegible when filed 1_i1_libraryA_2610


KY928796
marmot
fecal sample


Marmota himalayana

c290190_text missing or illegible when filed 1_i1_libraryA_2387


YP009351840
otarine
fecal swab


Zalophus californianus

HKG-PF080915text missing or illegible when filed  Ref Seq NC_034160.1


KY928801
marmot
fecal sample


Marmota himalayana

c295860_text missing or illegible when filed 1_i1_libraryA_2470


KM573779
camel
fecal sample


Camelus dromedarius

c15text missing or illegible when filed 1


KY928866
marmot
fecal sample


Marmota himalayana

c324215_text missing or illegible when filed 1_i1_libraryA_2566


KU729747
otarine
fecal swab


Zalophus californianus

PF090303


KY502846
gorilla
feces


Gorilla gorilla

IHU-Con-GPtext missing or illegible when filed vs-V12-ContigS6


KY928773
marmot
fecal sample


Marmota himalayana

c254432_text missing or illegible when filed 1_i1_libraryA_2526


YP239360
human
stooltext missing or illegible when filed
acute

Homo sapiens

Hy005102text missing or illegible when filed  Ref Seq NC_007026.1





gastroenteritis


KR902508
equine
plasmatext missing or illegible when filed
febrile

Equus cabalius

horse 3


KY502841
gorilla
feces


Gorilla gorilla

IHU-Con-GPtext missing or illegible when filed vs-V7-ContigS3


KY928820
marmot
fecal sample


Marmota himalayana

c307746_text missing or illegible when filed 1_i1_libraryA_2693


LC337997
camel
fecal sample


Camelus dromedaruis

101C/Gptext missing or illegible when filed


KU892526
human
diarrhtext missing or illegible when filed ic feces
ulcerative

Homo sapiens

human/BEL/HPBV945/2010





colitis


YP009241385
porcine
diarrhtext missing or illegible when filed ic feces
diarrhea

Sus scro
text missing or illegible when filed

221/04−16/ITA/2004


MG846398
chicken
feces
malabsorption

Gallus gallus

RS/BR/15/4text missing or illegible when filed −1





syndrome














Acession
Country
Collection date







KY214427
Belgium
Jan-15



KY928766
China
2013



KY928875
China
2013



KY928796
China
2013



YP009351840
Hong Kong
Sep. 12, 2008



KY928801
China
2013



KM573779
United Arab Emirates
2013



KY928866
China
2013



KU729747
Hong Kong
4 Mar. 2009



KY502846
Republic of the Congo
Aug-15



KY928773
China
2013



YP239360
Thailand
2004



KR902508
USA
10 Oct. 2012



KY502841
Republic of the Congo
Aug-15



KY928820
China
2013



LC337997
United Arab Emirates
2013



KU892526
Belgium
2010



YP009241385
Italy
2004



MG846398
Brazil
2015








text missing or illegible when filed indicates data missing or illegible when filed







Radial trees of the same alignments more clearly demonstrate genetic distance between strains (e.g. long branch lengths) and just how interchangeable hosts are (FIGS. 5A and 5B). While no clear delineation between species or location is apparent, there do appear to be distinct groupings for capsid. Since there are fewer capsid entries and many are from the same host, it is very likely these presumed relationships are biased.


RDRP: RDRP sequences are more conserved than capsid and segregate into Genogroups I and II. Whether due to RDRP being used for classification of strains or since this gene is easier to detect in samples by similarity, there are consequently many more sequences in the database compared to capsid. There is a standard 55 aa region of the protein reported in the literature for phylogenetic analysis which corresponds to amino acids 209-264 in the ABT_RDRP. FIG. 6 shows an example of an RDRP tree on this 165 nt segment from Smits, et al which highlights pig and human sequences obtained from respiratory tracts5.


The tree shown in FIG. 7A contains the novel PBV strain identified herein. 841 RDRP sequences in this 55 aa region were reduced to 215, including a diversity of strains and those with implications for respiratory disease. Protdist neighbor-joining trees were rooted on human Genotype II strain, AF246940 (4-GA-91)7. Note as above with capsid, beside the delineation of GI and GII, there is no branching along host lines for RDRP.


The branch with the ABT_RDRP sequence was magnified and includes 3 notable sequences of interest. First, the two highly similar references, KM285233 & KM285234, were obtained in 2009 from upper respiratory swabs of two patients in Cambodia. These sequences were never part of a publication, but were deposited in GenBank by Mishra, N. and Lipkin, W. I.


The other strain it branches with, GU968930, originates from diarrhea samples obtained in the Netherlands. What is intriguing is that this sequence found in the above figure from Smits, et al, branches with 99% bootstrap value to the human respiratory strain, VS2000252/20055,12.


Also, on this same branch were several otarine (sea lion) sequences, gorilla, fox and uncultured raw sewage which are related to stool samples.


Indeed, the overwhelming majority of the >800 RDRP sequences in GenBank are derived from stool samples, but the novel sequence identified herein branches with the handful of deposited sequences related to respiratory illness.


Unfortunately, the Osterhaus group did not deposit the porcine or human respiratory sequences in GenBank5. Similarly, the sequences from Cummings, et al describing an association of PBV with severe acute respiratory illness (SARI) in Uganda were also not deposited6. However, strains branching with these sequences or those indicated to be most similar were included in the table below.



















Acession
Type
Source
Disease
Host
Isolate
Country
Collection date















RDRP 55 aa: 209-264














KC692366
fox
feces


Vulpes vulpes

Fox 5
Netherlands
15 Mar. 2012


KJ135927
uncultured
wastewater

n/a
Hunan_137
China
2012


KU729769
California sea lion
rectal swabs, feces


Zalophus californianus

PF100408
Hong Kong
25 Apr. 2010


KY502852
gorilla
feces


Gorilla gorilla

IHU-Con-
Republic of
Aug-15







GPbvs-V18
the Congo


KU729762
California sea lion
rectal swabs, feces


Zalophus californianus

PF090206
Hong Kong
17 Feb. 2009


KU729763
California sea lion
rectal swabs, feces


Zalophus californianus

PF090302
Hong Kong
4 Mar. 2009


KM285233
human
upper respiratory swabs


Homo sapiens

KS02-CSP-202
Cambodia
5 Oct. 2009


KM285234
human
upper respiratory swabs


Homo sapiens

KS02-CSP-203
Cambodia
5 Oct. 2009













GU96text missing or illegible when filed 930
human
stool *branch with human respiratory

Homo sapiens

VS22
Netherlands
11 Feb. 2007







RDRP 348 aa: 126-473














GQ221268
cow
stool


Bos indicus

RUBV-P
India
Jan-05


KM285233
human
upper respiratory swabs


Homo sapiens

KS02-CSP-2002
Cambodia
5 Oct. 2009


KM285234
human
upper respiratory swabs


Homo sapiens

KS02-CSP-203
Cambodia
5 Oct. 2009






text missing or illegible when filed indicates data missing or illegible when filed







It has been shown that the trees derived from the 55 aa sequence can reliably predict the branching pattern of the full length RDRP13. Nevertheless, a much longer alignment of 132 sequences covering 348 aa (coordinates 126-473) was created to further explore phylogenetic relationships to the novel strain. Phylogenic trees were developed (FIG. 7B), and the results are summarized in the table below. The table below shows that the novel sequence continues to branch with Cambodian respiratory strains (KM28523X.1), in addition to a bovine sequence from India (RUBV-P). These strains along with a select few full-length reference strains were aligned by CLUSTAL-W in two different software programs and yielded similar results. The novel strain only has 57% amino acid identity with the Cambodian respiratory strains. Note that as expected by the branching patterns above, the Cambodian strains are 97% identical, as are the cow (AB828072.1) and monkey (JQ710506.1) strains.



















ABT_PBV_RDRP
(KM285233.1)
(KM285234.1)
(Gtext missing or illegible when filed 221268.1)





ABT PBV RDRP
ID
0.573
0.5text missing or illegible when filed 9
0.509


AKG92636.1(KM285233.1)[Human picobirnavirus]
0.573
ID
0.975
0.519


AKG92637.1(KM2text missing or illegible when filed 5234.1)[Human picobirnavirus]
0.569
0.975
ID
0.517


ACTtext missing or illegible when filed 4131.1(text missing or illegible when filed 2212text missing or illegible when filed .1)[Picobirnavirus
0.509
0.519
0.517
ID


bovine/RUtext missing or illegible when filed Vtext missing or illegible when filed Ptext missing or illegible when filed /2005]


YP_239361.1 [Human picobirnavirus Hy00512]
0.544
0.546
0.546
0.503


AAtext missing or illegible when filed 53583.1(AF246939.1)[Human picobirnavirus
0.612
0.585
0.586
0.536


1-CHN-97]


YP_009351841.1[Otarine picobirnavirus]
0.567
0.571
0.570
0.551


AHZ246150.1(KJ4text missing or illegible when filed 56text missing or illegible when filed 0.1)[Picobirnavirus
0.533
0.514
0.516
0.509



text missing or illegible when filed PBV/turkey/USA/MNtext missing or illegible when filed 1/2011]



YP_009551574.1[Chicken picobirnavirus]
0.551
0.524
0.525
0.519


YP_00924138text missing or illegible when filed .1[Porcine picobirnavirus]
0.506
0.494
0.497
0.489


BANS8175.1(Atext missing or illegible when filed 82text missing or illegible when filed 072.1)[Picobirnavirus
0.412
0.396
0.396
0.4text missing or illegible when filed 2


cowtext missing or illegible when filed 7944Jap/2013]


AItext missing or illegible when filed 06802.1(KF823811.1)[Fox fecal picobirnavirus]
0.517
0.527
0.531
0.487


AIY312text missing or illegible when filed 7.1(KMS73801.1[Dromedary picobirnavirus]
0.564
0.520
0.523
0.514


AFK81927.1(JQ710506.1)[Picobirnavirus
0.412
0.401
0.397
0.435


monkey/Ctext missing or illegible when filed N−14/2002]















YP_239361.1
(AF246939.1)
YP_009351841.1
(KJ495690.1)





ABT PBV RDRP
0.544
0.612
0.5text missing or illegible when filed 7
0.533


AKG92636.1(KM285233.1)[Human picobirnavirus]
0.546
0.585
0.571
0.514


AKG92637.1(KM2text missing or illegible when filed 5234.1)[Human picobirnavirus]
0.546
0.586
0.570
0.516


ACTtext missing or illegible when filed 4131.1(text missing or illegible when filed 2212text missing or illegible when filed .1)[Picobirnavirus
0.503
0.53text missing or illegible when filed
0.551
0.509


bovine/RUtext missing or illegible when filed Vtext missing or illegible when filed Ptext missing or illegible when filed /2005]


YP_239361.1 [Human picobirnavirus Hy00512]
ID
0.594
0.604
0.589


AAtext missing or illegible when filed 53583.1(AF246939.1)[Human picobirnavirus
0.594
ID
0.621
0.570


1-CHN-97]


YP_009351841.1[Otarine picobirnavirus]
0.604
0.621
ID
0.608


AHZ246150.1(KJ4text missing or illegible when filed 56text missing or illegible when filed 0.1)[Picobirnavirus
0.589
0.570
0.60text missing or illegible when filed
ID



text missing or illegible when filed PBV/turkey/USA/MNtext missing or illegible when filed 1/2011]



YP_009551574.1[Chicken picobirnavirus]
0.580
0.604
0.621
0.582


YP_00924138text missing or illegible when filed .1[Porcine picobirnavirus]
0.545
0.550
0.58text missing or illegible when filed
0.550


BANS8175.1(Atext missing or illegible when filed 82text missing or illegible when filed 072.1)[Picobirnavirus
0.443
0.452
0.448
0.448


cowtext missing or illegible when filed 7944Jap/2013]


AItext missing or illegible when filed 06802.1(KF823811.1)[Fox fecal picobirnavirus]
0.553
0.544
0.591
0.570


AIY312text missing or illegible when filed 7.1(KMS73801.1[Dromedary picobirnavirus]
0.5text missing or illegible when filed 4
0.591
0.668
0.557


AFK81927.1(JQ710506.1)[Picobirnavirus
0.444
0.456
0.450
0.450


monkey/Ctext missing or illegible when filed N−14/2002]















YP_009551574.1
YP_009241386.1
(AB828072.1)
KF823811.1)





ABT PBV RDRP
0.551
0.506
0.412
0.517


AKG92636.1(KM285233.1)[Human picobirnavirus]
0.524
0.494
0.396
0.527


AKG92637.1(KM2text missing or illegible when filed 5234.1)[Human picobirnavirus]
0.525
0.497
0.396
0.531


ACTtext missing or illegible when filed 4131.1(text missing or illegible when filed 2212text missing or illegible when filed .1)[Picobirnavirus
0.519
0.489
0.432
0.487


bovine/RUtext missing or illegible when filed Vtext missing or illegible when filed Ptext missing or illegible when filed /2005]


YP_239361.1 [Human picobirnavirus Hy00512]
0.580
0.545
0.433
0.533


AAtext missing or illegible when filed 53583.1(AF246939.1)[Human picobirnavirus
0.604
0.550
0.452
0.544


1-CHN-97]


YP_009351841.1[Otarine picobirnavirus]
0.621
0.586
0.448
0.591


AHZ246150.1(KJ4text missing or illegible when filed 56text missing or illegible when filed 0.1)[Picobirnavirus
0.582
0.text missing or illegible when filed
0.448
0.570



text missing or illegible when filed PBV/turkey/USA/MNtext missing or illegible when filed 1/2011]



YP_009551574.1[Chicken picobirnavirus]
ID
0.632
0.444
0.617


YP_00924138text missing or illegible when filed .1[Porcine picobirnavirus]
0.632
ID
0.412
0.633


BANS8175.1(Atext missing or illegible when filed 82text missing or illegible when filed 072.1)[Picobirnavirus
0.444
0.412
ID
0.406


cowtext missing or illegible when filed 7944Jap/2013]


AItext missing or illegible when filed 06802.1(KF823811.1)[Fox fecal picobirnavirus]
0.617
0.633
0.406
ID


AIY312text missing or illegible when filed 7.1(KMS73801.1[Dromedary picobirnavirus]
0.588
0.551
0.427
0.571


AFK81927.1(JQ710506.1)[Picobirnavirus
0.449
0.410
0.971
0.407


monkey/Ctext missing or illegible when filed N−14/2002]















(KM573801.1)
(Jtext missing or illegible when filed 710506.1)







ABT PBV RDRP
0.5text missing or illegible when filed 4
0.412



AKG92636.1(KM285233.1)[Human picobirnavirus]
0.text missing or illegible when filed 2
0.401



AKG92637.1(KM2text missing or illegible when filed 5234.1)[Human picobirnavirus]
0.523
0.397



ACTtext missing or illegible when filed 4131.1(text missing or illegible when filed 2212text missing or illegible when filed .1)[Picobirnavirus
0.514
0.43text missing or illegible when filed



bovine/RUtext missing or illegible when filed Vtext missing or illegible when filed Ptext missing or illegible when filed /2005]



YP_239361.1 [Human picobirnavirus Hy00512]
0.564
0.444



AAtext missing or illegible when filed 53583.1(AF246939.1)[Human picobirnavirus
0.591
0.456



1-CHN-97]



YP_009351841.1[Otarine picobirnavirus]
0.6text missing or illegible when filed
0.450



AHZ246150.1(KJ4text missing or illegible when filed 56text missing or illegible when filed 0.1)[Picobirnavirus
0.557
0.450




text missing or illegible when filed PBV/turkey/USA/MNtext missing or illegible when filed 1/2011]




YP_009551574.1[Chicken picobirnavirus]
0.588
0.449



YP_00924138text missing or illegible when filed .1[Porcine picobirnavirus]
0.551
0.410



BANS8175.1(Atext missing or illegible when filed 82text missing or illegible when filed 072.1)[Picobirnavirus
0.427
0.971



cowtext missing or illegible when filed 7944Jap/2013]



AItext missing or illegible when filed 06802.1(KF823811.1)[Fox fecal picobirnavirus]
0.571
0.407



AIY312text missing or illegible when filed 7.1(KMS73801.1[Dromedary picobirnavirus]
ID
0.428



AFK81927.1(JQ710506.1)[Picobirnavirus
0.428
ID



monkey/Ctext missing or illegible when filed N−14/2002]








text missing or illegible when filed indicates data missing or illegible when filed








BioEdit sequence identity matrix results.












Percent Identity
























1
2
3
4
5
6
7
8
9
10
11
12
13
14



























1

57.8
57.4
54.3
55.8
61.2
59.1
55.4
57.0
53.0
43.9
54.5
61.9
43.9
1
ABT_PBV_RDRP


2
61.3

97.7
54.7
55.6
59.2
59.5
53.3
53.9
51.6
42.4
55.7
56.9
42.9
2
AKG92636.1


3
62.1
2.3

54.5
55.3
59.2
59.7
53.6
53.9
51.8
42.1
56.2
57.1
42.3
3
AKG92637.1


4
69.2
68.1
68.6

53.3
57.5
58.8
54.1
55.3
52.1
46.6
53.1
57.7
47.0
4
ACT64131.1


5
65.6
66.1
66.8
71.5

61.3
62.6
60.1
59.3
55.2
46.6
57.5
61.6
46.8
5
YP_239361.1


6
54.2
58.3
58.3
61.7
54.0

65.1
59.4
62.6
57.3
48.text missing or illegible when filed
57.8
65.3
48.4
6
AAG53text missing or illegible when filed 83.1


7
58.4
57.5
57.1
59.1
51.4
46.8

63.3
63.6
60.0
47.9
61.5
72.1
48.1
7
YP_009351841.1


8
66.5
71.6
70.6
69.6
56.3
57.7
50.1

59.6
56.7
48.2
60.2
60.9
48.4
8
AHZ46150.1


9
63.0
70.1
70.1
66.8
58.0
51.4
49.6
57.3

63.8
47.2
63.9
63.5
47.7
9
YP_009551574.1


10
72.3
75.7
75.2
74.5
67.0
62.3
56.6
63.6
49.1

44.1
65.2
59.9
43.9
10
YP_009241386.1


11
97.7
102.9
103.8
89.3
89.4
85.3
85.6
84.8
87.7
97.2

44.3
48.1
97.1
11
BAN58175.1


12
68.7
65.9
64.6
72.0
61.7
61.3
53.3
56.2
48.9
46.5
96.5

60.0
44.5
12
AIB06802.1


13
52.7
63.2
62.8
61.3
53.3
46.4
34.8
54.7
49.7
56.7
85.2
56.5

48.3
13
AIY31287.1


14
97.7
101.0
103.2
88.2
88.8
84.2
85.0
84.3
86.1
97.8
2.9
95.9
84.6

14
AFK81927.1



1
2
3
4
5
6
7
8
9
10
11
12
13
14





DNAstar MegAlign results for sequence identity and divergence (top = identitytext missing or illegible when filed  bottom = divergence)



text missing or illegible when filed indicates data missing or illegible when filed







Scanning across the alignment it is clear that considerable identity resides in the portion used for the 55 aa tree (e.g. aa 209-264) (FIG. 8A). Investigating whether conserved RDRP motifs in other viruses resemble this sequence, and which ones, will be of interest to understand if these residues confer respiratory tropism.


In keeping with current established nomenclature, the novel strain described herein is referred to and deposited in GenBank as follows: GI/PBV/human/Colombia/ABT3406/2018.


EXAMPLE 2
PCR Detection of Picobirnavirus

Methods for molecular detection of the novel picobirnavirus described herein (e.g. ABT-PBV) were designed to include the means to detect all picobirnaviruses, as well as the ability to discriminate the novel picobirnavirus described herein from other strains and confirm that both genomic segments are present in a sample. For this reason, the PCR assays described herein use one set of primers to amplify a ‘unique’ target on segment 1 to only detect the capsid sequence present in highly similar strains. In a separate reaction, another set of primers amplifies a ‘common’ target on segment 2 for detection of RDRP. Within this RDRP amplicon, all PBVs can be detected with one ‘general’ probe (FAM) and the novel PBV and highly related respiratory strains can be detected with ‘specific’ probes (Cy5 & Cy3). A nucleotide alignment of the RDRP amplicon region shows the position of these probes and which strains they detect (FIG. 8B.) Note that in FIG. 8B the forward and reverse primers are located outside of the region shown where probes hybridize. The general qPCR scheme and expected results as described above are summarized in FIG. 9.


In vitro transcripts of capsid (n=1, lane 9) and RDRP (n=6, lanes 4-8, 10) sequences from ABT-PBV (lanes 9 & 10) and from additional PBV strains (lanes 4-8) were generated as positive controls to demonstrate detection in each qPCR assay (FIG. 10). The transcripts in lanes 1-3 are for aichivirus and are not described in this application.


Transcript of T7 Promoter—Aichi/PBV Insert (512 Bases)—Hind III=569 Bases


1=AVABT (ABT4352)


2=AVDQ (DQ028632)


3=AVNC (NC_001918)


4=PVABRD (AB517739)


5=PVGQRD (GQ221268)


6=PVKMRD (KM285233)


7=PVKURD(KU729763)


8=PVABTRD (MRN3406/RDRP)


9=PVABTCA (MRN3406/capsid)


10=PVNCRD (NC_007027)


The following primers and probes were developed.


(A) Capsid











Forward Primer: CAF1151



(SEQ ID NO: 13)



5′-CACCTACTCCAGATGATGTC-3′







Reverse Primer: CAR1229



(SEQ ID NO: 14)



5′-CTGTACCCATAGCAGTGAATA







Probe: CAP1186



(SEQ ID NO: 15)



5′ FAM-TTAGCTGTGGCATTAGAACCAGGCGC-BHQ1 3′






(B) RDRP









Forward Primers


(1) PVFP1:


(SEQ ID NO: 16)


5′-TGGCGIGGICARGAAGG-3′





(2) PVFP2:


(SEQ ID NO: 17)


5′-TGGAGAGGICAIGARGG-3′





(3) PVFP3:


(SEQ ID NO: 18)


5′-TGGCGIGGICARGAGGG-3′





Reverse Primers:


(1) PVRP1:


(SEQ ID NO: 19)


5′-CCATICIAAYCCAIGCAGG-3′





(2) PVRP2:


(SEQ ID NO: 20)


5′-CIAWGCIAACCCAIGCTGG-3′





(3) KMRP:


(SEQ ID NO: 21)


5′-CAIICCGACCCAWGCTGG-3′





(4) GQRP: 


(SEQ ID NO: 22)


5′-ATAAACCAATCCATGGCGCTAT-3′





(5) MGRP:


(SEQ ID NO: 23)


5′-ACCICGTCATTRCIIWCCCA-3′





Probes:


(1) PVPROF1:


(SEQ ID NO: 24)


5′ FAM-CGTIAARCARIGIGTIGTITGGATGTTYCC-BHQ1 3′





(2) PVPROF2:


(SEQ ID NO: 25)


5′ FAM-CGTIAARCARAGIGTIGTITGGATGTTCCC-BHQ1 3′





(3) PVPROF3:


(SEQ ID NO: 26)


5′ FAM-CGTIAARCAGCGIGTIGTITGGATGTTYCC-BHQ1 3′





(4) MRNRPRO:


(SEQ ID NO: 27)


5′ Cy5-CGTTGCGCTGTTTCGATTAGAGGTTGG-BHQ2 3′





(5) KMRPRO:


(SEQ ID NO: 28)


5′ Cy3-TGTAGCATATCCATAAACGGCTGRTAGAC-BHQ2 3′


I = deoxyinosine; R = A + G; W = A + T; Y = C + T






Primers and probe combinations were tested to determine efficacy in detection of PBV.



FIG. 11A-B show qPCR results for the serially diluted capsid IVT using the capsid primers and probes expected to detect only the novel PBV strain described herein. The capsid primers and probes described above were used (SEQ ID NO: 13, SEQ ID NO: 14, and SEQ ID NO: 15). Amplification curves are shown in FIG. 11A. The linear regression plot is shown in FIG. 11B. The novel ABT-PBV strain is detected with a limit of detection at or below 10 copies/ml and the response is linear.



FIG. 12 shows PCR results for RDRP using the following primers and probes:









Forward Primers


(1) PVFP1:


(SEQ ID NO: 16)


5′-TGGCGIGGICARGAAGG-3′





(2) PVFP2:


(SEQ ID NO: 17)


5′-TGGAGAGGICAIGARGG-3′





(3) PVFP3:


(SEQ ID NO: 18)


5′-TGGCGIGGICARGAGGG-3′





Reverse Primers:


(1) PVRP1:


(SEQ ID NO: 19)


5′-CCATICIAAYCCAIGCAGG-3′





(2) PVRP2:


(SEQ ID NO: 20)


5′-CIAWGCIAACCCAIGCTGG-3′





(3) KMRP:


(SEQ ID NO: 21)


5′-CAIICCGACCCAWGCTGG-3′





(4) GQRP: 


(SEQ ID NO: 22)


5′-ATAAACCAATCCATGGCGCTAT-3′





(5) MGRP:


(SEQ ID NO: 23)


5′-ACCICGTCATTRCIIWCCCA-3′





Probes:


(1) PVPROF1:


(SEQ ID NO: 24)


5′ FAM-CGTIAARCARIGIGTIGTITGGATGTTYCC-BHQ1 3′





(2) PVPROF2:


(SEQ ID NO: 25)


5′ FAM-CGTIAARCARAGIGTIGTITGGATGTTCCC-BHQ1 3′





(3) PVPROF3:


(SEQ ID NO: 26)


5′ FAM-CGTIAARCAGCGIGTIGTITGGATGTTYCC-BHQ1 3′






These primer and probe sets were first tested for the ability to detect IVT transcripts of sequences derived from multiple PBV strains. Multiple, forward (SEQ IDs 16-18) and reverse (SEQ IDs 19-23) primers located at the same positions and with degenerate bases are included in the reaction to ensure amplification of genetically diverse strains. Likewise, three similar FAM probes were included to accommodate expected mismatches (SEQ IDs 24-26). As shown in column 1 of FIG. 12A and FIG. 12B, the combination was able to detect the IVT of all six strains of PBV that were tested. Accordingly, this combination is referred to herein as a set of “universal primers and probes” that is able to detect all PBV strains, including the novel PBV strain described herein (e.g., ABT-PBV). Amplification curves in the FAM channel illustrate that detection is dose-dependent with LODs between 10-100 copies/ml.


Other probes capable of detecting only the novel PBV strain described herein were subsequently tested. Note that the probes selected for two RDRP sequences reside within the same amplicon described above, and therefore the forward (SEQ IDs 16-18) and reverse (SEQ IDs 19-23) primers are the same. The combination was as follows:









Forward Primers


(1) PVFP1:


(SEQ ID NO: 16)


5′-TGGCGIGGICARGAAGG-3′





(2) PVFP2:


(SEQ ID NO: 17)


5′-TGGAGAGGICAIGARGG-3′





(3) PVFP3:


(SEQ ID NO: 18)


5′-TGGCGIGGICARGAGGG-3′





Reverse Primers:


(1) PVRP1:


(SEQ ID NO: 19)


5′-CCATICIAAYCCAIGCAGG-3′





(2) PVRP2:


(SEQ ID NO: 20)


5′-CIAWGCIAACCCAIGCTGG-3′





(3) KMRP:


(SEQ ID NO: 21)


5′-CAIICCGACCCAWGCTGG-3′





(4) GQRP: 


(SEQ ID NO: 22)


5′-ATAAACCAATCCATGGCGCTAT-3′





(5) MGRP:


(SEQ ID NO: 23)


5′-ACCICGTCATTRCIIWCCCA-3′





Probes:


(4) MRNRPRO:


(SEQ ID NO: 27)


5′ Cy5-CGTTGCGCTGTTTCGATTAGAGGTTGG-BHQ2 3′





(5) KMRPRO:


(SEQ ID NO: 28)


5′ Cy3-TGTAGCATATCCATAAACGGCTGRTAGAC-BHQ2 3′






Columns 2 and 3 of FIG. 12A and FIG. 12B show qPCR results from serially diluted IVTs from the same six PBVs strains detected in column 1 in the FAM channel. These primers and the Cy5 probe detected only the novel PBV strain found in sputum and described herein; none of the other strains were detected (FIG. 12A and FIG. 12B, column 2). Similiarly, these primers and the Cy3 probe detected only the respiratory strain from Cambodia; none of the other strains were detected (FIG. 12A and FIG. 12B, column 3).


Below is a detailed description of the PBV Capsid qPCR reaction recipe and cycling conditions:


Prepare a master mix for 1 reaction (final volume 50 μl)



















Water
11.45
μl














2X RT-PCR Buffer
25.0 μl (1X)















CAF1151 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


CAR1229 (100 μM in TE, pH 8.0)
0.2
μl
{close oversize brace}
0.55 μl
(0.4 μM)


CAP1186 (FAM) (100 μM in TE, pH 8.0)
0.15
μl


(0.3 μM)











50 mM MgCl2
1.0 μl (1 mM)





25 × RT-PCR Enzyme Mix
2.0 μl (1X)













40
μl





RNA
10
μl












50 μl per reaction










Forward primer (CAF1151), reverse primer (CAR1229), and FAM probe (CAP1186) were pre-mixed together in one tube; add 0.55 μl of the premixed primers and probes per 50 μl reaction.


ROX is used a reference dye in the RT-PCR buffer.


The AgPath-ID One-Step RT-PCR Kit (Life Technologies, cat #4387424) includes 2× RT-PCR Buffer, 25× RT-PCR Enzyme Mix, Detection Enhancer (×15) and Nuclease-free Water. The 50 mM MgCl2 is provided separately.


10 μl Sample RNA (e.g. IVT, patient RNA) is added last, the plate is sealed and placed in the Abbott m2000rt instrument.


Real-Time PCR Cycling Conditions















Stage
Cycle
Temperature
Time



















1
1
50° C.
30
minutes


2
1
95° C.
10
minutes


3
45
95° C.
30
seconds




62° C.
30
seconds










55° C.
90 seconds (signals read in last 30 seconds)










Below is a detailed description of the PBV RDRP qPCR reaction recipe and cycling conditions:


Prepare a master mix for 1 reaction (final volume 50 μl)



















Water
9.65
μl














2 × RT-PCR Buffer
25.0 μl (1×)















PVFP1 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


PVFP2 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


PVFP3 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


PVRP1 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


PVRP2 (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


KMRP (100 μM in TE, pH 8.0)
0.2
μl
{close oversize brace}
2.05 μl
(0.4 μM)


GQRP (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


MGRP (100 μM in TE, pH 8.0)
0.2
μl


(0.4 μM)


PVPROF1 (FAM) (100 μM in TE, pH 8.0)
0.15
μl


(0.3 μM)


PVPROF2 (FAM) (100 μM in TE, pH 8.0)
0.15
μl


(0.3 μM)


PVPROF3 (FAM) (100 μM in TE, pH 8.0)
0.15
μl


(0.3 μM)


MRNRPRO (Cy5) (100 μM in TE, pH 7.0)
0.15
μl
{close oversize brace}
 0.3 μl
(0.3 μM)


KMRPRO (Cy3) (100 μM in TE, pH 7.0)
0.15
μl


(0.3 μM)











50 mM MgCl2
1.0 μl (1 mM)





25 × RT-PCR Enzyme Mix
2.0 μl (1×)













40
μl





RNA
10
μl












50 μl per reaction










Forward primers (PVFP1/2/3), reverse primers (PVRP1/2, KMRP, GQRP, and MGRP), FAM probes (PVPROF1/2/3 targeting all PBV strains in RdRp) are pre-mixed together in one tube in TE, pH 8.0; add 2.05 μl of the premixed primers and probes for each 50 μl reaction.


MRNRPRO Cy5 probe targeting the novel ABT-PBV strain in RdRp and KMRPRO Cy3 probe targeting other respiratory PBV strains in RdRp are pre-mixed together in one tube in TE, pH 7.0; add 0.3 μl of the premixed Cy5/Cy3 probes for each 50 μl reaction.


ROX is used a reference dye in the RT-PCR buffer.


The AgPath-ID One-Step RT-PCR Kit (Life Technologies, cat #4387424) includes 2× RT-PCR Buffer, 25× RT-PCR Enzyme Mix, Detection Enhancer (×15) and Nuclease-free Water. The 50 mM MgCl2 is provided separately.


10 μl Sample RNA (e.g. IVT, patient RNA) is added last, the plate is sealed and placed in the Abbott m2000rt instrument.


Real-Time PCR Cycling Conditions















Stage
Cycle
Temperature
Time



















1
1
50° C.
30
minutes


2
1
95° C.
10
minutes


3
45
95° C.
30
seconds




62° C.
30
seconds










55° C.
90 seconds (read signals in last 30 seconds)










EXAMPLE 3
Detection of Additional Strains in Sputum Samples

To identify additional strains related to the novel PBV described in Example 1 and simultaneously demonstrate the utility of the qPCR assay described in Example 2, sputum specimens from patients ill and/or hospitalized with severe respiratory symptoms were screened. The following 130 sputum samples were obtained from three different commercial vendors:


N=50 from NY Biologics collected at outpatient facility (New York, USA)


N=30 from Boca Biolistics collected from hospitalized patients (USA)


N=50 from MRN Diagnostics newly collected from hospitalized patients (Colombia, South America). Note: The original set had 24 samples, these 50 were collected ˜2 yrs later from the same medical facility.


Selection of these samples from multiple sites were expected to provide an indication of the general prevalence of picobirnaviruses in individuals with respiratory illness. Positive detection of strains highly similar to the novel ABT-PBV (Capsid FAM+; RDRP FAM+, and RDRP Cy5+) will also indicate whether this particular virus is circulating in the population.


Extraction Procedure


Sputum samples were resuspended at 1:1 proportion (e.g. 500 μl of 2× buffer with ˜500 μl of sputum) in 2× pretreatment buffer (below) for 3 hours at 37° C. Forty-eight samples were processed at a time according to the TNA+Proteinase K extraction procedure required of the automated m2000 platform. Therefore, 25 ml of 2× buffer was prepared fresh for each of 3 rounds of samples preparations performed at different time points.


The pre-treatment procedure was performed in a BSL3 facility. All manipulations took place in laminar flow biosafety cabinets and personnel donned full PPE and respirators. All trash (e.g. tips, pestles, etc.) was retained in sealable roller bottles and autoclaved.


2× Pretreatment Buffer (25 ml):

  • 5 ml of 10× Benzonase buffer (2×)
  • 5 ml of 1% DTT in water (0.2%), [1%=0.5 g DTT in 50 ml water]
  • 14.8 ml of water
  • 50 μl of Sigma Benzonase→2 μl/ml=1 μl/sample=250 U/sample
  • 50 μl of Sigma Turbo DNAse→2 μl/ml=1 μl/sample=200 U/sample
  • 100 μl of Roche DNAse 1→4 μl/ml=2 μl/sample=20 U/sample


Nuclease Information
















Sigma ultra-pure benzonase @ 250 U/μl
E8263-5KU
20 μl/tube (×3 tubes)


Sigma Turbo DNAse from S. marcescens @ 200 U/μl
T4330-50KU
 250 μl/tube


Roche (Sigma) DNAse 1 recombinant @ 10 U/μl
04716728001
1000 μl/tube









Step by Step Procedure


Step 1. Transfer ˜500 μl of sputum to a labeled 2.0 ml Eppendorf centrifuge tube using either a sterile disposable spatula or wood Q-tip handle. Spin down briefly where needed to line up level of sputum with 500 μl gradation on the tube.


Step 2. Pipette 500 μl of 2× buffer (above) to each sample and vortex. Quick spin to collect.


Step 3. Use a disposable pestle to mechanically disrupt the sputum where necessary. Use ≥10 passes depending on viscosity. Place tubes in 37° C. heat block.


Step 4. At 45 min intervals, repeat vortexing. Return samples to 37° C. heat block and incubate for 3 hr total.


Step 5. Spin samples at 10,000 rpm for 2 min to pellet insoluble debris. Transfer 800 μl of sample to an m2000 sample tube and cap it.


Step 6. Extract material on an m2000 using the TNA+Proteinase K protocol (Abbott Molecular, Des Plaines, Ill.).


Step 7. Freeze deep-well plate of extracted nucleic acid at −80° C. until use.


Patient Specimen Screening by qPCR


Capsid qPCR mastermix (40 μl, as described above) was dispensed to a 96 well PCR plate. 10 μl of each sample RNA was added to mastermix.


In vitro transcript, PVABTCA (novel PBV strain capsid, #9), resuspended in water at 106, 105, and 104 copies/10 ul served as the positive control and water served as the negative control.


RDRP qPCR mastermix (40 μl, as described above) was dispensed to a separate 96 well PCR plate. 10 μl of each sample RNA was added to mastermix.


In vitro transcripts, PVABTRD (novel PBV strain RdRp, #8), PVKMRD (another PBV respiratory strain RdRp, #6), and PVGQRD (a representative non-respiratory PBV strain RdRp, #5), were resuspended in water at 106, 105, and 104 copies/10 ul and served as positive controls. Water served as the negative control.


Reactions were cycled as described above for IVT. Results were analyzed in MultiAnalyze software.


Results:


Separate capsid and RDRP qPCRs were performed and the cycle threshold values are listed below. Positive sample results are highlighted in different colors to represent the different classes of PBVs identified.


The first set of samples screened (column 1, n=48) from NY Biologics (USA) revealed four hits. Two hits were detected by the RDRP qPCR that represent any PBV strain (FAM channel only). Given these are found in the sputum of sick individuals, they are presumably altogether new respiratory PBV strains, but with RDRP sequences (and capsid) not related to the Cambodian (CY3−) or the novel ABT (CY5−) strain from Colombia described herein. In addition two hits were detected that indicate these individuals have PBV strains with an RDRP sequences similar to the novel ABT-PBV strain (FAM+, CY5+).


The second set of samples screened (column 2, n=48) were from all 3 vendors [NY Biologics (USA), Boca Biolistics (USA), and MRN Dx (Colombia)] and revealed six hits. Five hits were detected that indicate these PBV strains have an RDRP similar to the novel ABT-PBV strain (FAM+, CY5+). A single isolate was detected where the RDRP is similar to the respiratory strain from Cambodia (FAM+, CY3+). There were weak signals (italics) that upon further analysis were eliminated as positives.


The third set of samples screened (column 2, n=38) were all from MRN Dx (Colombia) and revealed 15 hits. Three hits were detected that represent any PBV strain (FAM+); four hits with an RDRP similar to the ABT-PBV strain (FAM+, CY5+), and 1 hit where the RDRP is similar to the respiratory strain from Cambodia (FAM+, CY3+); all of these were capsid negative. Additionally, 7 hits were detected that were dually positive for capsid and RDRP (FAM+, FAM+, CY5+). Two of these were also positive in the Cy3 channel (FAM+, FAM+, CY3+, CY5+), which can either represent a mixed infection or cross reactivity with what are indeed highly similar probes.














Set 1: NY Biologics















Capsidtext missing or illegible when filed FAM

RDRPtext missing or illegible when filed FAM
RDRPtext missing or illegible when filed CY3
RDRPtext missing or illegible when filed CY5



Sample ID
Ctext missing or illegible when filed
Sample ID
Ctext missing or illegible when filed
Ctext missing or illegible when filed
Ctext missing or illegible when filed






564225
−1
564225
−1
−1
−1



564226
−1
564226
−1
−1
−1



564227
−1
564227
−1
−1
−1



564228
−1
564228
−1
−1
−1



564229
−1
564229
−1
−1
−1



564230
−1
564230
−1
−1
−1



564231
−1
564231
−1
−1
−1



564232
−1
564232
−1
−1
−1



564233
−1
564233
−1
−1
−1



564234
−1
564234
−1
−1
−1



564235
−1
564235
−1
−1
−1



564236
−1
564236
−1
−1
−1



564237
−1
564237
−1
−1
−1



564238
−1
564238
−1
−1
−1



564239
−1
564239
−1
−1
−1



564240
−1
564240
−1
−1
−1



text missing or illegible when filed

564466
−1
564466
29.41
−1
−1



564467
−1
564467
−1
−1
−1



text missing or illegible when filed

564468
−1
564468
33.36
−1
30.3text missing or illegible when filed



564469
−1
564469
−1
−1
−1



564137
−1
564137
−1
−1
−1



564138
−1
564138
26.4
−1

text missing or illegible when filed .87




564139
−1
564139
−1
−1
−1



564140
−1
564140
−1
−1
−1



564141
−1
564141
−1
−1
−1



564142
−1
564142
−1
−1
−1



564143
−1
564143
−1
−1
−1



564144
−1
554144
−1
−1
−1



564221
−1
564221
−1
−1
−1



564222
−1
564222
−1
−1
−1



564223
−1
564223
−1
−1
−1



564224
−1
564224
−1
−1
−1



564475
−1
564475
−1
−1
−1



564476
−1
564476
−1
−1
−1



text missing or illegible when filed

564477
−1
564477
36.text missing or illegible when filed 6
−1
−1



564478
−1
564478
−1
−1
−1



564479
−1
564479
−1
−1
−1



564480
−1
564480
−1
−1
−1



564505
−1
564505
−1
−1
−1



564506
−1
564506
−1
−1
−1



564507
−1
564507
−1
−1
−1



564508
−1
564508
−1
−1
−1



564509
−1
564509
−1
−1
−1



564510
−1
564510
−1
−1
−1



564511
−1
564511
−1
−1
−1



NHP
−1
NHP
−1
−1
−1



Ctext missing or illegible when filed _9
−1
Ctext missing or illegible when filed _9
−1
−1
−1



Sputum C
−1
Sputum C
−1
−1
−1



10text missing or illegible when filed
20.1text missing or illegible when filed
10{circumflex over ( )}6text missing or illegible when filed
23.9text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



10text missing or illegible when filed 5text missing or illegible when filed
26.text missing or illegible when filed
10{circumflex over ( )}5text missing or illegible when filed
26.98text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



10text missing or illegible when filed 4text missing or illegible when filed

text missing or illegible when filed .8text missing or illegible when filed

10{circumflex over ( )}4text missing or illegible when filed

text missing or illegible when filed 0.text missing or illegible when filed

−1text missing or illegible when filed
−1text missing or illegible when filed



NTC
−1
10{circumflex over ( )}6text missing or illegible when filed
27.text missing or illegible when filed 4text missing or illegible when filed
24.82text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}text missing or illegible when filed
30.18text missing or illegible when filed
27.text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
33.19text missing or illegible when filed
30.7text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}6text missing or illegible when filed
28.17text missing or illegible when filed
−1text missing or illegible when filed
23.43text missing or illegible when filed





10{circumflex over ( )}5text missing or illegible when filed

text missing or illegible when filed 0.34text missing or illegible when filed

−1text missing or illegible when filed
2text missing or illegible when filed .75text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
35.92text missing or illegible when filed
−1text missing or illegible when filed
31.text missing or illegible when filed 5text missing or illegible when filed





NTC
−1
−1
−1





NTC
−1
−1
−1





NTC
−1
−1
−1










Set 2: NY Biologics Boca Bio MRN Dx















Capsidtext missing or illegible when filed FAM

RDRPtext missing or illegible when filed FAM
RDRPtext missing or illegible when filed CYtext missing or illegible when filed
RDRPtext missing or illegible when filed CYtext missing or illegible when filed



Sample ID
Ctext missing or illegible when filed
Sample ID
Ctext missing or illegible when filed
Ctext missing or illegible when filed
Ctext missing or illegible when filed






564470
−1
564470
34.6
−1
32.28



564471
−1
564471
−1
−1
−1



564472
−1
564472

text missing or illegible when filed 3.29

−1
−1



564473
−1
564473
−1
−1
−1



564474
−1
564474
−1
−1
−1



D000024297
−1
D000024297
−1
−1
−1



D000030text missing or illegible when filed 4
−1
D000030text missing or illegible when filed 4
−1
−1
−1



D00030560
−1
D00030560
−1
−1
−1



D000030566
−1
D000030566
−1
−1
−1



D000046713
−1
D000046713
−1
−1
−1



D000046716
−1
D000046716
−1
−1
−1



D000047120
−1
D000047120
−1
−1
−1



D000047122
−1
D000047122
35.04
−1
33.75



D000047124
−1
D000047124
−1
−1
−1



D000047127
−1
D000047127
−1
−1
−1



D000047140
−1
D000047140
−1
−1
−1



D000047153
−1
D000047153
−1
−1
−1



D000047154
−1
D000047154
−1
−1
−1



D000047157
−1
D000047157
−1
−1
−1



D000047178
−1
D000047178
−1
−1
−1



D000047179
−1
D000047179
−1
−1
−1



D000047262
−1
D000047262
−1
−1
−1



D0000472text missing or illegible when filed 7
−1
D0000472text missing or illegible when filed 7
−1
−1
−1



D000047307
−1
D000047307
34.text missing or illegible when filed
−1
−1



D000052296
−1
D000052296
−1
−1
−1



D000052297
−1
D000052297
−1
−1
−1



D000052300
−1
D000052300
42.1
−1
−1



D000052301
−1
D000052301
−1
−1
−1



D000052314
−1
D000052314
−1
−1
−1



D000052342
−1
D000052342
−1
−1
−1



D000052346
−1
D000052346
−1
−1
−1



D000052348
−1
D000052348
−1
−1
−1



D000052349
−1
D000052349
−1
−1
−1



D000052350
−1
D000052350
−1
−1
−1



D000052351
−1
D000052351
−1
−1
−1



Sptm19-001
26.text missing or illegible when filed 3
Sptm19-001
30.78
−1
24.06



Sptm19-002
−1
Sptm19-002
−1
−1
−1



Sptm19-003
−1
Sptm19-003
−1
−1
−1



Sptm19-004
−1
Sptm19-004
−1
−1
−1



Sptm19-005
−1
Sptm19-005
−1
−1
−1



Sptm19-006
22.1text missing or illegible when filed
Sptm19-006
2text missing or illegible when filed .33
−1
20.42



Sptm19-007
−1
Sptm19-007
−1
−1
−1



Sptm19-008
−1
Sptm19-008
−1
−1
−1



Sptm19-009
−1
Sptm19-009
−1
−1
−1



Sptm19-010
−1
Sptm19-010
−1
−1
−1



Sptm19-011
−1
Sptm19-011
−1
−1
−1



text missing or illegible when filed

Sptm19-012
−1
Sptm19-012
23.36
22.78
−1



Sput Ctrl
35.26
Sput Ctrl
36.34
−1
33.8



10{circumflex over ( )}6text missing or illegible when filed
19.85text missing or illegible when filed
10{circumflex over ( )}6text missing or illegible when filed

text missing or illegible when filed .09text missing or illegible when filed

−1text missing or illegible when filed
−1text missing or illegible when filed



10{circumflex over ( )}5text missing or illegible when filed
26.21text missing or illegible when filed
10{circumflex over ( )}5text missing or illegible when filed
2text missing or illegible when filed .text missing or illegible when filed 2text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



10{circumflex over ( )}4text missing or illegible when filed
26.text missing or illegible when filed
10{circumflex over ( )}4text missing or illegible when filed
28.4text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



NTC
−1
10{circumflex over ( )}6text missing or illegible when filed
28.31text missing or illegible when filed
27.45text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}5text missing or illegible when filed
32.65text missing or illegible when filed

text missing or illegible when filed 2.0text missing or illegible when filed

−1text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
35.5text missing or illegible when filed
34.98text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}6text missing or illegible when filed
27.0text missing or illegible when filed
−1text missing or illegible when filed
23.29text missing or illegible when filed





10{circumflex over ( )}5text missing or illegible when filed
29.51text missing or illegible when filed
−1text missing or illegible when filed
26.85text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
34.7text missing or illegible when filed
−1text missing or illegible when filed
31.3text missing or illegible when filed





NTC
−1
−1
−1





NTC
−1
−1
−1





NTC
−1
−1
−1










Set 3: MRN Dx















Capsidtext missing or illegible when filed FAM

RDRPtext missing or illegible when filed FAM
RDRPtext missing or illegible when filed CYtext missing or illegible when filed
RDRPtext missing or illegible when filed CY5



Well
Ctext missing or illegible when filed
Sample ID
Ctext missing or illegible when filed
Ctext missing or illegible when filed
Ctext missing or illegible when filed






Sptm19-013
−1
Sptm19-013
−1
−1
−1



Sptm19-014
−1
Sptm19-014
−1
−1
−1



Sptm19-015
24.69
Sptm19-015
23.1
24.15
25.5



Sptm19-016
−1
Sptm19-016
28.71
−1
25.56



Sptm19-017
−1
Sptm19-017
−1
−1
−1



Sptm19-018
−1
Sptm19-018
−1
−1
−1



Sptm19-019
−1
Sptm19-019
−1
−1
−1



text missing or illegible when filed

Sptm19-020
−1
Sptm19-020
35.51
−1
−1



Sptm19-021
35.59
Sptm19-021
35.51
−1
−1



Sptm19-022
−1
Sptm19-022
−1
−1
−1



text missing or illegible when filed

Sptm19-023
−1
Sptm19-023
25.12
24.text missing or illegible when filed
−1



Sptm19-024
−1
Sptm19-024
−1
−1
−1



Sptm19-025
−1
Sptm19-025
−1
−1
−1



Sptm19-026
−1
Sptm19-026
−1
−1
−1



Sptm19-027
−1
Sptm19-027
−1
−1
−1



Sptm19-028
−1
Sptm19-028
−1
−1
−1



Sptm19-029_A
−1
Sptm19-029_A
−1
−1
−1



Sptm19-029_B
−1
Sptm19-029_B
−1
−1
−1



Sptm19-030
−1
Sptm19-030
−1
−1
−1



Sptm19-031
−1
Sptm19-031
32.26
−1
30.16



Sptm19-032
−1
Sptm19-032
27.69
−1
25.94



text missing or illegible when filed

Sptm19-033
−1
Sptm19-033
25.35
26.91
34.56



text missing or illegible when filed

Sptm19-034
−1
Sptm19-034
26.41
22.3text missing or illegible when filed
35.text missing or illegible when filed



Sptm19-035
35.84
Sptm19-035
29.3
−1
2text missing or illegible when filed .text missing or illegible when filed 4



Sptm19-036
−1
Sptm19-036
34.19
−1

text missing or illegible when filed 0.89




Sptm19-037
−1
Sptm19-037
−1
−1
−1



Sptm19-038
26.57
Sptm19-038
30.67
−1
2text missing or illegible when filed .08



Sptm19-039
34.43
Sptm19-039
21.56
25.45
2text missing or illegible when filed .43



Sptm19-040
−1
Sptm19-040
−1
−1
−1



Sptm19-041
−1
Sptm19-041
−1
−1
−1



Sptm19-042
−1
Sptm19-042
−1
−1
−1



Sptm19-043
−1
Sptm19-043
−1
−1
−1



Sptm19-044
22.58
Sptm19-044
31.48
−1
26.95



Sptm19-045
−1
−1
−1
−1
−1



Sptm19-046
19.61
Sptm19-046
27.14
−1
23.29



Sptm19-047
−1
Sptm19-047
−1
−1
−1



Sptm19-048
−1
Sptm19-048
−1
−1
−1



Sptm19-049
−1
Sptm19-049
−1
−1
−1



10{circumflex over ( )}6text missing or illegible when filed
19.18text missing or illegible when filed
10{circumflex over ( )}6text missing or illegible when filed

text missing or illegible when filed 2.96text missing or illegible when filed

−1text missing or illegible when filed
−1text missing or illegible when filed



10{circumflex over ( )}5text missing or illegible when filed
25.81text missing or illegible when filed
10{circumflex over ( )}5text missing or illegible when filed
26.57text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



10{circumflex over ( )}4text missing or illegible when filed
26.52text missing or illegible when filed
10{circumflex over ( )}4text missing or illegible when filed
30.18text missing or illegible when filed
−1text missing or illegible when filed
−1text missing or illegible when filed



NTC
−1
10{circumflex over ( )}6text missing or illegible when filed
28.23text missing or illegible when filed
27.7text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}5text missing or illegible when filed
31.18text missing or illegible when filed
31.7text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
33.81text missing or illegible when filed
34.75text missing or illegible when filed
−1text missing or illegible when filed





10{circumflex over ( )}6text missing or illegible when filed
28.95text missing or illegible when filed
−1text missing or illegible when filed
24.0text missing or illegible when filed





10{circumflex over ( )}5
30.23text missing or illegible when filed
−1text missing or illegible when filed
27.67text missing or illegible when filed





10{circumflex over ( )}4text missing or illegible when filed
36.87text missing or illegible when filed
−1text missing or illegible when filed
31.98text missing or illegible when filed





NTC
−1
−1
−1





NTC
35.2text missing or illegible when filed
−1
−1





NTC
40.46
−1
−1





*ABT PBV strain capsid+ (text missing or illegible when filed VT #9)



text missing or illegible when filed  Any PBV strain RdRp+ (text missing or illegible when filed VT #4 text missing or illegible when filed 10)




text missing or illegible when filed  Non ABT PBV resptext missing or illegible when filed ory text missing or illegible when filed  RdRp+ (text missing or illegible when filed VT #text missing or illegible when filed )



† ABT PBV text missing or illegible when filed in RdRp+ (text missing or illegible when filed VT #text missing or illegible when filed )


‡ ABT PBV text missing or illegible when filed rain RdRp+ text missing or illegible when filed  capsid+ (text missing or illegible when filed VT text missing or illegible when filed )



text missing or illegible when filed indicates data missing or illegible when filed








Genome Characterization and mNGS of qPCR Positives


In total, 25 samples (19.2%) were positive for PBV. A summary of the types of hits (qPCR profile) obtained and from which cohort they originate is shown in FIG. 13. Total nucleic acid from the same extraction was converted into cDNA and Nextera libraries (n=25) for mNGS and determination of the full-length sequence of each PBV strain. The number of PBV reads identified in SURPI and DiVir correlated well with the viral loads inferred from the qPCR Ct values (see below). All raw reads were first aligned to the MRN3406 reference sequence as a first attempt to derive each new strain consensus sequence. Most of the Colombian strains (designated in yellow: Cap FAM+/RDRP FAM+/Cy3−/Cy5+) and a few of the US strains bore considerable nucleotide identity to the index which allowed for efficient mapping of reads and genome assembly. To verify the final consensus was not biased by this approach, contigs of PBV reads de novo assembled in both RAPsearch and DiVir pipelines were aligned and the sequences agreed. Similarly, samples like 19-012 (designated in orange: Cap FAM−/RDRP FAM+/Cy3+/Cy5−) were mapped to the RDRP sequence of the Cambodian reference strain, KM285233. This approach also sufficed to compile the RDRP sequences for samples 19-012, 19-023, 19-039, etc., and they were verified by comparison to pipeline-generated de novo contigs. However, capsid sequences for these strains were determined entirely by de novo assembly since there were no accompanying capsid sequences published with the KM285233 strain RDRP. Currently, 12 additional full and 5 partial genomes have been determined from 15 different individuals: 3 are co-infected with PBV similar to the ABT-PBV and Cambodian strains. The majority are from Colombia (n=13) and only 2 are from the US. As expected, samples with high Cts appear to have few PBV reads altogether and will likely not generate considerable genome coverage.






















Capsidtext missing or illegible when filed FAM
RDRPtext missing or illegible when filed FAM
RDRPtext missing or illegible when filed CY3
RDPtext missing or illegible when filed CY5
PBV Reads RDRP Segment 2


NGS ID
Sample ID
Ct
Ct
Ct
Ct
Total





1-PBV-4466
564466
−1
29.41
−1
−1
2,647


2-PBV-4468
564468
−1
33.36
−1
30.34
10


3-PBVtext missing or illegible when filed 4138
564138
−1
26.4
−1
23.text missing or illegible when filed 7
270


4-PBV-4477
564477
−1
36.26
−1
−1
0


8-PBV-4470
564470
−1
34.6
−1
32.28
3


9-PBV-6722
D000046722
−1
35.04
−1
33.75
0


10-PBV-19-001
Sptm19-001
26.53
30.78
−1
24.06
345


11-PBV-19-006
Sptm19-006
22.18
28.33
−1
20.42
2,912


12-PBV-19-012
Sptm19-012
−1
23.36
22.78
−1
224


12-PBV-19-012
Sptm19-012
−1
23.36
22.78
−1
3,712


13-PBV-SPTM-
Sputum Control
35.26
36.34
−1
33.text missing or illegible when filed
0


14-PBV-19-015
Sptm19-015
24.69
23.1
24.15
25.5
8,551


14-PBV-19-015
Sptm19-015
24.69
23.1
24.15
25.5
14,004


15-PBV-19-016
Sptm19-016
−1
28.71
−1
25.56
703,684


16-PBV-19-020
Sptm19-020
−1
35.51
−1
−1
6


17-PBV-19-021
Sptm19-021
35.59
35.25
−1
31.49
4


18-PBV-19-023
Sptm19-023
−1
25.12
24.22
−1
163


18-PBV-19-023
Sptm19-023
−1
25.12
24.22
−1
4,574


19-PBV-19-031
Sptm19-031
−1
32.26
−1
30.16
18


20-PBV-19-032
Sptm15-032
−1
27.69
−1
25.94
54


not uploaded
Sptm19-033
−1
25.35
26.91
34.56
4


not uploaded
Sptm19-033
−1
25.35
26.91
34.56
32


not uploaded
Sptm19-034
−1
26.41
27.39
35.75
1


not uploaded
Sptm19-034
−1
26.41
27.39
35.75
22


23-PBV-19-035
Sptm19-035
35.84
29.3
−1
26.64
563


24-PBV-19-03text missing or illegible when filed
Sptm19-036
−1
34.1text missing or illegible when filed
−1
30.39
0


25-PBV-19-03text missing or illegible when filed
Sptm19-03text missing or illegible when filed
26.57
30.67
−1
29.08
325


26-PBV-19-039
Sptm19-039
34.43
21.56
25.45
29.49
399


26-PBV-18-039
Sptm19-039
34.43
21.56
25.45
29.43
2,803


27-PBV-19-044
Sptm19-044
22.58
31.48
−1
26.95
6968


27-PBV-19-044
Sptm19-044
22.58
31.48
−1
26.95
340


28-PBV-19-046
Sptm19-046
19.61
27.14
−1
23.29
5919


















PBV Teads ORF1/Capsid






PBV Reads RDRP Segment 2
Segment 1
Total NGS
















NGS ID
Consens
% text missing or illegible when filed ov
Total
Consens
% text missing or illegible when filed ov
reads
Reference







1-PBV-4465
1,846
90%
3,412
2,387
100% 

text missing or illegible when filed ,048,648

ABT



2-PBV-4468
572
30%
19
759
34%
3,322,400
ABT



3-PBVtext missing or illegible when filed 4138
1,690
83%
210
2,246
94%
7,321,340
ABT



4-PBV-4477
0
 0%
0
0
0
7,597,178
ABT



8-PBV-4470
43
 2%
0
0
0
8,063,558
ABT



9-PBV-6722
0
 0%
0
0
0
7,580,048
ABT



10-PBV-19-001
1,689

text missing or illegible when filed 3%

265
2,1text missing or illegible when filed 7
92%
3,749,428
ABT



11-PBV-19-006
1,925
94%
2,271
2,345
98%
3,541,114
ABT



12-PBV-19-012
261
14%
0
0
0
9,517,31text missing or illegible when filed
ABT



12-PBV-19-012
1,671
100% 
3,044
2,187
83%
9,517,318
KM285233



13-PBV-SPTM-
0
 0%
0
0
0
2,242,462
ABT



14-PBV-19-015
1,990
98%
28,613
2,345
99%
4,685,264
ABT



14-PBV-19-015
1,671

15,296
2,633
100% 
4,685,264
KM285233



15-PBV-19-016
1,9text missing or illegible when filed 6
97%
1,019
2,223
95%
14,733,470
ABT



16-PBV-19-020

text missing or illegible when filed 28


text missing or illegible when filed 3%

17
7text missing or illegible when filed 8
34%
3,791,602
ABT



17-PBV-19-021
401
21%
5
381
17%
1,759,914
ABT



18-PBV-19-023
318
17%
0
0
0
8,746,text missing or illegible when filed 44
ABT



18-PBV-19-023
1,662
99%
3,73text missing or illegible when filed
2,627
100% 
8,746,944
KM2text missing or illegible when filed 5233



19-PBV-19-031
751
40%
0
0
0
6,175,024
ABT



20-PBV-19-032
1,text missing or illegible when filed 21
86%
5
164
 7%
5,text missing or illegible when filed 53,text missing or illegible when filed 46
ABT



not uploaded
160
 8%
0
0
0
374,952
ABT



not uploaded
1,212
64%
16
867
33%
374,952



not uploaded
142
 8%
0
0
0
207,372
ABT



not uploaded
957
51%
6
448
17%
207,372



23-PBV-19-035
1,847
91%
407,736
2,text missing or illegible when filed 3
99%

text missing or illegible when filed ,335,93text missing or illegible when filed

ABT



24-PBV-19-03text missing or illegible when filed
0
 0%
0
0
0
5,209,118
ABT



25-PBV-19-03text missing or illegible when filed
1,text missing or illegible when filed 1
90%
398
2,226
9text missing or illegible when filed %
1,585,992
ABT



26-PBV-19-039
1,406
74%
1
199
 9%
4,737,986
ABT



26-PBV-18-039
1,656
100% 
1355
2,565
97%
4,737,986
KM285233



27-PBV-19-044
2,022
99%
6514
2,240
94%

text missing or illegible when filed ,text missing or illegible when filed 91,792

ABT



27-PBV-19-044
1,202
73%
1307
1,0text missing or illegible when filed 9
38%

text missing or illegible when filed ,text missing or illegible when filed 91,792

KM285233



28-PBV-19-046
2,0text missing or illegible when filed 1
98%
6227
2,240
94%
11,745,9text missing or illegible when filed 6
ABT








text missing or illegible when filed indicates data missing or illegible when filed







Strain Identity

New genomes were aligned with MRN3406 and identity matrices were determined for nucleotide and amino acid sequences in open reading frames of segment 1(ORF1+capsid) and segment 2 (RDRP).


The nucleotide sequences of the new genomes are shown below.










>2_PBV-MRN3406 Capsid



(SEQ ID NO: 64)



AATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTCTACACTCTA






AGAACACCAGCTACCGCACATAGTTTAGTGCAAATAGCTAGGATCAGAGATAGTAA





AGTGGGATTATCTGAAAGGAGGTTAAATTAATGACAGGTAATCAAATTAAATATGG





TGAATTACAAGAAAATATTCGCCATAACACTACAACAGAAGTTGAAACCAATAGAC





ACAACGTCGTGACTGAAGGTGAAACCAACAGACATAACGTTGTTACAGAGGTTGAA





ACTAATCGACACAATACTGTGACTGAAAGTATTGGATGGTACGATGCTGTATCAAAA





CGAATCTCAGCAAATGCTTCAATGAGTCAAGCGGGTGCAGCTTGGGCTAATGTTGCA





ATTAATCAACAAAATGCAGATACAAAGCGATTTGAAGCTGAACGCAATGCTGAAAT





AAATCAGCAAAATGCGGACACTAGAACATTTAGTGCACGTAGTGAGGATGCAGCTA





GATATGCTCATTCTTACAATGAAGATCGTAAAACTACAGCTGAAATTGAGCGAATGA





ACACACAAAATTCGCAAGGATGGGTGAAATCAATCACTGATGCAATCAGCTCACCT





ATCAAAGCATTACCATTATTAGGAGGATAAATTTTATGGTAAAGAATAACAACAAA





AAGCGTTTTCAGGATAAAAGTGATAAGTATTCTAGAAAACCTAAGTTCAAGGTTGA





AAAGAAAGATATCTTGGACGATGACAAATTGGAAGGATCTAAGTTTGGCAAAGTTA





ATGACATATCCTGGTATCAGAAGAATGCTGATTTACTCAGAGCTGCTGGTAACTTGT





CTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAACTTTAACGTTAA





GCTTGCTGCTGATGAGCAACGTGTTCCTGGTATTGCAACTATACATACTATTACAGG





ACCTGGACTCAGTCGCGACGCACACTCTGGTGTCAACGTGGCAATGCGTAACTTATA





TTCTTTTGTTCGTCATGCAAATAGTGGTCATAGTAACTATGATCCTGTAGATCTAATG





TTATATCTACCTGCTATGGATGCAGCATACATGCTCTACTACCGTGCTGTTCGTGCAT





ATGGCGCAATGTTCACATTTAATACTGTGAATCGCTATGCTCCAAAAGCTCTTGTGG





AAGCGTTAGGTTTTGATTATGAAGATGTCAACTCAAACCTTGCTACATTCAGATATG





CAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTACGAATATGCCTA





TCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATACAGATGAAAACGTATCTA





AAGCTCAGATTTATGCATTTACTTCTGATCATTATAGAGTATTTGATGAGAAGTATTC





TAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAAACAAAGTTAACTGTTAAAGATT





GGATTACAGTAGCAAATGAGGTTGCTGATCCAATTACAGTTTCAGAAGATTTAGGTA





TTATCTCAGGTGACTTAATTAAAGCATTTGGTAAGGAAAACTTACACATGTTAGCTA





CCTTGGCTGATAACTACGTTGTATTACCAACATATGTACCTGAAGTTATGGATCAAA





TTCATAACTTGCAAGCAGTAGGTCAGATTGATCTAGAAAGTAACAATATTGAACAA





GATCCAAACATTGGTAAGGGTAACTTGATTTACAACCCAGTTGTAACTGTCAATAAT





AATCCAATGGCTTACGCAAATCGTATTATGGATTTCAAAATTGATACACCTACTCCA





GATGATGTCGTTGTAGCTTCACGATTAGCTGTGGCATTAGAACCAGGCGCTACAACC





GGTAAGGCAGTATTCACTGCTATGGGTACAGAATTTGTGACTAAAGTTGGTATTCAC





ACATTCTACAAGGGAAATAATGGATTACTTAAGTCTATTGAACAGACTTTCAATACT





TTTGATTCTACTGAAGGTGGTCTCACTGACGCCGCATCAGTTAGTTTGCACATGTCTG





CCTACACAAAGGCCTCTAAGTTTGTACACTTTCCAATTCAATATATGTGTATGGGTA





GCCCTACTCAACCTGACAAACGTGAAGTCAGAATCTTTGGCGAATTGGGCACGTACA





CTATTATTAATGGGGTCACTCTTAATAAGTTACACGACGTGTGTGTATTAAGTTTATT





TGATGTACCTATTAAGCTTTAGATGCATTAGGG.





>1-PBV-4466 Capsid


(SEQ ID NO: 29)



TCTTTAAATAAGTCATTACTAGAAAGGAGAAATTTGTACTTTAATGGTTTACAAGAG






TTTAAAACCATACTTCACTTTCTGCACTCTAAGAACACCAGCTACCGCACATAGTTT





AGTGCAAATAGCTAGGATCAGAGACAGATTTGTGAAATTACCTGAAAGGAGGATAA





AATATGACAGGTAATCAAATTAAATATGGCGAATTACAAGAAAACATTCGTCATAA





TCAAACTACCGAAGTCGAAACCAATCGACATAACGTTGTGACTGAGGGTGAAACAA





ACCGACATAACGTTGTCACTGAGAATGAGACGAATCGGCACAATGTAGTGACAGAG





AGTATTGGATGGTATGATGCAGTATCAAAGAGAATATCTGCTAATGCCTCAATGAGT





CAAGCTGGTGCAGCTTGGGCTAATGTCGCTATAAATCAGCAGAATGCGGATACTCGT





AGATATGAAGCTGAAAGAAATGCTGAGATTAATCAGCAAAATGCCGACACTAAGAG





ATTTAGTGCTGAAAGTGAGGATGCTGCTCGCTATGCGCATTCTTACAATGAAGATCG





TAAAACTACTGCTGAAATTGAGAGAATGCAGAATCAAAATTCTCAGGGATGGGTGA





AAGCTATTACTGATAGTATTAGCGCACCAATTAAAGCTTTACCATTATTAGGAGGAT





AAGATAAAATGGCAAAATTTAAAGATAAAGAAAGTTTCCAGAAAAGAAACAAAAC





AAAGAAATGGGATAAAAAGGATCCTAAGAAGAATCCTAAACATGATGAACCAACTG





AAAAGTTGGACGACGACAAATTGGAAGGATCTAAGTTTGGCAAAGTTAATGACATA





TCCTGGTATCAGAAGAACCCTGATTTACTCAGAGCTGCTGGTAACTTGTCTTTTGCTA





ATGCGTTGGGATCTGGAATTAACCTATCTAACGCTAACTGTAAACTTAGTCTTGCTG





CTGATGAGCAACGTATTCCTGGCATTGCAACTATACATACTATTACAGGACCTGGAC





TTAGCCGATCAGCTAATTCTGGAGTCAATATTGCTATGCGTAATTTATATTCATTTGT





TCGTCATGCTAATAGCGGTCATAGTAACTATGATCCCGTAGATTTAATGTTATATCTC





TTAGCTATGGATGAGGCTTATATGGCCTATTTCCGTGCCGTACGTGCTTATGGCGCTA





TGTTTACTTTTAATACATTAAATCGATACGCACCTAAGGCTCTTGTTGAAGCATTAGG





ATTCGATTATGAAGATATCAACAAGAATCTTGCTACATTCAGATATGCAATTAACGC





ATATGCTGCAAGAATCAATGCTTACGCTGTCCCTACGAATATGCCTTTGTTTAAGAG





ACATGCGTGGCTATTCTCATCTATTTATACAGATGAAAATGTATCTAAAGCTCAGAT





TTATGCATTTACTACTGATCATTATAGAACATATGATGAAAAGTATTCTAAAGGTGG





ACGACTTGTGGCTAAAGCCTGGAAGCCTAAACTAAAGGTAGAGGATTGGATTTCAG





TTGCTAATGAAATTGCGGACCCAATTACTACTTCTGAAGATCTGGGTATTATATCGG





GCGACTTAATTAAAGCGTTCGGTAAAGAAAATTTACACACACTTGCAACATTAGCTG





ATAACTATGTTGTGTTACCAACTTACGTACCTGAAGTTATGGACCAAATTCACAATT





TACAGGCAGTTGGCGATGTTGAATTAGCGAGCAACAACATCGAACAGGACCCTCAA





ATTGGAAAGGGCAACCTAATCTATGATCCAATTCTTAAATCGGGTAAGAATCCGGTA





TTATATGGGGATCGTATTATGGATTTCAAGATTGACACACCAACACCAGAAGATGTA





ATTGTTGCATCACGATTGGCTGTATCACTAGAACCATCACCGGATGGTAATAAGGCT





CATTTTGTAGCCATGGGTACAGAGTTTGTGACACATGTTGGAATTCATACACTTTATC





AGACAACCTCTGGTAATGTTAAATGTCTTGAACAGACTTTTGATACTATTGCAGCTG





TTGAGGGTGGTCTTGCTGATGCCGCATCAGTTAGTTTGTTCCTATCTGGATACACAA





AGGCCTCTAAGTTTGTACATTTTCCTATTCAATATGCTTGTCTGGGTAACGCTAGTGA





CCCTAATGGACAATCAATCAGAATCTTTGGTGAATTGGGGACGTACAGTACTATTAA





CAGCACTACTCTTAATAAATTACACGATGTGTGTGTATTAAGTTTGTTAGATGTACCT





ATCAAATTATAGATACATGGGGGAAGTGAGGAG





>3-PBV-4138 Capsid


(SEQ ID NO: 30)



GGAGAAATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAATGCTTTTCTC






ACTCTAAGAACACCAGCTAACGCACATAGTCTAGTGCAAATAGCTAGGATCAGAGA





TGGAAGAGCAAGATTATCTGAAAGGAGGTTAAATATGAAATGACAGGTAATCAAAT





TAAGTATGGCGAATTACAAGAGAACATACGCCATAACACTACTACCGAAGTTGAGA





CCAACCGTCATAACGTTGTTACAGAAGGCGAAACAAATCGTCACAATGTTGTGACTG





AGGCTGAAACTAATCGGCACAATACTGTAACTGAAAGTATTGGATGGTACGATGCA





GTATCAAAGAGAATCTCAGCTAACGCGTCCATGAGCCAAGCAGGTGCAGCTTGGGC





TAATGTTGCTATCAATCAACAGAACGCAGACACACGTAAATATGAAGTTGAGAAGA





ACGTTGAAATCAATCAACAAAATGCAGATACTAAAGCATTTAGTGCCAGAAGTGAA





GATGCTGCTAGATATGCTCATTCATATAATGAAGATCGCAAAACTACAGCTGAAATT





GAGCGAATGAAGACTCAAAATTCACAAGGATGGGTGAAATCAATTACTGATGCTAT





CAGTGCGCCTATCAAAGCATTACCATTATTAGGAGGATAAATTATATGGTAAAGAA





AAATGATAACAACAAACGTTTTCAGAATAAAAGTGAGAAATATTCTAGAAAACCTA





AATTCAAGATTGAAAAGAAAGATATCTTGGATGATGACAAGCTTGAAGGATCTAAG





TTTGGAAAAGTTAATGACATCAGCTGGTATCAGAAGAATCCTGATTTACTCAGAGCT





GCTGGTAACTTGTCTTTTGCTAACGCTTTGGGATCTGGAATTAACTTATCTNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNGAACAACGTATTCCTGGTATTGCAACTA





TACATACTATCACAGGACCTGGGCTTAGCAGAGACGCGCACTCTGGTGTTAACGTCG





CAATGCGTAACCTTTATTCTTATGTTCGTCATGCAAATAGCGGTCATAGTAATTATGA





CCCTGTAGATTTGATGCTTTATCTATTGGCAATGGATGAGGCTTATATGGTCTACTAT





CGCGCTGTCCGTGCATATGGAGCAATGTTTACATTTAATACAGTAAATAGATATGCG





CCTAAAGCTCTTGTTGAAGCATTAGGTTTTGATTATGAAGATGTCAACGCAAACCTT





GCTACATTCAGATATGCAATTAACGCATATGCTGCAAGAATCAACGCATACGCTGTT





CCTACGAATATGCCTATCTTCAAACGACACGCATGGCTCTTTTCATCTATCTATACAG





ATGAAAACGTATCTAAGGCTCAGATTTATGCATTTACTTCTGATCATTATAGAATAT





ATGATGAGAAGTATTCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAATCAAAG





TTAACTGTACAAGACTGGATCAATGTAGCAAATCAAGTGGCAGATCCAATTACTGTC





TCAGAGGATTTGGGTATTATATCTGGTGATATAATTAAAGCATTTGGTAAAGAAAAT





CTACATATGCTGGCTACTTTAGCTGATAACTACATAGTTTTACCAACTTATGTTCCTG





AAGTCATGGATCAAATTCATAACTTACAGGCTGTTGGTAACATTACTCTTGAGAGTA





ATAATATTGAACAAGATCCAGCAATTGGTAAAGGTAACTTAATCTATAATCCAATTG





TAACNNNNNNNNNNNNNNNNNNAGCATATGCTGATCGTATTATGGATTTCAAAATT





GACACTCCGACCCCAGACGATGTAGTCATAGCTTCACGTTTAGCTGTGGCACTTGAA





CCTGGATCAACAACCGATAAAGCAGTATTTACTGCAATGGGTACAGAGTTTGTAACA





AAAGTTGGAATTCACACATTATACCGCACATCTGCGGGATCTATTAAGTGTCTTGAA





CAGGACTTCAATACTTTTGAGTCTACTGAAGGTGGTCTTGTTGACGCCTCATCAGTTA





GTTTGCACTTATCTGCATACACGAAGGCCTCTAAATTTGTACACTTTCCAATTCAATA





TATGTGTTTGGGTAGCCCTACTACTCCTGACAAACGTGAAGTCAGAATTTTTGGTGA





GTTGGGCACGTACACTGTTATTAATGGGGTCACTCTTAGTAAGCTTCACGATGTGTG





TGTACTGAGTCTATTTGATGTACCTATCAAATTATAGATACATGGAAAGTGAGGAG





>10-PBV-19-001 Capsid


(SEQ ID NO: 31)



ACACTTTCTACACTCTAAGAACACCAGCTACCGCACATAGTTTAGTGCAAATAGCTA






GGATCAGAGATAGTAAAGTGGGATTATCTGAAAGGAGGTTAAATTTAAATGACAGG





TAATCAGATTAAGTATGGCGAATTACAAGAAAATATTCGTCATAATACAACAACAG





AAGTTGAGACTAACAGACACAACGTTGTTACGGAAGGTGAAACAAATCGTCATAAT





GTTGTAACTGAAGTCGAGACTAATCGACACAATACTGTTACTGAAAGTATTGGATGG





TACGATGCTGTATCAAAACGTATCTCAGCGAATGCTTCAATGAGTCAAGCAGGTGCA





GCTTGGGCTAACGTGGCTATTAATCAGCAAAACGCTGACACTAAGCGCTTTGAAGCC





GAACGCAATGCTGAAATTAATCAGCAGAATGCAGACACTAAAACATTTAGTGCACG





CAGTGAGGATGCCGCTAGATATGCACATTCTTACAATGAAGATCGTAAAACTACAG





CAGAAATTGAGCGAATGAACACACAAAATTCGCAAGGATGGGTGAAATCAATAACT





GATTCAATCAGTGCACCTATCAGAGCATTACCATTATTAGGAGGATAAATTATATGG





TAAAGAATACTAATAAGAAGCGTTTTCAGGATAAAAGTGAGAAATATTCTAGAAAA





CCTAAGTTCAAGGTTGAAAAGAAAGATATCTTGGACGATGACAAACTTGAAGGATC





TAAGTTTGGAAAAGTTAATGACATTTCCTGGTACCAGAAGAACCCTGATTTGCTCAG





AGCTGCTGGTAACTTGTCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAAC





GCAAACTTTAACGTTAAGCTTGCTGCTGATGAGCAACGTGTTCCTGGTATTGCAACT





ATACATACTATTACAGGACCTGGACTCAGTCGCGACGCACACTCTGGTGTTAACGTG





GCAATGCGTAACTTATATTCTTTTGTTCGTCATGCAAATAGTGGTCATAGTAACTATG





ATCCTGTAGACCTGATGCTATATCTACTAGCCATGGATGAAGCGTATATGGTCTACT





ACCGTGCTGTTCGTGCATATGGCGCAATGTTCACTTTCAACACAGTGAATCGCTATG





CTCCGAAAGCTCTTGTGGAAGCGTTAGGTTTTGATTATGAAGATGTCAACTCAAACC





TTGCTACATTCAGATATGCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTG





TGCCTACGAATATGCCTATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATAC





AGATGAAAACGTATCTAAAGCTCAGATTTATGCATTTACTTCTGATCATTATAGAGT





ATTTGATGAGAAGTATTCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAATCAA





AATTAACTGTTAAGGATTGGATTACGGTAGCGAATGAAGTTGCAGATCCTATTACAG





TGTCTGAGGATTTAGGTATTATATCAGGTGACTTAATTAAAGCATTTGGTAAGGAAA





ACTTACACATGCTGGCTACTTTAGCCGATAATTATGTCGTATTACCAACATATGTACC





TGAGGTTATGGACCAGATTCATAACTTACAAGCTGTTGGAACAATTGACTTAGAAAG





TAATAATATTGAACAGGATCCAAACATTGGTAAGGGTAATTTAATTTACAATCCTAT





TGTTACTGTCAATAATAATCCAATAGCTTACGCAAATCGTATTATGGATTTCAAGAT





CGAGACACCTACTCCTGAAGATGTAGTTGTTGCATCGAGATTAGCCGTAGCATTAGA





ACCAGGCGCGACAACCGGTAAAGCGGTATTCACTGCTATGGGTACAGAATTTGTGA





CAAAAGTTGGTATTCATACGTTCTATAAAGGAAACAATGGACTACTTACGTCTATTG





AACAGACTTTCAATACTTTTGATTCTACTGAAGGTGGTCTTGCTGACGCCTCATCAGT





TAGTTTGCACATGTCTGCCTACACAAAGGCCTCTAAGTTCTTACACTTTCCTATTCAA





TATATGTGTATGGGTAGCCCTACTCAACCTGACAAACGTGCAGTCAGAATCTTTGGC





GAATTGGGCACTTACACTATTGTTAATGGGGTCACTCTTAGTAAGCTTCACGATGTG





TGTGTATTAAGTCTATTTGATGTACCTATTAAACTTTAGATGCATTAGGGGAAACA





>11-PBV-19-006 Capsid


(SEQ ID NO: 32)



AGTGGAGAAATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTC






TACACTCTAAGAACACCAGCTACAGCACATAGTTTAGTGCAAATAGCTAGGATCAG





AGATAGTAAAGTGGGATTATCTGAAAGGAGGTTAAATTAAATGACAGGTAATCAGA





TTAAATATGGCGAGTTACAAGAAAATATTCGTCATAACACAACAACAGAAGTCGAA





ACTAACAGACACAATGTTGTTACGGAAGGTGAAACTAACCGACACAATGTTGCTAC





TGAAGTTGAGACAAATCGACACAATACTGTGACTGAAAGTATTGGATGGTACGATG





CTGTATCAAAACGAATCTCAGCAAATGCTTCAATGAGTCAAGCAGGTGCAGCTTGG





GCAAATGTTGCTATTAATCAGCAAAATGCTGATACAAAACGATTTGAAGCTGAGCGT





AATGCTGAAATTAATCAGCAAAACGCTGACACCAAAAGATTTAGTGCACGTAGTGA





GGATGCCGCTAGATATGCGCACTCCTACAACGAAGATCGTAAAACTACAGCAGAAA





TTGAGCGAATGCACACACAGAATTCGCAAGGATGGGTGAAATCAATTACTGATGCA





ATCAGTGCACCTATCAAAGCATTACCATTATTAGGAGGATAAATTATATGGTAAAGA





ATAACAACAAAAAGCGTTTTCAGAATAAAAGTGAGAAATATTCTCGAAAACCTAAG





TTCAAGGTTGAAAAGAAAGATATCTTGGACGATGACAAACTTGAAGGATCTAAATT





TGGCAAAGTTAATGACATATCGTGGTATCAGAAGAATCCTGATTTACTCAGAGCTGC





TGGTAACTTGTCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAAC





TTTAACGTTAAGCTTGCTGCTGATGAGCAACGTATTCCTGGTATTGCAACTATACAT





ACTATTACAGGACCTGGACTCAGTAGAGACGCTCACTCTGGTGTCAACGTGGCAATG





CGTAACTTATATTCTTTTGTTCGTCATGCAAATAGCGGTCATAGTAATTATGATCCTG





TAGATTTAATGCTTTATCTATTAGCTATGGATGAAGCGTACATGGTCTACTACCGTGC





TGTTCGTGCATATGGCGCAATGTTCACATTTAATACGGTGAACCGCTATGCTCCAAA





GGCTCTTGTTGAAGCGTTAGGTTTCGATTATGAAGATGTCAACTCAAACCTTGCTAC





ATTCAGATATGCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTAC





GAATATGCCTATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATACAGATGA





AAACGTATCTAAAGCTCAGATTTATGCATTTACTTCTGATCATTATCGAGTATATGAT





GAGAAGTATTCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAAGCAAAATTAAC





AGTACAAGATTGGATAACTGTAGCTAATGAAGTTGCAGATCCTATTACAGTTTCTGA





GGATTTAGGCATCATATCTGGTGACTTAATTAAAGCGTTTGGTAAGGAAAACTTGCA





TATGTTAGCTAATTTAGCTGATAACTACGTTGTATTACCAACTTATGTACCTGAAGTT





ATGGATCAAATTCATAACTTACAATCAGTAGGAACAATCGATCTAGAGAGTAACAA





TATTGAACAAGATCCAAGTATTGGTAAGGGTAATTTAATTTATAACCCAATTGTTAC





TGTAGATAATAATCCAATGGCATTCGCTAATCGTATTATGGATTTTAAGATCGATAC





ACCTACTCCTGATGATGTAGTTGTAGCATCACGATTGGCTGTAGCATTAGAACCAGG





CGCCACGACCGGTAAAGCAGTGTTCACTGCTATGGGTACAGAATTTGTGACCAAAAT





TGGTATTCACACATTCTGCAAAGGAAGTAATGGATTACTTAAGTCTATTGAACAGAC





TTTCAATACTTTTGATTCTGTTGAAGGTGGTCTTGCTGACGCCTCATCAGTTAGTTTG





CACATGTCTGCCTACACAAAGGCCTCTAAGTTTGTACACTTTCCTATTCAATATCTGT





GTATGGGTAGCTCTGCTCAACCTGACAAGCGTGAAGTCAGAGTCTTTGGCGAATTGG





GCACTTACACTATTGTTAGTGGGGTCACTCTTAGTAAGTTACACGATGTGTGTGTATT





AAGTCTATTTGATGTGCCTATTAAACTTTAGATGCATTAGGGGAAGTG





>14_PBV-19-015 Capsid


(SEQ ID NO: 33)



AGAAATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTCTACAC






TCTAAGAACACCAGCTACCGCACATAGTTTAGTGCAAATAGCTAGGATCAGAGATA





GTAAAGTGGGATTATCTGAAAGGAGGTTAAATTGAATAAATGACAGGTAATCAGAT





TAAGTATGGCGAATTACAAGAGAGTATTCGTCATAATTCAACGACAGAAGTCGAAA





CCAATAGACACAACGTTGTTACTGAGAATGAAACGAATCGTCACAATGTTGTAACTG





AGGTGGAGACTAATCGACACAATACTGTTACTGAAAGTATTGGATGGTACGATGCT





GTATCAAAACGTATCTCAGCTAATGCTTCAATGAGTCAAGCAGGTGCAGCTTGGGCG





AATGTCGCTATCAATCAGCAAAATGCTGATACCAAACAATTTGAAGCTGAGCGCAA





TGCTGAAATTAATCAGCAAAATGCAGACACTAAAGCGTTTAGTGCACGTAGTGAAG





ATGCTGCGAGATATGCGCATTCCTACAATGAAGATCGTAAAACTACAGCAGAAATC





GAGCGAATGAACGCACAAAATTCGCAAGGATGGGTGAAATCAATTACTGATGCAAT





CAGCGCACCTATCAGAGCATTACCATTATTAGGAGGATAAATTATATGGTAAAGAAT





AACAACAAAAAGCGTTTTCAGGATAAAAGTGATAAGTATTCTAGAAAACCTAAGTT





CAAGGTTGAAAAGAAAGATATCTTGGACGATGACAAATTTGAAGGATCTAAGTTTG





GAAAAGTTAATGACATTAGTTGGTACCAGAAGAATCCTGATTTACTCAGAGCTGCTG





GTAACTTGTCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAACTT





TAACGTTAAGCTTGCTGCTGATGAGCAACGTGTTCCTGGTATTGCAACTATACATAC





TATTACAGGACCTGGACTCAGTCGCGACGCACACTCTGGTGTCAACGTGGCAATGCG





TAACTTATATTCTTTTGTTCGTCATGCAAATAGCGGTCATAGTAACTATGATCCTGTA





GACTTAATGCTATATCTATTAGCCATGGATGAAGCGTACATGGTCTACTACCGTGCT





GTTCGTGCATATGGCGCAATGTTCACATTTAATACAGTGAATCGCTATGCTCCAAAA





GCTCTTGTTGAAGCGTTAGGTTTTGATTATGAAGATGTCAACTCAAACCTTGCTACAT





TCAGATATGCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTACGA





ATATGCCTATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATACAGATGAAA





ACGTATCTAAAGCTCAGATTTATGCATTTACTTCTGATCATTATAGAGTATTTGATGA





GAAGTATTCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAGTCAAAATTGACTGT





TAAGGATTGGATTACTGTAGCTAATGAAGTTGCAGATCCTATTACAGTGTCTGAGGA





CCTAGGTATTATATCAGGTGACTTAATTAAAGCATTCGGTAAGGAAAACTTACATAT





GTTAGCTACATTAGCTGACAATTATGTTGTGTTACCAACTTATGTACCTGAGGTTATG





GATCAAATCCATAATTTACAAGCAGTTGGAACAATCGATTTGGAAAGTAACAACATT





GAACAGGATCCGACTATCGGTAAGGGTAATTTAATTTATAACCCAATTGCAACTGTC





AATAATAATCCATTGGCGTACGCAAATCGTATCATGGATTTCAAGATCGATACACCT





ACTCCAGATGATGTGGTTGTGGCATCACGATTAGCTGTGGCATTAGAACCAGGCGCT





ACGACCGGTAAAGCAGTATTTACTGCTATGGGTACAGAATTTGTGACAAAGATTGGT





ATTCACACATTCTACAAAGGAAGTAATGGACTTATTAAGTCTATTGAACAGACTTTC





AATACTTTTGATTCTACTGAAGGTGGTCTCACTGACGCCACATCAGTTAGTTTGCAC





ATGTCTGCCTACACAAAGGCCTCTAAGTTTGTACACTTTCCTCTTCAATATATGTGTC





TGGGTAGCCCTACTCAACCTGACAAACGTGAAGTCAGAATCTTTGGTGAATTGGGCA





CTTACACTATTATTAATGGGGTCACTCTTAGTAAGTTACACGACGTGTGTGTATTAA





GCTTATTTGATGTACCTATTAAACTTTAGATGCATTAGGGGAAGTG





>15-PBV-19-016_Capsid


(SEQ ID NO: 34)



TTCAGTCGTCGGCAGCGTCAGATGTGTATAATTTGTACTTTAATGGTTTACAAGAGTT






TAAAACCATACAATGCTTTTCTCACTCTAAGAACACCAGCTACCGCACATAGTTTAG





TGCAAATAGCTAGGATCAGAGACAGAGAAGCAAGATTATCTGAAAGGAGGTTAAAT





ATGAAATGACAGGTAATCAAATTAAGTATGGCGAATTACAAGAGAACATACGCCAT





AACACTACTACTGAGGTTGAAACCAATCGTCACAATGTTGTTACTGAAGGTGAAACT





AATCGCCATAACGTTGTAACTGAGGTTGAGACTAATCGACACAATACTGTAACTGAG





AGTATTGGATGGTACGATGCCGTATCGAAAAGAATTTCTGCGAATGCATCAATGAGT





CAAGCAGGTGCAGCTTGGGCTAATGTTGCAATTAATCAGCAAAATGCGGATACACG





CAGATATGAAGCTGAGAGCAATGTTGCAATTAATCAACAGAACGCAGATACAAAGG





CATTTAGTGCCAGAAGTGAAGATGCTGCTAGATATGCTCATTCATATAACGAAGATC





GCAAAACTACAGCTGAAATTGAGCGAATGAACACTCAAAATTCACAGGGATGGGTG





AAATCAATTACTGATGCAATCAGTGCACCTATCAAAGCATTACCATTATTAGGAGGA





TAAATTATATGGTAAAGAAGAATGACAACAACAAACGTTTTCAGAATAAAAGTGAG





AAATATTCTAGAAAACCTAGATTCAAGATTGAGAAGAAAGATATCTTGGATGATGA





CAAGCTTGAGGGATCTAAGTTTGGAAAAGTTAATGACATCAGCTGGTATCAGAAGA





ACCCTGATTTACTCAGAGCTGCTGGTAACTTGTCTTTTGCTAACGCTTTGGGATCTGG





AATTAACTTATCTAACTCAAACTTTAATATTAAGCTTGCTGCTGATGAACAACGTGTT





CCTGGTATTGCAACTATACATACTATTACAGGACCTGGGCTTAGCAGAGACGCACAC





TCTGGTGTTAACGTCGCAATGCGTAACCTTTATTCTTATGTTCGTCATGCAAATAGTG





GTCATAGTAATTATGATCCTGTAGATCTAATGCTTTATCTCTTAGCCATGGATGAAGC





TTATATGGTCTACTATCGTGCCGTTCGTGCATATGGAGCAATGTTTACATTTAACACA





GTGAATAGATATGCGCCTAAAGCTCTTGTTGAAGCATTAGGTTTTGATTATGAAGAT





GTCAACGCAAACCTTGCTACATTCAGATATGCAATTAACGCATACGCTGCAAGAATC





AACGCATACGCTGTTCCTACGAATATGCCTATCTTCAAACGACACGCATGGCTCTTT





TCATCTATCTATACAGATGAAAACGTATCTAAGGCTCAGATTTATGCATTTACTTCTG





ATCATTATAGAACATATGATGAGAAGTATACTAAAGGTGGACGCCTTGTGGCTAAA





GCCTGGAAACCAAAGTTAACTGTACGAGATTGGATCGCAGTATCAAATGAAGTTGC





GGATCCAATTACTGTTTCTGAAGATTTGGGTATTATATCTGGTGATATAATTAAGGCT





TTTGGTAAAGAAAATCTGCATATGTTAGCTACACTGGCTGACAATTATGTTGTATTA





CCAAGCTATGTGCCTGAAGTTATGGATCAAATTCATAACCTACAAGCAGTAGGTGAT





GTAGCTCTTGAGAGCAATAACATCGAACAAGATCCAACAATTGGTAAGGGCAATTT





AATCTATAACCCAATTGTAACAGTTAACAATAATCCTTTAGCGTACGCTGATCGCAT





TATGGATTTCAAAATTGACACTCCAACTCCGGATGATGTAGTCGTAGCTTCTCGTTTA





GCTGTGGCTCTTGAACCCGGGTCAACAACCGGTAAAGCAGTATTCACTGCTATGGGT





ACAGAATTTGTAACAAAAGTTGGAATTCACACATTATACCGCACAACTGAGGGATCT





ATTAAGTGTATTGAACAGATTTTCAATACTTTTGAGTCTACTGAAGGCGGTCTTGCTG





ACGCCGCATCAGTTAGTCTGCACCTATCTACATACACGAAGGCCTCTAAGTTTGTAC





ACTTTCCAATTCAATATATGTGTCTGGGTAGCCCTACTACTCCTGACAAACGTGAAG





TCAGAATCTTTGGTGAATTGGGCACGTACACTGTTATTAATGGGGTCACTCTTAATA





AGTTACACGATGTGTGTGTATTGAGTCTATTTGATGTACCTATTAAACTTTAGATGCA





TTAGGGGAAGTG





>23-PBV-19-035_Capsid


(SEQ ID NO: 35)



TTAGGAGAAAATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTT






CTACACTCTAAGAACACCAGCTACAGCACATAGTTTAGTGCAAATAGCTAGGATCA





GAGATAGTAAAGTGGGATTATCTGAAAGGAGGTTAAATTAAATGACAGGTAATCAA





ATTAAGTATGGCGAATTACAAGAAAATATTCGTCATAACACTACAACAGAAGTTGA





AACTAATAGGCACAACGTTGTTACAGAAGGCGAGATTAACCGACACAACATTGTGA





CTGAAGTGGAAACGAATCGACACAATACTGTTACTGAAAGTATTGGATGGTACGAT





GCTGTATCAAAGCGAATCTCAGCAAACGCTTCAATGAGCCAGGCAGGTGCAGCTTG





GGCTAATGTTGCTATTAATCAGCAGAATGCTGATACTAAGCGATTTGAAGCAGAACG





CAATGCTGAAATTAATCAGCAAAATGCAGACACTAAAACATTTAGTGCACGTAGTG





AGGACGCCGCTAGATATGCGCACTCCTACAATGAGGATCGGAAAACTACAGCAGAA





ATTGAGCGAATGAACACACAGAATTCGCAAGGATGGGTGAAATCTATCACTGATGC





AATCGGTGCACCTATCAAAGCATTACCATTATTAGGAGGATAAATTATATGGTAAAG





AATAATAACAAGAAGCGTTTTCAGGATAAAAGTGAGAAATATTCTAGAAAACCTAA





GTTCAAGGTTGAAAAGAAAGATATCTTGGACGATGACAAATTGGAAGGATCTAAGT





TTGGCAAAGTTAATGACATATCATGGTACCAGAAGAATCCTGATTTACTCAGAGCTG





CTGGTAACTTGTCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAA





CTTTAACATTAAGCTTGCTGCTGATGAGCAACGTATTCCTGGTATTGCAACTATACAT





ACTATTACAGGACCTGGACTCAGTAGAGACGCACACTCTGGTGTCAATGTGGCAATG





CGTAACTTATATTCTTTTGTTCGTCATGCAAATAGTGGTCATAGTAACTATGATCCTG





TAGACTTAATGCTTTATCTATTAGCTATGGATGAAGCGTATATGGTTTACTACCGTGC





TGTTCGTGCATATGGCGCAATGTTCACGTTTAATACAGTGAATCGCTATGCTCCAAA





AGCTCTTGTTGAAGCGTTAGGTTTTGATTATGAAGATGTCAACTCAAACCTTGCTAC





ATTCAGATATGCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTAC





GAATATGCCTATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATACAGATGA





AAACGTATCTAAAGCTCAGATTTATGCATTTACTTCTGATCATTATAGAGTATATGAT





GAGAAGTATTCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAATCAAAATTGAC





TGTAAAAGATTGGATTACTGTAGCAAATGAAGTTGCAGATCCTATTACAGTTTCTGA





AGATTTAGGTATCATTTCAGGTGACTTAATTAAGGCATTTGGTAAAGAGAATTTACA





CATGCTAGCTACACTAGCTGATAACTATGTAGTGCTACCAACATATGTACCTGAAGT





TATGGACCAAATTCATAACTTACAAGCTGTAGGAGCGATTGACCTAGAAAGTAACA





ATATCGAACAGGATCCAAATATTGGTAAGGGTAATTTAATCTATAACCCGATTGTCA





CTGTTAATAATAATCCTATGGCATACGCGAATCGTATTATGGATTTCAAGATTGATA





CACCTACCCCTGATGATGTAGTTGTAGCATCCAGATTAGCTGTAGCATTGGAACCAG





GCGCAACTACCGGTAAAGCAGTATTTACTGCCATGGGTACGGAATTTGTGACAAAA





GTTGGTATTCACACATTCTTCAAAGGAAGTAATGGATTACTTAAAACTATTGAACAG





ACTTTCAACACTTTTGATTCTACTGAAGGTGGTCTCACTGACGCCGCATCAGTTAGTT





TGCACATGTCTGCCTACACAAAGGCCTCTAAGTTTGTACACTTTCCTATTCAATATAT





GTGTATGGGCAGCCCTACTCAACCTGACAAACGTGAAGTCAGAGTCTTTGGCGAATT





GGGCACGTACACTATTGTTAATGGGATCACTCTTAGTAAGTTACACGACGTGTGTGT





ATTAAGTCTATTTGATGTACCTATTAAACTTTAGATGCATTAGGGGAAGTG





>25-PBV-19-038 Capsid


(SEQ ID NO: 36)



AATTTGTACTTTAATGGTTTACAAGAGTTTAAAACCATACAACACTTTCTACACTCTA






AGAACACCAGCTACTGCACATAGTATAGTGCAAATAGCTAGGATCAGAGATAGTGA





AGTGGGATTATCTGAAAGGAGGTTAAATTAATGACAGGTAATCAAATTAAATATGG





TGAATTACAAGAGAATATTCGCCATAACACAACAACAGAAGTTGAAACCAATAGAC





ATAACGTTGTAACTGAAGGTGAAACTAACAGACATAACGTTGTCACAGAGGTTGAG





ACTAATCGACACAATACTGTGACTGAAAGTATTGGATGGTACGATGCTGTATCAAAA





CGTATCTCAGCAAATGCTTCAATGAGCCAAGCCGGTGCAGCTTGGGCTAACGTTGCA





ATCAATCAACAAAATGCAGACACGAAACGATTTGAGGCTGAACGTAATGCTGAAAT





AAATCAGCAAAATGCGGATACTAAAGCATTTAGTGCACGCAGTGAGGATGCAGCTA





GATATGCTCATTCTTACAATGAGGATCGTAAGACTACAGCAGAAATTGAGCGAATG





AACACACAAAATTCGCAAGGATGGGTGAAGTCAATCACTGATGCAATTAGCGCACC





TATCAAAGCATTACCATTATTAGGAGGATAAATTTTATGGTAAAGAATAACAACAA





GAAGCGTTTTCAGGATAAAAGTGAGAAATATTCTAGAAAACCTAAGTTCAAGGTTG





AGAAGAAAGATATCTTGGACGATGACAAATTGGAAGGATCTAAGTTTGGCAAAGTT





AATGACATATCCTGGTATCAGAAGAATCCTGATTTACTCAGAGCTGCTGGTAACTTG





TCTTTTGCTAATGCGTTGGGATCTGGAATTGATCTATCTAACGCAAACTTTAACGTTA





AGCTTGCTGCTGATGAGCAACGTGTTCCTGGTATTGCAACTATACATACTATTACAG





GACCTGGACTCAGTCGCGACGCACACTCTGGTGTCAACGTGGCAATGCGTAACTTAT





ATTCTTTTGTTCGTCATGCAAATAGTGGTCATAGTAACTATGATCCTGTAGATTTAAT





GCTATATCTACTTGCTATGGATGAAGCATATATGGTCTACTACCGTGCTGTTCGTGCA





TATGGCGCAATGTTCACATTTAATACCGTGAACCGCTATGCTCCAAAAGCTCTTGTG





GAAGCGTTAGGTTTTGATTATGAAGATGTCAACTCAAACCTTGCTACATTCAGATAT





GCAATTAACGCATACGCTGCAAGAATCAACGCATACGCTGTGCCTACGAATATGCCT





ATCTTCAAACGACATGCATGGCTCTTTTCATCTATCTATACAGATGAAAACGTATCT





AAAGCTCAGATTTATGCATTTACTTCTGATCATTATAGAGTATATGATGAGAAGTAT





TCTAAAGGTGGACGCCTTGTGGCTAAAGCCTGGAAATCAAAGTTAACTGTCAATGAT





TGGATAACTGTAGCTAATGAAGTTGCGGATCCAATTACAGTCTCTGAGGATCTAGGA





ATCATCTCGGGTGACTTAATCAAGGCATTTGGTAAAGAGAATTTACATATGCTAGCT





ACTTTAGCTGACAATTATGTTGTATTACCAACATATGTACCTGAAGTTATGGATCAG





ATTCATAACTTACAAGCAGTAGGTCAAATTGATCTAGAAAGTAATAATATTGAACAG





GATCCAAATATTGGAAAGGGTAATTTAATTTACAATCCTATTGTAACTGTCAATAAT





AATCCAATGGCATATGCTAACCGCATCATGGATTTCAAGATTGATACACCTACACCA





GATGATGTTGTTGTAGCTTCACGATTAGCTGTGGCATTAGAACCAGGCGCTACAACC





GGTAAAGCAGTATTCACTGCCATGGGTACAGAGTTTGTGACAAATGTTGGTATTCAC





ACATTCTACAAAGGAAGTAATGGATTGCTTAAATCTATTGAACAAACTTTCAACACT





TTTGATTCTACTGAAGGTGGTCTTACTGACGCCGCATCAGTTAGTTTGCACATGTCTG





CCTACACAAAGGCCTCTAAGTTTGTACACTTTCCTATTCAATATATGTGTATGGGTAG





CTCTACTCAACCTGACAAGCGTGAAGTCAGAGTCTTTGGCGAATTGGGCACGTACAC





TATTGTTAATGGGGTCACTCTTAGTAAGTTACACGATGTGTGTGTATTAAGTCTATTT





GATGTACCTATTAAACTTTAGATGCATTAGGGGAAGTG





>27-PBV-19-044_Capsid


(SEQ ID NO: 37)



TTTCTAGTAAGAACTTAAAAGTTATTTACTAGAAAGGAGAAATTTGTACTTTAATGG






TTTACAAGAGTTTAAAACCATACAACACTTTCTACACTCTAAGAACACCAGCTACTG





CACATAGTATAGTGCAAATAGCTAGGATCAGAGATAGTGAAGTGGGATTATCTGAA





AGGAGGTTAAATTAATGACAGGTAATCAAATTAAATATGGTGAATTACAAGAGAAT





ATTCGCCATAACACAACAACAGAAGTTGAAACCAATAGACATAACGTTGTAACTGA





AGGTGAAACTAACAGACATAACGTTGTCACAGAGGTTGAGACTAATCGACACAATA





CTGTGACTGAAAGTATTGGATGGTACGATGCTGTATCAAAACGTATCTCAGCAAATG





CTTCAATGAGCCAAGCCGGTGCAGCTTGGGCTAACGTTGCAATCAATCAACAAAAT





GCAGACACGAAACGATTTGAGGCTGAACGTAATGCTGAAATAAATCAGCAAAATGC





GGATACTAAAGCATTTAGTGCACGCAGTGAGGATGCAGCTAGATATGCTCATTCTTA





CAATGAGGATCGTAAGACTACAGCAGAAATTGAGCGAATGAACACACAAAATTCGC





AAGGATGGGTGAAGTCAATCACTGATGCAATTAGCGCACCTATCAAAGCATTACCA





TTATTAGGAGGATAAATTTTATGGTAAAGAATAACAACAAGAAGCGTTTTCAGGAT





AAAAGTGAGAAATATTCTAGAAAACCTAAGTTCAAGGTTGAGAAGAAAGATATCTT





GGACGATGACAAATTGGAAGGATCTAAGTTTGGCAAAGTTAATGACATATCCTGGT





ATCAGAAGAATCCTGATTTACTCAGAGCTGCTGGTAACTTGTCTTTTGCTAATGCGTT





GGGATCTGGAATTGATCTATCTAACGCAAACTTTAACGTTAAGCTTGCTGCTGATGA





GCAACGTGTTCCTGGTATTGCAACTATACATACTATTACAGGACCTGGACTCAGTCG





CGACGCACACTCTGGTGTCAACGTGGCAATGCGTAACTTATATTCTTTTGTTCGTCAT





GCAAATAGTGGTCATAGTAACTATGATCCTGTAGATTTAATGCTATATCTACTTGCT





ATGGATGAAGCATATATGGTCTACTACCGTGCTGTTCGTGCATATGGCGCAATGTTC





ACATTTAATACCGTGAACCGCTATGCTCCAAAAGCTCTTGTGGAAGCGTTAGGTTTT





GATTATGAAGATGTCAACTCAAACCTTGCTACATTCAGATATGCAATTAACGCATAC





GCTGCAAGAATCAACGCATACGCTGTGCCTACGAATATGCCTATCTTCAAACGACAT





GCATGGCTCTTTTCATCTATCTATACAGATGAAAACGTATCTAAAGCTCAGATTTAT





GCATTTACTTCTGATCATTATAGAGTATATGATGAGAAGTATTCTAAAGGTGGACGC





CTTGTGGCTAAAGCCTGGAAATCAAAGTTAACTGTCAATGATTGGATAACTGTAGCT





AATGAAGTTGCGGATCCAATTACAGTCTCTGAGGATCTAGGAATCATCTCGGGTGAC





TTAATCAAGGCATTTGGTAAAGAGAATTTACATATGCTAGCTACTTTAGCTGACAAT





TATGTTGTATTACCAACATATGTACCTGAAGTTATGGATCAGATTCATAACTTACAA





GCAGTAGGTCAAATTGATCTAGAAAGTAATAATATTGAACAGGATCCAAATATTGG





AAAGGGTAATTTAATTTACAATCCTATTGTAACTGTCAATAATAATCCAATGGCATA





TGCTAACCGCATCATGGATTTCAAGATTGATACACCTACACCAGATGATGTTGTTGT





AGCTTCACGATTAGCTGTGGCATTAGAACCAGGCGCTACAACCGGTAAAGCAGTATT





CACTGCCATGGGTACAGAGTTTGTGACAAATGTTGGTATTCACACATTCTACAAAGG





AAGTAATGGATTGCTTAAATCTATTGAACAAACTTTCAACACTTTTGATTCTACTGA





AGGTGGTCTTACTGACGCCGCATCAGTTAGTTTGCACATGTCTGCCTACACAAAGGC





CTCTAAGTTTGTACACTTTCCTATTCAATATATGTGTATGGGTAGCTCTACTCAACCT





GACAAGCGTGAAGTCAGAGTCTTTGGCGAATTGGGCACGTACACTATTGTTAATGGG





GTCACTCTTAGTAAGTTACACGATGTGTGTGTATTAAGTCTATTTGATGTACCTATTA





AACTTTAGATGCATTAGGGGAAGTG





>28-PBV-19-046_Capsid


(SEQ ID NO: 38)



TGTAAATAACTTTTAAGTTCTTACTAGAAAGGAGAAATTTGTACTTTAATGGTTTAC






AAGAGTTTAAAACCATACAACACTTTCTACACTCTAAGAACACCAGCTACTGCACAT





AGTATAGTGCAAATAGCTAGGATCAGAGATAGTGAAGTGGGATTATCTGAAAGGAG





GTTAAATTAATGACAGGTAATCAAATTAAATATGGTGAATTACAAGAGAATATTCGC





CATAACACAACAACAGAAGTTGAAACCAATAGACATAACGTTGTAACTGAAGGTGA





AACTAACAGACATAACGTTGTCACAGAGGTTGAGACTAATCGACACAATACTGTGA





CTGAAAGTATTGGATGGTACGATGCTGTATCAAAACGTATCTCAGCAAATGCTTCAA





TGAGCCAAGCCGGTGCAGCTTGGGCTAACGTTGCAATCAATCAACAAAATGCAGAC





ACGAAACGATTTGAGGCTGAACGTAATGCTGAAATAAATCAGCAAAATGCGGATAC





TAAAGCATTTAGTGCACGCAGTGAGGATGCAGCTAGATATGCTCATTCTTACAATGA





GGATCGTAAGACTACAGCAGAAATTGAGCGAATGAACACACAAAATTCGCAAGGAT





GGGTGAAGTCAATCACTGATGCAATCAGCGCACCTATCAAAGCATTACCATTATTAG





GAGGATAAATTTTATGGTAAAGAATAACAACAAGAAGCGTTTTCAGGATAAAAGTG





AGAAATATTCTAGAAAACCTAAGTTCAAGGTTGAGAAGAAAGATATCTTGGACGAT





GACAAATTGGAAGGATCTAAGTTTGGCAAAGTTAATGACATATCCTGGTATCAGAA





GAATCCTGATTTACTCAGAGCTGCTGGTAACTTGTCTTTTGCTAATGCGTTGGGATCT





GGAATTGATCTATCTAACGCAAACTTTAACGTTAAGCTTGCTGCTGATGAGCAACGT





GTTCCTGGTATTGCAACTATACATACTATTACAGGACCTGGACTCAGTCGCGACGCA





CACTCTGGTGTCAACGTGGCAATGCGTAACTTATATTCTTTTGTTCGTCATGCAAATA





GTGGTCATAGTAACTATGATCCTGTAGATTTAATGCTATATCTACTTGCTATGGATGA





AGCATATATGGTCTACTACCGTGCTGTTCGTGCATATGGCGCAATGTTCACATTTAAT





ACCGTGAACCGCTATGCTCCAAAAGCTCTTGTGGAAGCGTTAGGTTTTGATTATGAA





GATGTCAACTCAAACCTTGCTACATTCAGATATGCAATTAACGCATACGCTGCAAGA





ATCAACGCATACGCTGTGCCTACGAATATGCCTATCTTCAAACGACATGCATGGCTC





TTTTCATCTATCTATACAGATGAAAACGTATCTAAAGCTCAGATTTATGCATTTACTT





CTGATCATTATAGAGTATATGATGAGAAGTATTCTAAAGGTGGACGCCTTGTGGCTA





AAGCCTGGAAATCAAAGTTAACTGTCAAAGATTGGATAACTGTAGCTAATGAAGTT





GCGGATCCAATTACAGTCTCTGAGGATCTAGGAATCATCTCGGGTGACTTAATCAAG





GCATTTGGTAAAGAGAATTTACATATGCTAGCTACTTTAGCTGACAATTATGTTGTA





TTACCAACATATGTACCTGAAGTTATGGATCAGATTCATAACTTACAAGCAGTAGGT





CAAATTGATCTAGAAAGTAATAATATTGAACAGGATCCAAATATTGGAAAGGGTAA





TTTAATTTACAATCCTATTGTAACTGTCAATAANAATCCAATGGCATATGCTAACCG





CATCATGGATTTCAAGATTGATACACCTACACCAGATGATGTTGTTGTAGCTTCACG





ATTAGCTGTGGCATTAGAACCAGGCGCTACAACCGGTAAAGCAGTATTCACTGCCAT





GGGTACAGAGTTTGTGACAAATGTTGGTATTCACACATTCTACAAAGGAAGTAATGG





ATTGCTTAAATCTATTGAACAAACTTTCAACACTTTTGATTCTACTGAAGGTGGTCTT





ACTGACGCCGCATCAGTTAGTTTGCACATGTCTGCCTACACAAAGGCCTCTAAGTTT





GTACACTTTCCTATTCAATATATGTGTATGGGTAGCTCTACTCAACCTGACAAGCGT





GAAGTCAGAGTCTTTGGCGAATTGGGCACGTACACTATTGTTAATGGGGTCACTCTT





AGTAAGTTACACGATGTGTGTGTATTAAGTCTATTTGATGTACCTATTAAACTTTAGA





TGCATTAGGGAATGTT





>12PBVKM-19-012_Capsid


(SEQ ID NO: 39)



NNNNNNNNNNNTTTATTTTTCTTTTGAGCATTCGCTCATCTAATCCACTATTTTAAAA






TCTTTAATAAGTTAGATTCTAAACAAACTTACACATCTAGAACATTTGTATGATTTAA





CCACAGAAAGGAGGTTAACGCATATGTTTTATGTGATTTACTTTACTCGGAACTGTG





GCACAGATTGGTCATTACATTTGTGTCCTTTGTCCGGGTAGTAACATCCAGAAAGGA





GGTCGATATGACCGAAAACCAATTAAAGTATTGGGATTTGCAAGAAACAAAACGGC





ATAACTTGCGAACAGAAGAACTTGATCAGTATAGAACTGATAAACAATTTGAAGGT





ACTAAGTATAGTGCCGACAGAAACTATGAAGGCGTAGTTTATTCAGCAAATAAGAA





TTATGAAGGAGTAAAGTACTCCGCTGATAGACATTACGCAGCAGCAATTGGATCAG





CTAAAATTCACGCTGGTGCTACGGTTGCAGCAGCTCGTATTGGAGCAGGCGCTGCAA





TAGCTTCAGCAAGAATTGGAGCTAACGCTGCAATAAGTTCTTCACAAATCAACGCAG





CAGCTAATATGTTTAATTCAAATCGAATGGCAGCTGCACAAACTTATAGTGCTGACA





GACATTACCAAGCTCAGATAACGACAACCAAGATGAACAATTACCAATCTTGGAAG





AATACGCGTGATACTAATAACGCAAGTAATTTCAATGCATTAATAGGTGCATTTGGT





AAAGTTGGTGCTGCAGCAGTAGGAAACGGCCTGAGAGGTCGCAGATAAGAAAGGA





GGCCACAAATGGCTAAGACAAACAAAACTAACAAAAGATCCAAGTTTAAGGGAGA





CTCTAAATTTGACAGCAGAGGAGGAAATAGAAATGGTAAAGGTAACAGAAACAAG





CGACCAGATAGTAGAGGCGCTAGCGAACTACCTAAAGANNNNNNNNNNNNNNNNN





NNNNNNNNNNNNACAGTGACGGAACCAACAATGTCAATTGGTATGCTCCTACTGAA





CGCATACTTAATGACACAGCAACGATCCCGTTCAACCACGCGATTGGTAACGTATTT





AACGATAGTATTCCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAAGTCA





AGTACATTCCCACAATTGGCATAAGTACTGACTACTCCTCACCTATAAACATTGCAG





CTAAGAATATTTACTCAACGATTCGTCACAGCATATCAGGCACAAGAAAATATGATG





CGAGTGACGTTATGACTTACTTAATTCCAATTACATCTATCTTCAATTATTGGAATTG





GTGCTGCAGGTTATATGGTATTCATAAGTATTTTGTTCTTAGAAACAGATACGTTCCT





GAAGGTATATTCCGTGCAATGCACGTTGACTATGATGATTTTGTTAACAATCTAGCA





GACTTTAGAGCTAAGCTGAATCAGATTGCCTTCAGGTTGTCAAACTACAAATTACCT





AAGGATATACCGCTAATTGATAGACAGACACTCTTAAATGAAGCGGTGTTTAAAGA





TGGTGATAGTGATCTCGATCAGATCTACTTCTTCAATCCAATTGGACACTACAAATA





TCAGCCTGTACTTACACAGACAGGTGGCGCGTGCCAGCTGGTTCCATCTATCACAGA





ACTGTTCACTTATAACAAACCTGCAAAGGTTAAAGATCTAATATCCTATTTTGATAC





ATTATTCTTTGATATCAATACTGACAATGATTTCGATAAGATTGGAGCTGATATCGA





AACTGCATACTCGGACAATGCACTTATGCATATTGCTGAGCTTACTGAGGATTATAT





GATCGAGCCATTCTTCTCAATCGAAATGGCAGAACAGCTAAATAATGCAGATATTGT





GCCTATTAAACCATTCCCTAAGGATATCACAACTAAGGGTTTCACACGTAAAACAGC





TACAGACTTTGATATTATTCAGGATGTAGACAGAAACATTCTGTACAGTGATCCAAA





TACTTGGCTACACTCATCTGTAGATTGGGATAAAGTATTCTACTTACCAACTCTAAG





ACTAATTAATACTAGCGTGGTTAATCCAAATCCAGCTGTAGTCATGGCTTCAACTAG





ATTAAAAGTGGCTATTGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCAAGAGCGAGGTTTACTACACTTCA





GAATCTAGCAAATTTCACTCCAATCAGTAACTTCAAGTTAGCTGATTTGCATTCTGTT





GCAATAATGGGTGAATTCAATATACCNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





>14PBVKM-19-015_Capsid


(SEQ ID NO: 40)



NNNNNNNNTTTATTTATTTCTTTAGAGCATTCGCTCTTCAAAACAATCCACTTTTAAA






TCTTTAGAAAGTTAGATTCTAAACAAACTTTCATATATCTAGAAAGCATTTGTATGA





TTTAACCACAGAAAGGAGGTTAAACACTTATGTTTTATGTGATTTACAATACTCGAA





ACTGTGGCACAGACTGGTCATTACGTTTGTGTCCTTTAATCGAGTAGTAACATCCAG





AAAGGAGGTCGATATGACCGAGAACCAATTAAAATATTGGGATTTGCAGGAATTAA





AACGGCATAACCTGCGAACAGAAGAATTGGATCAGTACAGAACTGACAAACAATTC





GAAGGAACTAAGTATAGTGCGGATAAGAACTACGAAGGTGTAGTTTATTCAGCTAA





CAAGAATTATGAAGGAGTGAAATACTCCGCTGATCGACACTATGCTGCAGCGATTG





GATCAGCAAGAATACATGCTGGTGCTACAGTAGCAGCAGCGAGAATTGGAGCAGGC





GCAGCAGTCGCTTCTGCTCGTATTAATGCTAATGCTGCAATTAGTTCTGCACAAATT





GGAGCTGCGTCAAACATGTTCAATTCACAGAGAATGGCAGCTGCACAACAGTATAG





TGCTGATAGACATTATCAAGCACAGGTAACAACAACGCGTATGAATAATTACCAGT





CGTGGAAGAACACACGTGACACTAACGACGCTAGCAACTTCAATGCACTTATTGGT





GCATTTGGTAAAGTTGGCGCTGCAGCGGTTGGATCTGGTATGAGACGCGGAAGATA





GAAAGGAGGCCAATAATGGCTAAGAAATCAAACACTAATTCAAGATCCAAGTTTAA





GGGAGAACCAGACTTTAAGTCAAAAGGAGGTAAATTCAATGGTAAAGGTAACAGAA





ACAGGAGATCAGATGGTAGAAGCGCTAACGGCATACCTGAAGAATCAGGAGACAA





ATTCGAAAAGCAGCGCAACAGTGACAGAACCAACTCTGTCAATTGGTATGCTCCTAC





TGAGCGCATACTTACAGATACAGCAACGATCCCGTTCAACCACGCGATTGGTAACGT





ATTTGACGATAGTATTTCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAA





GTCAAGTACATACCCACAATTGGCGTAAGCACTGACTATTCATCACCAATTAATATT





GCAGCTAAGAATATATATTCTAATATTAGGCACAGTATCTCAGGTACTAGAAAGTAT





GATGCAAGTGACGTCATGACTTATCTAATACCAATTACATCAATATTCAATTACTGG





GCTTGGTGCTGCAGACTGTACGGAATTCACAAATATTTCGTACTCAGGAATAGATAT





GTACCTGAAGGCATATTCCGTGCTATGCACGTGGATTATGATGATTTTGTCAATCAT





CTAGCTGACTTTAGGGCTAAACTAAATCAGATAGCGTTCCGCCTATCTAATTACAAG





TTACCAAAAGATATTCCACTGATCGATAGACAGATGTTACTTAACGAAGGAATATTT





GCAGACGGCATGAGTGATCTAGACCAGATCTACTTCTATAATACTATAGGCCACTAT





AAATATCAGCCAGCCATGACTGAAACTGGTGGTTCATGCCAACTAATTCCATCTATC





ACGGAATTATTTACTTACAATAAACCAGCAAAAGTTTCTGATTTAATCAGCTACTTT





GATCAGTTATTCTTTGATATTAATACGGATAATGATTTCGATAAGATCGGTGCTGAT





ATTGAAACTGCATATTCCGATGGAGCACTTATGCATATAGCTGAACTTACAGAAGAT





TACAGCATTGCTCCAATCTACTCGTTGGAAATGAATGAACAGCTTAACAACGCTGAC





ATTCTACCAATCAATCCATTCCCTAAGGATATCACAACTAAGGGATTCACTCGTAAA





ACAGCAAGCGTATACGACATAGTGCAGGATGTTGATAGAAACATTCTATACCATGA





TCCAGCTTCGTGGCTATACAATATCAACGGAGATGGAGAAACGTTTGATTTGCCTAC





TTTACGTATTTTAAATACTAAAGTATCTGACCCTAATCCTAGTATTATTATGGCAGCC





ACTCGACTAAAAGTAGCGATTGATGAAACTGGGAAAATACTAGGTTGCGGAACTGA





AATTGTAACAGGTATCACTGTGCATAATATGTCACAAGATATTGATACTAAGGGTAA





GTGGTACACCGTACCACAGGAGTGGTCCATTAAATCCAATATTGTATACACTATTAA





CGGTGAGTTTAAAGTCATTTACTCACGTGACGAAAATAGTGGAGAAATTGGAAACC





TTATGGGTCTGAAGTATCTACTAGAATATTTCAGCAAGTGGGAGTATGCTCCTATGA





TATACACATATGATGTAGCACCTCTATTAGATAACGAGGAAACAGTAGCTCAATTTA





AGAGCAAGAATAAGGAAGCAAGAGGTAGATTTACTACGCTCCAGAATTTGGCCAAT





TTCACACCAATTAGTAACTTCAAACTAAGTGATTTACACTCAGTTGCTATCATGGGT





GAATTTAACATACCTGGCACAATTAGTTATAAAGGTACTAAATAACATTTAGTGTAA





AGGTATGCAGTAGGGAGAACCCTACTGCATACC





>18PBVKM-19-023_Capsid


(SEQ ID NO: 41)



NNNNNNNNNNNNTTTATTTTCTTTAGAGCATTCGCTCTTCAAAACAATCCACTAATA






ATCTTTTAGAAGTTAGATTCAAAACAAACTTTCTATATCTTAAGAACATTTGTATGAT





TTAACCACAGAAAGGAGGTTAAACACTTATGTTTTATGTGATTTACAATACTCGAAA





CTGTGGCACAGACTGGTCATTACGTTTGTGTCCTTTAGTCGAGTAGCAACATCCAGA





AAGGAGGTCGATATGACCGAAAACCAATTAAAGTATTGGGATTTGCAGGAAACAAA





ACGGCATAACCTGCGAACAGAGGAATTGGATCAGTATCGAACTGATAAACAATTCG





AAGGTACTAAGTATAGTGCAGATAAGAACTACGAAGGAGTAGTTTATTCAGCAAAC





AAGAATTACGAAGGAGTCAAGTACTCCGCTGACAGACACTATGCAGCAGCAATTGG





ATCAGCAAGAATACATGCTGGTGCTACCGTAGCAGCAGCAAGAATTGGAGCAGGCG





CAGCAGTCGCTTCTGCCCGTATTAGTGCTAACGCTGCAATTAGTTCCGCACAAATTG





GAGCAGCTTCAAATATGTTTAATTCACAAAGAATGGCTGCCGCACAACAGTATAGTG





CTGATAGACATTATCAAGCACAGATAACAACTACGCGTATGAATAATGCACAATCCT





GGAAGAACACCAGAGATACTAACGATGCAAGTAACTTTAATGCCCTCATTGGAGCA





TTTGGAAAGATAGGAGCATCAGCAGTTAGTTCAGGCATGAGACGCGGAAGATAGAA





AGGAGGCCAAATATGGCTAAGAAAACAAACACTAAATCAAGATCCAAGTTTAAGGG





AGAACCAGACTTTAAGTCAAAAGGAGGTAAATTTAATGGTAAAAGTGACAGAAACA





GGAGATCAAATGGTAGAGGCGCTAACAGCTTACCTGAAGAATCAGGAGACAAATTC





GAAAAGCAGCGCAACAGTGACAGAACCAACTCTGTCAATTGGTATGCTCCTACTGA





GCGCATACTTGCAGATACAGCAACGATCCCGTTCAACCACGCGATTGGTAACGTATT





TGACGATAGTATTTCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAAGTC





AAGTACATACCCACAGTTGGCGTAAGCACTGACTATTCATCACCAATTAATATTGCA





GCAAAGAATATTTATTCTACAATTAGACACGAAATTTCAGGTACAAGGAAATATGA





CGCTAGTGACGTCATGACGTACCTAATTCCAATAACATCAATCTTTAATTATTGGGC





TTGGTGCTGCAGACTATATGGAATACATAAATACTTCGTCCTTAGGAATAGATATGT





TCCTGAAGGCATTTTCCGTGCTATGCACGTTGATTATGATGATTTTGTAAATCATCTA





GCTGATTTTAGAGCCAAACTAAATCAGATCGCGTTCAGACTATCAAACTATAAATTA





CCAAAGGATATTCCATTAATTGATCGTCAGATGCTTCTAAACGAGGCAATCTTTGCT





GACGGAATGAGTGATCTTGACCAGATCTATTTTTATAATACTATAGGACATTATAAG





TATCAGCCTGCTATGACAGATACAGGTGGTGCTTGCCAGCTTATTCCGTCCATTACT





GAACTGTTCACCTACAATAAACCAGCTAAGGTATCCGACTTAATTGAATATTTTGAT





AAATTGTTTTTCGATATTAATACAGATAATGATTTTGACAAGATCGGAGCCGATATT





GAAACTGCTTATTCTGAGAATGCTCTAATGCATATAGCTGAATTAACGGAGGACTAT





AACATAGCTCCAATTTATTCTTTAGAAATGAATGAGCAGCTGAATAACGCTGATATT





CTACCAATTAAACCATTTCCTAAAGATATTACAACTAAGGGATTTAATCGTAAAACA





GCTACAGATTTCGACATCATACAGGATGTAAATCGCAATATACTTTATCATGATCCA





AATGCTTGGCTCAAGAACATCAATACTGAGGAAGAAATATTTGATGTGCCTACATTA





AGAATCTTGAATACAAAGGTTTCTGATCCTAATCCTAGCATCGTAATGGCAGCTACA





AGATTGAAAGTAGCCATTGATGAAAAGGGTAGAATTCTAGGCTGTGGCTCAGAGAT





AGTTACAGGCATTACTGTGCATAATATGTCACAGGATCTGGATACAAATGGTAAATG





GTACACAGTACCACAGGAATGGTCCATTAAATCTAACATCGTGTACACGATTAATGG





TGAGTTCAAAGTACTTTACTCAACTGATGAAAACAGTGGAGAAATTGGTAATTTAAT





GGGACTCAAATATTTACTAGAGTACTTTAGTAAATGGGAATATGCCCCAATGATCTA





TACATATGATGTTACACCTCTTCTGGAGAATGAGGAAACAATTGCACAATTTAAGAG





TAAACATAAAGAGGCAAGAGGTAGGTTTACAACACTCCAGAATTTAGCTAACTTCA





CACCAATTAGTAACTTTAAGCTAAGTGATCTACACTCAGTTGCTATAATGGGTGAGT





TTAATATACCTGGTACCATTACATACAAGGGTACTAAATAATTTATCTATAAAGGTA





TGCAGTAGGGAGAACCCTACTGCATACC





>21PBVKM-19-033_Capsid


(SEQ ID NO: 42)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNACACTACGCTGCAGCTATTGGATCTGCTAAAATTCATGCTGGTGCAACAGTAGCA





GCTGCTCGCATCGGAGCTGGCGCTGCAATCGCTTCAGCAAGAATTGGAGCTAACGCT





GCAATTAGTTCTTCACAAATTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNT





GACGGAACCAACAATGTCAATTGGTATGCTCCTACTGAACGCATACTTAATGACACA





GCAACGATCCCGTTCAACCACGCGATTGGTAACGTATTTAACGATAGTATTCCTAAC





GTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAAGTCAAGTACATTCCCACAATTG





GCATAAGTACAGACTACTCCTCACCAATAAACATTGCAGCTAAGAATATTTATTCAA





CTATACGTCACAGTATCTCAGGCACAAGAAAATATGATGCTAGTGATGTTATGACTT





ATCTGATNNNNNNNNNNNNNATCTTTAATTATTGGAACTGGTGCTGCAGGTTATATG





GTATTCACAAGTATTTTGTTTTAAGGAACAGATACGTGCCTGAAGGTATATTCCGTG





CTATGCACGTTGATTACGATGATTTCGTTAATAACCTAGCTGATTTCAGAGCTAANN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNTATGCATATCGCTGAGCTCACTGAGGATTAT





ATGATTGAGCCTTTCTTCTCAATTGAGATGGCTGAACAGTTAAATAACGCAGATATT





GTGCCTATTAAACCATTCCCTAAGGATATCACAACTAAGGGATTCACACGTAAAACT





GCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCAAGAGCAAGGTTT





ACCACACTTCAGAATCTAGCGAATTTCACACCAATCAGTAATTTTAAATTAGCTGAT





TTGCATTCTGTTGCAATTATGGGTGAATTTAACATACCTGGTACAATTACTTATAAGG





GTACAAAGTAATATNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NN





>22PBVKM-19-034_Capsid


(SEQ ID NO: 43)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNTGACGGAACCAACAATGTCAATTGGTATGCTCCTACTGAACGCATACTTA





ATGACACAGCAACGATCCCGTTCAACCACGCGATTGGTAACGTATTTAACGATAGTA





TTCCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAAGTCAAGTACATTCC





CACAATTGGCATAAGTACAGACTACTCCTCACCAATAAACATTGCAGCTAAGAATAT





TTATTCAACTATACGTCACAGTATCTCAGGCACAAGAAAATATGATGCTAGTGATGT





TATGACTTATCTGATTCCAATTACATCAATCTTTAATTNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNACTGAACTGTTCACTTACAATAAGCCAGCTAAGGTTAAGGACCTAATATCCTA





TTTTGATACTCTATTCTTTGATATCAATACAGATAATGATTTCGATAAGATTGGAGCT





GATATCGAAACTGCGTACTCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNN





>26PBVKM-19-039_Capsid


(SEQ ID NO: 44)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNAGATTCTAAACAAACTTACACACCTAGAACATTTGTAT





GATTTAACCACAGAAAGGAGGTTAACGCATATGTTTTATGTGATTTACTTAACTCGG





AACTGTGGCACAGATTGGTCATTACATTTGTGTCCTTTATCCGGGTAGTAACATCCA





GAAAGGAGGTCGATATGACCGAAAACCAATTAAAGTATTGGGATTTGCAAGAAACT





AAACGGCATAACTTGCGAACAGAAGAACTAGATCAGTACAGAACTGACAAACAATT





CGAAGGCACAAAATACAGTGCTGACCGAAATTATGAAGGCGTAGTCTATTCAGCTA





ATAAGAATTATGAAGGAGTGAAATATTCCGCTGATCGACACTACGCTGCAGCTATTG





GATCTGCTAAAATTCATGCTGGTGCAACAGTAGCAGCTGCTCGCATCGGAGCTGGCG





CTGCAATCGCTTCAGCAAGAATTGGAGCTAACGCTGCAATTAGTTCTTCACAAATTA





ACGCAGCGGCTAATATGTTTAATTCTAATAGAATGGCGGCCGCACAGACTTATAGCG





CTGACAGACATTATCAGGCTCAAATTACTACTACCAAGATGAATAATTACCAATCTT





GGAAGAATACGCGTGATACTAATGACGCGAGCAATTTCAATGCACTGATAGGTGCA





TTTGGAAAGGTCGGCGCTGCAGCAGTTGGGAGCGGCTTGAGAGGTCGCAGATAAGA





AAGGAGGCCTACTATGGCTAAGACAAACAAAACTAATAAAAGATCCAGGTCTAAGG





GAGACTTCAAGAATGACACTAGAGGAGGAAACAGAAATGGTAAAGGTAACAGAAA





CAAGCGACCAGATAGTAGAGGCGCTAGCGAACTACCTAAAGACGCCCAGGGAAGA





GGGGACGAGCAATTTAAGAATGACGGAACCAACAATGTCAATTGGTATGCTCCTAC





TGAACGCATACTTAATGACACAGCAACGATCCCGTTCAACCACGCGATTGGTAACGT





ATTTAACGATAGTATTCCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATTATGGAA





GTCAAGTACATTCCCACAATTGGCATAAGTACAGACTACTCCTCACCAATAAACATT





GCAGCTAAGAATATTTATTCAACTATACGTCACAGTATCTCAGGCACAAGAAAATAT





GATGCTAGTGATGTTATGACTTATCTGATTCCAATTACATCAATCTTTAATTATTGGA





ACTGGTGCTGCAGGTTATATGGTATTCACAAGTATTTTGTTTTAAGGAACAGATACG





TGCCTGAAGGTATATTCCGTGCTATGCACGTTGATTACGATGATTTCGTTAATAACCT





AGCTGATTTCAGAGCTAAGCTAAATCAGATTGCTTTCAGGTTGTCAAATTATAAACT





ACCTAAGGATATACCGCTAATAGATAGACAGACTCTATTAAATGAAGCGGTATTCA





AAGATGGTGATAGTGATCTTGACCAGATTTACTTCTTCAATCCAATTGGCCACTATA





AGTATCAGCCTGTACTTACTCAAACAGGTGGTGCTTGCCAGCTGGTTCCATCTATTA





CTGAACTGTTCACTTACAATAAGCCAGCTAAGGTTAAGGACCTAATATCCTATTTTG





ATACTCTATTCTTTGATATCAATACAGATAATGATTTCGATAAGATTGGAGCTGATA





TCGAAACTGCGTACTCAGATAATGCACTTATGCATATCGCTGAGCTCACTGAGGATT





ATATGATTGAGCCTTTCTTCTCAATTGAGATGGCTGAACAGTTAAATAACGCAGATA





TTGTGCCTATTAAACCATTCCCTAAGGATATCACAACTAAGGGATTCACACGTAAAA





CTGCTACGGATTTCGACATTATTCAGGATGTAGATAGAAATATTCTATATAGCGATC





CAAATACTTGGCTACATTCTGATGTTAACTGGGATCAGGTATTTTATTTACCTACACT





GAGATTAATCAACACAAGCGTGGTTAACCCAAACCCAGCTGTAGTAATGGCTTCGA





CAAGATTAAAAGTAGCTATTGATGAAGTTGGTAAAATAGCAGGTTGTGGAACTGAG





ATTGTAACTGGAATTACCATTCATAATATTTCTCAGGAAGTTGATGATAAAGGGAAA





TGGGCTACACTTCCACAAGAGTGGAGTATCAGATCAAACATGGTGTATACATTAAAT





GGTGTATATCAGCATCTATACTCATCTGACGCAGATAGCGGTGAAATAGTTGATACT





ATGACAATGAAGTATTTGCTAGAGTACTTTAGTAAGTGGGAGTATGCTCCAATGGTG





TATACATATGATGTAACACCTCTTTTGAATGAAGACGAAGATATTTCAACGTTTAAA





CGTGGTAATCGTGTTGCAAGAGCAAGGTTTACCACACTTCAGAATCTAGCGAATTTC





ACACCAATCAGTAATTTTAAATTAGCTGATTTGCATTCTGTTGCAATTATGGGTGAAT





TTAACATACCTGGTACAATTACTTATAAGGGTACAAAGTAATATATACCACATTTAG





GTAGCAGTAGGGAGACCCTACTGCTACC





>27PBVKM-19-044_Capsid


(SEQ ID NO: 45)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNGTCATTACATTTGTGTCCTTTATCCGGGT





AGTAACATCCAGAAAGGAGGTCGATATGACCGAAAACCAATTAAAGTATTGGGATT





TGCAAGAAACTAAACGGCATAACTTGCGAACAGAAGAACTAGATCAGTACAGAACT





GACAAACAATTCGAAGGCACAAAATACAGTGCTGGGCCTATGAGTATTCAGAAACC





TCTTGAAGAGCGTTTCACGGATATTGAGGCTTATTACAAAGGTATTCTCCTACCTTCC





GAACCAATTAGTGATGAAGCAATCCGATCTGTCATCACTGAGTGGAACAGGGCTCG





CGGATTGTCAGTTCGCAGTACTTCCAAAACATGGGACAATATATGTAAATTCTCTTT





ACCAAATGCCTTGATTAAGTCACCCGAGATGATTCCTAGATCCTCAGAGACTGTAAT





TGGATCCGCAACTTCATTAGCTACAGTTATCCAATCATTGACAGTTAACTTTGATTTC





CAGGCTTTAGCCACAAGGCGTCCACCTTTAGAATACTTCTCAATTGAAAACTAAGAG





AGGTAACGATGAAGAGTATCGTACTCCATTTTTCAAAGGTAAATCTTTATCCGATGT





TTTAAAAGGCTGGGAAGTGCACCTCGCCCCTCTCAAAGAGAAGTGGCCTGGTTTACA





CCAGTTTGAATTAGACCTAGCGGAAAAGGTCGGGCCTATGAGTATTNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNACGGAACCAACAATGTCAATTGGTATGC





TCCTACTGAACGCATACTTAATGACACAGCAACGATCCCGTTCAACCACGCGATTGG





TAACGTATTTAACGATAGTATTCCTAACGTTCGTCTTGTTAATGCTATTCCTGGTATT





ATGGAAGTCAAGTACATTCCCACAATTGGCATAAGTACAGACTNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNCTATTTTGATACTCTATTCTTTGATATCA





ATACAGATAATGATTTCGATAAGATTGGAGCTGATATCGAAACTGCGTACTCAGATA





ATGCACTTATGCATATCGCTGAGCTCACTGAGGATTANNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





>2-PBV MRN3406_RDRP


(SEQ ID NO: 65)



CTAAATGAATAGAAAAGTAGTCAAGTTAGGTAATTATTTTAAATTACCGAATCCCGG






TTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATCGTACTCC





ATTTTTCAAAGATAAATCTTTGTCCGATGTATTACAAGGCTGGTTAGTGCACCTAGC





CCCTCTCAAGAGTGAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAGCGGAAAA





GGTCGGGCCTTTAAGCATCCAGAAACCTTTAGATGAGCGGTTTAAGGATATTGAGGC





TTATTACAAAGGTATTCTCCTACCTTCCAAACCAATCAGTGAAACAGCAATCCGATC





TGTTTTAACTGAATGGAATAGGGCACGTGGCTTGTCGGTACGCAGTGTCTCCAAAAC





GTGGGATAACATGAAGAAATCTACATCTTCAGGTTCTCCATTCTTTACTAAACGTAA





AGCAGTCGGAAAATATACGATGTATATGGAGCCATGTTTTGACAAAAGAACGCAAG





AAGTTCATTTTAAGAACTCAAACCGTTGGGATCCAATTGCGGTCTTAGGTTGGCGTG





GACAAGAAGGTGGACCTGATTTTGAGGATGTAAAGCAAAGGGTTGTATGGATGTTC





CCTGCTTCGGTAAACCTACAAGAGTTACGTGTTTACCAACCTCTAATCGAAACAGCG





CAACGTTTCAACTTAGTTCCTGCTTGGGTTGGCATGGATAGTGTTGATTTGCACATCA





CACGTATGTTTGATACGAAAGGCGAAGACGATGTCGTAATATGTACAGATTTCTCAA





AATTTGACCAACATTTTAATGCTGATATGGCTCGCGGTGCATCCGAAATATTGGATG





GCCTCTTTAACGGGAGCAGAGATTTTGTACAATGGATGTGGGATATATATCACATCA





AATACACGATACCTCTATTAGACTCAGAAGATCATGCCTGGTTTGGCAGACATGGTA





TGGGCTCTGGTTCAGGTGGAACCAATGCCGATGAAACATTAGCTCATAGAGCTTTGC





AGTACGAAGCTGCTTTATCACAGAACCAAACATTAAACCCTTATTCACAATGTCTAG





GTGATGATGGAGTACTAACATATCCTGGAATTAAAGTGGATGATGTAATGCGATCAT





ATACTGCACATGGTCAAGAGATGAATGAGTCAAAACAGTATGTGAGCAAACATGAA





TGCATATATCTTCGTAGATGGCATCATATTAATTATCGTGTCGATGATGTATGTGTCG





GAGTTTACGCAACAACTCGTGCTTTGGGTAGATTGTGTGAACAAGAGAGATATTTTG





ACCCAGAGATATGGTCAAAAGAAATGGTAGCTTTACGTCAGCTATCGATACTTGAG





AATGTGAAATACCACCCTCTCAAGGAAGAATTTGTTAAATATTGCATGAAAGGGGA





TAAGTACAGACTGGGACTGGACTTACCAGGCTTCTTGGAGAACATAGATGGACTCG





CAAAGCAAGCTACTGATCTAATGCCGGACTTTTTAGGTTACGTTAAATCACAACAGA





AATCTGTCGGTGGTATATCAGAATGGTGGATAGTAAAATATCTACGTAGTCTAAAGT





AAAGATTGGGATGGTGCAGTAAACCATTAGAATTCTAACGAATTCTAACTGCACCAT





CCCAATCTTTACTTTAGACTACGTAGATATTTTACTATCCACCACTCTGATATACCAC





CGACAGATTTCTGTTGTGATTTAACGTAACCTAAAAAGTCCGGCATCAGATCAGTAG





CTTGCTTTGCGAGTCCATCTATGTTCTCCAAGAAGCCTGGTAAGTCCAGTCCCAGTCT





GTACTTATCCCCTTTCATGCAATATTTAACAAATTCTTCCTTGAGAGGGTGGTATTTC





ACA





>1-PBV-4466_RDRP


(SEQ ID NO: 46)



CTAGAAAAGGAGGCTACTAATGAATAGAAAAGTAGTCAAGTTAGGTAATTACTTTA






AATTACCAAATCCCGGTTGAAGACCTATCTATTGAAAACAGAGAGAGGTAACGATG





AAGAGTATCGTACTCCATTTTTCAAAGGTAAATCTTTGTCCGAAATATTAGAAGGCT





GGAAAGTGCACCTAGCCCCTCTCGAAGTTGAGTGGCCTGGTTTACACCAGTTTGAAT





TAGACCTAGCGGAAAAGGTCGGGCCATTAAGTATCCAAAAGCCATTAAAAGATAGA





CTTAAGGATATTGAGGCCTATTACAAAGGTATTCTCCTACCTTCCAAACCCATTGAC





TCAGACGCAATCCAAGCGGTTCTTGATGAATGGGAAAAGGCACGCGGTTTGTCACTT





CGATCTACTCCCAAAACGTGGGAAAAGATGAAGAAATCAACTTCATCTGGTAGTCC





ATTATTTACAAAGAGACGCAGTGTAGGTCAATTTACAATGGACTCACAACCGTGTTT





TGACTTAGTTACGCGAGAAGTACATGACGCAAAATATCGTCAGTGGGATCCAATCG





CTATACTAGGTTGGCGAGGACAAGAAGGCGGTCCTGACTTTGAGGATGTAAAACAG





AGGGTTGTATGGATGTTCCCTGCTGCAGTGAACTTGCAAGAATTGCGAGTGTATCAA





CCTCTAGTCGAAGTAGCTCAACGGTTCAACTTAGTTCCTGCTTGGGTTAGCATGGAT





AGTGTTGATTGGCACATCACACGAATGTTTGATACCAAAGGAGCAAATGATGTCGTG





ATTTGTACTGATTTCTCCAAATTTGACCAACATTTTAATGTAGATATGGCGCGCGGC





GCATCCGAAATATTGGATGGCCTCTTTAACGGGCGCGGAGATTTTATTCAGTGGATG





TGGGCAATATTCCACATTAAATACACGATACCTCTATTAGACTCTGAAAATCATGCC





TGGTTTGGCAGACATGGTATGGGTTCCGGATCTGGTGGAACTAACGCTGATGAAACA





TTAGCACATAGAGCGTTACAACATGAAGTAGCGCTATCCCATAACCAAACACTTAAC





CCTTATTCACAATGTCTAGGTGATGATGGAGTACTTACTTACCCTGGAATTAAAGTG





AATGATGTAATGCGATCATATACTGCACATGGTCAAGAAATGAATGAGTCTAAACA





GTATGTGAGCAAACATGAGTGCATATATCTTCGTAGATGGCATCATGAAAATTATCG





TGTCGACGATATATGTGTTGGAGTTTACGCAACCACTAGAGCTTTGGGTAGATTGTG





TGAACAAGAAAGATACTTTGACCCAGGAGTTTGGTCAAAGGAAATGGTAGCTTTAC





GTCAGCTATCGATCCTTGAGAATGTGAAATACCACCCGCTCAAGGAAGAATTTGTTA





AGTATTGCATGAAAGGAGACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCCTC





GAGAACATAGATGGAATCGTTAAGGAAGCTACTGATCTTATGCCGGACTTCTTAGGT





TACGTTAAATCACAACAGAAAAAGGTTGGTGGTGCATCAGAATGGTGGATTGTAAA





ATATCTGCTTAGTCTAAAGTAACAGATCGGGATGGTGCAGTAAACCATTAGAATTCT





TAATGAATTCTAACTGCACCATCCCGATCTGTTACTTTAGACTAAGCAGATATTTTAC





AATCCACCATTCTGATGCACCACCAACCTTTTTCTGTTGTGATTTAACGTAACCTAAG





AAGTCCGGCATAAGATCAGTAGCTTCCTTAACGATTCCATCTATGTTCTCGAGGAAG





CCTGGCAAGTCTAGTCCCAGTCTATACTTGTCN





>3-PBV-4138 RDRP


(SEQ ID NO: 47)



GCAGAAGACGGCATACGAGATGAGCAATCGTCTCGTGGGCTCGGAGATGTGTATAA






GACTTAATGAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTACCAAATCCC





GGTTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATCGTACT





CCATTTTTCAAAGGTAAATCTTTATCCGATGTGTTAAAAGGCTGGGAAGTGCACCTT





GCCCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAGCGGCG





AAGGTCGGGCCTATGAGTATTCAGAAACCGCTCGAAGAGCGTTTCAAGGATATCGA





GGCTTATTACAAAGGTATTCTCCTACCTTCCGAACCAATTCGTGATGAAGCAGTCCG





ATCTGTCATCACTGAATGGAACAGGGCTCGCGGATTGTCAGTTCGCAGTACTTCCAA





AACATGGGACAATATGAAGAAGTCCACTTCTTCAGGCTCTCCATTCTTTACCAAACG





TAAGTTGATTGGTAAATACATAATGGATAGTCAACCATATTTTGACAAAAGAACGCA





AGAGGTACACGATAAGGTGTATCCACATTGGGATCCAATTGCTGTTCTTGGTTGGCG





TGGACAAGAAGGAGGTCCAGAACCAGAGGATGTGAAGCAAAGGGTTGTATGGATGT





TCCCTGCTTCAGTTAACTTGCAAGAATTGCGAGTATATCAACCTCTGATCGAAACAG





CGCAACGTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGTGGACGAGCACA





TCACACGTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATATGTACTGATTTCT





CTAAATTTGACCAACATTTTAACGCTGATATGGCTCGCGGCGCATCCGAAATTTTGG





ATGGTCTATTTAACGGGAGTCGAGATTTCGTACAGTGGATGTGGGATATATACCACA





TTAAATACACGATACCTCTATTAGACTCTGAAAACCATGCGTGGTTTGGACGTCATG





GTATGGGTTCCGGTTCAGGCGGAACTAATGCTGATGAGACATTGGCTCATCGCGCGC





TGCAATATGAAGCAGCACTCTCACAAAACCAAACACTAAACCCTTATTCACAATGCT





TGGGTGATGATGGAGTACTAACGTATCCAGGTATTAAAGTGGATGATGTAATGCGAT





CATATACTGCTCATGGTCAAGAAATGAATGAGTCAAAGCAGTACGTGAGCAAACAT





GAATGCATATATCTGAGAAGATGGCATCACAAAGATTATCGTGTGGCAGATATATGT





GTCGGAGTTTATGCAACTACTAGAGCTTTGGGTAGATTGTGTGAACAGGAAAGATAC





TTTGATCCAGAAGTATGGTCAAAGGAAATGGTAGCTTTACGTCAGCTATCGATCCTT





GAGAACGTTAAATACCACCCACTCAAGGAAGAATTCGTGAATTATTGCATGAAAGG





CGACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCTTAGAGAACATTGATGGACT





CGCAAAGCAAGCTACTGATCTTATGCCGGACTTTTTGGGATACGTTAAGTCCCAACA





GAAGGATACTGGAATGAGCGATTGGTGGATCGTGAAGTATCTTAAAAGTTTAAAGT





AGAGATTTGGATGGTGCAGTTAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNGACTTAACGTATCCCAAAAAGTCCGGCAT





AAGATCAGTAGCTTGCTTTGCGAGTCCATCAATGTTCTCTAAGAAGCCTGGCAAGTC





TAGTCCCAGTCTATACTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNN





>10-PBV-19-001 RDRP


(SEQ ID NO: 48)



GAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTACCAAATCCCGGTTGAAG






ACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATCGTACTCCATTTTTC





AAAGGTAAATCTTTGTCCGAAGTATTAAAAGGCTGGGAAGTGCACCTTGCCCCTCTC





AAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAGCGGAAAAGGTCGG





GCCGATGAGTATCCAGAAACCTCTTGATGAGCGTTTCAAGGATATTGAAGCCTATTA





CAAAGGTATTCTCCTACCTTCCACTCCAATTAGTGATGCAGCAATCCAATCTGTACTC





ACTGAATGGAACAGGGCTCGCGGATTGTCAGTTCGCAGTACTTCCAAAACATGGGA





TAAGATGAAGAAGTCTACTTCTTCAGGCTCTCCATTCTTTACCAAACGTAAACTAAT





TGGTAAGTATATTATGGATAGCGAACCATATTTTGACAAAAGAACGCAAGAGGTAC





ATGATAGAAAGTACCGACAATGGGATCCAATTGCTGTTCTTGGTTGGCGAGGACAA





GAAGGAGGTCCAGAACCAGAGGATGTAAAGCAAAGGGTTGTATGGATGTTCCCTGC





TTCGGTGAACCTGCAAGAATTGCGGGTATACCAACCTCTGATCGAAACAGCGCAAC





GTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGTGGATCAGCACATCACAC





GTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATTTGTACAGATTTCTCAAAAT





TTGACCAACATTTCAACTCTGATATGGCTCGTGGTGCTTCAGAGATATTAGATGGCT





TGTTTAACGGAAGTCGAGATTTTGTGCAATGGATGTGGGATACATACCACATAAAGT





ACACGATACCTCTATTAGACTCGGAAAACCATGCGTGGTTTGGACGTCATGGTATGG





GTTCCGGTTCAGGCGGAACTAATGCTGATGAGACATTAGCTCATCGCGCGCTGCAAT





ATGAAGCAGCGCTTTCTCAACACCAAACACTTAACCCTTATTCACAATGCCTAGGTG





ATGATGGAGTACTTACGTACCCAGGTATTAAAGTGGATGATGTAATGCGATCATATA





CTGCTCATGGTCAAGAGATGAATGAGTCAAAGCAGTACGTGAGCACACATGAATGC





ATATATCTGAGAAGATGGCATCATAAAGATTATCGTGTGTCAGATGTATGTGTTGGA





GTTTATGCAACTACTCGTGCTTTAGGCAGGTTGTGTGAACAAGAACGCTACTTTGAT





CCAGAAGTATGGTCAAAGGAAATGGTAGCTTTACGTCAGCTATCGATCCTTGAGAAT





GTTAAATTCCACCCACTCAAGGAAGAATTCGTGAATTATTGCATGAAAGGCGACAA





GTATAGACTGGGACTAGACTTGCCAGGCTTCTTGGAGAACATTGATGGACTCGCAAA





GCAAGCTACTGATCTTATGCCGGACTTTTTGGGATACGTTAAGTCCCAACAGNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTAACTTCACCATCC





GAATCTTTACTTTAGACTTTTAAGATATTTAACGATCCACCAATTGCTCATTCCCGTA





TCTTTCTGCTGGGACTTAACGTATCCCAAAAAGTCCGGCATAAGATCAGTAGCTTGC





TTTGCGAGTCCATCAATGTTCTCCAAGAAGCNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNN





>11-PBV-19-006_RDRP


(SEQ ID NO: 49)



CGGCAACCACCAAGATCTACACGTTGACCTTCGTCGGCAGCGTCAGATGTTAAATGA






ATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTACCAAATCCCGGTTGAAGAC





CTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATCGTACTCCATTTTTCAA





AGATAAATCTTTGTCCGAAGTGTTAAAAGGCTGGGAAGTGCACCTTGCCCCTCTCAA





AGAGAAGTGGCCTGGTCTACACCAGTTTGAATTAGACCTAGCGGAAAAGGTCGGGC





CGATGAGTATCCAGAAACCTCTTGATGAGCGTTTTAAGGATATTGAAGCCTATTACA





AAGGTATTCTCCTACCTTCCACTCCAATAAGTGATGAAGCAGTCCGATCTGTAATCA





CTGAATGGAATAGGGCTCGCGGATTGTCAGTTCGCAGTACTTCCAAAACATGGGATA





AGATGAAGAAATCAACTTCATCGGGCTCTCCATTCTTTACCAAACGTAAATTGATTG





GTAAATATATTATGGATAGTCAACCATATTTTGACAAGAGAACGCAACAGGTACAT





GATAGAAAGTACCCTCAATGGGATCCGATTGCTGTTCTTGGTTGGCGAGGACAAGA





AGGAGGTCCAGAACCAGAGGATGTGAAGCAAAGGGTTGTATGGATGTTCCCTGCTT





CAGTGAATCTACAAGAATTGCGGGTTTACCAACCTCTGATCGAAACAGCGCAACGTT





TCAACTTAGTTCCTGCTTGGGTTAGTATGGATAGTGTGGATGAGCACATCACACGTA





TGTTTGACACAAAAGGCGCAGATGATGTCGTTGTATGTACTGATTTCTCCAAATTTG





ACCAACATTTCAACTCTGATATGGCTCGCGGTGCGTCAGAGATATTAGATGGCTTGT





TTAACGGAAGTCGAGACTTCGTACAATGGATGTGGGATACATACCACATAAAATAC





ACGATACCTCTATTAGACTCAGAAAACCATGCGTGGTTTGGACGACATGGAATGGGT





TCCGGTTCAGGCGGAACAAATGCTGATGAAACATTAGCACATCGCGCGTTGCAGTAT





GAAGCAGCGCTTTCTCAAAACCAAACACTAAACCCTTATTCACAATGCCTAGGTGAT





GATGGAGTACTTACATACCCAGGTATTAAAGTGGATGATGTAATGCGATCATATACT





GCTCATGGTCAAGAAATGAATGAGTCGAAGCAGTACGTGAGCAAACATGAATGCAT





ATACTTGAGAAGGTGGCATCACAAAGATTATCGTGTGTCAGGTATATGTGTCGGAGT





TTATGCAACTACTCGTGCTTTAGGACGGTTGTGTGAACAAGAAAGATACTTTGACCC





AGAAGTATGGTCAAAGGAAATGGTAGCCTTACGTCAGCTATCGATCCTTGAGAATAT





AAAATACCACCCACTCAAGGAAGAATTCGTGAATTATTGCATGAAAGGGGACAAGT





ATAGACTGGGACTAGACTTGCCAGGCTTCTTAGAGAACATAGATGGACTCGCAAAG





CAAGCTACTGATCTTATGCCGGACTTCTTGGGATACGTTAAGTCCCAACAGAAAGAT





ACAGGAATGAGCGATTGGTGGATCGTTAAGTATCTTAAAAGTCTAAAGTAAAGATTT





GGATGGTGCAGCAAACCATTAGAATTCATATTGAATTCTAACTGCACCATCCAAATC





TTTACTTTAGACTTTTAAGATACTTAACGATCCACCAATCGCTCATTCCTGTATCTTT





CTGTTGGGACTTAACGTATCCCAAGAAGTCCGGCATAAGATCAGTAGCTTGCTTTGC





GAGTCCATCTATGTTCTCTAAGAAGCCTGGCAAGTCTAGTCCCAGTCTATACTTGTCC





CCTTTCATGCAATAATTCACGAATTCTTCCTTGAGTGGGTGGTATTTCATA





>14-PBV-19-015_RDRP


(SEQ ID NO: 50)



CTAAATGAATAGAAAAGTAGTCAAGTTAGGTAATTACTTTAAATTACCAAATCCCGG






TTGAAGACCTATCTATTGAAAACTCAGAGAGGTAACGATGAAGAGTATCGTACTCC





ATTTTTCAAAGATAAATCTTTGTCCGAAGTATTAAATGGCTGGTTAGTGCAACTAGC





GCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAGCGGAAA





AGGTCGGGCCTCTAAGCATCCAGAAACCTTTGGAAGAAAGGTTTAAGGATATAGAA





GCTTATTACAAAGGTATTCTCCTACCTTCCAAACCAATTAGTGAGGCGGCAATCCGA





TCCGTCTTAACTGAATGGAATAGGGCACGTGGCTTGTCAGTACGCAGTGTCTCCAAG





ACATGGGATAACATGAAGAAATCGACTTCTTCTGGATCTCCATTCTTTACTAAACGT





AAAGCAGTGGGAAAATATACTATGTATATGGAACCATGTTTTGACAAAAGAACGCA





AGAAGTTCATTTTAAGAACTCAAACCGTTGGGATCCAATTGCGGTCTTAGGTTGGCG





TGGACAAGAAGGTGGACCTGATTTTGAGGATGTGAAGCAAAGGGTAGTATGGATGT





TCCCTGCTTCGGTAAACCTACAAGAGTTACGTGTTTACCAACCTCTAATCGAAACAG





CGCAACGTTTCAACTTAGTTCCTGCTTGGGTTGGCATGGATAGTGTTGATTTGCACAT





CACACGTATGTTTGATACGAAAGGCGCAGATGATGTCGTAATCTGTACAGATTTCTC





GAAATTTGACCAACATTTTAACGCTGATATGGCGCGCGGTGCATCCGAGATATTGGA





TGGCCTCTTTAACGGGCGCAGAGATTTTGTACAATGGATGTGGGATATATATCACAT





CAAATACACGATACCTCTACTCGACTCAGAAGATCATGCCTGGTTTGGCAGACATGG





GATGGGTTCCGGATCTGGTGGAACCAACGCTGATGAAACATTAGCACACAGAGCTT





TGCAGTATGAAGCTGCTTTATCACAGAACCAAACATTAAACCCTTATTCACAATGTC





TAGGTGATGATGGAGTACTAACTTACCCTGGTATTAAGGTGGAGGATGTAATACGA





ACATATACTGCACATGGTCAAGAGATGAATCCCGATAAGCAGTATGTGAGTAAACA





GGAATGCATATATCTGAGAAGATGGCATCACATTGATTATCGTGTTAATGATATATG





TGTCGGAGTTTACGCAACTACTCGAGCTTTAGGTCGTTTGTGTGAACAAGAAAGGTA





TTTTGATCCAGAGATATGGTCAAAAGAAATGGTAGCTCTTCGTCAGCTATCAATACT





TGAGAATGTGAAATACCACCCTCTCAAGGAAGAATTTGTTAAGTATTGCATGAAAG





GGGATAAGTACAGACTGGGACTGGACTTACCAGGCTTTCTCGAGAACATAGATGGA





CTCGCAAAGAAAGCTACCGATCTAATGCCGGACTTTTTAGGTTACGTTAAATCACAA





CAGAAATCTGTCGGTGGTATATCAGATTGGTGGATAGTAAAATATCTACGTAGTCTA





AAGTAATGATTGGGATGGTGCAGTAAACCATTAGAATTCTAACGAATTCTAACTGCA





CCATCCCAATCATTACTTTAGACTACGTAGATATTTTACTATCCACCAATCTGATATA





CCACCGACAGATTTCTGCTGTGATTTAACGTAACCTAAAAAGTCCGGCATAAGATCG





GTAGCTTTCTTTGCGAGTCCATCTATGTTCTCGAGAAAGCCTGGTAAGTCCAGTCCC





AGTCTGTACTTATCCCCTTTCATGCAATACTTAACAAATTCTTCCTTGAGAGGGTGGT





ATTTCAC





>15-PBV-19-016_RDRP_


(SEQ ID NO: 51)



AAAGGAGACGACTTAATGAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATT






ACCAAATCCCGGTTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGA





GTATCGTACTCCATTTTTCAAAGGTAAATCTTTATCCGATGTATTAAAAGGCTGGGA





AGTGCACCTTGCCCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGA





CCTAGCGGAAAAGGTCGGGCCGATGAGTATTCAGAAACCTCTTGATGAGCGTTTCA





AGGATATTGAAGCCTATTACAAAGGTATTCTCCTACCTTCCACTCCAATAAGTGATG





CAGCAATCCGATCTGTAATCACTGAATGGAATAGGGCTCGCGGATTGTCAGTTCGCA





GTACTTCCAAAACATGGGATAAGATGAAGAAATCAACTTCATCAGGCTCTCCATTCT





TTACCAAACGTAAATTGATTGGTAAGTACATTATGGATAGTCAACCATATTTTGACA





AAAGAACGCAAGAGGTACATGATAAACAGTACCCACAATGGGATCCAATTGCGGTT





CTTGGTTGGCGAGGACAAGAAGGTGGTCCAGAACCAGAGGATGTGAAGCAAAGGGT





TGTATGGATGTTCCCTGCTTCAGTTAACCTGCAAGAATTGCGGGTATACCAACCTCT





GATCGAAACAGCGCAACGTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGT





GGATGAGCACATCACACGTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATTTG





TACTGATTTCTCTAAATTTGACCAACATTTCAATTCTGATATGGCTCGAGGCGCATCA





GAGATATTAGATGGCCTATTTAACGGGAGTCGAGATTTCGTACAATGGATGTGGGAT





ACATACCACATAAAGTACACGATACCTCTACTAGACTCAGAAAACCATGCGTGGTTT





GGACGTCATGGAATGGGTTCCGGCTCAGGTGGAACCAATGCTGATGAAACATTAGC





ACATCGCGCGTTGCAATATGAAGCAGCGCTTTCTCAAAACCAAACACTTAACCCTTA





TTCACAATGCCTAGGTGATGATGGAGTACTTACGTACCCAGGTATTAAAGTGGATGA





TGTAATGCGGTCATATACTGCTCATGGTCAAGAGATGAATGAGTCAAAGCAGTACGT





GAGCAAACATGAATGCATATATCTGAGAAGATGGCATCACAAAGATTATCGTGTGT





CAGATGTATGTGTCGGAGTTTATGCAACAACCCGTGCTTTGGGTCGGTTGTGTGAAC





AAGAACGATACTTTGATCCAGAAGTATGGTCAAAGGAAATGGTAGCTCTGCGTCAG





CTATCGATCCTTGAGAATATCAAATACCACCCACTCAAGGAAGAATTCGTGAATTAT





TGCATGAAAGGAGACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCTTGGAGAA





TATTGATGGACTCGCAAAGCAAGCTACTGATCTTATGCCGGACTTCTTGGGATACGT





TAAGTCCCAACAAAAGGATACAGGAATGAGCGATTGGTGGATCGTCAAGTATCTTA





AAAGTCTAAAGTAAAGATTTGGATGGTGCAGNNNNNNNNNNNNTCGTCGGCAGCGT





CAGATGTGTATAAGAGACAGCTAACTGCACCATCCAAATCTTTACTTTAGACTTTTA





AGATACTTGACGATCCACCAATCGCTCATTCCTGTATCCTTTTGTTGGGACTTAACGT





ATCCCAAGAAGTCCGGCATAAGATCAGTAGCTTGCTTTGCGAGTCCATCAATATTCT





CCAAGAAGCCTGGCAAGTCTAGTCCCAGTCTATACTTGTCTCCTTTCATGCAATAATT





CACGAATTCTTCCTTGAGTGGGTGGTATTTGATC





>23-PBV-19-035_RDRP


(SEQ ID NO: 52)



TAGGTAATTACTTTAAATTACCAAATCCCGGTTGAAGACCTATCTATTGAAAACTAA






GAGAGGTAACGATGAAGAGTATCGTACTCCATTTTTCAAAGGTAAATCTTTGTCCGA





TGTATTAAAAGGCTGGGAAGTGCACCTCGCCCCTCTCAAAGAGAAGTGGCCTGGTTT





ACACCAGTTTGAATTAGACCTAGCGGCAAAGGTCGGGCCTATGAGTATTCAGAAAC





CGCTTGATGAGCGATTTAAGGATATTGAGGCTTATTACAAAGGTATTCTCCTACCTT





CCGAACCAATTAGTGATGAAGCAATCCGATCTGTCATCACTGAATGGAACAGGGCT





CGCGGATTGTCAGTTCGCAGTACTTCCAAAACATGGGATAACATGAAGAAGTCAAC





TTCTTCAGGCTCTCCATTCTTTACCAAACGTAAATTGATTGGTAAGTATATAATGGAT





AGTCAACCATATTTTGACAAAAGAACACAAAAGGTACACGATAGAAAGTACCCACA





ATGGGATCCAATTGCTGTTCTTGGTTGGCGTGGACAAGAAGGAGGTCCAGAACCAG





AGGATGTGAAGCAAAGGGTTGTATGGATGTTCCCTGCTTCAGTTAACCTGCAAGAGT





TGCGGGTGTACCAACCTCTGATCGAAACAGCGCAACGTTTCAACTTAGTTCCTGCTT





GGGTTAGCATGGATAGTGTGGACGAGCACATCACACGTATGTTTGATACAAAAGGC





GCAGATGATGTCGTGATTTGTACTGATTTCTCTAAATTTGACCAACACTTTAATTCTG





ATATGGCTCGCGGTGCATCTGAGATATTAGATGGACTATTTAACGGCAGCCGAGATT





TCGTACAATGGATGTGGGATACATACCACATTAAATACACGATACCTCTATTAGACT





CTGAGAACCATGCGTGGTTTGGACGTCATGGTATGGGTTCCGGTTCAGGCGGAACTA





ATGCTGATGAGACATTAGCTCATCGTGCGCTTCAGTATGAAGCAGCACTCTCACAAA





AACAAACACTAAACCCTTATTCACAATGCTTGGGAGATGATGGAGTACTAACGTACC





CAGGTATTAAAGTGGATGATGTAATGCGATCATATACTGCACATGGTCAAGAGATG





AATGAGTCGAAGCAGTACGTGAGCAAACATGAATGCATATATCTGAGAAGATGGCA





TCACAAGGATTATCGTGTGTCAGGTATATGTGTCGGAGTTTATGCAACTACTCGTGC





TTTGGGTAGATTGTGTGAACAAGAAAGGTACTTTGACCCAGAAGTATGGTCAAAGG





AAATGGTAGCTTTACGTCAGCTATCAATCCTTGAGAATATTAAATACCACCCACTCA





AGGAAGAATTCGTGAATTATTGCATGAAAGGCGACAAGTATAGACTGGGACTAGAC





TTGCCAGGCTTCTTGGAGAACATTGATGGACTCGCAAAGCAAGCTACTGATCTTATG





CCAGACTTTTTGGGATACGTTAAATCTCAACAGAAAGATACAGGAATGAGCGATTG





GTGGATCGTGAAGTATCTTAAGAGNNNNNNNNNNNNNNNNNNNNNNNNNTGTGTA





TAAGAGACAGTAACTGCACCATCCAAATCTTTACTTTAGACTCTTAAGATACTTCAC





GATCCACCAATCGCTCATTCCTGTATCTTTCTGTTGAGATTTAACGTATCCCAAAAAG





TCTGGCATAAGATCAGTAGCTTGCTTTGCGAGTCCATCAATGTTCTCCAAGAAGCCT





GGCAAGTCTAGTCCCAGTCCATGCTNNNNN





>25-PBV-19-038 RDRP


(SEQ ID NO: 53)



TACTTATGAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTACCAAATCCCG






GATTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATCGTACT





CCATTTTTCAAAGGTAAATTTTATCCGATGTTTTAAAAGGCTGGGAAGTGCACCTCG





CCCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAGCGGAAA





AGGTCGGGCCTATGAGTATTCAGAAACCTCTTGAAGAGCGTTTCACGGATATTGAGG





CTTATTACAAAGGTATTCTCCTACCTTCCGAACCAATTAGTGATGAAGCAATCCGAT





CTGTCATCACTGAGTGGAACAGGGCTCGCGGATTGTCAGTTCGCAGTACTTCCAAAA





CATGGGACAATATGAAGAAGTCTACTTCTTCAGGCTCTCCATTCTTTACTAAACGTA





AGTTAATTGGTAAATATATAATGGATAGTCAACCATATTTTGACAAAAGAACGCAA





GAGGTACATGATAAAATGTATCCACATTGGGATCCAATTGCCGTTCTTGGTTGGCGT





GGACAAGAAGGAGGTCCAGAACCAGAGGATGTGAAGCAAAGGGTTGTATGGATGTT





CCCTGCTTCAGTTAACTTGCAAGAATTACGAGTATACCAACCTCTGATCGAAACAGC





GCAACGTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGTGGACGAGCACAT





CACACGTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATTTGTACTGATTTCTCT





AAATTTGACCAACACTTTAATGCTGATATGGCTCGCGGCGCATCCGAAATATTGGAT





GGCATATTTAACGGGGGCCGAGACTTCATACAATGGATGTGGGACATATATCACATC





AAATACACGATACCTCTATTAGACTCTGAGAACCATGCGTGGTTTGGACGTCATGGT





ATGGGTTCCGGTTCAGGCGGAACTAATGCTGATGAGACTTTAGCTCATCGTGCGTTG





CAATATGAGGCAGCGCTCTCACAAAACCAAACACTAAACCCTTATTCACAATGCTTG





GGTGATGATGGAGTACTAACATATCCAGGCATCAAAGTGGATGATGTAATGCGATC





ATATACTGCTCATGGTCAAGAAATGAATGAGTCGAAGCAGTACGTGAGCAAACATG





AATGCATATATCTGAGAAGATGGCATCACAAAGATTATCGTGTTGCAGATGTATGTG





TCGGAGTTTATGCAACTACCAGAGCTTTGGGTAGGTTGTGTGAACAAGAAAGATATT





TTGACCCAGAAGTATGGTCAAAAGAAATGGTAGCTTTACGTCAGCTATCGATCCTTG





AGAATGTCAAATACCACCCACTTAAGGAAGAATTCGTGAATTATTGCATGAAAGGC





GACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCTTGGAGAACATTGATGGACTC





GCAAAGCAAGCTACTGATCTGATGCCGGACTTTTTGGGATACGTTAAGTCCCAACAG





AAAGATACAGGAATGAGCGATTGGTGGATCGTCAAGTATCTTAAGAGTCTAAAGTA





AAGATTTGGATGGTGCAGTAAACCATTAGAATTCATTTGAATTCTAACTGCTGCACC





ATCCAAATCTTTACTTTAGACTCTTAAGATACTTGACGATCCACCAATCGCTCATTCC





TGTATCTTTCTGTTGAGACTTAACGTATCCCAAAAAGTCCGGCATCAGATCAGTAGC





TTCCTTTGCGAGTCCATCAATGTTCTCCAAGAAGCCTGGCAAGTCTAGTNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNN





>27-PBV-19-044_RDRP


(SEQ ID NO: 54)



TCATAAGTAGCCTCCTTTTCTAGTAAACATTTTCGTTAGAATTTATTTACTAGAAAAG






GAGGCTACTTATGAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTACCAAA





TCCCGGATTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGTATC





GTACTCCATTTTTCAAAGGTAAATCTTTATCCGATGTTTTAAAAGGCTGGGAAGTGC





ACCTCGCCCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACCTAG





CGGAAAAGGTCGGGCCTATGAGTATTCAGAAACCTCTTGAAGAGCGTTTCACGGAT





ATTGAGGCTTATTACAAAGGTATTCTCCTACCTTCCGAACCAATTAGTGATGAAGCA





ATCCGATCTGTCATCACTGAGTGGAACAGGGCTCGCGGATTGTCAGTTCGCAGTACT





TCCAAAACATGGGACAATATGAAGAAGTCTACTTCTTCAGGCTCTCCATTCTTTACT





AAACGTAAGTTAATTGGTAAATATATAATGGATAGTCAACCATATTTTGACAAAAGA





ACGCAAGAGGTACATGATAAAATGTATCCACATTGGGATCCAATTGCCGTTCTTGGT





TGGCGTGGACAAGAAGGAGGTCCAGAACCAGAGGATGTGAAGCAAAGGGTTGTAT





GGATGTTCCCTGCTTCAGTTAACTTGCAAGAATTACGAGTATACCAACCTCTGATCG





AAACAGCGCAACGTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGTGGACG





AGCACATCACACGTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATTTGTACTG





ATTTCTCTAAATTTGACCAACACTTTAATGCTGATATGGCTCGCGGCGCATCCGAAA





TATTGGATGGCATATTTAACGGGGGCCGAGACTTCATACAATGGATGTGGGACATAT





ATCACATCAAATACACGATACCTCTATTAGACTCTGAGAACCATGCGTGGTTTGGAC





GTCATGGTATGGGTTCCGGTTCAGGCGGAACTAATGCTGATGAGACTTTAGCTCATC





GTGCGTTGCAATATGAGGCAGCGCTCTCACAAAACCAAACACTAAACCCTTATTCAC





AATGCTTGGGTGATGATGGAGTACTAACATATCCAGGCATCAAAGTGGATGATGTA





ATGCGATCATATACTGCTCATGGTCAAGAAATGAATGAGTCGAAGCAGTACGTGAG





CAAACATGAATGCATATATCTGAGAAGATGGCATCACAAAGATTATCGTGTTGCAG





ATGTATGTGTCGGAGTTTATGCAACTACCAGAGCTTTGGGTAGGTTGTGTGAACAAG





AAAGATATTTTGACCCAGAAGTATGGTCAAAAGAAATGGTAGCTTTACGTCAGCTAT





CGATCCTTGAGAATGTCAAATACCACCCACTTAAGGAAGAATTCGTGAATTATTGCA





TGAAAGGCGACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCTTGGAGAACATT





GATGGACTCGCAAAGCAAGCTACTGATCTGATGCCGGACTTTTTGGGATACGTTAAG





TCCCAACAGAAAGATACAGGAATGAGCGATTGGTGGATCGTCAAGTATCTTAAGAG





TCTAAAGTAAAGATTTGGATGGTGCAGCAAACCATTAGAATTCATTTGAATTCTAAC





TGCACCATCCAAATCTTTACTTTAGACTCTTAAGATACTTGACGATCCACCAATCGCT





CATTCCTGTATCTTTCTGTTGGGACTTAACGTATCCCAAAAAGTCCGGCATCAGATC





AGTAGCTTGCTTTGCGAGTCCATCAATGTTCTCCAAGAAGCCTGGCAAGTCTAGTCC





CAGTCTATACTTGTCGCCTTTCATGCAATAATTCACGAATTCTTCCTTAAGTGGGTGG





TATTTGACC





>28-PBV-19-046_RDRP


(SEQ ID NO: 55)



TGATACGGCGACCACCGAGATCTACACTTGCGAAGTCGTCGGCAGCGTCAGATGTGT






ATAAGAGACAGCTTATGAATAGAAAAGTAGTCAGTTTAGGTAATTACTTTAAATTAC





CAAATCCCGGTTGAAGACCTATCTATTGAAAACTAAGAGAGGTAACGATGAAGAGT





ATCGTACTCCATTTTTCAAAGGTAAATCTTTATCCGATGTTTTAAAAGGCTGGGAAG





TGCACCTCGCCCCTCTCAAAGAGAAGTGGCCTGGTTTACACCAGTTTGAATTAGACC





TAGCGGAAAAGGTCGGGCCTATGAGTATTCAGAAACCTCTTGAAGAGCGTTTCACG





GATATTGAGGCTTATTACAAAGGTATTCTCCTACCTTCCGAACCAATTAGTGATGAA





GCAATCCGATCTGTCATCACTGAGTGGAACAGGGCTCGCGGATTGTCAGTTCGCAGT





ACTTCCAAAACATGGGACAATATGAAGAAGTCTACTTCTTCAGGCTCTCCATTCTTT





ACTAAACGTAAGTTAATTGGTAAATATATAATGGATAGTCAACCATATTTTGACAAA





AGAACGCAAGAGGTACATGATAAAATGTATCCACATTGGGATCCAATTGCCGTTCTT





GGTTGGCGTGGACAAGAAGGAGGTCCAGAACCAGAGGATGTGAAGCAAAGGGTTG





TATGGATGTTCCCTGCTTCAGTTAACTTGCAAGAATTACGAGTATACCAACCTCTGA





TCGAAACAGCGCAACGTTTCAACTTAGTTCCTGCTTGGGTTAGCATGGATAGTGTGG





ACGAGCACATCACACGTATGTTTGATACTAAAGGCGCAGATGATGTCGTGATTTGTA





CTGATTTCTCTAAATTTGACCAACACTTTAATGCTGATATGGCTCGCGGCGCATCCG





AAATATTGGATGGCATATTTAACGGGGGCCGAGACTTCATACAATGGATGTGGGAC





ATATATCACATCAAATACACGATACCTCTATTAGACTCTGAGAACCATGCGTGGTTT





GGACGTCATGGTATGGGTTCCGGTTCAGGCGGAACTAATGCTGATGAGACTTTAGCT





CATCGTGCGTTGCAATATGAGGCAGCGCTCTCACAAAACCAAACACTAAACCCTTAT





TCACAATGCTTGGGTGATGATGGAGTACTAACATATCCAGGCATCAAAGTGGATGAT





GTAATGCGATCATATACTGCTCATGGTCAAGAAATGAATGAGTCGAAGCAGTACGT





GAGCAAACATGAATGCATATATCTGAGAAGATGGCATCACAAAGATTATCGTGTTG





CAGATGTATGTGTCGGAGTTTATGCAACTACCAGAGCTTTGGGTAGGTTGTGTGAAC





AAGAAAGATATTTTGACCCAGAAGTATGGTCAAAAGAAATGGTAGCTTTACGTCAG





CTATCGATCCTTGAGAATGTCAAATACCACCCACTTAAGGAAGAATTCGTGAATTAT





TGCATGAAAGGCGACAAGTATAGACTGGGACTAGACTTGCCAGGCTTCTTGGAGAA





CATTGATGGACTCGCAAAGCAAGCTACTGATCTGATGCCGGACTTTTTGGGATACGT





TAAGTCCCAACAGAAAGATACAGGAATGAGCGATTGGTGGATCGTCAAGTATCTTA





AGAGTCTAAAGTAAAGATTTGGATGGTGCAGCAAACCATTAGAATTCATTTGAATTC





TAACTGCACCATCCAAATCTTTACTTTAGACTCTTAAGATACTTGACGATCCACCAAT





CGCTCATTCCTGTATCTTTCTGTTGGGACTTAACGTATCCCAAAAAGTCCGGCATCAG





ATCAGTAGCTTGCTTTGCGAGTCCATCAATGTTCTCCAAGAAGCCTGGCAAGTCTAG





TCCCAGTCTATACTTGTCGCCTTTCATGCAATAATTCACGAATTCTTCCTTAAGTGGG





TGGTATTTGACA





>12PBVKM-19-012_RDRP


(SEQ ID NO: 56)



ACTCGTTAACACTAGTTGTAGAGCGCGTACTCCCGCGGTCCGACCAGACCGCTCGCG






ACTTACAGAAAGGAGGTCGATCGTATGCCTAAATACGATAACATCATGGCGGATTA





TTTCGATCTGCCCAATCCAGCGTTGGGGTCATATTTCGGTAGAACCCGACATGGCAA





TCCTGATGTATACAGGACCACATTCTTCAAGAATCGTGAGCCTCAGGATGTTTTGTC





AGAATGGATGAAGTCAGTCCAGGTTCTTAAACAGGATTGGCCTACGCTGTTAACATT





TGAGGAAGACCTTGCTTCCAAAGTAGGTCCACTGTCAGTGCAGAAGCCTTTAGTGGA





TAGGCTCCCTGATATTCAGGCTTACTATGACTGCATTAACCTGGAGTCAAAACCCCT





TGAGAAAGAAGCAGTTCAAGCTTTCTTGAAGGAGTTAAAAGGTTTAAACACCTTATC





GATGCGCGGAATTCCCGCTACGATAGAAAACATGAAGTTGTCCACTTCCAGCGGTTG





TCCATATTTCACCAAACGTAAGAACGATGTTCGCCGTCACAGATACGGGGACGTAA





AGTATGACGGAAATCGTATCACTGCAAACATAGGTGGCAAGGAATTTAAGATGGCC





GCTATTCTTGGATGGAGAGGCCAGGAAGGAGGACCAAATAATTCGGACGTTAAACA





GAGAGTGGTATGGATGTTCCCTTTCACTGTTAACCTCCAAGAACTACGTGTCTACCA





GCCGTTTATGGATATGTTACAAAAGCACAAGATTATACCAGCATGGGTCGGGCTGG





ATGAGGTAGACAATAAGATCACCAAATTGTTTGACACCAAAGGTGAAGATGACGTA





GTTATATGTACCGACTTTTCTAAGTTTGACCAGCACTTTAATGAAGATTGCCAGAAA





GTAGCCCATGATATCTTAGCTTGGTTGTTTATTGGTGATAGCCGTATGGAAGGCTGG





TTGCGTAATGTATTTCCTGTCAAATACAATATTCCTATAATCTGTGATGACAATATTG





TGAAGAATGGTCGTCATGGTATGGGTTCCGGGTCGGGAGGAACAAATCAAGATGAA





ACGCTACTACACAGAGTATTACAACATGAAGCGGCTCTTAGTGTAGGACAGGACCT





CAATCTTAATTCACAATGCTTAGGTGATGATGGTATACTAACTTACCCAGGTATTAA





GGTAGAGGATGTAATACGAACATATACTGCACATGGTCAAGAAATGAATCCCGATA





AGCAGTATGTGAGTAAACAGGACTGCGTATATCTTCGTAGATGGCACCATAAAGAC





TATCGCGAAAACGGCGTATGCGTAGGGGTATATAGTACTGCTCGCGCTTTAGGGCGT





ATGATGTACCAAGAACGCTACTACGACCCTGATGAATGGGGTAAAGAGATGGTTGC





GCTAAGACAACTGTCTATATTAGAGAACTGCAAACACCACCCTCTCAAAGAAAAGT





TTGTGGACTATTGCATTAAAGGGGATAAATATAGGCTTGGTATAGATATCCCAGGTT





TTCTAGACAATCTGGAAACGTTGTCAGAGAAAGCTATCGAAGTAATGCCTGACTTTA





TGGGCTACACACAATCTCTTGGACATAAAGATGAAAGAGTATCCAAAGGTATTAAT





GATTGGTGGATCGTTAAATACTTAAAGTCA





>14PBVKM-19-015_RDRP


(SEQ ID NO: 57)



ACTCGTTAACACTAGTTGTAGAGCGCGTACTCCCGTGGTCCGACCAGACCACACGCG






ACTTACAGAAAGGAGGTCGATCGTATGCCTAAATACGATAACATCATGGCAGACTA





TTTTGATCTGCCCAATCCAGCGTTGGGGTCATATTTCGGTAGAACCCGACATGGCAA





TCCTGATGTATACAGGACCACATTCTTCAAGAATCGTGAGCCTCAGGATGTTCTGTC





AGAATGGATGAAGTCGATCCAGGTTCTTAAACAGGATTGGCCTACGCTGTTAACTTT





TGAGGAAGACCTTGCTTCCAAAGTAGGACCACTGTCCGTTCAGAAGCCTTTAGTGGA





TAGGCTCCCTGACGTTCAAGCCTACTATGACTGCATTAACCTGGAGTCAAAACCCCT





TGCGAAAGAAGCAGTTCAAGCTTTCATCAAGGAGTTAAAAGGTTTAAATACCTTATC





GATGCGTGGAATTCCCGCTACGATAGAAAATATGAAGTTGTCCACTTCCAGTGGCTG





TCCTTATTTCACCAAGCGTAAAAGCGATGTACGCCGTCATAGATACGGGGACGTAAA





ATCTGATGGTAATCGTATAACCGCTGAGATCGGTGGCAAGGAATTTAAGATGGCCG





CTATTCTTGGATGGAGAGGCCAGGAAGGAGGACCAAAGAATTCGGACGTTAAACAG





AGAGTGGTATGGATGTTCCCTTTCACTGTTAACCTCCAAGAACTACGTGTCTACCAG





CCGTTTATGGATATGCTCCAGAAGCATAAAATTGTACCAGCATGGGTCGGACTGGAT





GAGGTAGACAATAAGATCACTAAATTGTTTGACACCAAAGGTGAAGATGACGTAGT





TATATGTACCGACTTTTCTAAGTTTGACCAGCACTTTAATGAAGATTGCCAAAAGGT





AGCCCATGATATCTTAGCTTGGTTGTTTATTGGCGATAGCCGTATGGAAAGCTGGTT





GCGTAATGTATTTCCTGTCAAATACAATATTCCTATAATCTGTGACGACAATATTGTG





AAGAATGGACGTCACGGTATGGGTTCCGGTTCGGGAGGAACAAATCAAGATGAAAC





GCTACTACACAGGGTATTACAACATGAAGCGGCCCTTAGTGTAGGACAGGACCTAA





ACCTTAATTCACAATGCCTTGGTGATGATGGTATACTAACTTACCCTGGTATTAAGG





TGGAGGATGTAATACGAACATATACTGCACATGGTCAAGAGATGAATCCCGATAAG





CAGTATGTGAGTAAACAGGACTGCGTATATCTTCGTAGATGGCACCATAAAGACTAT





CGCGAAAACGGCGTATGCGTAGGGGTATATAGTACTGCCCGCGCTTTAGGGCGTAT





GATGTATCAAGAACGCTACTATGACCCCGATGAATGGGGTAAAGAGATGGTTGCGC





TAAGACAACTGTCTATATTAGAGAACTGCAAACACCACCCTCTCAAAGAAAAGTTTG





TGGACTATTGCATTAAAGGGGATAAATATAGGCTTGGTATAGATATCCCAGGTTTTC





TAGACAATCTGGAAACGTTGTCTGAGAAAGCTATCGAAGTAATGCCTGACTTTATGG





GCTACACACAGTCACTTGGACATAAAGATGAAAAGGTATCCAAAGGTATTAATGAT





TGGTGGATCGTTAAGTACTTAAAGTCA





>18PBVKM-19-023_RDRP


(SEQ ID NO: 58)



ACTCGTTAACACTAGTTGTAGAGCGCGTACTCCCGTGGTCAGACCAGACCACACGCG






ACTTACAGAAAGGAGGTCGATCGTATGCCTAAATACGATAACATCATGGCAGATTA





TTTTGATCTGCCCAATCCAGCGTTGGGGTCATATTTCGGTAGAACCCGACATGGCAA





TCCTGATGTATACAGGACCACATTCTTTAAGGATCGTGAGCCTCAGGATGTTCTGTC





AGAATGGATGAAGTCAGTCCAGGTTCTTAAACAGGATTGGCCTACGCTGTTAACTTT





TGAGGAAGACCTTGCTTCCAAAGTAGGACCATTGTCCGTTCAGAAGCCTTTAGTGGA





TAGGCTCCCTGACGTACAGGCTTACTATGACTGCATTAACCTGGAGTCAAAACCTCT





TCAGAAAGAAGCAGTTCAAGCTTTCTTGAAGGAGTTGAAAGGTTTAAACACCTTATC





GATGCGTGGTATTCCCGCAACGATAGAAAACATGAAGTTGTCCACTTCTAGTGGTTG





TCCATTCTTCACCAGACGTAAGAATGATGTTCGTCGTCATCGCTACGGGGACGTAAG





CTTTGATGGAACTACCATTCATGCTGAAATAGGTGGCAAGGATTACAAGATGGCAG





CCATATTAGGTTGGAGGGGCCAAGAAGGAGGACCAAAGAATTCGGATGTTAAACAG





AGGGTGGTATGGATGTTCCCATTCACTGTTAACCTCCAAGAACTACGTGTCTATCAG





CCGTTTATGGATATGCTACAAAAACACAAAGTAGTACCAGCTTGGGTCGGTCTGGAT





GAGGTAGACAATAAGATTACCAAATTGTTTGACACCAAAGGTAAAGATGACGTAGT





TATTTGTACCGACTTTTCAAAGTTTGACCAGCACTTTAATGAAGATTGCCAAAAGGT





AGCCCATGATGTCTTAGCTTGGTTATTTATTGGTGATAGCCGTATGGAAAGCTGGTT





GCGTAATGTATTTCCTGTCAAATACAATATTCCTATAATCTGTGATGATAATATTGTG





AAGAATGGTCGTCATGGTATGGGTTCCGGTTCGGGAGGAACAAATCAAGATGAAAC





GCTGCTACACAGGGTATTACAACATGAAGCGGCCCTTAGTGTAGGACAGGACCTCA





ACCTTAATTCACAATGCTTGGGTGATGATGGTATACTAACTTATCCAGGTATTAAAG





TTGAGGATGTAATACGAACATATACTGCACATGGTCAAGAAATGAATCCCGATAAG





CAGTATGTGAGTAAACAGGACTGCGTATATCTTCGCAGATGGCACCATAAAGACTAT





CGCGAAAACGGCGTATGCGTAGGGGTATATAGTACAGCTCGCGCTTTAGGGCGTAT





GATGTACCAAGAACGCTACTATGACCCTGATGAATGGGGTAAAGAGATGGTTGCGC





TAAGACAACTGTCTATATTAGAGAACTGCAAACACCACCCTCTTAAGGAAAAGTTTG





TGGACTATTGCATGAAAGGGGATAAATACAGGCTAGGTGTAGATATCCCAGGTTTTC





TGGATAATCTGGAAACGTTATCCGAGAAGGCTATCGAAGTCATGCCCGATTTCATGG





GCTACACACAATCCTTGGGACACAAGGACGAAAAGATATCTAAAGGTATTAATGAC





TGGTGGATCGTTAAATACNNNNNNNNN





>21PBVKM-19-033_RDRP


(SEQ ID NO: 59)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNATCCAGCGTTGGGGTCATATTTCGGTAGAACCCGACA





TGGCAATCCTGATGTATACAGGACCACATTCATTAAGAATCGTGAGCCTCAGCATGT





TTTGTCAGAATGGATGAAGTCAGTACAGGTTCTTAAACNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCCTATTATGACTGCATTAACCTGGA





GTCAAAACCCCTAGAGAAAGAGGCAGTTCAAGCTTTCTTAAAGGAGTTGAAAGGTT





TAAATACCTNNNNNNNNNNNGGTATTCCCGCTACGATAGAAAACATGAAGTTGTCC





ACTTCCAGTGGCTGTCCTTATTTCACCAAGCGTAAGAACGATGTACGCCGTCACAGA





TACGGGGACGTAAAGTTTGACGGTACACGTGTGACCGCTGATATAGGTGGCAAGGA





ATTTAAGATGGCCGCTATACTTGGATGGAGAGGCCAGGAAGGAGGACCAAAGAATT





CGGACGTTAAACAGAGAGTGGTATGGATGTTCCCTTTCACTGTTAACCTCCAAGAAC





TACGTGTCTACCAGCCGTTTATGGATATGCTACAGAAACATAAAGTAGTACCAGCAT





GGGTCGGACTGGATGAGGTAGACAATAAGATCACCAAATTGTTTGACACCAAAGGT





GAAGATGACGTAGTTATATGTACCGACTTTTCTAAGTTTGACCAGCACTTTAATGAA





GATTGCCAAAAGGTAGCCCATGATATCTTAGCTTGGTTATTTATTGGTGATAGCCGT





ATGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNGACAGACAATATTGTGAAGTCAGGTCGTCATGGTATGGGTTCCGGTTCGGGAGG





AACAAATCAAGATGAAACGCTACTACACAGGGTATTACAACATGAGGCGGCCCTTA





GTGTAGGACAGGACCTTAATCTTAATTCACAATGCCTAGGTGACGATGGTATACTAA





CTTACCCTGGTATTAAGGTTGAGGATGTAATACGAACATATACTGCACATGGTCAAG





AAATGAATCCCGATAAGCAGTATGTGAGTAAACAGGACTGCGTATATCTTCGTAGAT





GGCACCATAAAGACTATCGCGAAAACGGCGTATGCGTAGGGGTATATAGTACAGCC





CGCGCTTTGGGGCGTATGATGTACCAAGAACGCTACTATGACCCTGATGAATGGGGT





AAAGAGATGGTTGCGCTAAGACAACTGTCTATATTGGAGAACTGCAAACACCATCC





TCTCAAAGAGAAGTTTGTGGACTATTGCATTAAAGGGGATAAATATNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





>22PBVKM-19-034_RDRP


(SEQ ID NO: 60)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTCCGTT





CAGAAACCGTTAGTGGATCGGTTACCAGACGTTCAAGCCTACTATGACTGCATTAAC





CTGGAGTCAAAACCCCTAGAGAAAGAGGCAGTTCAAGCTTTCTTAAAGGAGTTGAA





AGGTTTAAATACCTTATCGATGCGCGGTATTCCCGCTACGATAGAAAACATGAAGTT





GTCCACTTCCAGTGGCTGTCCTTATTTCACCAAGCGTAAGAACGATGTACGCCGTCA





CAGATACGGGGACGTAANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNTCCAAGAACTACGTGTCTACCAGCCGTTTATGGATATGCTACAGAAACATAAAGT





AGTACCAGCATGGGTCGGACTGGATGAGGTAGACAATAAGATCACCAAATTGTTTG





ACACCAAAGGTGAAGATGACGTAGTTATATGTNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNGCCAAAAGGTAGCCCATGATATCTTAGCTTGGTTATTTA





TTGGTGATAGCCGTATGGAAAGCTGGTTGCGTAATGTATTTCCTGTCAAATACAATA





TTCCTATAATCTGTGACGACAATATTGTGAAGTCAGGTCGTCATGGTATGGGTTCCG





GTTCGGGAGGAACAAATCAAGATGAAACGCTACTACACAGGGTATTACAACATGAG





GCGGCCCTTAGTGTAGGACAGGACCTTAATCTTAATTCACAATGCCTAGGTGACGAT





GGTATACTAACTTACCCTGGTATTAAGGTGGAGGATGTAATAAGAACAGATACTGC





ACATGGTCAAGAAATGAATCCCGATAAGCAGTATGTGAGTAAACAGGACTGCGTAT





ATCTTCGTAGATGGCACCATAAAGACTATCGCGAAAACGGCGTATGCGTAGGGGTA





TATAGTACAGCCCGCGCTTTGGGGCGTATGATGTACCAAGAACGCTACTATGACCCT





GATGAATGGGGTAAAGAGATGGTTGCGCTAAGACAACTGTCTATATTGGAGAACTG





CAAACACCATCCCTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNN





>26PBVKM-19-039_RDRP


(SEQ ID NO: 61)



NNNNNNNNNNNNNNGTTGTAGAGCGCGTACTCCCGCGGCCCGACCAGGTCGCACGC






GACTTACAGAAAGGAGGTCGATCGTATGCCTAAATACGATAACATCATGGCAGATT





ATTTCGATCTGCCCAATCCAGCGTTGGGGTCATATTTCGGTAGAACCCGACATGGCA





ATCCTGATGTATACAGGACCACATTCTTTAAGAATCGTGAGCCTCAGGATGTTTTGT





CAGAATGGATGAAGTCAGTCCAGGTTCTTAAACAGGATTGGCCTACGCTGTTAACTT





TTGAGGAAGACCTTGCTTCCAAAGTAGGACCTCTGTCCGTTCAGAAACCGTTAGTGG





ATCGGTTACCAGACGTTCAAGCCTACTATGACTGCATTAACCTGGAGTCAAAACCCC





TAGAGAAAGAGGCAGTTCAAGCTTTCTTAAAGGAGTTGAAAGGTTTAAATACCTTAT





CGATGCGCGGTATTCCCGCTACGATAGAAAACATGAAGTTGTCCACTTCCAGTGGCT





GTCCTTATTTCACCAAGCGTAAGAACGATGTACGCCGTCACAGATACGGGGACGTA





AAGTTTGACGGTACACGTGTGACCGCTGATATAGGTGGCAAGGAATTTAAGATGGC





CGCTATACTTGGATGGAGAGGCCAGGAAGGAGGACCAAAGAATTCGGACGTTAAAC





AGAGAGTGGTATGGATGTTCCCTTTCACTGTTAACCTCCAAGAACTACGTGTCTACC





AGCCGTTTATGGATATGCTACAGAAACATAAAGTAGTACCAGCATGGGTCGGACTG





GATGAGGTAGACAATAAGATCACCAAATTGTTTGACACCAAAGGTGAAGATGACGT





AGTTATATGTACCGACTTTTCTAAGTTTGACCAGCACTTTAATGAAGATTGCCAAAA





GGTAGCCCATGATATCTTAGCTTGGTTATTTATTGGTGATAGCCGTATGGAAAGCTG





GTTGCGTAATGTATTTCCTGTCAAATACAATATTCCTATAATCTGTGACGACAATATT





GTGAAGTCAGGTCGTCATGGTATGGGTTCCGGTTCGGGAGGAACAAATCAAGATGA





AACGCTACTACACAGGGTATTACAACATGAGGCGGCCCTTAGTGTAGGACAGGACC





TTAATCTTAATTCACAATGCCTAGGTGACGATGGTATACTAACTTACCCTGGTATTA





AGGTTGAGGATGTAATACGAACATATACTGCACATGGTCAAGAAATGAATCCCGAT





AAGCAGTATGTGAGTAAACAGGACTGCGTATATCTTCGTAGATGGCACCATAAAGA





CTATCGCGAAAACGGCGTATGCGTAGGGGTATATAGTACAGCCCGCGCTTTGGGGC





GTATGATGTACCAAGAACGCTACTATGACCCTGATGAATGGGGTAAAGAGATGGTT





GCGCTAAGACAACTGTCTATATTGGAGAACTGCAAACACCATCCTCTCAAAGAGAA





GTTTGTGGACTATTGCATTAAAGGGGATAAATATAGGCTTGGTATAGATATCCCAGG





TTTTCTAGATAATCTGGAAACGTTATCTGAGAAAGCTATCGAAGTAATGCCAGACTT





TATGGGCTACACACAATCACTTGGACACCATGAAGATAAGGTGTCAAAAGGTATTA





ATGATTGGTGGATCGTTAAATACCTGAAGTCN





>27PBVKM-19-044_RDRP


(SEQ ID NO: 62)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNGTTTAAATACCTTATCGATGCGCGGTATTCCCGCTACGATAGAAAACATG





AAGTTGTCCACTTCCAGTGGCTGTCCTTATTTCACCAAGCGTAAGAACGATGTACGC





CGTCACAGATACGGGGACGTAAAGTTTGACGGTACACGTGTGACCGCTGATATAGG





TGGCAAGGAATTTAAGATGGCCGCTATACTTGGATGGAGAGGCCAGGAAGGAGGAC





CAAAGAATTCGGACGTTAAACAGAGAGTGGTATGGATGTTCCCTTTCACTGTTAACC





TCCAAGAACTACGTGTCTACCAGCCGTTTATGGATATGCTACAGAAACATAAAGTAG





TACCAGCATGGGTCGGACTGGATGAGGTAGACAATAAGATAACCAAATTGTTTGAC





ACCAAAGGTGAAGATGACGTAGTTATATGTACCGACTTTTCTAAGTTTGACCAGCAC





TTTAATGAAGATTGCCAAAAAGTAGCCCATGATATCTTAGCTTGGTTATTTATTGGT





GATAGCCGTATCGAAAGCTGGTTGCGTAATGTATTTCCTGTCAAATACAATATTCCT





ATAATCTGTGACGACAATATTGTGAAGTCAGGTCGTCATGGTATGGGTTCCGGTTCG





GGAGGAACAAATCAAGATGAAACGCTACTACACAGGGTATTACAACATGAGGCGGC





CCTTAGTGTAGGACAGGACCTTAATCTTANTTCACAATGCTTGGGTGATGATGGAGT





ACTAACATATCCAGGCATCAAAGTGGATGATGTAATGCGATCATATACTGCTCATGG





TCAAGAAATGAATGAGTCGAAGCAGTACGTGAGCAAACATGAATGCATATATCTGA





GAAGATGGCATCACAAAGATTATCGCGAAAACGGCGTATGCGTAGGGGTATATAGT





ACAGCCCGCGCTTTGGGGCGTATGATGTACCAAGAACGCTACTATGACCCTGATGAA





TGGGGTAAAGAGATGGTTGCGCTAAGACAACTGTCTATATTGGAGAACTGCAAACA





CCATCCTCTCAAAGAGAAGTTTGTGGACTATTGCATTAAAGGGGATAAATATAGGCT





TGGTATAGATATCCCAGGTTTTCTAGATAATCTGGAAACGTTATCTGAGAAAGCTAT





CGAAGTAATGCCAGACTTTATGGGCTACACACAATCACTTGGACACCATGAAGATA





AGGTGTCAAAAGGTATTAATGNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





>28PBVKM-19-046_RDRP


(SEQ ID NO: 63)



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGATATGCTA





CAGAAACATAAAGTAGTACCAGCATGGGTCGGACTGGATGAGGTAGACAATAAGAT





CACCAAATTGTTTGACACCAAAGGTGAAGATGACGTAGTTANNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNCTGCACATGGTCAAGAAATGAATCCCGATAA





GCAGTATGTGAGTAAACAGGACTGCGTATATCTTCGTAGATGGCACCATAAAGACT





ATCGCGAAAACGGCGTATGCGTAGGGGTATATAGTACAGCCCGCGCTTTGGGGCGT





ATGATGTACCAAGAACGCTACTATGACCCTGATGAATGGGGTAAAGAGATGGTTGC





GCTAAGACAACTGTCTATATTGGAGAACTGCAAACACCATCCTCTCAAAGAGAAGTT





TGTGGACTATTGCATTAAAGGGGATAAATNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN.






For Capsid, 14 strains had sufficient sequence to analyze (gaps were stripped in the nucleotide alignment). New strains bear 39-94% nucleotide identity relative to the index and 39-100% to each other. The qPCR capsid FAM+/RDRP Cy5+ group are all very similar to the index (93.1-94.7%) as expected, while the qPCR capsid FAM−/RDRP Cy3+ strains are only 38-41% similar to the index, but 74.6-90.3% to each other. Note that in individuals like 18-PBVKM-19-023 having the Cy3+ profile, these are mono-infected according to mNGS, and thus it appears that the single capsid sequence belongs to the single RDRP sequence compiled. The US strains and 15-PBV-19-016 which are capsid FAM−/RDRP Cy5± have capsid sequences that are far more similar to MRN3406 (79-88%) than they are to the capsid FAM−/RDRP Cy3+ strains (˜40%). This suggest that these RDRP and capsid sequences co-segregate.























2_PBV-

3-PBV-
10-PBV-

14_PBV-





MRN3406
1-PBV-
4138_CG
19-001
11-PBV-19-
19-015
15-PBV-19-
23-PBV-19-



Capsid
4466_CG_Capsid
Capsid
Capsid
006_Capsid
Capsid
016_Capsid
035_Capsid





2_PBV-MRN3406 Capsid
ID
0.789
0.857
0.931
0.93 
0.939
0.881
0.935


1-PBV-4466_CG_Capsid
0.789
ID
0.78
0.789
0.792
0.792
0.788
0.798


3-PBV-4138_CG Capsid
0.857
0.78 
ID
0.854
0.859
0.855
0.916
0.859


10-PBV-19-001 Capsid
0.931
0.789
0.854
ID
0.923
0.936
0.867
0.933


11-PBV-19-006_Capsid
0.93
0.792
0.859
0.923
ID
0.933
0.875
0.935


14_PBV-19-015 Capsid
0.939
0.792
0.855
0.936
0.933
ID
0.876
0.933


15-PBV-19-016_Capsid
0.881
0.788
0.916
0.867
0.875
0.876
ID
0.878


23-PBV-19-035_Capsid
0.935
0.798
0.859
0.933
0.935
0.933
0.878
ID


25-PBV-19-038 Capsid
0.947
0.793
0.86
0.932
0.935
0.935
0.879
0.944


27-PBV-19-044_Capsid
0.947
0.793
0.86
0.932
0.935
0.935
0.879
0.944


28-PBV-19-046_Capsid
0.947
0.793
0.862
0.932
0.935
0.934
0.879
0.944


12PBVKM-19-012_Capsid
0.414
0.405
0.328
0.416
0.416
0.411
0.423
0.424


14PBVKM-19-015_Capsid
0.389
0.386
0.381
0.391
0.395
0.39 
0.391
0.396


18PBVKM-19-023_Capsid
0.407
0.386
0.397
0.414
0.411
0.408
0.398
0.415


26PBVKM-19-039_Capsid
0.402
0.393
0.399
0.412
0.406
0.402
0.407
0.414




















25-PBV-










19-038
27-PBV-19-
28-PBV-19-
12PBVKM-19-
14PBVKM-19-
18PBVKM-19-
26PBVKM-19-




Capsid
044_Capsid
046_Capsid
012_Capsid
015_Capsid
023_Capsid
039_Capsid







2_PBV-MRN3406 Capsid
0.947
0.947
0.947
0.414
0.389
0.407
0.402



1-PBV-4466_CG_Capsid
0.793
0.793
0.793
0.405
0.386
0.386
0.393



3-PBV-4138_CG Capsid
0.86
0.86
0.862
0.328
0.381
0.397
0.399



10-PBV-19-001 Capsid
0.932
0.932
0.932
0.416
0.391
0.414
0.412



11-PBV-19-006_Capsid
0.935
0.935
0.935
0.416
0.395
0.411
0.406



14_PBV-19-015 Capsid
0.935
0.935
0.934
0.411
0.39 
0.408
0.402



15-PBV-19-016_Capsid
0.879
0.879
0.879
0.423
0.391
0.398
0.407



23-PBV-19-035_Capsid
0.944
0.944
0.944
0.424
0.396
0.415
0.414



25-PBV-19-038 Capsid
ID
1
0.998
0.422
0.395
0.414
0.407



27-PBV-19-044_Capsid
1
ID
0.998
0.422
0.395
0.414
0.407



28-PBV-19-046_Capsid
0.998
0.998
ID
0.422
0.395
0.413
0.406



12PBVKM-19-012_Capsid
0.422
0.422
0.422
ID
0.771
0.77 
0.903



14PBVKM-19-015_Capsid
0.395
0.395
0.395
0.771
ID
0.838
0.746



18PBVKM-19-023_Capsid
0.414
0.414
0.413
0.77 
0.838
ID
0.753



26PBVKM-19-039_Capsid
0.407
0.407
0.406
0.903
0.746
0.753
ID










Nucleotide Identity Matrix for the Capsid Open Reading Frame.

For capsid proteins, gaps were not stripped. New strains bear 20-97% amino acid identity relative to the index and 18-100% to each other. The qPCR capsid FAM+/RDRP Cy5+ strains are all very similar to the index (96-97%) and average 91.9% when including FAM−/RDRP Cy5±. The qPCR capsid FAM−/RDRP Cy3+ strains are only 20-22% similar to the index and US strains, but 76-93% (average 82.5%) to each other.























2_PBV-

3-PBV-
10-PBV-

14_PBV-





MRN3406
1-PBV-
4138_CG
19-001
11-PBV-19-
19-015
15-PBV-19-
23-PBV-19-



Capsid
4466_CG_Capsid
Capsid
Capsid
006_Capsid
Capsid
016_Capsid
035_Capsid





2_PBV-MRN3406 Capsid
ID
0.786
0.905
0.963
0.943
0.965
0.907
0.965


1-PBV-4466_CG_Capsid
0.786
ID
0.806
0.786
0.784
0.786
0.803
0.789


3-PBV-4138_CG_Capsid
0.905
0.806
ID
0.911
0.907
0.917
0.95
0.919


10-PBV-19-001 Capsid
0.963
0.786
0.911
ID
0.95 
0.963
0.905
0.965


11-PBV-19-006_Capsid
0.943
0.784
0.907
0.95 
ID
0.948
0.893
0.96 


14_PBV-19-015 Capsid
0.965
0.786
0.917
0.963
0.948
ID
0.912
0.963


15-PBV-19-016_Capsid
0.907
0.803
0.95 
0.905
0.893
0.912
ID
0.91 


23-PBV-19-035_Capsid
0.965
0.789
0.919
0.965
0.96 
0.963
0.91
ID


25-PBV-19-038 Capsid
0.971
0.789
0.917
0.969
0.963
0.967
0.91
0.982


27-PBV-19-044_Capsid
0.971
0.789
0.917
0.969
0.963
0.967
0.91
0.982


28-PBV-19-046_Capsid
0.971
0.789
0.917
0.969
0.962
0.967
0.909
0.982


12PBVKM-19-012_Capsid
0.223
0.232
0.187
0.227
0.229
0.225
0.236
0.227


14PBVKM-19-015_Capsid
0.204
0.209
0.209
0.198
0.209
0.205
0.209
0.202


18PBVKM-19-023_Capsid
0.204
0.214
0.205
0.202
0.209
0.209
0.211
0.209


26PBVKM-19-039_Capsid
0.209
0.212
0.216
0.207
0.218
0.212
0.218
0.214




















25-PBV-










19-038
27-PBV-19-
28-PBV-19-
12PBVKM-19-
14PBVKM-19-
18PBVKM-19-
26PBVKM-19-




Capsid
044_Capsid
046_Capsid
012_Capsid
015_Capsid
023_Capsid
039_Capsid







2_PBV-MRN3406 Capsid
0.971
0.971
0.971
0.223
0.204
0.204
0.209



1-PBV-4466_CG_Capsid
0.789
0.789
0.789
0.232
0.209
0.214
0.212



3-PBV-4138_CG_Capsid
0.917
0.917
0.917
0.225
0.209
0.205
0.216



10-PBV-19-001 Capsid
0.969
0.969
0.969
0.227
0.198
0.202
0.207



11-PBV-19-006_Capsid
0.963
0.963
0.962
0.229
0.209
0.209
0.218



14_PBV-19-015 Capsid
0.967
0.967
0.967
0.225
0.205
0.209
0.212



15-PBV-19-016_Capsid
0.91
0.91
0.909
0.236
0.209
0.211
0.218



23-PBV-19-035_Capsid
0.982
0.982
0.982
0.227
0.202
0.209
0.214



25-PBV-19-038 Capsid
ID
1
0.996
0.225
0.205
0.209
0.212



27-PBV-19-044_Capsid
1
ID
0.996
0.225
0.205
0.209
0.212



28-PBV-19-046_Capsid
0.996
0.996
ID
0.227
0.205
0.209
0.214



12PBVKM-19-012_Capsid
0.225
0.225
0.227
ID
0.781
0.786
0.933



14PBVKM-19-015_Capsid
0.205
0.205
0.205
0.781
ID
0.916
0.766



18PBVKM-19-023_Capsid
0.209
0.209
0.209
0.786
0.916
ID
0.768



26PBVKM-19-039_Capsid
0.212
0.212
0.214
0.933
0.766
0.768
ID










Amino Acid Identity Matrix for the Capsid Open Reading Frame.

For RDRP, 14 strains had sufficient sequence to analyze (gaps were not stripped in the nucleotide alignment). New strains bear 59-93.6% nucleotide identity relative to the index and 59-100% to each other. The qPCR capsid FAM+/RDRP Cy5+ are all very similar to the index (84-93.6%), while the qPCR capsid FAM−/RDRP Cy3+ strains are only 59-61% similar to the index, but 87-95% to each other. The US strains and 15-PBV-19-016 which are capsid FAM−/RDRP Cy5± have RDRP sequences that are far more similar to MRN3406 (85%) than they are to the capsid FAM−/RDRP Cy3+ strains (59%).

























2-PBV
1-PBV-
3-PBV-
10-PBV-
11-PBV-
14-PBV-
15-PBV-
23-PBV-
25-PBV-
27-PBV-


Seq−>
MRN3406
4466
4138
19-001
19-006
19-015
19-016
19-035
19-038
19-044





2-PBV MRN3406
ID
0.852
0.853
0.866
0.853
0.936
0.856
0.843
0.862
0.863


1-PBV-4466
0.852
ID
0.837
0.843
0.832
0.84
0.834
0.817
0.836
0.837


3-PBV-4138
0.853
0.837
ID
0.934
0.926
0.844
0.937
0.936
0.957
0.957


10-PBV-19-001
0.866
0.843
0.934
ID
0.947
0.857
0.956
0.928
0.928
0.928


11-PBV-19-006
0.853
0.832
0.926
0.947
ID
0.851
0.953
0.919
0.922
0.923


14-PBV-19-015
0.936
0.84 
0.844
0.857
0.851
ID
0.852
0.835
0.85 
0.851


15-PBV-19-016
0.856
0.834
0.937
0.956
0.953
0.852
ID
0.923
0.935
0.936


23-PBV-19-035
0.843
0.817
0.936
0.928
0.919
0.835
0.923
ID
0.929
0.93 


25-PBV-19-038
0.862
0.836
0.957
0.928
0.922
0.85
0.935
0.929
ID
0.999


27-PBV-19-044
0.863
0.837
0.957
0.928
0.923
0.851
0.936
0.93 
0.999
ID


28-PBV-19-046
0.863
0.837
0.958
0.929
0.924
0.851
0.936
0.931
0.998
0.999


KM285233.1
0.598
0.588
0.592
0.599
0.598
0.608
0.594
0.588
0.596
0.596


12PBVKM-19-012
0.595
0.586
0.596
0.602
0.598
0.61
0.592
0.595
0.6 
0.6 


14PBVKM-19-015
0.588
0.581
0.591
0.601
0.597
0.605
0.593
0.591
0.596
0.596


18PBVKM-19-023
0.592
0.583
0.593
0.597
0.586
0.602
0.587
0.588
0.595
0.595


26PBVKM-19-039
0.592
0.583
0.59 
0.595
0.591
0.605
0.592
0.589
0.595
0.595


27PBVKM-19-044
0.611
0.6 
0.623
0.631
0.621
0.61
0.622
0.63 
0.631
0.631




















28-PBV-

12PBVKM-
14PBVKM-
18PBVKM-
26PBVKM-
27PBVKM-



Seq−>
19-046
KM285233.1
19-01text missing or illegible when filed
19-01text missing or illegible when filed
19-02text missing or illegible when filed
19-03text missing or illegible when filed
19-04text missing or illegible when filed







2-PBV MRN3406
0.863
0.598
0.595
0.588
0.592
0.592
0.611



1-PBV-4466
0.837
0.588
0.586
0.581
0.583
0.583
0.6



3-PBV-4138
0.958
0.592
0.596
0.591
0.593
0.59 
0.623



10-PBV-19-001
0.929
0.599
0.602
0.601
0.597
0.595
0.631



11-PBV-19-006
0.924
0.598
0.598
0.597
0.586
0.591
0.621



14-PBV-19-015
0.851
0.608
0.61
0.605
0.602
0.605
0.61



15-PBV-19-016
0.936
0.594
0.592
0.593
0.587
0.592
0.622



23-PBV-19-035
0.931
0.588
0.595
0.591
0.588
0.589
0.63



25-PBV-19-038
0.998
0.596
0.6
0.596
0.595
0.595
0.631



27-PBV-19-044
0.999
0.596
0.6
0.596
0.595
0.595
0.631



28-PBV-19-046
ID
0.596
0.6
0.596
0.595
0.595
0.631



KM285233.1
0.596
ID
0.942
0.94 
0.924
0.94 
0.875



12PBVKM-19-012
0.6 
0.942
ID
0.953
0.922
0.943
0.887



14PBVKM-19-015
0.596
0.94 
0.953
ID
0.917
0.952
0.893



18PBVKM-19-023
0.595
0.924
0.922
0.917
ID
0.921
0.872



26PBVKM-19-039
0.595
0.94 
0.943
0.952
0.921
ID
0.931



27PBVKM-19-044
0.631
0.875
0.887
0.893
0.872
0.931
ID








text missing or illegible when filed indicates data missing or illegible when filed







Nucleotide Identity Matrix for the RDRP Open Reading Frame.

For the RDRP protein alignment, gaps were not stripped. New strains bear 57-96% amino acid identity relative to the index and 56-100% to each other. The qPCR capsid FAM+/RDRP Cy5+ are all similar to the index (88-96%; avg 92.6%), while the qPCR capsid FAM−/RDRP Cy3+ strains are only 57-61% similar to the index and US strains, but 91-98% (avg 94.8%) to each other.

























2-PBV
1-PBV-
3-PBV-
10-PBV-
11-PBV-
14-PBV-
15-PBV-
23-PBV-
25-PBV-
27-PBV-


Seq−>
MRN3406
4466
4138
19-001
19-006
19-015
19-016
19-035
19-038
19-044





2-PBV MRN3406
ID
0.867
0.907
0.915
0.9
0.96
0.911
0.883
0.905
0.907


1-PBV-4466
0.867
ID
0.85 
0.866
0.85
0.856
0.854
0.83
0.849
0.85 


3-PBV-4138
0.907
0.85
ID
0.954
0.966
0.9
0.971
0.954
0.977
0.979


10-PBV-19-001
0.915
0.866
0.954
ID
0.966
0.903
0.974
0.95
0.949
0.95 


11-PBV-19-006
0.9
0.85
0.966
0.966
ID
0.892
0.981
0.962
0.956
0.958


14-PBV-19-015
0.96
0.856
0.9 
0.903
0.892
ID
0.898
0.871
0.896
0.898


15-PBV-19-016
0.911
0.854
0.971
0.974
0.981
0.898
ID
0.96
0.969
0.971


23-PBV-19-035
0.883
0.83
0.954
0.95
0.962
0.871
0.96 
ID
0.943
0.945


25-PBV-19-038
0.905
0.849
0.977
0.949
0.956
0.896
0.969
0.943
ID
0.998


27-PBV-19-044
0.907
0.85
0.979
0.95
0.958
0.898
0.971
0.945
0.998
ID


28-PBV-19-046
0.909
0.852
0.981
0.952
0.96
0.9
0.973
0.947
0.996
0.998


KM285233.1
0.573
0.567
0.567
0.564
0.565
0.586
0.565
0.565
0.567
0.567


12PBVKM-19-012
0.569
0.565
0.563
0.562
0.561
0.582
0.561
0.561
0.563
0.563


14PBVKM-19-015
0.569
0.567
0.567
0.56
0.565
0.582
0.565
0.565
0.567
0.567


18PBVKM-19-023
0.571
0.563
0.563
0.566
0.563
0.586
0.561
0.565
0.563
0.563


26PBVKM-19-039
0.573
0.571
0.569
0.568
0.567
0.586
0.567
0.571
0.569
0.569


27PBVKM-19-044
0.611
0.603
0.606
0.62
0.603
0.599
0.606
0.608
0.606
0.606




















28-PBV-

12PBVKM-
14PBVKM-
18PBVKM-
26PBVKM-
27PBVKM-



Seq−>
19-046
KM285233.1
19-01text missing or illegible when filed
19-01text missing or illegible when filed
19-02text missing or illegible when filed
19-03text missing or illegible when filed
19-04text missing or illegible when filed







2-PBV MRN3406
0.909
0.573
0.569
0.569
0.571
0.573
0.611



1-PBV-4466
0.852
0.567
0.565
0.567
0.563
0.571
0.603



3-PBV-4138
0.981
0.567
0.563
0.567
0.563
0.569
0.606



10-PBV-19-001
0.952
0.564
0.562
0.56 
0.566
0.568
0.62 



11-PBV-19-006
0.96 
0.565
0.561
0.565
0.563
0.567
0.603



14-PBV-19-015
0.9 
0.586
0.582
0.582
0.586
0.586
0.599



15-PBV-19-016
0.973
0.565
0.561
0.565
0.561
0.567
0.606



23-PBV-19-035
0.947
0.565
0.561
0.565
0.565
0.571
0.608



25-PBV-19-038
0.996
0.567
0.563
0.567
0.563
0.569
0.606



27-PBV-19-044
0.998
0.567
0.563
0.567
0.563
0.569
0.606



28-PBV-19-046
ID
0.567
0.563
0.567
0.563
0.569
0.606



KM285233.1
0.567
ID
0.973
0.975
0.964
0.979
0.926



12PBVKM-19-012
0.563
0.973
ID
0.979
0.95 
0.971
0.917



14PBVKM-19-015
0.567
0.975
0.979
ID
0.956
0.973
0.924



18PBVKM-19-023
0.563
0.964
0.95 
0.956
ID
0.958
0.907



26PBVKM-19-039
0.569
0.979
0.971
0.973
0.958
ID
0.948



27PBVKM-19-044
0.606
0.926
0.917
0.924
0.907
0.948
ID








text missing or illegible when filed indicates data missing or illegible when filed







Protein Identity Matrix for the RDRP Open Reading Frame.

While the RDRP and capsid consensus sequences are virtually identical for 19-038, 19-044, and 19-046, these are from different individuals. The Cts for each qPCR were different, as were the number of PBV and total NGS reads obtained. The compostion of other viral and bacterial reads determined by mNGS illustrates they are distinct samples and 19-044 is co-infected with the KM285233 strain, whereas the others are mono-infected. It is possible given their ages that 19-044 and 19-046 are spouses.




























TIME
TIME TO








DATE
COLLECTED
FREEZER


SAMPLE ID
AGE
GENDER
ETH
RACE
COLLECTED
(MILITARY)
(MILITARY)
COUNTRY





Sptm19-0text missing or illegible when filed

text missing or illegible when filed

Male
Hisp
Metext missing or illegible when filed
Jul. 2, 2019
11:15
11:30
Colombia


Sptm19-0text missing or illegible when filed 4
72
Male
Hisp
Metext missing or illegible when filed
Jul. 2, 2019
14:text missing or illegible when filed
14:text missing or illegible when filed 0
Colombia


Sptm19-04text missing or illegible when filed
72
Female
Hisp

text missing or illegible when filed

Jul. 2, 2019
15:30
15:45
Colombia


















METHODS OF
SYSMPTOMS THAT REQUIRED
# OF



SAMPLE ID
DIAGNOSIS
DIAGNOSIS
HOSPTALIZATOIN
TUBES







Sptm19-0text missing or illegible when filed
EPOC text missing or illegible when filed  (text missing or illegible when filed )
UNK
Fatigue, Night text missing or illegible when filed
1



Sptm19-0text missing or illegible when filed 4
EPOC text missing or illegible when filed  (—)
UNK
Night sweats, Chills, Fatigue
1



Sptm19-04text missing or illegible when filed

text missing or illegible when filed  (text missing or illegible when filed )

UNK
Chest pains when coughing, Weight loss, Chills
1








text missing or illegible when filed indicates data missing or illegible when filed







Phylogenetic Analysis of New Strains

Protein sequences from new genomes were merged into alignments to generate new trees of capsid (aa 91-333; expanded from aa 110-250), shown previously in FIG. 5B, and RDRP (aa 126-473; as before) shown previously in FIG. 7B.


The capsid phylogenetic tree (FIG. 14) shows that new capsid FAM+ strains from Colombia all cluster together tightly with the MRN3406 index case and with short branch lengths, consistent with their ˜97% identity. Slightly basal to these are capsid FAM−/RDRP Cy5+ (in green) and FAM−/RDRP Cy5− strains (blue). These share a branch with camel and gorilla sequences. The capsid FAM−/RDRP Cy3+ (in orange) strains all cluster with one another on a separate long branch indicative of their significant genetic distance from other, with marmot sequences being the most closely related. Interestingly these capsids share a very distant common ancestor with the other new sequences, but they only have ˜20% amino acid identity.


The phylogenetic tree (FIG. 15) of RDRP shows a very similar pattern as for capsid. RDRP proteins of the capsid FAM+/RDRP Cy5+ strains cluster together with the index case with short branch lengths, although not in exactly the same manner as capsid. While 14PBV 015 is highly similar to MRN3406, the others are slightly more distant, reflective of the 86-90% identity. Also unlike capsid, US and Colombian RDRP sequences branch independent of geography. As expected, the RDRP proteins of capsid FAM−/RDRP Cy3+ strains branched closely with the Cambodian respiratory strains, KM285233 and KM285234. These 2 types of respiratory viruses share a recent common ancestor and unlike capsid, there are no stool-derived sequences on this branch.


To summarize, qPCR profiles and subsequent full genome sequencing of 17 individuals confirmed that two groups of strains resembling either MRN3406 or another respiratory PBV originally found in Cambodia are in circulation. Capsid (91.9%/82.5%) and RDRP (92.6%/94.8%) amino acid sequences are highly similar within each group, respectively, and these segregate with the same pattern for individuals, demonstrating the capsid and RDRP sequences are linked. However, the large genetic distance separating these capsids (20% identity) that branch together along with GI tract-derived PBV strains is contrasted by the monophyletic relationship of RDRP sequences (60% identity) to indicate that the RDRP protein determines respiratory tropism.


Metagenomics

It was further addressed whether picobirnavirus is simply a non-pathogenic bystander (e.g. like TTV or GBV-C), an opportunistic infection that is always secondary to a primary viral, bacterial, or fungal respiratory infection but perhaps exacerbates disease, or is it the sole pathogen present in sputum samples and the cause of illness.


For all 25 PBV+ hits sequenced, the approximate numbers of reads from co-infecting pathogens are tabulated below:





















Capsidtext missing or illegible when filed
RDRPtext missing or illegible when filed
RDRPtext missing or illegible when filed
RDRPtext missing or illegible when filed


Fungal



FAM
FAM
CY3
CY5
Viral coinfection
Bacterial coinfection
coinfection

















Sample ID
Ct
Ct
Ct
Ct
virus
reads
bacteria
reads
fungus
reads




















564466
−1
29.41
−1
−1
HHV-4, Strep phage
54,901
Stenotrophomonas, Strep
89,000
none



564468
−1
33.36
−1
30.34
influenza, Strep phage
251
Strep pneumonia
340,000 
none



564138
−1
26.4
−1
23.87
Klebsiella pneumonia
3,000,000
Klebsiella pneumonia
76,340
none



564477
−1
36.26
−1
−1
Strep phage
3,500
none

none



564470
−1
34.text missing or illegible when filed
−1
32.28
HHV−1
1,674
none

none



D000046722
−1
35.04
−1
33.75
none

none

none



Sptm19-001
26.53
30.7text missing or illegible when filed
−1
24.06
none

Prevotella, (TB+)
40,000
none



Sptm19-006
22.18
28.33
−1
20.42
none

none, (TB+)

none



Sptm19-012
−1
23.3text missing or illegible when filed
22.78
−1
Respirovirus 3, Strep
16,299
Strep, (TB+)
25,000
none








phage


Sputum Control
35.26
36.34
−1
33.6
none

none

none



Sptm19-015
24.69
23.1
24.15
25.5
none

none (TB+)

none



Sptm19-016
−1
28.71
−1
25.56
Pseudomonas phage
5,700
Pseudomonas aeruginosa,
100,000 
none










(TB+)


Sptm19-020
−1
35.51
−1
−1
none

Strep
80,000
none



Sptm19-021
35.59
35.25
−1
31.49
Enterovirus D
72
none

none



Sptm19-023
−1
25.12
24.22
−1
Strep phage
1,500
Strep, Haemophilus
100,000 
none










parainflu


Sptm19-031
−1
32.26
−1
30.16
Rhinovirus A, Strep
600
Strep pneumonia
75,000
none








phage


Sptm19-032
−1
27.69
−1
25.94
Rhinovirus A,
333
Haemophilus influenzae
100,000 
none








Haemophilus virutext missing or illegible when filed


Sptm19-033
−1
25.35
26.91
34.56


Sptm19-034
−1
26.41
27.39
35.75


Sptm19-035
35.84
29.3
−1
26.64
Strep phage
1,107
(Porphyromonas gingivalis,
500,000 
none










Tanner


Sptm19-036
−1
34.19
−1
30.89
none

(Strep mtext missing or illegible when filed ri)
55,000
none



Sptm19-038
26.57
30.67
−1
29.08
none

none

none



Sptm19-039
34.43
21.56
25.45
29.43
Strep phage
1,000
Aggregatibacter segnis,
 7,500
none










Porphyrom


Sptm19-044
22.58
31.48
−1
26.95
none

none

none



Sptm19-046
19.61
27.14
−1
23.29
none

none

none







text missing or illegible when filed indicates data missing or illegible when filed







Indeed, mNGS for most samples did include considerable viral (HHV-4, Rhinovirus A, Respirovirus 3) and bacterial (Streptococcus, Haemophilus, Klebsiella, TB) reads (but not fungal), suggesting PBV may be an opportunistic infection of the respiratory tract. However, 3 high viral load PBV infections (Cts<26; ≥105 cp/ml) did not show enrichment for any addtional microbes which argue it may be the sole pathogen causing symptoms.


It as also worth pointing out that dual PBV infections have thus far been detected in samples 14-PBV-19-015 and 26-PBV-19-039, as the qPCR would indicate. Note that the Cy5 and Cy3 probes are mutually exclusive, meaning they bind to very different sequences present at the same location in RDRP, so a sample that is positive for both is in fact co-infected with these two PBV strains.


Discussion

In total, 25 samples (19.2%) were positive for PBV. It was entirely conceivable from the outset that despite having a reliable qPCR assay, no new strains among the samples screened would be detected. On the contrary, it is demonstrated herein that picobirnavirus infections are quite prevalent in individuals with severe respiratory symptoms. This confirms and extends the observations that PBV are not simply restricted to the GI tract, but can also be found in respiratory secretions/fluids.


There are several key points regarding the data. First, technically, the qPCR assay performed well. Ct values for each positive sample ranged from as low as 22 (≥106 copies/ml) to as high as 38 (≤102 copies/ml). If all the viral loads had similar values, it might suggest a contaminant or issue with the assay. The variability among samples here suggests they are real: either it is reflection of the true titers or there are delays in Ct due to mismatches in the probe. Also, for the multiplex RDRP assay, any sample that was positive in the Cy5 or Cy3 channel was also dually positive for the ‘universal PBV’ probe in the FAM channel, as expected. Similarly, there were no instances where capsid positives were RDRP negative, although this could certainly have been possible. It was noted that samples can be triple positive for RDRP, in which case it indicates a dual infection.


Second, the capsid results are consistent with geography and the extreme genetic variability of PBV, but show that capsid and RDRP segments co-segregate. None of the samples (n=80) from the US were positive for capsid; the only capsid positives (n=10) were from the original site in Colombia. Of course, all PBV have a capsid encoding segment, but the tests herein seeks only to detect those similar to the ABT capsid. In the US, PBV strains were found with (n=4) and without (n=2) the ABT RDRP sequence (e.g. Cy5 reactivity). Despite the negative reactivity for FAM, the capsid for this group of US sequences were actually quite similar 91.9% to each other and the index. By contrast, the second group (Cy3+) resembling the Cambodian strain also with negative reactivity for FAM was very different from the index case (only 20% identity), but again highly similar to each other (82.5%). RDRP (92.6%/94.8%) amino acid sequences were likewise highly identical within each group, respectively. Thus, capsid and RDRP sequences branch with the same pattern by individual, demonstrating these are linked.


Third, the qPCR is able to detect a wide range of genetic diversity. If it were only restricted to primers and probes amplifying and detecting one genome segment with similarity to the index case (capsid FAM+ or RDRP Cy5+), the assay would have only demonstrated detection of strains with 7% or 15% dissimilarity. However, a set of primers with conserved RDRP probes were used, which in practice can amplify a large range of PBV sequences. Indeed, full genome sequencing of the hits obtained show that capsid and RDRP nucleotide sequences can have as little as 39% and 59% overall identity to the index case, respectively, and still be readily detected. This level of divergence from the index case is what is observed for all PBV, regardless of whether it comes from stool or sputum (FIG. 3 & FIG. 4). This broad tolerance for sequence diversity, coupled to its high sensitivity, make the qPCR assay a very useful discovery and diagnostic tool.


Fourth, is the prevalence of PBV and the role that this particular RDRP sequence may play in respiratory tract tropism and disease. While 3 hits with potentially altogether new RDRP sequences (FAM+ only; 2 of which had Ct>35) were found, the majority (22/25) were RDRP dual positives, either FAM+Cy5+ or FAM+Cy3+, and fell into 2 distinct groups. This striking result confirms that PBV strains bearing these RDRP sequences are either involved or possibly implicated in severe respiratory symptoms. It also says that when a PBV is detected in respiratory samples, it will likely have a sequence phylogenetically close to the ABT Colombian or the Cambodian sequences. Thus, a large genetic distance separates the capsids (20% identity) of these groups and they branch together with GI tract-derived PBV strains. By contrast, the RDRP sequences (60% identity) of the groups branch together monophyletically to indicate that it is the RDRP protein that determines respiratory tropism.


Fifth, by using unbiased mNGS and analyzing in SURPI, it was possible to assess whether other pathogens are present that might also provide plausible explanations for the respiratory symptoms exhibited. Clinical information on the US samples was not available, but for the Colombian patients, 27/50 were positive for tuberculosis (TB), which is very difficult to detect by NGS. Of the 19 PBV+ hits from this cohort, only 6 were TB positive. A majority of the other samples did show evidence of another respiratory pathogen, suggesting it could be an opportunistic infection or only found in immunocompromised individuals, which is often the case for PBV infecting the GI tract. However, in a handful of strains thus far, PBV appears to be the only pathogen present. Given these have high titers, PBV may actually be the primary acute infection, and what is observed in other patients is the progression to secondary viral or bacterial co-infections.


A new picobirnavirus strain in the sputum of a patient from Colombia was discovered. While PBV are involved in gastroenteritis and diarrhea, recent isolated reports of PBV in respiratory secretions are known. Phylogenetic analysis of the new strain indicated that out of hundreds of deposited RDRP sequences, the strain resembled those found in Cambodian patients with respiratory illness, this despite only 58% identity overall at the amino acid level. A novel quantitative PCR assay was developed to detect the capsid and RDRP segments of this strain. This assay also serves as a discovery tool, to find related and altogether new PBV sequences by virtue of sequence conservation. Active PBV infection was observed in nearly 20% of sputum samples from patients with severe respiratory illness. PBV strains similar to the novel strain (e.g. the index case) and the Cambodian strain appear to be circulating in Colombia, while related strains have spread to the United States. The high prevalence observed, coupled with its ability to rapidly evolve, reassort its segmented genome, and crossover to other species, indicates a need for greater public health awareness and future studies of picobirnaviruses.


REFERENCES

Banyai, K. et al. Genome sequencing identifies genetic and antigenic divergence of porcine picobirnaviruses. J Gen Virol 95, 2233-2239, doi:10.1099/vir.0.057984-0 vir.0.057984-0 [pii] (2014).


2 Ganesh, B., Masachessi, G. & Mladenova, Z. Animal picobirnavirus. Virusdisease 25, 223-238, doi:10.1007/s13337-014-0207-y 207 [pii] (2014).


3 Malik, Y. S. et al. Epidemiology, phylogeny, and evolution of emerging enteric Picobirnaviruses of animal origin and their relationship to human strains. Biomed Res Int 2014, 780752, doi:10.1155/2014/780752 (2014). 4 Ribeiro Silva, R. et al. Genogroup I avian picobirnavirus detected in Brazilian broiler chickens: a molecular epidemiology study. J Gen Virol 95, 117-122, doi:10.1099/vir.0.054783-0 vir.0.054783-0 [pii] (2014).


Banyai, K. et al. Genome sequencing identifies genetic and antigenic divergence of porcine picobirnaviruses. J Gen Virol 95, 2233-2239, doi:10.1099/vir.0.057984-0 vir.0.057984-0 [pii] (2014).


2 Ganesh, B., Masachessi, G. & Mladenova, Z. Animal picobirnavirus. Virusdisease 25, 223-238, doi:10.1007/s13337-014-0207-y 207 [pii] (2014).


3 Malik, Y. S. et al. Epidemiology, phylogeny, and evolution of emerging enteric Picobirnaviruses of animal origin and their relationship to human strains. Biomed Res Int 2014, 780752, doi:10.1155/2014/780752 (2014).


4 Ribeiro Silva, R. et al. Genogroup I avian picobirnavirus detected in Brazilian broiler chickens: a molecular epidemiology study. J Gen Virol 95, 117-122, doi:10.1099/vir.0.054783-0 vir.0.054783-0 [pii] (2014).


5 Smits, S. L. et al. Genogroup I and II picobirnaviruses in respiratory tracts of pigs. Emerg Infect Dis 17, 2328-2330, doi:10.3201/eid1712.110934 (2011). 6 Cummings, M. J. et al. Precision surveillance for viral respiratory pathogens: virome capture sequencing for the detection and genomic characterization of severe acute respiratory infection in Uganda. Clin Infect Dis, doi:10.1093/cid/ciy656 5067586 [pii] (2018).


7 Rosen, B. I., Fang, Z. Y., Glass, R. I. & Monroe, S. S. Cloning of human picobirnavirus genomic segments and development of an RT-PCR detection assay. Virology 277, 316-329, doi:10.1006/viro.2000.0594 S00426822(00)90594-4 [pii] (2000).


8 Woo, P. C. et al. High Diversity of Genogroup I Picobirnaviruses in Mammals. Front Microbiol 7, 1886, doi:10.3389/fmicb.2016.01886 (2016). 9 Wakuda, M., Pongsuwanna, Y. & Taniguchi, K. Complete nucleotide sequences of two RNA segments of human picobirnavirus. J Virol Methods 126, 165-169, doi:S0166-0934(05)00063-7 [pii] 10.1016/j.jviromet.2005.02.010 (2005).


10 Da Costa, B., Duquerroy, S., Tarus, B. & Delmas, B. Picobirnaviruses encode a protein with repeats of the ExxRxNxxxE motif. Virus Res 158, 251-256, doi:10.1016/j.virusres.2011.02.018 S0168-1702(11)00070-0 [pii] (2011).


11 Knox, M. A., Gedye, K. R. & Hayman, D. T. S. The Challenges of Analysing Highly Diverse Picobirnavirus Sequence Data. Viruses 10, doi:E685 [pii] 10.3390/v10120685 v10120685 [pii] (2018).


12 van Leeuwen, M. et al. Human picobirnaviruses identified by molecular screening of diarrhea samples. J Clin Microbiol 48, 1787-1794, doi:10.1128/JCM.02452-09 JCM.02452-09 [pii] (2010).


13 Banyai, K. et al. Sequence heterogeneity among human picobirnaviruses detected in a gastroenteritis outbreak. Arch Virol 148, 2281-2291, doi:10.1007/s00705-003-0200-z (2003).

Claims
  • 1. A primer for amplifying human picobirnavirus (PBV) in a sample, wherein the primer comprises a sequence with 80% or more sequence identity to SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, or complements thereof.
  • 2. A probe for detecting PBV in a sample, wherein the probe comprises a sequence with 80% or more sequence identity to SEQ ID NO: 6, SEQ ID NO: 9, or complements thereof.
  • 3. A composition for amplifying PBV in a sample, comprising: a) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof and at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof; orb) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof and at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof.
  • 4. The composition of claim 3, further comprising a probe having a sequence with 80% or more sequence identity to SEQ ID NO: 6, SEQ ID NO: 9, or complements thereof.
  • 5. A composition for detecting PBV in a sample, comprising a) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 6 or a complement thereof; orb) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 9 or a complement thereof.
  • 6. A method of detecting PBV in a sample, comprising contacting the sample with at least one primer and/or at least one probe, wherein the PBV comprises at least one sequence selected from SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, and SEQ ID NO: 11.
  • 7. (canceled)
  • 8. The method of claim 6, wherein the PBV is detected by PCR or FISH.
  • 9. The method of claim 6, comprising contacting the sample with at least one forward primer, at least one reverse primer, and at least one probe.
  • 10. The method of claim 6, comprising contacting the sample with the composition of claim 5.
  • 11. The method of claim 9, comprising contacting the sample with the at least one forward primer and the at least one reverse primer under amplification conditions to generate a first target sequence, and detecting hybridization between the first target sequence and the at least one probe as an indication of the presence of PBV in the sample.
  • 12. The method of claim 11, wherein the amplification conditions comprise submitting the sample to an amplification reaction carried out in the presence of suitable amplification reagents.
  • 13. The method of claim 12, wherein the amplification reaction comprises PCR, real-time PCR, or reverse-transcriptase PCR.
  • 14. The method of claim 11, wherein the at least one probe is labeled with a detectable label.
  • 15. The method of claim 14, wherein the detectable label is: (a) directly attached to the at least one probe; (b) indirectly attached to the at least one probe; (d) directly detectable; or (e) indirectly detectable.
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. The method of claim 14, wherein the detectable label comprises a fluorescent moiety attached at a 5′ end of the at least one probe.
  • 20. The method of claim 14, wherein the at least one probe further comprises a quencher moiety attached at a 3′ end of the at least one probe.
  • 21. A kit for detecting PBV in a sample, comprising: a) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 6 or a complement thereof;b) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 9 or a complement thereof; orc) at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 4 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 5 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 6 or a complement thereof, at least one forward primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 7 or a complement thereof, at least one reverse primer comprising a sequence with 80% or more sequence identity to SEQ ID NO: 8 or a complement thereof, and a probe comprising a sequence with 80% or more sequence identity to SEQ ID NO: 9 or a complement thereof.
  • 22. An isolated polynucleotide having: (a) 50% or more sequence identity to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof;(b) 80% or more sequence identity to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof;(c) 90% or more sequence identity to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof; or(d) 95% or more sequence identity to SEQ ID NO: 1, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, or fragments thereof.
  • 23. (canceled)
  • 24. (canceled)
  • 25. (canceled)
  • 26. A vector comprising the isolated polynucleotide of claim 22.
  • 27. An isolated polypeptide having: (a) 80% or more sequence identity to SEQ ID NO: 7, SEQ ID NO: 11, or fragments thereof;(b) 90% or more sequence identity to SEQ ID NO: 7, SEQ ID NO: 11, or fragments thereof; or(c) 95% or more sequence identity to SEQ ID NO: 7, SEQ ID NO: 11, or fragments thereof.
  • 28. (canceled)
  • 29. (canceled)
  • 30. A host cell comprising the vector of claim 26.
  • 31. A host cell comprising the isolated polypeptide of claim 27.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage application of PCT/US2020/066858 filed Dec. 23, 2020, which claims priority to U.S. Provisional Application No. 62/975,419 filed Feb. 12, 2020 and U.S. Provisional Application No. 62/952,956 filed Dec. 23, 2019, each of which are hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/066858 12/23/2020 WO
Provisional Applications (2)
Number Date Country
62975419 Feb 2020 US
62952956 Dec 2019 US