COMPOSITIONS AND METHODS FOR SILENCING VEGF-A EXPRESSION

Abstract
The disclosure relates to double-stranded ribonucleic acid (dsRNA) compositions targeting VEGF-A, and methods of using such dsRNA compositions to alter (e.g., inhibit) expression of VEGF-A.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 4, 2021, is named A2038-7236WO_SL.txt and is 1,327,255 bytes in size.


FIELD OF THE DISCLOSURE

The disclosure relates to the specific inhibition of the expression of the VEGF-A.


BACKGROUND

Vascular eye diseases are the leading cause of vision loss in today's aging population, including exudative age-related macular degeneration (exudative AMD), retinal vein occlusion (RVO), retinopathy of prematurity (ROP), diabetic retinopathy (DR), and diabetic macular edema (DME). Several of these ocular disorders are associated with pathological angiogenesis. The release of vascular endothelial growth factors (VEGFs) contributes to increased vascular permeability and inappropriate new vessel growth in the eye. New treatments for angiogenic ocular disorders are needed.


SUMMARY

The present disclosure describes methods and iRNA compositions for modulating the expression of VEGF-A. In certain embodiments, expression of VEGF-A is reduced or inhibited using a VEGF-A-specific iRNA. Such inhibition can be useful in treating disorders related to VEGF-A expression, such as ocular disorders (e.g., age-related macular degeneration (AMD), macular edema following retinal vein occlusion (MEfRVO) or central retinal vein occlusion (CVO), retinopathy of prematurity (ROP), diabetic macular edema (DME), and diabetic retinopathy (DR)).


Accordingly, described herein are compositions and methods that effect the RNA-induced silencing complex (RISC)-mediated cleavage of RNA transcripts of VEGF-A, such as in a cell or in a subject (e.g., in a mammal, such as a human subject). Also described are compositions and methods for treating a disorder related to expression of VEGF-A, such as an angiogenic ocular disorder (e.g., AMD, RVO, MEfRVO, CVO, ROP, DME, mCNV, and DR)).


The iRNAs (e.g., dsRNAs) included in the compositions featured herein include an RNA strand (the antisense strand) having a region, e.g., a region that is 30 nucleotides or less, generally 19-24 nucleotides in length, that is substantially complementary to at least part of an mRNA transcript of VEGF-A (e.g., a human VEGF-A) (also referred to herein as a “VEGF-A-specific iRNA”). In some embodiments, the VEGF-A mRNA transcript is a human VEGF-A mRNA transcript, e.g., SEQ ID NO: 1 herein.


In some embodiments, the iRNA (e.g., dsRNA) described herein comprises an antisense strand having a region that is substantially complementary to a region of a human VEGF-A mRNA. In some embodiments, the human VEGF-A mRNA has the sequence NM_001171623.1 (SEQ ID NO: 1). The sequence of NM_001171623.1 is also herein incorporated by reference in its entirety. The reverse complement of SEQ ID NO: 1 is provided as SEQ ID NO: 2 herein.


In some aspects, the present disclosure provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of vascular endothelial growth factor A (VEGF-A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of a coding strand of human VEGF-A and the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of a non-coding strand of human VEGF-A such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


In some aspects, the present disclosure provides a double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of VEGF-A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


In some aspects, the present disclosure provides a human cell or tissue comprising a reduced level of VEGF-A mRNA or a level of VEGF-A protein as compared to an otherwise similar untreated cell or tissue, wherein optionally the cell or tissue is not genetically engineered (e.g., wherein the cell or tissue comprises one or more naturally arising mutations, e.g., VEGF-A), wherein optionally the level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%. In some embodiments, the human cell or tissue is a retinal pigment epithelium (RPE), a retinal tissue, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, a photoreceptor cell, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


The present disclosure also provides, in some aspects, a cell containing the dsRNA agent described herein.


In another aspect, provided herein is a human ocular cell, e.g., (an RPE cell, a retinal cell, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, or a photoreceptor cell) comprising a reduced level of VEGF-A mRNA or a level of VEGF-A protein as compared to an otherwise similar untreated cell. In some embodiments, the level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.


In some aspects, the present disclosure also provides a pharmaceutical composition for inhibiting expression of a gene encoding VEGF-A, comprising a dsRNA agent described herein.


The present disclosure also provides, in some aspects, a method of inhibiting expression of VEGF-A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent described herein, or a pharmaceutical composition described herein; and


(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of VEGF-A, thereby inhibiting expression of the VEGF-A in the cell.


The present disclosure also provides, in some aspects, a method of inhibiting expression of VEGF-A in a cell, the method comprising:


(a) contacting the cell with the dsRNA agent described herein, or a pharmaceutical composition described herein; and


(b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of VEGF-A mRNA, VEGF-A protein, or both of VEGF-A mRNA and protein, thereby inhibiting expression of the VEGF-A in the cell.


The present disclosure also provides, in some aspects, a method of inhibiting expression of VEGF-A in an ocular cell or tissue, the method comprising:


(a) contacting the cell or tissue with a dsRNA agent that binds VEGF-A; and


(b) maintaining the cell or tissue produced in step (a) for a time sufficient to reduce levels of VEGF-A mRNA, VEGF-A protein, or both of VEGF-A mRNA and protein, thereby inhibiting expression of VEGF-A in the cell or tissue.


The present disclosure also provides, in some aspects, a method of treating a subject diagnosed with VEGF-A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent described herein or a pharmaceutical composition described herein, thereby treating the disorder.


In any of the aspects herein, e.g., the compositions and methods above, any of the embodiments herein (e.g., below) may apply.


In some embodiments, the coding strand of human VEGF-A has the sequence of SEQ ID NO: 1. In some embodiments, the non-coding strand of human VEGF-A has the sequence of SEQ ID NO: 2.


In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the portion of the sense strand is a portion within nucleotides 1855-1875, 1858-1878, 2178-2198, 2181-2201, 2944-2964, 2946-2966, 2952-2972, 3361-3381, or 3362-3382 of SEQ ID NO: 1. In some embodiments, the portion of the sense strand is a portion corresponding to SEQ ID NO: 4200, 4201, 4202, 4203, 4204, 4205, 4206, 4207, 4208, 4209, 4210, or 4211.


In some embodiments, the portion of the sense strand is a portion within a sense strand in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


In some embodiments, the portion of the antisense strand is a portion within an antisense strand in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


In some embodiments, the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B. In some embodiments, the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


In some embodiments, the sense strand of the dsRNA agent is at least 23 nucleotides in length, e.g., 23-30 nucleotides in length.


In some embodiments, the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the sense strand is a sense strand chosen from the sense strands of AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-953374 (SEQ ID NO: 813), AD-953504 (SEQ ID NO: 1297), AD-953481 (SEQ ID NO: 1298), AD-953351 (SEQ ID NO: 800), AD-901356 (SEQ ID NO: 261), AD-953344 (SEQ ID NO: 787), AD-901355 (SEQ ID NO: 262), AD-953410 (SEQ ID NO: 845), AD-953363 (SEQ ID NO: 779), AD-953411 (SEQ ID NO: 844), AD-953350 (SEQ ID NO: 784), or AD-953375 (SEQ ID NO: 790). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the sense strand is a sense strand chosen from the sense strands of AD-953374 (SEQ ID NO: 813), AD-953504 (SEQ ID NO: 1297), AD-953481 (SEQ ID NO: 1298), AD-953351 (SEQ ID NO: 800), AD-901356 (SEQ ID NO: 261), AD-953344 (SEQ ID NO: 787), AD-901355 (SEQ ID NO: 262), AD-953410 (SEQ ID NO: 845), AD-953363 (SEQ ID NO: 779), AD-953411 (SEQ ID NO: 844), AD-953350 (SEQ ID NO: 784), or AD-953375 (SEQ ID NO: 790). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the antisense strand is an antisense strand chosen from the antisense strands of AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-953374 (SEQ ID NO: 943), AD-953504 (SEQ ID NO: 1427), AD-953481 (SEQ ID NO: 1428), AD-953351 (SEQ ID NO: 930), AD-901356 (SEQ ID NO: 390), AD-953344 (SEQ ID NO: 917), AD-901355 (SEQ ID NO: 391), AD-953410 (SEQ ID NO: 975), AD-953363 (SEQ ID NO: 909), AD-953411 (SEQ ID NO: 974), AD-953350 (SEQ ID NO: 914), or AD-953375 (SEQ ID NO: 920). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the portion of the antisense strand is an antisense strand chosen from the antisense strands of AD-953374 (SEQ ID NO: 943), AD-953504 (SEQ ID NO: 1427), AD-953481 (SEQ ID NO: 1428), AD-953351 (SEQ ID NO: 930), AD-901356 (SEQ ID NO: 390), AD-953344 (SEQ ID NO: 917), AD-901355 (SEQ ID NO: 391), AD-953410 (SEQ ID NO: 975), AD-953363 (SEQ ID NO: 909), AD-953411 (SEQ ID NO: 974), AD-953350 (SEQ ID NO: 914), or AD-953375 (SEQ ID NO: 920). In some embodiments, the portion is a portion of a corresponding chemically modified sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the sense strand and the antisense strand of the dsRNA agent comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1020574 (SEQ ID NO: 4200 and 4212), AD-901094 (SEQ ID NO: 4201 and 4213), AD-1020575 (SEQ ID NO: 4202 and 4214), AD-901100 (SEQ ID NO: 4203 and 4215), AD-901101 (SEQ ID NO: 4204 and 4216), AD-901113 (SEQ ID NO: 4205 and 4217), AD-901123 (SEQ ID NO: 4206 and 4218), AD-901124 (SEQ ID NO: 4207 and 4219), AD-901158 (SEQ ID NO: 4208 and 4220), AD-901159 (SEQ ID NO: 4209 and 4221), AD-1020573 (SEQ ID NO: 4210 and 4222), or AD-1023143 (SEQ ID NO: 4211 and 4223). In some embodiments, the sense strand and antisense strand comprises the corresponding chemically modified sense sequence and antisense sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, the sense strand and the antisense strand of the dsRNA agent comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-953374 (SEQ ID NO: 813 and 943), AD-953504 (SEQ ID NO: 1297 and 1427), AD-953481 (SEQ ID NO: 1298 and 1428), AD-953351 (SEQ ID NO: 800 and 930), AD-901356 (SEQ ID NO: 261 and 390), AD-953344 (SEQ ID NO: 787 and 917), AD-901355 (SEQ ID NO: 262 and 391), AD-953410 (SEQ ID NO: 845 and 975), AD-953363 (SEQ ID NO: 779 and 909), AD-953411 (SEQ ID NO: 844 and 974), AD-953350 (SEQ ID NO: 784 and 914), or AD-953375 (SEQ ID NO: 790 and 920). In some embodiments, the sense strand and antisense strand comprises the corresponding chemically modified sense sequence and antisense sequence provided in Tables 2A, 3A, 4A, or Table 18A.


In some embodiments, at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties. In some embodiments, the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent. In some embodiments, the lipophilic moiety is conjugated via a linker or carrier. In some embodiments, lipophilicity of the lipophilic moiety, measured by log Kow, exceeds 0. In some embodiments, In some embodiments, the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2. In some embodiments, the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


In some embodiments, the dsRNA agent comprises at least one modified nucleotide. In some embodiments, no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides. In some embodiments, all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.


In some embodiments, at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O—(N-methylacetamide) modified nucleotide; and combinations thereof. In some embodiments, no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand include modifications other than 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, unlocked nucleic acids (UNA) or glycerol nucleic acid (GNA).


In some embodiments, the dsRNA comprises a non-nucleotide spacer (wherein optionally the non-nucleotide spacer comprises a C3-C6 alkyl) between two of the contiguous nucleotides of the sense strand or between two of the contiguous nucleotides of the antisense strand.


In some embodiments, each strand is no more than 30 nucleotides in length. In some embodiments, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In some embodiments, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In some embodiments, at least one strand comprises a 3′ overhang of 2 nucleotides.


In some embodiments, the double stranded region is 15-30 nucleotide pairs in length. In some embodiments, the double stranded region is 17-23 nucleotide pairs in length. In some embodiments, the double stranded region is 17-25 nucleotide pairs in length. In some embodiments, the double stranded region is 23-27 nucleotide pairs in length. In some embodiments, the double stranded region is 19-21 nucleotide pairs in length. In some embodiments, the double stranded region is 21-23 nucleotide pairs in length. In some embodiments, each strand has 19-30 nucleotides. In some embodiments, each strand has 19-23 nucleotides. In some embodiments, each strand has 21-23 nucleotides.


In some embodiments, the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage. In some embodiments, the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand. In some embodiments, the strand is the antisense strand. In some embodiments, the strand is the sense strand.


In some embodiments, the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand. In some embodiments, the strand is the antisense strand. In some embodiments, the strand is the sense strand.


In some embodiments, each of the 5′- and 3′-terminus of one strand comprises a phosphorothioate or methylphosphonate internucleotide linkage. In some embodiments, the strand is the antisense strand.


In some embodiments, the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


In some embodiments, the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


In some embodiments, one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand. In some embodiments, the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.


In some embodiments, the internal positions include all positions except the terminal two positions from each end of the at least one strand. In some embodiments, the internal positions include all positions except the terminal three positions from each end of the at least one strand. In some embodiments, the internal positions exclude a cleavage site region of the sense strand. In some embodiments, the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand. In some embodiments, the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand. In some embodiments, the internal positions exclude a cleavage site region of the antisense strand. In some embodiments, the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand. In some embodiments, the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand. In some embodiments, the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


In some embodiments, the positions in the double stranded region exclude a cleavage site region of the sense strand.


In some embodiments, the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand. In some embodiments, the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand. In some embodiments, the lipophilic moiety is conjugated to position 16 of the antisense strand. In some embodiments, the lipophilic moiety is conjugated to position 6, counting from the 5′-end of the sense strand.


In some embodiments, the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound. In some embodiments, the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain. In some embodiments, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.


In some embodiments, the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region. In some embodiments, the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


In some embodiments, the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


In some embodiments, the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


In some embodiments, the lipophilic moiety or targeting ligand is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


In some embodiments, the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


In some embodiments, the dsRNA agent further comprises a targeting ligand, e.g., a ligand that targets an ocular tissue or a liver tissue. In some embodiments, the ocular tissue is a retinal pigment epithelium (RPE) or choroid tissue, e.g., a choroid vessel.


In some embodiments, the ligand is conjugated to the sense strand. In some embodiments, the ligand is conjugated to the 3′ end or the 5′ end of the sense strand. In some embodiments, the ligand is conjugated to the 3′ end of the sense strand.


In some embodiments, the ligand comprises N-acetylgalactosamine (GalNAc). In some embodiments, the targeting ligand comprises one or more GalNAc conjugates or one or more GalNAc derivatives. In some embodiments, the ligand is one or more GalNAc conjugates or one or more GalNAc derivatives are attached through a monovalent linker, or a bivalent, trivalent, or tetravalent branched linker. In some embodiments, the ligand is




embedded image


In some embodiments, the dsRNA agent is conjugated to the ligand as shown in the following schematic




embedded image


wherein X is O or S. In some embodiments, the X is O.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration, a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


In some embodiments, the dsRNA agent further comprises a phosphate or phosphate mimic at the 5′-end of the antisense strand. In some embodiments, the phosphate mimic is a 5′-vinyl phosphonate (VP).


In some embodiments, a cell described herein, e.g., a human cell, was produced by a process comprising contacting a human cell with the dsRNA agent described herein.


In some embodiments, a pharmaceutical composition described herein comprises the dsRNA agent and a lipid formulation.


In some embodiments (e.g., embodiments of the methods described herein), the cell is within a subject. In some embodiments, the subject is a human. In some embodiments, the level of VEGF-A mRNA is inhibited by at least 50%. In some embodiments, the level of VEGF-A protein is inhibited by at least 50%. In some embodiments, the expression of VEGF-A is inhibited by at least 50%. In some embodiments, inhibiting expression of VEGF-A decreases the VEGF-A protein level in a biological sample (e.g., an aqueous ocular fluid sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. In some embodiments, inhibiting expression of VEGF-A gene decreases the VEGF-A mRNA level in a biological sample (e.g., an aqueous ocular fluid sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.


In some embodiments, the subject has been diagnosed with a VEGF-A-associated disorder. In some embodiments, the subject meets at least one diagnostic criterion for a VEGF-A-associated disorder. In some embodiments, the VEGF-A associated disorder is wet age-related macular degeneration (wet AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal vein occlusion (RVO), macular edema following retinal vein occlusion (MEfRVO), retinopathy of prematurity (ROP), or myopic choroidal neovascularization (mCNV). In some embodiments, the VEGF-A associated disorder is macular edema, e.g., diabetic macular edema.


In some embodiments, the ocular cell or tissue is RPE, a retinal cell, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, a photoreceptor cell, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


In some embodiments, the VEGF-A-associated disorder is an angiogenic ocular disorder. In some embodiments, the angiogenic ocular disorder is caused by or associated with the growth or proliferation of blood vessels. In some embodiments, the angiogenic ocular disorder is caused by or associated with ocular neovascularization. In some embodiments, the angiogenic ocular disorder is AMD, DR, DME, RVO, MEfRVO, ROP, or mCNV.


In some embodiments, treating comprises amelioration of at least one sign or symptom of the disorder. In some embodiments, the at least one sign or symptom includes a measure of one or more of angiogenesis, choroidal neovascularization, ocular inflammation, visual acuity, or presence, level, or activity of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein).


In some embodiments, a level of the VEGF-A that is higher than a reference level is indicative that the subject has an angiogenic ocular disorder. In some embodiments, treating comprises prevention of progression of the disorder. In some embodiments, the treating comprises one or more of (a) inhibiting angiogenesis; (b) inhibiting or reducing the expression or activity of VEGF-A; (c) inhibiting choroidal neovascularization; (d) inhibiting growth of new blood vessels in the choriocapillaris; (e) reducing retinal thickness; (f) increasing visual acuity; or (g) reducing intraocular inflammation.


In some embodiments, the treating results in at least a 30% mean reduction from baseline of VEGF-A mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel. In some embodiments, the treating results in at least a 60% mean reduction from baseline of VEGF-A mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel. In some embodiments, the treating results in at least a 90% mean reduction from baseline of VEGF-A mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


In some embodiments, after treatment the subject experiences at least an 8-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina. In some embodiments, treating results in at least a 12-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina. In some embodiments, treating results in at least a 16-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina.


In some embodiments, the subject is human.


In some embodiments, the dsRNA agent is administered at a dose of about 0.01 mg/kg to about 50 mg/kg.


In some embodiments, the dsRNA agent is administered to the subject intraocularly. In some embodiments, the intraocular administration comprises intravitreal administration, e.g., intravitreal injection; transscleral administration, e.g., transscleral injection; subconjunctival administration, e.g., subconjunctival injection; retrobulbar administration, e.g., retrobulbar injection; intracameral administration, e.g., intracameral injection, or subretinal administration, e.g., subretinal injection.


In some embodiments, the dsRNA agent is administered to the subject intravenously. In some embodiments, the dsRNA agent is administered to the subject topically.


In some embodiments, a method described herein further comprises measuring a level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) in the subject. In some embodiments, measuring the level of VEGF-A in the subject comprises measuring the level of VEGF-A protein in a biological sample from the subject (e.g., an aqueous ocular fluid sample). In some embodiments, a method described herein further comprises performing a blood test, an imaging test, or an aqueous ocular fluid biopsy (e.g., an aqueous humor tap).


In some embodiments, a method described herein further measuring level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) in the subject is performed prior to treatment with the dsRNA agent or the pharmaceutical composition. In some embodiments, upon determination that a subject has a level of VEGF-A that is greater than a reference level, the dsRNA agent or the pharmaceutical composition is administered to the subject. In some embodiments, measuring level of VEGF-A in the subject is performed after treatment with the dsRNA agent or the pharmaceutical composition.


In some embodiments, a method described herein further comprises treating the subject with a therapy suitable for treatment or prevention of a VEGF-A-associated disorder, e.g., wherein the therapy comprises photodynamic therapy, photocoagulation therapy, or vitrectomy. In some embodiments, a method described herein further comprises administering to the subject an additional agent suitable for treatment or prevention of a VEGF-A-associated disorder. In some embodiments, the additional agent comprises a steroid, a non-steroidal anti-inflammatory agent, or an anti-VEGF-A agent.


In some embodiments, the anti-VEGF-A agent comprises a fusion protein or an anti-VEGF-A antibody or antigen-binding fragment thereof (e.g., an anti-VEGF-A antibody molecule).


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.


The details of various embodiments of the disclosure are set forth in the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and the drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-64228 (SEQ ID NO: 4162 and 4163), AD-953374 (SEQ ID NO: 553 and 683), AD-953504 (SEQ ID NO: 1037 and 1167), AD-953336 (SEQ ID NO: 518 and 648), AD-953337 (SEQ ID NO: 522 and 652), AD-901376 (SEQ ID NO: 4157 and 131), AD-953364 (SEQ ID NO: 567 and 697). FIG. 1B depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-953340 (SEQ ID NO: 517 and 647), AD-953351 (SEQ ID NO: 540 and 670), AD-953342 (SEQ ID NO: 523 and 653), AD-953308 (SEQ ID NO: 579 and 709), AD-953344 (SEQ ID NO: 527 and 657), AD-953339 (SEQ ID NO: 528 and 658), and AD-953363 (SEQ ID NO: 519 and 649). For each siRNA, “F” is the “2′-fluoro” modification, OMe is a methoxy group, GNA refers to a glycol nucleic acid, “DNA” refers to a DNA base, 2-C16 refers to the targeting ligand, and PS refers to the phosphorothioate linkage.



FIG. 2 is a graph depicting the percent VEGF-A message remaining normalized to PBS in mice on day 14 post-treatment with the exemplary duplexes indicated on the X-axis (from left to right: PBS control, naïve control, AAV positive control (AD-64228), AD-901376.2, AD-953308.2, AD-953336.2, AD-953337.2, AD-953339.2, AD-953340.2, AD-953342.2, AD-953344.2, AD-953351.2, AD-953363.2, AD-953364.2, AD-953374.2, AD-953504.2).



FIG. 3A depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-901349 (SEQ ID NO: 4156 and 130), AD-953481 (SEQ ID NO: 1038 and 1168), AD-901356 (SEQ ID NO: 3 and 132), AD-901355 (SEQ ID NO: 4 and 133), AD-953365 (SEQ ID NO: 552 and 682), AD-953410 (SEQ ID NO: 585 and 715), AD-953411 (SEQ ID NO: 584 and 714). FIG. 3B depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-953338 (SEQ ID NO: 520 and 650), AD-953350 (SEQ ID NO: 524 and 654), AD-953375 (SEQ ID NO: 530 and 660), AD-953341 (SEQ ID NO: 532 and 662), AD-953370 (SEQ ID NO: 533 and 663), AD-953386 (SEQ ID NO: 541 and 671), AD-64958 (SEQ ID NO: 5003 and 5004). For each siRNA, “F” is the “2′-fluoro” modification, OMe is a methoxy group, GNA refers to a glycol nucleic acid, 2-C16 refers to the targeting ligand, and PS refers to the phosphorothioate linkage.



FIG. 4 is a graph depicting the percent VEGF-A message remaining normalized to PBS in mice on day 14 post-treatment with the exemplary duplexes indicated on the X-axis (from left to right: PBS control, naïve control, AD-901349.1, AD-953481.1, AD-901356.1, AD-901355.1, AD-953365.1, AD-953410.1, AD-953411.1, AD-953338.1, AD-953350.1, AD-953375.1, AD-953341.1, AD-953370.1, AD-953386.1, and AD-64958 (ELF8 TTR control).



FIG. 5A depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-1397050 (SEQ ID NO: 5005 and 3936), AD-1397051 (SEQ ID NO: 5006 and 3918), AD-1397052 (SEQ ID NO: 10 and 3957), AD-1397053 (SEQ ID NO: 5007 and 3924), AD-1397054 (SEQ ID NO: 5008 and 2640), AD-1397055 (SEQ ID NO: 5009 and 2775). FIG. 5B depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-1397056 (SEQ ID NO: 5010 and 2776), AD-1397058 (SEQ ID NO: 5011 and 3953), AD-1397059 (SEQ ID NO: 5012 and 3889), AD-1397060 (SEQ ID NO: 5013 and 3902), AD-1397061 (SEQ ID NO: 5014 and 3932), and AD-1397062 (SEQ ID NO: 5015 and 3944). FIG. 5C depicts the sequences and chemistry of the exemplary VEGF-A siRNAs including AD-1397064 (SEQ ID NO: 5016 and 3938), AD-1397065 (SEQ ID NO: 5017 and 3965), AD-1397066 (SEQ ID NO: 5018 and 3962), AD-1397067 (SEQ ID NO: 5019 and 3971), AD-1397068 (SEQ ID NO: 1044 and 3901), AD-1397069 (SEQ ID NO: 5020 and 3928), and AD-64958 (SEQ ID NO: 5003 and 5004). For each siRNA, “F” is the “2′-fluoro” modification, OMe is a methoxy group, GNA refers to a glycol nucleic acid, “(A2p)” refers to adenosine 2′-phosphate, “(C2p)” refers to cytosine 2′-phosphate, “(U2p)” refers to uracil 2′-phosphate, “DNA” refers to a DNA base, 2-C16 refers to the targeting ligand, and PS refers to the phosphorothioate linkage.



FIG. 6 is a graph depicting the percent VEGF-A message remaining normalized to PBS in mice on day 14 post-treatment with the exemplary duplexes indicated on the X-axis (from left to right: PBS control, naïve control, AD-1397050.2, AD-1397051.2, AD-1397052.2, AD-1397053.2, AD-1397054.2, AD-1397055.2, AD-1397056.2, AD-1397058.2, AD-1397059.2, AD-1397060.2, AD-1397061.2, AD-1397062.2, AD-1397064.2, AD-1397065.2, AD-1397066.2, AD-1397067.2, AD-1397068.2, AD-1397069.2, and AD-64958.100.





DETAILED DESCRIPTION

iRNA directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Described herein are iRNAs and methods of using them for modulating (e.g., inhibiting) the expression of VEGF-A. Also provided are compositions and methods for treatment of disorders related to VEGF-A expression, such as an angiogenic ocular disorder (e.g., wet age-related macular degeneration (wet AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal vein occlusion (RVO), macular edema following retinal vein occlusion (MEfRVO), retinopathy of prematurity (ROP), or myopic choroidal neovascularization (mCNV)).


Human VEGF-A is a dimeric glycoprotein of approximately 40 kDa and is a potent endothelial cell mitogen with a role in proliferation, migration, and tube formation leading to angiogenic growth of new blood vessels. VEGF-A is typically expressed and secreted by a variety of tissues including the retinal pigmented epithelium (RPE), retinal tissues, astrocytes, Müller cells, photoreceptor cells, endothelial cells (e.g., vascular endothelial cells), retinal blood vessels (e.g., including endothelial cells and vascular smooth muscle cells), choroid tissue, e.g., a choroid vessel, and ganglion cells. Several angiogenic ocular disorders are associated with pathological angiogenesis, including wet AMD, DR, DME, RVO, MEfRVO, ROP, and mCNV. Without wishing to be bound by theory, VEGF-A may exacerbate the pathogenesis of angiogenic ocular disorders, e.g., by increasing vascular permeability and promoting neovascularization.


The following description discloses how to make and use compositions containing iRNAs to modulate (e.g., inhibit) the expression of VEGF-A, as well as compositions and methods for treating disorders related to expression of VEGF-A.


In some aspects, pharmaceutical compositions containing VEGF-A iRNA and a pharmaceutically acceptable carrier, methods of using the compositions to inhibit expression of VEGF-A, and methods of using the pharmaceutical compositions to treat disorders related to expression of VEGF-A (e.g., angiogenic ocular disorders) are featured herein.


I. Definitions

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below. If there is an apparent discrepancy between the usage of a term in other parts of this specification and its definition provided in this section, the definition in this section shall prevail.


The term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary from, for example, between 1% and 15% of the stated number or numerical range.


The term “at least” prior to a number or series of numbers is understood to include the number adjacent to the term “at least”, and all subsequent numbers or integers that could logically be included, as clear from context. For example, the number of nucleotides in a nucleic acid molecule must be an integer. For example, “at least 17 nucleotides of a 20-nucleotide nucleic acid molecule” means that 17, 18, 19, or 20 nucleotides have the indicated property. When at least is present before a series of numbers or a range, it is understood that “at least” can modify each of the numbers in the series or range.


As used herein, “no more than” or “less than” is understood as the value adjacent to the phrase and logical lower values or integers, as logical from context, to zero. For example, a duplex with mismatches to a target site of “no more than 2 nucleotides” has a 2, 1, or 0 mismatches. When “no more than” is present before a series of numbers or a range, it is understood that “no more than” can modify each of the numbers in the series or range.


As used herein, “up to” as in “up to 10” is understood as up to and including 10, i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


Ranges provided herein are understood to include all individual integer values and all subranges within the ranges.


The terms “activate,” “enhance,” “up-regulate the expression of,” “increase the expression of,” and the like, in so far as they refer to a VEGF-A gene, herein refer to the at least partial activation of the expression of a VEGF-A gene, as manifested by an increase in the amount of VEGF-A mRNA, which may be isolated from or detected in a first cell or group of cells in which a VEGF-A gene is transcribed and which has or have been treated such that the expression of a VEGF-A gene is increased, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells).


In some embodiments, expression of a VEGF-A gene is activated by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA as described herein. In some embodiments, a VEGF-A gene is activated by at least about 60%, 70%, or 80% by administration of an iRNA featured in the disclosure. In some embodiments, expression of a VEGF-A gene is activated by at least about 85%, 90%, or 95% or more by administration of an iRNA as described herein. In some embodiments, the VEGF-A gene expression is increased by at least 1-fold, at least 2-fold, at least 5-fold, at least 10-fold, at least 50-fold, at least 100-fold, at least 500-fold, at least 1000-fold or more in cells treated with an iRNA as described herein compared to the expression in an untreated cell. Activation of expression by small dsRNAs is described, for example, in Li et al., 2006 Proc. Natl. Acad. Sci. U.S.A. 103:17337-42, and in US2007/0111963 and US2005/226848, each of which is incorporated herein by reference.


The terms “silence,” “inhibit expression of,” “down-regulate expression of,” “suppress expression of,” and the like, in so far as they refer to VEGF-A, herein refer to the at least partial suppression of the expression of VEGF-A, as assessed, e.g., based on VEGF-A mRNA expression, VEGF-A protein expression, or another parameter functionally linked to VEGF-A expression. For example, inhibition of VEGF-A expression may be manifested by a reduction of the amount of VEGF-A mRNA which may be isolated from or detected in a first cell or group of cells in which VEGF-A is transcribed and which has or have been treated such that the expression of VEGF-A is inhibited, as compared to a control. The control may be a second cell or group of cells substantially identical to the first cell or group of cells, except that the second cell or group of cells have not been so treated (control cells). The degree of inhibition is usually expressed as a percentage of a control level, e.g.,









(

mRNA


in


control


cells

)

-

(

mRNA


in


treated


cells

)



(

mRNA


in


control


cells

)



•100

%




Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to VEGF-A expression, e.g., the amount of protein encoded by a VEGF-A gene. The reduction of a parameter functionally linked to VEGF-A expression may similarly be expressed as a percentage of a control level. In principle, VEGF-A silencing may be determined in any cell expressing VEGF-A, either constitutively or by genomic engineering, and by any appropriate assay.


For example, in certain instances, expression of VEGF-A is suppressed by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of an iRNA disclosed herein. In some embodiments, VEGF-A is suppressed by at least about 60%, 65%, 70%, 75%, or 80% by administration of an iRNA disclosed herein. In some embodiments, VEGF-A is suppressed by at least about 85%, 90%, 95%, 98%, 99%, or more by administration of an iRNA as described herein.


The term “antisense strand” or “guide strand” refers to the strand of an iRNA, e.g., a dsRNA, which includes a region that is substantially complementary to a target sequence.


As used herein, the term “region of complementarity” refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches may be in the internal or terminal regions of the molecule. In some embodiments, the region of complementarity comprises 0, 1, or 2 mismatches.


The term “sense strand” or “passenger strand” as used herein, refers to the strand of an iRNA that includes a region that is substantially complementary to a region of the antisense strand as that term is defined herein.


The terms “blunt” or “blunt ended” as used herein in reference to a dsRNA mean that there are no unpaired nucleotides or nucleotide analogs at a given terminal end of a dsRNA, i.e., no nucleotide overhang. One or both ends of a dsRNA can be blunt. Where both ends of a dsRNA are blunt, the dsRNA is said to be blunt ended. To be clear, a “blunt ended” dsRNA is a dsRNA that is blunt at both ends, i.e., no nucleotide overhang at either end of the molecule. Most often such a molecule will be double-stranded over its entire length.


As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.


Complementary sequences within an iRNA, e.g., within a dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 5, 4, 3 or 2 mismatched base pairs upon hybridization for a duplex up to 30 base pairs, while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of gene expression via a RISC pathway. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.


Complementary sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but are not limited to, G:U Wobble or Hoogstein base pairing.


The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of an iRNA agent and a target sequence, as will be understood from the context of their use.


As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding a VEGF-A protein). For example, a polynucleotide is complementary to at least a part of a VEGF-A mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding VEGF-A. The term “complementarity” refers to the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.


As used herein, the term “region of complementarity” refers to the region of one nucleotide sequence agent that is substantially complementary to another sequence, e.g., the region of a sense sequence and corresponding antisense sequence of a dsRNA, or the antisense strand of an iRNA and a target sequence, e.g., a VEGF-A nucleotide sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches can be in the internal or terminal regions of the antisense strand of the iRNA. Generally, the most tolerated mismatches are in the terminal regions, e.g., within 5, 4, 3, or 2 nucleotides of the 5′- or 3′-terminus of the iRNA agent.


“Contacting,” as used herein, includes directly contacting a cell, as well as indirectly contacting a cell. For example, a cell within a subject may be contacted when a composition comprising an iRNA is administered (e.g., intraocularly, topically, or intravenously) to the subject.


“Introducing into a cell,” when referring to an iRNA, means facilitating or effecting uptake or absorption into the cell. Absorption or uptake of an iRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; an iRNA may also be “introduced into a cell,” wherein the cell is part of a living organism. In such an instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, iRNA can be injected into a tissue site or administered systemically. In vivo delivery can also be by a β-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein below or known in the art. As used herein, a “disorder related to VEGF-A expression,” a “disease related to VEGF-A expression,” a “pathological process related to VEGF-A expression,” “a VEGF-A-associated disorder,” “a VEGF-A-associated disease,” or the like includes any condition, disorder, or disease in which VEGF-A expression is altered (e.g., decreased or increased relative to a reference level, e.g., a level characteristic of a non-diseased subject). In some embodiments, VEGF-A expression is decreased. In some embodiments, VEGF-A expression is increased. In some embodiments, the decrease or increase in VEGF-A expression is detectable in a tissue sample from the subject (e.g., in an aqueous ocular fluid sample). The decrease or increase may be assessed relative the level observed in the same individual prior to the development of the disorder or relative to other individual(s) who do not have the disorder. The decrease or increase may be limited to a particular organ, tissue, or region of the body (e.g., the eye). VEGF-A-associated disorders include, but are not limited to, angiogenic ocular disorders.


The term “angiogenic ocular disorder,” as used herein, means any disease of the eye that is caused by or associated with the growth or proliferation of blood vessels or by blood vessel leakage. Non-limiting examples of angiogenic ocular disorders that are treatable using methods provided herein include age-related macular degeneration (e.g., wet AMD, exudative AMD, etc.), retinal vein occlusion (RVO), central retinal vein occlusion (CRVO; e.g., macular edema following RVO (MEfRVO)), branch retinal vein occlusion (BRVO), retinopathy of prematurity (ROP), diabetic macular edema (DME), choroidal neovascularization (CNV; e.g., myopic CNV), iris neovascularization, neovascular glaucoma, post-surgical fibrosis in glaucoma, proliferative retinopathy, proliferative vitreoretinopathy (PVR), optic disc neovascularization, corneal neovascularization, retinal neovascularization, vitreal neovascularization, pannus, pterygium, vascular retinopathy, von Hippel-Lindau disease, histoplasmosis, and diabetic retinopathies.


The term “double-stranded RNA,” “dsRNA,” or “siRNA” as used herein, refers to an iRNA that includes an RNA molecule or complex of molecules having a hybridized duplex region that comprises two anti-parallel and substantially complementary nucleic acid strands, which will be referred to as having “sense” and “antisense” orientations with respect to a target RNA. The duplex region can be of any length that permits specific degradation of a desired target RNA, e.g., through a RISC pathway, but will typically range from 9 to 36 base pairs in length, e.g., 15-30 base pairs in length. Considering a duplex between 9 and 36 base pairs, the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, or 36 and any sub-range therein between, including, but not limited to 15-30 base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs, 20-23 base pairs, 20-22 base pairs, 20-21 base pairs, 21-30 base pairs, 21-26 base pairs, 21-25 base pairs, 21-24 base pairs, 21-23 base pairs, or 21-22 base pairs. dsRNAs generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length. One strand of the duplex region of a dsDNA comprises a sequence that is substantially complementary to a region of a target RNA. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules. Where the duplex region is formed from two strands of a single molecule, the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop”) between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure. The hairpin loop can comprise at least one unpaired nucleotide; in some embodiments the hairpin loop can comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 20, at least 23 or more unpaired nucleotides. Where the two substantially complementary strands of a dsRNA are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. In some embodiments, the two strands are connected covalently by means other than a hairpin loop, and the connecting structure is a linker.


In some embodiments, the iRNA agent may be a “single-stranded siRNA” that is introduced into a cell or organism to inhibit a target mRNA. In some embodiments, single-stranded RNAi agents can bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucleotides and are optionally chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Pat. No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucleotide sequences described herein (e.g., sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B) may be used as a single-stranded siRNA as described herein and optionally as chemically modified, e.g., as described herein, e.g., by the methods described in Lima et al., (2012) Cell 150:883-894.


In some embodiments, an RNA interference agent includes a single stranded RNA that interacts with a target RNA sequence to direct the cleavage of the target RNA. Without wishing to be bound by theory, long double stranded RNA introduced into cells is broken down into siRNA by a Type III endonuclease known as Dicer (Sharp et al., Genes Dev. 2001, 15:485). Dicer, a ribonuclease-III-like enzyme, processes the dsRNA into 19-23 base pair short interfering RNAs with characteristic two base 3′ overhangs (Bernstein, et al., (2001) Nature 409:363). The siRNAs are then incorporated into an RNA-induced silencing complex (RISC) where one or more helicases unwind the siRNA duplex, enabling the complementary antisense strand to guide target recognition (Nykanen, et al., (2001) Cell 107:309). Upon binding to the appropriate target mRNA, one or more endonucleases within the RISC cleaves the target to induce silencing (Elbashir, et al., (2001) Genes Dev. 15:188). Thus, in some embodiments, the disclosure relates to a single stranded RNA that promotes the formation of a RISC complex to effect silencing of the target gene.


“G,” “C,” “A,” “T” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, thymidine and uracil as a base, respectively. However, it will be understood that the terms “deoxyribonucleotide,” “ribonucleotide,” or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of dsRNA featured in the disclosure by a nucleotide containing, for example, inosine. In another example, adenine and cytosine anywhere in the oligonucleotide can be replaced with guanine and uracil, respectively to form G-U Wobble base pairing with the target mRNA. Sequences containing such replacement moieties are suitable for the compositions and methods featured in the disclosure.


As used herein, the term “iRNA,” “RNAi”, “iRNA agent,” or “RNAi agent” or “RNAi molecule” refers to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript, e.g., via an RNA-induced silencing complex (RISC) pathway. In some embodiments, an iRNA as described herein effects inhibition of VEGF-A expression, e.g., in a cell or mammal. Inhibition of VEGF-A expression may be assessed based on a reduction in the level of VEGF-A mRNA or a reduction in the level of the VEGF-A protein.


The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound.


The term “lipophile” or “lipophilic moiety” broadly refers to any compound or chemical moiety having an affinity for lipids. One way to characterize the lipophilicity of the lipophilic moiety is by the octanol-water partition coefficient, log Kow, where Kow is the ratio of a chemical's concentration in the octanol-phase to its concentration in the aqueous phase of a two-phase system at equilibrium. The octanol-water partition coefficient is a laboratory-measured property of a substance. However, it may also be predicted by using coefficients attributed to the structural components of a chemical which are calculated using first-principle or empirical methods (see, for example, Tetko et al., J. Chem. Inf. Comput. Sci. 41:1407-21 (2001), which is incorporated herein by reference in its entirety). It provides a thermodynamic measure of the tendency of the substance to prefer a non-aqueous or oily milieu rather than water (i.e. its hydrophilic/lipophilic balance). In principle, a chemical substance is lipophilic in character when its log Kow exceeds 0. Typically, the lipophilic moiety possesses a log Kow exceeding 1, exceeding 1.5, exceeding 2, exceeding 3, exceeding 4, exceeding 5, or exceeding 10. For instance, the log Kow of 6-amino hexanol, for instance, is predicted to be approximately 0.7. Using the same method, the log Kow of cholesteryl N-(hexan-6-ol) carbamate is predicted to be 10.7.


The lipophilicity of a molecule can change with respect to the functional group it carries. For instance, adding a hydroxyl group or amine group to the end of a lipophilic moiety can increase or decrease the partition coefficient (e.g., log Kow) value of the lipophilic moiety.


Alternatively, the hydrophobicity of the double-stranded RNAi agent, conjugated to one or more lipophilic moieties, can be measured by its protein binding characteristics. For instance, in certain embodiments, the unbound fraction in the plasma protein binding assay of the double-stranded RNAi agent could be determined to positively correlate to the relative hydrophobicity of the double-stranded RNAi agent, which could then positively correlate to the silencing activity of the double-stranded RNAi agent.


In some embodiments, the plasma protein binding assay determined is an electrophoretic mobility shift assay (EMSA) using human serum albumin protein. An exemplary protocol of this binding assay is illustrated in detail in, e.g., PCT/US2019/031170. The hydrophobicity of the double-stranded RNAi agent, measured by fraction of unbound siRNA in the binding assay, exceeds 0.15, exceeds 0.2, exceeds 0.25, exceeds 0.3, exceeds 0.35, exceeds 0.4, exceeds 0.45, or exceeds 0.5 for an enhanced in vivo delivery of siRNA.


Accordingly, conjugating the lipophilic moieties to the internal position(s) of the double-stranded RNAi agent provides optimal hydrophobicity for the enhanced in vivo delivery of siRNA.


The term “lipid nanoparticle” or “LNP” is a vesicle comprising a lipid layer encapsulating a pharmaceutically active molecule, such as a nucleic acid molecule, e.g., a RNAi agent or a plasmid from which a RNAi agent is transcribed. LNPs are described in, for example, U.S. Pat. Nos. 6,858,225, 6,815,432, 8,158,601, and 8,058,069, the entire contents of which are hereby incorporated herein by reference.


As used herein, the term “modulate the expression of,” refers to an at least partial “inhibition” or partial “activation” of a gene (e.g., VEGF-A gene) expression in a cell treated with an iRNA composition as described herein compared to the expression of the corresponding gene in a control cell. A control cell includes an untreated cell, or a cell treated with a non-targeting control iRNA.


The skilled artisan will recognize that the term “RNA molecule” or “ribonucleic acid molecule” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. Strictly speaking, a “ribonucleoside” includes a nucleoside base and a ribose sugar, and a “ribonucleotide” is a ribonucleoside with one, two or three phosphate moieties or analogs thereof (e.g., phosphorothioate). However, the terms “ribonucleoside” and “ribonucleotide” can be considered to be equivalent as used herein. The RNA can be modified in the nucleobase structure, in the ribose structure, or in the ribose-phosphate backbone structure, e.g., as described herein below. However, the molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2′-O-methyl modified nucleoside, a nucleoside comprising a 5′ phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, an acyclic nucleoside, a glycol nucleotide, a 2′-deoxy-2′-fluoro modified nucleoside, a 2′-amino-modified nucleoside, 2′-alkyl-modified nucleoside, morpholino nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof. Alternatively, or in combination, an RNA molecule can comprise at least two modified ribonucleosides, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 15, at least 20 or more, up to the entire length of the dsRNA molecule. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule. In some embodiments, modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA, e.g., via a RISC pathway. For clarity, it is understood that the term “iRNA” does not encompass a naturally occurring double stranded DNA molecule or a 100% deoxynucleoside-containing DNA molecule.


In some aspects, a modified ribonucleoside includes a deoxyribonucleoside. In such an instance, an iRNA agent can comprise one or more deoxynucleosides, including, for example, a deoxynucleoside overhang(s), or one or more deoxynucleosides within the double stranded portion of a dsRNA. In certain embodiments, the RNA molecule comprises a percentage of deoxyribonucleosides of at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95% or higher (but not 100%) deoxyribonucleosides, e.g., in one or both strands.


As used herein, the term “nucleotide overhang” refers to at least one unpaired nucleotide that protrudes from the duplex structure of an iRNA, e.g., a dsRNA. For example, when a 3′-end of one strand of a dsRNA extends beyond the 5′-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least one nucleotide; alternatively, the overhang can comprise at least two nucleotides, at least three nucleotides, at least four nucleotides, or at least five nucleotides or more. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. The overhang(s) may be on the sense strand, the antisense strand or any combination thereof. Furthermore, the nucleotide(s) of an overhang can be present on the 5′ end, 3′ end or both ends of either an antisense or sense strand of a dsRNA.


In some embodiments, the antisense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In some embodiments, the sense strand of a dsRNA has a 1-10 nucleotide overhang at the 3′ end and/or the 5′ end. In some embodiments, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.


As used herein, a “pharmaceutical composition” comprises a pharmacologically effective amount of a therapeutic agent (e.g., an iRNA) and a pharmaceutically acceptable carrier. As used herein, “pharmacologically effective amount,” “therapeutically effective amount” or simply “effective amount” refers to that amount of an agent (e.g., iRNA) effective to produce the intended pharmacological, therapeutic or preventive result. For example, in a method of treating a disorder related to VEGF-A expression (e.g., an angiogenic ocular disorder), an effective amount includes an amount effective to reduce one or more symptoms associated with the disorder (e.g., an amount effective to (a) inhibit angiogenesis; (b) inhibit or reduces the expression or activity of VEGF-A; (c) inhibit choroidal neovascularization; (d) inhibit growth of new blood vessels in the choriocapillaris; (e) reduce retinal thickness; (f) increase visual acuity; or (g) reduce intraocular inflammation) or an amount effective to reduce the risk of developing conditions associated with the disorder. For example, if a given clinical treatment is considered effective when there is at least a 10% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to obtain at least a 10% reduction in that parameter. For example, a therapeutically effective amount of an iRNA targeting VEGF-A can reduce a level of VEGF-A mRNA or a level of VEGF-A protein by any measurable amount, e.g., by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.


The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein below.


As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle. A SNALP represents a vesicle of lipids coating a reduced aqueous interior comprising a nucleic acid such as an iRNA or a plasmid from which an iRNA is transcribed. SNALPs are described, e.g., in U.S. Patent Application Publication Nos. 2006/0240093, 2007/0135372, and in International Application No. WO 2009/082817. These applications are incorporated herein by reference in their entirety. In some embodiments, the SNALP is a SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle.


As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.


As used herein, a “subject” to be treated according to the methods described herein, includes a human or non-human animal, e.g., a mammal. The mammal may be, for example, a rodent (e.g., a rat or mouse) or a primate (e.g., a monkey). In some embodiments, the subject is a human.


A “subject in need thereof” includes a subject having, suspected of having, or at risk of developing a disorder related to VEGF-A expression, e.g., overexpression (e.g., an angiogenic ocular disorder). In some embodiments, the subject has, or is suspected of having, a disorder related to VEGF-A expression or overexpression. In some embodiments, the subject is at risk of developing a disorder related to VEGF-A expression or overexpression.


As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene, e.g., VEGF-A, including mRNA that is a product of RNA processing of a primary transcription product. The target portion of the sequence will be at least long enough to serve as a substrate for iRNA-directed cleavage at or near that portion. For example, the target sequence will generally be from 9-36 nucleotides in length, e.g., 15-30 nucleotides in length, including all sub-ranges therebetween. As non-limiting examples, the target sequence can be from 15-30 nucleotides, 15-26 nucleotides, 15-23 nucleotides, 15-22 nucleotides, 15-21 nucleotides, 15-20 nucleotides, 15-19 nucleotides, 15-18 nucleotides, 15-17 nucleotides, 18-30 nucleotides, 18-26 nucleotides, 18-23 nucleotides, 18-22 nucleotides, 18-21 nucleotides, 18-20 nucleotides, 19-30 nucleotides, 19-26 nucleotides, 19-23 nucleotides, 19-22 nucleotides, 19-21 nucleotides, 19-20 nucleotides, 20-30 nucleotides, 20-26 nucleotides, 20-25 nucleotides, 20-24 nucleotides, 20-23 nucleotides, 20-22 nucleotides, 20-21 nucleotides, 21-30 nucleotides, 21-26 nucleotides, 21-25 nucleotides, 21-24 nucleotides, 21-23 nucleotides, or 21-22 nucleotides.


As used herein, the phrases “therapeutically effective amount” and “prophylactically effective amount” and the like refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of any disorder or pathological process related to VEGF-A expression (e.g., an angiogenic ocular disorder). The specific amount that is therapeutically effective may vary depending on factors known in the art, such as, for example, the type of disorder or pathological process, the patient's history and age, the stage of the disorder or pathological process, and the administration of other therapies.


In the context of the present disclosure, the terms “treat,” “treatment,” and the like mean to prevent, delay, relieve or alleviate at least one symptom associated with a disorder related to VEGF-A expression, or to slow or reverse the progression or anticipated progression of such a disorder. For example, the methods featured herein, when employed to treat an angiogenic ocular disorder, may serve to reduce or prevent one or more symptoms of the angiogenic ocular disorder, as described herein, or to reduce the risk or severity of associated conditions. Thus, unless the context clearly indicates otherwise, the terms “treat,” “treatment,” and the like are intended to encompass prophylaxis, e.g., prevention of disorders and/or symptoms of disorders related to VEGF-A expression. Treatment can also mean prolonging survival as compared to expected survival in the absence of treatment.


By “lower” in the context of a disease marker or symptom is meant any decrease, e.g., a statistically or clinically significant decrease in such level. The decrease can be, for example, at least 10%, at least 20%, at least 30%, at least 40%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. The decrease can be down to a level accepted as within the range of normal for an individual without such disorder.


As used herein, “VEGF-A” refers to “vascular endothelial growth factor A” the corresponding mRNA (“VEGF-A mRNA”), or the corresponding protein (“VEGF-A protein”). The sequence of a human VEGF-A mRNA transcript can be found at SEQ ID NO: 1.


II. iRNA Agents

Described herein are iRNA agents that modulate (e.g., inhibit) the expression of VEGF-A.


In some embodiments, the iRNA agent activates the expression of VEGF-A in a cell or mammal.


In some embodiments, the iRNA agent includes double-stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of VEGF-A in a cell or in a subject (e.g., in a mammal, e.g., in a human), where the dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of VEGF-A, and where the region of complementarity is 30 nucleotides or less in length, generally 19-24 nucleotides in length, and where the dsRNA, upon contact with a cell expressing VEGF-A, inhibits the expression of VEGF-A, e.g., by at least 10%, 20%, 30%, 40%, or 50%.


The modulation (e.g., inhibition) of expression of VEGF-A can be assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by Western blot. Expression of VEGF-A in cell culture, such as in COS cells, ARPE-19 cells, hTERT RPE-1 cells, HeLa cells, primary hepatocytes, HepG2 cells, primary cultured cells or in a biological sample from a subject can be assayed by measuring VEGF-A mRNA levels, such as by bDNA or TaqMan assay, or by measuring protein levels, such as by immunofluorescence analysis, using, for example, Western Blotting or flow cytometric techniques.


A dsRNA typically includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) typically includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence, derived from the sequence of an mRNA formed during the expression of VEGF-A. The other strand (the sense strand) typically includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 base pairs in length, inclusive. Similarly, the region of complementarity to the target sequence is between 15 and 30 inclusive, more generally between 18 and 25 inclusive, yet more generally between 19 and 24 inclusive, and most generally between 19 and 21 nucleotides in length, inclusive.


In some embodiments, the dsRNA is between 15 and 20 nucleotides in length, inclusive, and in other embodiments, the dsRNA is between 25 and 30 nucleotides in length, inclusive. As the ordinarily skilled person will recognize, the targeted region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a “part” of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway). dsRNAs having duplexes as short as 9 base pairs can, under some circumstances, mediate RNAi-directed RNA cleavage. Most often a target will be at least 15 nucleotides in length, e.g., 15-30 nucleotides in length.


One of skill in the art will also recognize that the duplex region is a primary functional portion of a dsRNA, e.g., a duplex region of 9 to 36, e.g., 15-30 base pairs. Thus, in some embodiments, to the extent that it becomes processed to a functional duplex of e.g., 15-30 base pairs that targets a desired RNA for cleavage, an RNA molecule or complex of RNA molecules having a duplex region greater than 30 base pairs is a dsRNA. Thus, an ordinarily skilled artisan will recognize that in some embodiments, then, an miRNA is a dsRNA. In some embodiments, a dsRNA is not a naturally occurring miRNA. In some embodiments, an iRNA agent useful to target VEGF-A expression is not generated in the target cell by cleavage of a larger dsRNA.


A dsRNA as described herein may further include one or more single-stranded nucleotide overhangs. The dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc.


In some embodiments, VEGF-A is a human VEGF-A.


In specific embodiments, the dsRNA comprises a sense strand that comprises or consists of a sense sequence selected from the sense sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B and an antisense strand that comprises or consists of an antisense sequence selected from the antisense sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B.


In some aspects, a dsRNA will include at least sense and antisense nucleotide sequences, whereby the sense strand is selected from the sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B and the corresponding antisense strand is selected from the sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B.


In these aspects, one of the two sequences is complementary to the other of the two sequences, with one of the sequences being substantially complementary to a sequence of an mRNA generated by the expression of VEGF-A. As such, a dsRNA will include two oligonucleotides, where one oligonucleotide is described as the sense strand, and the second oligonucleotide is described as the corresponding antisense strand. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides.


The skilled person is well aware that dsRNAs having a duplex structure of between 20 and 23, but specifically 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., EMBO 2001, 20:6877-6888). However, others have found that shorter or longer RNA duplex structures can be effective as well.


In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B, dsRNAs described herein can include at least one strand of a length of minimally 19 nucleotides. It can be reasonably expected that shorter duplexes having one of the sequences of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B minus only a few nucleotides on one or both ends will be similarly effective as compared to the dsRNAs described above.


In some embodiments, the dsRNA has a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B.


In some embodiments, the dsRNA has an antisense sequence that comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides of an antisense sequence provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B and a sense sequence that comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides of a corresponding sense sequence provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B.


In some embodiments, the dsRNA comprises an antisense sequence that comprises at least 15, 16, 17, 18, 19, 20, 21, 22, or 23 contiguous nucleotides of an antisense sequence provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B and a sense sequence that comprises at least 15, 16, 17, 18, 19, 20, or 21 contiguous nucleotides of a corresponding sense sequence provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B.


In some such embodiments, the dsRNA, although it comprises only a portion of the sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B is equally effective in inhibiting a level of VEGF-A expression as is a dsRNA that comprises the full-length sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A or 18B. In some embodiments, the dsRNA differs in its inhibition of a level of expression of VEGF-A by not more than 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50% inhibition compared with a dsRNA comprising the full sequence disclosed herein.


The iRNAs of Tables 5A and 5B were designed based on rat VEGF-A sequence. Without wishing to be bound by theory, VEGF-A sequence is conserved sufficiently between species such that certain iRNAs designed based on a rodent sequence have activity against a primate VEGF-A. Working Example 2 herein gives evidence of iRNAs designed based on a rodent sequence having activity against cynomolgus monkey VEGF-A.


Consequently, in some embodiments, an iRNA of Table 5A or Table 5B decreases VEGF-A protein or VEGF-A mRNA levels in a cell. In some embodiments, the cell is a rodent cell (e.g., a rat cell), or a primate cell (e.g., a cynomolgus monkey cell or a human cell). In some embodiments, VEGF-A protein or VEGF-F mRNA levels are reduced by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%. In some embodiments, the iRNA of Table 5A or 5B that inhibits VEGF-A in a human cell has less than 5, 4, 3, 2, or 1 mismatches to the corresponding portion of human VEGF-A. In some embodiments, the iRNA of Table 5A or 5B that inhibits VEGF-A in a human cell has no mismatches to the corresponding portion of human VEGF-A.


iRNAs designed based on rodent sequences can have utility, e.g., for inhibiting VEGF-A in human cells, e.g., for therapeutic purposes, or for inhibiting VEGF-A in rodent cells, e.g., for research characterizing VEGF-A in a rodent model.


In some embodiments, an iRNA described herein comprises an antisense strand comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2. In some embodiments, an iRNA described herein comprises a sense strand comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


A human VEGF-A mRNA may have the sequence of SEQ ID NO: 1 provided herein. Homo sapiens vascular endothelial growth factor A (VEGFA), transcript variant 1, mRNA









(SEQ ID NO: 1)


TCGCGGAGGCTTGGGGCAGCCGGGTAGCTCGGAGGTCGTGGCGCTGGGGG





CTAGCACCAGCGCTCTGTCGGGAGGCGCAGCGGTTAGGTGGACCGGTCAG





CGGACTCACCGGCCAGGGCGCTCGGTGCTGGAATTTGATATTCATTGATC





CGGGTTTTATCCCTCTTCTTTTTTCTTAAACATTTTTTTTTAAAACTGTA





TTGTTTCTCGTTTTAATTTATTTTTGCTTGCCATTCCCCACTTGAATCGG





GCCGACGGCTTGGGGAGATTGCTCTACTTCCCCAAATCACTGTGGATTTT





GGAAACCAGCAGAAAGAGGAAAGAGGTAGCAAGAGCTCCAGAGAGAAGTC





GAGGAAGAGAGAGACGGGGTCAGAGAGAGCGCGCGGGCGTGCGAGCAGCG





AAAGCGACAGGGGCAAAGTGAGTGACCTGCTTTTGGGGGTGACCGCCGGA





GCGCGGCGTGAGCCCTCCCCCTTGGGATCCCGCAGCTGACCAGTCGCGCT





GACGGACAGACAGACAGACACCGCCCCCAGCCCCAGCTACCACCTCCTCC





CCGGCCGGCGGCGGACAGTGGACGCGGCGGCGAGCCGCGGGCAGGGGCCG





GAGCCCGCGCCCGGAGGCGGGGTGGAGGGGGTCGGGGCTCGCGGCGTCGC





ACTGAAACTTTTCGTCCAACTTCTGGGCTGTTCTCGCTTCGGAGGAGCCG





TGGTCCGCGCGGGGGAAGCCGAGCCGAGCGGAGCCGCGAGAAGTGCTAGC





TCGGGCCGGGAGGAGCCGCAGCCGGAGGAGGGGGAGGAGGAAGAAGAGAA





GGAAGAGGAGAGGGGGCCGCAGTGGCGACTCGGCGCTCGGAAGCCGGGCT





CATGGACGGGTGAGGCGGCGGTGTGCGCAGACAGTGCTCCAGCCGCGCGC





GCTCCCCAGGCCCTGGCCCGGGCCTCGGGCCGGGGAGGAAGAGTAGCTCG





CCGAGGCGCCGAGGAGAGCGGGCCGCCCCACAGCCCGAGCCGGAGAGGGA





GCGCGAGCCGCGCCGGCCCCGGTCGGGCCTCCGAAACCATGAACTTTCTG





CTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCTCTACCTCCACCATGC





CAAGTGGTCCCAGGCTGCACCCATGGCAGAAGGAGGAGGGCAGAATCATC





ACGAAGTGGTGAAGTTCATGGATGTCTATCAGCGCAGCTACTGCCATCCA





ATCGAGACCCTGGTGGACATCTTCCAGGAGTACCCTGATGAGATCGAGTA





CATCTTCAAGCCATCCTGTGTGCCCCTGATGCGATGCGGGGGCTGCTGCA





ATGACGAGGGCCTGGAGTGTGTGCCCACTGAGGAGTCCAACATCACCATG





CAGATTATGCGGATCAAACCTCACCAAGGCCAGCACATAGGAGAGATGAG





CTTCCTACAGCACAACAAATGTGAATGCAGACCAAAGAAAGATAGAGCAA





GACAAGAAAAAAAATCAGTTCGAGGAAAGGGAAAGGGGCAAAAACGAAAG





CGCAAGAAATCCCGGTATAAGTCCTGGAGCGTGTACGTTGGTGCCCGCTG





CTGTCTAATGCCCTGGAGCCTCCCTGGCCCCCATCCCTGTGGGCCTTGCT





CAGAGCGGAGAAAGCATTTGTTTGTACAAGATCCGCAGACGTGTAAATGT





TCCTGCAAAAACACAGACTCGCGTTGCAAGGCGAGGCAGCTTGAGTTAAA





CGAACGTACTTGCAGATGTGACAAGCCGAGGCGGTGAGCCGGGCAGGAGG





AAGGAGCCTCCCTCAGGGTTTCGGGAACCAGATCTCTCACCAGGAAAGAC





TGATACAGAACGATCGATACAGAAACCACGCTGCCGCCACCACACCATCA





CCATCGACAGAACAGTCCTTAATCCAGAAACCTGAAATGAAGGAAGAGGA





GACTCTGCGCAGAGCACTTTGGGTCCGGAGGGCGAGACTCCGGCGGAAGC





ATTCCCGGGCGGGTGACCCAGCACGGTCCCTCTTGGAATTGGATTCGCCA





TTTTATTTTTCTTGCTGCTAAATCACCGAGCCCGGAAGATTAGAGAGTTT





TATTTCTGGGATTCCTGTAGACACACCCACCCACATACATACATTTATAT





ATATATATATTATATATATATAAAAATAAATATCTCTATTTTATATATAT





AAAATATATATATTCTTTTTTTAAATTAACAGTGCTAATGTTATTGGTGT





CTTCACTGGATGTATTTGACTGCTGTGGACTTGAGTTGGGAGGGGAATGT





TCCCACTCAGATCCTGACAGGGAAGAGGAGGAGATGAGAGACTCTGGCAT





GATCTTTTTTTTGTCCCACTTGGTGGGGCCAGGGTCCTCTCCCCTGCCCA





GGAATGTGGAAGGCCAGGGCATGGGGGCAAATATGACCCAGTTTTGGGAA





CACCGACAAACCCAGCCCTGGCGCTGAGCCTCTCTACCCCAGGTCAGACG





GACAGAAAGACAGATCACAGGTACAGGGATGAGGACACCGGCTCTGACCA





GGAGTTTGGGGAGCTTCAGGACATTGCTGTGCTTTGGGGATTCCCTCCAC





ATGCTGCACGCGCATCTCGCCCCCAGGGGCACTGCCTGGAAGATTCAGGA





GCCTGGGCGGCCTTCGCTTACTCTCACCTGCTTCTGAGTTGCCCAGGAGA





CCACTGGCAGATGTCCCGGCGAAGAGAAGAGACACATTGTTGGAAGAAGC





AGCCCATGACAGCTCCCCTTCCTGGGACTCGCCCTCATCCTCTTCCTGCT





CCCCTTCCTGGGGTGCAGCCTAAAAGGACCTATGTCCTCACACCATTGAA





ACCACTAGTTCTGTCCCCCCAGGAGACCTGGTTGTGTGTGTGTGAGTGGT





TGACCTTCCTCCATCCCCTGGTCCTTCCCTTCCCTTCCCGAGGCACAGAG





AGACAGGGCAGGATCCACGTGCCCATTGTGGAGGCAGAGAAAAGAGAAAG





TGTTTTATATACGGTACTTATTTAATATCCCTTTTTAATTAGAAATTAAA





ACAGTTAATTTAATTAAAGAGTAGGGTTTTTTTTCAGTATTCTTGGTTAA





TATTTAATTTCAACTATTTATGAGATGTATCTTTTGCTCTCTCTTGCTCT





CTTATTTGTACCGGTTTTTGTATATAAAATTCATGTTTCCAATCTCTCTC





TCCCTGATCGGTGACAGTCACTAGCTTATCTTGAACAGATATTTAATTTT





GCTAACACTCAGCTCTGCCCTCCCCGATCCCCTGGCTCCCCAGCACACAT





TCCTTTGAAATAAGGTTTCAATATACATCTACATACTATATATATATTTG





GCAACTTGTATTTGTGTGTATATATATATATATATGTTTATGTATATATG





TGATTCTGATAAAATAGACATTGCTATTCTGTTTTTTATATGTAAAAACA





AAACAAGAAAAAATAGAGAATTCTACATACTAAATCTCTCTCCTTTTTTA





ATTTTAATATTTGTTATCATTTATTTATTGGTGCTACTGTTTATCCGTAA





TAATTGTGGGGAAAAGATATTAACATCACGTCTTTGTCTCTAGTGCAGTT





TTTCGAGATATTCCGTAGTACATATTTATTTTTAAACAACGACAAAGAAA





TACAGATATATCTTAAAAAAAAAAAAGCATTTTGTATTAAAGAATTTAAT





TCTGATCTCAAAAAAAAAAAAAAAAAA 






The reverse complement of SEQ ID NO: 1 is provided as SEQ ID NO: 2 herein:









(SEQ ID NO: 2)


TTTTTTTTTTTTTTTTTTGAGATCAGAATTAAATTCTTTAATACAAAATG





CTTTTTTTTTTTTAAGATATATCTGTATTTCTTTGTCGTTGTTTAAAAAT





AAATATGTACTACGGAATATCTCGAAAAACTGCACTAGAGACAAAGACGT





GATGTTAATATCTTTTCCCCACAATTATTACGGATAAACAGTAGCACCAA





TAAATAAATGATAACAAATATTAAAATTAAAAAAGGAGAGAGATTTAGTA





TGTAGAATTCTCTATTTTTTCTTGTTTTGTTTTTACATATAAAAAACAGA





ATAGCAATGTCTATTTTATCAGAATCACATATATACATAAACATATATAT





ATATATATACACACAAATACAAGTTGCCAAATATATATATAGTATGTAGA





TGTATATTGAAACCTTATTTCAAAGGAATGTGTGCTGGGGAGCCAGGGGA





TCGGGGAGGGCAGAGCTGAGTGTTAGCAAAATTAAATATCTGTTCAAGAT





AAGCTAGTGACTGTCACCGATCAGGGAGAGAGAGATTGGAAACATGAATT





TTATATACAAAAACCGGTACAAATAAGAGAGCAAGAGAGAGCAAAAGATA





CATCTCATAAATAGTTGAAATTAAATATTAACCAAGAATACTGAAAAAAA





ACCCTACTCTTTAATTAAATTAACTGTTTTAATTTCTAATTAAAAAGGGA





TATTAAATAAGTACCGTATATAAAACACTTTCTCTTTTCTCTGCCTCCAC





AATGGGCACGTGGATCCTGCCCTGTCTCTCTGTGCCTCGGGAAGGGAAGG





GAAGGACCAGGGGATGGAGGAAGGTCAACCACTCACACACACACAACCAG





GTCTCCTGGGGGGACAGAACTAGTGGTTTCAATGGTGTGAGGACATAGGT





CCTTTTAGGCTGCACCCCAGGAAGGGGAGCAGGAAGAGGATGAGGGCGAG





TCCCAGGAAGGGGAGCTGTCATGGGCTGCTTCTTCCAACAATGTGTCTCT





TCTCTTCGCCGGGACATCTGCCAGTGGTCTCCTGGGCAACTCAGAAGCAG





GTGAGAGTAAGCGAAGGCCGCCCAGGCTCCTGAATCTTCCAGGCAGTGCC





CCTGGGGGCGAGATGCGCGTGCAGCATGTGGAGGGAATCCCCAAAGCACA





GCAATGTCCTGAAGCTCCCCAAACTCCTGGTCAGAGCCGGTGTCCTCATC





CCTGTACCTGTGATCTGTCTTTCTGTCCGTCTGACCTGGGGTAGAGAGGC





TCAGCGCCAGGGCTGGGTTTGTCGGTGTTCCCAAAACTGGGTCATATTTG





CCCCCATGCCCTGGCCTTGCACATTCCTGGGCAGGGGAGAGGACCCTGGC





CCCACCAAGTGGGACAAAAAAAAGATCATGCCAGAGTCTCTCATCTCCTC





CTCTTCCCTGTCAGGATCTGAGTGGGAACATTCCCCTCCCAACTCAAGTC





CACAGCAGTCAAATACATCCAGTGAAGACACCAATAACATTAGCACTGTT





AATTTAAAAAAAGAATATATATATTTTATATATATAAAATAGAGATATTT





ATTTTTATATATATATAATATATATATATATAAATGTATGTATGTGGGTG





GGTGTGTCTACAGGAATCCCAGAAATAAAACTCTCTAATCTTCCGGGCTC





GGTGATTTAGCAGCAAGAAAAATAAAATGGCGAATCCAATTCCAAGAGGG





ACCGTGCTGGGTCACCCGCCCGGGAATGCTTCCGCCGGAGTCTCGCCCTC





CGGACCCAAAGTGCTCTGCGCAGAGTCTCCTCTTCCTTCATTTCAGGTTT





CTGGATTAAGGACTGTTCTGTCGATGGTGATGGTGTGGTGGCGGCAGCGT





GGTTTCTGTATCGATCGTTCTGTATCAGTCTTTCCTGGTGAGAGATCTGG





TTCCCGAAACCCTGAGGGAGGCTCCTTCCTCCTGCCCGGCTCACCGCCTC





GGCTTGTCACATCTGCAAGTACGTTCGTTTAACTCAAGCTGCCTCGCCTT





GCAACGCGAGTCTGTGTTTTTGCAGGAACATTTACACGTCTGCGGATCTT





GTACAAACAAATGCTTTCTCCGCTCTGAGCAAGGCCCACAGGGATGGGGG





CCAGGGAGGCTCCAGGGCATTAGACAGCAGCGGGCACCAACGTACACGCT





CCAGGACTTATACCGGGATTTCTTGCGCTTTCGTTTTTGCCCCTTTCCCT





TTCCTCGAACTGATTTTTTTTCTTGTCTTGCTCTATCTTTCTTTGGTCTG





CATTCACATTTGTTGTGCTGTAGGAAGCTCATCTCTCCTATGTGCTGGCC





TTGGTGAGGTTTGATCCGCATAATCTGCATGGTGATGTTGGACTCCTCAG





TGGGCACACACTCCAGGCCCTCGTCATTGCAGCAGCCCCCGCATCGCATC





AGGGGCACACAGGATGGCTTGAAGATGTACTCGATCTCATCAGGGTACTC





CTGGAAGATGTCCACCAGGGTCTCGATTGGATGGCAGTAGCTGCGCTGAT





AGACATCCATGAACTTCACCACTTCGTGATGATTCTGCCCTCCTCCTTCT





GCCATGGGTGCAGCCTGGGACCACTTGGCATGGTGGAGGTAGAGCAGCAA





GGCAAGGCTCCAATGCACCCAAGACAGCAGAAAGTTCATGGTTTCGGAGG





CCCGACCGGGGCCGGCGCGGCTCGCGCTCCCTCTCCGGCTCGGGCTGTGG





GGCGGCCCGCTCTCCTCGGCGCCTCGGCGAGCTACTCTTCCTCCCCGGCC





CGAGGCCCGGGCCAGGGCCTGGGGAGCGCGCGCGGCTGGAGCACTGTCTG





CGCACACCGCCGCCTCACCCGTCCATGAGCCCGGCTTCCGAGCGCCGAGT





CGCCACTGCGGCCCCCTCTCCTCTTCCTTCTCTTCTTCCTCCTCCCCCTC





CTCCGGCTGCGGCTCCTCCCGGCCCGAGCTAGCACTTCTCGCGGCTCCGC





TCGGCTCGGCTTCCCCCGCGCGGACCACGGCTCCTCCGAAGCGAGAACAG





CCCAGAAGTTGGACGAAAAGTTTCAGTGCGACGCCGCGAGCCCCGACCCC





CTCCACCCCGCCTCCGGGCGCGGGCTCCGGCCCCTGCCCGCGGCTCGCCG





CCGCGTCCACTGTCCGCCGCCGGCCGGGGAGGAGGTGGTAGCTGGGGCTG





GGGGCGGTGTCTGTCTGTCTGTCCGTCAGCGCGACTGGTCAGCTGCGGGA





TCCCAAGGGGGAGGGCTCACGCCGCGCTCCGGCGGTCACCCCCAAAAGCA





GGTCACTCACTTTGCCCCTGTCGCTTTCGCTGCTCGCACGCCCGCGCGCT





CTCTCTGACCCCGTCTCTCTCTTCCTCGACTTCTCTCTGGAGCTCTTGCT





ACCTCTTTCCTCTTTCTGCTGGTTTCCAAAATCCACAGTGATTTGGGGAA





GTAGAGCAATCTCCCCAAGCCGTCGGCCCGATTCAAGTGGGGAATGGCAA





GCAAAAATAAATTAAAACGAGAAACAATACAGTTTTAAAAAAAAATGTTT





AAGAAAAAAGAAGAGGGATAAAACCCGGATCAATGAATATCAAATTCCAG





CACCGAGCGCCCTGGCCGGTGAGTCCGCTGACCGGTCCACCTAACCGCTG





CGCCTCCCGACAGAGCGCTGGTGCTAGCCCCCAGCGCCACGACCTCCGAG





CTACCCGGCTGCCCCAAGCCTCCGCGA 






In some embodiments, an iRNA described herein includes at least 15 contiguous nucleotides from one of the sequences provided in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B, and may optionally be coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in VEGF-A.


While a target sequence is generally 15-30 nucleotides in length, there is wide variation in the suitability of particular sequences in this range for directing cleavage of any given target RNA. Various software packages and the guidelines set out herein provide guidance for the identification of optimal target sequences for any given gene target, but an empirical approach can also be taken in which a “window” or “mask” of a given size (as a non-limiting example, 21 nucleotides) is literally or figuratively (including, e.g., in silico) placed on the target RNA sequence to identify sequences in the size range that may serve as target sequences. By moving the sequence “window” progressively one nucleotide upstream or downstream of an initial target sequence location, the next potential target sequence can be identified, until the complete set of possible sequences is identified for any given target size selected. This process, coupled with systematic synthesis and testing of the identified sequences (using assays described herein or known in the art) to identify those sequences that perform optimally can identify those RNA sequences that, when targeted with an iRNA agent, mediate the best inhibition of target gene expression. Thus, it is contemplated that further optimization of inhibition efficiency can be achieved by progressively “walking the window” one nucleotide upstream or downstream of the given sequences to identify sequences with equal or better inhibition characteristics.


Further, it is contemplated that for any sequence identified, e.g., in Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B, further optimization can be achieved by systematically either adding or removing nucleotides to generate longer or shorter sequences and testing those and sequences generated by walking a window of the longer or shorter size up or down the target RNA from that point. Again, coupling this approach to generating new candidate targets with testing for effectiveness of iRNAs based on those target sequences in an inhibition assay as known in the art or as described herein can lead to further improvements in the efficiency of inhibition. Further still, such optimized sequences can be adjusted by, e.g., the introduction of modified nucleotides as described herein or as known in the art, addition or changes in overhang, or other modifications as known in the art and/or discussed herein to further optimize the molecule (e.g., increasing serum stability or circulating half-life, increasing thermal stability, enhancing transmembrane delivery, targeting to a particular location or cell type, increasing interaction with silencing pathway enzymes, increasing release from endosomes, etc.) as an expression inhibitor.


In some embodiments, the disclosure provides an iRNA of any of Tables 2B, 3B, 4B, 5B, 8B, 10B, 14, or 18B that un-modified or un-conjugated. In some embodiments, an RNAi agent of the disclosure has a nucleotide sequence as provided in any of Tables 2A, 3A, 4A, 5A, 8A, 10A, 12, 13 14, and 18A but lacks one or more ligand or moiety shown in the table. A ligand or moiety (e.g., a lipophilic ligand or moiety) can be included in any of the positions provided in the instant application.


An iRNA as described herein can contain one or more mismatches to the target sequence. In some embodiments, an iRNA as described herein contains no more than 3 mismatches. In some embodiments, when the antisense strand of the iRNA contains mismatches to a target sequence, the area of mismatch is not located in the center of the region of complementarity. In some embodiments, when the antisense strand of the iRNA contains mismatches to the target sequence, the mismatch is restricted to be within the last 5 nucleotides from either the 5′ or 3′ end of the region of complementarity. For example, for a 23 nucleotide iRNA agent RNA strand which is complementary to a region of VEGF-A, the RNA strand generally does not contain any mismatch within the central 13 nucleotides. The methods described herein, or methods known in the art can be used to determine whether an iRNA containing a mismatch to a target sequence is effective in inhibiting the expression of VEGF-A. Consideration of the efficacy of iRNAs with mismatches in inhibiting expression of VEGF-A is important, especially if the particular region of complementarity in a VEGF-A gene is known to have polymorphic sequence variation within the population.


In some embodiments, at least one end of a dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides. In some embodiments, dsRNAs having at least one nucleotide overhang have superior inhibitory properties relative to their blunt-ended counterparts. In some embodiments, the RNA of an iRNA (e.g., a dsRNA) is chemically modified to enhance stability or other beneficial characteristics. The nucleic acids featured in the disclosure may be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Modifications include, for example, (a) end modifications, e.g., 5′ end modifications (phosphorylation, conjugation, inverted linkages, etc.) 3′ end modifications (conjugation, DNA nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2′ position or 4′ position, or having an acyclic sugar) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNA compounds useful in this disclosure include, but are not limited to, RNAs containing modified backbones or no natural internucleoside linkages. RNAs having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In particular embodiments, the modified RNA will have a phosphorus atom in its internucleoside backbone.


Modified RNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.


Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,625,050; 6,028,188; 6,124,445; 6,160,109; 6,169,170; 6,172,209; 6,239,265; 6,277,603; 6,326,199; 6,346,614; 6,444,423; 6,531,590; 6,534,639; 6,608,035; 6,683,167; 6,858,715; 6,867,294; 6,878,805; 7,015,315; 7,041,816; 7,273,933; 7,321,029; and RE39464, each of which is herein incorporated by reference.


Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, each of which is herein incorporated by reference.


In other RNA mimetics suitable or contemplated for use in iRNAs, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found, for example, in Nielsen et al., Science, 1991, 254, 1497-1500.


Some embodiments featured in the disclosure include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2—[known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. In some embodiments, the RNAs featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified RNAs may also contain one or more substituted sugar moieties. The iRNAs, e.g., dsRNAs, featured herein can include one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Exemplary suitable modifications include O[(CH2)nO]mCH3, O(CH2).nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. In other embodiments, dsRNAs include one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an iRNA, or a group for improving the pharmacodynamic properties of an iRNA, and other substituents having similar properties. In some embodiments, the modification includes a 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2.


In other embodiments, an iRNA agent comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) acyclic nucleotides (or nucleosides). In certain embodiments, the sense strand or the antisense strand, or both sense strand and antisense strand, include less than five acyclic nucleotides per strand (e.g., four, three, two or one acyclic nucleotides per strand). The one or more acyclic nucleotides can be found, for example, in the double-stranded region, of the sense or antisense strand, or both strands; at the 5′-end, the 3′-end, both of the 5′ and 3′-ends of the sense or antisense strand, or both strands, of the iRNA agent. In some embodiments, one or more acyclic nucleotides are present at positions 1 to 8 of the sense or antisense strand, or both. In some embodiments, one or more acyclic nucleotides are found in the antisense strand at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand. In some embodiments, the one or more acyclic nucleotides are found at one or both 3′-terminal overhangs of the iRNA agent.


The term “acyclic nucleotide” or “acyclic nucleoside” as used herein refers to any nucleotide or nucleoside having an acyclic sugar, e.g., an acyclic ribose. An exemplary acyclic nucleotide or nucleoside can include a nucleobase, e.g., a naturally occurring or a modified nucleobase (e.g., a nucleobase as described herein). In certain embodiments, a bond between any of the ribose carbons (C1, C2, C3, C4, or C5), is independently or in combination absent from the nucleotide. In some embodiments, the bond between C2-C3 carbons of the ribose ring is absent, e.g., an acyclic 2′-3′-seco-nucleotide monomer. In other embodiments, the bond between C1-C2, C3-C4, or C4-05 is absent (e.g., a 1′-2′, 3′-4′ or 4′-5′-seco nucleotide monomer). Exemplary acyclic nucleotides are disclosed in U.S. Pat. No. 8,314,227, incorporated herein by reference in its entirely. For example, an acyclic nucleotide can include any of monomers D-J in FIGS. 1-2 of U.S. Pat. No. 8,314,227. In some embodiments, the acyclic nucleotide includes the following monomer:




embedded image


wherein Base is a nucleobase, e.g., a naturally occurring or a modified nucleobase (e.g., a nucleobase as described herein).


In certain embodiments, the acyclic nucleotide can be modified or derivatized, e.g., by coupling the acyclic nucleotide to another moiety, e.g., a ligand (e.g., a GalNAc, a cholesterol ligand), an alkyl, a polyamine, a sugar, a polypeptide, among others.


In other embodiments, the iRNA agent includes one or more acyclic nucleotides and one or more LNAs (e.g., an LNA as described herein). For example, one or more acyclic nucleotides and/or one or more LNAs can be present in the sense strand, the antisense strand, or both. The number of acyclic nucleotides in one strand can be the same or different from the number of LNAs in the opposing strand. In certain embodiments, the sense strand and/or the antisense strand comprises less than five LNAs (e.g., four, three, two or one LNAs) located in the double stranded region or a 3′-overhang. In other embodiments, one or two LNAs are located in the double stranded region or the 3′-overhang of the sense strand. Alternatively, or in combination, the sense strand and/or antisense strand comprises less than five acyclic nucleotides (e.g., four, three, two or one acyclic nucleotides) in the double-stranded region or a 3′-overhang. In some embodiments, the sense strand of the iRNA agent comprises one or two LNAs in the 3′-overhang of the sense strand, and one or two acyclic nucleotides in the double-stranded region of the antisense strand (e.g., at positions 4 to 10 (e.g., positions 6-8) from the 5′-end of the antisense strand) of the iRNA agent.


In other embodiments, inclusion of one or more acyclic nucleotides (alone or in addition to one or more LNAs) in the iRNA agent results in one or more (or all) of: (i) a reduction in an off-target effect; (ii) a reduction in passenger strand participation in RNAi; (iii) an increase in specificity of the guide strand for its target mRNA; (iv) a reduction in a microRNA off-target effect; (v) an increase in stability; or (vi) an increase in resistance to degradation, of the iRNA molecule.


Other modifications include 2′-methoxy (2′-OCH3), 2′-5 aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the RNA of an iRNA, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. iRNAs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference.


An iRNA may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine.


Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. ed. Wiley-VCH, 2008; those disclosed in The Concise Encyclopedia of Polymer Science and Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, also herein incorporated by reference.


The RNA of an iRNA can also be modified to include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) bicyclic sugar moities. A “bicyclic sugar” is a furanosyl ring modified by the bridging of two atoms. A “bicyclic nucleoside” (“BNA”) is a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring. Thus, in some embodiments an agent of the disclosure may include one or more locked nucleic acids (LNAs) (also referred to herein as “locked nucleotides”). In some embodiments, a locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting, e.g., the 2′ and 4′ carbons. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, increase thermal stability, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, O R. et al., (2007) Mol Canc Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).


Examples of bicyclic nucleosides for use in the polynucleotides of the disclosure include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms.


In certain embodiments, the antisense polynucleotide agents of the disclosure include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)-O-2′ (LNA); 4′-(CH2)-S-2′; 4′-(CH2)2-O-2′ (ENA); 4′-CH(CH3)-O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)-O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)-O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2-N(OCH3)-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2-O—N(CH3)-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2-N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2-C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2-C(═CH2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The contents of each of the foregoing are incorporated herein by reference for the methods provided therein. Representative U.S. Patents that teach the preparation of locked nucleic acids include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,670,461; 6,794,499; 6,998,484; 7,053,207; 7,084,125; 7,399,845, and 8,314,227, each of which is herein incorporated by reference in its entirety. Exemplary LNAs include but are not limited to, a 2′, 4′-C methylene bicyclo nucleotide (see for example Wengel et al., International PCT 5 Publication No. WO 00/66604 and WO 99/14226).


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see WO 99/14226).


A RNAi agent of the disclosure can also be modified to include one or more constrained ethyl nucleotides. As used herein, a “constrained ethyl nucleotide” or “cEt” is a locked nucleic acid comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)-O-2′ bridge. In some embodiments, a constrained ethyl nucleotide is in the S conformation referred to herein as “S-cEt.”


A RNAi agent of the disclosure may also include one or more “conformationally restricted nucleotides” (“CRN”). CRN are nucleotide analogs with a linker connecting the C2′ and C4′ carbons of ribose or the C3 and —C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US 2013/0190383; and WO 2013/036868, the contents of each of which are hereby incorporated herein by reference for the methods provided therein. In some embodiments, a RNAi agent of the disclosure comprises one or more monomers that are UNA (unlocked nucleic acid) nucleotides. UNA is unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the contents of each of which are hereby incorporated herein by reference for the methods provided therein.


In other embodiments, the iRNA agents include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein the modifications confer the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, J. Am. Chem. Soc., 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in the iRNA molecules can result in enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands.


Potentially stabilizing modifications to the ends of RNA molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in PCT Publication No. WO 2011/005861.


Other modifications of a RNAi agent of the disclosure include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic on the antisense strand of a RNAi agent. Suitable phosphate mimics are disclosed in, for example US 2012/0157511, the contents of which are incorporated herein by reference for the methods provided therein.


iRNA Motifs


In certain aspects of the disclosure, the double-stranded RNAi agents of the disclosure include agents with chemical modifications as disclosed, for example, in WO 2013/075035, the contents of which are incorporated herein by reference for the methods provided therein. As shown herein and in WO 2013/075035, a superior result may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucleotides into a sense strand or antisense strand of an RNAi agent, particularly at or near the cleavage site. In some embodiments, the sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if present, of the sense or antisense strand. The RNAi agent may be optionally conjugated with a lipophilic moiety or ligand, e.g., a C16 moiety or ligand, for instance on the sense strand. The RNAi agent may be optionally modified with a (S)-glycol nucleic acid (GNA) modification, for instance on one or more residues of the antisense strand. The resulting RNAi agents present superior gene silencing activity.


In some embodiments, the sense strand sequence may be represented by formula (I):





5′np-Na-(XXX)i-Nb-YYY-Nb-(ZZZ)j-Na-nq3′  (I)


wherein:


i and j are each independently 0 or 1;


p and q are each independently 0-6;


each Na independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np and nq independently represent an overhang nucleotide;


wherein Nb and Y do not have the same modification; and


XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucleotides. In some embodiments, YYY is all 2′-F modified nucleotides.


In some embodiments, the Na and/or Nb comprise modifications of alternating pattern.


In some embodiments, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the YYY motif can occur at or the vicinity of the cleavage site (e.g.: can occur at positions 6, 7, 8; 7, 8, 9; 8, 9, 10; 9, 10, 11; 10, 11,12 or 11, 12, 13) of the sense strand, the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end.


In some embodiments, i is 1 and j is 0, or i is 0 and j is 1, or both i and j are 1. The sense strand can therefore be represented by the following formulas:





5′np-Na-YYY-Nb-ZZZ-Na-nq3′  (Ib);





5′np-Na-XXX-Nb-YYY-Na-nq3′  (Ic); or





5′np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq3′  (Id).


When the sense strand is represented by formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Ic), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the sense strand is represented as formula (Id), each Nb independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. In some embodiments, Nb 1S 0, 1, 2, 3, 4, 5 or 6. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X, Y and Z may be the same or different from each other.


In other embodiments, i is 0 and j is 0, and the sense strand may be represented by the formula:





5′np-Na-YYY-Na-nq3′  (Ia).


When the sense strand is represented by formula (Ia), each Na independently can represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


In some embodiments, the antisense strand sequence of the RNAi may be represented by formula (II):





5′nq′-Na′-(Z′Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)l-N′a-np′3′  (II)


wherein:


k and l are each independently 0 or 1;


p′ and q′ are each independently 0-6;


each Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


each np′ and nq′ independently represent an overhang nucleotide;


wherein Nb′ and Y′ do not have the same modification;


and


X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one of three identical modification on three consecutive nucleotides.


In some embodiments, the Na′ and/or Nb′ comprise modification of alternating pattern.


The Y′Y′Y′ motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex region of 17-23 nucleotides in length, the Y′Y′Y′ motif can occur at positions 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; or 13, 14, 15 of the antisense strand, with the count starting from the 1st nucleotide, from the 5′-end; or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end. In some embodiments, the Y′Y′Y′ motif occurs at positions 11, 12, 13.


In some embodiments, Y′Y′Y′ motif is all 2′-Ome modified nucleotides.


In on embodiment, k is 1 and l is 0, or k is 0 and l is 1, or both 5 k and l are 1.


The antisense strand can therefore be represented by the following formulas:





5′nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np′3′  (IIb);





5′nq′-Na′-Y′Y′Y′-Nb′-X′X′X′-np′3′  (IIc); or





5′nq′-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Nb′-X′X′X′-Na′-np′3′  (IId).


When the antisense strand is represented by formula (IIb), Nb′ represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the antisense strand is represented as formula (IId), each Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. In some embodiments, Nb is 0, 1, 2, 3, 4, 5 or 6.


In other embodiments, k is 0 and l is 0 and the antisense strand may be represented by the formula:





5′np′-Na′-Y′Y′Y′-Na′-nq′3′  (Ia).


When the antisense strand is represented as formula (IIa), each Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


Each of X′, Y′ and Z′ may be the same or different from each other.


Each nucleotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, GNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-hydroxyl, or 2′-fluoro. For example, each nucleotide of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. Each X, Y, Z, X′, Y′ and Z′, in particular, may represent a 2′-O-methyl modification or a 2′-fluoro modification.


In some embodiments, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex region is 21 nt, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y represents 2′-F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex region; and XXX and ZZZ each independently represents a 2′-OMe modification or 2′-F modification.


In some embodiments the antisense strand may Y′Y′Y′ motif occurring at positions 11, 12, 13 of the strand, the count starting from the 1st nucleotide from the 5′-end, or optionally, the count starting at the 1st paired nucleotide within the duplex region, from the 5′-end; and Y′ represents 2′-O-methyl modification. The antisense strand may additionally contain X′X′X′ motif or Z′Z′Z′ motifs as wing modifications at the opposite end of the duplex region; and X′X′X′ and Z′Z′Z′ each independently represents a 2′-OMe modification or 2′-F modification.


The sense strand represented by any one of the above formulas (Ia), (Ib), (Ic), and (Id) forms a duplex with an antisense strand being represented by any one of formulas (IIa), (IIb), (IIc), and (IId), respectively.


Accordingly, certain RNAi agents for use in the methods of the disclosure may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucleotides, the RNAi duplex represented by formula (III):





sense: 5′np-Na-(XXX)i-Nb-YYY-Nb-(ZZZ)j-Na-nq3′





antisense: 3′np′-Na′-(X′X′X′)k-Nb′-Y′Y′Y′-Nb′-(Z′Z′Z′)l-Na′-nq′5′   (III)


wherein,


i, j, k, and l are each independently 0 or 1;


p, p′, q, and q′ are each independently 0-6;


each Na and Na′ independently represents an oligonucleotide sequence comprising 0-25 modified nucleotides, each sequence comprising at least two differently modified nucleotides;


each Nb and Nb′ independently represents an oligonucleotide sequence comprising 0-10 modified nucleotides;


wherein


each np′, np, nq′, and nq, each of which may or may not be present independently represents an overhang nucleotide; and


XXX, YYY, ZZZ, X′X′X′, Y′Y′Y′, and Z′Z′Z′ each independently represent one motif of three identical modification on three consecutive nucleotides.


In some embodiments, i is 0 and j is 0; or i is 1 and j is 0; or i is 0 and j is 1; or both i and j are 0; or both i and j are 1. In some embodiments, k is 0 and l is 0; or k is 1 and l is 0; k is 0 and l is 1; or both k and l are 0; or both k and l are 1.


Exemplary combinations of the sense strand and antisense strand forming a RNAi duplex include the formulas below:





5′np-Na-YYY-Na-nq3′





3′np′-Na′-Y′Y′Y′-Na′nq′5′   (IIIa)





5′np-Na-YYY-Nb-ZZZ-Na-nq3′





3′np-Na′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′5′   (IIIb)





5′np-Na-XXX-Nb-YYY-Na-nq3′





3′np-Na′-X′X′X′-Nb′-Y′Y′Y′-Na′-nq′5′   (IIIc)





5′np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq3′





3′np-Na′-X′X′X′-Nb′-Y′Y′Y′-Nb′-Z′Z′Z′-Na′-nq′5′   (IIId)


When the RNAi agent is represented by formula (IIIa), each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented by formula (IIIb), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIIc), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides.


When the RNAi agent is represented as formula (IIId), each Nb, Nb′ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucleotides. Each Na, Na′ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucleotides. Each of Na, Na′, Nb and Nb′ independently comprises modifications of alternating pattern.


Each of X, Y and Z in formulas (III), (IIIa), (IIIb), (IIIc), and (IIId) may be the same or different from each other.


When the RNAi agent is represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), at least one of the Y nucleotides may form a base pair with one of the Y′ nucleotides. Alternatively, at least two of the Y nucleotides form base pairs with the corresponding Y′ nucleotides; or all three of the Y nucleotides all form base pairs with the corresponding Y′ nucleotides.


When the RNAi agent is represented by formula (IIIb) or (IIId), at least one of the Z nucleotides may form a base pair with one of the Z′ nucleotides. Alternatively, at least two of the Z nucleotides form base pairs with the corresponding Z′ nucleotides; or all three of the Z nucleotides all form base pairs with the corresponding Z′ nucleotides.


When the RNAi agent is represented as formula (IIIc) or (IIId), at least one of the X nucleotides may form a base pair with one of the X′ nucleotides. Alternatively, at least two of the X nucleotides form base pairs with the corresponding X′ nucleotides; or all three of the X nucleotides all form base pairs with the corresponding X′ nucleotides.


In some embodiments, the modification on the Y nucleotide is different than the modification on the Y′ nucleotide, the modification on the Z nucleotide is different than the modification on the Z′ nucleotide, and/or the modification on the X nucleotide is different than the modification on the X′ nucleotide.


In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications and np′>0 and at least one np′ is linked to a neighboring nucleotide a via phosphorothioate linkage. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties, or one or more GalNAc moieties) attached through a bivalent or trivalent branched linker. In some embodiments, when the RNAi agent is represented by formula (IIId), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties, or one or more GalNAc moieties) attached through a bivalent or trivalent branched linker.


In some embodiments, when the RNAi agent is represented by formula (IIIa), the Na modifications are 2′-O-methyl or 2′-fluoro modifications, np′>0 and at least one np′ is linked to a neighboring nucleotide via phosphorothioate linkage, the sense strand comprises at least one phosphorothioate linkage, and the sense strand is conjugated to one or more moieties or ligands (e.g., one or more lipophilic moieties, optionally one or more C16 moieties, or one or more GalNAc moieties) attached through a bivalent or trivalent branched linker.


In some embodiments, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In some embodiments, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.


In some embodiments, two RNAi agents represented by formula (III), (IIIa), (IIIb), (IIIc), and (IIId) are linked to each other at the 5′ end, and one or both of the 3′ ends and are optionally conjugated to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.


Various publications describe multimeric RNAi agents that can be used in the methods of the disclosure. Such publications include WO2007/091269, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520; and U.S. Pat. No. 7,858,769, the contents of each of which are hereby incorporated herein by reference for the methods provided therein. In certain embodiments, the RNAi agents of the disclosure may include GalNAc ligands.


As described in more detail below, the RNAi agent that contains conjugations of one or more carbohydrate moieties to a RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.


The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” preferably two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.


The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.


In certain specific embodiments, the RNAi agent for use in the methods of the disclosure is an agent selected from the group of agents listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B. These agents may further comprise a ligand. The ligand can be attached to the sense strand, antisense strand or both strands, at the 3′-end, 5′-end, or both ends. For instance, the ligand may be conjugated to the sense strand, in particular, the 3′-end of the sense strand.


iRNA Conjugates


The iRNA agents disclosed herein can be in the form of conjugates. The conjugate may be attached at any suitable location in the iRNA molecule, e.g., at the 3′ end or the 5′ end of the sense or the antisense strand. The conjugates are optionally attached via a linker.


In some embodiments, an iRNA agent described herein is chemically linked to one or more ligands, moieties or conjugates, which may confer functionality, e.g., by affecting (e.g., enhancing) the activity, cellular distribution or cellular uptake of the iRNA. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).


In some embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In some embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Typical ligands will not take part in duplex pairing in a duplexed nucleic acid.


Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolide) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacrylic acid), N-isopropylacrylamide polymers, or polyphosphazine. Examples of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an a helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic.


Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as an ocular cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.


In some embodiments, a ligand attached to an iRNA as described herein acts as a pharmacokinetic modulator (PK modulator). PK modulators include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Exemplary PK modulators include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone are also amenable to the present disclosure as ligands (e.g. as PK modulating ligands). In addition, aptamers that bind serum components (e.g. serum proteins) are also suitable for use as PK modulating ligands in the embodiments described herein.


Ligand-conjugated oligonucleotides of the disclosure may be synthesized by the use of an oligonucleotide that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the oligonucleotide (described below). This reactive oligonucleotide may be reacted directly with commercially available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.


The oligonucleotides used in the conjugates of the present disclosure may be conveniently and routinely made through the well-known technique of solid-phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.


In the ligand-conjugated oligonucleotides and ligand-molecule bearing sequence-specific linked nucleosides of the present disclosure, the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.


When using nucleotide-conjugate precursors that already bear a linking moiety, the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide. In some embodiments, the oligonucleotides or linked nucleosides of the present disclosure are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.


A. Lipophilic Moieties


In certain embodiments, the lipophilic moiety is an aliphatic, cyclic such as alicyclic, or polycyclic such as polyalicyclic compound, such as a steroid (e.g., sterol) or a linear or branched aliphatic hydrocarbon. The lipophilic moiety may generally comprise a hydrocarbon chain, which may be cyclic or acyclic. The hydrocarbon chain may comprise various substituents or one or more heteroatoms, such as an oxygen or nitrogen atom. Such lipophilic aliphatic moieties include, without limitation, saturated or unsaturated C4-C30 hydrocarbon (e.g., C6-C18 hydrocarbon), saturated or unsaturated fatty acids, waxes (e.g., monohydric alcohol esters of fatty acids and fatty diamides), terpenes (e.g., C10 terpenes, C15 sesquiterpenes, C20 diterpenes, C30 triterpenes, and C40 tetraterpenes), and other polyalicyclic hydrocarbons. For instance, the lipophilic moiety may contain a C4-C30 hydrocarbon chain (e.g., C4-C30 alkyl or alkenyl). In some embodiments the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain (e.g., a linear C6-C18 alkyl or alkenyl). In some embodiments, the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain (e.g., a linear C16 alkyl or alkenyl).


The lipophilic moiety may be attached to the RNAi agent by any method known in the art, including via a functional grouping already present in the lipophilic moiety or introduced into the RNAi agent, such as a hydroxy group (e.g., —CO—CH2—OH). The functional groups already present in the lipophilic moiety or introduced into the RNAi agent include, but are not limited to, hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


Conjugation of the RNAi agent and the lipophilic moiety may occur, for example, through formation of an ether or a carboxylic or carbamoyl ester linkage between the hydroxy and an alkyl group R—, an alkanoyl group RCO— or a substituted carbamoyl group RNHCO—. The alkyl group R may be cyclic (e.g., cyclohexyl) or acyclic (e.g., straight-chained or branched; and saturated or unsaturated). Alkyl group R may be a butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl or octadecyl group, or the like.


In some embodiments, the lipophilic moiety is conjugated to the double-stranded RNAi agent via a linker a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


In another embodiment, the lipophilic moiety is a steroid, such as sterol. Steroids are polycyclic compounds containing a perhydro-1,2-cyclopentanophenanthrene ring system. Steroids include, without limitation, bile acids (e.g., cholic acid, deoxycholic acid and dehydrocholic acid), cortisone, digoxigenin, testosterone, cholesterol, and cationic steroids, such as cortisone. A “cholesterol derivative” refers to a compound derived from cholesterol, for example by substitution, addition or removal of substituents.


In another embodiment, the lipophilic moiety is an aromatic moiety. In this context, the term “aromatic” refers broadly to mono- and polyaromatic hydrocarbons. Aromatic groups include, without limitation, C6-C14 aryl moieties comprising one to three aromatic rings, which may be optionally substituted; “aralkyl” or “arylalkyl” groups comprising an aryl group covalently linked to an alkyl group, either of which may independently be optionally substituted or unsubstituted; and “heteroaryl” groups. As used herein, the term “heteroaryl” refers to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14n electrons shared in a cyclic array, and having, in addition to carbon atoms, one to about three heteroatoms selected from the group consisting of nitrogen (N), oxygen (O), and sulfur (S).


As employed herein, a “substituted” alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclic group is one having one to about four, preferably one to about three, more preferably one or two, non-hydrogen substituents. Suitable substituents include, without limitation, halo, hydroxy, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.


In some embodiments, the lipophilic moiety is an aralkyl group, e.g., a 2-arylpropanoyl moiety. The structural features of the aralkyl group are selected so that the lipophilic moiety will bind to at least one protein in vivo. In certain embodiments, the structural features of the aralkyl group are selected so that the lipophilic moiety binds to serum, vascular, or cellular proteins. In certain embodiments, the structural features of the aralkyl group promote binding to albumin, an immunoglobulin, a lipoprotein, α-2-macroglubulin, or α-1-glycoprotein.


In certain embodiments, the ligand is naproxen or a structural derivative of naproxen. Procedures for the synthesis of naproxen can be found in U.S. Pat. Nos. 3,904,682 and 4,009,197, which are hereby incorporated by reference in their entirety. Naproxen has the chemical name (S)-6-Methoxy-α-methyl-2-naphthaleneacetic acid and the structure is




embedded image


In certain embodiments, the ligand is ibuprofen or a structural derivative of ibuprofen. Procedures for the synthesis of ibuprofen can be found in U.S. Pat. No. 3,228,831, which is incorporated herein by reference for the methods provided therein. The structure of ibuprofen is




embedded image


Additional exemplary aralkyl groups are illustrated in U.S. Pat. No. 7,626,014, which is incorporated herein by reference for the methods provided therein.


In another embodiment, suitable lipophilic moieties include lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, ibuprofen, naproxen, dimethoxytrityl, or phenoxazine.


In certain embodiments, more than one lipophilic moiety can be incorporated into the double-strand RNAi agent, particularly when the lipophilic moiety has a low lipophilicity or hydrophobicity. In some embodiments, two or more lipophilic moieties are incorporated into the same strand of the double-strand RNAi agent. In some embodiments, each strand of the double-strand RNAi agent has one or more lipophilic moieties incorporated. In some embodiments, two or more lipophilic moieties are incorporated into the same position (i.e., the same nucleobase, same sugar moiety, or same internucleosidic linkage) of the double-strand RNAi agent. This can be achieved by, e.g., conjugating the two or more lipophilic moieties via a carrier, or conjugating the two or more lipophilic moieties via a branched linker, or conjugating the two or more lipophilic moieties via one or more linkers, with one or more linkers linking the lipophilic moieties consecutively.


The lipophilic moiety may be conjugated to the RNAi agent via a direct attachment to the ribosugar of the RNAi agent. Alternatively, the lipophilic moiety may be conjugated to the double-strand RNAi agent via a linker or a carrier.


In certain embodiments, the lipophilic moiety may be conjugated to the RNAi agent via one or more linkers (tethers).


In some embodiments, the lipophilic moiety is conjugated to the double-stranded RNAi agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction (e.g., a triazole from the azide-alkyne cycloaddition), or carbamate.


B. Lipid Conjugates


In some embodiments, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can typically bind a serum protein, such as human serum albumin (HSA). An HSA binding ligand allows for vascular distribution of the conjugate to a target tissue. For example, the target tissue can be the eye. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.


A lipid-based ligand can be used to modulate, e.g., control (e.g., inhibit) the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.


In some embodiments, the lipid-based ligand binds HSA. For example, the ligand can bind HSA with a sufficient affinity such that distribution of the conjugate to a non-kidney tissue is enhanced. However, the affinity is typically not so strong that the HSA-ligand binding cannot be reversed.


In some embodiments, the lipid-based ligand binds HSA weakly or not at all, such that distribution of the conjugate to the kidney is enhanced. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid-based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low-density lipoprotein (LDL).


Cell Permeation Agents


In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In some embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is typically an α-helical agent, and can have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.


A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO: 4158). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO: 4159)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO: 4160)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO: 4161)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Typically, the peptide or peptidomimetic tethered to a dsRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


An RGD peptide for use in the compositions and methods of the disclosure may be linear or cyclic, and may be modified, e.g., glycosylated or methylated, to facilitate targeting to a specific tissue(s). RGD-containing peptides and peptidomimetics may include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. In some embodiments, conjugates of this ligand target PECAM-1 or VEGF.


An RGD peptide moiety can be used to target a particular cell type, e.g., a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an dsRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Typically, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver a iRNA agent to a tumor cell expressing αvβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).


A “cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α-defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).


Carbohydrate Conjugates and Ligands


In some embodiments of the compositions and methods of the disclosure, an iRNA oligonucleotide further comprises a carbohydrate. The carbohydrate conjugated iRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and trisaccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).


In certain embodiments, the compositions and methods of the disclosure include a C16 ligand. In exemplary embodiments, the C16 ligand of the disclosure has the following structure (exemplified here below for a uracil base, yet attachment of the C16 ligand is contemplated for a nucleotide presenting any base (C, G, A, etc.) or possessing any other modification as presented herein, provided that 2′ ribo attachment is preserved) and is attached at the 2′ position of the ribo within a residue that is so modified:




embedded image


As shown above, a C16 ligand-modified residue presents a straight chain alkyl at the 2′-ribo position of an exemplary residue (here, a Uracil) that is so modified.


In some embodiments, a carbohydrate conjugate of a RNAi agent of the instant disclosure further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator or a cell permeation peptide.


Additional carbohydrate conjugates (and linkers) suitable for use in the present disclosure include those described in WO 2014/179620 and WO 2014/179627, the entire contents of each of which are incorporated herein by reference.


In certain embodiments, the compositions and methods of the disclosure include a vinyl phosponate (VP) modification of an RNAi agent as described herein. In exemplary embodiments, a vinyl phosphonate of the disclosure has the following structure:




embedded image


A vinyl phosponate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain preferred embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5′ end of the antisense strand of the dsRNA.


Vinyl phosphate modifications are also contemplated for the compositions and methods of the instant disclosure. An exemplary vinyl phosphate structure is:




embedded image


In some embodiments, a carbohydrate conjugate comprises a monosaccharide. In some embodiments, the monosaccharide is an N-acetylgalactosamine (GalNAc). GalNAc conjugates, which comprise one or more N-acetylgalactosamine (GalNAc) derivatives, are described, for example, in U.S. Pat. No. 8,106,022, the entire content of which is hereby incorporated herein by reference. In some embodiments, the GalNAc conjugate serves as a ligand that targets the iRNA to particular cells. In some embodiments, the GalNAc conjugate targets the iRNA to liver cells, e.g., by serving as a ligand for the asialoglycoprotein receptor of liver cells (e.g., hepatocytes).


In some embodiments, the carbohydrate conjugate comprises one or more GalNAc derivatives. The GalNAc derivatives may be attached via a linker, e.g., a bivalent or trivalent branched linker. In some embodiments the GalNAc conjugate is conjugated to the 3′ end of the sense strand. In some embodiments, the GalNAc conjugate is conjugated to the iRNA agent (e.g., to the 3′ end of the sense strand) via a linker, e.g., a linker as described herein.


In some embodiments, the GalNAc conjugate is




embedded image


In some embodiments, the RNAi agent is attached to the carbohydrate conjugate via a linker as shown in the following schematic, wherein X is O or S:




embedded image


In some embodiments, the RNAi agent is conjugated to L96 as defined in Table 1 and shown below:




embedded image


In some embodiments, a carbohydrate conjugate for use in the compositions and methods of the disclosure is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,




embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator and/or a cell permeation peptide.


In some embodiments, an iRNA of the disclosure is conjugated to a carbohydrate through a linker. Non-limiting examples of iRNA carbohydrate conjugates with linkers of the compositions and methods of the disclosure include, but are not limited to,




embedded image


embedded image


embedded image


when one of X or Y is an oligonucleotide, the other is a hydrogen.


E. Thermally Destabilizing Modifications


In certain embodiments, a dsRNA molecule can be optimized for RNA interference by incorporating thermally destabilizing modifications in the seed region of the antisense strand (i.e., at positions 2-9 of the 5′-end of the antisense strand) to reduce or inhibit off-target gene silencing. It has been discovered that dsRNAs with an antisense strand comprising at least one thermally destabilizing modification of the duplex within the first 9 nucleotide positions, counting from the 5′ end, of the antisense strand have reduced off-target gene silencing activity. Accordingly, in some embodiments, the antisense strand comprises at least one (e.g., one, two, three, four, five, or more) thermally destabilizing modification of the duplex within the first 9 nucleotide positions of the 5′ region of the antisense strand. In some embodiments, one or more thermally destabilizing modification(s) of the duplex is/are located in positions 2-9, or preferably positions 4-8, from the 5′-end of the antisense strand. In some further embodiments, the thermally destabilizing modification(s) of the duplex is/are located at position 6, 7, or 8 from the 5′-end of the antisense strand. In still some further embodiments, the thermally destabilizing modification of the duplex is located at position 7 from the 5′-end of the antisense strand. The term “thermally destabilizing modification(s)” includes modification(s) that would result with a dsRNA with a lower overall melting temperature (Tm) (preferably a Tm with one, two, three, or four degrees lower than the Tm of the dsRNA without having such modification(s). In some embodiments, the thermally destabilizing modification of the duplex is located at position 2, 3, 4, 5, or 9 from the 5′-end of the antisense strand.


The thermally destabilizing modifications can include, but are not limited to, abasic modification; mismatch with the opposing nucleotide in the opposing strand; and sugar modification such as 2′-deoxy modification or acyclic nucleotide, e.g., unlocked nucleic acids (UNA) or glycol nucleic acid (GNA).


Exemplified abasic modifications include, but are not limited to, the following:




embedded image


Wherein R═H, Me, Et or OMe; R′═H, Me, Et or OMe; R″═H, Me, Et or OMe



embedded image


wherein B is a modified or unmodified nucleobase.


Exemplified sugar modifications include, but are not limited to the following:




embedded image


wherein B is a modified or unmodified nucleobase.


In some embodiments the thermally destabilizing modification of the duplex is selected from the group consisting of:




embedded image


wherein B is a modified or unmodified nucleobase and the asterisk on each structure represents either R, S or racemic.


The term “acyclic nucleotide” refers to any nucleotide having an acyclic ribose sugar, for example, where any of bonds between the ribose carbons (e.g., C1′-C2′, C2′-C3′, C3′-C4′, C4′-O4′, or C1′-O4′) is absent or at least one of ribose carbons or oxygen (e.g., C1′, C2′, C3′, C4′, or O4′) are independently or in combination absent from the nucleotide. In some embodiments, acyclic nucleotide is




embedded image


wherein B is a modified or unmodified nucleobase, R1 and R2 independently are H, halogen, OR3, or alkyl; and R3 is H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar). The term “UNA” refers to unlocked acyclic nucleic acid, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomers with bonds between C1′-C4′ being removed (i.e. the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e. the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar is removed (see Mikhailov et. al., Tetrahedron Letters, 26 (17): 2059 (1985); and Fluiter et al., Mol. Biosyst., 10: 1039 (2009), which are hereby incorporated by reference in their entirety). The acyclic derivative provides greater backbone flexibility without affecting the Watson-Crick pairings. The acyclic nucleotide can be linked via 2′-5′ or 3′-5′ linkage.


The term ‘GNA’ refers to glycol nucleic acid which is a polymer similar to DNA or RNA but differing in the composition of its “backbone” in that is composed of repeating glycerol units linked by phosphodiester bonds:




embedded image


The thermally destabilizing modification of the duplex can be mismatches (i.e., noncomplementary base pairs) between the thermally destabilizing nucleotide and the opposing nucleotide in the opposite strand within the dsRNA duplex. Exemplary mismatch base pairs include G:G, G:A, G:U, G:T, A:A, A:C, C:C, C:U, C:T, U:U, T:T, U:T, or a combination thereof. Other mismatch base pairings known in the art are also amenable to the present invention. A mismatch can occur between nucleotides that are either naturally occurring nucleotides or modified nucleotides, i.e., the mismatch base pairing can occur between the nucleobases from respective nucleotides independent of the modifications on the ribose sugars of the nucleotides. In certain embodiments, the dsRNA molecule contains at least one nucleobase in the mismatch pairing that is a 2′-deoxy nucleobase; e.g., the 2′-deoxy nucleobase is in the sense strand.


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes nucleotides with impaired W-C H-bonding to complementary base on the target mRNA, such as:




embedded image


More examples of abasic nucleotide, acyclic nucleotide modifications (including UNA and GNA), and mismatch modifications have been described in detail in WO 2011/133876, which is herein incorporated by reference in its entirety.


The thermally destabilizing modifications may also include universal base with reduced or abolished capability to form hydrogen bonds with the opposing bases, and phosphate modifications.


In some embodiments, the thermally destabilizing modification of the duplex includes nucleotides with non-canonical bases such as, but not limited to, nucleobase modifications with impaired or completely abolished capability to form hydrogen bonds with bases in the opposite strand. These nucleobase modifications have been evaluated for destabilization of the central region of the dsRNA duplex as described in WO 2010/0011895, which is herein incorporated by reference in its entirety. Exemplary nucleobase modifications are:




embedded image


In some embodiments, the thermally destabilizing modification of the duplex in the seed region of the antisense strand includes one or more α-nucleotide complementary to the base on the target mRNA, such as:




embedded image


wherein R is H, OH, OCH3, F, NH2, NHMe, NMe2 or O-alkyl.


Exemplary phosphate modifications known to decrease the thermal stability of dsRNA duplexes compared to natural phosphodiester linkages are:




embedded image


The alkyl for the R group can be a C1-C6alkyl. Specific alkyls for the R group include, but are not limited to methyl, ethyl, propyl, isopropyl, butyl, pentyl and hexyl.


As the skilled artisan will recognize, in view of the functional role of nucleobases is defining specificity of a RNAi agent of the disclosure, while nucleobase modifications can be performed in the various manners as described herein, e.g., to introduce destabilizing modifications into a RNAi agent of the disclosure, e.g., for purpose of enhancing on-target effect relative to off-target effect, the range of modifications available and, in general, present upon RNAi agents of the disclosure tends to be much greater for non-nucleobase modifications, e.g., modifications to sugar groups or phosphate backbones of polyribonucleotides. Such modifications are described in greater detail in other sections of the instant disclosure and are expressly contemplated for RNAi agents of the disclosure, either possessing native nucleobases or modified nucleobases as described above or elsewhere herein.


In addition to the antisense strand comprising a thermally destabilizing modification, the dsRNA can also comprise one or more stabilizing modifications. For example, the dsRNA can comprise at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) stabilizing modifications. Without limitations, the stabilizing modifications all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two stabilizing modifications. The stabilizing modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the stabilizing modification can occur on every nucleotide on the sense strand or antisense strand; each stabilizing modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both stabilizing modification in an alternating pattern. The alternating pattern of the stabilizing modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the stabilizing modifications on the sense strand can have a shift relative to the alternating pattern of the stabilizing modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) stabilizing modifications. Without limitations, a stabilizing modification in the antisense strand can be present at any positions.


In some embodiments, the antisense strand comprises stabilizing modifications at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense strand comprises stabilizing modifications at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense strand comprises stabilizing modifications at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one stabilizing modification adjacent to the destabilizing modification. For example, the stabilizing modification can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a stabilizing modification at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two stabilizing modifications at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten or more) stabilizing modifications. Without limitations, a stabilizing modification in the sense strand can be present at any positions. In some embodiments, the sense strand comprises stabilizing modifications at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises stabilizing modifications at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises stabilizing modifications at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four stabilizing modifications.


In some embodiments, the sense strand does not comprise a stabilizing modification in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


Exemplary thermally stabilizing modifications include, but are not limited to, 2′-fluoro modifications. Other thermally stabilizing modifications include, but are not limited to, LNA.


In some embodiments, the dsRNA of the disclosure comprises at least four (e.g., four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, the 2′-fluoro nucleotides all can be present in one strand. In some embodiments, both the sense and the antisense strands comprise at least two 2′-fluoro nucleotides. The 2′-fluoro modification can occur on any nucleotide of the sense strand or antisense strand. For instance, the 2′-fluoro modification can occur on every nucleotide on the sense strand or antisense strand; each 2′-fluoro modification can occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both 2′-fluoro modifications in an alternating pattern. The alternating pattern of the 2′-fluoro modifications on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the 2′-fluoro modifications on the sense strand can have a shift relative to the alternating pattern of the 2′-fluoro modifications on the antisense strand.


In some embodiments, the antisense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the antisense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 8, 9, 14, and 16 from the 5′-end. In some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 6, 14, and 16 from the 5′-end. In still some other embodiments, the antisense comprises 2′-fluoro nucleotides at positions 2, 14, and 16 from the 5′-end.


In some embodiments, the antisense strand comprises at least one 2′-fluoro nucleotide adjacent to the destabilizing modification. For example, the 2′-fluoro nucleotide can be the nucleotide at the 5′-end or the 3′-end of the destabilizing modification, i.e., at position −1 or +1 from the position of the destabilizing modification. In some embodiments, the antisense strand comprises a 2′-fluoro nucleotide at each of the 5′-end and the 3′-end of the destabilizing modification, i.e., positions −1 and +1 from the position of the destabilizing modification.


In some embodiments, the antisense strand comprises at least two 2′-fluoro nucleotides at the 3′-end of the destabilizing modification, i.e., at positions +1 and +2 from the position of the destabilizing modification.


In some embodiments, the sense strand comprises at least two (e.g., two, three, four, five, six, seven, eight, nine, ten, or more) 2′-fluoro nucleotides. Without limitations, a 2′-fluoro modification in the sense strand can be present at any positions. In some embodiments, the antisense comprises 2′-fluoro nucleotides at positions 7, 10, and 11 from the 5′-end. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions 7, 9, 10, and 11 from the 5′-end. In some embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some other embodiments, the sense strand comprises 2′-fluoro nucleotides at positions opposite or complimentary to positions 11, 12, 13, and 15 of the antisense strand, counting from the 5′-end of the antisense strand. In some embodiments, the sense strand comprises a block of two, three, or four 2′-fluoro nucleotides.


In some embodiments, the sense strand does not comprise a 2′-fluoro nucleotide in position opposite or complimentary to the thermally destabilizing modification of the duplex in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises a 21 nucleotides (nt) sense strand and a 23 nucleotides (nt) antisense, wherein the antisense strand contains at least one thermally destabilizing nucleotide, where the at least one thermally destabilizing nucleotide occurs in the seed region of the antisense strand (i.e., at position 2-9 of the 5′-end of the antisense strand), wherein one end of the dsRNA is blunt, while the other end is comprises a 2 nt overhang, and wherein the dsRNA optionally further has at least one (e.g., one, two, three, four, five, six, or all seven) of the following characteristics: (i) the antisense comprises 2, 3, 4, 5, or 6 2′-fluoro modifications; (ii) the antisense comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (iii) the sense strand is conjugated with a ligand; (iv) the sense strand comprises 2, 3, 4, or 5 2′-fluoro modifications; (v) the sense strand comprises 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages; (vi) the dsRNA comprises at least four 2′-fluoro modifications; and (vii) the dsRNA comprises a blunt end at 5′-end of the antisense strand. Preferably, the 2 nt overhang is at the 3′-end of the antisense.


In some embodiments, every nucleotide in the sense strand and antisense strand of the dsRNA molecule may be modified. Each nucleotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.


As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases, the modification will occur at all of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3′ or 5′ terminal position, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal region, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5′ end or ends can be phosphorylated.


It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5′ or 3′ overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3′ or 5′ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2′ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, 2′-deoxy-2′-fluoro (2′-F) or 2′-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.


In some embodiments, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, or 2′-fluoro. The strands can contain more than one modification. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl or 2′-fluoro. It is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


At least two different modifications are typically present on the sense strand and antisense strand. Those two modifications may be the 2′-deoxy, 2′-O-methyl, or 2′-fluoro modifications, acyclic nucleotides or others. In some embodiments, the sense strand and antisense strand each comprises two differently modified nucleotides selected from 2′-O-methyl or 2′-deoxy. In some embodiments, each residue of the sense strand and antisense strand is independently modified with 2′-O-methyl nucleotide, 2′-deoxy nucleotide, 2′-deoxy-2′-fluoro nucleotide, 2′-O-N-methylacetamido (2′-O-NMA) nucleotide, a 2′-O-dimethylaminoethoxyethyl (2′-O-DMAEOE) nucleotide, 2′-O-aminopropyl (2′-O-AP) nucleotide, or 2′-ara-F nucleotide. Again, it is to be understood that these modifications are in addition to the at least one thermally destabilizing modification of the duplex present in the antisense strand.


In some embodiments, the dsRNA molecule of the disclosure comprises modifications of an alternating pattern, particular in the B1, B2, B3, B1′, B2′, B3′, B4′ regions. The term “alternating motif” or “alternative pattern” as used herein refers to a motif having one or more modifications, each modification occurring on alternating nucleotides of one strand. The alternating nucleotide may refer to one per every other nucleotide or one per every three nucleotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucleotide, the alternating motif can be “ABABABABABAB . . . ,” “AABBAABBAABB . . . ,” “AABAABAABAAB . . . ,” “AAABAAABAAAB . . . ,” “AAABBBAAABBB . . . ,” or “ABCABCABCABC . . . ,” etc.


The type of modifications contained in the alternating motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucleotide, the alternating pattern, i.e., modifications on every other nucleotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the alternating motif such as “ABABAB . . . ”, “ACACAC . . . ” “BDBDBD . . . ” or “CDCDCD . . . ,” etc.


In some embodiments, the dsRNA molecule of the disclosure comprises the modification pattern for the alternating motif on the sense strand relative to the modification pattern for the alternating motif on the antisense strand is shifted. The shift may be such that the modified group of nucleotides of the sense strand corresponds to a differently modified group of nucleotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the alternating motif in the sense strand may start with “ABABAB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BABABA” from 3′-5′ of the strand within the duplex region. As another example, the alternating motif in the sense strand may start with “AABBAABB” from 5′-3′ of the strand and the alternating motif in the antisense strand may start with “BBAABBAA” from 3′-5′ of the strand within the duplex region, so that there is a complete or partial shift of the modification patterns between the sense strand and the antisense strand.


The dsRNA molecule of the disclosure may further comprise at least one phosphorothioate or methylphosphonate internucleotide linkage. The phosphorothioate or methylphosphonate internucleotide linkage modification may occur on any nucleotide of the sense strand or antisense strand or both in any position of the strand. For instance, the internucleotide linkage modification may occur on every nucleotide on the sense strand or antisense strand; each internucleotide linkage modification may occur in an alternating pattern on the sense strand or antisense strand; or the sense strand or antisense strand comprises both internucleotide linkage modifications in an alternating pattern. The alternating pattern of the internucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the alternating pattern of the internucleotide linkage modification on the sense strand may have a shift relative to the alternating pattern of the internucleotide linkage modification on the antisense strand.


In some embodiments, the dsRNA molecule comprises the phosphorothioate or methylphosphonate internucleotide linkage modification in the overhang region. For example, the overhang region comprises two nucleotides having a phosphorothioate or methylphosphonate internucleotide linkage between the two nucleotides. Internucleotide linkage modifications also may be made to link the overhang nucleotides with the terminal paired nucleotides within duplex region. For example, at least 2, 3, 4, or all the overhang nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate internucleotide linkages linking the overhang nucleotide with a paired nucleotide that is next to the overhang nucleotide. For instance, there may be at least two phosphorothioate internucleotide linkages between the terminal three nucleotides, in which two of the three nucleotides are overhang nucleotides, and the third is a paired nucleotide next to the overhang nucleotide. Preferably, these terminal three nucleotides may be at the 3′-end of the antisense strand.


In some embodiments, the sense strand of the dsRNA molecule comprises 1-10 blocks of two to ten phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said sense strand is paired with an antisense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of two phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of three phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of four phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of five phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of six phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of seven phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, 6, 7, or 8 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of eight phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, 4, 5, or 6 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the antisense strand of the dsRNA molecule comprises two blocks of nine phosphorothioate or methylphosphonate internucleotide linkages separated by 1, 2, 3, or 4 phosphate internucleotide linkages, wherein one of the phosphorothioate or methylphosphonate internucleotide linkages is placed at any position in the oligonucleotide sequence and the said antisense strand is paired with a sense strand comprising any combination of phosphorothioate, methylphosphonate, and phosphate internucleotide linkages or an antisense strand comprising either phosphorothioate or methylphosphonate or phosphate linkage.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the termini position(s) of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate or methylphosphonate internucleotide linkage at one end or both ends of the sense or antisense strand.


In some embodiments, the dsRNA molecule of the disclosure further comprises one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the internal region of the duplex of each of the sense or antisense strand. For example, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides may be linked through phosphorothioate methylphosphonate internucleotide linkage at position 8-16 of the duplex region counting from the 5′-end of the sense strand; the dsRNA molecule can optionally further comprise one or more phosphorothioate or methylphosphonate internucleotide linkage modification within positions 1-10 of the termini position(s).


In some embodiments, the dsRNA molecule of the disclosure further comprises one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 1-5 and one to five phosphorothioate or methylphosphonate internucleotide linkage modification(s) within position 18-23 of the sense strand (counting from the 5′-end), and one to five phosphorothioate or methylphosphonate internucleotide linkage modification at positions 1 and 2 and one to five within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate or methylphosphonate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate or methylphosphonate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and two phosphorothioate internucleotide linkage modifications within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modification at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification within position 1-5 (counting from the 5′-end) of the sense strand, and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 (counting from the 5′-end) of the sense strand, and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and one phosphorothioate internucleotide linkage modification within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications within position 1-5 and one phosphorothioate internucleotide linkage modification within position 18-23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications within positions 18-23 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 20 and 21 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 20 and 21 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 21 and 22 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 21 and 22 the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises two phosphorothioate internucleotide linkage modifications at position 1 and 2, and two phosphorothioate internucleotide linkage modifications at position 22 and 23 of the sense strand (counting from the 5′-end), and one phosphorothioate internucleotide linkage modification at positions 1 and one phosphorothioate internucleotide linkage modification at position 21 of the antisense strand (counting from the 5′-end).


In some embodiments, the dsRNA molecule of the disclosure further comprises one phosphorothioate internucleotide linkage modification at position 1, and one phosphorothioate internucleotide linkage modification at position 21 of the sense strand (counting from the 5′-end), and two phosphorothioate internucleotide linkage modifications at positions 1 and 2 and two phosphorothioate internucleotide linkage modifications at positions 23 and 23 the antisense strand (counting from the 5′-end).


In some embodiments, compound of the disclosure comprises a pattern of backbone chiral centers. In some embodiments, a common pattern of backbone chiral centers comprises at least 5 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 6 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 7 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 8 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 9 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 16 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 17 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 18 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises at least 19 internucleotidic linkages in the Sp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages in the Rp configuration. In some embodiments, a common pattern of backbone chiral centers comprises no more than 8 internucleotidic linkages which are not chiral (as a non-limiting example, a phosphodiester). In some embodiments, a common pattern of backbone chiral centers comprises no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 4 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 3 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 2 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises no more than 1 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 10 internucleotidic linkages in the Sp configuration, and no more than 8 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 11 internucleotidic linkages in the Sp configuration, and no more than 7 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 12 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 13 internucleotidic linkages in the Sp configuration, and no more than 6 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 14 internucleotidic linkages in the Sp configuration, and no more than 5 internucleotidic linkages which are not chiral. In some embodiments, a common pattern of backbone chiral centers comprises at least 15 internucleotidic linkages in the Sp configuration, and no more than 4 internucleotidic linkages which are not chiral. In some embodiments, the internucleotidic linkages in the Sp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages in the Rp configuration are optionally contiguous or not contiguous. In some embodiments, the internucleotidic linkages which are not chiral are optionally contiguous or not contiguous.


In some embodiments, compound of the disclosure comprises a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks. In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, compound of the disclosure comprises a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units. In some embodiments, a 5′-block comprises 5 or more nucleoside units. In some embodiments, a 5′-block comprises 6 or more nucleoside units. In some embodiments, a 5′-block comprises 7 or more nucleoside units. In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each of internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units. In some embodiments, a 3′-block comprises 5 or more nucleoside units. In some embodiments, a 3′-block comprises 6 or more nucleoside units. In some embodiments, a 3′-block comprises 7 or more nucleoside units.


In some embodiments, compound of the disclosure comprises a type of nucleoside in a region or an oligonucleotide is followed by a specific type of internucleotidic linkage, e.g., natural phosphate linkage, modified internucleotidic linkage, Rp chiral internucleotidic linkage, Sp chiral internucleotidic linkage, etc. In some embodiments, A is followed by Sp. In some embodiments, A is followed by Rp. In some embodiments, A is followed by natural phosphate linkage (PO). In some embodiments, U is followed by Sp. In some embodiments, U is followed by Rp. In some embodiments, U is followed by natural phosphate linkage (PO). In some embodiments, C is followed by Sp. In some embodiments, C is followed by Rp. In some embodiments, C is followed by natural phosphate linkage (PO). In some embodiments, G is followed by Sp. In some embodiments, G is followed by Rp. In some embodiments, G is followed by natural phosphate linkage (PO). In some embodiments, C and U are followed by Sp. In some embodiments, C and U are followed by Rp. In some embodiments, C and U are followed by natural phosphate linkage (PO). In some embodiments, A and G are followed by Sp. In some embodiments, A and G are followed by Rp.


In some embodiments, the dsRNA molecule of the disclosure comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mismatch can occur in the overhang region or the duplex region. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.


In some embodiments, the dsRNA molecule of the disclosure comprises at least one of the first 1, 2, 3, 4, or 5 base pairs within the duplex regions from the 5′-end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5′-end of the duplex.


In some embodiments, the nucleotide at the 1 position within the duplex region from the 5′-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Alternatively, at least one of the first 1, 2 or 3 base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair. For example, the first base pair within the duplex region from the 5′-end of the antisense strand is an AU base pair.


It was found that introducing 4′-modified or 5′-modified nucleotide to the 3′-end of a phosphodiester (PO), phosphorothioate (PS), or phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide can exert steric effect to the internucleotide linkage and, hence, protecting or stabilizing it against nucleases.


In some embodiments, 5′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 5′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 5′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-modified nucleoside is introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. For instance, a 4′-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The alkyl group at the 4′ position of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer. Alternatively, a 4′-O-alkylated nucleoside may be introduced at the 3′-end of a dinucleotide at any position of single stranded or double stranded siRNA. The 4′-O-alkyl of the ribose sugar can be racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 5′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 5′-alkylated nucleoside is 5′-methyl nucleoside. The 5′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 4′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-alkylated nucleoside is 4′-methyl nucleoside. The 4′-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, 4′-O-alkylated nucleoside is introduced at any position on the sense strand or antisense strand of a dsRNA, and such modification maintains or improves potency of the dsRNA. The 5′-alkyl can be either racemic or chirally pure R or S isomer. An exemplary 4′-O-alkylated nucleoside is 4′-O-methyl nucleoside. The 4′-O-methyl can be either racemic or chirally pure R or S isomer.


In some embodiments, the dsRNA molecule of the disclosure can comprise 2′-5′ linkages (with 2′-H, 2′-OH, and 2′-OMe and with P═O or P═S). For example, the 2′-5′ linkages modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


In another embodiment, the dsRNA molecule of the disclosure can comprise L sugars (e.g., L ribose, L-arabinose with 2′-H, 2′-OH and 2′-OMe). For example, these L sugars modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5′ end of the sense strand to avoid sense strand activation by RISC.


Various publications describe multimeric siRNA which can all be used with the dsRNA of the disclosure. Such publications include WO2007/091269, U.S. Pat. No. 7,858,769, WO2010/141511, WO2007/117686, WO2009/014887, and WO2011/031520 which are hereby incorporated by their entirely.


In some embodiments dsRNA molecules of the disclosure are 5′ phosphorylated or include a phosphoryl analog at the 5′ prime terminus. 5′-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5′-monophosphate ((HO)2(O)P—O-5′); 5′-diphosphate ((HO)2(O)P—O—P(HO)(O)—O-5′); 5′-triphosphate ((HO)2(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-guanosine cap (7-methylated or non-methylated) (7m-G-O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N—O-5′-(HO)(O)P—O—(HO)(O)P—O—P(HO)(O)—O-5′); 5′-monothiophosphate (phosphorothioate; (HO)2(S)P—O-5′); 5′-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P—O-5′), 5′-phosphorothiolate ((HO)2(O)P—S-5′); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5′-alpha-thiotriphosphate, 5′-gamma-thiotriphosphate, etc.), 5′-phosphoramidates ((HO)2(O)P—NH-5′, (HO)(NH2)(O)P—O-5′), 5′-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)—O-5′-, 5′-alkenylphosphonates (i.e. vinyl, substituted vinyl), (OH)2(O)P-5′-CH2-), 5′-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)—O-5′-). In one example, the modification can in placed in the antisense strand of a dsRNA molecule.


Linkers


In some embodiments, the conjugate or ligand described herein can be attached to an iRNA oligonucleotide with various linkers that can be cleavable or non-cleavable.


Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In some embodiments, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-16, or 8-16 atoms.


In some embodiments, a dsRNA of the disclosure is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XXXI)-(XXXIV):




embedded image


wherein:


q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;


P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;


Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);


R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,




embedded image


or heterocyclyl;


L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XXXV):




embedded image


wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc derivative.


Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II, VII, XI, X, and XIII.


A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a some embodiments, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a suitable pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted.


In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


Redox Cleavable Linking Groups


In some embodiments, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.


Phosphate-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. In some embodiments, phosphate-based linking groups are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. In some embodiments, a phosphate-based linking group is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.


Acid Cleavable Linking Groups


In some embodiments, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In some embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). In some embodiments, the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


Ester-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.


Peptide-Based Cleavable Linking Groups


In some embodiments, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynylene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide-based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above. Representative U.S. patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; 8,106,022, the entire contents of each of which is herein incorporated by reference.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an iRNA. The present disclosure also includes iRNA compounds that are chimeric compounds.


“Chimeric” iRNA compounds, or “chimeras,” in the context of the present disclosure, are iRNA compounds, e.g., dsRNAs, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These iRNAs typically contain at least one region wherein the RNA is modified so as to confer upon the iRNA increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the iRNA may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of iRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter iRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxy dsRNAs hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.


In certain instances, the RNA of an iRNA can be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to iRNAs in order to enhance the activity, cellular distribution or cellular uptake of the iRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Kubo, T. et al., Biochem. Biophys. Res. Comm., 2007, 365(1):54-61; Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such RNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of an RNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the RNA still bound to the solid support or following cleavage of the RNA, in solution phase. Purification of the RNA conjugate by HPLC typically affords the pure conjugate.


Delivery of iRNA


The delivery of an iRNA to a subject in need thereof can be achieved in a number of different ways. In vivo delivery can be performed directly by administering a composition comprising an iRNA, e.g. a dsRNA, to a subject. Alternatively, delivery can be performed indirectly by administering one or more vectors that encode and direct the expression of the iRNA. These alternatives are discussed further below.


Direct Delivery


In general, any method of delivering a nucleic acid molecule can be adapted for use with an iRNA (see e.g., Akhtar S. and Julian R L. (1992) Trends Cell. Biol. 2(5):139-144 and WO94/02595, which are incorporated herein by reference in their entireties). However, there are three factors that are important to consider in order to successfully deliver an iRNA molecule in vivo: (a) biological stability of the delivered molecule, (2) preventing non-specific effects, and (3) accumulation of the delivered molecule in the target tissue. The non-specific effects of an iRNA can be minimized by local administration, for example by direct injection or implantation into a tissue (as a non-limiting example, the eye) or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that may otherwise be harmed by the agent or that may degrade the agent, and permits a lower total dose of the iRNA molecule to be administered. Several studies have shown successful knockdown of gene products when an iRNA is administered locally. For example, intraocular delivery of a VEGF dsRNA by intravitreal injection in cynomolgus monkeys (Tolentino, M J., et al (2004) Retina 24:132-138) and subretinal injections in mice (Reich, S J., et al (2003) Mol. Vis. 9:210-216) were both shown to prevent neovascularization in an experimental model of age-related macular degeneration. In addition, direct intratumoral injection of a dsRNA in mice reduces tumor volume (Pille, J., et al (2005) Mol. Ther. 11:267-274) and can prolong survival of tumor-bearing mice (Kim, W J., et al (2006) Mol. Ther. 14:343-350; Li, S., et al (2007) Mol. Ther. 15:515-523). RNA interference has also shown success with local delivery to the CNS by direct injection (Dorn, G., et al. (2004) Nucleic Acids 32:e49; Tan, P H., et al (2005) Gene Ther. 12:59-66; Makimura, H., et al (2002) BMC Neurosci. 3:18; Shishkina, G T., et al (2004) Neuroscience 129:521-528; Thakker, E R., et al (2004) Proc. Natl. Acad. Sci. U.S.A. 101:17270-17275; Akaneya,Y., et al (2005) J. Neurophysiol. 93:594-602) and to the lungs by intranasal administration (Howard, K A., et al (2006) Mol. Ther. 14:476-484; Zhang, X., et al (2004) J. Biol. Chem. 279:10677-10684; Bitko, V., et al (2005) Nat. Med. 11:50-55). For administering an iRNA systemically for the treatment of a disease, the RNA can be modified or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the dsRNA by endo- and exo-nucleases in vivo.


Modification of the RNA or the pharmaceutical carrier can also permit targeting of the iRNA composition to the target tissue and avoid undesirable off-target effects. iRNA molecules can be modified by chemical conjugation to other groups, e.g., a lipid or carbohydrate group as described herein. Such conjugates can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes. For example, GalNAc conjugates or lipid (e.g., LNP) formulations can be used to target iRNA to particular cells, e.g., liver cells, e.g., hepatocytes.


iRNA molecules can also be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. For example, an iRNA directed against ApoB conjugated to a lipophilic cholesterol moiety was injected systemically into mice and resulted in knockdown of apoB mRNA in both the liver and jejunum (Soutschek, J., et al (2004) Nature 432:173-178). Conjugation of an iRNA to an aptamer has been shown to inhibit tumor growth and mediate tumor regression in a mouse model of prostate cancer (McNamara, J O., et al (2006) Nat. Biotechnol. 24:1005-1015). In an alternative embodiment, the iRNA can be delivered using drug delivery systems such as a nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of an iRNA molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an iRNA by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an iRNA, or induced to form a vesicle or micelle (see e.g., Kim S H., et al (2008) Journal of Controlled Release 129(2):107-116) that encases an iRNA. The formation of vesicles or micelles further prevents degradation of the iRNA when administered systemically. Methods for making and administering cationic-iRNA complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al (2003) J. Mol. Biol 327:761-766; Verma, U N., et al (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of iRNAs include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N., et al (2003), supra), Oligofectamine, “solid nucleic acid lipid particles” (Zimmermann, T S., et al (2006) Nature 441:111-114), cardiolipin (Chien, P Y., et al (2005) Cancer Gene Ther. 12:321-328; Pal, A., et al (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E., et al (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A., et al (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H., et al (1999) Pharm. Res. 16:1799-1804). In some embodiments, an iRNA forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of iRNAs and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety.


Vector encoded iRNAs In another aspect, iRNA targeting VEGF-A can be expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; Skillern, A., et al., International PCT Publication No. WO 00/22113, Conrad, International PCT Publication No. WO 00/22114, and Conrad, U.S. Pat. No. 6,054,299). Expression can be transient (on the order of hours to weeks) or sustained (weeks to months or longer), depending upon the specific construct used and the target tissue or cell type. These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92:1292).


The individual strand or strands of an iRNA can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced (e.g., by transfection or infection) into a target cell. Alternatively, each individual strand of a dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In some embodiments, a dsRNA is expressed as an inverted repeat joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.


An iRNA expression vector is typically a DNA plasmid or viral vector. An expression vector compatible with eukaryotic cells, e.g., with vertebrate cells, can be used to produce recombinant constructs for the expression of an iRNA as described herein. Eukaryotic cell expression vectors are well known in the art and are available from a number of commercial sources. Typically, such vectors contain convenient restriction sites for insertion of the desired nucleic acid segment. Delivery of iRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.


An iRNA expression plasmid can be transfected into a target cell as a complex with a cationic lipid carrier (e.g., Oligofectamine) or a non-cationic lipid-based carrier (e.g., Transit-TKO™). Multiple lipid transfections for iRNA-mediated knockdowns targeting different regions of a target RNA over a period of a week or more are also contemplated by the disclosure. Successful introduction of vectors into host cells can be monitored using various known methods. For example, transient transfection can be signaled with a reporter, such as a fluorescent marker, such as Green Fluorescent Protein (GFP). Stable transfection of cells ex vivo can be ensured using markers that provide the transfected cell with resistance to specific environmental factors (e.g., antibiotics and drugs), such as hygromycin B resistance.


Viral vector systems which can be utilized with the methods and compositions described herein include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV40 vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Replication-defective viruses can also be advantageous. Different vectors will or will not become incorporated into the cells' genome. The constructs can include viral sequences for transfection, if desired. Alternatively, the construct may be incorporated into vectors capable of episomal replication, e.g EPV and EBV vectors. Constructs for the recombinant expression of an iRNA will generally require regulatory elements, e.g., promoters, enhancers, etc., to ensure the expression of the iRNA in target cells. Other aspects to consider for vectors and constructs are further described below.


Vectors useful for the delivery of an iRNA will include regulatory elements (promoter, enhancer, etc.) sufficient for expression of the iRNA in the desired target cell or tissue. The regulatory elements can be chosen to provide either constitutive or regulated/inducible expression.


Expression of the iRNA can be precisely regulated, for example, by using an inducible regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J. 8:20-24). Such inducible expression systems, suitable for the control of dsRNA expression in cells or in mammals include, for example, regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-β-D1-thiogalactopyranoside (IPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the iRNA transgene.


In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an iRNA can be used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding an iRNA are cloned into one or more vectors, which facilitates delivery of the nucleic acid into a patient. More detail about retroviral vectors can be found, for example, in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdr1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993). Lentiviral vectors contemplated for use include, for example, the HIV based vectors described in U.S. Pat. Nos. 6,143,520; 5,665,557; and 5,981,276, which are herein incorporated by reference.


Adenoviruses are also contemplated for use in delivery of iRNAs. Adenoviruses are especially attractive vehicles, e.g., for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143-155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). A suitable AV vector for expressing an iRNA featured in the disclosure, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia H et al. (2002), Nat. Biotech. 20: 1006-1010.


Use of Adeno-associated virus (AAV) vectors is also contemplated (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Pat. No. 5,436,146). In some embodiments, the iRNA can be expressed as two separate, complementary single-stranded RNA molecules from a recombinant AAV vector having, for example, either the U6 or H1 RNA promoters, or the cytomegalovirus (CMV) promoter. Suitable AAV vectors for expressing the dsRNA featured in the disclosure, methods for constructing the recombinant AV vector, and methods for delivering the vectors into target cells are described in Samulski R et al. (1987), J. Virol. 61: 3096-3101; Fisher K J et al. (1996), J. Virol., 70: 520-532; Samulski R et al. (1989), J. Virol. 63: 3822-3826; U.S. Pat. Nos. 5,252,479; 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are herein incorporated by reference.


Another typical viral vector is a pox virus such as a vaccinia virus, for example an attenuated vaccinia such as Modified Virus Ankara (MVA) or NYVAC, an avipox such as fowl pox or canary pox.


The tropism of viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate. For example, lentiviral vectors can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors can be made to target different cells by engineering the vectors to express different capsid protein serotypes; see, e.g., Rabinowitz J E et al. (2002), J Virol 76:791-801, the entire disclosure of which is herein incorporated by reference.


The pharmaceutical preparation of a vector can include the vector in an acceptable diluent, or can include a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


III. Pharmaceutical Compositions Containing iRNA

In some embodiments, the disclosure provides pharmaceutical compositions containing an iRNA, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical composition containing the iRNA is useful for treating a disease or disorder related to the expression or activity of VEGF-A (e.g., an angiogenic ocular disorder). Such pharmaceutical compositions are formulated based on the mode of delivery. In some embodiments, compositions can be formulated for localized delivery, e.g., by intraocular delivery (e.g., intravitreal administration, e.g., intravitreal injection; transscleral administration, e.g., transscleral injection; subconjunctival administration, e.g., subconjunctival injection; retrobulbar administration, e.g., retrobulbar injection; intracameral administration, e.g., intracameral injection; or subretinal administration, e.g., subretinal injection). In other embodiments, compositions can be formulated for topical delivery. In another example, compositions can be formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV) delivery. In some embodiments, a composition provided herein (e.g., a composition comprising a GalNAc conjugate or an LNP formulation) is formulated for intravenous delivery.


The pharmaceutical compositions featured herein are administered in a dosage sufficient to inhibit expression of VEGF-A. In general, a suitable dose of iRNA will be in the range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day. The pharmaceutical composition may be administered once daily, or the iRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the iRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the iRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as can be used with the agents of the present disclosure. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.


The effect of a single dose on VEGF-A levels can be long lasting, such that subsequent doses are administered at not more than 3, 4, or 5-day intervals, or at not more than 1, 2, 3, 4, 12, 24, or 36-week intervals.


The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the individual iRNAs encompassed by the disclosure can be made using conventional methodologies or on the basis of in vivo testing using a suitable animal model.


A suitable animal model, e.g., a mouse or a cynomolgus monkey, e.g., an animal containing a transgene expressing human VEGF-A, can be used to determine the therapeutically effective dose and/or an effective dosage regimen administration of VEGF-A siRNA.


The present disclosure also includes pharmaceutical compositions and formulations that include the iRNA compounds featured herein. The pharmaceutical compositions of the present disclosure may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be local (e.g., by intraocular injection), topical (e.g., by an eye drop solution), or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal, or intraventricular administration.


Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Suitable topical formulations include those in which the iRNAs featured in the disclosure are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). iRNAs featured in the disclosure may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, iRNAs may be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C120 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.


Liposomal Formulations


There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present disclosure, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.


Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.


In order to traverse intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.


Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.


Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.


Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).


Liposomes which are pH-sensitive or negatively charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).


One major type of liposomal composition includes phospholipids other than naturally derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P. Pharma. Sci., 1994, 4, 6, 466).


Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C1215G, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.). Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al). U.S. Pat. No. 5,540,935 (Miyazaki et al.) and U.S. Pat. No. 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.


A number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Pat. No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include a dsRNA. U.S. Pat. No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising dsRNAs targeted to the raf gene.


Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


Nucleic Acid Lipid Particles


In some embodiments, a VEGF-A dsRNA featured in the disclosure is fully encapsulated in the lipid formulation, e.g., to form a SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. SNALPs and SPLPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs and SPLPs are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO 96/40964.


In some embodiments, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1.


The cationic lipid may be, for example, N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(I-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N-(I-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)-N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethylazanediyl)didodecan-2-ol (Tech G1), or a mixture thereof. The cationic lipid may comprise from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.


In some embodiments, the compound 2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane can be used to prepare lipid-siRNA nanoparticles. Synthesis of 2,2-Dilinoleyl dimethylaminoethyl-[1,3]-dioxolane is described in U.S. provisional patent application No. 61/107,998 filed on Oct. 23, 2008, which is herein incorporated by reference.


In some embodiments, the lipid-siRNA particle includes 40% 2, 2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane: 10% DSPC: 40% Cholesterol: 10% PEG-C-DOMG (mole percent) with a particle size of 63.0±20 nm and a 0.027 siRNA/Lipid Ratio.


The non-cationic lipid may be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid may be from about 5 mol % to about 90 mol %, about 10 mol %, or about 58 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles may be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate may be, for example, a PEG-dilauryloxypropyl (Ci2), a PEG-dimyristyloxypropyl (Ci4), a PEG-dipalmityloxypropyl (Ci6), or a PEG-distearyloxypropyl (C]8). The conjugated lipid that prevents aggregation of particles may be from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 48 mol % of the total lipid present in the particle.


In some embodiments, the iRNA is formulated in a lipid nanoparticle (LNP).


LNP01


In some embodiments, the lipidoid ND984HCl (MW 1487) (see U.S. patent application Ser. No. 12/056,230, filed Mar. 26, 2008, which is herein incorporated by reference), Cholesterol (Sigma-Aldrich), and PEG-Ceramide C16 (Avanti Polar Lipids) can be used to prepare lipid-dsRNA nanoparticles (e.g., LNP01 particles). Stock solutions of each in ethanol can be prepared as follows: ND98, 133 mg/ml; Cholesterol, 25 mg/ml, PEG-Ceramide C16, 100 mg/ml. The ND98, Cholesterol, and PEG-Ceramide C16 stock solutions can then be combined in a, e.g., 42:48:10 molar ratio. The combined lipid solution can be mixed with aqueous dsRNA (e.g., in sodium acetate pH 5) such that the final ethanol concentration is about 35-45% and the final sodium acetate concentration is about 100-300 mM. Lipid-dsRNA nanoparticles typically form spontaneously upon mixing. Depending on the desired particle size distribution, the resultant nanoparticle mixture can be extruded through a polycarbonate membrane (e.g., 100 nm cut-off) using, for example, a thermobarrel extruder, such as Lipex Extruder (Northern Lipids, Inc). In some cases, the extrusion step can be omitted. Ethanol removal and simultaneous buffer exchange can be accomplished by, for example, dialysis or tangential flow filtration. Buffer can be exchanged with, for example, phosphate buffered saline (PBS) at about pH 7, e.g., about pH 6.9, about pH 7.0, about pH 7.1, about pH 7.2, about pH 7.3, or about pH 7.4.




embedded image


LNP01 formulations are described, e.g., in International Application Publication No. WO 2008/042973, which is hereby incorporated by reference.


Additional exemplary lipid-dsRNA formulations are provided in the following table.









TABLE 6







Exemplary lipid formulations











cationic lipid/non-cationic




lipid/cholesterol/PEG-lipid conjugate



Cationic Lipid
Lipid:siRNA ratio





SNALP
1,2-Dilinolenyloxy-N,N -
DLinDMA/DPPC/Cholesterol/PEG-cDMA



dimethylaminopropane (DLinDMA)
(57.1/7.1/34.4/1.4)




lipid:siRNA~7:1


S-XTC
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DPPC/Cholesterol/PEG-cDMA



[1,3]-dioxolane (XTC)
57.1/7.1/34.4/1.4




lipid:siRNA~7:1


LNP05
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~6:1


LNP06
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
57.5/7.5/31.5/3.5




lipid:siRNA~11:1


LNP07
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~6:1


LNP08
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
60/7.5/31/1.5,




lipid:siRNA~11:1


LNP09
2,2-Dilinoleyl-4-dimethylaminoethyl-
XTC/DSPC/Cholesterol/PEG-DMG



[1,3]-dioxolane (XTC)
50/10/38.5/1.5




Lipid:siRNA 10:1


LNP10
(3aR,5s,6aS)-N,N-dimethyl-2,2-
ALN100/DSPC/Cholesterol/PEG-DMG



di((9Z,12Z)-octadeca-9,12-
50/10/38.5/1.5



dienyl)tetrahydro-3aH-
Lipid:siRNA 10:1



cyclopenta[d][1,3]dioxol-5-amine




(ALN100)



LNP11
(6Z,9Z,28Z,31Z)-heptatriaconta-
MC-3/DSPC/Cholesterol/PEG-DMG



6,9,28,31-tetraen-19-yl 4-
50/10/38.5/1.5



(dimethylamino)butanoate (MC3)
Lipid:siRNA 10:1


LNP12
1,1′-(2-(4-(2-((2-(bis(2-
C12-200/DSPC/Cholesterol/PEG-DMG



hydroxydodecyl)amino)ethyl)(2-
50/10/38.5/1.5



hydroxydodecyl)amino)ethyl)piperazin-
Lipid:siRNA 10:1



1-yl)ethylazanediyl)didodecan-2-ol




(C12-200)



LNP13
XTC
XTC/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 33:1


LNP14
MC3
MC3/DSPC/Chol/PEG-DMG




40/15/40/5




Lipid:siRNA: 11:1


LNP15
MC3
MC3/DSPC/Chol/PEG-DSG/GalNAc-




PEG-DSG




50/10/35/4.5/0.5




Lipid:siRNA: 11:1


LNP16
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP17
MC3
MC3/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP18
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/38.5/1.5




Lipid:siRNA: 12:1


LNP19
MC3
MC3/DSPC/Chol/PEG-DMG




50/10/35/5




Lipid:siRNA: 8:1


LNP20
MC3
MC3/DSPC/Chol/PEG-DPG




50/10/38.5/1.5




Lipid:siRNA: 10:1


LNP21
C12-200
C12-200/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 7:1


LNP22
XTC
XTC/DSPC/Chol/PEG-DSG




50/10/38.5/1.5




Lipid:siRNA: 10:1





DSPC: distearoylphosphatidylcholine


DPPC: dipalmitoylphosphatidylcholine


PEG-DMG: PEG-didimyristoyl glycerol (C14-PEG, or PEG-C14) (PEG with avg mol wt of 2000)


PEG-DSG: PEG-distyryl glycerol (C18-PEG, or PEG-C18) (PEG with avg mol wt of 2000)


PEG-cDMA: PEG-carbamoyl-1,2-dimyristyloxypropylamine (PEG with avg mol wt of 2000)






SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in International Publication No. WO2009/127060, filed Apr. 15, 2009, which is hereby incorporated by reference.


XTC comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/148,366, filed Jan. 29, 2009; U.S. Provisional Ser. No. 61/156,851, filed Mar. 2, 2009; U.S. Provisional Ser. No. 61/185,712, filed Jun. 10, 2009; U.S. Provisional Ser. No. 61/228,373, filed Jul. 24, 2009; U.S. Provisional Ser. No. 61/239,686, filed Sep. 3, 2009, and International Application No. PCT/US2010/022614, filed Jan. 29, 2010, which are hereby incorporated by reference.


MC3 comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/244,834, filed Sep. 22, 2009, U.S. Provisional Ser. No. 61/185,800, filed Jun. 10, 2009, and International Application No. PCT/US10/28224, filed Jun. 10, 2010, which are hereby incorporated by reference.


ALNY-100 comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference.


C12-200 comprising formulations are described in U.S. Provisional Ser. No. 61/175,770, filed May 5, 2009 and International Application No. PCT/US10/33777, filed May 5, 2010, which are hereby incorporated by reference.


Synthesis of Cationic Lipids

Any of the compounds, e.g., cationic lipids and the like, used in the nucleic acid-lipid particles featured in the disclosure may be prepared by known organic synthesis techniques. All substituents are as defined below unless indicated otherwise.


“Alkyl” means a straight chain or branched, noncyclic or cyclic, saturated aliphatic hydrocarbon containing from 1 to 24 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like. Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.


“Alkenyl” means an alkyl, as defined above, containing at least one double bond between adjacent carbon atoms. Alkenyls include both cis and trans isomers. Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.


“Alkynyl” means any alkyl or alkenyl, as defined above, which additionally contains at least one triple bond between adjacent carbons. Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1 butynyl, and the like.


“Acyl” means any alkyl, alkenyl, or alkynyl wherein the carbon at the point of attachment is substituted with an oxo group, as defined below. For example, —C(═O)alkyl, —C(═O)alkenyl, and —C(═O)alkynyl are acyl groups.


“Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 or 2 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined below. Heterocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperizynyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.


The terms “optionally substituted alkyl”, “optionally substituted alkenyl”, “optionally substituted alkynyl”, “optionally substituted acyl”, and “optionally substituted heterocycle” means that, when substituted, at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (═O) two hydrogen atoms are replaced. In this regard, substituents include oxo, halogen, heterocycle, —CN, —ORx, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy, wherein n is 0, 1 or 2, Rx and Ry are the same or different and independently hydrogen, alkyl or heterocycle, and each of said alkyl and heterocycle substituents may be further substituted with one or more of oxo, halogen, —OH, —CN, alkyl, —ORx, heterocycle, —NRxRy, —NRxC(═O)Ry, —NRxSO2Ry, —C(═O)Rx, —C(═O)ORx, —C(═O)NRxRy, —SOnRx and —SOnNRxRy.


“Halogen” means fluoro, chloro, bromo and iodo.


In some embodiments, the methods featured in the disclosure may require the use of protecting groups. Protecting group methodology is well known to those skilled in the art (see, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Green, T. W. et al., Wiley-Interscience, New York City, 1999). Briefly, protecting groups within the context of this disclosure are any group that reduces or eliminates unwanted reactivity of a functional group. A protecting group can be added to a functional group to mask its reactivity during certain reactions and then removed to reveal the original functional group. In some embodiments an “alcohol protecting group” is used. An “alcohol protecting group” is any group which decreases or eliminates unwanted reactivity of an alcohol functional group. Protecting groups can be added and removed using techniques well known in the art.


Synthesis of Formula A

In some embodiments, nucleic acid-lipid particles featured in the disclosure are formulated using a cationic lipid of formula A:




embedded image


where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring. In some embodiments, the cationic lipid is XTC (2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane). In general, the lipid of formula A above may be made by the following Reaction Schemes 1 or 2, wherein all substituents are as defined above unless indicated otherwise.




embedded image


Lipid A, where R1 and R2 are independently alkyl, alkenyl or alkynyl, each can be optionally substituted, and R3 and R4 are independently lower alkyl or R3 and R4 can be taken together to form an optionally substituted heterocyclic ring, can be prepared according to Scheme 1. Ketone 1 and bromide 2 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 1 and 2 yields ketal 3. Treatment of ketal 3 with amine 4 yields lipids of formula A. The lipids of formula A can be converted to the corresponding ammonium salt with an organic salt of formula 5, where X is anion counter ion selected from halogen, hydroxide, phosphate, sulfate, or the like.




embedded image


Alternatively, the ketone 1 starting material can be prepared according to Scheme 2. Grignard reagent 6 and cyanide 7 can be purchased or prepared according to methods known to those of ordinary skill in the art. Reaction of 6 and 7 yields ketone 1. Conversion of ketone 1 to the corresponding lipids of formula A is as described in Scheme 1.


Synthesis of MC3

Preparation of DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate) was as follows. A solution of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-ol (0.53 g), 4-N,N-dimethylaminobutyric acid hydrochloride (0.51 g), 4-N,N-dimethylaminopyridine (0.61g) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.53 g) in dichloromethane (5 mL) was stirred at room temperature overnight. The solution was washed with dilute hydrochloric acid followed by dilute aqueous sodium bicarbonate. The organic fractions were dried over anhydrous magnesium sulphate, filtered and the solvent removed on a rotovap. The residue was passed down a silica gel column (20 g) using a 1-5% methanol/dichloromethane elution gradient. Fractions containing the purified product were combined and the solvent removed, yielding a colorless oil (0.54 g).


Synthesis of ALNY-100

Synthesis of ketal 519 [ALNY-100] was performed using the following scheme 3:




embedded image


Synthesis of 515

To a stirred suspension of LiAlH4 (3.74 g, 0.09852 mol) in 200 ml anhydrous THF in a two neck RBF (1L), was added a solution of 514 (10 g, 0.04926 mol) in 70 mL of THF slowly at 0 OC under nitrogen atmosphere. After complete addition, reaction mixture was warmed to room temperature and then heated to reflux for 4 h. Progress of the reaction was monitored by TLC. After completion of reaction (by TLC) the mixture was cooled to 0° C. and quenched with careful addition of saturated Na2SO4 solution. Reaction mixture was stirred for 4 h at room temperature and filtered off. Residue was washed well with THF. The filtrate and washings were mixed and diluted with 400 mL dioxane and 26 mL conc. HCl and stirred for 20 minutes at room temperature. The volatilities were stripped off under vacuum to furnish the hydrochloride salt of 515 as a white solid. Yield: 7.12 g 1H-NMR (DMSO, 400 MHz): δ=9.34 (broad, 2H), 5.68 (s, 2H), 3.74 (m, 1H), 2.66-2.60 (m, 2H), 2.50-2.45 (m, 5H).


Synthesis of 516

To a stirred solution of compound 515 in 100 mL dry DCM in a 250 mL two neck RBF, was added NEt3 (37.2 mL, 0.2669 mol) and cooled to 0° C. under nitrogen atmosphere. After a slow addition of N-(benzyloxy-carbonyloxy)-succinimide (20 g, 0.08007 mol) in 50 mL dry DCM, reaction mixture was allowed to warm to room temperature. After completion of the reaction (2-3 h by TLC) mixture was washed successively with 1N HCl solution (1×100 mL) and saturated NaHCO3 solution (1×50 mL). The organic layer was then dried over anhyd. Na2SO4 and the solvent was evaporated to give crude material which was purified by silica gel column chromatography to get 516 as sticky mass. Yield: 11 g (89%). 1H-NMR (CDCl3, 400 MHz): δ=7.36-7.27 (m, 5H), 5.69 (s, 2H), 5.12 (s, 2H), 4.96 (br., 1H) 2.74 (s, 3H), 2.60 (m, 2H), 2.30-2.25 (m, 2H). LC-MS [M+H] −232.3 (96.94%).


Synthesis of 517A and 517B

The cyclopentene 516 (5 g, 0.02164 mol) was dissolved in a solution of 220 mL acetone and water (10:1) in a single neck 500 mL RBF and to it was added N-methyl morpholine-N-oxide (7.6 g, 0.06492 mol) followed by 4.2 mL of 7.6% solution of OsO4 (0.275 g, 0.00108 mol) in tert-butanol at room temperature. After completion of the reaction (— 3 h), the mixture was quenched with addition of solid Na2SO3 and resulting mixture was stirred for 1.5 h at room temperature. Reaction mixture was diluted with DCM (300 mL) and washed with water (2×100 mL) followed by saturated NaHCO3 (1×50 mL) solution, water (1×30 mL) and finally with brine (1×50 mL). Organic phase was dried over an.Na2SO4 and solvent was removed in vacuum. Silica gel column chromatographic purification of the crude material was afforded a mixture of diastereomers, which were separated by prep HPLC. Yield: −6 g crude


517A—Peak-1 (white solid), 5.13 g (96%). 1H-NMR (DMSO, 400 MHz): δ=7.39-7.31 (m, 5H), 5.04 (s, 2H), 4.78-4.73 (m, 1H), 4.48-4.47 (d, 2H), 3.94-3.93 (m, 2H), 2.71 (s, 3H), 1.72-1.67 (m, 4H). LC-MS−[M+H] −266.3, [M+NH4+] −283.5 present, HPLC-97.86%. Stereochemistry confirmed by X-ray.


Synthesis of 518

Using a procedure analogous to that described for the synthesis of compound 505, compound 518 (1.2 g, 41%) was obtained as a colorless oil. 1H-NMR (CDCl3, 400 MHz): δ=7.35-7.33 (m, 4H), 7.30-7.27 (m, 1H), 5.37-5.27 (m, 8H), 5.12 (s, 2H), 4.75 (m, 1H), 4.58-4.57 (m, 2H), 2.78-2.74 (m, 7H), 2.06-2.00 (m, 8H), 1.96-1.91 (m, 2H), 1.62 (m, 4H), 1.48 (m, 2H), 1.37-1.25 (br m, 36H), 0.87 (m, 6H). HPLC-98.65%.


General Procedure for the Synthesis of Compound 519

A solution of compound 518 (1 eq) in hexane (15 mL) was added in a drop-wise fashion to an ice-cold solution of LAH in THF (1 M, 2 eq). After complete addition, the mixture was heated at 40° C. over 0.5 h then cooled again on an ice bath. The mixture was carefully hydrolyzed with saturated aqueous Na2SO4 then filtered through celite and reduced to an oil. Column chromatography provided the pure 519 (1.3 g, 68%) which was obtained as a colorless oil. 13C NMR=130.2, 130.1 (×2), 127.9 (×3), 112.3, 79.3, 64.4, 44.7, 38.3, 35.4, 31.5, 29.9 (×2), 29.7, 29.6 (×2), 29.5 (×3), 29.3 (×2), 27.2 (×3), 25.6, 24.5, 23.3, 226, 14.1; Electrospray MS (+ve): Molecular weight for C44H80NO2 (M+H)+ Calc. 654.6, Found 654.6.


Formulations prepared by either the standard or extrusion-free method can be characterized in similar manners. For example, formulations are typically characterized by visual inspection. They should be whitish translucent solutions free from aggregates or sediment. Particle size and particle size distribution of lipid-nanoparticles can be measured by light scattering using, for example, a Malvern Zetasizer Nano ZS (Malvern, USA). Particles should be about 20-300 nm, such as 40-100 nm in size. The particle size distribution should be unimodal. The total dsRNA concentration in the formulation, as well as the entrapped fraction, is estimated using a dye exclusion assay. A sample of the formulated dsRNA can be incubated with an RNA-binding dye, such as Ribogreen (Molecular Probes) in the presence or absence of a formulation disrupting surfactant, e.g., 0.5% Triton-X100. The total dsRNA in the formulation can be determined by the signal from the sample containing the surfactant, relative to a standard curve. The entrapped fraction is determined by subtracting the “free” dsRNA content (as measured by the signal in the absence of surfactant) from the total dsRNA content. Percent entrapped dsRNA is typically >85%. For SNALP formulation, the particle size is at least 30 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 70 nm, at least 80 nm, at least 90 nm, at least 100 nm, at least 110 nm, and at least 120 nm. The suitable range is typically about at least 50 nm to about at least 110 nm, about at least 60 nm to about at least 100 nm, or about at least 80 nm to about at least 90 nm.


Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the disclosure are administered in conjunction with one or more penetration enhancers surfactants and chelators. Suitable surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the disclosure may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, US Publn. No. 20030027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.


Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intravitreal, subretinal, transscleral, subconjunctival, retrobulbar, intracameral, intraventricular, or intrahepatic administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present disclosure include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.


The pharmaceutical formulations featured in the present disclosure, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions featured in the present disclosure may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


Additional Formulations

Emulsions


The compositions of the present disclosure may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise, a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.


Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, LV., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y. Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).


Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).


Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.


Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.


In some embodiments of the present disclosure, the compositions of iRNAs and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically, microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotopically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).


The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.


Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (see e.g., U.S. Pat. Nos. 6,191,105; 7,063,860; 7,070,802; 7,157,099; Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or iRNAs. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present disclosure will facilitate the increased systemic absorption of iRNAs and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of iRNAs and nucleic acids.


Microemulsions of the present disclosure may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the iRNAs and nucleic acids of the present disclosure. Penetration enhancers used in the microemulsions of the present disclosure may be classified as belonging to one of five broad categories--surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.


Penetration Enhancers


In some embodiments, the present disclosure employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly iRNAs, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.


Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above-mentioned classes of penetration enhancers are described below in greater detail.


Surfactants: In connection with the present disclosure, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of iRNAs through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).


Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C1-20 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (see e.g., Touitou, E., et al. Enhancement in Drug Delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).


Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus, the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (see e.g., Malmsten, M. Surfactants and polymers in drug delivery, Informa Health Care, New York, N.Y., 2002; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).


Chelating Agents: Chelating agents, as used in connection with the present disclosure, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of iRNAs through the mucosa is enhanced. With regards to their use as penetration enhancers in the present disclosure, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of β-diketones (enamines)(see e.g., Katdare, A. et al., Excipient development for pharmaceutical, biotechnology, and drug delivery, CRC Press, Danvers, Mass., 2006; Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).


Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of iRNAs through the alimentary mucosa (see e.g., Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).


Agents that enhance uptake of iRNAs at the cellular level may also be added to the pharmaceutical and other compositions of the present disclosure. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of dsRNAs. Examples of commercially available transfection reagents include, for example Lipofectamine™ (Invitrogen; Carlsbad, Calif.), Lipofectamine 2000™ (Invitrogen; Carlsbad, Calif.), 293fectin™ (Invitrogen; Carlsbad, Calif.), Cellfectin™ (Invitrogen; Carlsbad, Calif.), DMRIE-C™ (Invitrogen; Carlsbad, Calif.), FreeStyle™ MAX (Invitrogen; Carlsbad, Calif.), Lipofectamine™ 2000 CD (Invitrogen; Carlsbad, Calif.), Lipofectamine™ (Invitrogen; Carlsbad, Calif.), RNAiMAX (Invitrogen; Carlsbad, Calif.), Oligofectamine™ (Invitrogen; Carlsbad, Calif.), Optifect™ (Invitrogen; Carlsbad, Calif.), X-tremeGENE Q2 Transfection Reagent (Roche; Grenzacherstrasse, Switzerland), DOTAP Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), DOSPER Liposomal Transfection Reagent (Grenzacherstrasse, Switzerland), or Fugene (Grenzacherstrasse, Switzerland), Transfectam® Reagent (Promega; Madison, Wis.), TransFast™ Transfection Reagent (Promega; Madison, Wis.), Tfx™-20 Reagent (Promega; Madison, Wis.), Tfx™-50 Reagent (Promega; Madison, Wis.), DreamFect™ (OZ Biosciences; Marseille, France), EcoTransfect (OZ Biosciences; Marseille, France), TransPassa D1 Transfection Reagent (New England Biolabs; Ipswich, Mass., USA), LyoVec™/LipoGen™ (Invivogen; San Diego, Calif., USA), PerFectin Transfection Reagent (Genlantis; San Diego, Calif., USA), NeuroPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), GenePORTER Transfection reagent (Genlantis; San Diego, Calif., USA), GenePORTER 2 Transfection reagent (Genlantis; San Diego, Calif., USA), Cytofectin Transfection Reagent (Genlantis; San Diego, Calif., USA), BaculoPORTER Transfection Reagent (Genlantis; San Diego, Calif., USA), TroganPORTER™ transfection Reagent (Genlantis; San Diego, Calif., USA), RiboFect (Bioline; Taunton, Mass., USA), PlasFect (Bioline; Taunton, Mass., USA), UniFECTOR (B-Bridge International; Mountain View, Calif., USA), SureFECTOR (B-Bridge International; Mountain View, Calif., USA), or HiFect™ (B-Bridge International, Mountain View, Calif., USA), among others.


Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.


Carriers


Certain compositions of the present disclosure also incorporate carrier compounds in the formulation. As used herein, “carrier compound” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate dsRNA in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4′isothiocyano-stilbene-2,2′-disulfonic acid (Miyao et al., DsRNA Res. Dev., 1995, 5, 115-121; Takakura et al., DsRNA & Nucl. Acid Drug Dev., 1996, 6, 177-183).


Excipients


In contrast to a carrier compound, a pharmaceutical carrier or excipient may comprise, e.g., a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).


Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present disclosure. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.


Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.


Other Components


The compositions of the present disclosure may additionally contain other adjunct components conventionally found in pharmaceutical compositions, e.g., at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present disclosure, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present disclosure. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Aqueous suspensions may contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In some embodiments, pharmaceutical compositions featured in the disclosure include (a) one or more iRNA compounds and (b) one or more biologic agents which function by a non-RNAi mechanism. Examples of such biologic agents include agents that interfere with an interaction of VEGF-A and at least one VEGF-A binding partner.


Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are typical.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the disclosure lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


In addition to their administration, as discussed above, the iRNAs featured in the disclosure can be administered in combination with other known agents effective in treatment of diseases or disorders related to VEGF-A expression (e.g., an angiogenic ocular disorder). In any event, the administering physician can adjust the amount and timing of iRNA administration on the basis of results observed using standard measures of efficacy known in the art or described herein.


Methods of Treating Disorders Related to Expression of VEGF-A


The present disclosure relates to the use of an iRNA targeting VEGF-A to inhibit VEGF-A expression and/or to treat a disease, disorder, or pathological process that is related to VEGF-A expression (e.g., an angiogenic ocular disorder).


In some aspects, a method of treatment of a disorder related to expression of VEGF-A is provided, the method comprising administering an iRNA (e.g., a dsRNA) disclosed herein to a subject in need thereof. In some embodiments, the iRNA inhibits (decreases) VEGF-A expression.


In some embodiments, the subject is an animal that serves as a model for a disorder related to VEGF-A expression, e.g., an angiogenic ocular disorder, e.g., AMD, DR, DME, RVO, MEfRVO, CVO, ROP, or mCNV.


Angiogenic Ocular Disorders


In some embodiments, the disorder related to VEGF-A expression is an angiogenic ocular disorder. Non-limiting examples of angiogenic ocular disorders that are treatable using the methods described herein include AMD (including wet AMD, exudative AMD, etc.), RVO (e.g., CRVO, MEfRVO, retinopathy of prematurity (ROP), or branch retinal vein occlusion (BRVO), DME, CNV (e.g., myopic CNV), iris neovascularization, neovascular glaucoma, post-surgical fibrosis in glaucoma, proliferative retinopathy, proliferative vitreoretinopathy (PVR), optic disc neovascularization, corneal neovascularization, retinal neovascularization, vitreal neovascularization, pannus, pterygium, vascular retinopathy, von Hippel-Lindau disease, histoplasmosis, and diabetic retinopathies.


Clinical and pathological features of angiogenic ocular disorders include, but are not limited to, a reduction in visual acuity (e.g., characterized by floating spots, blurriness around the edges or center of field of vision (e.g., scotoma), metamorphopsia, and impaired color vision), increased leakage from the CNV, increased vascular permeability in the eye, collection of fluid or blood beneath the macula, abnormal ocular angiogenesis, and intraretinal hemorrhage.


In some embodiments, the subject with the angiogenic ocular disorder is less than 18 years old. In some embodiments, the subject with the angiogenic ocular disorder is an adult. In some embodiments, the subject has, or is identified as having, elevated levels of VEGF-A mRNA or protein relative to a reference level (e.g., a level of VEGF-A that is greater than a reference level).


In some embodiments, the angiogenic ocular disorder is diagnosed using analysis of a sample from the subject (e.g., an aqueous ocular fluid sample). In some embodiments, the sample is analyzed using a method selected from one or more of: fluorescent in situ hybridization (FISH), immunohistochemistry, VEGF-A immunoassay, electron microscopy, laser microdissection, and mass spectrometry. In some embodiments, angiogenic ocular disorder is diagnosed using any suitable diagnostic test or technique, e.g., angiography (e.g., fluorescein angiography or indocyanine green angiography), electroretinography, ultrasonography, pachymetry, optical coherence tomography (OCT), computed tomography (CT) and magnetic resonance imaging (MRI), tonometry, color vision testing, visual field testing, slit-lamp examination, ophthalmoscopy, and physical examination (e.g., to assess visual acuity (e.g., by fundoscopy or optical coherence tomography (OCT)).


Combination Therapies


In some embodiments, an iRNA (e.g., a dsRNA) disclosed herein is administered in combination with a second therapy (e.g., one or more additional therapies) known to be effective in treating a disorder related to VEGF-A expression (e.g., an angiogenic ocular disorder) or a symptom of such a disorder. The iRNA may be administered before, after, or concurrent with the second therapy. In some embodiments, the iRNA is administered before the second therapy. In some embodiments, the iRNA is administered after the second therapy. In some embodiments, the iRNA is administered concurrent with the second therapy.


The second therapy may be an additional therapeutic agent. The iRNA and the additional therapeutic agent can be administered in combination in the same composition or the additional therapeutic agent can be administered as part of a separate composition.


In some embodiments, the second therapy is a non-iRNA therapeutic agent that is effective to treat the disorder or symptoms of the disorder.


In some embodiments, the iRNA is administered in conjunction with a therapy.


Exemplary combination therapies include, but are not limited to, photodynamic therapy, photocoagulation therapy, a steroid, a non-steroidal anti-inflammatory agent, an anti-VEGF agent, and a vitrectomy.


In some embodiments, the anti-VEGF-A agent comprises a fusion protein. Exemplary anti-VEGF fusion proteins include, but are not limited to, aflibercept (EYLEA®). In some embodiments, the anti-VEGF-A fusion protein has the amino acid sequence of SDTGRPFVEMYSEIPEIIHMTEGRELVIPCRVTSPNITVTLKKFPLDTLIPDGKRIIWDSRKG FIISNATYKEIGLLTCEATVNGHLYKTNYLTHRQTNTIIDVVLSPSHGIELSVGEKLVLNC TARTELNVGIDFNWEYPSSKHQHKKLVNRDLKTQSGSEMKKFLSTLTIDGVTRSDQGLY TCAASSGLMTKKNSTFVRVHEKDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL HNHYTQKSLSLSPG (SEQ ID NO: 1905), or a variant thereof having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto.


In some embodiments, the anti-VEGF-A agent is an antibody or antigen-binding fragment thereof (e.g., an anti-VEGF-A antibody molecule). Exemplary anti-VEGF-A antibody molecules include, but are not limited to, ranibizumab (LUCENTIS®) and brolucizumab (BEOVU®). In some embodiments, an anti-VEGF-A antibody molecule competes for binding to VEGF-A with ranibizumab or brolucizumab.


In some embodiments, the anti-VEGF-A antibody molecules comprises one or more (e.g., all three) of a heavy chain complementarity determining region 1 (HCDR1), a heavy chain complementarity determining region 2 (HCDR2) and a heavy chain complementarity determining region 3 (HCDR3). In some embodiments, the anti-VEGF-A antibody molecules comprises one or more (e.g., all three) of a light chain complementarity determining region 1 (LCDR1), a light chain complementarity determining region 2 (LCDR2) and a light chain complementarity determining region 3 (LCDR3).


In some embodiments, the anti-VEGF-A antibody molecule comprises a VH comprising one or more (e.g., all three) of a heavy chain complementarity determining region 1 (HCDR1) of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions), a HCDR2 of an anti-VEGF-A antibody or antibody fragment thereof described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions), and a HCDR3 of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions).


In some embodiments, the anti-VEGF-A antibody molecule comprises a VL comprising one or more (e.g., all three) of a light chain complementarity determining region 1 (LCDR1) of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions), a LCDR2 of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions), and a LCDR3 of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or a sequence with no more than 1, 2, 3, or 4 mutations, e.g., substitutions, additions, or deletions).


In some embodiments, the anti-VEGF-A antibody molecule comprises a VH comprising an amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, or an amino acid sequence having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto. In some embodiments, the anti-VEGF-A antibody molecule comprises a VL comprising the amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, or an amino acid sequence having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto.


In some embodiments, the anti-VEGF-A antibody molecule comprises a VH comprising the amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or an amino acid sequence having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto) and a VL comprising the amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, (or an amino acid sequence having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto).


In one embodiment, the anti-VEGF-A antibody molecule comprises a scFv comprising a light chain and a heavy chain of an amino acid sequence of anti-VEGF-A antibody molecule described herein, e.g., in Table 7. In one embodiment, the anti-VEGF-A antibody molecule (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two, or three modifications (e.g., substitutions) but not more than 30, 20, or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, or a sequence with 95-99% identity with an amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two, or three modifications (e.g., substitutions) but not more than 30, 20, or 10 modifications (e.g., substitutions) of an amino acid sequence of a heavy chain variable region of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7, or a sequence with 95-99% identity to an amino acid sequence of an anti-VEGF-A antibody molecule described herein, e.g., in Table 7.


In one embodiment, the anti-VEGF-A antibody molecule is a scFv, and a light chain variable region comprising an amino acid sequence of anti-VEGF-A antibody molecule described herein, e.g., in Table 7, is attached to a heavy chain variable region comprising an amino acid sequence of an anti-VEGF-A antibody molecule described herein, via a linker, e.g., a linker described herein. In one embodiment, the anti-VEGF-A antibody molecule includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:1951). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.









TABLE 7







Exemplary Anti-VEGF Antibody Molecule Sequences









Description
SEQ ID NO.
Sequence





Brolucizumab Sequence
1906
MEIVMTQSPSTLSASVGDRVIITCQASEIIHSWLtext missing or illegible when filed




WYQQKPGKAPKLLIYLASTLASGVPSRFSGSGSG




AEFTLTISSLQPDDFATYYCQNVYLASTNGANtext missing or illegible when filed G




QGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQ




LVESGGGLVQPGGSLRLSCTASGFSLTDYYYMtext missing or illegible when filed




WVRQAPGKGLEWVGFIDPDDDPYYATWAKGtext missing or illegible when filed F




TISRDNSKNTLYLQMNSLRAEDTAVYYCAGGtext missing or illegible when filed H




NSGWGLDIWGQGTLVTVSS





Brolucizumab VH
1907
EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYtext missing or illegible when filed Y




MTWVRQAPGKGLEWVGFIDPDDDPYYATWAtext missing or illegible when filed




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAG




GDHNSGWGLDIWGQGTLVTVSS





Brolucizumab VL
1908
MEIVMTQSPSTLSASVGDRVIITCQASEIIHSWLtext missing or illegible when filed




WYQQKPGKAPKLLIYLASTLASGVPSRFSGSGtext missing or illegible when filed G




AEFTLTISSLQPDDFATYYCQNVYLASTNGANtext missing or illegible when filed G




QGTKLTVLG





Brolucizumab Linker
1909
GGGGSGGGGSGGGGSGGGGS





Ranibizumab Heavy Chain
1910
EVQLVESGGGLVQPGGSLRLSCAASGYDFTHYG






MN
WVRQAPGKGLEWVGWINTYTGEPTYAAtext missing or illegible when filedF







KR
RFTFSLDTSKSTAYLQMNSLRAEDTAVYYtext missing or illegible when filed A





KYPYYYGTSHWYFDVWGOGTLVTVSSASTKtext missing or illegible when filed P




SVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVtext missing or illegible when filed




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPtext missing or illegible when filed S




SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTtext missing or illegible when filed




L





Ranibizumab Light Chain
1911
DIQLTQSPSSLSASVGDRVTITCSASQDISNYLNtext missing or illegible when filed




YQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGStext missing or illegible when filed




DFTLTISSLQPEDFATYYCQQYSTVPWTFGQGtext missing or illegible when filed




KVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLtext missing or illegible when filed N




NFYPREAKVQWKVDNALQSGNSQESVTEQDStext missing or illegible when filed




DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLtext missing or illegible when filed S




PVTKSFNRGEC





Ranibizumab VH
1912
EVQLVESGGGLVQPGGSLRLSCAASGYDFTHYG






MN
WVRQAPGKGLEWVGWINTYTGEPTYAAtext missing or illegible when filedF







KR
RFTFSLDTSKSTAYLQMNSLRAEDTAVYYCA





KYPYYYGTSHWYFDVWGQGTLVT




VSS





Ranibizumab VL
1913
DIQLTQSPSSLSASVGDRVTITCSASQDISNYLNW




YQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQYSTVPWTFGQGT




KVEIK





Note:


CDR sequences are bolded and underlined



text missing or illegible when filed indicates data missing or illegible when filed







Administration Dosages, Routes, and Timing


A subject (e.g., a human subject, e.g., a patient) can be administered a therapeutic amount of iRNA. The therapeutic amount can be, e.g., 0.05-50 mg/kg.


In some embodiments, the iRNA is formulated for delivery to a target organ, e.g., to the eye.


In some embodiments, the iRNA is formulated as a lipid formulation, e.g., an LNP formulation as described herein. In some such embodiments, the therapeutic amount is 0.05-5 mg/kg dsRNA. In some embodiments, the lipid formulation, e.g., LNP formulation, is administered intravenously.


In some embodiments, the iRNA is in the form of a GalNAc conjugate e.g., as described herein. In some such embodiments, the therapeutic amount is 0.5-50 mg dsRNA. In some embodiments, the e.g., GalNAc conjugate is administered subcutaneously.


In some embodiments, the administration is repeated, for example, on a regular basis, such as, daily, biweekly (i.e., every two weeks) for one month, two months, three months, four months, six months or longer. After an initial treatment regimen, the treatments can be administered on a less frequent basis. For example, after administration biweekly for three months, administration can be repeated once per month, for six months or a year or longer.


In some embodiments, the iRNA agent is administered in two or more doses. In some embodiments, the number or amount of subsequent doses is dependent on the achievement of a desired effect, e.g., to (a) inhibit angiogenesis; (b) inhibit or reduce the expression or activity of VEGF A; (c) inhibit choroidal neovascularization; (d) inhibit growth of new blood vessels in the choriocapillaris; (e) reduce retinal thickness; (f) increase visual acuity; or (g) reduce intraocular inflammation, or the achievement of a therapeutic or prophylactic effect, e.g., reduction or prevention of one or more symptoms associated with the disorder.


In some embodiments, the iRNA agent is administered according to a schedule. For example, the iRNA agent may be administered once per week, twice per week, three times per week, four times per week, or five times per week. In some embodiments, the schedule involves regularly spaced administrations, e.g., hourly, every four hours, every six hours, every eight hours, every twelve hours, daily, every 2 days, every 3 days, every 4 days, every 5 days, weekly, biweekly, or monthly. In some embodiments, the iRNA agent is administered at the frequency required to achieve a desired effect.


In some embodiments, the schedule involves closely spaced administrations followed by a longer period of time during which the agent is not administered. For example, the schedule may involve an initial set of doses that are administered in a relatively short period of time (e.g., about every 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or about every 72 hours) followed by a longer time period (e.g., about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, or about 8 weeks) during which the iRNA agent is not administered. In some embodiments, the iRNA agent is initially administered hourly and is later administered at a longer interval (e.g., daily, weekly, biweekly, or monthly). In some embodiments, the iRNA agent is initially administered daily and is later administered at a longer interval (e.g., weekly, biweekly, or monthly). In certain embodiments, the longer interval increases over time or is determined based on the achievement of a desired effect.


Before administration of a full dose of the iRNA, patients can be administered a smaller dose, such as a 5% infusion dose, and monitored for adverse effects, such as an allergic reaction, or for elevated lipid levels or blood pressure. In another example, the patient can be monitored for unwanted effects.


Methods for Modulating Expression of VEGF-A


In some aspects, the disclosure provides a method for modulating (e.g., inhibiting or activating) the expression of VEGF-A, e.g., in a cell, in a tissue, or in a subject. In some embodiments, the cell or tissue is ex vivo, in vitro, or in vivo. In some embodiments, the cell or tissue is in the eye (e.g., retinal pigment epithelium (RPE), a retinal tissue, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, a photoreceptor cell, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel). In some embodiments, the cell or tissue is in a subject (e.g., a mammal, such as, for example, a human). In some embodiments, the subject (e.g., the human) is at risk, or is diagnosed with a disorder related to expression of VEGF-A expression, as described herein.


In some embodiments, the method includes contacting the cell with an iRNA as described herein, in an amount effective to decrease the expression of VEGF-A in the cell. In some embodiments, contacting a cell with an RNAi agent includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. In some embodiments, the RNAi agent is put into physical contact with the cell by the individual performing the method, or the RNAi agent may be put into a situation that will permit or cause it to subsequently come into contact with the cell. Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., ocular tissue. For example, the RNAi agent may contain or be coupled to a ligand, e.g., a lipophilic moiety or moieties as described below and further detailed, e.g., in PCT/US2019/031170 which is incorporated herein by reference in its entirety, including the passages therein describing lipophilic moieties, that directs or otherwise stabilizes the RNAi agent at a site of interest. Combinations of in vitro and in vivo methods of contacting are also possible. For example, a cell may also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.


The expression of VEGF-A may be assessed based on the level of expression of VEGF-A mRNA, VEGF-A protein, or the level of another parameter functionally linked to the level of expression of VEGF-A. In some embodiments, the expression of VEGF-A is inhibited by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%. In some embodiments, the iRNA has an IC50 in the range of 0.001-0.01 nM, 0.001-0.10 nM, 0.001-1.0 nM, 0.001-10 nM, 0.01-0.05 nM, 0.01-0.50 nM, 0.02-0.60 nM, 0.01-1.0 nM, 0.01-1.5 nM, 0.01-10 nM. The IC50 value may be normalized relative to an appropriate control value, e.g., the IC50 of a non-targeting iRNA.


In some embodiments, the method includes introducing into the cell or tissue an iRNA as described herein and maintaining the cell or tissue for a time sufficient to obtain degradation of the mRNA transcript of VEGF-A, thereby inhibiting the expression of VEGF-A in the cell or tissue.


In some embodiments, the method includes administering a composition described herein, e.g., a composition comprising an iRNA that binds VEGF-A, to the mammal such that expression of the target VEGF-A is decreased, such as for an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, or four weeks or longer. In some embodiments, the decrease in expression of VEGF-A is detectable within 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, or 24 hours of the first administration.


In some embodiments, the method includes administering a composition as described herein to a mammal such that expression of the target VEGF-A is increased by e.g., at least 10% compared to an untreated animal. In some embodiments, the activation of VEGF-A occurs over an extended duration, e.g., at least two, three, four days or more, e.g., one week, two weeks, three weeks, four weeks, or more. Without wishing to be bound by theory, an iRNA can activate VEGF-A expression by stabilizing the VEGF-A mRNA transcript, interacting with a promoter in the genome, or inhibiting an inhibitor of VEGF-A expression.


The iRNAs useful for the methods and compositions featured in the disclosure specifically target RNAs (primary or processed) of VEGF-A. Compositions and methods for inhibiting the expression of VEGF-A using iRNAs can be prepared and performed as described elsewhere herein.


In some embodiments, the method includes administering a composition containing an iRNA, where the iRNA includes a nucleotide sequence that is complementary to at least a part of an RNA transcript of VEGF-A of the subject, e.g., the mammal, e.g., the human, to be treated. The composition may be administered by any appropriate means known in the art including, but not limited to ocular (e.g., intraocular), topical, and intravenous administration.


In certain embodiments, the composition is administered intraocularly (e.g., by intravitreal administration, e.g., intravitreal injection; transscleral administration, e.g., transscleral injection; subconjunctival administration, e.g., subconjunctival injection; retrobulbar administration, e.g., retrobulbar injection; intracameral administration, e.g., intracameral injection; or subretinal administration, e.g., subretinal injection. In other embodiments, the composition is administered topically. In other embodiments, the composition is administered by intravenous infusion or injection.


In certain embodiments, the composition is administered by intravenous infusion or injection. In some such embodiments, the composition comprises a lipid formulated siRNA (e.g., an LNP formulation, such as an LNP11 formulation) for intravenous infusion.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the iRNAs and methods featured in the disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In the event of a discrepancy between the recited positions of the duplexes presented herein and the alignment of the duplexes to the recited sequences, the alignment of the duplexes to the recited sequence will govern. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Specific Embodiments

1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of vascular endothelial growth factor A (VEGF-A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of a coding strand of human VEGF-A and the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of a non-coding strand of human VEGF-A such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


2. The dsRNA agent of embodiment 1, wherein the coding strand of human VEGF-A comprises the sequence SEQ ID NO: 1.


3. The dsRNA agent of embodiment 1 or 2, wherein the non-coding strand of human VEGF-A comprises the sequence of SEQ ID NO: 2.


4. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of VEGF-A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 15 contiguous nucleotides in the antisense strand.


5. The dsRNA agent of embodiment 4, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


6. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 17 contiguous nucleotides in the antisense strand.


7. The dsRNA of embodiment 6, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


8. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 19 contiguous nucleotides in the antisense strand.


9. The dsRNA of embodiment 8, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


10. The dsRNA of any of the preceding embodiments, wherein the dsRNA agent comprises a sense strand and an antisense strand, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, of a portion of nucleotide sequence of SEQ ID NO: 2 such that the sense strand is complementary to the at least 21 contiguous nucleotides in the antisense strand.


11. The dsRNA of embodiment 10, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, or 1, 2, or 3 mismatches, of the corresponding portion of the nucleotide sequence of SEQ ID NO: 1.


12. The dsRNA agent of any one of embodiments 1-11, wherein the portion of the sense strand is a portion within nucleotides 1855-1875, 1858-1878, 2178-2198, 2181-2201, 2944-2964, 2946-2966, 2952-2972, 3361-3381, or 3362-3382 of SEQ ID NO: 1.


13. The dsRNA agent of any one of embodiments 1-12, wherein the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)).


14. The dsRNA agent of any one of embodiments 1-13, wherein the portion of the sense strand is a sense strand chosen from the sense strands of AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)).


15. The dsRNA of any one of embodiments 1-14, wherein the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)).


16. The dsRNA of any one of embodiments 1-15, wherein the portion of the antisense strand is an antisense strand chosen the antisense strands of AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)).


17. The dsRNA of any one of embodiments 1-16, wherein the sense strand and the antisense strand comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1020574 (SEQ ID NO: 4200 and 4212), AD-901094 (SEQ ID NO: 4201 and 4213), AD-1020575 (SEQ ID NO: 4202 and 4214), AD-901100 (SEQ ID NO: 4203 and 4215), AD-901101 (SEQ ID NO: 4204 and 4216), AD-901113 (SEQ ID NO: 4205 and 4217), AD-901123 (SEQ ID NO: 4206 and 4218), AD-901124 (SEQ ID NO: 4207 and 4219), AD-901158 (SEQ ID NO: 4208 and 4220), AD-901159 (SEQ ID NO: 4209 and 4221), AD-1020573 (SEQ ID NO: 4210 and 4222), or AD-1023143 (SEQ ID NO: 4211 and 4223).


18. The dsRNA agent of any one of embodiments 1-11, wherein the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-953374 (SEQ ID NO: 813), AD-953504 (SEQ ID NO: 1297), AD-953481 (SEQ ID NO: 1298), AD-953351 (SEQ ID NO: 800), AD-901356 (SEQ ID NO: 261), AD-953344 (SEQ ID NO: 787), AD-901355 (SEQ ID NO: 262), AD-953410 (SEQ ID NO: 845), AD-953363 (SEQ ID NO: 779), AD-953411 (SEQ ID NO: 844), AD-953350 (SEQ ID NO: 784), or AD-953375 (SEQ ID NO: 790).


19. The dsRNA agent of any one of embodiments 1-11 or 18, wherein the portion of the sense strand is a sense strand chosen from the sense strands of AD-953374 (SEQ ID NO: 813), AD-953504 (SEQ ID NO: 1297), AD-953481 (SEQ ID NO: 1298), AD-953351 (SEQ ID NO: 800), AD-901356 (SEQ ID NO: 261), AD-953344 (SEQ ID NO: 787), AD-901355 (SEQ ID NO: 262), AD-953410 (SEQ ID NO: 845), AD-953363 (SEQ ID NO: 779), AD-953411 (SEQ ID NO: 844), AD-953350 (SEQ ID NO: 784), or AD-953375 (SEQ ID NO: 790).


20. The dsRNA of any one of embodiments 1-11 or 18-19, wherein the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-953374 (SEQ ID NO: 943), AD-953504 (SEQ ID NO: 1427), AD-953481 (SEQ ID NO: 1428), AD-953351 (SEQ ID NO: 930), AD-901356 (SEQ ID NO: 390), AD-953344 (SEQ ID NO: 917), AD-901355 (SEQ ID NO: 391), AD-953410 (SEQ ID NO: 975), AD-953363 (SEQ ID NO: 909), AD-953411 (SEQ ID NO: 974), AD-953350 (SEQ ID NO: 914), or AD-953375 (SEQ ID NO: 920).


21. The dsRNA of any one of embodiments 1-11 or 18-20, wherein the portion of the antisense strand is an antisense strand chosen from AD-953374 (SEQ ID NO: 943), AD-953504 (SEQ ID NO: 1427), AD-953481 (SEQ ID NO: 1428), AD-953351 (SEQ ID NO: 930), AD-901356 (SEQ ID NO: 390), AD-953344 (SEQ ID NO: 917), AD-901355 (SEQ ID NO: 391), AD-953410 (SEQ ID NO: 975), AD-953363 (SEQ ID NO: 909), AD-953411 (SEQ ID NO: 974), AD-953350 (SEQ ID NO: 914), or AD-953375 (SEQ ID NO: 920).


22. The dsRNA of any one of embodiments 1-11, or 18-21 wherein the sense strand and the antisense strand of comprise the nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-953374 (SEQ ID NO: 813 and 943), AD-953504 (SEQ ID NO: 1297 and 1427), AD-953481 (SEQ ID NO: 1298 and 1428), AD-953351 (SEQ ID NO: 800 and 930), AD-901356 (SEQ ID NO: 261 and 390), AD-953344 (SEQ ID NO: 787 and 917), AD-901355 (SEQ ID NO: 262 and 391), AD-953410 (SEQ ID NO: 845 and 975), AD-953363 (SEQ ID NO: 779 and 909), AD-953411 (SEQ ID NO: 844 and 974), AD-953350 (SEQ ID NO: 784 and 914), or AD-953375 (SEQ ID NO: 790 and 920).


23. The dsRNA agent of any one of the preceding embodiments, wherein the portion of the sense strand is a portion within a sense strand in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


24. The dsRNA agent of any one of the preceding embodiments, wherein the portion of the antisense strand is a portion within an antisense strand in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


25. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


26. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


27. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


28. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 17 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


29. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0,1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


30. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 19 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


31. The dsRNA agent of any of the preceding embodiments, wherein the antisense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0,1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B.


32. The dsRNA agent of any of the preceding embodiments, wherein the sense strand comprises a nucleotide sequence comprising at least 21 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


33. A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of VEGF-A, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double-stranded region, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B, and the sense strand comprises a nucleotide sequence of a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A and 18B that corresponds to the antisense sequence.


34. The dsRNA agent of embodiment 33, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 2A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 2A that corresponds to the antisense sequence.


35. The dsRNA agent of embodiment 33, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 3A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 3A that corresponds to the antisense sequence.


36. The dsRNA agent of embodiment 33, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 4A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 4A that corresponds to the antisense sequence.


37. The dsRNA agent of embodiment 33, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 18A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 18A that corresponds to the antisense sequence.


38. The dsRNA agent of any one of embodiments 33 or 37, wherein the dsRNA agent is AD-1020574, AD-901094, AD-1020575, AD-901100, AD-901101, AD-901113, AD-901123, AD-901124, AD-901158, AD-901159, AD-1020573, or AD-1023143.


39. The dsRNA agent of any one of embodiments 33 or 37-38, comprising:


(i) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4164, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4176;


(ii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1465, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4177;


(iii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1466, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4178;


(iv) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1467, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4179;


(v) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1468, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4180;


(vi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1469, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4181;


(vii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1470, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4182;


(viii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1471, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4183;


(ix) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1472, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4184;


(x) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1473, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4185;


(xi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1474, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4186; or


(xii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1475, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4187.


40. The dsRNA agent of any one of embodiments 33-36, wherein the dsRNA agent is AD-953374, AD-953504, AD-953481, AD-953351, AD-901356, AD-953344, AD-901355, AD-953410, AD-953363, AD-953411, AD-953350, or AD-953375.


41. The dsRNA agent of any one of embodiments 33-36 or 40, comprising:


(i) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 553, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 683;


(ii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1037, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 1167;


(iii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1038, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 1168;


(iv) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 540, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 670;


(v) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 3, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 132;


(vi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 527, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 657;


(vii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 133;


(viii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 585, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 715;


(ix) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 519, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 649;


(x) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 584, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 714;


(xi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 524, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 654; or


(xii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 530, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 660.


42. The dsRNA agent of any of the preceding embodiments, wherein the sense strand is at least 23 nucleotides in length, e.g., 23-30 nucleotides in length.


43. The dsRNA agent of any of the preceding embodiments, wherein at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.


44. The dsRNA agent of embodiment 43, wherein the lipophilic moiety is conjugated to one or more positions in the double stranded region of the dsRNA agent.


45. The dsRNA agent of embodiment 43 or 44, wherein the lipophilic moiety is conjugated via a linker or carrier.


46. The dsRNA agent of any one of embodiments 43-45, wherein lipophilicity of the lipophilic moiety, measured by log Kow, exceeds 0.


47. The dsRNA agent of any one of the preceding embodiments, wherein the hydrophobicity of the double-stranded RNAi agent, measured by the unbound fraction in a plasma protein binding assay of the double-stranded RNAi agent, exceeds 0.2.


48. The dsRNA agent of embodiment 47, wherein the plasma protein binding assay is an electrophoretic mobility shift assay using human serum albumin protein.


49. The dsRNA agent of any of the preceding embodiments, wherein the dsRNA agent comprises at least one modified nucleotide.


50. The dsRNA agent of embodiment 49, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides.


51. The dsRNA agent of embodiment 50, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.


52. The dsRNA agent of any one of embodiments 49-51, wherein at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O-(N-methylacetamide) modified nucleotide; and combinations thereof.


53. The dsRNA agent of any of embodiments 49-51, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand include modifications other than 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, unlocked nucleic acids (UNA) or glycerol nucleic acid (GNA).


54. The dsRNA agent of any of the preceding embodiments, which comprises a non-nucleotide spacer (wherein optionally the non-nucleotide spacer comprises a C3-C6 alkyl) between two of the contiguous nucleotides of the sense strand or between two of the contiguous nucleotides of the antisense strand.


55. The dsRNA agent of any of the preceding embodiments, wherein each strand is no more than 30 nucleotides in length.


56. The dsRNA agent of any of the preceding embodiments, wherein at least one strand comprises a 3′ overhang of at least 1 nucleotide.


57. The dsRNA agent of any of the preceding embodiments, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.


58. The dsRNA agent of any of the preceding embodiments, wherein the double stranded region is 15-30 nucleotide pairs in length.


59. The dsRNA agent of embodiment 58, wherein the double stranded region is 17-23 nucleotide pairs in length.


60. The dsRNA agent of embodiment 58, wherein the double stranded region is 17-25 nucleotide pairs in length.


61. The dsRNA agent of embodiment 58, wherein the double stranded region is 23-27 nucleotide pairs in length.


62. The dsRNA agent of embodiment 58, wherein the double stranded region is 19-21 nucleotide pairs in length.


63. The dsRNA agent of embodiment 58, wherein the double stranded region is 21-23 nucleotide pairs in length.


64. The dsRNA agent of any of the preceding embodiments, wherein each strand has 19-30 nucleotides.


65. The dsRNA agent of any of the preceding embodiments, wherein each strand has 19-23 nucleotides.


66. The dsRNA agent of any of the preceding embodiments, wherein each strand has 21-23 nucleotides.


67. The dsRNA agent of any of the preceding embodiments, wherein the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.


68. The dsRNA agent of embodiment 67, wherein the phosphorothioate or methylphosphonate internucleotide linkage is at the 3′-terminus of one strand.


69. The dsRNA agent of embodiment 68, wherein the strand is the antisense strand.


70. The dsRNA agent of embodiment 68, wherein the strand is the sense strand.


71. The dsRNA agent of embodiment 67, wherein the phosphorothioate or methylphosphonate internucleotide linkage is at the 5′-terminus of one strand.


72. The dsRNA agent of embodiment 71, wherein the strand is the antisense strand.


73. The dsRNA agent of embodiment 71, wherein the strand is the sense strand.


74. The dsRNA agent of embodiment 67, wherein each of the 5′- and 3′-terminus of one strand comprises a phosphorothioate or methylphosphonate internucleotide linkage.


75. The dsRNA agent of embodiment 74, wherein the strand is the antisense strand.


76. The dsRNA agent of any of the preceding embodiments, wherein the base pair at the 1 position of the 5′-end of the antisense strand of the duplex is an AU base pair.


77. The dsRNA agent of embodiment 74, wherein the sense strand has a total of 21 nucleotides and the antisense strand has a total of 23 nucleotides.


78. The dsRNA agent of any one of embodiments 43-77, wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.


79. The dsRNA agent of embodiment 78, wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.


80. The dsRNA agent of embodiment 79, wherein the internal positions include all positions except the terminal two positions from each end of the at least one strand.


81. The dsRNA agent of embodiment 79, wherein the internal positions include all positions except the terminal three positions from each end of the at least one strand.


82. The dsRNA agent of any one of embodiments 79-61, wherein the internal positions exclude a cleavage site region of the sense strand.


83. The dsRNA agent of embodiment 82, wherein the internal positions include all positions except positions 9-12, counting from the 5′-end of the sense strand.


84. The dsRNA agent of embodiment 82, wherein the internal positions include all positions except positions 11-13, counting from the 3′-end of the sense strand.


85. The dsRNA agent of any one of embodiments 79-81, wherein the internal positions exclude a cleavage site region of the antisense strand.


86. The dsRNA agent of embodiment 85, wherein the internal positions include all positions except positions 12-14, counting from the 5′-end of the antisense strand.


87. The dsRNA agent of any one of embodiments 79-81, wherein the internal positions include all positions except positions 11-13 on the sense strand, counting from the 3′-end, and positions 12-14 on the antisense strand, counting from the 5′-end.


88. The dsRNA agent of any one of embodiments 43-87, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 4-8 and 13-18 on the sense strand, and positions 6-10 and 15-18 on the antisense strand, counting from the 5′end of each strand.


89. The dsRNA agent of embodiment 88, wherein the one or more lipophilic moieties are conjugated to one or more of the internal positions selected from the group consisting of positions 5, 6, 7, 15, and 17 on the sense strand, and positions 15 and 17 on the antisense strand, counting from the 5′-end of each strand.


90. The dsRNA agent of embodiment 44, wherein the positions in the double stranded region exclude a cleavage site region of the sense strand.


91. The dsRNA agent of any one of embodiments 43-90, wherein the sense strand is 21 nucleotides in length, the antisense strand is 23 nucleotides in length, and the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, position 7, position 6, or position 2 of the sense strand or position 16 of the antisense strand.


92. The dsRNA agent of embodiment 91, wherein the lipophilic moiety is conjugated to position 21, position 20, position 15, position 1, or position 7 of the sense strand.


93. The dsRNA agent of embodiment 91, wherein the lipophilic moiety is conjugated to position 21, position 20, or position 15 of the sense strand.


94. The dsRNA agent of embodiment 91, wherein the lipophilic moiety is conjugated to position 20 or position 15 of the sense strand.


95. The dsRNA agent of embodiment 91, wherein the lipophilic moiety is conjugated to position 16 of the antisense strand.


96. The dsRNA agent of embodiment 91, wherein the lipophilic moiety is conjugated to position 6, counting from the 5′-end of the sense strand.


97. The dsRNA agent of any one of embodiments 43-96, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.


98. The dsRNA agent of embodiment 98, wherein the lipophilic moiety is selected from the group consisting of lipid, cholesterol, retinoic acid, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-bis-O(hexadecyl)glycerol, geranyloxyhexyanol, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


99. The dsRNA agent of embodiment 98, wherein the lipophilic moiety contains a saturated or unsaturated C4-C30 hydrocarbon chain, and an optional functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, sulfonate, phosphate, thiol, azide, and alkyne.


100. The dsRNA agent of embodiment 99, wherein the lipophilic moiety contains a saturated or unsaturated C6-C18 hydrocarbon chain.


101. The dsRNA agent of embodiment 99, wherein the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.


102. The dsRNA agent of any one of embodiments 43-101, wherein the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.


103. The dsRNA agent of embodiment 102, wherein the carrier is a cyclic group selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl; or is an acyclic moiety based on a serinol backbone or a diethanolamine backbone.


104. The dsRNA agent of any one of embodiments 43-101, wherein the lipophilic moiety is conjugated to the double-stranded iRNA agent via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.


105. The double-stranded iRNA agent of any one of embodiments 43-104, wherein the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.


106. The dsRNA agent of any one of embodiments 43-105, wherein the lipophilic moiety is conjugated via a bio-cleavable linker selected from the group consisting of DNA, RNA, disulfide, amide, functionalized monosaccharides or oligosaccharides of galactosamine, glucosamine, glucose, galactose, mannose, and combinations thereof.


107. The dsRNA agent of any one of embodiments 43-106, wherein the 3′ end of the sense strand is protected via an end cap which is a cyclic group having an amine, said cyclic group being selected from the group consisting of pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, [1,3]dioxolanyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, tetrahydrofuranyl, and decalinyl.


108. The dsRNA agent of any one of embodiments 43-107, further comprising a targeting ligand, e.g., a ligand that targets an ocular tissue or a liver tissue.


109. The dsRNA agent of embodiment 108, wherein the ligand is conjugated to the sense strand.


110. The dsRNA agent of embodiment 108 or 109, wherein the ligand is conjugated to the 3′ end or the 5′ end of the sense strand.


111. The dsRNA agent of embodiment 108 or 109, wherein the ligand is conjugated to the 3′ end of the sense strand.


112. The dsRNA agent of any one of embodiments 108-111, wherein the ocular tissue is a retinal pigment epithelium (RPE) or choroid tissue, e.g., a choroid vessel.


113. The dsRNA agent of any one of embodiments 108-111, wherein the targeting ligand comprises N-acetylgalactosamine (GalNAc).


114. The dsRNA agent of any one of embodiments 108-111, wherein the targeting ligand is one or more GalNAc conjugates or one or more or GalNAc derivatives.


115. The dsRNA agent of embodiment 114, wherein the one or more GalNAc conjugates or one or more GalNAc derivatives are attached through a monovalent linker, or a bivalent, trivalent, or tetravalent branched linker.


116. The dsRNA agent of embodiment 114, wherein the ligand is




embedded image


117. The dsRNA agent of embodiment 116, wherein the dsRNA agent is conjugated to the ligand as shown in the following schematic




embedded image


wherein X is O or S.


118. The dsRNA agent of embodiment 117, wherein the X is O.


119. The dsRNA agent of any one of embodiments 1-118, further comprising a terminal, chiral modification occurring at the first internucleotide linkage at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp configuration or Sp configuration.


120. The dsRNA agent of any one of embodiments 1-118, further comprising


a terminal, chiral modification occurring at the first and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


121. The dsRNA agent of any one of embodiments 1-118, further comprising


a terminal, chiral modification occurring at the first, second and third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


122. The dsRNA agent of any one of embodiments 1-118, further comprising


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the third internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration,


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


123. The dsRNA agent of any one of embodiments 1-118, further comprising


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 3′ end of the antisense strand, having the linkage phosphorus atom in Sp configuration,


a terminal, chiral modification occurring at the first, and second internucleotide linkages at the 5′ end of the antisense strand, having the linkage phosphorus atom in Rp configuration, and


a terminal, chiral modification occurring at the first internucleotide linkage at the 5′ end of the sense strand, having the linkage phosphorus atom in either Rp or Sp configuration.


124. The dsRNA agent of any one of embodiments 1-123, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.


125. The dsRNA agent of embodiment 104, wherein the phosphate mimic is a 5′-vinyl phosphonate (VP).


126. A cell containing the dsRNA agent of any one of embodiments 1-125.


127. A human ocular cell, e.g., (an RPE cell, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, or a photoreceptor cell) comprising a reduced level of VEGF-A mRNA or a level of VEGF-A protein as compared to an otherwise similar untreated cell, wherein optionally the level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%.


128. The human cell of embodiment 127, which was produced by a process comprising contacting a human cell with the dsRNA agent of any one of embodiments 1-125.


129. A pharmaceutical composition for inhibiting expression of VEGF-A, comprising the dsRNA agent of any one of embodiments 1-125.


130. A pharmaceutical composition comprising the dsRNA agent of any one of embodiments 1-125 and a lipid formulation.


131. A method of inhibiting expression of VEGF-A in a cell, the method comprising:

    • (a) contacting the cell with the dsRNA agent of any one of embodiments 1-125, or a pharmaceutical composition of embodiment 129 or 130; and
    • (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of VEGF-A, thereby inhibiting expression of VEGF-A in the cell.


132. A method of inhibiting expression of VEGF-A in a cell, the method comprising:

    • (a) contacting the cell with the dsRNA agent of any one of embodiments 1-125, or a pharmaceutical composition of embodiment 129 or 130; and
    • (b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of VEGF-A mRNA, VEGF-A protein, or both of VEGF-A mRNA and protein, thereby inhibiting expression of VEGF-A in the cell.


133. The method of embodiment 131 or 132, wherein the cell is within a subject.


134. The method of embodiment 133, wherein the subject is a human.


135. The method of any one of embodiments 131-134, wherein the level of VEGF-A mRNA is inhibited by at least 50%.


136. The method of any one of embodiments 131-134, wherein the level of VEGF-A protein is inhibited by at least 50%.


137. The method of embodiment 134-136, wherein inhibiting expression of VEGF-A decreases a VEGF-A protein level in a biological sample (e.g., an aqueous ocular fluid sample) from the subject by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.


138. The method of any one of embodiments 134-137, wherein the subject has been diagnosed with a VEGF-A-associated disorder, e.g., wet age-related macular degeneration (wet AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal vein occlusion (RVO), macular edema following retinal vein occlusion (MEfRVO), retinopathy of prematurity (ROP), or myopic choroidal neovascularization (mCNV).


139. A method of inhibiting expression of VEGF-A in an ocular cell or tissue, the method comprising:

    • (a) contacting the cell or tissue with a dsRNA agent that binds VEGF-A; and
    • (b) maintaining the cell or tissue produced in step (a) for a time sufficient to reduce levels of VEGF-A mRNA, VEGF-A protein, or both of VEGF-A mRNA and protein, thereby inhibiting expression of VEGF-A in the cell or tissue.


140. The method of embodiment 139, wherein the ocular cell or tissue comprises an RPE cell, a retinal tissue, an astrocyte, a pericyte, a Müller cell, a ganglion cell, an endothelial cell, a photoreceptor cell, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


141. A method of treating a subject diagnosed with a VEGF-A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent of any one of embodiments 1-125 or a pharmaceutical composition of embodiment 129 or 130, thereby treating the disorder.


142. The method of embodiment 138 or 141, wherein the VEGF-A-associated disorder is an angiogenic ocular disorder.


143. The method of embodiment 142, wherein the angiogenic ocular disorder is selected from the group consisting of AMD, DR, DME, RVO, CVO, MEfRVO, ROP, or mCNV.


144. The method of any one of embodiments 141-143, wherein treating comprises amelioration of at least one sign or symptom of the disorder.


145. The method of embodiment 144, wherein at least one sign or symptom of the angiogenic ocular disorder comprises a measure of one or more of angiogenesis, choroidal neovascularization, ocular inflammation, visual acuity, or presence, level, or activity of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein).


146. The method of any one of embodiments 141-143, where treating comprises prevention of progression of the disorder.


147. The method of any one of embodiments 144-146, wherein the treating comprises one or more of (a) inhibiting angiogenesis; (b) inhibiting or reducing the expression or activity of VEGF-A; (c) inhibiting choroidal neovascularization; (d) inhibiting growth of new blood vessels in the choriocapillaris; (e) reducing retinal thickness; (f) increasing visual acuity; or (g) reducing intraocular inflammation.


148. The method of embodiment 147, wherein the treating results in at least a 30% mean reduction from baseline of VEGF mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


149. The method of embodiment 148 wherein the treating results in at least a 60% mean reduction from baseline of VEGF mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


150. The method of embodiment 149, wherein the treating results in at least a 90% mean reduction from baseline of VEGF mRNA in the retina, RPE, a retinal blood vessel (e.g., including endothelial cells and vascular smooth muscle cells), or choroid tissue, e.g., a choroid vessel.


151. The method of any one of embodiments 144-149, wherein after treatment the subject experiences at least an 8-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina.


152. The method of embodiment 151, wherein treating results in at least a 12-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina.


153. The method of embodiment 152, wherein treating results in at least a 16-week duration of knockdown following a single dose of dsRNA as assessed by VEGF-A protein in the retina.


154. The method of any of embodiments 133-153, wherein the subject is human.


155. The method of any one of embodiments 134-154, wherein the dsRNA agent is administered at a dose of about 0.01 mg/kg to about 50 mg/kg.


156. The method of any one of embodiments 134-155, wherein the dsRNA agent is administered to the subject intraocularly, intravenously, or topically.


157. The method of embodiment 156, wherein the intraocular administration comprises intravitreal administration (e.g., intravitreal injection), transscleral administration (e.g., transscleral injection), subconjunctival administration (e.g., subconjunctival injection), retrobulbar administration (e.g., retrobulbar injection), intracameral administration (e.g., intracameral injection), or subretinal administration (e.g., subretinal injection).


158. The method of any one of embodiments 134-157, further comprising measuring level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) in the subject.


159. The method of embodiment 158, where measuring the level of VEGF-A in the subject comprises measuring the level of VEGF-A gene, VEGF-A protein or VEGF-A mRNA in a biological sample from the subject (e.g., an aqueous ocular fluid sample).


160. The method of any one of embodiments 134-159, further comprising performing a blood test, an imaging test, or an aqueous ocular fluid biopsy.


161. The method of any one of embodiments 158-168, wherein measuring level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) in the subject is performed prior to treatment with the dsRNA agent or the pharmaceutical composition.


162. The method of embodiment 161, wherein, upon determination that a subject has a level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) that is greater than a reference level, the dsRNA agent or the pharmaceutical composition is administered to the subject.


163. The method of any one of embodiments 159-162, wherein measuring level of VEGF-A (e.g., VEGF-A gene, VEGF-A mRNA, or VEGF-A protein) in the subject is performed after treatment with the dsRNA agent or the pharmaceutical composition.


164. The method of any one of embodiments 141-163, further comprising administering to the subject an additional agent and/or therapy suitable for treatment or prevention of an VEGF-A-associated disorder.


165. The method of embodiment 164, wherein the additional agent and/or therapy comprises one or more of a photodynamic therapy, photocoagulation therapy, a steroid, a non-steroidal anti-inflammatory agent, an anti-VEGF-A agent, and/or a vitrectomy.


166. The method of embodiment 165, wherein the anti-VEGF-A agent is a fusion protein or an anti-VEGF-A antibody or antigen-binding fragment thereof (e.g., an anti-VEGF-A antibody molecule).


EXAMPLES
Example 1. VEGF-A siRNA

Nucleic acid sequences provided herein are represented using standard nomenclature. See the abbreviations of Table 1.









TABLE 1







Abbreviations of nucleotide monomers used in nucleic acid sequence representation


It will be understood that these monomers, when present in an oligonucleotide, are mutually


linked by 5′-3′-phosphodiester bonds.










Abbreviation
Nucleotide(s)







A
Adenosine-3′-phosphate



Ab
beta-L-adenosine-3′-phosphate



Abs
beta-L-adenosine-3′-phosphorothioate



Af
2′-fluoroadenosine-3′-phosphate



Afs
2′-fluoroadenosine-3′-phosphorothioate



(Ahd)
2′-O-hexadecyl-adenosine-3′-phosphate



(Ahds)
2′-O-hexadecyl-adenosine-3′-phosphorothioate



As
adenosine-3′-phosphorothioate



(A2p)
adenosine 2′-phosphate



C
cytidine-3′-phosphate



Cb
beta-L-cytidine-3′-phosphate



Cbs
beta-L-cytidine-3′-phosphorothioate



Cf
2′-fluorocytidine-3′-phosphate



Cfs
2′-fluorocytidine-3′-phosphorothioate



(Chd)
2’-O-hexadecyl-cytidine-3’-phosphate



(Chds)
2’-O-hexadecyl-cytidine-3’-phosphorothioate



Cs
cytidine-3′-phosphorothioate



(C2p)
cytosine 2′-phosphate



G
guanosine-3′-phosphate



Gb
beta-L-guanosine-3′-phosphate



Gbs
beta-L-guanosine-3′-phosphorothioate



Gf
2′-fluoroguanosine-3′-phosphate



Gfs
2′-fluoroguanosine-3′-phosphorothioate



(Ghd)
2′-O-hexadecyl-guanosine-3′-phosphate



(Ghds)
2′-O-hexadecyl-guanosine-3′-phosphorothioate



Gs
guanosine-3′-phosphorothioate



T
5′-methyluridine-3′-phosphate



Tb
beta-L-thymidine-3′-phosphate



Tbs
beta-L-thymidine-3′-phosphorothioate



Tf
2′-fluoro-5-methyluridine-3′-phosphate



Tfs
2′-fluoro-5-methyluridine-3′-phosphorothioate



Tgn
thymidine-glycol nucleic acid (GNA) S-Isomer



Agn
adenosine-glycol nucleic acid (GNA) S-Isomer



Cgn
cytidine-glycol nucleic acid (GNA) S-Isomer



Ggn
guanosine-glycol nucleic acid (GNA) S-Isomer



Ts
5-methyluridine-3′-phosphorothioate



U
Uridine-3′-phosphate



Ub
beta-L-uridine-3′-phosphate



Ubs
beta-L-uridine-3′-phosphorothioate



Uf
2′-fluorouridine-3′-phosphate



Ufs
2′-fluorouridine-3′-phosphorothioate



(Uhd)
2′-O-hexadecyl-uridine-3′-phosphate



(Uhds)
2′-O-hexadecyl-uridine-3′-phosphorothioate



Us
uridine-3′-phosphorothioate



(U2p)
uracil 2′-phosphate



N
any nucleotide (G, A, C, T or U)



VP
Vinyl phosphonate



a
2′-O-methyladenosine-3′-phosphate



as
2′-O-methyladenosine-3′-phosphorothioate



c
2′-O-methylcytidine-3′-phosphate



cs
2′-O-methylcytidine-3′-phosphorothioate



g
2′-O-methylguanosine-3′-phosphate



gs
2′-O-methylguanosine-3′-phosphorothioate



t
2′-O-methyl-5-methyluridine-3′-phosphate



ts
2′-O-methyl-5-methyluridine-3′-phosphorothioate



u
2′-O-methyluridine-3′-phosphate



us
2′-O-methyluridine-3′-phosphorothioate



dA
2′-deoxyadenosine-3′-phosphate



dAs
2′-deoxyadenosine-3′-phosphorothioate



dC
2′-deoxycytidine-3′-phosphate



dCs
2′-deoxycytidine-3′-phosphorothioate



dG
2′-deoxyguanosine-3′-phosphate



dGs
2′-deoxyguanosine-3′-phosphorothioate



dT
2′-deoxythymidine



dTs
2′-deoxythymidine-3′-phosphorothioate



dU
2′-deoxyuridine



s
phosphorothioate linkage



L961
N-[tris(GalNAc-alkyl)-amidodecanoyl)]-4-hydroxyprolinol




Hyp-(GalNAc-alkyl)3



(Aeo)
2′-O-methoxyethyladenosine-3′-phosphate



(Aeos)
2′-O-methoxyethyladenosine-3′-phosphorothioate



(Geo)
2′-O-methoxyethylguanosine-3′-phosphate



(Geos)
2′-O-methoxyethylguanosine-3′-phosphorothioate



(Teo)
2′-O-methoxyethyl-5-methyluridine-3′-phosphate



(Teos)
2′-O-methoxyethyl-5-methyluridine-3′-phosphorothioate



(m5Ceo)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphate



(m5Ceos)
2′-O-methoxyethyl-5-methylcytidine-3′-phosphorothioate








1The chemical structure of L96 is as follows:






embedded image








Experimental Methods
Bioinformatics

Transcripts


Three sets of siRNAs targeting the human VEGF-A, “vascular endothelial growth factor A” (human: NCBI refseqID NM_001171623; NCBI GeneID: 7422) were generated. The human NM_001171623 REFSEQ mRNA, version 1, has a length of 3677 bases. Pairs of oligos were generated using bioinformatic methods and ranked, and exemplary pairs of oligos are shown in Table 2A, Table 2B, Table 3A, Table 3B, Table 4A, Table 4B, Table 8A, Table 8B, Table 10A, Table 10B, Table 18A, and Table 18B. Modified sequences are presented in Table 2A, Table 3A, Table 4A, Table 8A, Table 10A, Table 18A. Unmodified sequences are presented in Table 2B, Table 3B, Table 4B, Table 8B, Table 10B, Table 18B.


Similarly, a set of siRNAs targeting rat VEGF-A (rat: NCBI refseqID NM_001110333; NCBI GeneID 83785 were generated. The rat NM_001110333.2REFSEQ mRNA, version 2, has a length of 3474 base pairs. Pairs of oligos were generated using bioinformatic methods and ranked, and exemplary pairs of oligos are shown in Table 5A and Table 5B. Modified sequences are presented in Table 5A. Unmodified sequences are presented in Table 5B.









TABLE 2A







Exemplary Human VEGF-A siRNA Modified Single Strands and Duplex Sequences




















SEQ









Anti-
ID


SEQ ID



Sense
SEQ

sense
NO:


NO:


Duplex
Oligo
ID NO:

Oligo
(Anti-

mRNA target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence
sequence
target)


















AD-
A-
4156
asasgac(Uhd)GfaUfAfCfag
A-
130
VPusGfsaucg(Tgn)ucu
GAAAGACUGAUA
4224


901349.1
1701255.

aacgaucaL96
1701256.

guaUfcAfgucuususc
CAGAACGAUCG




1


1









AD-
A-
4157
ascsggu(Ahd)CfuUfAfUfuu
A-
131
VPusGfsgaua(Tgn)uaa
AUACGGUACUUA
4225


901376.1
1701309.

aauauccaL96
1701310.

auaAfgUfaccgusasu
UUUAAUAUCCC




1


1









AD-
A-
3
csasgaa(Chd)AfgUfCfCfuu
A-
132
VPusCfsugga(Tgn)uaa
GACAGAACAGUCC
4226


901356.1
1701269.

aauccagaL96
1701270.

ggaCfuGfuucugsusc
UUAAUCCAGA




1


1









AD-
A-
4
csgsaca(Ghd)AfaCfAfGfuc
A-
133
VPusGfsauua(Agn)gg
AUCGACAGAACAG
4227


901355.1
1701267.

cuuaaucaL96
1701268.

acugUfuCfugucgsasu
UCCUUAAUCC




1


1









AD-
A-
5
gscsauu(Uhd)GfuUfUfGfua
A-
134
VPusGfsaucu(Tgn)gua
AAGCAUUUGUUU
4228


901407.1
1701371.

caagaucaL96
1701372.

caaAfcAfaaugcsusu
GUACAAGAUCC




1


1









AD-
A-
6
usasuug(Ghd)UfgUfCfUfuc
A-
135
VPusAfsucca(Ggn)ug
GUUAUUGGUGUC
4229


901367.1
1701291.

acuggauaL96
1701292.

aagaCfaCfcaauasasc
UUCACUGGAUG




1


1









AD-
A-
7
ascsuga(Uhd)AfcAfGfAfac
A-
136
VPusAfsucga(Tgn)cgu
AGACUGAUACAG
4230


901352.1
1701261.

gaucgauaL96
1701262.

ucuGfuAfucaguscsu
AACGAUCGAUA




1


1









AD-
A-
8
asasaga(Chd)UfgAfUfAfca
A-
137
VPusAfsucgu(Tgn)cu
GGAAAGACUGAU
4231


901348.1
1701253.

gaacgauaL96
1701254.

guauCfaGfucuuuscsc
ACAGAACGAUC




1


1









AD-
A-
9
asusaca(Ghd)AfaCfGfAfuc
A-
138
VPusCfsugua(Tgn)cga
UGAUACAGAACG
4232


901354.1
1701265.

gauacagaL96
1701266.

ucgUfuCfuguauscsa
AUCGAUACAGA




1


1









AD-
A-
10
csusgau(Ahd)CfaGfAfAfcg
A-
139
VPusUfsaucg(Agn)uc
GACUGAUACAGA
4233


901353.1
1701263.

aucgauaaL96
1701264.

guucUfgUfaucagsusc
ACGAUCGAUAC




1


1









AD-
A-
11
gsasgaa(Ahd)GfuGfUfUfuu
A-
140
VPusCfsguau(Agn)ua
AAGAGAAAGUGU
4234


901375.1
1701307.

auauacgaL96
1701308.

aaacAfcUfuucucsusu
UUUAUAUACGG




1


1









AD-
A-
12
ascsgaa(Chd)GfuAfCfUfug
A-
141
VPusAfscauc(Tgn)gca
AAACGAACGUACU
4235


901345.1
1701247.

cagauguaL96
1701248.

aguAfcGfuucgususu
UGCAGAUGUG




1


1









AD-
A-
13
csusugg(Ahd)AfuUfGfGfa
A-
142
VPusAfsuggc(Ggn)aa
CUCUUGGAAUUG
4236


901357.1
1701271.

uucgccauaL96
1701272.

uccaAfuUfccaagsasg
GAUUCGCCAUU




1


1









AD-
A-
14
gsgscag(Chd)UfuGfAfGfuu
A-
143
VPusUfsucgu(Tgn)uaa
GAGGCAGCUUGA
4237


901334.1
1701225.

aaacgaaaL96
1701226.

cucAfaGfcugccsusc
GUUAAACGAAC




1


1









AD-
A-
15
gsgsgca(Ghd)AfaUfCfAfuc
A-
144
VPusAfscuuc(Ggn)ug
GAGGGCAGAAUC
4238


901313.1
1701183.

acgaaguaL96
1701184.

augaUfuCfugcccsusc
AUCACGAAGUG




1


1









AD-
A-
16
ususaaa(Chd)GfaAfCfGfua
A-
145
VPusCfsugca(Agn)gu
AGUUAAACGAAC
4239


901344.1
1701245.

cuugcagaL96
1701246.

acguUfcGfuuuaascsu
GUACUUGCAGA




1


1









AD-
A-
17
gsusuau(Uhd)GfgUfGfUfc
A-
146
VPusCfscagu(Ggn)aag
AUGUUAUUGGUG
4240


901366.1
1701289.

uucacuggaL96
1701290.

acaCfcAfauaacsasu
UCUUCACUGGA




1


1









AD-
A-
18
asgscuu(Ghd)AfgUfUfAfaa
A-
147
VPusAfscguu(Cgn)gu
GCAGCUUGAGUU
4241


901337.1
1701231.

cgaacguaL96
1701232.

uuaaCfuCfaagcusgsc
AAACGAACGUA




1


1









AD-
A-
19
gscsagc(Uhd)UfgAfGfUfua
A-
148
VPusGfsuucg(Tgn)uu
AGGCAGCUUGAG
4242


901335.1
1701227.

aacgaacaL96
1701228.

aacuCfaAfgcugcscsu
UUAAACGAACG




1


1









AD-
A-
20
csgsaag(Uhd)GfgUfGfAfag
A-
149
VPusCfscaug(Agn)acu
CACGAAGUGGUG
4243


901398.1
1701353.

uucauggaL96
1701354.

ucaCfcAfcuucgsusg
AAGUUCAUGGA




1


1









AD-
A-
21
csasgaa(Uhd)CfaUfCfAfcg
A-
150
VPusAfsccac(Tgn)ucg
GGCAGAAUCAUCA
4244


901314.1
1701185.

aagugguaL96
1701186.

ugaUfgAfuucugscsc
CGAAGUGGUG




1


1









AD-
A-
22
asasaau(Ahd)GfaCfAfUfug
A-
151
VPusAfsgaau(Agn)gc
AUAAAAUAGACA
4245


901386.1
1701329.

cuauucuaL96
1701330.

aaugUfcUfauuuusasu
UUGCUAUUCUG




1


1









AD-
A-
23
csasgcu(Uhd)GfaGfUfUfaa
A-
152
VPusCfsguuc(Ggn)uu
GGCAGCUUGAGU
4246


901336.1
1701229.

acgaacgaL96
1701230.

uaacUfcAfagcugscsc
UAAACGAACGU




1


1









AD-
A-
24
csgscac(Uhd)GfaAfAfCfuu
A-
153
VPusGfsgacg(Agn)aaa
GUCGCACUGAAAC
4247


901310.1
1701177.

uucguccaL96
1701178.

guuUfcAfgugcgsasc
UUUUCGUCCA




1


1









AD-
A-
25
asgsauu(Ahd)UfgCfGfGfau
A-
154
VPusAfsgguu(Tgn)ga
GCAGAUUAUGCG
4248


901321.1
1701199.

caaaccuaL96
1701200.

uccgCfaUfaaucusgsc
GAUCAAACCUC




1


1









AD-
A-
26
gscsucu(Chd)UfuAfUfUfug
A-
155
VPusAfsccgg(Tgn)aca
UUGCUCUCUUAUU
4249


901382.1
1701321.

uaccgguaL96
1701322.

aauAfaGfagagcsasa
UGUACCGGUU




1


1









AD-
A-
27
usgsaca(Ghd)UfcAfCfUfag
A-
156
VPusAfsgaua(Agn)gc
GGUGACAGUCACU
4250


901384.1
1701325.

cuuaucuaL96
1701326.

uaguGfaCfugucascsc
AGCUUAUCUU




1


1









AD-
A-
28
csusuga(Ghd)UfuAfAfAfcg
A-
157
VPusGfsuacg(Tgn)ucg
AGCUUGAGUUAA
4251


901339.1
1701235.

aacguacaL96
1701236.

uuuAfaCfucaagscsu
ACGAACGUACU




1


1









AD-
A-
29
asgsugc(Uhd)AfaUfGfUfua
A-
158
VPusAfscacc(Agn)aua
ACAGUGCUAAUG
4252


901363.1
1701283.

uugguguaL96
1701284.

acaUfuAfgcacusgsu
UUAUUGGUGUC




1


1









AD-
A-
30
asusccg(Chd)AfgAfCfGfug
A-
159
VPusAfscauu(Tgn)aca
AGAUCCGCAGACG
4253


901325.1
1701207.

uaaauguaL96
1701208.

cguCfuGfcggauscsu
UGUAAAUGUU




1


1









AD-
A-
31
asgsacu(Ghd)AfuAfCfAfga
A-
160
VPusCfsgauc(Ggn)uu
AAAGACUGAUAC
4254


901350.1
1701257.

acgaucgaL96
1701258.

cuguAfuCfagucususu
AGAACGAUCGA




1


1









AD-
A-
32
usgsuua(Uhd)UfgGfUfGfu
A-
161
VPusCfsagug(Agn)ag
AAUGUUAUUGGU
4255


901365.1
1701287.

cuucacugaL96
1701288.

acacCfaAfuaacasusu
GUCUUCACUGG




1


1









AD-
A-
33
gsusgcu(Ghd)GfaAfUfUfu
A-
162
VPusUfsgaau(Agn)uc
CGGUGCUGGAAU
4256


901306.1
1701169.

gauauucaaL96
1701170.

aaauUfcCfagcacscsg
UUGAUAUUCAU




1


1









AD-
A-
34
ususgcu(Ghd)CfuAfAfAfuc
A-
163
VPusGfscucg(Ggn)ug
UCUUGCUGCUAAA
4257


901361.1
1701279.

accgagcaL96
1701280.

auuuAfgCfagcaasgsa
UCACCGAGCC




1


1









AD-
A-
35
csascca(Uhd)GfcAfGfAfuu
A-
164
VPusUfsccgc(Agn)uaa
AUCACCAUGCAGA
4258


901320.1
1701197.

augcggaaL96
1701198.

ucuGfcAfuggugsasu
UUAUGCGGAU




1


1









AD-
A-
36
gsasaag(Chd)AfuUfUfGfuu
A-
165
VPusUfsugua(Cgn)aaa
GAGAAAGCAUUU
4259


901405.1
1701367.

uguacaaaL96
1701368.

caaAfuGfcuuucsusc
GUUUGUACAAG




1


1









AD-
A-
37
gscsuug(Ahd)GfuUfAfAfac
A-
166
VPusUfsacgu(Tgn)cgu
CAGCUUGAGUUA
4260


901338.1
1701233.

gaacguaaL96
1701234.

uuaAfcUfcaagcsusg
AACGAACGUAC




1


1









AD-
A-
38
uscsggu(Ghd)AfcAfGfUfca
A-
167
VPusAfsagcu(Agn)gu
GAUCGGUGACAG
4261


901383.1
1701323.

cuagcuuaL96
1701324.

gacuGfuCfaccgasusc
UCACUAGCUUA




1


1









AD-
A-
39
asgsgca(Ghd)CfuUfGfAfgu
A-
168
VPusUfscguu(Tgn)aac
CGAGGCAGCUUGA
4262


901333.1
1701223.

uaaacgaaL96
1701224.

ucaAfgCfugccuscsg
GUUAAACGAA




1


1









AD-
A-
40
csusgca(Ahd)AfaAfCfAfca
A-
169
VPusGfscgag(Tgn)cug
UCCUGCAAAAACA
4263


901330.1
1701217.

gacucgcaL96
1701218.

uguUfuUfugcagsgsa
CAGACUCGCG




1


1









AD-
A-
41
csusugc(Uhd)GfcUfAfAfau
A-
170
VPusCfsucgg(Tgn)gau
UUCUUGCUGCUAA
4264


901360.1
1701277.

caccgagaL96
1701278.

uuaGfcAfgcaagsasa
AUCACCGAGC




1


1









AD-
A-
42
ususcuu(Ghd)CfuGfCfUfaa
A-
171
VPusCfsggug(Agn)uu
UUUUCUUGCUGCU
4265


901358.1
1701273.

aucaccgaL96
1701274.

uagcAfgCfaagaasasa
AAAUCACCGA




1


1









AD-
A-
43
asasagc(Ahd)UfuUfGfUfuu
A-
172
VPusCfsuugu(Agn)ca
AGAAAGCAUUUG
4266


901406.1
1701369.

guacaagaL96
1701370.

aacaAfaUfgcuuuscsu
UUUGUACAAGA




1


1









AD-
A-
44
uscscgc(Ahd)GfaCfGfUfgu
A-
173
VPusAfsacau(Tgn)uac
GAUCCGCAGACGU
4267


901326.1
1701209.

aaauguuaL96
1701210.

acgUfcUfgcggasusc
GUAAAUGUUC




1


1









AD-
A-
45
csgsgua(Chd)UfuAfUfUfua
A-
174
VPusGfsggau(Agn)uu
UACGGUACUUAU
4268


901377.1
1701311.

auaucccaL96
1701312.

aaauAfaGfuaccgsusa
UUAAUAUCCCU




1


1









AD-
A-
46
gsascug(Ahd)UfaCfAfGfaa
A-
175
VPusUfscgau(Cgn)gu
AAGACUGAUACA
4269


901351.1
1701259.

cgaucgaaL96
1701260.

ucugUfaUfcagucsusu
GAACGAUCGAU




1


1









AD-
A-
47
asasaac(Ahd)CfaGfAfCfuc
A-
176
VPusGfscaac(Ggn)cga
CAAAAACACAGAC
4270


901415.1
1701387.

gcguugcaL96
1701388.

gucUfgUfguuuususg
UCGCGUUGCA




1


1









AD-
A-
48
gsasguu(Ahd)AfaCfGfAfac
A-
177
VPusCfsaagu(Agn)cg
UUGAGUUAAACG
4271


901342.1
1701241.

guacuugaL96
1701242.

uucgUfuUfaacucsasa
AACGUACUUGC




1


1









AD-
A-
49
uscsacu(Ghd)GfaUfGfUfau
A-
178
VPusCfsaguc(Agn)aau
CUUCACUGGAUGU
4272


901420.1
1701397.

uugacugaL96
1701398.

acaUfcCfagugasasg
AUUUGACUGC




1


1









AD-
A-
50
cscsucc(Ghd)AfaAfCfCfau
A-
179
VPusAfsaagu(Tgn)cau
GGCCUCCGAAACC
4273


901312.1
1701181.

gaacuuuaL96
1701182.

gguUfuCfggaggscsc
AUGAACUUUC




1


1









AD-
A-
51
ususgag(Uhd)UfaAfAfCfga
A-
180
VPusAfsguac(Ggn)uu
GCUUGAGUUAAA
4274


901340.1
1701237.

acguacuaL96
1701238.

cguuUfaAfcucaasgsc
CGAACGUACUU




1


1









AD-
A-
52
usgscua(Chd)UfgUfUfUfau
A-
181
VPusAfsuuac(Ggn)ga
GGUGCUACUGUU
4275


901392.1
1701341.

ccguaauaL96
1701342.

uaaaCfaGfuagcascsc
UAUCCGUAAUA




1


1









AD-
A-
53
cscsgca(Ghd)AfcGfUfGfua
A-
182
VPusGfsaaca(Tgn)uua
AUCCGCAGACGUG
4276


901327.1
1701211.

aauguucaL96
1701212.

cacGfuCfugcggsasu
UAAAUGUUCC




1


1









AD-
A-
54
csgscag(Ahd)CfgUfGfUfaa
A-
183
VPusGfsgaac(Agn)uu
UCCGCAGACGUGU
4277


901328.1
1701213.

auguuccaL96
1701214.

uacaCfgUfcugcgsgsa
AAAUGUUCCU




1


1









AD-
A-
55
asgsaga(Ahd)GfaGfAfCfac
A-
184
VPusCfsaaca(Agn)ugu
GAAGAGAAGAGA
4278


901370.1
1701297.

auuguugaL96
1701298.

gucUfcUfucucususc
CACAUUGUUGG




1


1









AD-
A-
56
ascsagc(Ahd)CfaAfCfAfaa
A-
185
VPusAfsuuca(Cgn)au
CUACAGCACAACA
4279


901399.1
1701355.

ugugaauaL96
1701356.

uuguUfgUfgcugusasg
AAUGUGAAUG




1


1









AD-
A-
57
uscsuug(Chd)UfgCfUfAfaa
A-
186
VPusUfscggu(Ggn)au
UUUCUUGCUGCUA
4280


901359.1
1701275.

ucaccgaaL96
1701276.

uuagCfaGfcaagasasa
AAUCACCGAG




1


1









AD-
A-
58
ascsacc(Ahd)UfuGfAfAfac
A-
187
VPusAfscuag(Tgn)gg
UCACACCAUUGAA
4281


901373.1
1701303.

cacuaguaL96
1701304.

uuucAfaUfggugusgsa
ACCACUAGUU




1


1









AD-
A-
59
gsasggc(Ahd)GfcUfUfGfag
A-
188
VPusCfsguuu(Agn)ac
GCGAGGCAGCUUG
4282


901332.1
1701221.

uuaaacgaL96
1701222.

ucaaGfcUfgccucsgsc
AGUUAAACGA




1


1









AD-
A-
60
gscsacu(Ghd)AfaAfCfUfuu
A-
189
VPusUfsggac(Ggn)aaa
UCGCACUGAAACU
4283


901311.1
1701179.

ucguccaaL96
1701180.

aguUfuCfagugcsgsa
UUUCGUCCAA




1


1









AD-
A-
61
gsusuuu(Ahd)UfaUfAfCfg
A-
190
VPusAfsuaag(Tgn)acc
GUGUUUUAUAUA
4284


901423.1
1701403.

guacuuauaL96
1701404.

guaUfaUfaaaacsasc
CGGUACUUAUU




1


1









AD-
A-
62
csascca(Uhd)UfgAfAfAfcc
A-
191
VPusAfsacua(Ggn)ug
CACACCAUUGAAA
4285


901374.1
1701305.

acuaguuaL96
1701306.

guuuCfaAfuggugsusg
CCACUAGUUC




1


1









AD-
A-
63
asuscac(Chd)AfuGfCfAfga
A-
192
VPusCfsgcau(Agn)auc
ACAUCACCAUGCA
4286


901319.1
1701195.

uuaugcgaL96
1701196.

ugcAfuGfgugausgsu
GAUUAUGCGG




1


1









AD-
A-
64
usgsagu(Uhd)AfaAfCfGfaa
A-
193
VPusAfsagua(Cgn)gu
CUUGAGUUAAAC
4287


901341.1
1701239.

cguacuuaL96
1701240.

ucguUfuAfacucasasg
GAACGUACUUG




1


1









AD-
A-
65
gsasaag(Uhd)GfuUfUfUfau
A-
194
VPusAfsccgu(Agn)ua
GAGAAAGUGUUU
4288


901422.1
1701401.

auacgguaL96
1701402.

uaaaAfcAfcuuucsusc
UAUAUACGGUA




1


1









AD-
A-
66
ascsagu(Chd)AfcUfAfGfcu
A-
195
VPusCfsaaga(Tgn)aag
UGACAGUCACUAG
4289


901385.1
1701327.

uaucuugaL96
1701328.

cuaGfuGfacuguscsa
CUUAUCUUGA




1


1









AD-
A-
67
gsusgcu(Ahd)CfuGfUfUfua
A-
196
VPusUfsuacg(Ggn)au
UGGUGCUACUGU
4290


901391.1
1701339.

uccguaaaL96
1701340.

aaacAfgUfagcacscsa
UUAUCCGUAAU




1


1









AD-
A-
68
cscsugc(Ahd)AfaAfAfCfac
A-
197
VPusCfsgagu(Cgn)ug
UUCCUGCAAAAAC
4291


901329.1
1701215.

agacucgaL96
1701216.

uguuUfuUfgcaggsasa
ACAGACUCGC




1


1









AD-
A-
69
csasaaa(Ahd)CfaCfAfGfac
A-
198
VPusAfsacgc(Ggn)ag
UGCAAAAACACAG
4292


901331.1
1701219.

ucgcguuaL96
1701220.

ucugUfgUfuuuugscsa
ACUCGCGUUG




1


1









AD-
A-
70
usgscug(Uhd)GfgAfCfUfu
A-
199
VPusCfsccaa(Cgn)uca
ACUGCUGUGGACU
4293


901368.1
1701293.

gaguugggaL96
1701294.

aguCfcAfcagcasgsu
UGAGUUGGGA




1


1









AD-
A-
71
gsusgcu(Ahd)AfuGfUfUfa
A-
200
VPusGfsacac(Cgn)aau
CAGUGCUAAUGU
4294


901364.1
1701285.

uuggugucaL96
1701286.

aacAfuUfagcacsusg
UAUUGGUGUCU




1


1









AD-
A-
72
usgsgug(Chd)UfaCfUfGfuu
A-
201
VPusAfscgga(Tgn)aaa
AUUGGUGCUACU
4295


901389.1
1701335.

uauccguaL96
1701336.

cagUfaGfcaccasasu
GUUUAUCCGUA




1


1









AD-
A-
73
asgsaaa(Ghd)UfgUfUfUfua
A-
202
VPusCfscgua(Tgn)aua
AGAGAAAGUGUU
4296


901421.1
1701399.

uauacggaL96
1701400.

aaaCfaCfuuucuscsu
UUAUAUACGGU




1


1









AD-
A-
74
asascua(Uhd)UfuAfUfGfag
A-
203
VPusGfsauac(Agn)uc
UCAACUAUUUAU
4297


901380.1
1701317.

auguaucaL96
1701318.

ucauAfaAfuaguusgsa
GAGAUGUAUCU




1


1









AD-
A-
75
asgsuua(Ahd)AfcGfAfAfcg
A-
204
VPusGfscaag(Tgn)acg
UGAGUUAAACGA
4298


901343.1
1701243.

uacuugcaL96
1701244.

uucGfuUfuaacuscsa
ACGUACUUGCA




1


1









AD-
A-
76
csasucu(Uhd)CfaAfGfCfca
A-
205
VPusCfsacag(Ggn)aug
UACAUCUUCAAGC
4299


901317.1
1701191.

uccugugaL96
1701192.

gcuUfgAfagaugsusa
CAUCCUGUGU




1


1









AD-
A-
77
ususuuu(Uhd)UfuCfAfGfu
A-
206
VPusCfscaag(Agn)aua
GGUUUUUUUUCA
4300


901424.1
1701405.

auucuuggaL96
1701406.

cugAfaAfaaaaascsc
GUAUUCUUGGU




1


1









AD-
A-
78
ususauc(Chd)GfuAfAfUfaa
A-
207
VPusCfsccac(Agn)auu
GUUUAUCCGUAA
4301


901431.1
1701419.

uugugggaL96
1701420.

auuAfcGfgauaasasc
UAAUUGUGGGG




1


1









AD-
A-
79
gsgsuac(Uhd)UfaUfUfUfaa
A-
208
VPusAfsggga(Tgn)au
ACGGUACUUAUU
4302


901378.1
1701313.

uaucccuaL96
1701314.

uaaaUfaAfguaccsgsu
UAAUAUCCCUU




1


1









AD-
A-
80
csascgu(Chd)UfuUfGfUfcu
A-
209
VPusGfscacu(Agn)ga
AUCACGUCUUUGU
4303


901434.1
1701425.

cuagugcaL96
1701426.

gacaAfaGfacgugsasu
CUCUAGUGCA




1


1









AD-
A-
81
usgscaa(Ahd)AfaCfAfCfag
A-
210
VPusCfsgcga(Ggn)uc
CCUGCAAAAACAC
4304


901412.1
1701381.

acucgcgaL96
1701382.

ugugUfuUfuugcasgsg
AGACUCGCGU




1


1









AD-
A-
82
ascsuau(Uhd)UfaUfGfAfga
A-
211
VPusAfsgaua(Cgn)auc
CAACUAUUUAUG
4305


901426.1
1701409.

uguaucuaL96
1701410.

ucaUfaAfauagususg
AGAUGUAUCUU




1


1









AD-
A-
83
asgsggg(Chd)AfaAfAfAfcg
A-
212
VPusGfscgcu(Tgn)ucg
AAAGGGGCAAAA
4306


901322.1
1701201.

aaagcgcaL96
1701202.

uuuUfuGfccccususu
ACGAAAGCGCA




1


1









AD-
A-
84
ususgcu(Chd)UfcUfUfAfuu
A-
213
VPusCfsggua(Cgn)aaa
UCUUGCUCUCUUA
4307


901381.1
1701319.

uguaccgaL96
1701320.

uaaGfaGfagcaasgsa
UUUGUACCGG




1


1









AD-
A-
85
asusuug(Uhd)UfuGfUfAfca
A-
214
VPusCfsggau(Cgn)uu
GCAUUUGUUUGU
4308


901324.1
1701205.

agauccgaL96
1701206.

guacAfaAfcaaausgsc
ACAAGAUCCGC




1


1









AD-
A-
86
ususgca(Ghd)AfuGfUfGfac
A-
215
VPusUfscggc(Tgn)ug
ACUUGCAGAUGU
4309


901347.1
1701251.

aagccgaaL96
1701252.

ucacAfuCfugcaasgsu
GACAAGCCGAG




1


1









AD-
A-
87
csasacu(Ahd)UfuUfAfUfga
A-
216
VPusAfsuaca(Tgn)cuc
UUCAACUAUUUA
4310


901379.1
1701315.

gauguauaL96
1701316.

auaAfaUfaguugsasa
UGAGAUGUAUC




1


1









AD-
A-
88
asasuuc(Uhd)AfcAfUfAfcu
A-
217
VPusGfsagau(Tgn)uag
AGAAUUCUACAU
4311


901428.1
1701413.

aaaucucaL96
1701414.

uauGfuAfgaauuscsu
ACUAAAUCUCU




1


1









AD-
A-
89
asusguc(Chd)UfcAfCfAfcc
A-
218
VPusUfsuuca(Agn)ug
CUAUGUCCUCACA
4312


901371.1
1701299.

auugaaaaL96
1701300.

guguGfaGfgacausasg
CCAUUGAAAC




1


1









AD-
A-
90
ususguu(Uhd)GfuAfCfAfa
A-
219
VPusUfsgcgg(Agn)uc
AUUUGUUUGUAC
4313


901408.1
1701373.

gauccgcaaL96
1701374.

uuguAfcAfaacaasasu
AAGAUCCGCAG




1


1









AD-
A-
91
usasauc(Chd)AfgAfAfAfcc
A-
220
VPusCfsauuu(Cgn)ag
CUUAAUCCAGAAA
4314


901417.1
1701391.

ugaaaugaL96
1701392.

guuuCfuGfgauuasasg
CCUGAAAUGA




1


1









AD-
A-
92
gsasaaa(Ahd)AfaAfUfCfag
A-
221
VPusCfscucg(Agn)acu
AAGAAAAAAAAU
4315


901400.1
1701357.

uucgaggaL96
1701358.

gauUfuUfuuuucsusu
CAGUUCGAGGA




1


1









AD-
A-
93
gsgsgca(Ahd)AfaAfCfGfaa
A-
222
VPusUfsugcg(Cgn)uu
AGGGGCAAAAAC
4316


901323.1
1701203.

agcgcaaaL96
1701204.

ucguUfuUfugcccscsu
GAAAGCGCAAG




1


1









AD-
A-
94
usgsaag(Uhd)UfcAfUfGfga
A-
223
VPusAfsuaga(Cgn)auc
GGUGAAGUUCAU
4317


901316.1
1701189.

ugucuauaL96
1701190.

cauGfaAfcuucascsc
GGAUGUCUAUC




1


1









AD-
A-
95
csascga(Ahd)GfuGfGfUfga
A-
224
VPusAfsugaa(Cgn)uu
AUCACGAAGUGG
4318


901315.1
1701187.

aguucauaL96
1701188.

caccAfcUfucgugsasu
UGAAGUUCAUG




1


1









AD-
A-
96
ascsguc(Uhd)UfuGfUfCfuc
A-
225
VPusUfsgcac(Tgn)aga
UCACGUCUUUGUC
4319


901395.1
1701347.

uagugcaaL96
1701348.

gacAfaAfgacgusgsa
UCUAGUGCAG




1


1









AD-
A-
97
asascau(Chd)AfcCfAfUfgc
A-
226
VPusAfsuaau(Cgn)ug
CCAACAUCACCAU
4320


901318.1
1701193.

agauuauaL96
1701194.

caugGfuGfauguusgsg
GCAGAUUAUG




1


1









AD-
A-
98
gsgsugc(Uhd)AfcUfGfUfu
A-
227
VPusUfsacgg(Agn)ua
UUGGUGCUACUG
4321


901390.1
1701337.

uauccguaaL96
1701338.

aacaGfuAfgcaccsasa
UUUAUCCGUAA




1


1









AD-
A-
99
asasaua(Ghd)AfcAfUfUfgc
A-
228
VPusCfsagaa(Tgn)agc
UAAAAUAGACAU
4322


901387.1
1701331.

uauucugaL96
1701332.

aauGfuCfuauuususa
UGCUAUUCUGU




1


1









AD-
A-
100
ususccc(Chd)AfaAfUfCfac
A-
229
VPusAfsucca(Cgn)agu
ACUUCCCCAAAUC
4323


901307.1
1701171.

uguggauaL96
1701172.

gauUfuGfgggaasgsu
ACUGUGGAUU




1


1









AD-
A-
101
gsasucc(Ghd)CfaGfAfCfgu
A-
230
VPusCfsauuu(Agn)cac
AAGAUCCGCAGAC
4324


901410.1
1701377.

guaaaugaL96
1701378.

gucUfgCfggaucsusu
GUGUAAAUGU




1


1









AD-
A-
102
ususaac(Ahd)UfcAfCfGfuc
A-
231
VPusAfsgaca(Agn)aga
UAUUAACAUCACG
4325


901433.1
1701423.

uuugucuaL96
1701424.

cguGfaUfguuaasusa
UCUUUGUCUC




1


1









AD-
A-
103
asasagu(Ghd)AfgUfGfAfcc
A-
232
VPusAfsaaag(Cgn)agg
GCAAAGUGAGUG
4326


901308.1
1701173.

ugcuuuuaL96
1701174.

ucaCfuCfacuuusgsc
ACCUGCUUUUG




1


1









AD-
A-
104
asasaaa(Chd)AfcAfGfAfcu
A-
233
VPusCfsaacg(Cgn)gag
GCAAAAACACAGA
4327


901414.1
1701385.

cgcguugaL96
1701386.

ucuGfuGfuuuuusgsc
CUCGCGUUGC




1


1









AD-
A-
105
csgsucg(Chd)AfcUfGfAfaa
A-
234
VPusCfsgaaa(Agn)gu
GGCGUCGCACUGA
4328


901309.1
1701175.

cuuuucgaL96
1701176.

uucaGfuGfcgacgscsc
AACUUUUCGU




1


1









AD-
A-
106
asascag(Uhd)GfcUfAfAfug
A-
235
VPusCfscaau(Agn)aca
UUAACAGUGCUA
4329


901362.1
1701281.

uuauuggaL96
1701282.

uuaGfcAfcuguusasa
AUGUUAUUGGU




1


1









AD-
A-
107
ususcgu(Chd)CfaAfCfUfuc
A-
236
VPusCfsagcc(Cgn)aga
UUUUCGUCCAACU
4330


901397.1
1701351.

ugggcugaL96
1701352.

aguUfgGfacgaasasa
UCUGGGCUGU




1


1









AD-
A-
108
asusugg(Uhd)GfuCfUfUfca
A-
237
VPusCfsaucc(Agn)gu
UUAUUGGUGUCU
4331


901419.1
1701395.

cuggaugaL96
1701396.

gaagAfcAfccaausasa
UCACUGGAUGU




1


1









AD-
A-
109
gscsaaa(Ahd)AfcAfCfAfga
A-
238
VPusAfscgcg(Agn)gu
CUGCAAAAACACA
4332


901413.1
1701383.

cucgcguaL96
1701384.

cuguGfuUfuuugcsasg
GACUCGCGUU




1


1









AD-
A-
110
asasaaa(Uhd)CfaGfUfUfcg
A-
239
VPusCfsuuuc(Cgn)uc
AAAAAAAUCAGU
4333


901401.1
1701359.

aggaaagaL96
1701360.

gaacUfgAfuuuuususu
UCGAGGAAAGG




1


1









AD-
A-
ill
csasgac(Ghd)UfgUfAfAfau
A-
240
VPusCfsagga(Agn)cau
CGCAGACGUGUAA
4334


901411.1
1701379.

guuccugaL96
1701380.

uuaCfaCfgucugscsg
AUGUUCCUGC




1


1









AD-
A-
112
usgsucc(Uhd)CfaCfAfCfca
A-
241
VPusGfsuuuc(Agn)au
UAUGUCCUCACAC
4335


901372.1
1701301.

uugaaacaL96
1701302.

ggugUfgAfggacasusa
CAUUGAAACC




1


1









AD-
A-
113
ususuuu(Uhd)UfcAfGfUfa
A-
242
VPusAfsccaa(Ggn)aau
GUUUUUUUUCAG
4336


901425.1
1701407.

uucuugguaL96
1701408.

acuGfaAfaaaaasasc
UAUUCUUGGUU




1


1









AD-
A-
114
asgsauc(Chd)GfcAfGfAfcg
A-
243
VPusAfsuuua(Cgn)ac
CAAGAUCCGCAGA
4337


901409.1
1701375.

uguaaauaL96
1701376.

gucuGfcGfgaucususg
CGUGUAAAUG




1


1









AD-
A-
115
cscscuc(Uhd)UfgGfAfAfuu
A-
244
VPusCfsgaau(Cgn)caa
GUCCCUCUUGGAA
4338


901418.1
1701393.

ggauucgaL96
1701394.

uucCfaAfgagggsasc
UUGGAUUCGC




1


1









AD-
A-
116
gsasuau(Uhd)AfaCfAfUfca
A-
245
VPusAfsaaga(Cgn)gu
AAGAUAUUAACA
4339


901393.1
1701343.

cgucuuuaL96
1701344.

gaugUfuAfauaucsusu
UCACGUCUUUG




1


1









AD-
A-
117
ususggu(Ghd)CfuAfCfUfg
A-
246
VPusCfsggau(Agn)aac
UAUUGGUGCUAC
4340


901388.1
1701333.

uuuauccgaL96
1701334.

aguAfgCfaccaasusa
UGUUUAUCCGU




1


1









AD-
A-
118
asasggg(Ghd)CfaAfAfAfac
A-
247
VPusCfsgcuu(Tgn)cgu
GAAAGGGGCAAA
4341


901404.1
1701365.

gaaagcgaL96
1701366.

uuuUfgCfcccuususc
AACGAAAGCGC




1


1









AD-
A-
119
csusugc(Ahd)GfaUfGfUfga
A-
248
VPusCfsggcu(Tgn)guc
UACUUGCAGAUG
4342


901346.1
1701249.

caagccgaL96
1701250.

acaUfcUfgcaagsusa
UGACAAGCCGA




1


1









AD-
A-
120
asasauc(Ahd)GfuUfCfGfag
A-
249
VPusCfsccuu(Tgn)ccu
AAAAAUCAGUUC
4343


901403.1
1701363.

gaaagggaL96
1701364.

cgaAfcUfgauuususu
GAGGAAAGGGA




1


1









AD-
A-
121
ascsuuu(Uhd)CfgUfCfCfaa
A-
250
VPusCfscaga(Agn)gu
AAACUUUUCGUCC
4344


901396.1
1701349.

cuucuggaL96
1701350.

uggaCfgAfaaagususu
AACUUCUGGG




1


1









AD-
A-
122
asusuaa(Chd)AfuCfAfCfgu
A-
251
VPusGfsacaa(Agn)gac
AUAUUAACAUCAC
4345


901432.1
1701421.

cuuugucaL96
1701422.

gugAfuGfuuaausasu
GUCUUUGUCU




1


1









AD-
A-
123
csgsucu(Uhd)UfgUfCfUfcu
A-
252
VPusCfsugca(Cgn)uag
CACGUCUUUGUCU
4346


901435.1
1701427.

agugcagaL96
1701428.

agaCfaAfagacgsusg
CUAGUGCAGU




1


1









AD-
A-
124
asascac(Ahd)GfaCfUfCfgc
A-
253
VPusUfsugca(Agn)cg
AAAACACAGACUC
4347


901416.1
1701389.

guugcaaaL96
1701390.

cgagUfcUfguguususu
GCGUUGCAAG




1


1









AD-
A-
125
asusauu(Ahd)AfcAfUfCfac
A-
254
VPusCfsaaag(Agn)cgu
AGAUAUUAACAU
4348


901394.1
1701345.

gucuuugaL96
1701346.

gauGfuUfaauauscsu
CACGUCUUUGU




1


1









AD-
A-
126
gsusuua(Uhd)CfcGfUfAfau
A-
255
VPusCfsacaa(Tgn)uau
CUGUUUAUCCGUA
4349


901429.1
1701415.

aauugugaL96
1701416.

uacGfgAfuaaacsasg
AUAAUUGUGG




1


1









AD-
A-
127
asasaau(Chd)AfgUfUfCfga
A-
256
VPusCfscuuu(Cgn)cuc
AAAAAAUCAGUU
4350


901402.1
1701361.

ggaaaggaL96
1701362.

gaaCfuGfauuuususu
CGAGGAAAGGG




1


1









AD-
A-
128
ususuau(Chd)CfgUfAfAfua
A-
257
VPusCfscaca(Agn)uua
UGUUUAUCCGUA
4351


901430.1
1701417.

auuguggaL96
1701418.

uuaCfgGfauaaascsa
AUAAUUGUGGG




1


1









AD-
A-
129
asgsgac(Ahd)UfuGfCfUfgu
A-
258
VPusCfscaaa(Ggn)cac
UCAGGACAUUGCU
4352


901369.1
1701295.

gcuuuggaL96
1701296.

agcAfaUfguccusgsa
GUGCUUUGGG




1


1
















TABLE 2B







Exemplary Human VEGF-A siRNA Unmodified Single Strands and Duplex Sequences
















Sense
SEQ ID

mRNA
Antisense
SEQ ID

mRNA


Duplex
Oligo
NO:

Target
Oligo
NO:

Target


Name
Name
(Sense)
Sense Sequence
Range
Name
(Antisense)
Antisense Sequence
Range





AD-
A-
259
AAGACUGAUACAGAA
1796-
A-
388
UGAUCGTUCUGUAUCAGU
1794-


901349.
1701255.

CGAUCA
1816
1701256.

CUUUC
1816


1
1



1








AD-
A-
260
ACGGUACUUAUUUAA
2961-
A-
389
UGGAUATUAAAUAAGUAC
2959-


901376.
1701309.

UAUCCA
2981
1701310.

CGUAU
2981


1
1



1








AD-
A-
261
CAGAACAGUCCUUAA
1858-
A-
390
UCUGGATUAAGGACUGUU
1856-


901356.
1701269.

UCCAGA
1878
1701270.

CUGUC
1878


1
1



1








AD-
A-
262
CGACAGAACAGUCCU
1855-
A-
391
UGAUUAAGGACUGUUCU
1853-


901355.
1701267.

UAAUCA
1875
1701268.

GUCGAU
1875


1
1



1








AD-
A-
263
GCAUUUGUUUGUACA
1614-
A-
392
UGAUCUTGUACAAACAAA
1612-


901407.
1701371.

AGAUCA
1634
1701372.

UGCUU
1634


1
1



1








AD-
A-
264
UAUUGGUGUCUUCAC
2192-
A-
393
UAUCCAGUGAAGACACCA
2190-


901367.
1701291.

UGGAUA
2212
1701292.

AUAAC
2212


1
1



1








AD-
A-
265
ACUGAUACAGAACGA
1799-
A-
394
UAUCGATCGUUCUGUAUC
1797-


901352.
1701261.

UCGAUA
1819
1701262.

AGUCU
1819


1
1



1








AD-
A-
266
AAAGACUGAUACAGA
1795-
A-
395
UAUCGUTCUGUAUCAGUC
1793-


901348.
1701253.

ACGAUA
1815
1701254.

UUUCC
1815


1
1



1








AD-
A-
267
AUACAGAACGAUCGA
1803-
A-
396
UCUGUATCGAUCGUUCUG
1801-


901354.
1701265.

UACAGA
1823
1701266.

UAUCA
1823


1
1



1








AD-
A-
268
CUGAUACAGAACGAU
1800-
A-
397
UUAUCGAUCGUUCUGUAU
1798-


901353.
1701263.

CGAUAA
1820
1701264.

CAGUC
1820


1
1



1








AD-
A-
269
GAGAAAGUGUUUUA
2944-
A-
398
UCGUAUAUAAAACACUUU
2942-


901375.
1701307.

UAUACGA
2964
1701308.

CUCUU
2964


1
1



1








AD-
A-
270
ACGAACGUACUUGCA
1700-
A-
399
UACAUCTGCAAGUACGUU
1698-


901345.
1701247.

GAUGUA
1720
1701248.

CGUUU
1720


1
1



1








AD-
A-
271
CUUGGAAUUGGAUUC
1982-
A-
400
UAUGGCGAAUCCAAUUCC
1980-


901357.
1701271.

GCCAUA
2002
1701272.

AAGAG
2002


1
1



1








AD-
A-
272
GGCAGCUUGAGUUAA
1685-
A-
401
UUUCGUTUAACUCAAGCU
1683-


901334.
1701225.

ACGAAA
1705
1701226.

GCCUC
1705


1
1



1








AD-
A-
273
GGGCAGAAUCAUCAC
1138-
A-
402
UACUUCGUGAUGAUUCUG
1136-


901313.
1701183.

GAAGUA
1158
1701184.

CCCUC
1158


1
1



1








AD-
A-
274
UUAAACGAACGUACU
1696-
A-
403
UCUGCAAGUACGUUCGUU
1694-


901344.
1701245.

UGCAGA
1716
1701246.

UAACU
1716


1
1



1








AD-
A-
275
GUUAUUGGUGUCUUC
2190-
A-
404
UCCAGUGAAGACACCAAU
2188-


901366.
1701289.

ACUGGA
2210
1701290.

AACAU
2210


1
1



1








AD-
A-
276
AGCUUGAGUUAAACG
1688-
A-
405
UACGUUCGUUUAACUCAA
1686-


901337.
1701231.

AACGUA
1708
1701232.

GCUGC
1708


1
1



1








AD-
A-
277
GCAGCUUGAGUUAAA
1686-
A-
406
UGUUCGTUUAACUCAAGC
1684-


901335.
1701227.

CGAACA
1706
1701228.

UGCCU
1706


1
1



1








AD-
A-
278
CGAAGUGGUGAAGUU
1152-
A-
407
UCCAUGAACUUCACCACU
1150-


901398.
1701353.

CAUGGA
1172
1701354.

UCGUG
1172


1
1



1








AD-
A-
279
CAGAAUCAUCACGAA
1141-
A-
408
UACCACTUCGUGAUGAUU
1139-


901314.
1701185.

GUGGUA
1161
1701186.

CUGCC
1161


1
1



1








AD-
A-
280
AAAAUAGACAUUGCU
3361-
A-
409
UAGAAUAGCAAUGUCUA
3359-


901386.
1701329.

AUUCUA
3381
1701330.

UUUUAU
3381


1
1



1








AD-
A-
281
CAGCUUGAGUUAAAC
1687-
A-
410
UCGUUCGUUUAACUCAAG
1685-


901336.
1701229.

GAACGA
1707
1701230.

CUGCC
1707


1
1



1








AD-
A-
282
CGCACUGAAACUUUU
 648-
A-
411
UGGACGAAAAGUUUCAG
 646-


901310.
1701177.

CGUCCA
 668
1701178.

UGCGAC
 668


1
1



1








AD-
A-
283
AGAUUAUGCGGAUCA
1352-
A-
412
UAGGUUTGAUCCGCAUAA
1350-


901321.
1701199.

AACCUA
1372
1701200.

UCUGC
1372


1
1



1








AD-
A-
284
GCUCUCUUAUUUGUA
3096-
A-
413
UACCGGTACAAAUAAGAG
3094-


901382.
1701321.

CCGGUA
3116
1701322.

AGCAA
3116


1
1



1








AD-
A-
285
UGACAGUCACUAGCU
3162-
A-
414
UAGAUAAGCUAGUGACU
3160-


901384.
1701325.

UAUCUA
3182
1701326.

GUCACC
3182


1
1



1








AD-
A-
286
CUUGAGUUAAACGAA
1690-
A-
415
UGUACGTUCGUUUAACUC
1688-


901339.
1701235.

CGUACA
1710
1701236.

AAGCU
1710


1
1



1








AD-
A-
287
AGUGCUAAUGUUAUU
2181-
A-
416
UACACCAAUAACAUUAGC
2179-


901363.
1701283.

GGUGUA
2201
1701284.

ACUGU
2201


1
1



1








AD-
A-
288
AUCCGCAGACGUGUA
1631-
A-
417
UACAUUTACACGUCUGCG
1629-


901325.
1701207.

AAUGUA
1651
1701208.

GAUCU
1651


1
1



1








AD-
A-
289
AGACUGAUACAGAAC
1797-
A-
418
UCGAUCGUUCUGUAUCAG
1795-


901350.
1701257.

GAUCGA
1817
1701258.

UCUUU
1817


1
1



1








AD-
A-
290
UGUUAUUGGUGUCUU
2189-
A-
419
UCAGUGAAGACACCAAUA
2187-


901365.
1701287.

CACUGA
2209
1701288.

ACAUU
2209


1
1



1








AD-
A-
291
GUGCUGGAAUUUGAU
 125-
A-
420
UUGAAUAUCAAAUUCCAG
 123-


901306.
1701169.

AUUCAA
 145
1701170.

CACCG
 145


1
1



1








AD-
A-
292
UUGCUGCUAAAUCAC
2012-
A-
421
UGCUCGGUGAUUUAGCAG
2010-


901361.
1701279.

CGAGCA
2032
1701280.

CAAGA
2032


1
1



1








AD-
A-
293
CACCAUGCAGAUUAU
1344-
A-
422
UUCCGCAUAAUCUGCAUG
1342-


901320.
1701197.

GCGGAA
1364
1701198.

GUGAU
1364


1
1



1








AD-
A-
294
GAAAGCAUUUGUUUG
1610-
A-
423
UUUGUACAAACAAAUGCU
1608-


901405.
1701367.

UACAAA
1630
1701368.

UUCUC
1630


1
1



1








AD-
A-
295
GCUUGAGUUAAACGA
1689-
A-
424
UUACGUTCGUUUAACUCA
1687-


901338.
1701233.

ACGUAA
1709
1701234.

AGCUG
1709


1
1



1








AD-
A-
296
UCGGUGACAGUCACU
3158-
A-
425
UAAGCUAGUGACUGUCAC
3156-


901383.
1701323.

AGCUUA
3178
1701324.

CGAUC
3178


1
1



1








AD-
A-
297
AGGCAGCUUGAGUUA
1684-
A-
426
UUCGUUTAACUCAAGCUG
1682-


901333.
1701223.

AACGAA
1704
1701224.

CCUCG
1704


1
1



1








AD-
A-
298
CUGCAAAAACACAGA
1653-
A-
427
UGCGAGTCUGUGUUUUUG
1651-


901330.
1701217.

CUCGCA
1673
1701218.

CAGGA
1673


1
1



1








AD-
A-
299
CUUGCUGCUAAAUCA
2011-
A-
428
UCUCGGTGAUUUAGCAGC
2009-


901360.
1701277.

CCGAGA
2031
1701278.

AAGAA
2031


1
1



1








AD-
A-
300
UUCUUGCUGCUAAAU
2009-
A-
429
UCGGUGAUUUAGCAGCAA
2007-


901358.
1701273.

CACCGA
2029
1701274.

GAAAA
2029


1
1



1








AD-
A-
301
AAAGCAUUUGUUUGU
1611-
A-
430
UCUUGUACAAACAAAUGC
1609-


901406.
1701369.

ACAAGA
1631
1701370.

uuucu
1631


1
1



1








AD-
A-
302
UCCGCAGACGUGUAA
1632-
A-
431
UAACAUTUACACGUCUGC
1630-


901326.
1701209.

AUGUUA
1652
1701210.

GGAUC
1652


1
1



1








AD-
A-
303
CGGUACUUAUUUAAU
2962-
A-
432
UGGGAUAUUAAAUAAGU
2960-


901377.
1701311.

AUCCCA
2982
1701312.

ACCGUA
2982


1
1



1








AD-
A-
304
GACUGAUACAGAACG
1798-
A-
433
UUCGAUCGUUCUGUAUCA
1796-


901351.
1701259.

AUCGAA
1818
1701260.

GUCUU
1818


1
1



1








AD-
A-
305
AAAACACAGACUCGC
1658-
A-
434
UGCAACGCGAGUCUGUGU
1656-


901415.
1701387.

GUUGCA
1678
1701388.

UUUUG
1678


1
1



1








AD-
A-
306
GAGUUAAACGAACGU
1693-
A-
435
UCAAGUACGUUCGUUUAA
1691-


901342.
1701241.

ACUUGA
1713
1701242.

CUCAA
1713


1
1



1








AD-
A-
307
UCACUGGAUGUAUUU
2203-
A-
436
UCAGUCAAAUACAUCCAG
2201-


901420.
1701397.

GACUGA
2223
1701398.

UGAAG
2223


1
1



1








AD-
A-
308
CCUCCGAAACCAUGA
1028-
A-
437
UAAAGUTCAUGGUUUCGG
1026-


901312.
1701181.

ACUUUA
1048
1701182.

AGGCC
1048


1
1



1








AD-
A-
309
UUGAGUUAAACGAAC
1691-
A-
438
UAGUACGUUCGUUUAACU
1689-


901340.
1701237.

GUACUA
1711
1701238.

CAAGC
1711


1
1



1








AD-
A-
310
UGCUACUGUUUAUCC
3482-
A-
439
UAUUACGGAUAAACAGU
3480-


901392.
1701341.

GUAAUA
3502
1701342.

AGCACC
3502


1
1



1








AD-
A-
311
CCGCAGACGUGUAAA
1633-
A-
440
UGAACATUUACACGUCUG
1631-


901327.
1701211.

UGUUCA
1653
1701212.

CGGAU
1653


1
1



1








AD-
A-
312
CGCAGACGUGUAAAU
1634-
A-
441
UGGAACAUUUACACGUCU
1632-


901328.
1701213.

GUUCCA
1654
1701214.

GCGGA
1654


1
1



1








AD-
A-
313
AGAGAAGAGACACAU
2673-
A-
442
UCAACAAUGUGUCUCUUC
2671-


901370.
1701297.

UGUUGA
2693
1701298.

UCUUC
2693


1
1



1








AD-
A-
314
ACAGCACAACAAAUG
1407-
A-
443
UAUUCACAUUUGUUGUGC
1405-


901399.
1701355.

UGAAUA
1427
1701356.

UGUAG
1427


1
1



1








AD-
A-
315
UCUUGCUGCUAAAUC
2010-
A-
444
UUCGGUGAUUUAGCAGCA
2008-


901359.
1701275.

ACCGAA
2030
1701276.

AGAAA
2030


1
1



1








AD-
A-
316
ACACCAUUGAAACCA
2790-
A-
445
UACUAGTGGUUUCAAUGG
2788-


901373.
1701303.

CUAGUA
2810
1701304.

UGUGA
2810


1
1



1








AD-
A-
317
GAGGCAGCUUGAGUU
1683-
A-
446
UCGUUUAACUCAAGCUGC
1681-


901332.
1701221.

AAACGA
1703
1701222.

CUCGC
1703


1
1



1








AD-
A-
318
GCACUGAAACUUUUC
 649-
A-
447
UUGGACGAAAAGUUUCA
 647-


901311.
1701179.

GUCCAA
 669
1701180.

GUGCGA
 669


1
1



1








AD-
A-
319
GUUUUAUAUACGGUA
2952-
A-
448
UAUAAGTACCGUAUAUAA
2950-


901423.
1701403.

CUUAUA
2972
1701404.

AACAC
2972


1
1



1








AD-
A-
320
CACCAUUGAAACCAC
2791-
A-
449
UAACUAGUGGUUUCAAU
2789-


901374.
1701305.

UAGUUA
2811
1701306.

GGUGUG
2811


1
1



1








AD-
A-
321
AUCACCAUGCAGAUU
1342-
A-
450
UCGCAUAAUCUGCAUGGU
1340-


901319.
1701195.

AUGCGA
1362
1701196.

GAUGU
1362


1
1



1








AD-
A-
322
UGAGUUAAACGAACG
1692-
A-
451
UAAGUACGUUCGUUUAAC
1690-


901341.
1701239.

UACUUA
1712
1701240.

UCAAG
1712


1
1



1








AD-
A-
323
GAAAGUGUUUUAUA
2946-
A-
452
UACCGUAUAUAAAACACU
2944-


901422.
1701401.

UACGGUA
2966
1701402.

UUCUC
2966


1
1



1








AD-
A-
324
ACAGUCACUAGCUUA
3164-
A-
453
UCAAGATAAGCUAGUGAC
3162-


901385.
1701327.

UCUUGA
3184
1701328.

UGUCA
3184


1
1



1








AD-
A-
325
GUGCUACUGUUUAUC
3481-
A-
454
UUUACGGAUAAACAGUA
3479-


901391.
1701339.

CGUAAA
3501
1701340.

GCACCA
3501


1
1



1








AD-
A-
326
CCUGCAAAAACACAG
1652-
A-
455
UCGAGUCUGUGUUUUUGC
1650-


901329.
1701215.

ACUCGA
1672
1701216.

AGGAA
1672


1
1



1








AD-
A-
327
CAAAAACACAGACUC
1656-
A-
456
UAACGCGAGUCUGUGUUU
1654-


901331.
1701219.

GCGUUA
1676
1701220.

UUGCA
1676


1
1



1








AD-
A-
328
UGCUGUGGACUUGAG
2221-
A-
457
UCCCAACUCAAGUCCACA
2219-


901368.
1701293.

UUGGGA
2241
1701294.

GCAGU
2241


1
1



1








AD-
A-
329
GUGCUAAUGUUAUUG
2182-
A-
458
UGACACCAAUAACAUUAG
2180-


901364.
1701285.

GUGUCA
2202
1701286.

CACUG
2202


1
1



1








AD-
A-
330
UGGUGCUACUGUUUA
3479-
A-
459
UACGGATAAACAGUAGCA
3477-


901389.
1701335.

UCCGUA
3499
1701336.

CCAAU
3499


1
1



1








AD-
A-
331
AGAAAGUGUUUUAU
2945-
A-
460
UCCGUATAUAAAACACUU
2943-


901421.
1701399.

AUACGGA
2965
1701400.

UCUCU
2965


1
1



1








AD-
A-
332
AACUAUUUAUGAGAU
3062-
A-
461
UGAUACAUCUCAUAAAUA
3060-


901380.
1701317.

GUAUCA
3082
1701318.

GUUGA
3082


1
1



1








AD-
A-
333
AGUUAAACGAACGUA
1694-
A-
462
UGCAAGTACGUUCGUUUA
1692-


901343.
1701243.

CUUGCA
1714
1701244.

ACUCA
1714


1
1



1








AD-
A-
334
CAUCUUCAAGCCAUC
1251-
A-
463
UCACAGGAUGGCUUGAAG
1249-


901317.
1701191.

CUGUGA
1271
1701192.

AUGUA
1271


1
1



1








AD-
A-
335
UUUUUUUUCAGUAUU
3027-
A-
464
UCCAAGAAUACUGAAAAA
3025-


901424.
1701405.

CUUGGA
3047
1701406.

AAACC
3047


1
1



1








AD-
A-
336
UUAUCCGUAAUAAUU
3491-
A-
465
UCCCACAAUUAUUACGGA
3489-


901431.
1701419.

GUGGGA
3511
1701420.

UAAAC
3511


1
1



1








AD-
A-
337
GGUACUUAUUUAAUA
2963-
A-
466
UAGGGATAUUAAAUAAG
2961-


901378.
1701313.

UCCCUA
2983
1701314.

UACCGU
2983


1
1



1








AD-
A-
338
CACGUCUUUGUCUCU
3527-
A-
467
UGCACUAGAGACAAAGAC
3525-


901434.
1701425.

AGUGCA
3547
1701426.

GUGAU
3547


1
1



1








AD-
A-
339
UGCAAAAACACAGAC
1654-
A-
468
UCGCGAGUCUGUGUUUUU
1652-


901412.
1701381.

UCGCGA
1674
1701382.

GCAGG
1674


1
1



1








AD-
A-
340
ACUAUUUAUGAGAUG
3063-
A-
469
UAGAUACAUCUCAUAAAU
3061-


901426.
1701409.

UAUCUA
3083
1701410.

AGUUG
3083


1
1



1








AD-
A-
341
AGGGGCAAAAACGAA
1484-
A-
470
UGCGCUTUCGUUUUUGCC
1482-


901322.
1701201.

AGCGCA
1504
1701202.

CCUUU
1504


1
1



1








AD-
A-
342
UUGCUCUCUUAUUUG
3094-
A-
471
UCGGUACAAAUAAGAGA
3092-


901381.
1701319.

UACCGA
3114
1701320.

GCAAGA
3114


1
1



1








AD-
A-
343
AUUUGUUUGUACAAG
1616-
A-
472
UCGGAUCUUGUACAAACA
1614-


901324.
1701205.

AUCCGA
1636
1701206.

AAUGC
1636


1
1



1








AD-
A-
344
UUGCAGAUGUGACAA
1710-
A-
473
UUCGGCTUGUCACAUCUG
1708-


901347.
1701251.

GCCGAA
1730
1701252.

CAAGU
1730


1
1



1








AD-
A-
345
CAACUAUUUAUGAGA
3061-
A-
474
UAUACATCUCAUAAAUAG
3059-


901379.
1701315.

UGUAUA
3081
1701316.

UUGAA
3081


1
1



1








AD-
A-
346
AAUUCUACAUACUAA
3419-
A-
475
UGAGAUTUAGUAUGUAG
3417-


901428.
1701413.

AUCUCA
3439
1701414.

AAUUCU
3439


1
1



1








AD-
A-
347
AUGUCCUCACACCAU
2782-
A-
476
UUUUCAAUGGUGUGAGG
2780-


901371.
1701299.

UGAAAA
2802
1701300.

ACAUAG
2802


1
1



1








AD-
A-
348
UUGUUUGUACAAGAU
1618-
A-
477
UUGCGGAUCUUGUACAAA
1616-


901408.
1701373.

CCGCAA
1638
1701374.

CAAAU
1638


1
1



1








AD-
A-
349
UAAUCCAGAAACCUG
1870-
A-
478
UCAUUUCAGGUUUCUGGA
1868-


901417.
1701391.

AAAUGA
1890
1701392.

UUAAG
1890


1
1



1








AD-
A-
350
GAAAAAAAAUCAGUU
1456-
A-
479
UCCUCGAACUGAUUUUUU
1454-


901400.
1701357.

CGAGGA
1476
1701358.

UUCUU
1476


1
1



1








AD-
A-
351
GGGCAAAAACGAAAG
1486-
A-
480
UUUGCGCUUUCGUUUUUG
1484-


901323.
1701203.

CGCAAA
1506
1701204.

CCCCU
1506


1
1



1








AD-
A-
352
UGAAGUUCAUGGAUG
1160-
A-
481
UAUAGACAUCCAUGAACU
1158-


901316.
1701189.

UCUAUA
1180
1701190.

UCACC
1180


1
1



1








AD-
A-
353
CACGAAGUGGUGAAG
1150-
A-
482
UAUGAACUUCACCACUUC
1148-


901315.
1701187.

UUCAUA
1170
1701188.

GUGAU
1170


1
1



1








AD-
A-
354
ACGUCUUUGUCUCUA
3528-
A-
483
UUGCACTAGAGACAAAGA
3526-


901395.
1701347.

GUGCAA
3548
1701348.

CGUGA
3548


1
1



1








AD-
A-
355
AACAUCACCAUGCAG
1339-
A-
484
UAUAAUCUGCAUGGUGA
1337-


901318.
1701193.

AUUAUA
1359
1701194.

UGUUGG
1359


1
1



1








AD-
A-
356
GGUGCUACUGUUUAU
3480-
A-
485
UUACGGAUAAACAGUAGC
3478-


901390.
1701337.

CCGUAA
3500
1701338.

ACCAA
3500


1
1



1








AD-
A-
357
AAAUAGACAUUGCUA
3362-
A-
486
UCAGAATAGCAAUGUCUA
3360-


901387.
1701331.

UUCUGA
3382
1701332.

UUUUA
3382


1
1



1








AD-
A-
358
UUCCCCAAAUCACUG
 278-
A-
487
UAUCCACAGUGAUUUGGG
 276-


901307.
1701171.

UGGAUA
 298
1701172.

GAAGU
 298


1
1



1








AD-
A-
359
GAUCCGCAGACGUGU
1630-
A-
488
UCAUUUACACGUCUGCGG
1628-


901410.
1701377.

AAAUGA
1650
1701378.

AUCUU
1650


1
1



1








AD-
A-
360
UUAACAUCACGUCUU
3520-
A-
489
UAGACAAAGACGUGAUG
3518-


901433.
1701423.

UGUCUA
3540
1701424.

UUAAUA
3540


1
1



1








AD-
A-
361
AAAGUGAGUGACCUG
 415-
A-
490
UAAAAGCAGGUCACUCAC
 413-


901308.
1701173.

CUUUUA
 435
1701174.

UUUGC
 435


1
1



1








AD-
A-
362
AAAAACACAGACUCG
1657-
A-
491
UCAACGCGAGUCUGUGUU
1655-


901414.
1701385.

CGUUGA
1677
1701386.

UUUGC
1677


1
1



1








AD-
A-
363
CGUCGCACUGAAACU
 645-
A-
492
UCGAAAAGUUUCAGUGCG
 643-


901309.
1701175.

UUUCGA
 665
1701176.

ACGCC
 665


1
1



1








AD-
A-
364
AACAGUGCUAAUGUU
2178-
A-
493
UCCAAUAACAUUAGCACU
2176-


901362.
1701281.

AUUGGA
2198
1701282.

GUUAA
2198


1
1



1








AD-
A-
365
UUCGUCCAACUUCUG
 661-
A-
494
UCAGCCCAGAAGUUGGAC
 659-


901397.
1701351.

GGCUGA
 681
1701352.

GAAAA
 681


1
1



1








AD-
A-
366
AUUGGUGUCUUCACU
2193-
A-
495
UCAUCCAGUGAAGACACC
2191-


901419.
1701395.

GGAUGA
2213
1701396.

AAUAA
2213


1
1



1








AD-
A-
367
GCAAAAACACAGACU
1655-
A-
496
UACGCGAGUCUGUGUUUU
1653-


901413.
1701383.

CGCGUA
1675
1701384.

UGCAG
1675


1
1



1








AD-
A-
368
AAAAAUCAGUUCGAG
1460-
A-
497
UCUUUCCUCGAACUGAUU
1458-


901401.
1701359.

GAAAGA
1480
1701360.

UUUUU
1480


1
1



1








AD-
A-
369
CAGACGUGUAAAUGU
1636-
A-
498
UCAGGAACAUUUACACGU
1634-


901411.
1701379.

UCCUGA
1656
1701380.

CUGCG
1656


1
1



1








AD-
A-
370
UGUCCUCACACCAUU
2783-
A-
499
UGUUUCAAUGGUGUGAG
2781-


901372.
1701301.

GAAACA
2803
1701302.

GACAUA
2803


1
1



1








AD-
A-
371
UUUUUUUCAGUAUUC
3028-
A-
500
UACCAAGAAUACUGAAAA
3026-


901425.
1701407.

UUGGUA
3048
1701408.

AAAAC
3048


1
1



1








AD-
A-
372
AGAUCCGCAGACGUG
1629-
A-
501
UAUUUACACGUCUGCGGA
1627-


901409.
1701375.

UAAAUA
1649
1701376.

UCUUG
1649


1
1



1








AD-
A-
373
CCCUCUUGGAAUUGG
1978-
A-
502
UCGAAUCCAAUUCCAAGA
1976-


901418.
1701393.

AUUCGA
1998
1701394.

GGGAC
1998


1
1



1








AD-
A-
374
GAUAUUAACAUCACG
3516-
A-
503
UAAAGACGUGAUGUUAA
3514-


901393.
1701343.

UCUUUA
3536
1701344.

UAUCUU
3536


1
1



1








AD-
A-
375
UUGGUGCUACUGUUU
3478-
A-
504
UCGGAUAAACAGUAGCAC
3476-


901388.
1701333.

AUCCGA
3498
1701334.

CAAUA
3498


1
1



1








AD-
A-
376
AAGGGGCAAAAACGA
1483-
A-
505
UCGCUUTCGUUUUUGCCC
1481-


901404.
1701365.

AAGCGA
1503
1701366.

cuuuc
1503


1
1



1








AD-
A-
377
CUUGCAGAUGUGACA
1709-
A-
506
UCGGCUTGUCACAUCUGC
1707-


901346.
1701249.

AGCCGA
1729
1701250.

AAGUA
1729


1
1



1








AD-
A-
378
AAAUCAGUUCGAGGA
1462-
A-
507
UCCCUUTCCUCGAACUGA
1460-


901403.
1701363.

AAGGGA
1482
1701364.

UUUUU
1482


1
1



1








AD-
A-
379
ACUUUUCGUCCAACU
 657-
A-
508
UCCAGAAGUUGGACGAAA
 655-


901396.
1701349.

UCUGGA
 677
1701350.

AGUUU
 677


1
1



1








AD-
A-
380
AUUAACAUCACGUCU
3519-
A-
509
UGACAAAGACGUGAUGU
3517-


901432.
1701421.

UUGUCA
3539
1701422.

UAAUAU
3539


1
1



1








AD-
A-
381
CGUCUUUGUCUCUAG
3529-
A-
510
UCUGCACUAGAGACAAAG
3527-


901435.
1701427.

UGCAGA
3549
1701428.

ACGUG
3549


1
1



1








AD-
A-
382
AACACAGACUCGCGU
1660-
A-
511
UUUGCAACGCGAGUCUGU
1658-


901416.
1701389.

UGCAAA
1680
1701390.

GUUUU
1680


1
1



1








AD-
A-
383
AUAUUAACAUCACGU
3517-
A-
512
UCAAAGACGUGAUGUUA
3515-


901394.
1701345.

CUUUGA
3537
1701346.

AUAUCU
3537


1
1



1








AD-
A-
384
GUUUAUCCGUAAUAA
3489-
A-
513
UCACAATUAUUACGGAUA
3487-


901429.
1701415.

UUGUGA
3509
1701416.

AACAG
3509


1
1



1








AD-
A-
385
AAAAUCAGUUCGAGG
1461-
A-
514
UCCUUUCCUCGAACUGAU
1459-


901402.
1701361.

AAAGGA
1481
1701362.

UUUUU
1481


1
1



1








AD-
A-
386
UUUAUCCGUAAUAAU
3490-
A-
515
UCCACAAUUAUUACGGAU
3488-


901430.
1701417.

UGUGGA
3510
1701418.

AAACA
3510


1
1



1








AD-
A-
387
AGGACAUUGCUGUGC
2518-
A-
516
UCCAAAGCACAGCAAUGU
2516-


901369.
1701295.

UUUGGA
2538
1701296.

CCUGA
2538


1
1



1
















TABLE 3A







Exemplary Human VEGF-A siRNA Modified Single Strands and Duplex Sequences



















Anti-
SEQ


SEQ ID



Sense
SEQ

sense
ID NO:


NO:


Duplex
Oligo
ID NO:

Oligo
(Anti-

mRNA target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence
sequence
target)





AD-
A-
517
ascsuga(Uhd)AfcAfGfAfac
A-
647
VPusAfsucgAfuCfGfu
AGACUGAUACAG
4353


953340.1
1701261.

gaucgauaL96
1068804.

ucuGfuAfucaguscsu
AACGAUCGAUA




1


1









AD-
A-
518
asasaga(Chd)UfgAfUfAfca
A-
648
VPusAfsucgUfuCfUfg
GGAAAGACUGAU
4354


953336.1
1701253.

gaacgauaL96
1068796.

uauCfaGfucuuuscsc
ACAGAACGAUC




1


1









AD-
A-
519
gsasgaa(Ahd)GfuGfUfUfuu
A-
649
VPusCfsguaUfaUfAfaa
AAGAGAAAGUGU
4355


953363.1
1701307.

auauacgaL96
1070290.

acAfcUfuucucsusu
UUUAUAUACGG




1


1









AD-
A-
520
asgsacu(Ghd)AfuAfCfAfga
A-
650
VPusCfsgauCfgUfUfcu
AAAGACUGAUAC
4356


953338.1
1701257.

acgaucgaL96
1068800.

guAfuCfagucususu
AGAACGAUCGA




1


1









AD-
A-
521
csasacu(Ahd)UfuUfAfUfga
A-
651
VPusAfsuacAfuCfUfca
UUCAACUAUUUA
4357


953367.1
1701315.

gauguauaL96
1070376.

uaAfaUfaguugsasa
UGAGAUGUAUC




1


1









AD-
A-
522
asasgac(Uhd)GfaUfAfCfag
A-
652
VPusGfsaucGfuUfCfug
GAAAGACUGAUA
4358


953337.1
1701255.

aacgaucaL96
1068798.

uaUfcAfgucuususc
CAGAACGAUCG




1


1









AD-
A-
523
asusaca(Ghd)AfaCfGfAfuc
A-
653
VPusCfsuguAfuCfGfau
UGAUACAGAACG
4359


953342.1
1701265.

gauacagaL96
1068812.

cgUfuCfuguauscsa
AUCGAUACAGA




1


1









AD-
A-
524
asascag(Uhd)GfcUfAfAfug
A-
654
VPusCfscaaUfaAfCfau
UUAACAGUGCUA
4360


953350.1
1701281.

uuauuggaL96
1069342.

uaGfcAfcuguusasa
AUGUUAUUGGU




1


1









AD-
A-
525
gsusgcu(Ahd)AfuGfUfUfau
A-
655
VPusGfsacaCfcAfAfua
CAGUGCUAAUGU
4361


953352.1
1701285.

uggugucaL96
1069350.

acAfuUfagcacsusg
UAUUGGUGUCU




1


1









AD-
A-
526
asascua(Uhd)UfuAfUfGfag
A-
656
VPusGfsauaCfaUfCfuc
UCAACUAUUUAU
4362


953368.1
1701317.

auguaucaL96
1070378.

auAfaAfuaguusgsa
GAGAUGUAUCU




1


1









AD-
A-
527
csasgaa(Chd)AfgUfCfCfuu
A-
657
VPusCfsuggAfuUfAfa
GACAGAACAGUCC
4363


953344.1
1701269.

aauccagaL96
1068918.

ggaCfuGfuucugsusc
UUAAUCCAGA




1


1









AD-
A-
528
gsascug(Ahd)UfaCfAfGfaa
A-
658
VPusUfscgaUfcGfUfuc
AAGACUGAUACA
4364


953339.1
1701259.

cgaucgaaL96
1068802.

ugUfaUfcagucsusu
GAACGAUCGAU




1


1









AD-
A-
529
ascsagc(Ahd)CfaAfCfAfaa
A-
659
VPusAfsuucAfcAfUfu
CUACAGCACAACA
4365


953387.1
1701355.

ugugaauaL96
1068170.

uguUfgUfgcugusasg
AAUGUGAAUG




1


1









AD-
A-
530
asasaua(Ghd)AfcAfUfUfgc
A-
660
VPusCfsagaAfuAfGfca
UAAAAUAGACAU
4366


953375.1
1701331.

uauucugaL96
1070792.

auGfuCfuauuususa
UGCUAUUCUGU




1


1









AD-
A-
531
usasuug(Ghd)UfgUfCfUfuc
A-
661
VPusAfsuccAfgUfGfaa
GUUAUUGGUGUC
4367


953355.1
1701291.

acuggauaL96
1069370.

gaCfaCfcaauasasc
UUCACUGGAUG




1


1









AD-
A-
532
csusgau(Ahd)CfaGfAfAfcg
A-
662
VPusUfsaucGfaUfCfgu
GACUGAUACAGA
4368


953341.1
1701263.

aucgauaaL96
1068806.

ucUfgUfaucagsusc
ACGAUCGAUAC




1


1









AD-
A-
533
gscsucu(Chd)UfuAfUfUfug
A-
663
VPusAfsccgGfuAfCfaa
UUGCUCUCUUAUU
4369


953370.1
1701321.

uaccgguaL96
1070446.

auAfaGfagagcsasa
UGUACCGGUU




1


1









AD-
A-
534
csascca(Uhd)UfgAfAfAfcc
A-
664
VPusAfsacuAfgUfGfg
CACACCAUUGAAA
4370


953362.1
1701305.

acuaguuaL96
1070096.

uuuCfaAfuggugsusg
CCACUAGUUC




1


1









AD-
A-
535
gsgscag(Chd)UfuGfAfGfuu
A-
665
VPusUfsucgUfuUfAfac
GAGGCAGCUUGA
4371


953322.1
1701225.

aaacgaaaL96
1068596.

ucAfaGfcugccsusc
GUUAAACGAAC




1


1









AD-
A-
536
ususaaa(Chd)GfaAfCfGfua
A-
666
VPusCfsugcAfaGfUfac
AGUUAAACGAAC
4372


953332.1
1701245.

cuugcagaL96
1068618.

guUfcGfuuuaascsu
GUACUUGCAGA




1


1









AD-
A-
537
uscsggu(Ghd)AfcAfGfUfca
A-
667
VPusAfsagcUfaGfUfga
GAUCGGUGACAG
4373


953371.1
1701323.

cuagcuuaL96
1070550.

cuGfuCfaccgasusc
UCACUAGCUUA




1


1









AD-
A-
538
asgsuua(Ahd)AfcGfAfAfcg
A-
668
VPusGfscaaGfuAfCfgu
UGAGUUAAACGA
4374


953331.1
1701243.

uacuugcaL96
1068614.

ucGfuUfuaacuscsa
ACGUACUUGCA




1


1









AD-
A-
539
gscsagc(Uhd)UfgAfGfUfua
A-
669
VPusGfsuucGfuUfUfaa
AGGCAGCUUGAG
4375


953323.1
1701227.

aacgaacaL96
1068598.

cuCfaAfgcugcscsu
UUAAACGAACG




1


1









AD-
A-
540
asgsugc(Uhd)AfaUfGfUfua
A-
670
VPusAfscacCfaAfUfaa
ACAGUGCUAAUG
4376


953351.1
1701283.

uugguguaL96
1069348.

caUfuAfgcacusgsu
UUAUUGGUGUC




1


1









AD-
A-
541
csgsaag(Uhd)GfgUfGfAfag
A-
671
VPusCfscauGfaAfCfuu
CACGAAGUGGUG
4377


953386.1
1701353.

uucauggaL96
1067728.

caCfcAfcuucgsusg
AAGUUCAUGGA




1


1









AD-
A-
542
asasagc(Ahd)UfuUfGfUfuu
A-
672
VPusCfsuugUfaCfAfaa
AGAAAGCAUUUG
4378


953394.1
1701369.

guacaagaL96
1068448.

caAfaUfgcuuuscsu
UUUGUACAAGA




1


1









AD-
A-
543
asusguc(Chd)UfcAfCfAfcc
A-
673
VPusUfsuucAfaUfGfg
CUAUGUCCUCACA
4379


953359.1
1701299.

auugaaaaL96
1070078.

uguGfaGfgacausasg
CCAUUGAAAC




1


1









AD-
A-
544
usgsagu(Uhd)AfaAfCfGfaa
A-
674
VPusAfsaguAfcGfUfuc
CUUGAGUUAAAC
4380


953329.1
1701239.

cguacuuaL96
1068610.

guUfuAfacucasasg
GAACGUACUUG




1


1









AD-
A-
545
ascsacc(Ahd)UfuGfAfAfac
A-
675
VPusAfscuaGfuGfGfu
UCACACCAUUGAA
4381


953361.1
1701303.

cacuaguaL96
1070094.

uucAfaUfggugusgsa
ACCACUAGUU




1


1









AD-
A-
546
csasaaa(Ahd)CfaCfAfGfac
A-
676
VPusAfsacgCfgAfGfuc
UGCAAAAACACAG
4382


953319.1
1701219.

ucgcguuaL96
1068538.

ugUfgUfuuuugscsa
ACUCGCGUUG




1


1









AD-
A-
547
usgsucc(Uhd)CfaCfAfCfca
A-
677
VPusGfsuuuCfaAfUfg
UAUGUCCUCACAC
4383


953360.1
1701301.

uugaaacaL96
1070080.

gugUfgAfggacasusa
CAUUGAAACC




1


1









AD-
A-
548
csasgcu(Uhd)GfaGfUfUfaa
A-
678
VPusCfsguuCfgUfUfua
GGCAGCUUGAGU
4384


953324.1
1701229.

acgaacgaL96
1068600.

acUfcAfagcugscsc
UAAACGAACGU




1


1









AD-
A-
549
gsgsugc(Uhd)AfcUfGfUfuu
A-
679
VPusUfsacgGfaUfAfaa
UUGGUGCUACUG
4385


953378.1
1701337.

auccguaaL96
1070874.

caGfuAfgcaccsasa
UUUAUCCGUAA




1


1









AD-
A-
550
ususgcu(Chd)UfcUfUfAfuu
A-
680
VPusCfsgguAfcAfAfau
UCUUGCUCUCUUA
4386


953369.1
1701319.

uguaccgaL96
1070442.

aaGfaGfagcaasgsa
UUUGUACCGG




1


1









AD-
A-
551
uscsuug(Chd)UfgCfUfAfaa
A-
681
VPusUfscggUfgAfUfu
UUUCUUGCUGCUA
4387


953347.1
1701275.

ucaccgaaL96
1069188.

uagCfaGfcaagasasa
AAUCACCGAG




1


1









AD-
A-
552
csgsgua(Chd)UfuAfUfUfua
A-
682
VPusGfsggaUfaUfUfaa
UACGGUACUUAU
4388


953365.1
1701311.

auaucccaL96
1070326.

auAfaGfuaccgsusa
UUAAUAUCCCU




1


1









AD-
A-
553
asasaau(Ahd)GfaCfAfUfug
A-
683
VPusAfsgaaUfaGfCfaa
AUAAAAUAGACA
4389


953374.1
1701329.

cuauucuaL96
1070790.

ugUfcUfauuuusasu
UUGCUAUUCUG




1


1









AD-
A-
554
ascsuuu(Uhd)CfgUfCfCfaa
A-
684
VPusCfscagAfaGfUfug
AAACUUUUCGUCC
4390


953384.1
1701349.

cuucuggaL96
1067266.

gaCfgAfaaagususu
AACUUCUGGG




1


1









AD-
A-
555
ususggu(Ghd)CfuAfCfUfgu
A-
685
VPusCfsggaUfaAfAfca
UAUUGGUGCUAC
4391


953376.1
1701333.

uuauccgaL96
1070870.

guAfgCfaccaasusa
UGUUUAUCCGU




1


1









AD-
A-
556
gsusuau(Uhd)GfgUfGfUfcu
A-
686
VPusCfscagUfgAfAfga
AUGUUAUUGGUG
4392


953354.1
1701289.

ucacuggaL96
1069366.

caCfcAfauaacsasu
UCUUCACUGGA




1


1









AD-
A-
557
ususcgu(Chd)CfaAfCfUfuc
A-
687
VPusCfsagcCfcAfGfaa
UUUUCGUCCAACU
4393


953385.1
1701351.

ugggcugaL96
1067274.

guUfgGfacgaasasa
UCUGGGCUGU




1


1









AD-
A-
558
ususcuu(Ghd)CfuGfCfUfaa
A-
688
VPusCfsgguGfaUfUfua
UUUUCUUGCUGCU
4394


953346.1
1701273.

aucaccgaL96
1069186.

gcAfgCfaagaasasa
AAAUCACCGA




1


1









AD-
A-
559
gsgsuac(Uhd)UfaUfUfUfaa
A-
689
VPusAfsgggAfuAfUfu
ACGGUACUUAUU
4395


953366.1
1701313.

uaucccuaL96
1070328.

aaaUfaAfguaccsgsu
UAAUAUCCCUU




1


1









AD-
A-
560
asusauu(Ahd)AfcAfUfCfac
A-
690
VPusCfsaaaGfaCfGfug
AGAUAUUAACAU
4396


953382.1
1701345.

gucuuugaL96
1070912.

auGfuUfaauauscsu
CACGUCUUUGU




1


1









AD-
A-
561
gsasggc(Ahd)GfcUfUfGfag
A-
691
VPusCfsguuUfaAfCfuc
GCGAGGCAGCUUG
4397


953320.1
1701221.

uuaaacgaL96
1068592.

aaGfcUfgccucsgsc
AGUUAAACGA




1


1









AD-
A-
562
gsusgcu(Ahd)CfuGfUfUfua
A-
692
VPusUfsuacGfgAfUfaa
UGGUGCUACUGU
4398


953379.1
1701339.

uccguaaaL96
1070876.

acAfgUfagcacscsa
UUAUCCGUAAU




1


1









AD-
A-
563
asgsgca(Ghd)CfuUfGfAfgu
A-
693
VPusUfscguUfuAfAfc
CGAGGCAGCUUGA
4399


953321.1
1701223.

uaaacgaaL96
1068594.

ucaAfgCfugccuscsg
GUUAAACGAA




1


1









AD-
A-
564
usgsgug(Chd)UfaCfUfGfuu
A-
694
VPusAfscggAfuAfAfac
AUUGGUGCUACU
4400


953377.1
1701335.

uauccguaL96
1070872.

agUfaGfcaccasasu
GUUUAUCCGUA




1


1









AD-
A-
565
asasggg(Ghd)CfaAfAfAfac
A-
695
VPusCfsgcuUfuCfGfuu
GAAAGGGGCAAA
4401


953392.1
1701365.

gaaagcgaL96
1700876.

uuUfgCfcccuususc
AACGAAAGCGC




1


1









AD-
A-
566
ascsagu(Chd)AfcUfAfGfcu
A-
696
VPusCfsaagAfuAfAfgc
UGACAGUCACUAG
4402


953373.1
1701327.

uaucuugaL96
1070562.

uaGfuGfacuguscsa
CUUAUCUUGA




1


1









AD-
A-
567
ascsggu(Ahd)CfuUfAfUfuu
A-
697
VPusGfsgauAfuUfAfaa
AUACGGUACUUA
4403


953364.1
1701309.

aauauccaL96
1070324.

uaAfgUfaccgusasu
UUUAAUAUCCC




1


1









AD-
A-
568
gsasguu(Ahd)AfaCfGfAfac
A-
698
VPusCfsaagUfaCfGfuu
UUGAGUUAAACG
4404


953330.1
1701241.

guacuugaL96
1068612.

cgUfuUfaacucsasa
AACGUACUUGC




1


1









AD-
A-
569
usgsuua(Uhd)UfgGfUfGfuc
A-
699
VPusCfsaguGfaAfGfac
AAUGUUAUUGGU
4405


953353.1
1701287.

uucacugaL96
1069364.

acCfaAfuaacasusu
GUCUUCACUGG




1


1









AD-
A-
570
csgsaca(Ghd)AfaCfAfGfuc
A-
700
VPusGfsauuAfaGfGfac
AUCGACAGAACAG
4406


953343.1
1701267.

cuuaaucaL96
1068912.

ugUfuCfugucgsasu
UCCUUAAUCC




1


1









AD-
A-
571
asasaau(Chd)AfgUfUfCfga
A-
701
VPusCfscuuUfcCfUfcg
AAAAAAUCAGUU
4407


953390.1
1701361.

ggaaaggaL96
1700873.

aaCfuGfauuuususu
CGAGGAAAGGG




1


1









AD-
A-
572
csusugg(Ahd)AfuUfGfGfau
A-
702
VPusAfsuggCfgAfAfu
CUCUUGGAAUUG
4408


953345.1
1701271.

ucgccauaL96
1069132.

ccaAfuUfccaagsasg
GAUUCGCCAUU




1


1









AD-
A-
573
asgsaga(Ahd)GfaGfAfCfac
A-
703
VPusCfsaacAfaUfGfug
GAAGAGAAGAGA
4409


953358.1
1701297.

auuguugaL96
1069954.

ucUfcUfucucususc
CACAUUGUUGG




1


1









AD-
A-
574
ascsguc(Uhd)UfuGfUfCfuc
A-
704
VPusUfsgcaCfuAfGfag
UCACGUCUUUGUC
4410


953383.1
1701347.

uagugcaaL96
1070934.

acAfaAfgacgusgsa
UCUAGUGCAG




1


1









AD-
A-
575
usgsaca(Ghd)UfcAfCfUfag
A-
705
VPusAfsgauAfaGfCfua
GGUGACAGUCACU
4411


953372.1
1701325.

cuuaucuaL96
1070558.

guGfaCfugucascsc
AGCUUAUCUU




1


1









AD-
A-
576
ususgag(Uhd)UfaAfAfCfga
A-
706
VPusAfsguaCfgUfUfcg
GCUUGAGUUAAA
4412


953328.1
1701237.

acguacuaL96
1068608.

uuUfaAfcucaasgsc
CGAACGUACUU




1


1









AD-
A-
577
gsasaag(Chd)AfuUfUfGfuu
A-
707
VPusUfsuguAfcAfAfac
GAGAAAGCAUUU
4413


953393.1
1701367.

uguacaaaL96
1068446.

aaAfuGfcuuucsusc
GUUUGUACAAG




1


1









AD-
A-
578
asuscac(Chd)AfuGfCfAfga
A-
708
VPusCfsgcaUfaAfUfcu
ACAUCACCAUGCA
4414


953307.1
1701195.

uuaugcgaL96
1068040.

gcAfuGfgugausgsu
GAUUAUGCGG




1


1









AD-
A-
579
csascca(Uhd)GfcAfGfAfuu
A-
709
VPusUfsccgCfaUfAfau
AUCACCAUGCAGA
4415


953308.1
1701197.

augcggaaL96
1068044.

cuGfcAfuggugsasu
UUAUGCGGAU




1


1









AD-
A-
580
csusuga(Ghd)UfuAfAfAfcg
A-
710
VPusGfsuacGfuUfCfgu
AGCUUGAGUUAA
4416


953327.1
1701235.

aacguacaL96
1068606.

uuAfaCfucaagscsu
ACGAACGUACU




1


1









AD-
A-
581
ususgca(Ghd)AfuGfUfGfac
A-
711
VPusUfscggCfuUfGfuc
ACUUGCAGAUGU
4417


953335.1
1701251.

aagccgaaL96
1068646.

acAfuCfugcaasgsu
GACAAGCCGAG




1


1









AD-
A-
582
ascsuau(Uhd)UfaUfGfAfga
A-
712
VPusAfsgauAfcAfUfcu
CAACUAUUUAUG
4418


953414.1
1701409.

uguaucuaL96
1070380.

caUfaAfauagususg
AGAUGUAUCUU




1


1









AD-
A-
583
ususuuu(Uhd)UfuCfAfGfua
A-
713
VPusCfscaaGfaAfUfac
GGUUUUUUUUCA
4419


953412.1
1701405.

uucuuggaL96
1700897.

ugAfaAfaaaaascsc
GUAUUCUUGGU




1


1









AD-
A-
584
gsusuuu(Ahd)UfaUfAfCfgg
A-
714
VPusAfsuaaGfuAfCfcg
GUGUUUUAUAUA
4420


953411.1
1701403.

uacuuauaL96
1070306.

uaUfaUfaaaacsasc
CGGUACUUAUU




1


1









AD-
A-
585
gsasaag(Uhd)GfuUfUfUfau
A-
715
VPusAfsccgUfaUfAfua
GAGAAAGUGUUU
4421


953410.1
1701401.

auacgguaL96
1070294.

aaAfcAfcuuucsusc
UAUAUACGGUA




1


1









AD-
A-
586
uscsacu(Ghd)GfaUfGfUfau
A-
716
VPusCfsaguCfaAfAfua
CUUCACUGGAUGU
4422


953408.1
1701397.

uugacugaL96
1069392.

caUfcCfagugasasg
AUUUGACUGC




1


1









AD-
A-
587
gscsuug(Ahd)GfuUfAfAfac
A-
717
VPusUfsacgUfuCfGfuu
CAGCUUGAGUUA
4423


953326.1
1701233.

gaacguaaL96
1068604.

uaAfcUfcaagcsusg
AACGAACGUAC




1


1









AD-
A-
588
cscsucc(Ghd)AfaAfCfCfau
A-
718
VPusAfsaagUfuCfAfug
GGCCUCCGAAACC
4424


953300.1
1701181.

gaacuuuaL96
1067482.

guUfuCfggaggscsc
AUGAACUUUC




1


1









AD-
A-
589
asasaaa(Uhd)CfaGfUfUfcg
A-
719
VPusCfsuuuCfcUfCfga
AAAAAAAUCAGU
4425


953389.1
1701359.

aggaaagaL96
1700871.

acUfgAfuuuuususu
UCGAGGAAAGG




1


1









AD-
A-
590
gsasgaa(Uhd)UfcUfAfCfau
A-
720
VPusAfsuuuAfgUfAfu
UAGAGAAUUCUA
4426


953415.1
1701411.

acuaaauaL96
1070816.

guaGfaAfuucucsusa
CAUACUAAAUC




1


1









AD-
A-
591
asgsauu(Ahd)UfgCfGfGfau
A-
721
VPusAfsgguUfuGfAfu
GCAGAUUAUGCG
4427


953309.1
1701199.

caaaccuaL96
1068060.

ccgCfaUfaaucusgsc
GAUCAAACCUC




1


1









AD-
A-
592
asasauc(Ahd)GfuUfCfGfag
A-
722
VPusCfsccuUfuCfCfuc
AAAAAUCAGUUC
4428


953391.1
1701363.

gaaagggaL96
1068240.

gaAfcUfgauuususu
GAGGAAAGGGA




1


1









AD-
A-
593
gscsauu(Uhd)GfuUfUfGfua
A-
723
VPusGfsaucUfuGfUfac
AAGCAUUUGUUU
4429


953395.1
1701371.

caagaucaL96
1068454.

aaAfcAfaaugcsusu
GUACAAGAUCC




1


1









AD-
A-
594
csascga(Ahd)GfuGfGfUfga
A-
724
VPusAfsugaAfcUfUfca
AUCACGAAGUGG
4430


953303.1
1701187.

aguucauaL96
1067724.

ccAfcUfucgugsasu
UGAAGUUCAUG




1


1









AD-
A-
595
usasauc(Chd)AfgAfAfAfcc
A-
725
VPusCfsauuUfcAfGfgu
CUUAAUCCAGAAA
4431


953405.1
1701391.

ugaaaugaL96
1068942.

uuCfuGfgauuasasg
CCUGAAAUGA




1


1









AD-
A-
596
csasucu(Uhd)CfaAfGfCfca
A-
726
VPusCfsacaGfgAfUfgg
UACAUCUUCAAGC
4432


953305.1
1701191.

uccugugaL96
1067926.

cuUfgAfagaugsusa
CAUCCUGUGU




1


1









AD-
A-
597
usgscua(Chd)UfgUfUfUfau
A-
727
VPusAfsuuaCfgGfAfua
GGUGCUACUGUU
4433


953380.1
1701341.

ccguaauaL96
1070878.

aaCfaGfuagcascsc
UAUCCGUAAUA




1


1









AD-
A-
598
ususgcu(Ghd)CfuAfAfAfuc
A-
728
VPusGfscucGfgUfGfau
UCUUGCUGCUAAA
4434


953349.1
1701279.

accgagcaL96
1069192.

uuAfgCfagcaasgsa
UCACCGAGCC




1


1









AD-
A-
599
gsasuau(Uhd)AfaCfAfUfca
A-
729
VPusAfsaagAfcGfUfga
AAGAUAUUAACA
4435


953381.1
1701343.

cgucuuuaL96
1070910.

ugUfuAfauaucsusu
UCACGUCUUUG




1


1









AD-
A-
600
csusgca(Ahd)AfaAfCfAfca
A-
730
VPusGfscgaGfuCfUfgu
UCCUGCAAAAACA
4436


953318.1
1701217.

gacucgcaL96
1068532.

guUfuUfugcagsgsa
CAGACUCGCG




1


1









AD-
A-
601
csusugc(Uhd)GfcUfAfAfau
A-
731
VPusCfsucgGfuGfAfu
UUCUUGCUGCUAA
4437


953348.1
1701277.

caccgagaL96
1069190.

uuaGfcAfgcaagsasa
AUCACCGAGC




1


1









AD-
A-
602
asgsaaa(Ghd)UfgUfUfUfua
A-
732
VPusCfscguAfuAfUfaa
AGAGAAAGUGUU
4438


953409.1
1701399.

uauacggaL96
1070292.

aaCfaCfuuucuscsu
UUAUAUACGGU




1


1









AD-
A-
603
asascau(Chd)AfcCfAfUfgc
A-
733
VPusAfsuaaUfcUfGfca
CCAACAUCACCAU
4439


953306.1
1701193.

agauuauaL96
1068034.

ugGfuGfauguusgsg
GCAGAUUAUG




1


1









AD-
A-
604
csgscag(Ahd)CfgUfGfUfaa
A-
734
VPusGfsgaaCfaUfUfua
UCCGCAGACGUGU
4440


953316.1
1701213.

auguuccaL96
1068494.

caCfgUfcugcgsgsa
AAAUGUUCCU




1


1









AD-
A-
605
asgscuu(Ghd)AfgUfUfAfaa
A-
735
VPusAfscguUfcGfUfu
GCAGCUUGAGUU
4441


953325.1
1701231.

cgaacguaL96
1068602.

uaaCfuCfaagcusgsc
AAACGAACGUA




1


1









AD-
A-
606
gscsacu(Ghd)AfaAfCfUfuu
A-
736
VPusUfsggaCfgAfAfaa
UCGCACUGAAACU
4442


953299.1
1701179.

ucguccaaL96
1067250.

guUfuCfagugcsgsa
UUUCGUCCAA




1


1









AD-
A-
607
asasuuc(Uhd)AfcAfUfAfcu
A-
737
VPusGfsagaUfuUfAfg
AGAAUUCUACAU
4443


953416.1
1701413.

aaaucucaL96
1070822.

uauGfuAfgaauuscsu
ACUAAAUCUCU




1


1









AD-
A-
608
cscsgca(Ghd)AfcGfUfGfua
A-
738
VPusGfsaacAfuUfUfac
AUCCGCAGACGUG
4444


953315.1
1701211.

aauguucaL96
1068492.

acGfuCfugcggsasu
UAAAUGUUCC




1


1









AD-
A-
609
uscscgc(Ahd)GfaCfGfUfgu
A-
739
VPusAfsacaUfuUfAfca
GAUCCGCAGACGU
4445


953314.1
1701209.

aaauguuaL96
1068490.

cgUfcUfgcggasusc
GUAAAUGUUC




1


1









AD-
A-
610
csgscac(Uhd)GfaAfAfCfuu
A-
740
VPusGfsgacGfaAfAfag
GUCGCACUGAAAC
4446


953298.1
1701177.

uucguccaL96
1067248.

uuUfcAfgugcgsasc
UUUUCGUCCA




1


1









AD-
A-
611
cscscuc(Uhd)UfgGfAfAfuu
A-
741
VPusCfsgaaUfcCfAfau
GUCCCUCUUGGAA
4447


953406.1
1701393.

ggauucgaL96
1069124.

ucCfaAfgagggsasc
UUGGAUUCGC




1


1









AD-
A-
612
csasgac(Ghd)UfgUfAfAfau
A-
742
VPusCfsaggAfaCfAfuu
CGCAGACGUGUAA
4448


953399.1
1701379.

guuccugaL96
1068498.

uaCfaCfgucugscsg
AUGUUCCUGC




1


1









AD-
A-
613
ascsgaa(Chd)GfuAfCfUfug
A-
743
VPusAfscauCfuGfCfaa
AAACGAACGUACU
4449


953333.1
1701247.

cagauguaL96
1068626.

guAfcGfuucgususu
UGCAGAUGUG




1


1









AD-
A-
614
asusccg(Chd)AfgAfCfGfug
A-
744
VPusAfscauUfuAfCfac
AGAUCCGCAGACG
4450


953313.1
1701207.

uaaauguaL96
1068488.

guCfuGfcggauscsu
UGUAAAUGUU




1


1









AD-
A-
615
csasgaa(Uhd)CfaUfCfAfcg
A-
745
VPusAfsccaCfuUfCfgu
GGCAGAAUCAUCA
4451


953302.1
1701185.

aagugguaL96
1067706.

gaUfgAfuucugscsc
CGAAGUGGUG




1


1









AD-
A-
616
cscsugc(Ahd)AfaAfAfCfac
A-
746
VPusCfsgagUfcUfGfug
UUCCUGCAAAAAC
4452


953317.1
1701215.

agacucgaL96
1068530.

uuUfuUfgcaggsasa
ACAGACUCGC




1


1









AD-
A-
617
asgsgac(Ahd)UfuGfCfUfgu
A-
747
VPusCfscaaAfgCfAfca
UCAGGACAUUGCU
4453


953357.1
1701295.

gcuuuggaL96
1069740.

gcAfaUfguccusgsa
GUGCUUUGGG




1


1









AD-
A-
618
gsgsgca(Ghd)AfaUfCfAfuc
A-
748
VPusAfscuuCfgUfGfau
GAGGGCAGAAUC
4454


953301.1
1701183.

acgaaguaL96
1067700.

gaUfuCfugcccsusc
AUCACGAAGUG




1


1









AD-
A-
619
usgsaag(Uhd)UfcAfUfGfga
A-
749
VPusAfsuagAfcAfUfcc
GGUGAAGUUCAU
4455


953304.1
1701189.

ugucuauaL96
1067744.

auGfaAfcuucascsc
GGAUGUCUAUC




1


1









AD-
A-
620
csgsucg(Chd)AfcUfGfAfaa
A-
750
VPusCfsgaaAfaGfUfuu
GGCGUCGCACUGA
4456


953297.1
1701175.

cuuuucgaL96
1067242.

caGfuGfcgacgscsc
AACUUUUCGU




1


1









AD-
A-
621
gsasaaa(Ahd)AfaAfUfCfag
A-
751
VPusCfscucGfaAfCfug
AAGAAAAAAAAU
4457


953388.1
1701357.

uucgaggaL96
1700869.

auUfuUfuuuucsusu
CAGUUCGAGGA




1


1









AD-
A-
622
asusugg(Uhd)GfuCfUfUfca
A-
752
VPusCfsaucCfaGfUfga
UUAUUGGUGUCU
4458


953407.1
1701395.

cuggaugaL96
1069372.

agAfcAfccaausasa
UCACUGGAUGU




1


1









AD-
A-
623
asgsauc(Chd)GfcAfGfAfcg
A-
753
VPusAfsuuuAfcAfCfg
CAAGAUCCGCAGA
4459


953397.1
1701375.

uguaaauaL96
1068484.

ucuGfcGfgaucususg
CGUGUAAAUG




1


1









AD-
A-
624
gsasucc(Ghd)CfaGfAfCfgu
A-
754
VPusCfsauuUfaCfAfcg
AAGAUCCGCAGAC
4460


953398.1
1701377.

guaaaugaL96
1068486.

ucUfgCfggaucsusu
GUGUAAAUGU




1


1









AD-
A-
625
ususguu(Uhd)GfuAfCfAfag
A-
755
VPusUfsgcgGfaUfCfuu
AUUUGUUUGUAC
4461


953396.1
1701373.

auccgcaaL96
1068462.

guAfcAfaacaasasu
AAGAUCCGCAG




1


1









AD-
A-
626
usgscug(Uhd)GfgAfCfUfug
A-
756
VPusCfsccaAfcUfCfaa
ACUGCUGUGGACU
4462


953356.1
1701293.

aguugggaL96
1069428.

guCfcAfcagcasgsu
UGAGUUGGGA




1


1









AD-
A-
627
csascgu(Chd)UfuUfGfUfcu
A-
757
VPusGfscacUfaGfAfga
AUCACGUCUUUGU
4463


953422.1
1701425.

cuagugcaL96
1070932.

caAfaGfacgugsasu
CUCUAGUGCA




1


1









AD-
A-
628
ususuuu(Uhd)UfcAfGfUfau
A-
758
VPusAfsccaAfgAfAfua
GUUUUUUUUCAG
4464


953413.1
1701407.

ucuugguaL96
1700899.

cuGfaAfaaaaasasc
UAUUCUUGGUU




1


1









AD-
A-
629
gsusgcu(Ghd)GfaAfUfUfug
A-
759
VPusUfsgaaUfaUfCfaa
CGGUGCUGGAAU
4465


953294.1
1701169.

auauucaaL96
1066884.

auUfcCfagcacscsg
UUGAUAUUCAU




1


1









AD-
A-
630
ususaac(Ahd)UfcAfCfGfuc
A-
760
VPusAfsgacAfaAfGfac
UAUUAACAUCACG
4466


953421.1
1701423.

uuugucuaL96
1070918.

guGfaUfguuaasusa
UCUUUGUCUC




1


1









AD-
A-
631
asgsggg(Chd)AfaAfAfAfcg
A-
761
VPusGfscgcUfuUfCfgu
AAAGGGGCAAAA
4467


953310.1
1701201.

aaagcgcaL96
1700793.

uuUfuGfccccususu
ACGAAAGCGCA




1


1









AD-
A-
632
asasagu(Ghd)AfgUfGfAfcc
A-
762
VPusAfsaaaGfcAfGfgu
GCAAAGUGAGUG
4468


953296.1
1701173.

ugcuuuuaL96
1067146.

caCfuCfacuuusgsc
ACCUGCUUUUG




1


1









AD-
A-
633
asasaaa(Chd)AfcAfGfAfcu
A-
763
VPusCfsaacGfcGfAfgu
GCAAAAACACAGA
4469


953402.1
1701385.

cgcguugaL96
1068540.

cuGfuGfuuuuusgsc
CUCGCGUUGC




1


1









AD-
A-
634
asusuug(Uhd)UfuGfUfAfca
A-
764
VPusCfsggaUfcUfUfgu
GCAUUUGUUUGU
4470


953312.1
1701205.

agauccgaL96
1068458.

acAfaAfcaaausgsc
ACAAGAUCCGC




1


1









AD-
A-
635
ususccc(Chd)AfaAfUfCfac
A-
765
VPusAfsuccAfcAfGfug
ACUUCCCCAAAUC
4471


953295.1
1701171.

uguggauaL96
1700778.

auUfuGfgggaasgsu
ACUGUGGAUU




1


1









AD-
A-
636
asusuaa(Chd)AfuCfAfCfgu
A-
766
VPusGfsacaAfaGfAfcg
AUAUUAACAUCAC
4472


953420.1
1701421.

cuuugucaL96
1070916.

ugAfuGfuuaausasu
GUCUUUGUCU




1


1









AD-
A-
637
csgsucu(Uhd)UfgUfCfUfcu
A-
767
VPusCfsugcAfcUfAfga
CACGUCUUUGUCU
4473


953423.1
1701427.

agugcagaL96
1070936.

gaCfaAfagacgsusg
CUAGUGCAGU




1


1









AD-
A-
638
asasaac(Ahd)CfaGfAfCfuc
A-
768
VPusGfscaaCfgCfGfag
CAAAAACACAGAC
4474


953403.1
1701387.

gcguugcaL96
1068542.

ucUfgUfguuuususg
UCGCGUUGCA




1


1









AD-
A-
639
usgscaa(Ahd)AfaCfAfCfag
A-
769
VPusCfsgcgAfgUfCfug
CCUGCAAAAACAC
4475


953400.1
1701381.

acucgcgaL96
1068534.

ugUfuUfuugcasgsg
AGACUCGCGU




1


1









AD-
A-
640
asascac(Ahd)GfaCfUfCfgc
A-
770
VPusUfsugcAfaCfGfcg
AAAACACAGACUC
4476


953404.1
1701389.

guugcaaaL96
1068546.

agUfcUfguguususu
GCGUUGCAAG




1


1









AD-
A-
641
csusugc(Ahd)GfaUfGfUfga
A-
771
VPusCfsggcUfuGfUfca
UACUUGCAGAUG
4477


953334.1
1701249.

caagccgaL96
1068644.

caUfcUfgcaagsusa
UGACAAGCCGA




1


1









AD-
A-
642
ususuau(Chd)CfgUfAfAfua
A-
772
VPusCfscacAfaUfUfau
UGUUUAUCCGUA
4478


953418.1
1701417.

auuguggaL96
1070894.

uaCfgGfauaaascsa
AUAAUUGUGGG




1


1









AD-
A-
643
gscsaaa(Ahd)AfcAfCfAfga
A-
773
VPusAfscgcGfaGfUfcu
CUGCAAAAACACA
4479


953401.1
1701383.

cucgcguaL96
1068536.

guGfuUfuuugcsasg
GACUCGCGUU




1


1









AD-
A-
644
gsusuua(Uhd)CfcGfUfAfau
A-
774
VPusCfsacaAfuUfAfuu
CUGUUUAUCCGUA
4480


953417.1
1701415.

aauugugaL96
1070892.

acGfgAfuaaacsasg
AUAAUUGUGG




1


1









AD-
A-
645
gsgsgca(Ahd)AfaAfCfGfaa
A-
775
VPusUfsugcGfcUfUfuc
AGGGGCAAAAAC
4481


953311.1
1701203.

agcgcaaaL96
1068252.

guUfuUfugcccscsu
GAAAGCGCAAG




1


1









AD-
A-
646
ususauc(Chd)GfuAfAfUfaa
A-
776
VPusCfsccaCfaAfUfua
GUUUAUCCGUAA
4482


953419.1
1701419.

uugugggaL96
1700905.

uuAfcGfgauaasasc
UAAUUGUGGGG




1


1
















TABLE 3B







Exemplary Human VEGF-A siRNA Unmodified Single Strandsand Duplex Sequences





















SEQ










ID





Sense
SEQ ID

mRNA
Antisense
NO:

mRNA


Duplex
Oligo
NO:

Target
Oligo
(Anti-

Target


Name
Name
(Sense)
Sense Sequence
Range
Name
sense)
Antisense Sequence
Range


















AD-
A-
777
ACUGAUACAGAACG
1799-
A-
907
UAUCGAUCGUUCUGUAUC
1797-


953340.
1701261.

AUCGAUA
1819
1068804.

AGUCU
1819


1
1



1








AD-
A-
778
AAAGACUGAUACAG
1795-
A-
908
UAUCGUUCUGUAUCAGUC
1793-


953336.
1701253.

AACGAUA
1815
1068796.

UUUCC
1815


1
1



1








AD-
A-
779
GAGAAAGUGUUUU
2944-
A-
909
UCGUAUAUAAAACACUUU
2942-


953363.
1701307.

AUAUACGA
2964
1070290.

CUCUU
2964


1
1



1








AD-
A-
780
AGACUGAUACAGAA
1797-
A-
910
UCGAUCGUUCUGUAUCAG
1795-


953338.
1701257.

CGAUCGA
1817
1068800.

UCUUU
1817


1
1



1








AD-
A-
781
CAACUAUUUAUGAG
3061-
A-
911
UAUACAUCUCAUAAAUAG
3059-


953367.
1701315.

AUGUAUA
3081
1070376.

UUGAA
3081


1
1



1








AD-
A-
782
AAGACUGAUACAGA
1796-
A-
912
UGAUCGUUCUGUAUCAGU
1794-


953337.
1701255.

ACGAUCA
1816
1068798.

CUUUC
1816


1
1



1








AD-
A-
783
AUACAGAACGAUCG
1803-
A-
913
UCUGUAUCGAUCGUUCUG
1801-


953342.
1701265.

AUACAGA
1823
1068812.

UAUCA
1823


1
1



1








AD-
A-
784
AACAGUGCUAAUGU
2178-
A-
914
UCCAAUAACAUUAGCACU
2176-


953350.
1701281.

UAUUGGA
2198
1069342.

GUUAA
2198


1
1



1








AD-
A-
785
GUGCUAAUGUUAUU
2182-
A-
915
UGACACCAAUAACAUUAG
2180-


953352.
1701285.

GGUGUCA
2202
1069350.

CACUG
2202


1
1



1








AD-
A-
786
AACUAUUUAUGAGA
3062-
A-
916
UGAUACAUCUCAUAAAUA
3060-


953368.
1701317.

UGUAUCA
3082
1070378.

GUUGA
3082


1
1



1








AD-
A-
787
CAGAACAGUCCUUA
1858-
A-
917
UCUGGAUUAAGGACUGUU
1856-


953344.
1701269.

AUCCAGA
1878
1068918.

CUGUC
1878


1
1



1








AD-
A-
788
GACUGAUACAGAAC
1798-
A-
918
UUCGAUCGUUCUGUAUCA
1796-


953339.
1701259.

GAUCGAA
1818
1068802.

GUCUU
1818


1
1



1








AD-
A-
789
ACAGCACAACAAAU
1407-
A-
919
UAUUCACAUUUGUUGUGC
1405-


953387.
1701355.

GUGAAUA
1427
1068170.

UGUAG
1427


1
1



1








AD-
A-
790
AAAUAGACAUUGCU
3362-
A-
920
UCAGAAUAGCAAUGUCUA
3360-


953375.
1701331.

AUUCUGA
3382
1070792.

UUUUA
3382


1
1



1








AD-
A-
791
UAUUGGUGUCUUCA
2192-
A-
921
UAUCCAGUGAAGACACCA
2190-


953355.
1701291.

CUGGAUA
2212
1069370.

AUAAC
2212


1
1



1








AD-
A-
792
CUGAUACAGAACGA
1800-
A-
922
UUAUCGAUCGUUCUGUAU
1798-


953341.
1701263.

UCGAUAA
1820
1068806.

CAGUC
1820


1
1



1








AD-
A-
793
GCUCUCUUAUUUGU
3096-
A-
923
UACCGGUACAAAUAAGAG
3094-


953370.
1701321.

ACCGGUA
3116
1070446.

AGCAA
3116


1
1



1








AD-
A-
794
CACCAUUGAAACCA
2791-
A-
924
UAACUAGUGGUUUCAAUG
2789-


953362.
1701305.

CUAGUUA
2811
1070096.

GUGUG
2811


1
1



1








AD-
A-
795
GGCAGCUUGAGUUA
1685-
A-
925
UUUCGUUUAACUCAAGCU
1683-


953322.
1701225.

AACGAAA
1705
1068596.

GCCUC
1705


1
1



1








AD-
A-
796
UUAAACGAACGUAC
1696-
A-
926
UCUGCAAGUACGUUCGUU
1694-


953332.
1701245.

UUGCAGA
1716
1068618.

UAACU
1716


1
1



1








AD-
A-
797
UCGGUGACAGUCAC
3158-
A-
927
UAAGCUAGUGACUGUCAC
3156-


953371.
1701323.

UAGCUUA
3178
1070550.

CGAUC
3178


1
1



1








AD-
A-
798
AGUUAAACGAACGU
1694-
A-
928
UGCAAGUACGUUCGUUUA
1692-


953331.
1701243.

ACUUGCA
1714
1068614.

ACUCA
1714


1
1



1








AD-
A-
799
GCAGCUUGAGUUAA
1686-
A-
929
UGUUCGUUUAACUCAAGC
1684-


953323.
1701227.

ACGAACA
1706
1068598.

UGCCU
1706


1
1



1








AD-
A-
800
AGUGCUAAUGUUAU
2181-
A-
930
UACACCAAUAACAUUAGC
2179-


953351.
1701283.

UGGUGUA
2201
1069348.

ACUGU
2201


1
1



1








AD-
A-
801
CGAAGUGGUGAAGU
1152-
A-
931
UCCAUGAACUUCACCACU
1150-


953386.
1701353.

UCAUGGA
1172
1067728.

UCGUG
1172


1
1



1








AD-
A-
802
AAAGCAUUUGUUUG
1611-
A-
932
UCUUGUACAAACAAAUGC
1609-


953394.
1701369.

UACAAGA
1631
1068448.

UUUCU
1631


1
1



1








AD-
A-
803
AUGUCCUCACACCA
2782-
A-
933
UUUUCAAUGGUGUGAGG
2780-


953359.
1701299.

UUGAAAA
2802
1070078.

ACAUAG
2802


1
1



1








AD-
A-
804
UGAGUUAAACGAAC
1692-
A-
934
UAAGUACGUUCGUUUAAC
1690-


953329.
1701239.

GUACUUA
1712
1068610.

UCAAG
1712


1
1



1








AD-
A-
805
ACACCAUUGAAACC
2790-
A-
935
UACUAGUGGUUUCAAUGG
2788-


953361.
1701303.

ACUAGUA
2810
1070094.

UGUGA
2810


1
1



1








AD-
A-
806
CAAAAACACAGACU
1656-
A-
936
UAACGCGAGUCUGUGUUU
1654-


953319.
1701219.

CGCGUUA
1676
1068538.

UUGCA
1676


1
1



1








AD-
A-
807
UGUCCUCACACCAU
2783-
A-
937
UGUUUCAAUGGUGUGAG
2781-


953360.
1701301.

UGAAACA
2803
1070080.

GACAUA
2803


1
1



1








AD-
A-
808
CAGCUUGAGUUAAA
1687-
A-
938
UCGUUCGUUUAACUCAAG
1685-


953324.
1701229.

CGAACGA
1707
1068600.

CUGCC
1707


1
1



1








AD-
A-
809
GGUGCUACUGUUUA
3480-
A-
939
UUACGGAUAAACAGUAGC
3478-


953378.
1701337.

UCCGUAA
3500
1070874.

ACCAA
3500


1
1



1








AD-
A-
810
UUGCUCUCUUAUUU
3094-
A-
940
UCGGUACAAAUAAGAGAG
3092-


953369.
1701319.

GUACCGA
3114
1070442.

CAAGA
3114


1
1



1








AD-
A-
811
UCUUGCUGCUAAAU
2010-
A-
941
UUCGGUGAUUUAGCAGCA
2008-


953347.
1701275.

CACCGAA
2030
1069188.

AGAAA
2030


1
1



1








AD-
A-
812
CGGUACUUAUUUAA
2962-
A-
942
UGGGAUAUUAAAUAAGU
2960-


953365.
1701311.

UAUCCCA
2982
1070326.

ACCGUA
2982


1
1



1








AD-
A-
813
AAAAUAGACAUUGC
3361-
A-
943
UAGAAUAGCAAUGUCUAU
3359-


953374.
1701329.

UAUUCUA
3381
1070790.

UUUAU
3381


1
1



1








AD-
A-
814
ACUUUUCGUCCAAC
 657-
A-
944
UCCAGAAGUUGGACGAAA
 655-


953384.
1701349.

UUCUGGA
 677
1067266.

AGUUU
 677


1
1



1








AD-
A-
815
UUGGUGCUACUGUU
3478-
A-
945
UCGGAUAAACAGUAGCAC
3476-


953376.
1701333.

UAUCCGA
3498
1070870.

CAAUA
3498


1
1



1








AD-
A-
816
GUUAUUGGUGUCUU
2190-
A-
946
UCCAGUGAAGACACCAAU
2188-


953354.
1701289.

CACUGGA
2210
1069366.

AACAU
2210


1
1



1








AD-
A-
817
UUCGUCCAACUUCU
 661-
A-
947
UCAGCCCAGAAGUUGGAC
 659-


953385.
1701351.

GGGCUGA
 681
1067274.

GAAAA
 681


1
1



1








AD-
A-
818
UUCUUGCUGCUAAA
2009-
A-
948
UCGGUGAUUUAGCAGCAA
2007-


953346.
1701273.

UCACCGA
2029
1069186.

GAAAA
2029


1
1



1








AD-
A-
819
GGUACUUAUUUAAU
2963-
A-
949
UAGGGAUAUUAAAUAAG
2961-


953366.
1701313.

AUCCCUA
2983
1070328.

UACCGU
2983


1
1



1








AD-
A-
820
AUAUUAACAUCACG
3517-
A-
950
UCAAAGACGUGAUGUUAA
3515-


953382.
1701345.

UCUUUGA
3537
1070912.

UAUCU
3537


1
1



1








AD-
A-
821
GAGGCAGCUUGAGU
1683-
A-
951
UCGUUUAACUCAAGCUGC
1681-


953320.
1701221.

UAAACGA
1703
1068592.

CUCGC
1703


1
1



1








AD-
A-
822
GUGCUACUGUUUAU
3481-
A-
952
UUUACGGAUAAACAGUAG
3479-


953379.
1701339.

CCGUAAA
3501
1070876.

CACCA
3501


1
1



1








AD-
A-
823
AGGCAGCUUGAGUU
1684-
A-
953
UUCGUUUAACUCAAGCUG
1682-


953321.
1701223.

AAACGAA
1704
1068594.

CCUCG
1704


1
1



1








AD-
A-
824
UGGUGCUACUGUUU
3479-
A-
954
UACGGAUAAACAGUAGCA
3477-


953377.
1701335.

AUCCGUA
3499
1070872.

CCAAU
3499


1
1



1








AD-
A-
825
AAGGGGCAAAAACG
1483-
A-
955
UCGCUUUCGUUUUUGCCC
1481-


953392.
1701365.

AAAGCGA
1503
1700876.

CUUUC
1503


1
1



1








AD-
A-
826
ACAGUCACUAGCUU
3164-
A-
956
UCAAGAUAAGCUAGUGAC
3162-


953373.
1701327.

AUCUUGA
3184
1070562.

UGUCA
3184


1
1



1








AD-
A-
827
ACGGUACUUAUUUA
2961-
A-
957
UGGAUAUUAAAUAAGUA
2959-


953364.
1701309.

AUAUCCA
2981
1070324.

CCGUAU
2981


1
1



1








AD-
A-
828
GAGUUAAACGAACG
1693-
A-
958
UCAAGUACGUUCGUUUAA
1691-


953330.
1701241.

UACUUGA
1713
1068612.

CUCAA
1713


1
1



1








AD-
A-
829
UGUUAUUGGUGUCU
2189-
A-
959
UCAGUGAAGACACCAAUA
2187-


953353.
1701287.

UCACUGA
2209
1069364.

ACAUU
2209


1
1



1








AD-
A-
830
CGACAGAACAGUCC
1855-
A-
960
UGAUUAAGGACUGUUCUG
1853-


953343.
1701267.

UUAAUCA
1875
1068912.

UCGAU
1875


1
1



1








AD-
A-
831
AAAAUCAGUUCGAG
1461-
A-
961
UCCUUUCCUCGAACUGAU
1459-


953390.
1701361.

GAAAGGA
1481
1700873.

UUUUU
1481


1
1



1








AD-
A-
832
CUUGGAAUUGGAUU
1982-
A-
962
UAUGGCGAAUCCAAUUCC
1980-


953345.
1701271.

CGCCAUA
2002
1069132.

AAGAG
2002


1
1



1








AD-
A-
833
AGAGAAGAGACACA
2673-
A-
963
UCAACAAUGUGUCUCUUC
2671-


953358.
1701297.

UUGUUGA
2693
1069954.

UCUUC
2693


1
1



1








AD-
A-
834
ACGUCUUUGUCUCU
3528-
A-
964
UUGCACUAGAGACAAAGA
3526-


953383.
1701347.

AGUGCAA
3548
1070934.

CGUGA
3548


1
1



1








AD-
A-
835
UGACAGUCACUAGC
3162-
A-
965
UAGAUAAGCUAGUGACUG
3160-


953372.
1701325.

UUAUCUA
3182
1070558.

UCACC
3182


1
1



1








AD-
A-
836
UUGAGUUAAACGAA
1691-
A-
966
UAGUACGUUCGUUUAACU
1689-


953328.
1701237.

CGUACUA
1711
1068608.

CAAGC
1711


1
1



1








AD-
A-
837
GAAAGCAUUUGUUU
1610-
A-
967
UUUGUACAAACAAAUGCU
1608-


953393.
1701367.

GUACAAA
1630
1068446.

UUCUC
1630


1
1



1








AD-
A-
838
AUCACCAUGCAGAU
1342-
A-
968
UCGCAUAAUCUGCAUGGU
1340-


953307.
1701195.

UAUGCGA
1362
1068040.

GAUGU
1362


1
1



1








AD-
A-
839
CACCAUGCAGAUUA
1344-
A-
969
UUCCGCAUAAUCUGCAUG
1342-


953308.
1701197.

UGCGGAA
1364
1068044.

GUGAU
1364


1
1



1








AD-
A-
840
CUUGAGUUAAACGA
1690-
A-
970
UGUACGUUCGUUUAACUC
1688-


953327.
1701235.

ACGUACA
1710
1068606.

AAGCU
1710


1
1



1








AD-
A-
841
UUGCAGAUGUGACA
1710-
A-
971
UUCGGCUUGUCACAUCUG
1708-


953335.
1701251.

AGCCGAA
1730
1068646.

CAAGU
1730


1
1



1








AD-
A-
842
ACUAUUUAUGAGAU
3063-
A-
972
UAGAUACAUCUCAUAAAU
3061-


953414.
1701409.

GUAUCUA
3083
1070380.

AGUUG
3083


1
1



1








AD-
A-
843
UUUUUUUUCAGUAU
3027-
A-
973
UCCAAGAAUACUGAAAAA
3025-


953412.
1701405.

UCUUGGA
3047
1700897.

AAACC
3047


1
1



1








AD-
A-
844
GUUUUAUAUACGGU
2952-
A-
974
UAUAAGUACCGUAUAUAA
2950-


953411.
1701403.

ACUUAUA
2972
1070306.

AACAC
2972


1
1



1








AD-
A-
845
GAAAGUGUUUUAU
2946-
A-
975
UACCGUAUAUAAAACACU
2944-


953410.
1701401.

AUACGGUA
2966
1070294.

UUCUC
2966


1
1



1








AD-
A-
846
UCACUGGAUGUAUU
2203-
A-
976
UCAGUCAAAUACAUCCAG
2201-


953408.
1701397.

UGACUGA
2223
1069392.

UGAAG
2223


1
1



1








AD-
A-
847
GCUUGAGUUAAACG
1689-
A-
977
UUACGUUCGUUUAACUCA
1687-


953326.
1701233.

AACGUAA
1709
1068604.

AGCUG
1709


1
1



1








AD-
A-
848
CCUCCGAAACCAUG
1028-
A-
978
UAAAGUUCAUGGUUUCGG
1026-


953300.
1701181.

AACUUUA
1048
1067482.

AGGCC
1048


1
1



1








AD-
A-
849
AAAAAUCAGUUCGA
1460-
A-
979
UCUUUCCUCGAACUGAUU
1458-


953389.
1701359.

GGAAAGA
1480
1700871.

UUUUU
1480


1
1



1








AD-
A-
850
GAGAAUUCUACAUA
3416-
A-
980
UAUUUAGUAUGUAGAAU
3414-


953415.
1701411.

CUAAAUA
3436
1070816.

UCUCUA
3436


1
1



1








AD-
A-
851
AGAUUAUGCGGAUC
1352-
A-
981
UAGGUUUGAUCCGCAUAA
1350-


953309.
1701199.

AAACCUA
1372
1068060.

UCUGC
1372


1
1



1








AD-
A-
852
AAAUCAGUUCGAGG
1462-
A-
982
UCCCUUUCCUCGAACUGA
1460-


953391.
1701363.

AAAGGGA
1482
1068240.

UUUUU
1482


1
1



1








AD-
A-
853
GCAUUUGUUUGUAC
1614-
A-
983
UGAUCUUGUACAAACAAA
1612-


953395.
1701371.

AAGAUCA
1634
1068454.

UGCUU
1634


1
1



1








AD-
A-
854
CACGAAGUGGUGAA
1150-
A-
984
UAUGAACUUCACCACUUC
1148-


953303.
1701187.

GUUCAUA
1170
1067724.

GUGAU
1170


1
1



1








AD-
A-
855
UAAUCCAGAAACCU
1870-
A-
985
UCAUUUCAGGUUUCUGGA
1868-


953405.
1701391.

GAAAUGA
1890
1068942.

UUAAG
1890


1
1



1








AD-
A-
856
CAUCUUCAAGCCAU
1251-
A-
986
UCACAGGAUGGCUUGAAG
1249-


953305.
1701191.

CCUGUGA
1271
1067926.

AUGUA
1271


1
1



1








AD-
A-
857
UGCUACUGUUUAUC
3482-
A-
987
UAUUACGGAUAAACAGUA
3480-


953380.
1701341.

CGUAAUA
3502
1070878.

GCACC
3502


1
1



1








AD-
A-
858
UUGCUGCUAAAUCA
2012-
A-
988
UGCUCGGUGAUUUAGCAG
2010-


953349.
1701279.

CCGAGCA
2032
1069192.

CAAGA
2032


1
1



1








AD-
A-
859
GAUAUUAACAUCAC
3516-
A-
989
UAAAGACGUGAUGUUAA
3514-


953381.
1701343.

GUCUUUA
3536
1070910.

UAUCUU
3536


1
1



1








AD-
A-
860
CUGCAAAAACACAG
1653-
A-
990
UGCGAGUCUGUGUUUUUG
1651-


953318.
1701217.

ACUCGCA
1673
1068532.

CAGGA
1673


1
1



1








AD-
A-
861
CUUGCUGCUAAAUC
2011-
A-
991
UCUCGGUGAUUUAGCAGC
2009-


953348.
1701277.

ACCGAGA
2031
1069190.

AAGAA
2031


1
1



1








AD-
A-
862
AGAAAGUGUUUUA
2945-
A-
992
UCCGUAUAUAAAACACUU
2943-


953409.
1701399.

UAUACGGA
2965
1070292.

UCUCU
2965


1
1



1








AD-
A-
863
AACAUCACCAUGCA
1339-
A-
993
UAUAAUCUGCAUGGUGAU
1337-


953306.
1701193.

GAUUAUA
1359
1068034.

GUUGG
1359


1
1



1








AD-
A-
864
CGCAGACGUGUAAA
1634-
A-
994
UGGAACAUUUACACGUCU
1632-


953316.
1701213.

UGUUCCA
1654
1068494.

GCGGA
1654


1
1



1








AD-
A-
865
AGCUUGAGUUAAAC
1688-
A-
995
UACGUUCGUUUAACUCAA
1686-


953325.
1701231.

GAACGUA
1708
1068602.

GCUGC
1708


1
1



1








AD-
A-
866
GCACUGAAACUUUU
 649-
A-
996
UUGGACGAAAAGUUUCAG
 647-


953299.
1701179.

CGUCCAA
 669
1067250.

UGCGA
 669


1
1



1








AD-
A-
867
AAUUCUACAUACUA
3419-
A-
997
UGAGAUUUAGUAUGUAG
3417-


953416.
1701413.

AAUCUCA
3439
1070822.

AAUUCU
3439


1
1



1








AD-
A-
868
CCGCAGACGUGUAA
1633-
A-
998
UGAACAUUUACACGUCUG
1631-


953315.
1701211.

AUGUUCA
1653
1068492.

CGGAU
1653


1
1



1








AD-
A-
869
UCCGCAGACGUGUA
1632-
A-
999
UAACAUUUACACGUCUGC
1630-


953314.
1701209.

AAUGUUA
1652
1068490.

GGAUC
1652


1
1



1








AD-
A-
870
CGCACUGAAACUUU
 648-
A-
1000
UGGACGAAAAGUUUCAGU
 646-


953298.
1701177.

UCGUCCA
 668
1067248.

GCGAC
 668


1
1



1








AD-
A-
871
CCCUCUUGGAAUUG
1978-
A-
1001
UCGAAUCCAAUUCCAAGA
1976-


953406.
1701393.

GAUUCGA
1998
1069124.

GGGAC
1998


1
1



1








AD-
A-
872
CAGACGUGUAAAUG
1636-
A-
1002
UCAGGAACAUUUACACGU
1634-


953399.
1701379.

UUCCUGA
1656
1068498.

CUGCG
1656


1
1



1








AD-
A-
873
ACGAACGUACUUGC
1700-
A-
1003
UACAUCUGCAAGUACGUU
1698-


953333.
1701247.

AGAUGUA
1720
1068626.

CGUUU
1720


1
1



1








AD-
A-
874
AUCCGCAGACGUGU
1631-
A-
1004
UACAUUUACACGUCUGCG
1629-


953313.
1701207.

AAAUGUA
1651
1068488.

GAUCU
1651


1
1



1








AD-
A-
875
CAGAAUCAUCACGA
1141-
A-
1005
UACCACUUCGUGAUGAUU
1139-


953302.
1701185.

AGUGGUA
1161
1067706.

CUGCC
1161


1
1



1








AD-
A-
876
CCUGCAAAAACACA
1652-
A-
1006
UCGAGUCUGUGUUUUUGC
1650-


953317.
1701215.

GACUCGA
1672
1068530.

AGGAA
1672


1
1



1








AD-
A-
877
AGGACAUUGCUGUG
2518-
A-
1007
UCCAAAGCACAGCAAUGU
2516-


953357.
1701295.

CUUUGGA
2538
1069740.

CCUGA
2538


1
1



1








AD-
A-
878
GGGCAGAAUCAUCA
1138-
A-
1008
UACUUCGUGAUGAUUCUG
1136-


953301.
1701183.

CGAAGUA
1158
1067700.

CCCUC
1158


1
1



1








AD-
A-
879
UGAAGUUCAUGGAU
1160-
A-
1009
UAUAGACAUCCAUGAACU
1158-


953304.
1701189.

GUCUAUA
1180
1067744.

UCACC
1180


1
1



1








AD-
A-
880
CGUCGCACUGAAAC
 645-
A-
1010
UCGAAAAGUUUCAGUGCG
 643-


953297.
1701175.

UUUUCGA
 665
1067242.

ACGCC
 665


1
1



1








AD-
A-
881
GAAAAAAAAUCAGU
1456-
A-
1011
UCCUCGAACUGAUUUUUU
1454-


953388.
1701357.

UCGAGGA
1476
1700869.

UUCUU
1476


1
1



1








AD-
A-
882
AUUGGUGUCUUCAC
2193-
A-
1012
UCAUCCAGUGAAGACACC
2191-


953407.
1701395.

UGGAUGA
2213
1069372.

AAUAA
2213


1
1



1








AD-
A-
883
AGAUCCGCAGACGU
1629-
A-
1013
UAUUUACACGUCUGCGGA
1627-


953397.
1701375.

GUAAAUA
1649
1068484.

UCUUG
1649


1
1



1








AD-
A-
884
GAUCCGCAGACGUG
1630-
A-
1014
UCAUUUACACGUCUGCGG
1628-


953398.
1701377.

UAAAUGA
1650
1068486.

AUCUU
1650


1
1



1








AD-
A-
885
UUGUUUGUACAAGA
1618-
A-
1015
UUGCGGAUCUUGUACAAA
1616-


953396.
1701373.

UCCGCAA
1638
1068462.

CAAAU
1638


1
1



1








AD-
A-
886
UGCUGUGGACUUGA
2221-
A-
1016
UCCCAACUCAAGUCCACA
2219-


953356.
1701293.

GUUGGGA
2241
1069428.

GCAGU
2241


1
1



1








AD-
A-
887
CACGUCUUUGUCUC
3527-
A-
1017
UGCACUAGAGACAAAGAC
3525-


953422.
1701425.

UAGUGCA
3547
1070932.

GUGAU
3547


1
1



1








AD-
A-
888
UUUUUUUCAGUAUU
3028-
A-
1018
UACCAAGAAUACUGAAAA
3026-


953413.
1701407.

CUUGGUA
3048
1700899.

AAAAC
3048


1
1



1








AD-
A-
889
GUGCUGGAAUUUGA
 125-
A-
1019
UUGAAUAUCAAAUUCCAG
 123-


953294.
1701169.

UAUUCAA
 145
1066884.

CACCG
 145


1
1



1








AD-
A-
890
UUAACAUCACGUCU
3520-
A-
1020
UAGACAAAGACGUGAUGU
3518-


953421.
1701423.

UUGUCUA
3540
1070918.

UAAUA
3540


1
1



1








AD-
A-
891
AGGGGCAAAAACGA
1484-
A-
1021
UGCGCUUUCGUUUUUGCC
1482-


953310.
1701201.

AAGCGCA
1504
1700793.

CCUUU
1504


1
1



1








AD-
A-
892
AAAGUGAGUGACCU
 415-
A-
1022
UAAAAGCAGGUCACUCAC
 413-


953296.
1701173.

GCUUUUA
 435
1067146.

UUUGC
 435


1
1



1








AD-
A-
893
AAAAACACAGACUC
1657-
A-
1023
UCAACGCGAGUCUGUGUU
1655-


953402.
1701385.

GCGUUGA
1677
1068540.

UUUGC
1677


1
1



1








AD-
A-
894
AUUUGUUUGUACAA
1616-
A-
1024
UCGGAUCUUGUACAAACA
1614-


953312.
1701205.

GAUCCGA
1636
1068458.

AAUGC
1636


1
1



1








AD-
A-
895
UUCCCCAAAUCACU
 278-
A-
1025
UAUCCACAGUGAUUUGGG
 276-


953295.
1701171.

GUGGAUA
 298
1700778.

GAAGU
 298


1
1



1








AD-
A-
896
AUUAACAUCACGUC
3519-
A-
1026
UGACAAAGACGUGAUGUU
3517-


953420.
1701421.

UUUGUCA
3539
1070916.

AAUAU
3539


1
1



1








AD-
A-
897
CGUCUUUGUCUCUA
3529-
A-
1027
UCUGCACUAGAGACAAAG
3527-


953423.
1701427.

GUGCAGA
3549
1070936.

ACGUG
3549


1
1



1








AD-
A-
898
AAAACACAGACUCG
1658-
A-
1028
UGCAACGCGAGUCUGUGU
1656-


953403.
1701387.

CGUUGCA
1678
1068542.

UUUUG
1678


1
1



1








AD-
A-
899
UGCAAAAACACAGA
1654-
A-
1029
UCGCGAGUCUGUGUUUUU
1652-


953400.
1701381.

CUCGCGA
1674
1068534.

GCAGG
1674


1
1



1








AD-
A-
900
AACACAGACUCGCG
1660-
A-
1030
UUUGCAACGCGAGUCUGU
1658-


953404.
1701389.

UUGCAAA
1680
1068546.

GUUUU
1680


1
1



1








AD-
A-
901
CUUGCAGAUGUGAC
1709-
A-
1031
UCGGCUUGUCACAUCUGC
1707-


953334.
1701249.

AAGCCGA
1729
1068644.

AAGUA
1729


1
1



1








AD-
A-
902
UUUAUCCGUAAUAA
3490-
A-
1032
UCCACAAUUAUUACGGAU
3488-


953418.
1701417.

UUGUGGA
3510
1070894.

AAACA
3510


1
1



1








AD-
A-
903
GCAAAAACACAGAC
1655-
A-
1033
UACGCGAGUCUGUGUUUU
1653-


953401.
1701383.

UCGCGUA
1675
1068536.

UGCAG
1675


1
1



1








AD-
A-
904
GUUUAUCCGUAAUA
3489-
A-
1034
UCACAAUUAUUACGGAUA
3487-


953417.
1701415.

AUUGUGA
3509
1070892.

AACAG
3509


1
1



1








AD-
A-
905
GGGCAAAAACGAAA
1486-
A-
1035
UUUGCGCUUUCGUUUUUG
1484-


953311.
1701203.

GCGCAAA
1506
1068252.

CCCCU
1506


1
1



1








AD-
A-
906
UUAUCCGUAAUAAU
3491-
A-
1036
UCCCACAAUUAUUACGGA
3489-


953419.
1701419.

UGUGGGA
3511
1700905.

UAAAC
3511


1
1



1
















TABLE 4A







Exemplary Human VEGF-A siRNA Modified Single Strandsand Duplex Sequences




















SEQ ID


SEQ ID



Sense
SEQ ID

Antisense
NO:


NO:


Duplex
Oligo
NO:

Oligo
(Anti-

mRNA target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence
sequence
target)





AD-
A-
1037
asasaau(Ahd)gad
A-
1167
VPusdAsgadAudAgc
AUAAAAUAGACAU
4483


953504.
1701069.

CadTugcuauucua
1800407.1

aadTgdTcdTauuuusas
UGCUAUUCUG



1
1

L96


u







AD-
A-
1038
asgsugc(Uhd)aad
A-
1168
VPusdAscadCcdAau
ACAGUGCUAAUGU
4484


953481.
1701023.

TgdTuauuggugu
1800384.1

aadCadTudAgcacusg
UAUUGGUGUC



1
1

aL96


su







AD-
A-
1039
asusaca(Ghd)aad
A-
1169
VPusdCsugdTadTcga
UGAUACAGAACGA
4485


953472.
1701005.

CgdAucgauacaga
1800375.1

udCgdTudCuguauscs
UCGAUACAGA



1
1

L96


a







AD-
A-
1040
ascsagc(Ahd)cad
A-
1170
VPusdAsuudCadCau
CUACAGCACAACA
4486


953517.
1701095.

AcdAaaugugaaua
1800420.1

uudGudTgdTgcugusa
AAUGUGAAUG



1
1

L96


sg







AD-
A-
1041
csusgau(Ahd)cad
A-
1171
VPusdTsaudCgdAuc
GACUGAUACAGAA
4487


953471.
1701003.

GadAcgaucgauaa
1800374.1

gudTcdTgdTaucagsu
CGAUCGAUAC



1
1

L96


sc







AD-
A-
1042
gsasgaa(Ahd)gud
A-
1172
VPusdCsgudAudAua
AAGAGAAAGUGUU
4488


953493.
1701047.

GudTuuauauacga
1800396.1

aadAcdAcdTuucucsu
UUAUAUACGG



1
1

L96


su







AD-
A-
1043
asascua(Uhd)uud
A-
1173
VPusdGsaudAcdAuc
UCAACUAUUUAUG
4489


953498.
1701057.

AudGagauguauc
1800401.1

ucdAudAadAuaguus
AGAUGUAUCU



1
1

aL96


gsa







AD-
A-
1044
asasgac(Uhd)gad
A-
1174
VPusdGsaudCgdTuc
GAAAGACUGAUAC
4490


953467.
1700995.

TadCagaacgauca
1800370.1

ugdTadTcdAgucuusu
AGAACGAUCG



1
1

L96


sc







AD-
A-
1045
gsasgaa(Uhd)ucd
A-
1175
VPusdAsuudTadGua
UAGAGAAUUCUAC
4491


953545.
1701151.

TadCauacuaaaua
1800448.1

ugdTadGadAuucucsu
AUACUAAAUC



1
1

L96


sa







AD-
A-
1046
asasaga(Chd)ugd
A-
1176
VPusdAsucdGudTcu
GGAAAGACUGAUA
4492


953466.
1700993.

AudAcagaacgaua
1800369.1

gudAudCadGucuuusc
CAGAACGAUC



1
1

L96


sc







AD-
A-
1047
ascsggu(Ahd)cud
A-
1177
VPusdGsgadTadTuaa
AUACGGUACUUAU
4493


953494.
1701049.

TadTuuaauaucca
1800397.1

adTadAgdTaccgusas
UUAAUAUCCC



1
1

L96


u







AD-
A-
1048
ascsuga(Uhd) acd
A-
1178
VPusdAsucdGadTcg
AGACUGAUACAGA
4494


953470.
1701001.

AgdAacgaucgaua
1800373.1

uudCudGudAucagusc
ACGAUCGAUA



1
1

L96


SU







AD-
A-
1049
csgsaca(Ghd)aad
A-
1179
VPusdGsaudTadAgg
AUCGACAGAACAG
4495


953473.
1701007.

CadGuccuuaauca
1800376.1

acdTgdTudCugucgsa
UCCUUAAUCC



1
1

L96


SU







AD-
A-
1050
csasgaa(Chd)agd
A-
1180
VPusdCsugdGadTua
GACAGAACAGUCC
4496


953474.
1701009.

TcdCuuaauccaga
1800377.1

agdGadCudGuucugsu
UUAAUCCAGA



1
1

L96


sc







AD-
A-
1051
asascag(Uhd)gcd
A-
1181
VPusdCscadAudAac
UUAACAGUGCUAA
4497


953480.
1701021.

TadAuguuauugg
1800383.1

audTadGcdAcuguusa
UGUUAUUGGU



1
1

aL96


sa







AD-
A-
1052
ascsagu(Chd)acd
A-
1182
VPusdCsaadGadTaag
UGACAGUCACUAG
4498


953503.
1701067.

TadGcuuaucuuga
1800406.1

cdTadGudGacuguscs
CUUAUCUUGA



1
1

L96


a







AD-
A-
1053
csusugc(Uhd)gcd
A-
1183
VPusdCsucdGgdTga
UUCUUGCUGCUAA
4499


953478.
1701017.

TadAaucaccgaga
1800381.1

uudTadGcdAgcaagsa
AUCACCGAGC



1
1

L96


sa







AD-
A-
1054
gsasaag(Uhd)gud
A-
1184
VPusdAsccdGudAua
GAGAAAGUGUUUU
4500


953540.
1701141.

TudTauauacggua
1800443.1

uadAadAcdAcuuucsu
AUAUACGGUA



1
1

L96


sc







AD-
A-
1055
gscsucu(Chd)uud
A-
1185
VPusdAsccdGgdTaca
UUGCUCUCUUAUU
4501


953500.
1701061.

AudTuguaccggua
1800403.1

adAudAadGagagcsas
UGUACCGGUU



1
1

L96


a







AD-
A-
1056
ususcuu(Ghd)cud
A-
1186
VPusdCsggdTgdAuu
UUUUCUUGCUGCU
4502


953476.
1701013.

GcdTaaaucaccga
1800379.1

uadGcdAgdCaagaasa
AAAUCACCGA



1
1

L96


sa







AD-
A-
1057
csascca(Uhd)ugd
A-
1187
VPusdAsacdTadGug
CACACCAUUGAAA
4503


953492.
1701045.

AadAccacuaguua
1800395.1

gudTudCadAuggugsu
CCACUAGUUC



1
1

L96


sg







AD-
A-
1058
csgsgua(Chd)uud
A-
1188
VPusdGsggdAudAuu
UACGGUACUUAUU
4504


953495.
1701051.

AudTuaauauccca
1800398.1

aadAudAadGuaccgsu
UAAUAUCCCU



1
1

L96


sa







AD-
A-
1059
csasacu(Ahd)uud
A-
1189
VPusdAsuadCadTCUC
UUCAACUAUUUAU
4505


953497.
1701055.

TadTgagauguaua
1800400.1

adTadAadTaguugsas
GAGAUGUAUC



1
1

L96


a







AD-
A-
1060
usasauc(Chd)agd
A-
1190
VPusdCsaudTudCag
CUUAAUCCAGAAA
4506


953535.
1701131.

AadAccugaaauga
1800438.1

gudTudCudGgauuasa
CCUGAAAUGA



1
1

L96


sg







AD-
A-
1061
asasaua(Ghd)acd
A-
1191
VPusdCsagdAadTagc
UAAAAUAGACAUU
4507


953505.
1701071.

AudTgcuauucuga
1800408.1

adAudGudCuauuusus
GCUAUUCUGU



1
1

L96


a







AD-
A-
1062
asasagc(Ahd)uud
A-
1192
VPusdCsuudGudAca
AGAAAGCAUUUGU
4508


953524.
1701109.

TgdTuuguacaaga
1800427.1

aadCadAadTgcuuusc
UUGUACAAGA



1
1

L96


su







AD-
A-
1063
csusugg(Ahd)aud
A-
1193
VPusdAsugdGcdGaa
CUCUUGGAAUUGG
4509


953475.
1701011.

TgdGauucgccaua
1800378.1

ucdCadAudTccaagsa
AUUCGCCAUU



1
1

L96


sg







AD-
A-
1064
ascsacc(Ahd)uud
A-
1194
VPusdAscudAgdTgg
UCACACCAUUGAA
4510


953491.
1701043.

GadAaccacuagua
1800394.1

uudTcdAadTggugusg
ACCACUAGUU



1
1

L96


sa







AD-
A-
1065
asascau(Chd)acd
A-
1195
VPusdAsuadAudCug
CCAACAUCACCAU
4511


953436.
1700933.

CadTgcagauuaua
1800339.1

cadTgdGudGauguusg
GCAGAUUAUG



1
1

L96


sg







AD-
A-
1066
usgsaca(Ghd)ucd
A-
1196
VPusdAsgadTadAgc
GGUGACAGUCACU
4512


953502.
1701065.

AcdTagcuuaucua
1800405.1

uadGudGadCugucasc
AGCUUAUCUU



1
1

L96


sc







AD-
A-
1067
asgsuua(Ahd)acd
A-
1197
VPusdGscadAgdTac
UGAGUUAAACGAA
4513


953461.
1700983.

GadAcguacuugca
1800364.1

gudTcdGudTuaacusc
CGUACUUGCA



1
1

L96


sa







AD-
A-
1068
ascsuau(Uhd)uad
A-
1198
VPusdAsgadTadCauc
CAACUAUUUAUGA
4514


953544.
1701149.

TgdAgauguaucua
1800447.1

udCadTadAauagusus
GAUGUAUCUU



1
1

L96


g







AD-
A-
1069
ususaaa(Chd)gad
A-
1199
VPusdCsugdCadAgu
AGUUAAACGAACG
4515


953462.
1700985.

AcdGuacuugcaga
1800365.1

acdGudTcdGuuuaasc
UACUUGCAGA



1
1

L96


su







AD-
A-
1070
gsgsuac(Uhd)uad
A-
1200
VPusdAsggdGadTau
ACGGUACUUAUUU
4516


953496.
1701053.

TudTaauaucccua
1800399.1

uadAadTadAguaccsg
AAUAUCCCUU



1
1

L96


su







AD-
A-
1071
csgsaag(Uhd)ggd
A-
1201
VPusdCscadTgdAacu
CACGAAGUGGUGA
4517


953516.
1701093.

TgdAaguucaugga
1800419.1

udCadCcdAcuucgsus
AGUUCAUGGA



1
1

L96


g







AD-
A-
1072
usgsuua(Uhd)ug
A-
1202
VPusdCsagdTgdAag
AAUGUUAUUGGUG
4518


953483.
1701027.

dGudGucuucacu
1800386.1

acdAcdCadAuaacasu
UCUUCACUGG



1
1

gaL96


su







AD-
A-
1073
ususgcu(Chd)ucd
A-
1203
VPusdCsggdTadCaaa
UCUUGCUCUCUUA
4519


953499.
1701059.

TudAuuuguaccga
1800402.1

udAadGadGagcaasgs
UUUGUACCGG



1
1

L96


a







AD-
A-
1074
gsusuuu(Ahd)ua
A-
1204
VPusdAsuadAgdTac
GUGUUUUAUAUAC
4520


953541.
1701143.

dTadCgguacuuau
1800444.1

cgdTadTadTaaaacsas
GGUACUUAUU



1
1

aL96


c







AD-
A-
1075
uscsacu(Ghd)gad
A-
1205
VPusdCsagdTcdAaau
CUUCACUGGAUGU
4521


953538.
1701137.

TgdTauuugacuga
1800441.1

adCadTcdCagugasas
AUUUGACUGC



1
1

L96


g







AD-
A-
1076
cscsucc(Ghd)aad
A-
1206
VPusdAsaadGudTca
GGCCUCCGAAACC
4522


953430.
1700921.

AcdCaugaacuuua
1800333.1

ugdGudTudCggaggsc
AUGAACUUUC



1
1

L96


sc







AD-
A-
1077
usasuug(Ghd)ug
A-
1207
VPusdAsucdCadGug
GUUAUUGGUGUCU
4523


953485.
1701031.

dTcdTucacuggau
1800388.1

aadGadCadCcaauasas
UCACUGGAUG



1
1

aL96


c







AD-
A-
1078
asgsacu(Ghd)aud
A-
1208
VPusdCsgadTcdGuu
AAAGACUGAUACA
4524


953468.
1700997.

AcdAgaacgaucga
1800371.1

cudGudAudCagucusu
GAACGAUCGA



1
1

L96


su







AD-
A-
1079
uscscgc(Ahd)gad
A-
1209
VPusdAsacdAudTua
GAUCCGCAGACGU
4525


953444.
1700949.

CgdTguaaauguua
1800347.1

cadCgdTcdTgcggasu
GUAAAUGUUC



1
1

L96


sc







AD-
A-
1080
gsasguu(Ahd)aad
A-
1210
VPusdCsaadGudAcg
UUGAGUUAAACGA
4526


953460.
1700981.

CgdAacguacuuga
1800363.1

uudCgdTudTaacucsa
ACGUACUUGC



1
1

L96


sa







AD-
A-
1081
asgsaaa(Ghd)ugd
A-
1211
VPusdCscgdTadTaua
AGAGAAAGUGUUU
4527


953539.
1701139.

TudTuauauacgga
1800442.1

adAadCadCuuucuscs
UAUAUACGGU



1
1

L96


u







AD-
A-
1082
gsusuau(Uhd)gg
A-
1212
VPusdCscadGudGaa
AUGUUAUUGGUGU
4528


953484.
1701029.

dTgdTcuucacugg
1800387.1

gadCadCcdAauaacsa
CUUCACUGGA



1
1

aL96


su







AD-
A-
1083
csusuga(Ghd)uud
A-
1213
VPusdGsuadCgdTuc
AGCUUGAGUUAAA
4529


953457.
1700975.

AadAcgaacguaca
1800360.1

gudTudAadCucaagsc
CGAACGUACU



1
1

L96


su







AD-
A-
1084
usgsagu(Uhd)aad
A-
1214
VPusdAsagdTadCgu
CUUGAGUUAAACG
4530


953459.
1700979.

AcdGaacguacuua
1800362.1

ucdGudTudAacucasa
AACGUACUUG



1
1

L96


sg







AD-
A-
1085
asuscac(Chd)aud
A-
1215
VPusdCsgcdAudAau
ACAUCACCAUGCA
4531


953437.
1700935.

GcdAgauuaugcg
1800340.1

cudGcdAudGgugaus
GAUUAUGCGG



1
1

aL96


gsu







AD-
A-
1086
ususgag(Uhd)uad
A-
1216
VPusdAsgudAcdGuu
GCUUGAGUUAAAC
4532


953458.
1700977.

AadCgaacguacua
1800361.1

cgdTudTadAcucaasg
GAACGUACUU



1
1

L96


sc







AD-
A-
1087
gscsagc(Uhd)ugd
A-
1217
VPusdGsuudCgdTuu
AGGCAGCUUGAGU
4533


953453.
1700967.

AgdTuaaacgaaca
1800356.1

aadCudCadAgcugcsc
UAAACGAACG



1
1

L96


su







AD-
A-
1088
csgscac(Uhd)gad
A-
1218
VPusdGsgadCgdAaa
GUCGCACUGAAAC
4534


953428.
1700917.

AadCuuuucgucca
1800331.1

agdTudTcdAgugcgsa
UUUUCGUCCA



1
1

L96


sc







AD-
A-
1089
uscsggu(Ghd)acd
A-
1219
VPusdAsagdCudAgu
GAUCGGUGACAGU
4535


953501.
1701063.

AgdTcacuagcuua
1800404.1

gadCudGudCaccgasu
CACUAGCUUA



1
1

L96


sc







AD-
A-
1090
gsusgcu(Ahd)aud
A-
1220
VPusdGsacdAcdCaa
CAGUGCUAAUGUU
4536


953482.
1701025.

GudTauugguguc
1800385.1

uadAcdAudTagcacsu
AUUGGUGUCU



1
1

aL96


sg







AD-
A-
1091
csgscag(Ahd)cgd
A-
1221
VPusdGsgadAcdAuu
UCCGCAGACGUGU
4537


953446.
1700953.

TgdTaaauguucca
1800349.1

uadCadCgdTcugcgsg
AAAUGUUCCU



1
1

L96


sa







AD-
A-
1092
asgsaga(Ahd)gad
A-
1222
VPusdCsaadCadAug
GAAGAGAAGAGAC
4538


953488.
1701037.

GadCacauuguuga
1800391.1

ugdTcdTcdTucucusu
ACAUUGUUGG



1
1

L96


sc







AD-
A-
1093
usgsaag(Uhd)ucd
A-
1223
VPusdAsuadGadCau
GGUGAAGUUCAUG
4539


953434.
1700929.

AudGgaugucuau
1800337.1

ccdAudGadAcuucasc
GAUGUCUAUC



1
1

aL96


sc







AD-
A-
1094
asasuuc(Uhd)acd
A-
1224
VPusdGsagdAudTua
AGAAUUCUACAUA
4540


953546.
1701153.

AudAcuaaaucuca
1800449.1

gudAudGudAgaauus
CUAAAUCUCU



1
1

L96


csu







AD-
A-
1095
csasgac(Ghd)ugd
A-
1225
VPusdCsagdGadAca
CGCAGACGUGUAA
4541


953529.
1701119.

TadAauguuccuga
1800432.1

uudTadCadCgucugsc
AUGUUCCUGC



1
1

L96


sg







AD-
A-
1096
csascga(Ahd)gud
A-
1226
VPusdAsugdAadCuu
AUCACGAAGUGGU
4542


953433.
1700927.

GgdTgaaguucaua
1800336.1

cadCcdAcdTucgugsa
GAAGUUCAUG



1
1

L96


su







AD-
A-
1097
gscsuug(Ahd)gu
A-
1227
VPusdTsacdGudTcgu
CAGCUUGAGUUAA
4543


953456.
1700973.

dTadAacgaacgua
1800359.1

udTadAcdTcaagcsus
ACGAACGUAC



1
1

aL96


g







AD-
A-
1098
csasucu(Uhd)cad
A-
1228
VPusdCsacdAgdGau
UACAUCUUCAAGC
4544


953435.
1700931.

AgdCcauccuguga
1800338.1

ggdCudTgdAagaugsu
CAUCCUGUGU



1
1

L96


sa







AD-
A-
1099
csascca(Uhd)gcd
A-
1229
VPusdTsccdGcdAuaa
AUCACCAUGCAGA
4545


953438.
1700937.

AgdAuuaugcgga
1800341.1

udCudGcdAuggugsas
UUAUGCGGAU



1
1

aL96


u







AD-
A-
1100
gsgscag(Chd)uud
A-
1230
VPusdTsucdGudTuaa
GAGGCAGCUUGAG
4546


953452.
1700965.

GadGuuaaacgaaa
1800355.1

cdTcdAadGcugccsus
UUAAACGAAC



1
1

L96


c







AD-
A-
1101
asusguc(Chd)ucd
A-
1231
VPusdTsuudCadAug
CUAUGUCCUCACA
4547


953489.
1701039.

AcdAccauugaaaa
1800392.1

gudGudGadGgacausa
CCAUUGAAAC



1
1

L96


sg







AD-
A-
1102
cscsgca(Ghd)acd
A-
1232
VPusdGsaadCadTuua
AUCCGCAGACGUG
4548


953445.
1700951.

GudGuaaauguuc
1800348.1

cdAcdGudCugcggsas
UAAAUGUUCC



1
1

aL96


u







AD-
A-
1103
csasgaa(Uhd)cad
A-
1233
VPusdAsccdAcdTuc
GGCAGAAUCAUCA
4549


953432.
1700925.

TcdAcgaaguggua
1800335.1

gudGadTgdAuucugsc
CGAAGUGGUG



1
1

L96


sc







AD-
A-
1104
gsusgcu(Ahd)cud
A-
1234
VPusdTsuadCgdGau
UGGUGCUACUGUU
4550


953509.
1701079.

GudTuauccguaaa
1800412.1

aadAcdAgdTagcacsc
UAUCCGUAAU



1
1

L96


sa







AD-
A-
1105
usgsucc(Uhd)cad
A-
1235
VPusdGsuudTcdAau
UAUGUCCUCACAC
4551


953490.
1701041.

CadCcauugaaaca
1800393.1

ggdTgdTgdAggacasu
CAUUGAAACC



1
1

L96


sa







AD-
A-
1106
csusgca(Ahd)aad
A-
1236
VPusdGscgdAgdTcu
UCCUGCAAAAACA
4552


953448.
1700957.

AcdAcagacucgca
1800351.1

gudGudTudTugcagsg
CAGACUCGCG



1
1

L96


sa







AD-
A-
1107
gsasggc(Ahd)gcd
A-
1237
VPusdCsgudTudAac
GCGAGGCAGCUUG
4553


953450.
1700961.

TudGaguuaaacga
1800353.1

ucdAadGcdTgccucsg
AGUUAAACGA



1
1

L96


sc







AD-
A-
1108
asusccg(Chd)agd
A-
1238
VPusdAscadTudTaca
AGAUCCGCAGACG
4554


953443.
1700947.

AcdGuguaaaugu
1800346.1

cdGudCudGcggauscs
UGUAAAUGUU



1
1

aL96


u







AD-
A-
1109
gscsauu(Uhd)gud
A-
1239
VPusdGsaudCudTgu
AAGCAUUUGUUUG
4555


953525.
1701111.

TudGuacaagauca
1800428.1

acdAadAcdAaaugcsu
UACAAGAUCC



1
1

L96


su







AD-
A-
1110
gsasaag(Chd)aud
A-
1240
VPusdTsugdTadCaaa
GAGAAAGCAUUUG
4556


953523.
1701107.

TudGuuuguacaaa
1800426.1

cdAadAudGcuuucsus
UUUGUACAAG



1
1

L96


c







AD-
A-
1111
usgsgug(Chd)uad
A-
1241
VPusdAscgdGadTaaa
AUUGGUGCUACUG
4557


953507.
1701075.

CudGuuuauccgu
1800410.1

cdAgdTadGcaccasas
UUUAUCCGUA



1
1

aL96


u







AD-
A-
1112
asgsgca(Ghd)cud
A-
1242
VPusdTscgdTudTaac
CGAGGCAGCUUGA
4558


953451.
1700963.

TgdAguuaaacgaa
1800354.1

udCadAgdCugccuscs
GUUAAACGAA



1
1

L96


g







AD-
A-
1113
gscsacu(Ghd)aad
A-
1243
VPusdTsggdAcdGaa
UCGCACUGAAACU
4559


953429.
1700919.

AcdTuuucguccaa
1800332.1

aadGudTudCagugcsg
UUUCGUCCAA



1
1

L96


sa







AD-
A-
1114
gsascug(Ahd)uad
A-
1244
VPusdTscgdAudCgu
AAGACUGAUACAG
4560


953469.
1700999.

CadGaacgaucgaa
1800372.1

ucdTgdTadTcagucsus
AACGAUCGAU



1
1

L96


u







AD-
A-
1115
ascsgaa(Chd)gud
A-
1245
VPusdAscadTcdTgca
AAACGAACGUACU
4561


953463.
1700987.

AcdTugcagaugua
1800366.1

adGudAcdGuucgusus
UGCAGAUGUG



1
1

L96


u







AD-
A-
1116
csasgcu(Uhd)gad
A-
1246
VPusdCsgudTcdGuu
GGCAGCUUGAGUU
4562


953454.
1700969.

GudTaaacgaacga
1800357.1

uadAcdTcdAagcugsc
AAACGAACGU



1
1

L96


sc







AD-
A-
1117
asgscuu(Ghd)agd
A-
1247
VPusdAscgdTudCgu
GCAGCUUGAGUUA
4563


953455.
1700971.

TudAaacgaacgua
1800358.1

uudAadCudCaagcusg
AACGAACGUA



1
1

L96


sc







AD-
A-
1118
gsasuau(Uhd)aad
A-
1248
VPusdAsaadGadCgu
AAGAUAUUAACAU
4564


953511.
1701083.

CadTcacgucuuua
1800414.1

gadTgdTudAauaucsu
CACGUCUUUG



1
1

L96


su







AD-
A-
1119
cscsugc(Ahd)aad
A-
1249
VPusdCsgadGudCug
UUCCUGCAAAAAC
4565


953447.
1700955.

AadCacagacucga
1800350.1

ugdTudTudTgcaggsa
ACAGACUCGC



1
1

L96


sa







AD-
A-
1120
gsusgcu(Ghd)gad
A-
1250
VPusdTsgadAudAuc
CGGUGCUGGAAUU
4566


953424.
1700909.

AudTugauauucaa
1800327.1

aadAudTcdCagcacscs
UGAUAUUCAU



1
1

L96


g







AD-
A-
1121
ususggu(Ghd)cu
A-
1251
VPusdCsggdAudAaa
UAUUGGUGCUACU
4567


953506.
1701073.

dAcdTguuuauccg
1800409.1

cadGudAgdCaccaasu
GUUUAUCCGU



1
1

aL96


sa







AD-
A-
1122
asusugg(Uhd)gu
A-
1252
VPusdCsaudCcdAgu
UUAUUGGUGUCUU
4568


953537.
1701135.

dCudTcacuggaug
1800440.1

gadAgdAcdAccaausa
CACUGGAUGU



1
1

aL96


sa







AD-
A-
1123
uscsuug(Chd)ugd
A-
1253
VPusdTscgdGudGau
UUUCUUGCUGCUA
4569


953477.
1701015.

CudAaaucaccgaa
1800380.1

uudAgdCadGcaagasa
AAUCACCGAG



1
1

L96


sa







AD-
A-
1124
ususgcu(Ghd)cud
A-
1254
VPusdGscudCgdGug
UCUUGCUGCUAAA
4570


953479.
1701019.

AadAucaccgagca
1800382.1

audTudAgdCagcaasg
UCACCGAGCC



1
1

L96


sa







AD-
A-
1125
asgsauu(Ahd)ugd
A-
1255
VPusdAsggdTudTga
GCAGAUUAUGCGG
4571


953439.
1700939.

CgdGaucaaaccua
1800342.1

ucdCgdCadTaaucusg
AUCAAACCUC



1
1

L96


sc







AD-
A-
1126
gsgsgca(Ghd)aad
A-
1256
VPusdAscudTcdGug
GAGGGCAGAAUCA
4572


953431.
1700923.

TcdAucacgaagua
1800334.1

audGadTudCugcccsu
UCACGAAGUG



1
1

L96


sc







AD-
A-
1127
asusuug(Uhd)uu
A-
1257
VPusdCsggdAudCuu
GCAUUUGUUUGUA
4573


953442.
1700945.

dGudAcaagauccg
1800345.1

gudAcdAadAcaaausg
CAAGAUCCGC



1
1

aL96


sc







AD-
A-
1128
csasaaa(Ahd)cad
A-
1258
VPusdAsacdGcdGag
UGCAAAAACACAG
4574


953449.
1700959.

CadGacucgcguua
1800352.1

ucdTgdTgdTuuuugsc
ACUCGCGUUG



1
1

L96


sa







AD-
A-
1129
usgscua(Chd)ugd
A-
1259
VPusdAsuudAcdGga
GGUGCUACUGUUU
4575


953510.
1701081.

TudTauccguaaua
1800413.1

uadAadCadGuagcasc
AUCCGUAAUA



1
1

L96


sc







AD-
A-
1130
ascsuuu(Uhd)cgd
A-
1260
VPusdCscadGadAgu
AAACUUUUCGUCC
4576


953514.
1701089.

TcdCaacuucugga
1800417.1

ugdGadCgdAaaagusu
AACUUCUGGG



1
1

L96


su







AD-
A-
1131
gsgsugc(Uhd)acd
A-
1261
VPusdTsacdGgdAua
UUGGUGCUACUGU
4577


953508.
1701077.

TgdTuuauccguaa
1800411.1

aadCadGudAgcaccsa
UUAUCCGUAA



1
1

L96


sa







AD-
A-
1132
gscsaaa(Ahd)acd
A-
1262
VPusdAscgdCgdAgu
CUGCAAAAACACA
4578


953531.
1701123.

AcdAgacucgcgua
1800434.1

cudGudGudTuuugcsa
GACUCGCGUU



1
1

L96


sg







AD-
A-
1133
csgsucg(Chd)acd
A-
1263
VPusdCsgadAadAgu
GGCGUCGCACUGA
4579


953427.
1700915.

TgdAaacuuuucga
1800330.1

uudCadGudGcgacgsc
AACUUUUCGU



1
1

L96


sc







AD-
A-
1134
asusauu(Ahd)acd
A-
1264
VPusdCsaadAgdAcg
AGAUAUUAACAUC
4580


953512.
1701085.

AudCacgucuuug
1800415.1

ugdAudGudTaauausc
ACGUCUUUGU



1
1

aL96


su







AD-
A-
1135
asasaac(Ahd)cad
A-
1265
VPusdGscadAcdGcg
CAAAAACACAGAC
4581


953533.
1701127.

GadCucgcguugca
1800436.1

agdTcdTgdTguuuusu
UCGCGUUGCA



1
1

L96


sg







AD-
A-
1136
csusugc(Ahd)gad
A-
1266
VPusdCsggdCudTgu
UACUUGCAGAUGU
4582


953464.
1700989.

TgdTgacaagccga
1800367.1

cadCadTcdTgcaagsus
GACAAGCCGA



1
1

L96


a







AD-
A-
1137
ususuuu(Uhd)uu
A-
1267
VPusdCscadAgdAau
GGUUUUUUUUCAG
4583


953542.
1701145.

dCadGuauucuug
1800445.1

acdTgdAadAaaaaascs
UAUUCUUGGU



1
1

gaL96


c







AD-
A-
1138
asasagu(Ghd)agd
A-
1268
VPusdAsaadAgdCag
GCAAAGUGAGUGA
4584


953426.
1700913.

TgdAccugcuuuua
1800329.1

gudCadCudCacuuusg
CCUGCUUUUG



1
1

L96


sc







AD-
A-
1139
ususcgu(Chd)cad
A-
1269
VPusdCsagdCcdCaga
UUUUCGUCCAACU
4585


953515.
1701091.

AcdTucugggcuga
1800418.1

adGudTgdGacgaasas
UCUGGGCUGU



1
1

L96


a







AD-
A-
1140
asgsgac(Ahd)uud
A-
1270
VPusdCscadAadGcac
UCAGGACAUUGCU
4586


953487.
1701035.

GcdTgugcuuugg
1800390.1

adGcdAadTguccusgs
GUGCUUUGGG



1
1

aL96


a







AD-
A-
1141
asasauc(Ahd)gud
A-
1271
VPusdCsccdTudTccu
AAAAAUCAGUUCG
4587


953521.
1701103.

TcdGaggaaaggga
1800424.1

cdGadAcdTgauuusus
AGGAAAGGGA



1
1

L96


u







AD-
A-
1142
ususccc(Chd)aad
A-
1272
VPusdAsucdCadCag
ACUUCCCCAAAUC
4588


953425.
1700911.

AudCacuguggau
1800328.1

ugdAudTudGgggaasg
ACUGUGGAUU



1
1

aL96


su







AD-
A-
1143
cscscuc(Uhd)ugd
A-
1273
VPusdCsgadAudCca
GUCCCUCUUGGAA
4589


953536.
1701133.

GadAuuggauucg
1800439.1

audTcdCadAgagggsa
UUGGAUUCGC



1
1

aL96


sc







AD-
A-
1144
ususgca(Ghd)aud
A-
1274
VPusdTscgdGcdTug
ACUUGCAGAUGUG
4590


953465.
1700991.

GudGacaagccgaa
1800368.1

ucdAcdAudCugcaasg
ACAAGCCGAG



1
1

L96


su







AD-
A-
1145
csascgu(Chd)uud
A-
1275
VPusdGscadCudAga
AUCACGUCUUUGU
4591


953552.
1701165.

TgdTcucuagugca
1800455.1

gadCadAadGacgugsa
CUCUAGUGCA



1
1

L96


su







AD-
A-
1146
gsasucc(Ghd)cad
A-
1276
VPusdCsaudTudAcac
AAGAUCCGCAGAC
4592


953528.
1701117.

GadCguguaaauga
1800431.1

gdTcdTgdCggaucsus
GUGUAAAUGU



1
1

L96


u







AD-
A-
1147
asasaaa(Uhd)cad
A-
1277
VPusdCsuudTcdCuc
AAAAAAAUCAGUU
4593


953519.
1701099.

GudTcgaggaaaga
1800422.1

gadAcdTgdAuuuuusu
CGAGGAAAGG



1
1

L96


su







AD-
A-
1148
usgscug(Uhd)gg
A-
1278
VPusdCsccdAadCuca
ACUGCUGUGGACU
4594


953486.
1701033.

dAcdTugaguugg
1800389.1

adGudCcdAcagcasgs
UGAGUUGGGA



1
1

gaL96


u







AD-
A-
1149
asasggg(Ghd)cad
A-
1279
VPusdCsgcdTudTcgu
GAAAGGGGCAAAA
4595


953522.
1701105.

AadAacgaaagcga
1800425.1

udTudTgdCcccuusus
ACGAAAGCGC



1
1

L96


c







AD-
A-
1150
usgscaa(Ahd)aad
A-
1280
VPusdCsgcdGadGuc
CCUGCAAAAACAC
4596


953530.
1701121.

CadCagacucgcga
1800433.1

ugdTgdTudTuugcasg
AGACUCGCGU



1
1

L96


sg







AD-
A-
1151
ascsguc(Uhd)uud
A-
1281
VPusdTsgcdAcdTaga
UCACGUCUUUGUC
4597


953513.
1701087.

GudCucuagugcaa
1800416.1

gdAcdAadAgacgusgs
UCUAGUGCAG



1
1

L96


a







AD-
A-
1152
gsgsgca(Ahd)aad
A-
1282
VPusdTsugdCgdCuu
AGGGGCAAAAACG
4598


953441.
1700943.

AcdGaaagcgcaaa
1800344.1

ucdGudTudTugcccsc
AAAGCGCAAG



1
1

L96


su







AD-
A-
1153
asgsggg(Chd)aad
A-
1283
VPusdGscgdCudTuc
AAAGGGGCAAAAA
4599


953440.
1700941.

AadAcgaaagcgca
1800343.1

gudTudTudGccccusu
CGAAAGCGCA



1
1

L96


su







AD-
A-
1154
gsasaaa(Ahd)aad
A-
1284
VPusdCscudCgdAac
AAGAAAAAAAAUC
4600


953518.
1701097.

AudCaguucgagg
1800421.1

ugdAudTudTuuuucsu
AGUUCGAGGA



1
1

aL96


su







AD-
A-
1155
asasaau(Chd)agd
A-
1285
VPusdCscudTudCcuc
AAAAAAUCAGUUC
4601


953520.
1701101.

TudCgaggaaagga
1800423.1

gdAadCudGauuuusus
GAGGAAAGGG



1
1

L96


u







AD-
A-
1156
asasaaa(Chd)acd
A-
1286
VPusdCsaadCgdCga
GCAAAAACACAGA
4602


953532.
1701125.

AgdAcucgcguug
1800435.1

gudCudGudGuuuuus
CUCGCGUUGC



1
1

aL96


gsc







AD-
A-
1157
ususuau(Chd)cgd
A-
1287
VPusdCscadCadAuu
UGUUUAUCCGUAA
4603


953548.
1701157.

TadAuaauugugga
1800451.1

audTadCgdGauaaasc
UAAUUGUGGG



1
1

L96


sa







AD-
A-
1158
asgsauc(Chd)gcd
A-
1288
VPusdAsuudTadCac
CAAGAUCCGCAGA
4604


953527.
1701115.

AgdAcguguaaau
1800430.1

gudCudGcdGgaucusu
CGUGUAAAUG



1
1

aL96


sg







AD-
A-
1159
ususaac(Ahd)ucd
A-
1289
VPusdAsgadCadAag
UAUUAACAUCACG
4605


953551.
1701163.

AcdGucuuugucu
1800454.1

acdGudGadTguuaasu
UCUUUGUCUC



1
1

aL96


sa







AD-
A-
1160
csgsucu(Uhd)ugd
A-
1290
VPusdCsugdCadCua
CACGUCUUUGUCU
4606


953553.
1701167.

TcdTcuagugcaga
1800456.1

gadGadCadAagacgsu
CUAGUGCAGU



1
1

L96


sg







AD-
A-
1161
gsusuua(Uhd)ccd
A-
1291
VPusdCsacdAadTuau
CUGUUUAUCCGUA
4607


953547.
1701155.

GudAauaauugug
1800450.1

udAcdGgdAuaaacsas
AUAAUUGUGG



1
1

aL96


g







AD-
A-
1162
ususguu(Uhd)gu
A-
1292
VPusdTsgcdGgdAuc
AUUUGUUUGUACA
4608


953526.
1701113.

dAcdAagauccgca
1800429.1

uudGudAcdAaacaasa
AGAUCCGCAG



1
1

aL96


su







AD-
A-
1163
ususauc(Chd)gud
A-
1293
VPusdCsccdAcdAau
GUUUAUCCGUAAU
4609


953549.
1701159.

AadTaauuguggga
1800452.1

uadTudAcdGgauaasa
AAUUGUGGGG



1
1

L96


sc







AD-
A-
1164
asascac(Ahd)gad
A-
1294
VPusdTsugdCadAcg
AAAACACAGACUC
4610


953534.
1701129.

CudCgcguugcaaa
1800437.1

cgdAgdTcdTguguusu
GCGUUGCAAG



1
1

L96


su







AD-
A-
1165
ususuuu(Uhd)uc
A-
1295
VPusdAsccdAadGaa
GUUUUUUUUCAGU
4611


953543.
1701147.

dAgdTauucuugg
1800446.1

uadCudGadAaaaaasa
AUUCUUGGUU



1
1

uaL96


sc







AD-
A-
1166
asusuaa(Chd)aud
A-
1296
VPusdGsacdAadAga
AUAUUAACAUCAC
4612


953550.
1701161.

CadCgucuuuguc
1800453.1

cgdTgdAudGuuaausa
GUCUUUGUCU



1
1

aL96


su
















TABLE 4B







Exemplary Human VEGF-A siRNA Unmodified Single Strands and Duplex Sequences





















SEQ










ID





Sense
SEQ ID

mRNA
Antisense
NO:

mRNA


Duplex
Oligo
NO:

Target
Oligo
(Anti-

Target


Name
Name
(Sense)
Sense Sequence
Range
Name
sense)
Antisense Sequence
Range





AD-
A-
1297
AAAAUAGACATUGCU
3361-
A-
1427
UAGAAUAGCAATGTCTA
3359-


953504.
1701069.

AUUCUA
3381
1800407.

UUUUAU
3381


1
1



1








AD-
A-
1298
AGUGCUAATGTUAUU
2181-
A-
1428
UACACCAAUAACATUAG
2179-


953481.
1701023.

GGUGUA
2201
1800384.

CACUGU
2201


1
1



1








AD-
A-
1299
AUACAGAACGAUCGA
1803-
A-
1429
UCUGTATCGAUCGTUCU
1801-


953472.
1701005.

UACAGA
1823
1800375.

GUAUCA
1823


1
1



1








AD-
A-
1300
ACAGCACAACAAAUG
1407-
A-
1430
UAUUCACAUUUGUTGTG
1405-


953517.
1701095.

UGAAUA
1427
1800420.

CUGUAG
1427


1
1



1








AD-
A-
1301
CUGAUACAGAACGAU
1800-
A-
1431
UTAUCGAUCGUTCTGTA
1798-


953471.
1701003.

CGAUAA
1820
1800374.

UCAGUC
1820


1
1



1








AD-
A-
1302
GAGAAAGUGUTUUA
2944-
A-
1432
UCGUAUAUAAAACACTU
2942-


953493.
1701047.

UAUACGA
2964
1800396.

UCUCUU
2964


1
1



1








AD-
A-
1303
AACUAUUUAUGAGA
3062-
A-
1433
UGAUACAUCUCAUAAA
3060-


953498.
1701057.

UGUAUCA
3082
1800401.

UAGUUGA
3082


1
1



1








AD-
A-
1304
AAGACUGATACAGAA
1796-
A-
1434
UGAUCGTUCUGTATCAG
1794-


953467.
1700995.

CGAUCA
1816
1800370.

UCUUUC
1816


1
1



1








AD-
A-
1305
GAGAAUUCTACAUAC
3416-
A-
1435
UAUUTAGUAUGTAGAA
3414-


953545.
1701151.

UAAAUA
3436
1800448.

UUCUCUA
3436


1
1



1








AD-
A-
1306
AAAGACUGAUACAG
1795-
A-
1436
UAUCGUTCUGUAUCAGU
1793-


953466.
1700993.

AACGAUA
1815
1800369.

CUUUCC
1815


1
1



1








AD-
A-
1307
ACGGUACUTATUUAA
2961-
A-
1437
UGGATATUAAATAAGTA
2959-


953494.
1701049.

UAUCCA
2981
1800397.

CCGUAU
2981


1
1



1








AD-
A-
1308
ACUGAUACAGAACGA
1799-
A-
1438
UAUCGATCGUUCUGUAU
1797-


953470.
1701001.

UCGAUA
1819
1800373.

CAGUCU
1819


1
1



1








AD-
A-
1309
CGACAGAACAGUCCU
1855-
A-
1439
UGAUTAAGGACTGTUCU
1853-


953473.
1701007.

UAAUCA
1875
1800376.

GUCGAU
1875


1
1



1








AD-
A-
1310
CAGAACAGTCCUUAA
1858-
A-
1440
UCUGGATUAAGGACUG
1856-


953474.
1701009.

UCCAGA
1878
1800377.

UUCUGUC
1878


1
1



1








AD-
A-
1311
AACAGUGCTAAUGUU
2178-
A-
1441
UCCAAUAACAUTAGCAC
2176-


953480.
1701021.

AUUGGA
2198
1800383.

UGUUAA
2198


1
1



1








AD-
A-
1312
ACAGUCACTAGCUUA
3164-
A-
1442
UCAAGATAAGCTAGUGA
3162-


953503.
1701067.

UCUUGA
3184
1800406.

CUGUCA
3184


1
1



1








AD-
A-
1313
CUUGCUGCTAAAUCA
2011-
A-
1443
UCUCGGTGAUUTAGCAG
2009-


953478.
1701017.

CCGAGA
2031
1800381.

CAAGAA
2031


1
1



1








AD-
A-
1314
GAAAGUGUTUTAUAU
2946-
A-
1444
UACCGUAUAUAAAACA
2944-


953540.
1701141.

ACGGUA
2966
1800443.

CUUUCUC
2966


1
1



1








AD-
A-
1315
GCUCUCUUAUTUGUA
3096-
A-
1445
UACCGGTACAAAUAAGA
3094-


953500.
1701061.

CCGGUA
3116
1800403.

GAGCAA
3116


1
1



1








AD-
A-
1316
UUCUUGCUGCTAAAU
2009-
A-
1446
UCGGTGAUUUAGCAGCA
2007-


953476.
1701013.

CACCGA
2029
1800379.

AGAAAA
2029


1
1



1








AD-
A-
1317
CACCAUUGAAACCAC
2791-
A-
1447
UAACTAGUGGUTUCAAU
2789-


953492.
1701045.

UAGUUA
2811
1800395.

GGUGUG
2811


1
1



1








AD-
A-
1318
CGGUACUUAUTUAAU
2962-
A-
1448
UGGGAUAUUAAAUAAG
2960-


953495.
1701051.

AUCCCA
2982
1800398.

UACCGUA
2982


1
1



1








AD-
A-
1319
CAACUAUUTATGAGA
3061-
A-
1449
UAUACATCUCATAAATA
3059-


953497.
1701055.

UGUAUA
3081
1800400.

GUUGAA
3081


1
1



1








AD-
A-
1320
UAAUCCAGAAACCUG
1870-
A-
1450
UCAUTUCAGGUTUCUGG
1868-


953535.
1701131.

AAAUGA
1890
1800438.

AUUAAG
1890


1
1



1








AD-
A-
1321
AAAUAGACAUTGCUA
3362-
A-
1451
UCAGAATAGCAAUGUCU
3360-


953505.
1701071.

UUCUGA
3382
1800408.

AUUUUA
3382


1
1



1








AD-
A-
1322
AAAGCAUUTGTUUGU
1611-
A-
1452
UCUUGUACAAACAAATG
1609-


953524.
1701109.

ACAAGA
1631
1800427.

CUUUCU
1631


1
1



1








AD-
A-
1323
CUUGGAAUTGGAUUC
1982-
A-
1453
UAUGGCGAAUCCAAUTC
1980-


953475.
1701011.

GCCAUA
2002
1800378.

CAAGAG
2002


1
1



1








AD-
A-
1324
ACACCAUUGAAACCA
2790-
A-
1454
UACUAGTGGUUTCAATG
2788-


953491.
1701043.

CUAGUA
2810
1800394.

GUGUGA
2810


1
1



1








AD-
A-
1325
AACAUCACCATGCAG
1339-
A-
1455
UAUAAUCUGCATGGUG
1337-


953436.
1700933.

AUUAUA
1359
1800339.

AUGUUGG
1359


1
1



1








AD-
A-
1326
UGACAGUCACTAGCU
3162-
A-
1456
UAGATAAGCUAGUGAC
3160-


953502.
1701065.

UAUCUA
3182
1800405.

UGUCACC
3182


1
1



1








AD-
A-
1327
AGUUAAACGAACGU
1694-
A-
1457
UGCAAGTACGUTCGUTU
1692-


953461.
1700983.

ACUUGCA
1714
1800364.

AACUCA
1714


1
1



1








AD-
A-
1328
ACUAUUUATGAGAUG
3063-
A-
1458
UAGATACAUCUCATAAA
3061-


953544.
1701149.

UAUCUA
3083
1800447.

UAGUUG
3083


1
1



1








AD-
A-
1329
UUAAACGAACGUACU
1696-
A-
1459
UCUGCAAGUACGUTCGU
1694-


953462.
1700985.

UGCAGA
1716
1800365.

UUAACU
1716


1
1



1








AD-
A-
1330
GGUACUUATUTAAUA
2963-
A-
1460
UAGGGATAUUAAATAA
2961-


953496.
1701053.

UCCCUA
2983
1800399.

GUACCGU
2983


1
1



1








AD-
A-
1331
CGAAGUGGTGAAGUU
1152-
A-
1461
UCCATGAACUUCACCAC
1150-


953516.
1701093.

CAUGGA
1172
1800419.

UUCGUG
1172


1
1



1








AD-
A-
1332
UGUUAUUGGUGUCU
2189-
A-
1462
UCAGTGAAGACACCAAU
2187-


953483.
1701027.

UCACUGA
2209
1800386.

AACAUU
2209


1
1



1








AD-
A-
1333
UUGCUCUCTUAUUUG
3094-
A-
1463
UCGGTACAAAUAAGAG
3092-


953499.
1701059.

UACCGA
3114
1800402.

AGCAAGA
3114


1
1



1








AD-
A-
1334
GUUUUAUATACGGUA
2952-
A-
1464
UAUAAGTACCGTATATA
2950-


953541.
1701143.

CUUAUA
2972
1800444.

AAACAC
2972


1
1



1








AD-
A-
1335
UCACUGGATGTAUUU
2203-
A-
1465
UCAGTCAAAUACATCCA
2201-


953538.
1701137.

GACUGA
2223
1800441.

GUGAAG
2223


1
1



1








AD-
A-
1336
CCUCCGAAACCAUGA
1028-
A-
1466
UAAAGUTCAUGGUTUCG
1026-


953430.
1700921.

ACUUUA
1048
1800333.

GAGGCC
1048


1
1



1








AD-
A-
1337
UAUUGGUGTCTUCAC
2192-
A-
1467
UAUCCAGUGAAGACACC
2190-


953485.
1701031.

UGGAUA
2212
1800388.

AAUAAC
2212


1
1



1








AD-
A-
1338
AGACUGAUACAGAAC
1797-
A-
1468
UCGATCGUUCUGUAUCA
1795-


953468.
1700997.

GAUCGA
1817
1800371.

GUCUUU
1817


1
1



1








AD-
A-
1339
UCCGCAGACGTGUAA
1632-
A-
1469
UAACAUTUACACGTCTG
1630-


953444.
1700949.

AUGUUA
1652
1800347.

CGGAUC
1652


1
1



1








AD-
A-
1340
GAGUUAAACGAACG
1693-
A-
1470
UCAAGUACGUUCGTUTA
1691-


953460.
1700981.

UACUUGA
1713
1800363.

ACUCAA
1713


1
1



1








AD-
A-
1341
AGAAAGUGTUTUAUA
2945-
A-
1471
UCCGTATAUAAAACACU
2943-


953539.
1701139.

UACGGA
2965
1800442.

UUCUCU
2965


1
1



1








AD-
A-
1342
GUUAUUGGTGTCUUC
2190-
A-
1472
UCCAGUGAAGACACCAA
2188-


953484.
1701029.

ACUGGA
2210
1800387.

UAACAU
2210


1
1



1








AD-
A-
1343
CUUGAGUUAAACGA
1690-
A-
1473
UGUACGTUCGUTUAACU
1688-


953457.
1700975.

ACGUACA
1710
1800360.

CAAGCU
1710


1
1



1








AD-
A-
1344
UGAGUUAAACGAAC
1692-
A-
1474
UAAGTACGUUCGUTUAA
1690-


953459.
1700979.

GUACUUA
1712
1800362.

CUCAAG
1712


1
1



1








AD-
A-
1345
AUCACCAUGCAGAUU
1342-
A-
1475
UCGCAUAAUCUGCAUG
1340-


953437.
1700935.

AUGCGA
1362
1800340.

GUGAUGU
1362


1
1



1








AD-
A-
1346
UUGAGUUAAACGAA
1691-
A-
1476
UAGUACGUUCGTUTAAC
1689-


953458.
1700977.

CGUACUA
1711
1800361.

UCAAGC
1711


1
1



1








AD-
A-
1347
GCAGCUUGAGTUAAA
1686-
A-
1477
UGUUCGTUUAACUCAAG
1684-


953453.
1700967.

CGAACA
1706
1800356.

CUGCCU
1706


1
1



1








AD-
A-
1348
CGCACUGAAACUUUU
 648-
A-
1478
UGGACGAAAAGTUTCAG
 646-


953428.
1700917.

CGUCCA
 668
1800331.

UGCGAC
 668


1
1



1








AD-
A-
1349
UCGGUGACAGTCACU
3158-
A-
1479
UAAGCUAGUGACUGUC
3156-


953501.
1701063.

AGCUUA
3178
1800404.

ACCGAUC
3178


1
1



1








AD-
A-
1350
GUGCUAAUGUTAUUG
2182-
A-
1480
UGACACCAAUAACAUTA
2180-


953482.
1701025.

GUGUCA
2202
1800385.

GCACUG
2202


1
1



1








AD-
A-
1351
CGCAGACGTGTAAAU
1634-
A-
1481
UGGAACAUUUACACGTC
1632-


953446.
1700953.

GUUCCA
1654
1800349.

UGCGGA
1654


1
1



1








AD-
A-
1352
AGAGAAGAGACACA
2673-
A-
1482
UCAACAAUGUGTCTCTU
2671-


953488.
1701037.

UUGUUGA
2693
1800391.

CUCUUC
2693


1
1



1








AD-
A-
1353
UGAAGUUCAUGGAU
1160-
A-
1483
UAUAGACAUCCAUGAA
1158-


953434.
1700929.

GUCUAUA
1180
1800337.

CUUCACC
1180


1
1



1








AD-
A-
1354
AAUUCUACAUACUAA
3419-
A-
1484
UGAGAUTUAGUAUGUA
3417-


953546.
1701153.

AUCUCA
3439
1800449.

GAAUUCU
3439


1
1



1








AD-
A-
1355
CAGACGUGTAAAUGU
1636-
A-
1485
UCAGGAACAUUTACACG
1634-


953529.
1701119.

UCCUGA
1656
1800432.

UCUGCG
1656


1
1



1








AD-
A-
1356
CACGAAGUGGTGAAG
1150-
A-
1486
UAUGAACUUCACCACTU
1148-


953433.
1700927.

UUCAUA
1170
1800336.

CGUGAU
1170


1
1



1








AD-
A-
1357
GCUUGAGUTAAACGA
1689-
A-
1487
UTACGUTCGUUTAACTC
1687-


953456.
1700973.

ACGUAA
1709
1800359.

AAGCUG
1709


1
1



1








AD-
A-
1358
CAUCUUCAAGCCAUC
1251-
A-
1488
UCACAGGAUGGCUTGAA
1249-


953435.
1700931.

CUGUGA
1271
1800338.

GAUGUA
1271


1
1



1








AD-
A-
1359
CACCAUGCAGAUUAU
1344-
A-
1489
UTCCGCAUAAUCUGCAU
1342-


953438.
1700937.

GCGGAA
1364
1800341.

GGUGAU
1364


1
1



1








AD-
A-
1360
GGCAGCUUGAGUUA
1685-
A-
1490
UTUCGUTUAACTCAAGC
1683-


953452.
1700965.

AACGAAA
1705
1800355.

UGCCUC
1705


1
1



1








AD-
A-
1361
AUGUCCUCACACCAU
2782-
A-
1491
UTUUCAAUGGUGUGAG
2780-


953489.
1701039.

UGAAAA
2802
1800392.

GACAUAG
2802


1
1



1








AD-
A-
1362
CCGCAGACGUGUAAA
1633-
A-
1492
UGAACATUUACACGUCU
1631-


953445.
1700951.

UGUUCA
1653
1800348.

GCGGAU
1653


1
1



1








AD-
A-
1363
CAGAAUCATCACGAA
1141-
A-
1493
UACCACTUCGUGATGAU
1139-


953432.
1700925.

GUGGUA
1161
1800335.

UCUGCC
1161


1
1



1








AD-
A-
1364
GUGCUACUGUTUAUC
3481-
A-
1494
UTUACGGAUAAACAGTA
3479-


953509.
1701079.

CGUAAA
3501
1800412.

GCACCA
3501


1
1



1








AD-
A-
1365
UGUCCUCACACCAUU
2783-
A-
1495
UGUUTCAAUGGTGTGAG
2781-


953490.
1701041.

GAAACA
2803
1800393.

GACAUA
2803


1
1



1








AD-
A-
1366
CUGCAAAAACACAGA
1653-
A-
1496
UGCGAGTCUGUGUTUTU
1651-


953448.
1700957.

CUCGCA
1673
1800351.

GCAGGA
1673


1
1



1








AD-
A-
1367
GAGGCAGCTUGAGUU
1683-
A-
1497
UCGUTUAACUCAAGCTG
1681-


953450.
1700961.

AAACGA
1703
1800353.

CCUCGC
1703


1
1



1








AD-
A-
1368
AUCCGCAGACGUGUA
1631-
A-
1498
UACATUTACACGUCUGC
1629-


953443.
1700947.

AAUGUA
1651
1800346.

GGAUCU
1651


1
1



1








AD-
A-
1369
GCAUUUGUTUGUACA
1614-
A-
1499
UGAUCUTGUACAAACAA
1612-


953525.
1701111.

AGAUCA
1634
1800428.

AUGCUU
1634


1
1



1








AD-
A-
1370
GAAAGCAUTUGUUUG
1610-
A-
1500
UTUGTACAAACAAAUGC
1608-


953523.
1701107.

UACAAA
1630
1800426.

UUUCUC
1630


1
1



1








AD-
A-
1371
UGGUGCUACUGUUU
3479-
A-
1501
UACGGATAAACAGTAGC
3477-


953507.
1701075.

AUCCGUA
3499
1800410.

ACCAAU
3499


1
1



1








AD-
A-
1372
AGGCAGCUTGAGUUA
1684-
A-
1502
UTCGTUTAACUCAAGCU
1682-


953451.
1700963.

AACGAA
1704
1800354.

GCCUCG
1704


1
1



1








AD-
A-
1373
GCACUGAAACTUUUC
 649-
A-
1503
UTGGACGAAAAGUTUCA
 647-


953429.
1700919.

GUCCAA
 669
1800332.

GUGCGA
 669


1
1



1








AD-
A-
1374
GACUGAUACAGAACG
1798-
A-
1504
UTCGAUCGUUCTGTATC
1796-


953469.
1700999.

AUCGAA
1818
1800372.

AGUCUU
1818


1
1



1








AD-
A-
1375
ACGAACGUACTUGCA
1700-
A-
1505
UACATCTGCAAGUACGU
1698-


953463.
1700987.

GAUGUA
1720
1800366.

UCGUUU
1720


1
1



1








AD-
A-
1376
CAGCUUGAGUTAAAC
1687-
A-
1506
UCGUTCGUUUAACTCAA
1685-


953454.
1700969.

GAACGA
1707
1800357.

GCUGCC
1707


1
1



1








AD-
A-
1377
AGCUUGAGTUAAACG
1688-
A-
1507
UACGTUCGUUUAACUCA
1686-


953455.
1700971.

AACGUA
1708
1800358.

AGCUGC
1708


1
1



1








AD-
A-
1378
GAUAUUAACATCACG
3516-
A-
1508
UAAAGACGUGATGTUAA
3514-


953511.
1701083.

UCUUUA
3536
1800414.

UAUCUU
3536


1
1



1








AD-
A-
1379
CCUGCAAAAACACAG
1652-
A-
1509
UCGAGUCUGUGTUTUTG
1650-


953447.
1700955.

ACUCGA
1672
1800350.

CAGGAA
1672


1
1



1








AD-
A-
1380
GUGCUGGAAUTUGAU
 125-
A-
1510
UTGAAUAUCAAAUTCCA
 123-


953424.
1700909.

AUUCAA
 145
1800327.

GCACCG
 145


1
1



1








AD-
A-
1381
UUGGUGCUACTGUUU
3478-
A-
1511
UCGGAUAAACAGUAGC
3476-


953506.
1701073.

AUCCGA
3498
1800409.

ACCAAUA
3498


1
1



1








AD-
A-
1382
AUUGGUGUCUTCACU
2193-
A-
1512
UCAUCCAGUGAAGACAC
2191-


953537.
1701135.

GGAUGA
2213
1800440.

CAAUAA
2213


1
1



1








AD-
A-
1383
UCUUGCUGCUAAAUC
2010-
A-
1513
UTCGGUGAUUUAGCAGC
2008-


953477.
1701015.

ACCGAA
2030
1800380.

AAGAAA
2030


1
1



1








AD-
A-
1384
UUGCUGCUAAAUCAC
2012-
A-
1514
UGCUCGGUGAUTUAGCA
2010-


953479.
1701019.

CGAGCA
2032
1800382.

GCAAGA
2032


1
1



1








AD-
A-
1385
AGAUUAUGCGGAUC
1352-
A-
1515
UAGGTUTGAUCCGCATA
1350-


953439.
1700939.

AAACCUA
1372
1800342.

AUCUGC
1372


1
1



1








AD-
A-
1386
GGGCAGAATCAUCAC
1138-
A-
1516
UACUTCGUGAUGATUCU
1136-


953431.
1700923.

GAAGUA
1158
1800334.

GCCCUC
1158


1
1



1








AD-
A-
1387
AUUUGUUUGUACAA
1616-
A-
1517
UCGGAUCUUGUACAAA
1614-


953442.
1700945.

GAUCCGA
1636
1800345.

CAAAUGC
1636


1
1



1








AD-
A-
1388
CAAAAACACAGACUC
1656-
A-
1518
UAACGCGAGUCTGTGTU
1654-


953449.
1700959.

GCGUUA
1676
1800352.

UUUGCA
1676


1
1



1








AD-
A-
1389
UGCUACUGTUTAUCC
3482-
A-
1519
UAUUACGGAUAAACAG
3480-


953510.
1701081.

GUAAUA
3502
1800413.

UAGCACC
3502


1
1



1








AD-
A-
1390
ACUUUUCGTCCAACU
 657-
A-
1520
UCCAGAAGUUGGACGA
 655-


953514.
1701089.

UCUGGA
 677
1800417.

AAAGUUU
 677


1
1



1








AD-
A-
1391
GGUGCUACTGTUUAU
3480-
A-
1521
UTACGGAUAAACAGUA
3478-


953508.
1701077.

CCGUAA
3500
1800411.

GCACCAA
3500


1
1



1








AD-
A-
1392
GCAAAAACACAGACU
1655-
A-
1522
UACGCGAGUCUGUGUTU
1653-


953531.
1701123.

CGCGUA
1675
1800434.

UUGCAG
1675


1
1



1








AD-
A-
1393
CGUCGCACTGAAACU
 645-
A-
1523
UCGAAAAGUUUCAGUG
 643-


953427.
1700915.

UUUCGA
 665
1800330.

CGACGCC
 665


1
1



1








AD-
A-
1394
AUAUUAACAUCACGU
3517-
A-
1524
UCAAAGACGUGAUGUT
3515-


953512.
1701085.

CUUUGA
3537
1800415.

AAUAUCU
3537


1
1



1








AD-
A-
1395
AAAACACAGACUCGC
1658-
A-
1525
UGCAACGCGAGTCTGTG
1656-


953533.
1701127.

GUUGCA
1678
1800436.

UUUUUG
1678


1
1



1








AD-
A-
1396
CUUGCAGATGTGACA
1709-
A-
1526
UCGGCUTGUCACATCTG
1707-


953464.
1700989.

AGCCGA
1729
1800367.

CAAGUA
1729


1
1



1








AD-
A-
1397
UUUUUUUUCAGUAU
3027-
A-
1527
UCCAAGAAUACTGAAAA
3025-


953542.
1701145.

UCUUGGA
3047
1800445.

AAAACC
3047


1
1



1








AD-
A-
1398
AAAGUGAGTGACCUG
 415-
A-
1528
UAAAAGCAGGUCACUC
 413-


953426.
1700913.

CUUUUA
 435
1800329.

ACUUUGC
 435


1
1



1








AD-
A-
1399
UUCGUCCAACTUCUG
 661-
A-
1529
UCAGCCCAGAAGUTGGA
 659-


953515.
1701091.

GGCUGA
 681
1800418.

CGAAAA
 681


1
1



1








AD-
A-
1400
AGGACAUUGCTGUGC
2518-
A-
1530
UCCAAAGCACAGCAATG
2516-


953487.
1701035.

UUUGGA
2538
1800390.

UCCUGA
2538


1
1



1








AD-
A-
1401
AAAUCAGUTCGAGGA
1462-
A-
1531
UCCCTUTCCUCGAACTG
1460-


953521.
1701103.

AAGGGA
1482
1800424.

AUUUUU
1482


1
1



1








AD-
A-
1402
UUCCCCAAAUCACUG
 278-
A-
1532
UAUCCACAGUGAUTUGG
 276-


953425.
1700911.

UGGAUA
 298
1800328.

GGAAGU
 298


1
1



1








AD-
A-
1403
CCCUCUUGGAAUUGG
1978-
A-
1533
UCGAAUCCAAUTCCAAG
1976-


953536.
1701133.

AUUCGA
1998
1800439.

AGGGAC
1998


1
1



1








AD-
A-
1404
UUGCAGAUGUGACA
1710-
A-
1534
UTCGGCTUGUCACAUCU
1708-


953465.
1700991.

AGCCGAA
1730
1800368.

GCAAGU
1730


1
1



1








AD-
A-
1405
CACGUCUUTGTCUCU
3527-
A-
1535
UGCACUAGAGACAAAG
3525-


953552.
1701165.

AGUGCA
3547
1800455.

ACGUGAU
3547


1
1



1








AD-
A-
1406
GAUCCGCAGACGUGU
1630-
A-
1536
UCAUTUACACGTCTGCG
1628-


953528.
1701117.

AAAUGA
1650
1800431.

GAUCUU
1650


1
1



1








AD-
A-
1407
AAAAAUCAGUTCGAG
1460-
A-
1537
UCUUTCCUCGAACTGAU
1458-


953519.
1701099.

GAAAGA
1480
1800422.

UUUUUU
1480


1
1



1








AD-
A-
1408
UGCUGUGGACTUGAG
2221-
A-
1538
UCCCAACUCAAGUCCAC
2219-


953486.
1701033.

UUGGGA
2241
1800389.

AGCAGU
2241


1
1



1








AD-
A-
1409
AAGGGGCAAAAACG
1483-
A-
1539
UCGCTUTCGUUTUTGCC
1481-


953522.
1701105.

AAAGCGA
1503
1800425.

CCUUUC
1503


1
1



1








AD-
A-
1410
UGCAAAAACACAGAC
1654-
A-
1540
UCGCGAGUCUGTGTUTU
1652-


953530.
1701121.

UCGCGA
1674
1800433.

UGCAGG
1674


1
1



1








AD-
A-
1411
ACGUCUUUGUCUCUA
3528-
A-
1541
UTGCACTAGAGACAAAG
3526-


953513.
1701087.

GUGCAA
3548
1800416.

ACGUGA
3548


1
1



1








AD-
A-
1412
GGGCAAAAACGAAA
1486-
A-
1542
UTUGCGCUUUCGUTUTU
1484-


953441.
1700943.

GCGCAAA
1506
1800344.

GCCCCU
1506


1
1



1








AD-
A-
1413
AGGGGCAAAAACGA
1484-
A-
1543
UGCGCUTUCGUTUTUGC
1482-


953440.
1700941.

AAGCGCA
1504
1800343.

CCCUUU
1504


1
1



1








AD-
A-
1414
GAAAAAAAAUCAGU
1456-
A-
1544
UCCUCGAACUGAUTUTU
1454-


953518.
1701097.

UCGAGGA
1476
1800421.

UUUCUU
1476


1
1



1








AD-
A-
1415
AAAAUCAGTUCGAGG
1461-
A-
1545
UCCUTUCCUCGAACUGA
1459-


953520.
1701101.

AAAGGA
1481
1800423.

UUUUUU
1481


1
1



1








AD-
A-
1416
AAAAACACAGACUCG
1657-
A-
1546
UCAACGCGAGUCUGUG
1655-


953532.
1701125.

CGUUGA
1677
1800435.

UUUUUGC
1677


1
1



1








AD-
A-
1417
UUUAUCCGTAAUAAU
3490-
A-
1547
UCCACAAUUAUTACGGA
3488-


953548.
1701157.

UGUGGA
3510
1800451.

UAAACA
3510


1
1



1








AD-
A-
1418
AGAUCCGCAGACGUG
1629-
A-
1548
UAUUTACACGUCUGCGG
1627-


953527.
1701115.

UAAAUA
1649
1800430.

AUCUUG
1649


1
1



1








AD-
A-
1419
UUAACAUCACGUCUU
3520-
A-
1549
UAGACAAAGACGUGAT
3518-


953551.
1701163.

UGUCUA
3540
1800454.

GUUAAUA
3540


1
1



1








AD-
A-
1420
CGUCUUUGTCTCUAG
3529-
A-
1550
UCUGCACUAGAGACAA
3527-


953553.
1701167.

UGCAGA
3549
1800456.

AGACGUG
3549


1
1



1








AD-
A-
1421
GUUUAUCCGUAAUA
3489-
A-
1551
UCACAATUAUUACGGAU
3487-


953547.
1701155.

AUUGUGA
3509
1800450.

AAACAG
3509


1
1



1








AD-
A-
1422
UUGUUUGUACAAGA
1618-
A-
1552
UTGCGGAUCUUGUACAA
1616-


953526.
1701113.

UCCGCAA
1638
1800429.

ACAAAU
1638


1
1



1








AD-
A-
1423
UUAUCCGUAATAAUU
3491-
A-
1553
UCCCACAAUUATUACGG
3489-


953549.
1701159.

GUGGGA
3511
1800452.

AUAAAC
3511


1
1



1








AD-
A-
1424
AACACAGACUCGCGU
1660-
A-
1554
UTUGCAACGCGAGTCTG
1658-


953534.
1701129.

UGCAAA
1680
1800437.

UGUUUU
1680


1
1



1








AD-
A-
1425
UUUUUUUCAGTAUUC
3028-
A-
1555
UACCAAGAAUACUGAA
3026-


953543.
1701147.

UUGGUA
3048
1800446.

AAAAAAC
3048


1
1



1








AD-
A-
1426
AUUAACAUCACGUCU
3519-
A-
1556
UGACAAAGACGTGAUG
3517-


953550.
1701161.

UUGUCA
3539
1800453.

UUAAUAU
3539


1
1



1
















TABLE 5A







Exemplary Rat VEGF-A siRNA Modified Single Strands and Duplex Sequences. The mRNA target sequence refers to the target sequence in rat;  the


corresponding human target sequence may differ.























SEQ ID



Sense
SEQ ID

Antisense
SEQ ID


NO:


Duplex
Oligo
NO:

Oligo
NO:

mRNA target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
(Antisense)
Antisense Sequence
sequence
target)





AD-
A-
1557
csgsgaa(Ahd)CfuUf
A-
1644
VPusAfsguuGfgAfCf
CACGGAAACUU
4613


579911.
1110768

UfUfcguccaacsusa
1100967.1

gaaaAfgUfuuccgsusg
UUCGUCCAACU



1
.1





U






AD-
A-
1558
gsgsaaa(Chd)UfuUf
A-
1645
VPusAfsaguUfgGfAf
ACGGAAACUUU
4614


579912.
1110769

UfCfguccaacususa
1100969.1

cgaaAfaGfuuuccsgsu
UCGUCCAACUU



1
.1





C






AD-
A-
1559
csgsaca(Ghd)AfaCfA
A-
1646
VPusGfsauuAfaGfGf
GUCGACAGAAC
4615


579913.
1110770

fGfuccuuaauscsa
1102172.1

acugUfuCfugucgsasc
AGUCCUUAAUC



1
.1





C






AD-
A-
1560
csusgcu(Ahd)AfuGf
A-
1647
VPusGfsacaCfcAfAf
CUCUGCUAAUG
4616


579914.
1110771

UfUfauugguguscsa
1102638.1

uaacAfuUfagcagsasg
UUAUUGGUGUC



1
.1





U






AD-
A-
1561
uscscga(Ghd)AfuAf
A-
1648
VPusGfsuacUfaCfGf
UUUCCGAGAUA
4617


579915.
1110772

UfUfccguaguascsa
1103944.1

gaauAfuCfucggasasa
UUCCGUAGUAC



1
.1





A






AD-
A-
1562
csgsaga(Uhd)AfuUf
A-
1649
VPusAfsuguAfcUfAf
UCCGAGAUAUU
4618


579916.
1110773

CfCfguaguacasusa
1103888.1

cggaAfuAfucucgsgsa
CCGUAGUACAU



1
.1





A






AD-
A-
1563
gscsacg(Ghd)AfaAf
A-
1650
VPusUfsggaCfgAfAf
UUGCACGGAAA
4619


579917.
1110774

CfUfuuucguccsasa
1100961.1

aaguUfuCfcgugcsasa
CUUUUCGUCCA



1
.1





A






AD-
A-
1564
csascgg(Ahd)AfaCf
A-
1651
VPusUfsuggAfcGfAf
UGCACGGAAAC
4620


579918.
1110775

UfUfuucguccasasa
1100963.1

aaagUfuUfccgugscsa
UUUUCGUCCAA



1
.1





C






AD-
A-
1565
gsasgau(Ahd)UfuCf
A-
1652
VPusUfsaugUfaCfUf
CCGAGAUAUUC
4621


579919.
1110776

CfGfuaguacausasa
1103889.1

acggAfaUfaucucsgsg
CGUAGUACAUA



1
.1





u






AD-
A-
1566
ususguu(Uhd)GfuCf
A-
1653
VPusUfsgcgGfaUfCf
AUUUGUUUGUC
4622


579921.
1110778

CfAfagauccgcsasa
1101976.1

uuggAfcAfaacaasasu
CAAGAUCCGCA



1
.1





G






AD-
A-
1567
ascsgga(Ahd)AfcUf
A-
1654
VPusGfsuugGfaCfGf
GCACGGAAACU
4623


579922.
1110779

UfUfucguccaascsa
1100965.1

aaaaGfuUfuccgusgsc
UUUCGUCCAAC



1
.1





u






AD-
A-
1568
asuscau(Ghd)CfgGf
A-
1655
VPusUfsgagGfuUfUf
AGAUCAUGCGG
4624


579923.
1110780

AfUfcaaaccucsasa
1101742.1

gaucCfgCfaugauscsu
AUCAAACCUCA



1
.1





c






AD-
A-
1569
asusgcg(Ghd)AfuCf
A-
1656
VPusUfsgguGfaGfGf
UCAUGCGGAUC
4625


579924.
1110781

AfAfaccucaccsasa
1101659.1

uuugAfuCfcgcausgsa
AAACCUCACCA



1
.1





A






AD-
A-
1570
gsasuca(Uhd)GfcGf
A-
1657
VPusGfsaggUfuUfGf
CAGAUCAUGCG
4626


579925.
1110782

GfAfucaaaccuscsa
1101740.1

auccGfcAfugaucsusg
GAUCAAACCUC



1
.1





A






AD-
A-
1571
ususugu(Uhd)UfgUf
A-
1658
VPusGfscggAfuCfUf
CAUUUGUUUGU
4627


579926.
1110783

CfCfaagauccgscsa
1101974.1

uggaCfaAfacaaasusg
CCAAGAUCCGC



1
.1





A






AD-
A-
1572
gsasucg(Ghd)UfgAf
A-
1659
VPusGfscuaGfuGfAf
CAGAUCGGUGA
4628


579927.
1110784

CfAfgucacuagscsa
1103783.1

cuguCfaCfcgaucsusg
CAGUCACUAGC



1
.1





U






AD-
A-
1573
asasgau(Chd)CfgCfA
A-
1660
VPusUfsuuaCfaCfGf
CCAAGAUCCGC
4629


579929.
1110786

fGfacguguaasasa
1101968.1

ucugCfgGfaucuusgsg
AGACGUGUAAA



1
.1





U






AD-
A-
1574
usgsucc(Ahd)AfgAf
A-
1661
VPusAfscguCfuGfCf
UUUGUCCAAGA
4630


579930.
1110787

UfCfcgcagacgsusa
1101986.1

ggauCfuUfggacasasa
UCCGCAGACGU



1
.1





G






AD-
A-
1575
asuscac(Ghd)UfcUf
A-
1662
VPusUfscuaGfaGfAf
ACAUCACGUCU
4631


579931.
1110788

UfUfgucucuagsasa
1103887.1

caaaGfaCfgugausgsu
UUGUCUCUAGA



1
.1





G






AD-
A-
1576
usgsaaa(Chd)CfaUfG
A-
1663
VPusGfscagAfaAfGf
UCUGAAACCAU
4632


579932.
1110789

fAfacuuucugscsa
1101283.1

uucaUfgGfuuucasgsa
GAACUUUCUGC



1
.1





U






AD-
A-
1577
ususguc(Uhd)CfuAf
A-
1664
VPusGfsaaaAfcUfGf
CUUUGUCUCUA
4633


579933.
1110790

GfAfgcaguuuuscsa
1103908.1

cucuAfgAfgacaasasg
GAGCAGUUUUC



1
.1





c






AD-
A-
1578
csascuu(Chd)CfaGfA
A-
1665
VPusUfsuguCfgUfGf
CUCACUUCCAG
4634


579934.
1110791

fAfacacgacasasa
1102962.1

uuucUfgGfaagugsasg
AAACACGACAA



1
.1





A






AD-
A-
1579
usgsaaa(Uhd)CfuGf
A-
1666
VPusGfsauuGfgAfAf
UAUGAAAUCUG
4635


579935.
1110792

UfGfuuuccaauscsa
1103728.1

acacAfgAfuuucasusa
UGUUUCCAAUC



1
.1





u






AD-
A-
1580
gsasaau(Chd)UfgUf
A-
1667
VPusAfsgauUfgGfAf
AUGAAAUCUGU
4636


579936.
1110793

GfUfuuccaaucsusa
1103730.1

aacaCfaGfauuucsasu
GUUUCCAAUCU



1
.1





C






AD-
A-
1581
ususugu(Chd)UfcUf
A-
1668
VPusAfsaaaCfuGfCf
UCUUUGUCUCU
4637


579937.
1110794

AfGfagcaguuususa
1103906.1

ucuaGfaGfacaaasgsa
AGAGCAGUUUU



1
.1





C






AD-
A-
1582
usgsucu(Chd)UfaGf
A-
1669
VPusGfsgaaAfaCfUf
UUUGUCUCUAG
4638


579938.
1110795

AfGfcaguuuucscsa
1103910.1

gcucUfaGfagacasasa
AGCAGUUUUCC



1
.1





G






AD-
A-
1583
asascug(Uhd)AfuUf
A-
1670
VPusAfsagcGfuAfAf
UAAACUGUAUU
4639


579939.
1110796

GfUfuuuacgcususa
1100541.1

aacaAfuAfcaguususa
GUUUUACGCUU



1
.1





U






AD-
A-
1584
ascsugu(Ahd)UfuGf
A-
1671
VPusAfsaagCfgUfAf
AAACUGUAUUG
4640


579940.
1110797

UfUfuuacgcuususa
1100543.1

aaacAfaUfacagususu
UUUUACGCUUU



1
.1





A






AD-
A-
1585
csusgua(Uhd)UfgUf
A-
1672
VPusUfsaaaGfcGfUf
AACUGUAUUGU
4641


579941.
1110798

UfUfuacgcuuusasa
1100545.1

aaaaCfaAfuacagsusu
UUUACGCUUUA



1
.1





A






AD-
A-
1586
usgsuau(Uhd)GfuUf
A-
1673
VPusUfsuaaAfgCfGf
ACUGUAUUGUU
4642


579942.
1110799

UfUfacgcuuuasasa
1100547.1

uaaaAfcAfauacasgsu
UUACGCUUUAA



1
.1





U






AD-
A-
1587
asusuga(Ahd)AfcCf
A-
1674
VPusAfscagAfaUfUf
CCAUUGAAACC
4643


579943.
1110800

AfCfuaauucugsusa
1103504.1

agugGfuUfucaausgsg
ACUAAUUCUGU



1
.1





C






AD-
A-
1588
ascsuua(Uhd)UfuAf
A-
1675
VPusAfsaaaGfgGfCf
GUACUUAUUUA
4644


579944.
1110801

AfUfagcccuuususa
1103594.1

uauuAfaAfuaagusasc
AUAGCCCUUUU



1
.1





U






AD-
A-
1589
uscsucu(Ahd)GfaGf
A-
1676
VPusUfscggAfaAfAf
UGUCUCUAGAG
4645


579945.
1110802

CfAfguuuuccgsasa
1103914.1

cugcUfcUfagagascsa
CAGUUUUCCGA



1
.1





G






AD-
A-
1590
cscsgag(Ahd)UfaUf
A-
1677
VPusUfsguaCfuAfCf
UUCCGAGAUAU
4646


579946.
1110803

UfCfcguaguacsasa
1103946.1

ggaaUfaUfcucggsasa
UCCGUAGUACA



1
.1





u






AD-
A-
1591
uscsugg(Ghd)AfuUf
A-
1678
VPusUfsuugAfaUfAf
GCUCUGGGAUU
4647


579947.
1110804

UfGfauauucaasasa
1100511.1

ucaaAfuCfccagasgsc
UGAUAUUCAAA



1
.1





c






AD-
A-
1592
ususcac(Uhd)GfgAf
A-
1679
VPusAfsgucAfaAfCf
UCUUCACUGGA
4648


579948.
1110805

UfAfuguuugacsusa
1102658.1

auauCfcAfgugaasgsa
UAUGUUUGACU



1
.1





G






AD-
A-
1593
gsgscuc(Ahd)CfuUf
A-
1680
VPusCfsgugUfuUfCf
UUGGCUCACUU
4649


579949.
1110806

CfCfagaaacacsgsa
1102954.1

uggaAfgUfgagccsasa
CCAGAAACACG



1
.1





A






AD-
A-
1594
csusucc(Ahd)GfaAf
A-
1681
VPusGfsuuuGfuCfGf
CACUUCCAGAA
4650


579950.
1110807

AfCfacgacaaascsa
1102966.1

uguuUfcUfggaagsusg
ACACGACAAAC



1
.1





C






AD-
A-
1595
gsascca(Uhd)UfgAf
A-
1682
VPusAfsauuAfgUfGf
CAGACCAUUGA
4651


579951.
1110808

AfAfccacuaaususa
1103496.1

guuuCfaAfuggucsusg
AACCACUAAUU



1
.1





C






AD-
A-
1596
asgsuca(Chd)UfaGfC
A-
1683
VPusCfsucaGfgAfCf
ACAGUCACUAG
4652


579953.
1110810

fUfuguccugasgsa
1103805.1

aagcUfaGfugacusgsu
CUUGUCCUGAG



1
.1





A






AD-
A-
1597
ascscac(Ahd)CfaUfU
A-
1684
VPusAfsuuuCfaAfAf
CCACCACACAU
4653


579954.
1110811

fCfcuuugaaasusa
1103837.1

ggaaUfgUfguggusgsg
UCCUUUGAAAU



1
.1





A






AD-
A-
1598
ascscgg(Ahd)AfaGf
A-
1685
VPusGfsguuAfaUfCf
UCACCGGAAAG
4654


579955.
1110812

AfCfcgauuaacscsa
1102128.1

ggucUfuUfccggusgsa
ACCGAUUAACC



1
.1





A






AD-
A-
1599
asgsacc(Ghd)AfuUf
A-
1686
VPusGfsugaCfaUfGf
AAAGACCGAUU
4655


579956.
1110813

AfAfccaugucascsa
1102142.1

guuaAfuCfggucususu
AACCAUGUCAC



1
.1





C






AD-
A-
1600
csusuca(Chd)UfgGf
A-
1687
VPusGfsucaAfaCfAf
GUCUUCACUGG
4656


579957.
1110814

AfUfauguuugascsa
1102656.1

uaucCfaGfugaagsasc
AUAUGUUUGAC



1
.1





U






AD-
A-
1601
ususggc(Uhd)CfaCf
A-
1688
VPusUfsguuUfcUfGf
CGUUGGCUCAC
4657


579958.
1110815

UfUfccagaaacsasa
1102950.1

gaagUfgAfgccaascsg
UUCCAGAAACA



1
.1





c






AD-
A-
1602
csuscac(Uhd)UfcCfA
A-
1689
VPusGfsucgUfgUfUf
GGCUCACUUCC
4658


579959.
1110816

fGfaaacacgascsa
1102958.1

ucugGfaAfgugagscsc
AGAAACACGAC



1
.1





A






AD-
A-
1603
gsusgac(Ahd)GfuCf
A-
1690
VPusGfsacaAfgCfUf
CGGUGACAGUC
4659


579960.
1110817

AfCfuagcuuguscsa
1103795.1

agugAfcUfgucacscsg
ACUAGCUUGUC



1
.1





c






AD-
A-
1604
gsuscuc(Uhd)AfgAf
A-
1691
VPusCfsggaAfaAfCf
UUGUCUCUAGA
4660


579961.
1110818

GfCfaguuuuccsgsa
1103912.1

ugcuCfuAfgagacsasa
GCAGUUUUCCG



1
.1





A






AD-
A-
1605
csuscua(Ghd)AfgCf
A-
1692
VPusCfsucgGfaAfAf
GUCUCUAGAGC
4661


579962.
1110819

AfGfuuuuccgasgsa
1103916.1

acugCfuCfuagagsasc
AGUUUUCCGAG



1
.1





A






AD-
A-
1606
gsusuuu(Chd)CfgAf
A-
1693
VPusUfsacgGfaAfUf
CAGUUUUCCGA
4662


579963.
1110820

GfAfuauuccgusasa
1103936.1

aucuCfgGfaaaacsusg
GAUAUUCCGUA



1
.1





G






AD-
A-
1607
ususccg(Ahd)GfaUf
A-
1694
VPusUfsacuAfcGfGf
UUUUCCGAGAU
4663


579964.
1110821

AfUfuccguagusasa
1103942.1

aauaUfcUfcggaasasa
AUUCCGUAGUA



1
.1





C






AD-
A-
1608
ususaaa(Chd)UfgUf
A-
1695
VPusCfsguaAfaAfCf
UCUUAAACUGU
4664


579965.
1110822

AfUfuguuuuacsgsa
1100535.1

aauaCfaGfuuuaasgsa
AUUGUUUUACG



1
.1





C






AD-
A-
1609
asasacu(Ghd)UfaUf
A-
1696
VPusAfsgcgUfaAfAf
UUAAACUGUAU
4665


579966.
1110823

UfGfuuuuacgcsusa
1100539.1

acaaUfaCfaguuusasa
UGUUUUACGCU



1
.1





U






AD-
A-
1610
gsasuuc(Ghd)CfcAf
A-
1697
VPusAfsuauAfaGfAf
UGGAUUCGCCA
4666


579967.
1110824

UfUfuucuuauasusa
1102468.1

aaauGfgCfgaaucscsa
UUUUCUUAUAU



1
.1





U






AD-
A-
1611
uscsacu(Ghd)GfaUf
A-
1698
VPusCfsaguCfaAfAf
CUUCACUGGAU
4667


579968.
1110825

AfUfguuugacusgsa
1102660.1

cauaUfcCfagugasasg
AUGUUUGACUG



1
.1





c






AD-
A-
1612
gsusugg(Chd)UfcAf
A-
1699
VPusGfsuuuCfuGfGf
ACGUUGGCUCA
4668


579969.
1110826

CfUfuccagaaascsa
1102948.1

aaguGfaGfccaacsgsu
CUUCCAGAAAC



1
.1





A






AD-
A-
1613
ascsuuc(Chd)AfgAf
A-
1700
VPusUfsuugUfcGfUf
UCACUUCCAGA
4669


579970.
1110827

AfAfcacgacaasasa
1102964.1

guuuCfuGfgaagusgsa
AACACGACAAA



1
.1





C






AD-
A-
1614
usascuu(Ahd)UfuUf
A-
1701
VPusAfsaagGfgCfUf
GGUACUUAUUU
4670


579971.
1110828

AfAfuagcccuususa
1103592.1

auuaAfaUfaaguascsc
AAUAGCCCUUU



1
.1





U






AD-
A-
1615
asgsagc(Ahd)GfuUf
A-
1702
VPusAfsuauCfuCfGf
CUAGAGCAGUU
4671


579972.
1110829

UfUfccgagauasusa
1103924.1

gaaaAfcUfgcucusasg
UUCCGAGAUAU



1
.1





U






AD-
A-
1616
usgsgga(Uhd)UfuGf
A-
1703
VPusGfsguuUfgAfAf
UCUGGGAUUUG
4672


579973.
1110830

AfUfauucaaacscsa
1100515.1

uaucAfaAfucccasgsa
AUAUUCAAACC



1
.1





U






AD-
A-
1617
gsgsgau(Uhd)UfgAf
A-
1704
VPusAfsgguUfuGfAf
CUGGGAUUUGA
4673


579974.
1110831

UfAfuucaaaccsusa
1100517.1

auauCfaAfaucccsasg
UAUUCAAACCU



1
.1





C






AD-
A-
1618
gsasuuu(Ghd)AfuAf
A-
1705
VPusAfsgagGfuUfUf
GGGAUUUGAUA
4674


579975.
1110832

UfUfcaaaccucsusa
1100521.1

gaauAfuCfaaaucscsc
UUCAAACCUCU



1
.1





U






AD-
A-
1619
usasaac(Uhd)GfuAf
A-
1706
VPusGfscguAfaAfAf
CUUAAACUGUA
4675


579976.
1110833

UfUfguuuuacgscsa
1100537.1

caauAfcAfguuuasasg
UUGUUUUACGC



1
.1





U






AD-
A-
1620
uscsacc(Ghd)GfaAf
A-
1707
VPusUfsuaaUfcGfGf
UCUCACCGGAA
4676


579977.
1110834

AfGfaccgauuasasa
1102124.1

ucuuUfcCfggugasgsa
AGACCGAUUAA



1
.1





C






AD-
A-
1621
csasccg(Ghd)AfaAf
A-
1708
VPusGfsuuaAfuCfGf
CUCACCGGAAA
4677


579978.
1110835

GfAfccgauuaascsa
1102126.1

gucuUfuCfcggugsasg
GACCGAUUAAC



1
.1





C






AD-
A-
1622
cscsgga(Ahd)AfgAf
A-
1709
VPusUfsgguUfaAfUf
CACCGGAAAGA
4678


579979.
1110836

CfCfgauuaaccsasa
1102130.1

cgguCfuUfuccggsusg
CCGAUUAACCA



1
.1





U






AD-
A-
1623
gsasacu(Ghd)GfaUf
A-
1710
VPusGfsaaaAfuGfGf
UGGAACUGGAU
4679


579980.
1110837

UfCfgccauuuuscsa
1102456.1

cgaaUfcCfaguucscsa
UCGCCAUUUUC



1
.1





U






AD-
A-
1624
csascug(Ghd)AfuAf
A-
1711
VPusGfscagUfcAfAf
UUCACUGGAUA
4680


579981.
1110838

UfGfuuugacugscsa
1102662.1

acauAfuCfcagugsasa
UGUUUGACUGC



1
.1





U






AD-
A-
1625
gsgsacc(Uhd)UfgUf
A-
1712
VPusGfsgucUfgAfUf
GAGGACCUUGU
4681


579982.
1110839

GfUfgaucagacscsa
1103464.1

cacaCfaAfgguccsusc
GUGAUCAGACC



1
.1





A






AD-
A-
1626
uscsaga(Chd)CfaUfU
A-
1713
VPusUfsaguGfgUfUf
GAUCAGACCAU
4682


579983.
1110840

fGfaaaccacusasa
1103490.1

ucaaUfgGfucugasusc
UGAAACCACUA



1
.1





A






AD-
A-
1627
csasuug(Ahd)AfaCf
A-
1714
VPusCfsagaAfuUfAf
ACCAUUGAAAC
4683


579984.
1110841

CfAfcuaauucusgsa
1103502.1

guggUfuUfcaaugsgsu
CACUAAUUCUG



1
.1





U






AD-
A-
1628
csusaga(Ghd)CfaGf
A-
1715
VPusAfsucuCfgGfAf
CUCUAGAGCAG
4684


579985.
1110842

UfUfuuccgagasusa
1103920.1

aaacUfgCfucuagsasg
UUUUCCGAGAU



1
.1





A






AD-
A-
1629
usasgag(Chd)AfgUf
A-
1716
VPusUfsaucUfcGfGf
UCUAGAGCAGU
4685


579986.
1110843

UfUfuccgagausasa
1103922.1

aaaaCfuGfcucuasgsa
UUUCCGAGAUA



1
.1





U






AD-
A-
1630
asgsuuu(Uhd)CfcGf
A-
1717
VPusAfscggAfaUfAf
GCAGUUUUCCG
4686


579987.
1110844

AfGfauauuccgsusa
1103934.1

ucucGfgAfaaacusgsc
AGAUAUUCCGU



1
.1





A






AD-
A-
1631
gscsgga(Uhd)CfaAf
A-
1718
VPusUfsuugGfuGfAf
AUGCGGAUCAA
4687


579988.
1110845

AfCfcucaccaasasa
1101748.1

gguuUfgAfuccgcsasu
ACCUCACCAAA



1
.1





G






AD-
A-
1632
asgscau(Uhd)UfgUf
A-
1719
VPusAfsucuUfgGfAf
AAAGCAUUUGU
4688


579989.
1110846

UfUfguccaagasusa
1101962.1

caaaCfaAfaugcususu
UUGUCCAAGAU



1
.1





C






AD-
A-
1633
uscsuca(Chd)CfgGf
A-
1720
VPusAfsaucGfgUfCf
CCUCUCACCGG
4689


579990.
1110847

AfAfagaccgaususa
1102120.1

uuucCfgGfugagasgsg
AAAGACCGAUU



1
.1





A






AD-
A-
1634
uscsuag(Ahd)GfcAf
A-
1721
VPusUfscucGfgAfAf
UCUCUAGAGCA
4690


579992.
1110849

GfUfuuuccgagsasa
1103918.1

aacuGfcUfcuagasgsa
GUUUUCCGAGA



1
.1





U






AD-
A-
1635
asusugc(Ahd)CfgGf
A-
1722
VPusAfscgaAfaAfGf
GGAUUGCACGG
4691


579993.
1110850

AfAfacuuuucgsusa
1100955.1

uuucCfgUfgcaauscsc
AAACUUUUCGU



1
.1





C






AD-
A-
1636
gscsucu(Ghd)GfgAf
A-
1723
VPusUfsgaaUfaUfCf
GUGCUCUGGGA
4692


579995.
1110852

UfUfugauauucsasa
1100507.1

aaauCfcCfagagcsasc
UUUGAUAUUCA



1
.1





A






AD-
A-
1637
usgsagc(Chd)UfuGf
A-
1724
VPusUfsccgCfuCfUf
UGUGAGCCUUG
4693


579996.
1110853

UfUfcagagcggsasa
1101930.1

gaacAfaGfgcucascsa
UUCAGAGCGGA



1
.1





G






AD-
A-
1638
asgsccu(Uhd)GfuUf
A-
1725
VPusUfscucCfgCfUf
UGAGCCUUGUU
4694


579997.
1110854

CfAfgagcggagsasa
1101934.1

cugaAfcAfaggcuscsa
CAGAGCGGAGA



1
.1





A






AD-
A-
1639
csasuuu(Ghd)UfuUf
A-
1726
VPusGfsgauCfuUfGf
AGCAUUUGUUU
4695


579998.
1110855

GfUfccaagaucscsa
1101966.1

gacaAfaCfaaaugscsu
GUCCAAGAUCC



1
.1





G






AD-
A-
1640
gsgsaaa(Ghd)AfcCf
A-
1727
VPusCfsaugGfuUfAf
CCGGAAAGACC
4696


579999.
1110856

GfAfuuaaccausgsa
1102134.1

aucgGfuCfuuuccsgsg
GAUUAACCAUG



1
.1





U






AD-
A-
1641
gsasaag(Ahd)CfcGf
A-
1728
VPusAfscauGfgUfUf
CGGAAAGACCG
4697


580000.
1110857

AfUfuaaccaugsusa
1102136.1

aaucGfgUfcuuucscsg
AUUAACCAUGU



1
.1





C






AD-
A-
1642
asasgac(Chd)GfaUfU
A-
1729
VPusUfsgacAfuGfGf
GAAAGACCGAU
4698


580001.
1110858

fAfaccaugucsasa
1102140.1

uuaaUfcGfgucuususc
UAACCAUGUCA



1
.1





C






AD-
A-
1643
gsasccg(Ahd)UfuAf
A-
1730
VPusGfsgugAfcAfUf
AAGACCGAUUA
4699


580002.
1110859

AfCfcaugucacscsa
1102144.1

gguuAfaUfcggucsusu
ACCAUGUCACC



1
.1





A
















TABLE 5B







Exemplary Rat VEGF-A siRNA Unmodified Single Strands and Duplex Sequences
















Sense
SEQ

mRNA
Antisense
SEQ ID

mRNA


Duplex
Oligo
ID NO:

Target
Oligo
NO:
Antisense
Target


Name
Name
(Sense)
Sense Sequence
Range
Name
(Antisense)
Sequence
Range





AD-
A-
1731
CGGAAACUUUUCGUC
 631-
A-
1818
UAGUUGGACGAAA
 629-


57991
11107

CAACUA
 651
1100967.1

AGUUUCCGUG
 651


1.1
68.1












AD-
A-
1732
GGAAACUUUUCGUCC
 632-
A-
1819
UAAGUUGGACGAA
 630-


57991
11107

AACUUA
 652
1100969.1

AAGUUUCCGU
 652


2.1
69.1












AD-
A-
1733
CGACAGAACAGUCCU
1689-
A-
1820
UGAUUAAGGACUG
1687-


57991
11107

UAAUCA
1709
1102172.1

UUCUGUCGAC
1709


3.1
70.1












AD-
A-
1734
CUGCUAAUGUUAUUG
2020-
A-
1821
UGACACCAAUAAC
2018-


57991
11107

GUGUCA
2040
1102638.1

AUUAGCAGAG
2040


4.1
71.1












AD-
A-
1735
UCCGAGAUAUUCCGU
3364-
A-
1822
UGUACUACGGAAU
3362-


57991
11107

AGUACA
3384
1103944.1

AUCUCGGAAA
3384


5.1
72.1












AD-
A-
1736
CGAGAUAUUCCGUAG
3366-
A-
1823
UAUGUACUACGGA
3364-


57991
11107

UACAUA
3386
1103888.1

AUAUCUCGGA
3386


6.1
73.1












AD-
A-
1737
GCACGGAAACUUUUC
 628-
A-
1824
UUGGACGAAAAGU
 626-


57991
11107

GUCCAA
 648
1100961.1

UUCCGUGCAA
 648


7.1
74.1












AD-
A-
1738
CACGGAAACUUUUCG
 629-
A-
1825
UUUGGACGAAAAG
 627-


57991
11107

UCCAAA
 649
1100963.1

UUUCCGUGCA
 649


8.1
75.1












AD-
A-
1739
GAGAUAUUCCGUAGU
3367-
A-
1826
UUAUGUACUACGG
3365-


57991
11107

ACAUAA
3387
1103889.1

AAUAUCUCGG
3387


9.1
76.1












AD-
A-
1740
UUGUUUGUCCAAGAU
1468-
A-
1827
UUGCGGAUCUUGG
1466-


57992
11107

CCGCAA
1488
1101976.1

ACAAACAAAU
1488


1.1
78.1












AD-
A-
1741
ACGGAAACUUUUCGU
 630-
A-
1828
UGUUGGACGAAAA
 628-


57992
11107

CCAACA
 650
1100965.1

GUUUCCGUGC
 650


2.1
79.1












AD-
A-
1742
AUCAUGCGGAUCAAA
1327-
A-
1829
UUGAGGUUUGAUC
1325-


57992
11107

CCUCAA
1347
1101742.1

CGCAUGAUCU
1347


3.1
80.1












AD-
A-
1743
AUGCGGAUCAAACCU
1330-
A-
1830
UUGGUGAGGUUUG
1328-


57992
11107

CACCAA
1350
1101659.1

AUCCGCAUGA
1350


4.1
81.1












AD-
A-
1744
GAUCAUGCGGAUCAA
1326-
A-
1831
UGAGGUUUGAUCC
1324-


57992
11107

ACCUCA
1346
1101740.1

GCAUGAUCUG
1346


5.1
82.1












AD-
A-
1745
UUUGUUUGUCCAAGA
1467-
A-
1832
UGCGGAUCUUGGA
1465-


57992
11107

UCCGCA
1487
1101974.1

CAAACAAAUG
1487


6.1
83.1












AD-
A-
1746
GAUCGGUGACAGUCA
2972-
A-
1833
UGCUAGUGACUGU
2970-


57992
11107

CUAGCA
2992
1103783.1

CACCGAUCUG
2992


7.1
84.1












AD-
A-
1747
AAGAUCCGCAGACGU
1478-
A-
1834
UUUUACACGUCUG
1476-


57992
11107

GUAAAA
1498
1101968.1

CGGAUCUUGG
1498


9.1
86.1












AD-
A-
1748
UGUCCAAGAUCCGCA
1473-
A-
1835
UACGUCUGCGGAU
1471-


57993
11107

GACGUA
1493
1101986.1

CUUGGACAAA
1493


0.1
87.1












AD-
A-
1749
AUCACGUCUUUGUCU
3337-
A-
1836
UUCUAGAGACAAA
3335-


57993
11107

CUAGAA
3357
1103887.1

GACGUGAUGU
3357


1.1
88.1












AD-
A-
1750
UGAAACCAUGAACUU
1008-
A-
1837
UGCAGAAAGUUCA
1006-


57993
11107

UCUGCA
1028
1101283.1

UGGUUUCAGA
1028


2.1
89.1












AD-
A-
1751
UUGUCUCUAGAGCAG
3346-
A-
1838
UGAAAACUGCUCU
3344-


57993
11107

UUUUCA
3366
1103908.1

AGAGACAAAG
3366


3.1
90.1












AD-
A-
1752
CACUUCCAGAAACACG
2222-
A-
1839
UUUGUCGUGUUUC
2220-


57993
11107

ACAAA
2242
1102962.1

UGGAAGUGAG
2242


4.1
91.1












AD-
A-
1753
UGAAAUCUGUGUUUC
2941-
A-
1840
UGAUUGGAAACAC
2939-


57993
11107

CAAUCA
2961
1103728.1

AGAUUUCAUA
2961


5.1
92.1












AD-
A-
1754
GAAAUCUGUGUUUCC
2942-
A-
1841
UAGAUUGGAAACA
2940-


57993
11107

AAUCUA
2962
1103730.1

CAGAUUUCAU
2962


6.1
93.1












AD-
A-
1755
UUUGUCUCUAGAGCA
3345-
A-
1842
UAAAACUGCUCUA
3343-


57993
11107

GUUUUA
3365
1103906.1

GAGACAAAGA
3365


7.1
94.1












AD-
A-
1756
UGUCUCUAGAGCAGU
3347-
A-
1843
UGGAAAACUGCUC
3345-


57993
11107

UUUCCA
3367
1103910.1

UAGAGACAAA
3367


8.1
95.1












AD-
A-
1757
AACUGUAUUGUUUUA
 167-
A-
1844
UAAGCGUAAAACA
 165-


57993
11107

CGCUUA
 187
1100541.1

AUACAGUUUA
 187


9.1
96.1












AD-
A-
1758
ACUGUAUUGUUUUAC
 168-
A-
1845
UAAAGCGUAAAAC
 166-


57994
11107

GCUUUA
 188
1100543.1

AAUACAGUUU
 188


0.1
97.1












AD-
A-
1759
CUGUAUUGUUUUACG
 169-
A-
1846
UUAAAGCGUAAAA
 167-


57994
11107

CUUUAA
 189
1100545.1

CAAUACAGUU
 189


1.1
98.1












AD-
A-
1760
UGUAUUGUUUUACGC
 170-
A-
1847
UUUAAAGCGUAAA
 168-


57994
11107

UUUAAA
 190
1100547.1

ACAAUACAGU
 190


2.1
99.1












AD-
A-
1761
AUUGAAACCACUAAU
2611-
A-
1848
UACAGAAUUAGUG
2609-


57994
11108

UCUGUA
2631
1103504.1

GUUUCAAUGG
2631


3.1
00.1












AD-
A-
1762
ACUUAUUUAAUAGCC
2764-
A-
1849
UAAAAGGGCUAUU
2762-


57994
11108

CUUUUA
2784
1103594.1

AAAUAAGUAC
2784


4.1
01.1












AD-
A-
1763
UCUCUAGAGCAGUUU
3349-
A-
1850
UUCGGAAAACUGC
3347-


57994
11108

UCCGAA
3369
1103914.1

UCUAGAGACA
3369


5.1
02.1












AD-
A-
1764
CCGAGAUAUUCCGUA
3365-
A-
1851
UUGUACUACGGAA
3363-


57994
11108

GUACAA
3385
1103946.1

UAUCUCGGAA
3385


6.1
03.1












AD-
A-
1765
UCUGGGAUUUGAUAU
 129-
A-
1852
UUUUGAAUAUCAA
 127-


57994
11108

UCAAAA
 149
1100511.1

AUCCCAGAGC
 149


7.1
04.1












AD-
A-
1766
UUCACUGGAUAUGUU
2040-
A-
1853
UAGUCAAACAUAU
2038-


57994
11108

UGACUA
2060
1102658.1

CCAGUGAAGA
2060


8.1
05.1












AD-
A-
1767
GGCUCACUUCCAGAA
2218-
A-
1854
UCGUGUUUCUGGA
2216-


57994
11108

ACACGA
2238
1102954.1

AGUGAGCCAA
2238


9.1
06.1












AD-
A-
1768
CUUCCAGAAACACGAC
2224-
A-
1855
UGUUUGUCGUGUU
2222-


57995
11108

AAACA
2244
1102966.1

UCUGGAAGUG
2244


0.1
07.1












AD-
A-
1769
GACCAUUGAAACCAC
2607-
A-
1856
UAAUUAGUGGUUU
2605-


57995
11108

UAAUUA
2627
1103496.1

CAAUGGUCUG
2627


1.1
08.1












AD-
A-
1770
AGUCACUAGCUUGUC
2982-
A-
1857
UCUCAGGACAAGC
2980-


57995
11108

CUGAGA
3002
1103805.1

UAGUGACUGU
3002


3.1
10.1












AD-
A-
1771
ACCACACAUUCCUUUG
3049-
A-
1858
UAUUUCAAAGGAA
3047-


57995
11108

AAAUA
3069
1103837.1

UGUGUGGUGG
3069


4.1
11.1












AD-
A-
1772
ACCGGAAAGACCGAU
1639-
A-
1859
UGGUUAAUCGGUC
1637-


57995
11108

UAACCA
1659
1102128.1

UUUCCGGUGA
1659


5.1
12.1












AD-
A-
1773
AGACCGAUUAACCAU
1646-
A-
1860
UGUGACAUGGUUA
1644-


57995
11108

GUCACA
1666
1102142.1

AUCGGUCUUU
1666


6.1
13.1












AD-
A-
1774
CUUCACUGGAUAUGU
2039-
A-
1861
UGUCAAACAUAUC
2037-


57995
11108

UUGACA
2059
1102656.1

CAGUGAAGAC
2059


7.1
14.1












AD-
A-
1775
UUGGCUCACUUCCAG
2216-
A-
1862
UUGUUUCUGGAAG
2214-


57995
11108

AAACAA
2236
1102950.1

UGAGCCAACG
2236


8.1
15.1












AD-
A-
1776
CUCACUUCCAGAAACA
2220-
A-
1863
UGUCGUGUUUCUG
2218-


57995
11108

CGACA
2240
1102958.1

GAAGUGAGCC
2240


9.1
16.1












AD-
A-
1777
GUGACAGUCACUAGC
2977-
A-
1864
UGACAAGCUAGUG
2975-


57996
11108

UUGUCA
2997
1103795.1

ACUGUCACCG
2997


0.1
17.1












AD-
A-
1778
GUCUCUAGAGCAGUU
3348-
A-
1865
UCGGAAAACUGCU
3346-


57996
11108

UUCCGA
3368
1103912.1

CUAGAGACAA
3368


1.1
18.1












AD-
A-
1779
CUCUAGAGCAGUUUU
3350-
A-
1866
UCUCGGAAAACUG
3348-


57996
11108

CCGAGA
3370
1103916.1

CUCUAGAGAC
3370


2.1
19.1












AD-
A-
1780
GUUUUCCGAGAUAUU
3360-
A-
1867
UUACGGAAUAUCU
3358-


57996
11108

CCGUAA
3380
1103936.1

CGGAAAACUG
3380


3.1
20.1












AD-
A-
1781
UUCCGAGAUAUUCCG
3363-
A-
1868
UUACUACGGAAUA
3361-


57996
11108

UAGUAA
3383
1103942.1

UCUCGGAAAA
3383


4.1
21.1












AD-
A-
1782
UUAAACUGUAUUGUU
 164-
A-
1869
UCGUAAAACAAUA
 162-


57996
11108

UUACGA
 184
1100535.1

CAGUUUAAGA
 184


5.1
22.1












AD-
A-
1783
AAACUGUAUUGUUUU
 166-
A-
1870
UAGCGUAAAACAA
 164-


57996
11108

ACGCUA
 186
1100539.1

UACAGUUUAA
 186


6.1
23.1












AD-
A-
1784
GAUUCGCCAUUUUCU
1830-
A-
1871
UAUAUAAGAAAAU
1828-


57996
11108

UAUAUA
1850
1102468.1

GGCGAAUCCA
1850


7.1
24.1












AD-
A-
1785
UCACUGGAUAUGUUU
2041-
A-
1872
UCAGUCAAACAUA
2039-


57996
11108

GACUGA
2061
1102660.1

UCCAGUGAAG
2061


8.1
25.1












AD-
A-
1786
GUUGGCUCACUUCCA
2215-
A-
1873
UGUUUCUGGAAGU
2213-


57996
11108

GAAACA
2235
1102948.1

GAGCCAACGU
2235


9.1
26.1












AD-
A-
1787
ACUUCCAGAAACACG
2223-
A-
1874
UUUUGUCGUGUUU
2221-


57997
11108

ACAAAA
2243
1102964.1

CUGGAAGUGA
2243


0.1
27.1












AD-
A-
1788
UACUUAUUUAAUAGC
2763-
A-
1875
UAAAGGGCUAUUA
2761-


57997
11108

CCUUUA
2783
1103592.1

AAUAAGUACC
2783


1.1
28.1












AD-
A-
1789
AGAGCAGUUUUCCGA
3354-
A-
1876
UAUAUCUCGGAAA
3352-


57997
11108

GAUAUA
3374
1103924.1

ACUGCUCUAG
3374


2.1
29.1












AD-
A-
1790
UGGGAUUUGAUAUUC
 131-
A-
1877
UGGUUUGAAUAUC
 129-


57997
11108

AAACCA
 151
1100515.1

AAAUCCCAGA
 151


3.1
30.1












AD-
A-
1791
GGGAUUUGAUAUUCA
 132-
A-
1878
UAGGUUUGAAUAU
 130-


57997
11108

AACCUA
 152
1100517.1

CAAAUCCCAG
 152


4.1
31.1












AD-
A-
1792
GAUUUGAUAUUCAAA
 134-
A-
1879
UAGAGGUUUGAAU
 132-


57997
11108

CCUCUA
 154
1100521.1

AUCAAAUCCC
 154


5.1
32.1












AD-
A-
1793
UAAACUGUAUUGUUU
 165-
A-
1880
UGCGUAAAACAAU
 163-


57997
11108

UACGCA
 185
1100537.1

ACAGUUUAAG
 185


6.1
33.1












AD-
A-
1794
UCACCGGAAAGACCG
1637-
A-
1881
UUUAAUCGGUCUU
1635-


57997
11108

AUUAAA
1657
1102124.1

UCCGGUGAGA
1657


7.1
34.1












AD-
A-
1795
CACCGGAAAGACCGA
1638-
A-
1882
UGUUAAUCGGUCU
1636-


57997
11108

UUAACA
1658
1102126.1

UUCCGGUGAG
1658


8.1
35.1












AD-
A-
1796
CCGGAAAGACCGAUU
1640-
A-
1883
UUGGUUAAUCGGU
1638-


57997
11108

AACCAA
1660
1102130.1

CUUUCCGGUG
1660


9.1
36.1












AD-
A-
1797
GAACUGGAUUCGCCA
1824-
A-
1884
UGAAAAUGGCGAA
1822-


57998
11108

UUUUCA
1844
1102456.1

UCCAGUUCCA
1844


0.1
37.1












AD-
A-
1798
CACUGGAUAUGUUUG
2042-
A-
1885
UGCAGUCAAACAU
2040-


57998
11108

ACUGCA
2062
1102662.1

AUCCAGUGAA
2062


1.1
38.1












AD-
A-
1799
GGACCUUGUGUGAUC
2591-
A-
1886
UGGUCUGAUCACA
2589-


57998
11108

AGACCA
2611
1103464.1

CAAGGUCCUC
2611


2.1
39.1












AD-
A-
1800
UCAGACCAUUGAAAC
2604-
A-
1887
UUAGUGGUUUCAA
2602-


57998
11108

CACUAA
2624
1103490.1

UGGUCUGAUC
2624


3.1
40.1












AD-
A-
1801
CAUUGAAACCACUAA
2610-
A-
1888
UCAGAAUUAGUGG
2608-


57998
11108

UUCUGA
2630
1103502.1

UUUCAAUGGU
2630


4.1
41.1












AD-
A-
1802
CUAGAGCAGUUUUCC
3352-
A-
1889
UAUCUCGGAAAAC
3350-


57998
11108

GAGAUA
3372
1103920.1

UGCUCUAGAG
3372


5.1
42.1












AD-
A-
1803
UAGAGCAGUUUUCCG
3353-
A-
1890
UUAUCUCGGAAAA
3351-


57998
11108

AGAUAA
3373
1103922.1

CUGCUCUAGA
3373


6.1
43.1












AD-
A-
1804
AGUUUUCCGAGAUAU
3359-
A-
1891
UACGGAAUAUCUC
3357-


57998
11108

UCCGUA
3379
1103934.1

GGAAAACUGC
3379


7.1
44.1












AD-
A-
1805
GCGGAUCAAACCUCAC
1332-
A-
1892
UUUUGGUGAGGUU
1330-


57998
11108

CAAAA
1352
1101748.1

UGAUCCGCAU
1352


8.1
45.1












AD-
A-
1806
AGCAUUUGUUUGUCC
1463-
A-
1893
UAUCUUGGACAAA
1461-


57998
11108

AAGAUA
1483
1101962.1

CAAAUGCUUU
1483


9.1
46.1












AD-
A-
1807
UCUCACCGGAAAGACC
1635-
A-
1894
UAAUCGGUCUUUC
1633-


57999
11108

GAUUA
1655
1102120.1

CGGUGAGAGG
1655


0.1
47.1












AD-
A-
1808
UCUAGAGCAGUUUUC
3351-
A-
1895
UUCUCGGAAAACU
3349-


57999
11108

CGAGAA
3371
1103918.1

GCUCUAGAGA
3371


2.1
49.1












AD-
A-
1809
AUUGCACGGAAACUU
 625-
A-
1896
UACGAAAAGUUUC
 623-


57999
11108

UUCGUA
 645
1100955.1

CGUGCAAUCC
 645


3.1
50.1












AD-
A-
1810
GCUCUGGGAUUUGAU
 127-
A-
1897
UUGAAUAUCAAAU
 125-


57999
11108

AUUCAA
 147
1100507.1

CCCAGAGCAC
 147


5.1
52.1












AD-
A-
1811
UGAGCCUUGUUCAGA
1440-
A-
1898
UUCCGCUCUGAAC
1438-


57999
11108

GCGGAA
1460
1101930.1

AAGGCUCACA
1460


6.1
53.1












AD-
A-
1812
AGCCUUGUUCAGAGC
1442-
A-
1899
UUCUCCGCUCUGA
1440-


57999
11108

GGAGAA
1462
1101934.1

ACAAGGCUCA
1462


7.1
54.1












AD-
A-
1813
CAUUUGUUUGUCCAA
1465-
A-
1900
UGGAUCUUGGACA
1463-


57999
11108

GAUCCA
1485
1101966.1

AACAAAUGCU
1485


8.1
55.1












AD-
A-
1814
GGAAAGACCGAUUAA
1642-
A-
1901
UCAUGGUUAAUCG
1640-


57999
11108

CCAUGA
1662
1102134.1

GUCUUUCCGG
1662


9.1
56.1












AD-
A-
1815
GAAAGACCGAUUAAC
1643-
A-
1902
UACAUGGUUAAUC
1641-


58000
11108

CAUGUA
1663
1102136.1

GGUCUUUCCG
1663


0.1
57.1












AD-
A-
1816
AAGACCGAUUAACCA
1645-
A-
1903
UUGACAUGGUUAA
1643-


58000
11108

UGUCAA
1665
1102140.1

UCGGUCUUUC
1665


1.1
58.1












AD-
A-
1817
GACCGAUUAACCAUG
1647-
A-
1904
UGGUGACAUGGUU
1645-


58000
11108

UCACCA
1667
1102144.1

AAUCGGUCUU
1667


2.1
59.1
















TABLE 8A







Exemplary Human VEGF-A siRNA Modified Single Strands and Duplex Sequences



















Anti-
SEQ ID


SEQ ID




SEQ

sense
NO:


NO:


Duplex
Sense Oligo
ID NO:

Oligo
(Anti-

mRNA Target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence
Sequence
target)





AD-
A-
2000
csgsgugcUfgGfAfAfuuuga
A-
2449
VPusAfsauaUfcaaauucC
CUCGGUGCUGGAAU
4700


12228
22821

uauuaL96
228211

faGfcaccgsasg
UUGAUAUUC



66.1
11.1


2.1









AD-
A-
2001
gsgsugcuGfgAfAfUfuugau
A-
2450
VPusGfsaauAfucaaauuC
UCGGUGCUGGAAUU
4701


12228
22821

auucaL96
228211

fcAfgcaccsgsa
UGAUAUUCA



67.1
13.1


4.1









AD-
A-
2002
usgscuggAfaUfUfUfgauauu
A-
2451
VPusAfsugaAfuaucaaaU
GGUGCUGGAAUUUG
4702


12228
22821

cauaL96
228211

fuCfcagcascsc
AUAUUCAUU



68.1
15.1


6.1









AD-
A-
2003
gscsuggaAfuUfUfGfauauuc
A-
2452
VPusAfsaugAfauaucaaA
GUGCUGGAAUUUGA
4703


12228
22821

auuaL96
228211

fuUfccagcsasc
UAUUCAUUG



69.1
17.1


8.1









AD-
A-
2004
usgsgaauUfuGfAfUfauucau
A-
2453
VPusUfscaaUfgaauaucA
GCUGGAAUUUGAUA
4704


12228
22821

ugaaL96
228212

faAfuuccasgsc
UUCAUUGAU



70.1
19.1


0.1









AD-
A-
2005
gsgsaauuUfgAfUfAfuucauu
A-
2454
VPusAfsucaAfugaauauC
CUGGAAUUUGAUAU
4705


12228
22821

gauaL96
228212

faAfauuccsasg
UCAUUGAUC



71.1
21.1


2.1









AD-
A-
2006
gsasauuuGfaUfAfUfucauug
A-
2455
VPusGfsaucAfaugaauaU
UGGAAUUUGAUAU
4706


12228
22821

aucaL96
228212

fcAfaauucscsa
UCAUUGAUCC



72.1
23.1


4.1









AD-
A-
2007
asasuuugAfuAfUfUfcauuga
A-
2456
VPusGfsgauCfaaugaauA
GGAAUUUGAUAUUC
4707


12228
22821

uccaL96
228212

fuCfaaauuscsc
AUUGAUCCG



73.1
25.1


6.1









AD-
A-
2008
asusuugaUfaUfUfCfauugau
A-
2457
VPusCfsggaUfcaaugaaU
GAAUUUGAUAUUCA
4708


12228
22821

ccgaL96
228212

faUfcaaaususc
UUGAUCCGG



74.1
27.1


8.1









AD-
A-
2009
ususugauAfuUfCfAfuugauc
A-
2458
VPusCfscggAfucaaugaA
AAUUUGAUAUUCAU
4709


12228
22821

cggaL96
228213

fuAfucaaasusu
UGAUCCGGG



75.1
29.1


0.1









AD-
A-
2010
ususuauuUfuUfGfCfuugcca
A-
2459
VPusGfsaauGfgcaagcaA
AAUUUAUUUUUGCU
4710


12228
22821

uucaL96
228213

faAfauaaasusu
UGCCAUUCC



76.1
31.1


2.1









AD-
A-
2011
ususauuuUfuGfCfUfugccau
A-
2460
VPusGfsgaaUfggcaagcA
AUUUAUUUUUGCUU
4711


12228
22821

uccaL96
228213

faAfaauaasasu
GCCAUUCCC



77.1
33.1


4.1









AD-
A-
2012
csasaaucAfcUfGfUfggauuu
A-
2461
VPusCfscaaAfauccacaG
CCCAAAUCACUGUG
4712


12228
22821

uggaL96
228213

fuGfauuugsgsg
GAUUUUGGA



78.1
35.1


6.1









AD-
A-
2013
asasaucaCfuGfUfGfgauuuu
A-
2462
VPusUfsccaAfaauccacA
CCAAAUCACUGUGG
4713


12228
22821

ggaaL96
228213

fgUfgauuusgsg
AUUUUGGAA



79.1
37.1


8.1









AD-
A-
2014
asasucacUfgUfGfGfauuuug
A-
2463
VPusUfsuccAfaaauccaC
CAAAUCACUGUGGA
4714


12228
22821

gaaaL96
228214

faGfugauususg
UUUUGGAAA



80.1
39.1


0.1









AD-
A-
2015
asuscacuGfuGfGfAfuuuugg
A-
2464
VPusUfsuucCfaaaauccA
AAAUCACUGUGGAU
4715


12228
22821

aaaaL96
228214

fcAfgugaususu
UUUGGAAAC



81.1
41.1


2.1









AD-
A-
2016
uscsacugUfgGfAfUfuuugga
A-
2465
VPusGfsuuuCfcaaaaucC
AAUCACUGUGGAUU
4716


12228
22821

aacaL96
228214

faCfagugasusu
UUGGAAACC



82.1
43.1


4.1









AD-
A-
2017
csascuguGfgAfUfUfuuggaa
A-
2466
VPusGfsguuUfccaaaauC
AUCACUGUGGAUUU
4717


12228
22821

accaL96
228214

fcAfcagugsasu
UGGAAACCA



83.1
45.1


6.1









AD-
A-
2018
ascsugugGfaUfUfUfuggaaa
A-
2467
VPusUfsgguUfuccaaaaU
UCACUGUGGAUUUU
4718


12228
22821

ccaaL96
228214

fcCfacagusgsa
GGAAACCAG



84.1
47.1


8.1









AD-
A-
2019
csusguggAfuUfUfUfggaaac
A-
2468
VPusCfsuggUfuuccaaaA
CACUGUGGAUUUUG
4719


12228
22821

cagaL96
228215

fuCfcacagsusg
GAAACCAGC



85.1
49.1


0.1









AD-
A-
2020
usgsuggaUfuUfUfGfgaaacc
A-
2469
VPusGfscugGfuuuccaa
ACUGUGGAUUUUGG
4720


12228
22821

agcaL96
228215

AfaUfccacasgsu
AAACCAGCA



86.1
51.1


2.1









AD-
A-
2021
gsusggauUfuUfGfGfaaacca
A-
2470
VPusUfsgcuGfguuucca
CUGUGGAUUUUGGA
4721


12228
22821

gcaaL96
228215

AfaAfuccacsasg
AACCAGCAG



87.1
53.1


4.1









AD-
A-
2022
gsasuuuuGfgAfAfAfccagca
A-
2471
VPusUfsucuGfcugguuu
UGGAUUUUGGAAAC
4722


12228
22821

gaaaL96
228215

CfcAfaaaucscsa
CAGCAGAAA



88.1
55.1


6.1









AD-
A-
2023
asusuuugGfaAfAfCfcagcag
A-
2472
VPusUfsuucUfgcugguu
GGAUUUUGGAAACC
4723


12228
22821

aaaaL96
228215

UfcCfaaaauscsc
AGCAGAAAG



89.1
57.1


8.1









AD-
A-
2024
ususuuggAfaAfCfCfagcaga
A-
2473
VPusCfsuuuCfugcuggu
GAUUUUGGAAACCA
4724


12228
22821

aagaL96
228216

UfuCfcaaaasusc
GCAGAAAGA



90.1
59.1


0.1









AD-
A-
2025
ususuggaAfaCfCfAfgcagaa
A-
2474
VPusUfscuuUfcugcugg
AUUUUGGAAACCAG
4725


12228
22821

agaaL96
228216

UfuUfccaaasasu
CAGAAAGAG



91.1
61.1


2.1









AD-
A-
2026
gsgsaaacCfaGfCfAfgaaaga
A-
2475
VPusUfsccuCfuuucugc
UUGGAAACCAGCAG
4726


12228
22821

ggaaL96
228216

UfgGfuuuccsasa
AAAGAGGAA



92.1
63.1


4.1









AD-
A-
2027
asasaccaGfcAfGfAfaagagg
A-
2476
VPusUfsuucCfucuuucu
GGAAACCAGCAGAA
4727


12228
22821

aaaaL96
228216

GfcUfgguuuscsc
AGAGGAAAG



93.1
65.1


6.1









AD-
A-
2028
asasccagCfaGfAfAfagagga
A-
2477
VPusCfsuuuCfcucuuuc
GAAACCAGCAGAAA
4728


12228
22821

aagaL96
228216

UfgCfugguususc
GAGGAAAGA



94.1
67.1


8.1









AD-
A-
2029
ascscagcAfgAfAfAfgaggaa
A-
2478
VPusUfscuuUfccucuuu
AAACCAGCAGAAAG
4729


12228
22821

agaaL96
228217

CfuGfcuggususu
AGGAAAGAG



95.1
69.1


0.1









AD-
A-
2030
cscsagcaGfaAfAfGfaggaaa
A-
2479
VPusCfsucuUfuccucuu
AACCAGCAGAAAGA
4730


12228
22821

gagaL96
228217

UfcUfgcuggsusu
GGAAAGAGG



96.1
71.1


2.1









AD-
A-
2031
csasgcagAfaAfGfAfggaaag
A-
2480
VPusCfscucUfuuccucuU
ACCAGCAGAAAGAG
4731


12228
22821

aggaL96
228217

fuCfugcugsgsu
GAAAGAGGU



97.1
73.1


4.1









AD-
A-
2032
asgscagaAfaGfAfGfgaaaga
A-
2481
VPusAfsccuCfuuuccucU
CCAGCAGAAAGAGG
4732


12228
22821

gguaL96
228217

fuUfcugcusgsg
AAAGAGGUA



98.1
75.1


6.1









AD-
A-
2033
gscsagaaAfgAfGfGfaaagag
A-
2482
VPusUfsaccUfcuuuccuC
CAGCAGAAAGAGGA
4733


12228
22821

guaaL96
228217

fuUfucugcsusg
AAGAGGUAG



99.1
77.1


8.1









AD-
A-
2034
csasgaaaGfaGfGfAfaagagg
A-
2483
VPusCfsuacCfucuuuccU
AGCAGAAAGAGGAA
4734


12229
22821

uagaL96
228218

fcUfuucugscsu
AGAGGUAGC



00.1
79.1


0.1









AD-
A-
2035
asasagagGfaAfAfGfagguag
A-
2484
VPusUfsugcUfaccucuu
AGAAAGAGGAAAG
4735


12229
22821

caaaL96
228218

UfcCfucuuuscsu
AGGUAGCAAG



01.1
81.1


2.1









AD-
A-
2036
asasgaggAfaAfGfAfgguagc
A-
2485
VPusCfsuugCfuaccucuU
GAAAGAGGAAAGA
4736


12229
22821

aagaL96
228218

fuCfcucuususc
GGUAGCAAGA



02.1
83.1


4.1









AD-
A-
2037
asgsaggaAfaGfAfGfguagca
A-
2486
VPusUfscuuGfcuaccucU
AAAGAGGAAAGAG
4737


12229
22821

agaaL96
228218

fuUfccucususu
GUAGCAAGAG



03.1
85.1


6.1









AD-
A-
2038
gsasggaaAfgAfGfGfuagcaa
A-
2487
VPusCfsucuUfgcuaccuC
AAGAGGAAAGAGG
4738


12229
22821

gagaL96
228218

fuUfuccucsusu
UAGCAAGAGC



04.1
87.1


8.1









AD-
A-
2039
gsgsaaagAfgGfUfAfgcaaga
A-
2488
VPusAfsgcuCfuugcuacC
GAGGAAAGAGGUA
4739


12229
22821

gcuaL96
228219

fuCfuuuccsusc
GCAAGAGCUC



05.1
89.1


0.1









AD-
A-
2040
asgsguagCfaAfGfAfgcucca
A-
2489
VPusCfsucuGfgagcucu
AGAGGUAGCAAGAG
4740


12229
22821

gagaL96
228219

UfgCfuaccuscsu
CUCCAGAGA



06.1
91.1


2.1









AD-
A-
2041
uscscagaGfaGfAfAfgucgag
A-
2490
VPusUfsuccUfcgacuucU
GCUCCAGAGAGAAG
4741


12229
22821

gaaaL96
228219

fcUfcuggasgsc
UCGAGGAAG



07.1
93.1


4.1









AD-
A-
2042
cscsagagAfgAfAfGfucgagg
A-
2491
VPusCfsuucCfucgacuuC
CUCCAGAGAGAAGU
4742


12229
22821

aagaL96
228219

fuCfucuggsasg
CGAGGAAGA



08.1
95.1


6.1









AD-
A-
2043
csasgagaGfaAfGfUfcgagga
A-
2492
VPusUfscuuCfcucgacuU
UCCAGAGAGAAGUC
4743


12229
22821

agaaL96
228219

fcUfcucugsgsa
GAGGAAGAG



09.1
97.1


8.1









AD-
A-
2044
asgsagaaGfuCfGfAfggaaga
A-
2493
VPusCfsucuCfuuccucgA
AGAGAGAAGUCGAG
4744


12229
22821

gagaL96
228220

fcUfucucuscsu
GAAGAGAGA



10.1
99.1


0.1









AD-
A-
2045
gsasgaagUfcGfAfGfgaagag
A-
2494
VPusUfscucUfcuuccucG
GAGAGAAGUCGAGG
4745


12229
22822

agaaL96
228220

faCfuucucsusc
AAGAGAGAG



11.1
01.1


2.1









AD-
A-
2046
gsasagucGfaGfGfAfagagag
A-
2495
VPusUfscucUfcucuuccU
GAGAAGUCGAGGAA
4746


12229
22822

agaaL96
228220

fcGfacuucsusc
GAGAGAGAC



12.1
03.1


4.1









AD-
A-
2047
asgsugagUfgAfCfCfugcuuu
A-
2496
VPusCfscaaAfagcagguC
AAAGUGAGUGACCU
4747


12229
22822

uggaL96
228220

faCfucacususu
GCUUUUGGG



13.1
05.1


6.1









AD-
A-
2048
gsgscgucGfcAfCfUfgaaacu
A-
2497
VPusAfsaaaGfuuucagu
GCGGCGUCGCACUG
4748


12229
22822

uuuaL96
228220

GfcGfacgccsgsc
AAACUUUUC



14.1
07.1


8.1









AD-
A-
2049
gsuscgcaCfuGfAfAfacuuuu
A-
2498
VPusAfscgaAfaaguuuc
GCGUCGCACUGAAA
4749


12229
22822

cguaL96
228221

AfgUfgcgacsgsc
CUUUUCGUC



15.1
09.1


0.1









AD-
A-
2050
uscsgcacUfgAfAfAfcuuuuc
A-
2499
VPusGfsacgAfaaaguuuC
CGUCGCACUGAAAC
4750


12229
22822

gucaL96
228221

faGfugcgascsg
UUUUCGUCC



16.1
11.1


2.1









AD-
A-
2051
csascugaAfaCfUfUfuucguc
A-
2500
VPusUfsuggAfcgaaaag
CGCACUGAAACUUU
4751


12229
22822

caaaL96
228221

UfuUfcagugscsg
UCGUCCAAC



17.1
13.1


4.1









AD-
A-
2052
ascsugaaAfcUfUfUfucgucc
A-
2501
VPusGfsuugGfacgaaaaG
GCACUGAAACUUUU
4752


12229
22822

aacaL96
228221

fuUfucagusgsc
CGUCCAACU



18.1
15.1


6.1









AD-
A-
2053
usgsaaacUfuUfUfCfguccaa
A-
2502
VPusAfsaguUfggacgaa
ACUGAAACUUUUCG
4753


12229
22822

cuuaL96
228222

AfaGfuuucasgsu
UCCAACUUC



20.1
19.1


0.1









AD-
A-
2054
asascuuuUfcGfUfCfcaacuu
A-
2503
VPusCfsagaAfguuggac
GAAACUUUUCGUCC
4754


12229
22822

cugaL96
228222

GfaAfaaguususc
AACUUCUGG



21.1
21.1


2.1









AD-
A-
2055
csusgggcUfgUfUfCfucgcuu
A-
2504
VPusCfscgaAfgcgagaaC
UUCUGGGCUGUUCU
4755


12229
22822

cggaL96
228222

faGfcccagsasa
CGCUUCGGA



22.1
23.1


4.1









AD-
A-
2056
usgsggcuGfuUfCfUfcgcuuc
A-
2505
VPusUfsccgAfagcgagaA
UCUGGGCUGUUCUC
4756


12229
22822

ggaaL96
228222

fcAfgcccasgsa
GCUUCGGAG



23.1
25.1


6.1









AD-
A-
2057
gsgsgcugUfuCfUfCfgcuucg
A-
2506
VPusCfsuccGfaagcgagA
CUGGGCUGUUCUCG
4757


12229
22822

gagaL96
228222

faCfagcccsasg
CUUCGGAGG



24.1
27.1


8.1









AD-
A-
2058
gscsuguuCfuCfGfCfuucgga
A-
2507
VPusUfsccuCfcgaagcgA
GGGCUGUUCUCGCU
4758


12229
22822

ggaaL96
228223

fgAfacagcscsc
UCGGAGGAG



25.1
29.1


0.1









AD-
A-
2059
gscscgcgAfgAfAfGfugcuag
A-
2508
VPusGfsagcUfagcacuuC
GAGCCGCGAGAAGU
4759


12229
22822

cucaL96
228223

fuCfgcggcsusc
GCUAGCUCG



26.1
31.1


2.1









AD-
A-
2060
cscsgcgaGfaAfGfUfgcuagc
A-
2509
VPusCfsgagCfuagcacuU
AGCCGCGAGAAGUG
4760


12229
22822

ucgaL96
228223

fcUfcgcggscsu
CUAGCUCGG



27.1
33.1


4.1









AD-
A-
2061
gscscuccGfaAfAfCfcaugaa
A-
2510
VPusAfsaguUfcaugguu
GGGCCUCCGAAACC
4761


12229
22822

cuuaL96
228223

UfcGfgaggcscsc
AUGAACUUU



28.1
35.1


6.1









AD-
A-
2062
asasggagGfaGfGfGfcagaau
A-
2511
VPusAfsugaUfucugccc
AGAAGGAGGAGGGC
4762


12229
22822

cauaL96
228223

UfcCfuccuuscsu
AGAAUCAUC



29.1
37.1


8.1









AD-
A-
2063
gsgscagaAfuCfAfUfcacgaa
A-
2512
VPusCfsacuUfcgugaug
AGGGCAGAAUCAUC
4763


12229
22822

gugaL96
228224

AfuUfcugccscsu
ACGAAGUGG



30.1
39.1


0.1









AD-
A-
2064
asasucauCfaCfGfAfaguggu
A-
2513
VPusUfsucaCfcacuucgU
AGAAUCAUCACGAA
4764


12229
22822

gaaaL96
228224

fgAfugauuscsu
GUGGUGAAG



31.1
41.1


2.1









AD-
A-
2065
asuscaucAfcGfAfAfguggug
A-
2514
VPusCfsuucAfccacuucG
GAAUCAUCACGAAG
4765


12229
22822

aagaL96
228224

fuGfaugaususc
UGGUGAAGU



32.1
43.1


4.1









AD-
A-
2066
uscsaucaCfgAfAfGfugguga
A-
2515
VPusAfscuuCfaccacuuC
AAUCAUCACGAAGU
4766


12229
22822

aguaL96
228224

fgUfgaugasusu
GGUGAAGUU



33.1
45.1


6.1









AD-
A-
2067
csasucacGfaAfGfUfggugaa
A-
2516
VPusAfsacuUfcaccacuU
AUCAUCACGAAGUG
4767


12229
22822

guuaL96
228224

fcGfugaugsasu
GUGAAGUUC



34.1
47.1


8.1









AD-
A-
2068
uscsacgaAfgUfGfGfugaagu
A-
2517
VPusUfsgaaCfuucaccaC
CAUCACGAAGUGGU
4768


12229
22822

ucaaL96
228225

fuUfcgugasusg
GAAGUUCAU



35.1
49.1


0.1









AD-
A-
2069
asasguggUfgAfAfGfuucaug
A-
2518
VPusAfsuccAfugaacuuC
CGAAGUGGUGAAGU
4769


12229
22822

gauaL96
228225

faCfcacuuscsg
UCAUGGAUG



36.1
51.1


2.1









AD-
A-
2070
asgsugguGfaAfGfUfucaugg
A-
2519
VPusCfsaucCfaugaacuU
GAAGUGGUGAAGU
4770


12229
22822

augaL96
228225

fcAfccacususc
UCAUGGAUGU



37.1
53.1


4.1









AD-
A-
2071
gsusggugAfaGfUfUfcaugga
A-
2520
VPusAfscauCfcaugaacU
AAGUGGUGAAGUUC
4771


12229
22822

uguaL96
228225

fuCfaccacsusu
AUGGAUGUC



38.1
55.1


6.1









AD-
A-
2072
gsgsugaaGfuUfCfAfuggaug
A-
2521
VPusAfsgacAfuccaugaA
GUGGUGAAGUUCAU
4772


12229
22822

ucuaL96
228225

fcUfucaccsasc
GGAUGUCUA



39.1
57.1


8.1









AD-
A-
2073
gsusgaagUfuCfAfUfggaugu
A-
2522
VPusUfsagaCfauccaugA
UGGUGAAGUUCAUG
4773


12229
22822

cuaaL96
228226

faCfuucacscsa
GAUGUCUAU



40.1
59.1


0.1









AD-
A-
2074
usgsaaguUfcAfUfGfgauguc
A-
2523
VPusAfsuagAfcauccauG
GGUGAAGUUCAUGG
4774


12229
22822

uauaL96
228226

faAfcuucascsc
AUGUCUAUC



41.1
61.1


2.1









AD-
A-
2075
asasguucAfuGfGfAfugucua
A-
2524
VPusUfsgauAfgacauccA
UGAAGUUCAUGGAU
4775


12229
22822

ucaaL96
228226

fuGfaacuuscsa
GUCUAUCAG



42.1
63.1


4.1









AD-
A-
2076
asgsuucaUfgGfAfUfgucuau
A-
2525
VPusCfsugaUfagacaucC
GAAGUUCAUGGAUG
4776


12229
22822

cagaL96
228226

faUfgaacususc
UCUAUCAGC



43.1
65.1


6.1









AD-
A-
2077
ususcaugGfaUfGfUfcuauca
A-
2526
VPusCfsgcuGfauagacaU
AGUUCAUGGAUGUC
4777


12229
22822

gcgaL96
228226

fcCfaugaascsu
UAUCAGCGC



44.1
67.1


8.1









AD-
A-
2078
gsusggacAfuCfUfUfccagga
A-
2527
VPusUfsacuCfcuggaagA
UGGUGGACAUCUUC
4778


12229
22822

guaaL96
228227

fuGfuccacscsa
CAGGAGUAC



45.1
69.1


0.1









AD-
A-
2079
uscsgaguAfcAfUfCfuucaag
A-
2528
VPusUfsggcUfugaagau
GAUCGAGUACAUCU
4779


12229
22822

ccaaL96
228227

GfuAfcucgasusc
UCAAGCCAU



46.1
71.1


2.1









AD-
A-
2080
csgsaguaCfaUfCfUfucaagc
A-
2529
VPusAfsuggCfuugaaga
AUCGAGUACAUCUU
4780


12229
22822

cauaL96
228227

UfgUfacucgsasu
CAAGCCAUC



47.1
73.1


4.1









AD-
A-
2081
gsasguacAfuCfUfUfcaagcc
A-
2530
VPusGfsaugGfcuugaag
UCGAGUACAUCUUC
4781


12229
22822

aucaL96
228227

AfuGfuacucsgsa
AAGCCAUCC



48.1
75.1


6.1









AD-
A-
2082
gsusacauCfuUfCfAfagccau
A-
2531
VPusAfsggaUfggcuuga
GAGUACAUCUUCAA
4782


12229
22822

ccuaL96
228227

AfgAfuguacsusc
GCCAUCCUG



49.1
77.1


8.1









AD-
A-
2083
cscsaacaUfcAfCfCfaugcaga
A-
2532
VPusAfsaucUfgcauggu
GUCCAACAUCACCA
4783


12229
22822

uuaL96
228228

GfaUfguuggsasc
UGCAGAUUA



50.1
79.1


0.1









AD-
A-
2084
csasacauCfaCfCfAfugcaga
A-
2533
VPusUfsaauCfugcaugg
UCCAACAUCACCAU
4784


12229
22822

uuaaL96
228228

UfgAfuguugsgsa
GCAGAUUAU



51.1
81.1


2.1









AD-
A-
2085
ascsaucaCfAfUfGfcagauu
A-
2534
VPusCfsauaAfucugcauG
CAACAUCACCAUGC
4785


12229
22822

augaL96
228228

fgUfgaugususg
AGAUUAUGC



52.1
83.1


4.1









AD-
A-
2086
csasucacCfaUfGfCfagauua
A-
2535
VPusGfscauAfaucugcaU
AACAUCACCAUGCA
4786


12229
22822

ugcaL96
228228

fgGfugaugsusu
GAUUAUGCG



53.1
85.1


6.1









AD-
A-
2087
ascscaugCfaGfAfUfuaugcg
A-
2536
VPusAfsuccGfcauaaucU
UCACCAUGCAGAUU
4787


12229
22822

gauaL96
228228

fgCfauggusgsa
AUGCGGAUC



54.1
87.1


8.1









AD-
A-
2088
asusgcagAfuUfAfUfgcggau
A-
2537
VPusUfsugaUfccgcauaA
CCAUGCAGAUUAUG
4788


12229
22822

caaaL96
228229

fuCfugcausgsg
CGGAUCAAA



55.1
89.1


0.1









AD-
A-
2089
usgscagaUfuAfUfGfcggauc
A-
2538
VPusUfsuugAfuccgcau
CAUGCAGAUUAUGC
4789


12229
22822

aaaaL96
228229

AfaUfcugcasusg
GGAUCAAAC



56.1
91.1


2.1









AD-
A-
2090
gscsagauUfaUfGfCfggauca
A-
2539
VPusGfsuuuGfauccgca
AUGCAGAUUAUGCG
4790


12229
22822

aacaL96
228229

UfaAfucugcsasu
GAUCAAACC



57.1
93.1


4.1









AD-
A-
2091
gsasuuauGfcGfGfAfucaaac
A-
2540
VPusGfsaggUfuugaucc
CAGAUUAUGCGGAU
4791


12229
22822

cucaL96
228229

GfcAfuaaucsusg
CAAACCUCA



58.1
95.1


6.1









AD-
A-
2092
asusuaugCfgGfAfUfcaaacc
A-
2541
VPusUfsgagGfuuugauc
AGAUUAUGCGGAUC
4792


12229
22822

ucaaL96
228229

CfgCfauaauscsu
AAACCUCAC



59.1
97.1


8.1









AD-
A-
2093
csgsgaucAfaAfCfCfucacca
A-
2542
VPusCfscuuGfgugaggu
UGCGGAUCAAACCU
4793


12229
22822

aggaL96
228230

UfuGfauccgscsa
CACCAAGGC



60.1
99.1


0.1









AD-
A-
2094
gsgsagagAfuGfAfGfcuuccu
A-
2543
VPusUfsguaGfgaagcuc
UAGGAGAGAUGAGC
4794


12229
22823

acaaL96
228230

AfuCfucuccsusa
UUCCUACAG



61.1
01.1


2.1









AD-
A-
2095
gsasgaugAfgCfUfUfccuaca
A-
2544
VPusUfsgcuGfuaggaag
GAGAGAUGAGCUUC
4795


12229
22823

gcaaL96
228230

CfuCfaucucsusc
CUACAGCAC



62.1
03.1


4.1









AD-
A-
2096
gsasugagCfuUfCfCfuacagc
A-
2545
VPusUfsgugCfuguagga
GAGAUGAGCUUCCU
4796


12229
22823

acaaL96
228230

AfgCfucaucsusc
ACAGCACAA



63.1
05.1


6.1









AD-
A-
2097
asusgagcUfuCfCfUfacagca
A-
2546
VPusUfsuguGfcuguagg
AGAUGAGCUUCCUA
4797


12229
22823

caaaL96
228230

AfaGfcucauscsu
CAGCACAAC



64.1
07.1


8.1









AD-
A-
2098
gsasgcuuCfcUfAfCfagcaca
A-
2547
VPusUfsguuGfugcugua
AUGAGCUUCCUACA
4798


12229
22823

acaaL96
228231

GfgAfagcucsasu
GCACAACAA



65.1
09.1


0.1









AD-
A-
2099
asgscuucCfuAfCfAfgcacaa
A-
2548
VPusUfsuguUfgugcugu
UGAGCUUCCUACAG
4799


12229
22823

caaaL96
228231

AfgGfaagcuscsa
CACAACAAA



66.1
11.1


2.1









AD-
A-
2100
gscsuuccUfaCfAfGfcacaac
A-
2549
VPusUfsuugUfugugcug
GAGCUUCCUACAGC
4800


12229
22823

aaaaL96
228231

UfaGfgaagcsusc
ACAACAAAU



67.1
13.1


4.1









AD-
A-
2101
csusuccuAfcAfGfCfacaaca
A-
2550
VPusAfsuuuGfuugugcu
AGCUUCCUACAGCA
4801


12229
22823

aauaL96
228231

GfuAfggaagscsu
CAACAAAUG



68.1
15.1


6.1









AD-
A-
2102
uscscuacAfgCfAfCfaacaaa
A-
2551
VPusAfscauUfuguugug
CUUCCUACAGCACA
4802


12229
22823

uguaL96
228231

CfuGfuaggasasg
ACAAAUGUG



69.1
17.1


8.1









AD-
A-
2103
csusacagCfaCfAfAfcaaaug
A-
2552
VPusUfscacAfuuuguug
UCCUACAGCACAAC
4803


12229
22823

ugaaL96
228232

UfgCfuguagsgsa
AAAUGUGAA



70.1
19.1


0.1









AD-
A-
2104
usascagcAfcAfAfCfaaaugu
A-
2553
VPusUfsucaCfauuuguu
CCUACAGCACAACA
4804


12229
22823

gaaaL96
228232

GfuGfcuguasgsg
AAUGUGAAU



71.1
21.1


2.1









AD-
A-
2105
asgscacaAfcAfAfAfugugaa
A-
2554
VPusGfscauUfcacauuuG
ACAGCACAACAAAU
4805


12229
22823

ugcaL96
228232

fuUfgugcusgsu
GUGAAUGCA



72.1
23.1


4.1









AD-
A-
2106
gscsacaaCfaAfAfUfgugaau
A-
2555
VPusUfsgcaUfucacauuU
CAGCACAACAAAUG
4806


12229
22823

gcaaL96
228232

fgUfugugcsusg
UGAAUGCAG



73.1
25.1


6.1









AD-
A-
2107
csuscaccAfgGfAfAfagacug
A-
2556
VPusUfsaucAfgucuuuc
CUCUCACCAGGAAA
4807


12229
22823

auaaL96
228232

CfuGfgugagsasg
GACUGAUAC



74.1
27.1


8.1









AD-
A-
2108
uscsaccaGfgAfAfAfgacuga
A-
2557
VPusGfsuauCfagucuuu
UCUCACCAGGAAAG
4808


12229
22823

uacaL96
228233

CfcUfggugasgsa
ACUGAUACA



75.1
29.1


0.1









AD-
A-
2109
csasccagGfaAfAfGfacugau
A-
2558
VPusUfsguaUfcagucuu
CUCACCAGGAAAGA
4809


12229
22823

acaaL96
228233

UfcCfuggugsasg
CUGAUACAG



76.1
31.1


2.1









AD-
A-
2110
ascscaggAfaAfGfAfcugaua
A-
2559
VPusCfsuguAfucagucu
UCACCAGGAAAGAC
4810


12229
22823

cagaL96
228233

UfuCfcuggusgsa
UGAUACAGA



77.1
33.1


4.1









AD-
A-
2111
cscsaggaAfaGfAfCfugauac
A-
2560
VPusUfscugUfaucaguc
CACCAGGAAAGACU
4811


12229
22823

agaaL96
228233

UfuUfccuggsusg
GAUACAGAA



78.1
35.1


6.1









AD-
A-
2112
csasggaaAfgAfCfUfgauaca
A-
2561
VPusUfsucuGfuaucagu
ACCAGGAAAGACUG
4812


12229
22823

gaaaL96
228233

CfuUfuccugsgsu
AUACAGAAC



79.1
37.1


8.1









AD-
A-
2113
asgsgaaaGfaCfUfGfauacag
A-
2562
VPusGfsuucUfguaucag
CCAGGAAAGACUGA
4813


12229
22823

aacaL96
228234

UfcUfuuccusgsg
UACAGAACG



80.1
39.1


0.1









AD-
A-
2114
gsgsaaagAfcUfGfAfuacaga
A-
2563
VPusCfsguuCfuguauca
CAGGAAAGACUGAU
4814


12229
22823

acgaL96
228234

GfuCfuuuccsusg
ACAGAACGA



81.1
41.1


2.1









AD-
A-
2115
gsasaagaCfuGfAfUfacagaa
A-
2564
VPusUfscguUfcuguauc
AGGAAAGACUGAUA
4815


12229
22823

cgaaL96
228234

AfgUfcuuucscsu
CAGAACGAU



82.1
43.1


4.1









AD-
A-
2116
asasagacUfgAfUfAfcagaac
A-
2565
VPusAfsucgUfucuguau
GGAAAGACUGAUAC
4816


12229
22823

gauaL96
228234

CfaGfucuuuscsc
AGAACGAUC



83.1
45.1


6.1









AD-
A-
2117
asasgacuGfaUfAfCfagaacg
A-
2566
VPusGfsaucGfuucugua
GAAAGACUGAUACA
4817


12229
22823

aucaL96
228234

UfcAfgucuususc
GAACGAUCG



84.1
47.1


8.1









AD-
A-
2118
asgsacugAfuAfCfAfgaacga
A-
2567
VPusCfsgauCfguucugu
AAAGACUGAUACAG
4818


12229
22823

ucgaL96
228235

AfuCfagucususu
AACGAUCGA



85.1
49.1


0.1









AD-
A-
2119
gsascugaUfaCfAfGfaacgau
A-
2568
VPusUfscgaUfcguucug
AAGACUGAUACAGA
4819


12229
22823

cgaaL96
228235

UfaUfcagucsusu
ACGAUCGAU



86.1
51.1


2.1









AD-
A-
2120
ascsugauAfcAfGfAfacgauc
A-
2569
VPusAfsucgAfucguucu
AGACUGAUACAGAA
4820


12229
22823

gauaL96
228235

GfuAfucaguscsu
CGAUCGAUA



87.1
53.1


4.1









AD-
A-
2121
csusgauaCfaGfAfAfcgaucg
A-
2570
VPusUfsaucGfaucguuc
GACUGAUACAGAAC
4821


12229
22823

auaaL96
228235

UfgUfaucagsusc
GAUCGAUAC



88.1
55.1


6.1









AD-
A-
2122
usgsauacAfgAfAfCfgaucga
A-
2571
VPusGfsuauCfgaucguu
ACUGAUACAGAACG
4822


12229
22823

uacaL96
228235

CfuGfuaucasgsu
AUCGAUACA



89.1
57.1


8.1









AD-
A-
2123
gsasuacaGfaAfCfGfaucgau
A-
2572
VPusUfsguaUfcgaucgu
CUGAUACAGAACGA
4823


12229
22823

acaaL96
228236

UfcUfguaucsasg
UCGAUACAG



90.1
59.1


0.1









AD-
A-
2124
asusacagAfaCfGfAfucgaua
A-
2573
VPusCfsuguAfucgaucg
UGAUACAGAACGAU
4824


12229
22823

cagaL96
228236

UfuCfuguauscsa
CGAUACAGA



91.1
61.1


2.1









AD-
A-
2125
usascagaAfcGfAfUfcgauac
A-
2574
VPusUfscugUfaucgauc
GAUACAGAACGAUC
4825


12229
22823

agaaL96
228236

GfuUfcuguasusc
GAUACAGAA



92.1
63.1


4.1









AD-
A-
2126
ascsagaaCfgAfUfCfgauaca
A-
2575
VPusUfsucuGfuaucgau
AUACAGAACGAUCG
4826


12229
22823

gaaaL96
228236

CfgUfucugusasu
AUACAGAAA



93.1
65.1


6.1









AD-
A-
2127
csasgaacGfaUfCfGfauacag
A-
2576
VPusUfsuucUfguaucga
UACAGAACGAUCGA
4827


12229
22823

aaaaL96
228236

UfcGfuucugsusa
UACAGAAAC



94.1
67.1


8.1









AD-
A-
2128
asgsaacgAfuCfGfAfuacaga
A-
2577
VPusGfsuuuCfuguaucg
ACAGAACGAUCGAU
4828


12229
22823

aacaL96
228237

AfuCfguucusgsu
ACAGAAACC



95.1
69.1


0.1









AD-
A-
2129
gsasacgaUfcGfAfUfacagaa
A-
2578
VPusGfsguuUfcuguauc
CAGAACGAUCGAUA
4829


12229
22823

accaL96
228237

GfaUfcguucsusg
CAGAAACCA



96.1
71.1


2.1









AD-
A-
2130
asascgauCfgAfUfAfcagaaa
A-
2579
VPusUfsgguUfucuguau
AGAACGAUCGAUAC
4830


12229
22823

ccaaL96
228237

CfgAfucguuscsu
AGAAACCAC



97.1
73.1


4.1









AD-
A-
2131
ascsgaucGfaUfAfCfagaaac
A-
2580
VPusGfsuggUfuucugua
GAACGAUCGAUACA
4831


12229
22823

cacaL96
228237

UfcGfaucgususc
GAAACCACG



98.1
75.1


6.1









AD-
A-
2132
csgsaucgAfuAfCfAfgaaacc
A-
2581
VPusCfsgugGfuuucugu
AACGAUCGAUACAG
4832


12229
22823

acgaL96
228237

AfuCfgaucgsusu
AAACCACGC



99.1
77.1


8.1









AD-
A-
2133
csasccauCfaCfCfAfucgacag
A-
2582
VPusUfsucuGfucgaugg
CACACCAUCACCAU
4833


12230
22823

aaaL96
228238

UfgAfuggugsusg
CGACAGAAC



00.1
79.1


0.1









AD-
A-
2134
csasucacCfaUfCfGfacagaac
A-
2583
VPusCfsuguUfcugucga
ACCAUCACCAUCGA
4834


12230
22823

agaL96
228238

UfgGfugaugsgsu
CAGAACAGU



01.1
81.1


2.1









AD-
A-
2135
uscsaccaUfcGfAfCfagaaca
A-
2584
VPusGfsacuGfuucuguc
CAUCACCAUCGACA
4835


12230
22823

gucaL96
228238

GfaUfggugasusg
GAACAGUCC



02.1
83.1


4.1









AD-
A-
2136
csasccauCfgAfCfAfgaacag
A-
2585
VPusGfsgacUfguucugu
AUCACCAUCGACAG
4836


12230
22823

uccaL96
228238

CfgAfuggugsasu
AACAGUCCU



03.1
85.1


6.1









AD-
A-
2137
ascscaucGfaCfAfGfaacagu
A-
2586
VPusAfsggaCfuguucug
UCACCAUCGACAGA
4837


12230
22823

ccuaL96
228238

UfcGfauggusgsa
ACAGUCCUU



04.1
87.1


8.1









AD-
A-
2138
cscsaucgAfcAfGfAfacaguc
A-
2587
VPusAfsaggAfcuguucu
CACCAUCGACAGAA
4838


12230
22823

cuuaL96
228239

GfuCfgauggsusg
CAGUCCUUA



05.1
89.1


0.1









AD-
A-
2139
csasucgaCfaGfAfAfcagucc
A-
2588
VPusUfsaagGfacuguuc
ACCAUCGACAGAAC
4839


12230
22823

uuaaL96
228239

UfgUfcgaugsgsu
AGUCCUUAA



06.1
91.1


2.1









AD-
A-
2140
asuscgacAfgAfAfCfaguccu
A-
2589
VPusUfsuaaGfgacuguu
CCAUCGACAGAACA
4840


12230
22823

uaaaL96
228239

CfuGfucgausgsg
GUCCUUAAU



07.1
93.1


4.1









AD-
A-
2141
uscsgacaGfaAfCfAfguccuu
A-
2590
VPusAfsuuaAfggacugu
CAUCGACAGAACAG
4841


12230
22823

aauaL96
228239

UfcUfgucgasusg
UCCUUAAUC



08.1
95.1


6.1









AD-
A-
2142
csgsacagAfaCfAfGfuccuua
A-
2591
VPusGfsauuAfaggacug
AUCGACAGAACAGU
4842


12230
22823

aucaL96
228239

UfuCfugucgsasu
CCUUAAUCC



09.1
97.1


8.1









AD-
A-
2143
gsascagaAfcAfGfUfccuuaa
A-
2592
VPusGfsgauUfaaggacu
UCGACAGAACAGUC
4843


12230
22823

uccaL96
228240

GfuUfcugucsgsa
CUUAAUCCA



10.1
99.1


0.1









AD-
A-
2144
ascsagaaCfaGfUfCfcuuaau
A-
2593
VPusUfsggaUfuaaggac
CGACAGAACAGUCC
4844


12230
22824

ccaaL96
228240

UfgUfucuguscsg
UUAAUCCAG



11.1
01.1


2.1









AD-
A-
2145
asgsaacaGfuCfCfUfuaaucc
A-
2594
VPusUfscugGfauuaagg
ACAGAACAGUCCUU
4845


12230
22824

agaaL96
228240

AfcUfguucusgsu
AAUCCAGAA



12.1
03.1


4.1









AD-
A-
2146
gsasacagUfcCfUfUfaaucca
A-
2595
VPusUfsucuGfgauuaag
CAGAACAGUCCUUA
4846


12230
22824

gaaaL96
228240

GfaCfuguucsusg
AUCCAGAAA



13.1
05.1


6.1









AD-
A-
2147
asascaguCfcUfUfAfauccag
A-
2596
VPusUfsuucUfggauuaa
AGAACAGUCCUUAA
4847


12230
22824

aaaaL96
228240

GfgAfcuguuscsu
UCCAGAAAC



14.1
07.1


8.1









AD-
A-
2148
ascsagucCfuUfAfAfuccaga
A-
2597
VPusGfsuuuCfuggauua
GAACAGUCCUUAAU
4848


12230
22824

aacaL96
228241

AfgGfacugususc
CCAGAAACC



15.1
09.1


0.1









AD-
A-
2149
csasguccUfuAfAfUfccagaa
A-
2598
VPusGfsguuUfcuggauu
AACAGUCCUUAAUC
4849


12230
22824

accaL96
228241

AfaGfgacugsusu
CAGAAACCU



16.1
11.1


2.1









AD-
A-
2150
asgsuccuUfaAfUfCfcagaaa
A-
2599
VPusAfsgguUfucuggau
ACAGUCCUUAAUCC
4850


12230
22824

ccuaL96
228241

UfaAfggacusgsu
AGAAACCUG



17.1
13.1


4.1









AD-
A-
2151
gsusccuuAfaUfCfCfagaaac
A-
2600
VPusCfsaggUfuucugga
CAGUCCUUAAUCCA
4851


12230
22824

cugaL96
228241

UfuAfaggacsusg
GAAACCUGA



18.1
15.1


6.1









AD-
A-
2152
uscscuuaAfuCfCfAfgaaacc
A-
2601
VPusUfscagGfuuucugg
AGUCCUUAAUCCAG
4852


12230
22824

ugaaL96
228241

AfuUfaaggascsu
AAACCUGAA



19.1
17.1


8.1









AD-
A-
2153
cscsuuaaUfcCfAfGfaaaccu
A-
2602
VPusUfsucaGfguuucug
GUCCUUAAUCCAGA
4853


12230
22824

gaaaL96
228242

GfaUfuaaggsasc
AACCUGAAA



20.1
19.1


0.1









AD-
A-
2154
csusuaauCfcAfGfAfaaccug
A-
2603
VPusUfsuucAfgguuucu
UCCUUAAUCCAGAA
4854


12230
22824

aaaaL96
228242

GfgAfuuaagsgsa
ACCUGAAAU



21.1
21.1


2.1









AD-
A-
2155
ususaaucCfaGfAfAfaccuga
A-
2604
VPusAfsuuuCfagguuuc
CCUUAAUCCAGAAA
4855


12230
22824

aauaL96
228242

UfgGfauuaasgsg
CCUGAAAUG



22.1
23.1


4.1









AD-
A-
2156
csasgaaaCfcUfGfAfaaugaa
A-
2605
VPusUfsccuUfcauuucaG
UCCAGAAACCUGAA
4856


12230
22824

ggaaL96
228242

fgUfuucugsgsa
AUGAAGGAA



23.1
25.1


6.1









AD-
A-
2157
asgsaaacCfuGfAfAfaugaag
A-
2606
VPusUfsuccUfucauuuc
CCAGAAACCUGAAA
4857


12230
22824

gaaaL96
228242

AfgGfuuucusgsg
UGAAGGAAG



24.1
27.1


8.1









AD-
A-
2158
gsasaaccUfgAfAfAfugaagg
A-
2607
VPusCfsuucCfuucauuuC
CAGAAACCUGAAAU
4858


12230
22824

aagaL96
228243

faGfguuucsusg
GAAGGAAGA



25.1
29.1


0.1









AD-
A-
2159
asasaccuGfaAfAfUfgaagga
A-
2608
VPusUfscuuCfcuucauu
AGAAACCUGAAAUG
4859


12230
22824

agaaL96
228243

UfcAfgguuuscsu
AAGGAAGAG



26.1
31.1


2.1









AD-
A-
2160
asasccugAfaAfUfGfaaggaa
A-
2609
VPusCfsucuUfccuucauU
GAAACCUGAAAUGA
4860


12230
22824

gagaL96
228243

fuCfagguususc
AGGAAGAGG



27.1
33.1


4.1









AD-
A-
2161
cscsugaaAfuGfAfAfggaaga
A-
2610
VPusUfsccuCfuuccuucA
AACCUGAAAUGAAG
4861


12230
22824

ggaaL96
228243

fuUfucaggsusu
GAAGAGGAG



28.1
35.1


6.1









AD-
A-
2162
asusgaagGfaAfGfAfggagac
A-
2611
VPusAfsgagUfcuccucu
AAAUGAAGGAAGA
4862


12230
22824

ucuaL96
228243

UfcCfuucaususu
GGAGACUCUG



29.1
37.1


8.1









AD-
A-
2163
uscsccucUfuGfGfAfauugga
A-
2612
VPusGfsaauCfcaauuccA
GGUCCCUCUUGGAA
4863


12230
22824

uucaL96
228244

faGfagggascsc
UUGGAUUCG



30.1
39.1


0.1









AD-
A-
2164
cscsucuuGfgAfAfUfuggauu
A-
2613
VPusGfscgaAfuccaauuC
UCCCUCUUGGAAUU
4864


12230
22824

cgcaL96
228244

fcAfagaggsgsa
GGAUUCGCC



31.1
41.1


2.1









AD-
A-
2165
csuscuugGfaAfUfUfggauuc
A-
2614
VPusGfsgcgAfauccaauU
CCCUCUUGGAAUUG
4865


12230
22824

gccaL96
228244

fcCfaagagsgsg
GAUUCGCCA



32.1
43.1


4.1









AD-
A-
2166
ususggaaUfuGfGfAfuucgcc
A-
2615
VPusAfsaugGfcgaauccA
UCUUGGAAUUGGAU
4866


12230
22824

auuaL96
228244

faUfuccaasgsa
UCGCCAUUU



33.1
45.1


6.1









AD-
A-
2167
usgsgaauUfgGfAfUfucgcca
A-
2616
VPusAfsaauGfgcgaaucC
CUUGGAAUUGGAUU
4867


12230
22824

uuuaL96
228244

faAfuuccasasg
CGCCAUUUU



34.1
47.1


8.1









AD-
A-
2168
gsgsaauuGfgAfUfUfcgccau
A-
2617
VPusAfsaaaUfggcgaauC
UUGGAAUUGGAUUC
4868


12230
22824

uuuaL96
228245

fcAfauuccsasa
GCCAUUUUA



35.1
49.1


0.1









AD-
A-
2169
gsasauugGfaUfUfCfgccauu
A-
2618
VPusUfsaaaAfuggcgaaU
UGGAAUUGGAUUCG
4869


12230
22824

uuaaL96
228245

fcCfaauucscsa
CCAUUUUAU



36.1
51.1


2.1









AD-
A-
2170
asasuuggAfuUfCfGfccauuu
A-
2619
VPusAfsuaaAfauggcga
GGAAUUGGAUUCGC
4870


12230
22824

uauaL96
228245

AfuCfcaauuscsc
CAUUUUAUU



37.1
53.1


4.1









AD-
A-
2171
asusuggaUfuCfGfCfcauuuu
A-
2620
VPusAfsauaAfaauggcg
GAAUUGGAUUCGCC
4871


12230
22824

auuaL96
228245

AfaUfccaaususc
AUUUUAUUU



38.1
55.1


6.1









AD-
A-
2172
ususggauUfcGfCfCfauuuua
A-
2621
VPusAfsaauAfaaauggcG
AAUUGGAUUCGCCA
4872


12230
22824

uuuaL96
228245

faAfuccaasusu
UUUUAUUUU



39.1
57.1


8.1









AD-
A-
2173
usgsgauuCfgCfCfAfuuuuau
A-
2622
VPusAfsaaaUfaaaauggC
AUUGGAUUCGCCAU
4873


12230
22824

uuuaL96
228246

fgAfauccasasu
UUUAUUUUU



40.1
59.1


0.1









AD-
A-
2174
gsgsauucGfcCfAfUfuuuauu
A-
2623
VPusAfsaaaAfuaaaaugG
UUGGAUUCGCCAUU
4874


12230
22824

uuuaL96
228246

fcGfaauccsasa
UUAUUUUUC



41.1
61.1


2.1









AD-
A-
2175
gsasuucgCfcAfUfUfuuauuu
A-
2624
VPusGfsaaaAfauaaaauG
UGGAUUCGCCAUUU
4875


12230
22824

uucaL96
228246

fgCfgaaucscsa
UAUUUUUCU



42.1
63.1


4.1









AD-
A-
2176
uscsgccaUfuUfUfAfuuuuuc
A-
2625
VPusCfsaagAfaaaauaaA
AUUCGCCAUUUUAU
4876


12230
22824

uugaL96
228246

faUfggcgasasu
UUUUCUUGC



43.1
65.1


6.1









AD-
A-
2177
csgsccauUfuUfAfUfuuuucu
A-
2626
VPusGfscaaGfaaaaauaA
UUCGCCAUUUUAUU
4877


12230
22824

ugcaL96
228246

faAfuggcgsasa
UUUCUUGCU



44.1
67.1


8.1









AD-
A-
2178
gscscauuUfuAfUfUfuuucuu
A-
2627
VPusAfsgcaAfgaaaaauA
UCGCCAUUUUAUUU
4878


12230
22824

gcuaL96
228247

faAfauggcsgsa
UUCUUGCUG



45.1
69.1


0.1









AD-
A-
2179
cscsauuuUfaUfUfUfuucuug
A-
2628
VPusCfsagcAfagaaaaaU
CGCCAUUUUAUUUU
4879


12230
22824

cugaL96
228247

faAfaauggscsg
UCUUGCUGC



46.1
71.1


2.1









AD-
A-
2180
csasuuuuAfuUfUfUfucuugc
A-
2629
VPusGfscagCfaagaaaaA
GCCAUUUUAUUUUU
4880


12230
22824

ugcaL96
228247

fuAfaaaugsgsc
CUUGCUGCU



47.1
73.1


4.1









AD-
A-
2181
asusuuuaUfuUfUfUfcuugcu
A-
2630
VPusAfsgcaGfcaagaaaA
CCAUUUUAUUUUUC
4881


12230
22824

gcuaL96
228247

faUfaaaausgsg
UUGCUGCUA



48.1
75.1


6.1









AD-
A-
2182
ususuuauUfuUfUfCfuugcu
A-
2631
VPusUfsagcAfgcaagaaA
CAUUUUAUUUUUCU
4882


12230
22824

gcuaaL96
228247

faAfuaaaasusg
UGCUGCUAA



49.1
77.1


8.1









AD-
A-
2183
ususucuuGfcUfGfCfuaaauc
A-
2632
VPusGfsgugAfuuuagca
UUUUUCUUGCUGCU
4883


12230
22824

accaL96
228248

GfcAfagaaasasa
AAAUCACCG



50.1
79.1


0.1









AD-
A-
2184
uscsaccgAfgCfCfCfggaaga
A-
2633
VPusUfsaauCfuuccgggC
AAUCACCGAGCCCG
4884


12230
22824

uuaaL96
228248

fuCfggugasusu
GAAGAUUAG



51.1
81.1


2.1









AD-
A-
2185
gscsccggAfaGfAfUfuagaga
A-
2634
VPusAfsacuCfucuaaucU
GAGCCCGGAAGAUU
4885


12230
22824

guuaL96
228248

fuCfcgggcsusc
AGAGAGUUU



52.1
83.1


4.1









AD-
A-
2186
cscscggaAfgAfUfUfagagag
A-
2635
VPusAfsaacUfcucuaauC
AGCCCGGAAGAUUA
4886


12230
22824

uuuaL96
228248

fuUfccgggscsu
GAGAGUUUU



53.1
85.1


6.1









AD-
A-
2187
csgsgaagAfuUfAfGfagaguu
A-
2636
VPusUfsaaaAfcucucuaA
CCCGGAAGAUUAGA
4887


12230
22824

uuaaL96
228248

fuCfuuccgsgsg
GAGUUUUAU



54.1
87.1


8.1









AD-
A-
2188
gsgsaagaUfuAfGfAfgaguuu
A-
2637
VPusAfsuaaAfacucucuA
CCGGAAGAUUAGAG
4888


12230
22824

uauaL96
228249

faUfcuuccsgsg
AGUUUUAUU



55.1
89.1


0.1









AD-
A-
2189
gsasagauUfaGfAfGfaguuuu
A-
2638
VPusAfsauaAfaacucucU
CGGAAGAUUAGAGA
4889


12230
22824

auuaL96
228249

faAfucuucscsg
GUUUUAUUU



56.1
91.1


2.1









AD-
A-
2190
asasgauuAfgAfGfAfguuuua
A-
2639
VPusAfsaauAfaaacucuC
GGAAGAUUAGAGA
4890


12230
22824

uuuaL96
228249

fuAfaucuuscsc
GUUUUAUUUC



57.1
93.1


4.1









AD-
A-
2191
asgsauuaGfaGfAfGfuuuuau
A-
2640
VPusGfsaaaUfaaaacucU
GAAGAUUAGAGAG
4891


12230
22824

uucaL96
228249

fcUfaaucususc
UUUUAUUUCU



58.1
95.1


6.1









AD-
A-
2192
asusuagaGfaGfUfUfuuauuu
A-
2641
VPusCfsagaAfauaaaacU
AGAUUAGAGAGUU
4892


12230
22824

cugaL96
228249

fcUfcuaauscsu
UUAUUUCUGG



59.1
97.1


8.1









AD-
A-
2193
ususagagAfgUfUfUfuauuuc
A-
2642
VPusCfscagAfaauaaaaC
GAUUAGAGAGUUU
4893


12230
22824

uggaL96
228250

fuCfucuaasusc
UAUUUCUGGG



60.1
99.1


0.1









AD-
A-
2194
usasgagaGfuUfUfUfauuucu
A-
2643
VPusCfsccaGfaaauaaaA
AUUAGAGAGUUUU
4894


12230
22825

gggaL96
228250

fcUfcucuasasu
AUUUCUGGGA



61.1
01.1


2.1









AD-
A-
2195
asgsagagUfuUfUfAfuuucug
A-
2644
VPusUfscccAfgaaauaaA
UUAGAGAGUUUUA
4895


12230
22825

ggaaL96
228250

faCfucucusasa
UUUCUGGGAU



62.1
03.1


4.1









AD-
A-
2196
gsasgaguUfuUfAfUfuucug
A-
2645
VPusAfsuccCfagaaauaA
UAGAGAGUUUUAU
4896


12230
22825

ggauaL96
228250

faAfcucucsusa
UUCUGGGAUU



63.1
05.1


6.1









AD-
A-
2197
asgsaguuUfuAfUfUfucugg
A-
2646
VPusAfsaucCfcagaaauA
AGAGAGUUUUAUU
4897


12230
22825

gauuaL96
228250

faAfacucuscsu
UCUGGGAUUC



64.1
07.1


8.1









AD-
A-
2198
gsasguuuUfaUfUfUfcuggga
A-
2647
VPusGfsaauCfccagaaaU
GAGAGUUUUAUUUC
4898


12230
22825

uucaL96
228251

faAfaacucsusc
UGGGAUUCC



65.1
09.1


0.1









AD-
A-
2199
asgsuuuuAfuUfUfCfuggga
A-
2648
VPusGfsgaaUfcccagaaA
AGAGUUUUAUUUCU
4899


12230
22825

uuccaL96
228251

fuAfaaacuscsu
GGGAUUCCU



66.1
11.1


2.1









AD-
A-
2200
gsusuuuaUfuUfCfUfgggau
A-
2649
VPusAfsggaAfucccagaA
GAGUUUUAUUUCUG
4900


12230
22825

uccuaL96
228251

faUfaaaacsusc
GGAUUCCUG



67.1
13.1


4.1









AD-
A-
2201
ususuuauUfuCfUfGfggauuc
A-
2650
VPusCfsaggAfaucccagA
AGUUUUAUUUCUGG
4901


12230
22825

cugaL96
228251

faAfuaaaascsu
GAUUCCUGU



68.1
15.1


6.1









AD-
A-
2202
ususuauuUfcUfGfGfgauucc
A-
2651
VPusAfscagGfaaucccaG
GUUUUAUUUCUGGG
4902


12230
22825

uguaL96
228251

faAfauaaasasc
AUUCCUGUA



69.1
17.1


8.1









AD-
A-
2203
ususauuuCfuGfGfGfauuccu
A-
2652
VPusUfsacaGfgaaucccA
UUUUAUUUCUGGGA
4903


12230
22825

guaaL96
228252

fgAfaauaasasa
UUCCUGUAG



70.1
19.1


0.1









AD-
A-
2204
usasuuucUfgGfGfAfuuccug
A-
2653
VPusCfsuacAfggaauccC
UUUAUUUCUGGGAU
4904


12230
22825

uagaL96
228252

faGfaaauasasa
UCCUGUAGA



71.1
21.1


2.1









AD-
A-
2205
asusuucuGfgGfAfUfuccugu
A-
2654
VPusUfscuaCfaggaaucC
UUAUUUCUGGGAUU
4905


12230
22825

agaaL96
228252

fcAfgaaausasa
CCUGUAGAC



72.1
23.1


4.1









AD-
A-
2206
ususucugGfgAfUfUfccugua
A-
2655
VPusGfsucuAfcaggaauC
UAUUUCUGGGAUUC
4906


12230
22825

gacaL96
228252

fcCfagaaasusa
CUGUAGACA



73.1
25.1


6.1









AD-
A-
2207
uscsugggAfuUfCfCfuguaga
A-
2656
VPusGfsuguCfuacagga
UUUCUGGGAUUCCU
4907


12230
22825

cacaL96
228252

AfuCfccagasasa
GUAGACACA



74.1
27.1


8.1









AD-
A-
2208
csusgggaUfuCfCfUfguagac
A-
2657
VPusUfsgugUfcuacagg
UUCUGGGAUUCCUG
4908


12230
22825

acaaL96
228253

AfaUfcccagsasa
UAGACACAC



75.1
29.1


0.1









AD-
A-
2209
usgsggauUfcCfUfGfuagaca
A-
2658
VPusGfsuguGfucuacag
UCUGGGAUUCCUGU
4909


12230
22825

cacaL96
228253

GfaAfucccasgsa
AGACACACC



76.1
31.1


2.1









AD-
A-
2210
gsgsgauuCfcUfGfUfagacac
A-
2659
VPusGfsgugUfgucuaca
CUGGGAUUCCUGUA
4910


12230
22825

accaL96
228253

GfgAfaucccsasg
GACACACCC



77.1
33.1


4.1









AD-
A-
2211
ascsacacCfcAfCfCfcacauac
A-
2660
VPusAfsuguAfugugggu
AGACACACCCACCC
4911


12230
22825

auaL96
228253

GfgGfuguguscsu
ACAUACAUA



78.1
35.1


6.1









AD-
A-
2212
ascsccacCfcAfCfAfuacauac
A-
2661
VPusAfsuguAfuguaugu
ACACCCACCCACAU
4912


12230
22825

auaL96
228253

GfgGfugggusgsu
ACAUACAUU



79.1
37.1


8.1









AD-
A-
2213
cscscaccCfaCfAfUfacauaca
A-
2662
VPusAfsaugUfauguaug
CACCCACCCACAUA
4913


12230
22825

uuaL96
228254

UfgGfgugggsusg
CAUACAUUU



80.1
39.1


0.1









AD-
A-
2214
cscsacccAfcAfUfAfcauaca
A-
2663
VPusAfsaauGfuauguau
ACCCACCCACAUAC
4914


12230
22825

uuuaL96
228254

GfuGfgguggsgsu
AUACAUUUA



81.1
41.1


2.1









AD-
A-
2215
csascccaCfaUfAfCfauacauu
A-
2664
VPusUfsaaaUfguaugua
CCCACCCACAUACA
4915


12230
22825

uaaL96
228254

UfgUfgggugsgsg
UACAUUUAU



82.1
43.1


4.1









AD-
A-
2216
cscsacauAfcAfUfAfcauuua
A-
2665
VPusAfsuauAfaauguau
ACCCACAUACAUAC
4916


12230
22825

uauaL96
228254

GfuAfuguggsgsu
AUUUAUAUA



83.1
45.1


6.1









AD-
A-
2217
csascauaCfaUfAfCfauuuau
A-
2666
VPusUfsauaUfaaauguaU
CCCACAUACAUACA
4917


12230
22825

auaaL96
228254

fgUfaugugsgsg
UUUAUAUAU



84.1
47.1


8.1









AD-
A-
2218
ususaaauUfaAfCfAfgugcua
A-
2667
VPusCfsauuAfgcacugu
UUUUAAAUUAACAG
4918


12230
22825

augaL96
228255

UfaAfuuuaasasa
UGCUAAUGU



85.1
49.1


0.1









AD-
A-
2219
usasaauuAfaCfAfGfugcuaa
A-
2668
VPusAfscauUfagcacugU
UUUAAAUUAACAGU
4919


12230
22825

uguaL96
228255

fuAfauuuasasa
GCUAAUGUU



86.1
51.1


2.1









AD-
A-
2220
asasauuaAfcAfGfUfgcuaau
A-
2669
VPusAfsacaUfuagcacuG
UUAAAUUAACAGUG
4920


12230
22825

guuaL96
228255

fuUfaauuusasa
CUAAUGUUA



87.1
53.1


4.1









AD-
A-
2221
asasuuaaCfaGfUfGfcuaaug
A-
2670
VPusUfsaacAfuuagcacU
UAAAUUAACAGUGC
4921


12230
22825

uuaaL96
228255

fgUfuaauususa
UAAUGUUAU



88.1
55.1


6.1









AD-
A-
2222
asusuaacAfgUfGfCfuaaugu
A-
2671
VPusAfsuaaCfauuagcaC
AAAUUAACAGUGCU
4922


12230
22825

uauaL96
228255

fuGfuuaaususu
AAUGUUAUU



89.1
57.1


8.1









AD-
A-
2223
ususaacaGfuGfCfUfaauguu
A-
2672
VPusAfsauaAfcauuagcA
AAUUAACAGUGCUA
4923


12230
22825

auuaL96
228256

fcUfguuaasusu
AUGUUAUUG



90.1
59.1


0.1









AD-
A-
2224
usasacagUfgCfUfAfauguua
A-
2673
VPusCfsaauAfacauuagC
AUUAACAGUGCUAA
4924


12230
22825

uugaL96
228256

faCfuguuasasu
UGUUAUUGG



91.1
61.1


2.1









AD-
A-
2225
asascaguGfcUfAfAfuguuau
A-
2674
VPusCfscaaUfaacauuaG
UUAACAGUGCUAAU
4925


12230
22825

uggaL96
228256

fcAfcuguusasa
GUUAUUGGU



92.1
63.1


4.1









AD-
A-
2226
ascsagugCfuAfAfUfguuauu
A-
2675
VPusAfsccaAfuaacauuA
UAACAGUGCUAAUG
4926


12230
22825

gguaL96
228256

fgCfacugususa
UUAUUGGUG



93.1
65.1


6.1









AD-
A-
2227
csasgugcUfaAfUfGfuuauug
A-
2676
VPusCfsaccAfauaacauU
AACAGUGCUAAUGU
4927


12230
22825

gugaL96
228256

faGfcacugsusu
UAUUGGUGU



94.1
67.1


8.1









AD-
A-
2228
gsusgcuaAfuGfUfUfauugg
A-
2677
VPusGfsacaCfcaauaacA
CAGUGCUAAUGUUA
4928


12230
22825

ugucaL96
228257

fuUfagcacsusg
UUGGUGUCU



95.1
69.1


0.1









AD-
A-
2229
usgscuaaUfgUfUfAfuuggu
A-
2678
VPusAfsgacAfccaauaaC
AGUGCUAAUGUUAU
4929


12230
22825

gucuaL96
228257

faUfuagcascsu
UGGUGUCUU



96.1
71.1


2.1









AD-
A-
2230
gscsuaauGfuUfAfUfuggug
A-
2679
VPusAfsagaCfaccaauaA
GUGCUAAUGUUAUU
4930


12230
22825

ucuuaL96
228257

fcAfuuagcsasc
GGUGUCUUC



97.1
73.1


4.1









AD-
A-
2231
csusaaugUfuAfUfUfgguguc
A-
2680
VPusGfsaagAfcaccaauA
UGCUAAUGUUAUUG
4931


12230
22825

uucaL96
228257

faCfauuagscsa
GUGUCUUCA



98.1
75.1


6.1









AD-
A-
2232
usasauguUfaUfUfGfgugucu
A-
2681
VPusUfsgaaGfacaccaaU
GCUAAUGUUAUUGG
4932


12230
22825

ucaaL96
228257

faAfcauuasgsc
UGUCUUCAC



99.1
77.1


8.1









AD-
A-
2233
asasuguuAfuUfGfGfugucu
A-
2682
VPusGfsugaAfgacaccaA
CUAAUGUUAUUGGU
4933


12231
22825

ucacaL96
228258

fuAfacauusasg
GUCUUCACU



00.1
79.1


0.1









AD-
A-
2234
asusguuaUfuGfGfUfgucuuc
A-
2683
VPusAfsgugAfagacaccA
UAAUGUUAUUGGU
4934


12231
22825

acuaL96
228258

faUfaacaususa
GUCUUCACUG



01.1
81.1


2.1









AD-
A-
2235
usgsuuauUfgGfUfGfucuuca
A-
2684
VPusCfsaguGfaagacacC
AAUGUUAUUGGUG
4935


12231
22825

cugaL96
228258

faAfuaacasusu
UCUUCACUGG



02.1
83.1


4.1









AD-
A-
2236
gsusuauuGfgUfGfUfcuucac
A-
2685
VPusCfscagUfgaagacaC
AUGUUAUUGGUGUC
4936


12231
22825

uggaL96
228258

fcAfauaacsasu
UUCACUGGA



03.1
85.1


6.1









AD-
A-
2237
ususauugGfuGfUfCfuucacu
A-
2686
VPusUfsccaGfugaagacA
UGUUAUUGGUGUCU
4937


12231
22825

ggaaL96
228258

fcCfaauaascsa
UCACUGGAU



04.1
87.1


8.1









AD-
A-
2238
usgsguguCfuUfCfAfcuggau
A-
2687
VPusUfsacaUfccagugaA
AUUGGUGUCUUCAC
4938


12231
22825

guaaL96
228259

fgAfcaccasasu
UGGAUGUAU



05.1
89.1


0.1









AD-
A-
2239
usgsucuuCfaCfUfGfgaugua
A-
2688
VPusAfsaauAfcauccagU
GGUGUCUUCACUGG
4939


12231
22825

uuuaL96
228259

fgAfagacascsc
AUGUAUUUG



06.1
91.1


2.1









AD-
A-
2240
csascuggAfuGfUfAfuuugac
A-
2689
VPusGfscagUfcaaauacA
UUCACUGGAUGUAU
4940


12231
22825

ugcaL96
228259

fuCfcagugsasa
UUGACUGCU



07.1
93.1


4.1









AD-
A-
2241
ascsuggaUfgUfAfUfuugacu
A-
2690
VPusAfsgcaGfucaaauaC
UCACUGGAUGUAUU
4941


12231
22825

gcuaL96
228259

faUfccagusgsa
UGACUGCUG



08.1
95.1


6.1









AD-
A-
2242
usgsgaugUfaUfUfUfgacugc
A-
2691
VPusAfscagCfagucaaaU
ACUGGAUGUAUUUG
4942


12231
22825

uguaL96
228259

faCfauccasgsu
ACUGCUGUG



09.1
97.1


8.1









AD-
A-
2243
usasuuugAfcUfGfCfugugga
A-
2692
VPusAfsaguCfcacagcaG
UGUAUUUGACUGCU
4943


12231
22825

cuuaL96
228260

fuCfaaauascsa
GUGGACUUG



10.1
99.1


0.1









AD-
A-
2244
ususugacUfgCfUfGfuggacu
A-
2693
VPusUfscaaGfuccacagC
UAUUUGACUGCUGU
4944


12231
22826

ugaaL96
228260

faGfucaaasusa
GGACUUGAG



11.1
01.1


2.1









AD-
A-
2245
gscsugugGfaCfUfUfgaguug
A-
2694
VPusUfscccAfacucaagU
CUGCUGUGGACUUG
4945


12231
22826

ggaaL96
228260

fcCfacagcsasg
AGUUGGGAG



12.1
03.1


4.1









AD-
A-
2246
uscsccacUfcAfGfAfuccuga
A-
2695
VPusCfsuguCfaggaucu
GUUCCCACUCAGAU
4946


12231
22826

cagaL96
228260

GfaGfugggasasc
CCUGACAGG



13.1
05.1


6.1









AD-
A-
2247
cscscacuCfaGfAfUfccugac
A-
2696
VPusCfscugUfcaggaucU
UUCCCACUCAGAUC
4947


12231
22826

aggaL96
228260

fgAfgugggsasa
CUGACAGGG



14.1
07.1


8.1









AD-
A-
2248
gsgsaggaGfaUfGfAfgagacu
A-
2697
VPusCfsagaGfucucucaU
GAGGAGGAGAUGA
4948


12231
22826

cugaL96
228261

fcUfccuccsusc
GAGACUCUGG



15.1
09.1


0.1









AD-
A-
2249
gsasggagAfuGfAfGfagacuc
A-
2698
VPusCfscagAfgucucucA
AGGAGGAGAUGAG
4949


12231
22826

uggaL96
228261

fuCfuccucscsu
AGACUCUGGC



16.1
11.1


2.1









AD-
A-
2250
gsgsagauGfaGfAfGfacucug
A-
2699
VPusUfsgccAfgagucuc
GAGGAGAUGAGAG
4950


12231
22826

gcaaL96
228261

UfcAfucuccsusc
ACUCUGGCAU



17.1
13.1


4.1









AD-
A-
2251
gsasgacuCfuGfGfCfaugauc
A-
2700
VPusAfsaagAfucaugccA
GAGAGACUCUGGCA
4951


12231
22826

uuuaL96
228261

fgAfgucucsusc
UGAUCUUUU



18.1
15.1


6.1









AD-
A-
2252
asgsacucUfgGfCfAfugaucu
A-
2701
VPusAfsaaaGfaucaugcC
AGAGACUCUGGCAU
4952


12231
22826

uuuaL96
228261

faGfagucuscsu
GAUCUUUUU



19.1
17.1


8.1









AD-
A-
2253
ususuuggGfaAfCfAfccgaca
A-
2702
VPusGfsuuuGfucggugu
AGUUUUGGGAACAC
4953


12231
22826

aacaL96
228262

UfcCfcaaaascsu
CGACAAACC



20.1
19.1


0.1









AD-
A-
2254
gsasgcuuCfaGfGfAfcauugc
A-
2703
VPusAfscagCfaauguccU
GGGAGCUUCAGGAC
4954


12231
22826

uguaL96
228262

fgAfagcucscsc
AUUGCUGUG



21.1
21.1


2.1









AD-
A-
2255
gscsuucaGfgAfCfAfuugcug
A-
2704
VPusGfscacAfgcaauguC
GAGCUUCAGGACAU
4955


12231
22826

ugcaL96
228262

fcUfgaagcsusc
UGCUGUGCU



22.1
23.1


4.1









AD-
A-
2256
csusucagGfaCfAfUfugcugu
A-
2705
VPusAfsgcaCfagcaaugU
AGCUUCAGGACAUU
4956


12231
22826

gcuaL96
228262

fcCfugaagscsu
GCUGUGCUU



23.1
25.1


6.1









AD-
A-
2257
ususcaggAfcAfUfUfgcugug
A-
2706
VPusAfsagcAfcagcaauG
GCUUCAGGACAUUG
4957


12231
22826

cuuaL96
228262

fuCfcugaasgsc
CUGUGCUUU



24.1
27.1


8.1









AD-
A-
2258
uscsaggaCfaUfUfGfcugugc
A-
2707
VPusAfsaagCfacagcaaU
CUUCAGGACAUUGC
4958


12231
22826

uuuaL96
228263

fgUfccugasasg
UGUGCUUUG



25.1
29.1


0.1









AD-
A-
2259
csasggacAfuUfGfCfugugcu
A-
2708
VPusCfsaaaGfcacagcaA
UUCAGGACAUUGCU
4959


12231
22826

uugaL96
228263

fuGfuccugsasa
GUGCUUUGG



26.1
31.1


2.1









AD-
A-
2260
csgscuuaCfuCfUfCfaccugc
A-
2709
VPusGfsaagCfaggugag
UUCGCUUACUCUCA
4960


12231
22826

uucaL96
228263

AfgUfaagcgsasa
CCUGCUUCU



27.1
33.1


4.1









AD-
A-
2261
gscsuuacUfcUfCfAfccugcu
A-
2710
VPusAfsgaaGfcagguga
UCGCUUACUCUCAC
4961


12231
22826

ucuaL96
228263

GfaGfuaagcsgsa
CUGCUUCUG



28.1
35.1


6.1









AD-
A-
2262
ususacucUfcAfCfCfugcuuc
A-
2711
VPusUfscagAfagcaggu
GCUUACUCUCACCU
4962


12231
22826

ugaaL96
228263

GfaGfaguaasgsc
GCUUCUGAG



29.1
37.1


8.1









AD-
A-
2263
csuscucaCfcUfGfCfuucuga
A-
2712
VPusAfsacuCfagaagcaG
UACUCUCACCUGCU
4963


12231
22826

guuaL96
228264

fgUfgagagsusa
UCUGAGUUG



30.1
39.1


0.1









AD-
A-
2264
uscsucacCfuGfCfUfucugag
A-
2713
VPusCfsaacUfcagaagcA
ACUCUCACCUGCUU
4964


12231
22826

uugaL96
228264

fgGfugagasgsu
CUGAGUUGC



31.1
41.1


2.1









AD-
A-
2265
csuscaccUfgCfUfUfcugagu
A-
2714
VPusGfscaaCfucagaagC
CUCUCACCUGCUUC
4965


12231
22826

ugcaL96
228264

faGfgugagsasg
UGAGUUGCC



32.1
43.1


4.1









AD-
A-
2266
uscsaccuGfcUfUfCfugaguu
A-
2715
VPusGfsgcaAfcucagaaG
UCUCACCUGCUUCU
4966


12231
22826

gccaL96
228264

fcAfggugasgsa
GAGUUGCCC



33.1
45.1


6.1









AD-
A-
2267
csasccugCfuUfCfUfgaguug
A-
2716
VPusGfsggcAfacucagaA
CUCACCUGCUUCUG
4967


12231
22826

cccaL96
228264

fgCfaggugsasg
AGUUGCCCA



34.1
47.1


8.1









AD-
A-
2268
ascscugcUfuCfUfGfaguugc
A-
2717
VPusUfsgggCfaacucagA
UCACCUGCUUCUGA
4968


12231
22826

ccaaL96
228265

faGfcaggusgsa
GUUGCCCAG



35.1
49.1


0.1









AD-
A-
2269
cscsugcuUfcUfGfAfguugcc
A-
2718
VPusCfsuggGfcaacucaG
CACCUGCUUCUGAG
4969


12231
22826

cagaL96
228265

faAfgcaggsusg
UUGCCCAGG



36.1
51.1


2.1









AD-
A-
2270
csgsgcgaAfgAfGfAfagagac
A-
2719
VPusUfsgugUfcucuucu
CCCGGCGAAGAGAA
4970


12231
22826

acaaL96
228265

CfuUfcgccgsgsg
GAGACACAU



37.1
53.1


4.1









AD-
A-
2271
gsgscgaaGfaGfAfAfgagaca
A-
2720
VPusAfsuguGfucucuuc
CCGGCGAAGAGAAG
4971


12231
22826

cauaL96
228265

UfcUfucgccsgsg
AGACACAUU



38.1
55.1


6.1









AD-
A-
2272
gscsgaagAfgAfAfGfagacac
A-
2721
VPusAfsaugUfgucucuu
CGGCGAAGAGAAGA
4972


12231
22826

auuaL96
228265

CfuCfuucgcscsg
GACACAUUG



39.1
57.1


8.1









AD-
A-
2273
csgsaagaGfaAfGfAfgacaca
A-
2722
VPusCfsaauGfugucucu
GGCGAAGAGAAGAG
4973


12231
22826

uugaL96
228266

UfcUfcuucgscsc
ACACAUUGU



40.1
59.1


0.1









AD-
A-
2274
gsasagagAfaGfAfGfacacau
A-
2723
VPusAfscaaUfgugucuc
GCGAAGAGAAGAGA
4974


12231
22826

uguaL96
228266

UfuCfucuucsgsc
CACAUUGUU



41.1
61.1


2.1









AD-
A-
2275
asasgagaAfgAfGfAfcacauu
A-
2724
VPusAfsacaAfugugucu
CGAAGAGAAGAGAC
4975


12231
22826

guuaL96
228266

CfuUfcucuuscsg
ACAUUGUUG



42.1
63.1


4.1









AD-
A-
2276
asgsagaaGfaGfAfCfacauug
A-
2725
VPusCfsaacAfaugugucU
GAAGAGAAGAGACA
4976


12231
22826

uugaL96
228266

fcUfucucususc
CAUUGUUGG



43.1
65.1


6.1









AD-
A-
2277
gsasgaagAfgAfCfAfcauugu
A-
2726
VPusCfscaaCfaauguguC
AAGAGAAGAGACAC
4977


12231
22826

uggaL96
228266

fuCfuucucsusu
AUUGUUGGA



44.1
67.1


8.1









AD-
A-
2278
asgsaagaGfaCfAfCfauuguu
A-
2727
VPusUfsccaAfcaaugugU
AGAGAAGAGACACA
4978


12231
22826

ggaaL96
228267

fcUfcuucuscsu
UUGUUGGAA



45.1
69.1


0.1









AD-
A-
2279
gsasagagAfcAfCfAfuuguug
A-
2728
VPusUfsuccAfacaauguG
GAGAAGAGACACAU
4979


12231
22826

gaaaL96
228267

fuCfucuucsusc
UGUUGGAAG



46.1
71.1


2.1









AD-
A-
2280
asasgagaCfaCfAfUfuguugg
A-
2729
VPusCfsuucCfaacaaugU
AGAAGAGACACAUU
4980


12231
22826

aagaL96
228267

fgUfcucuuscsu
GUUGGAAGA



47.1
73.1


4.1









AD-
A-
2281
asgsagacAfcAfUfUfguugga
A-
2730
VPusUfscuuCfcaacaauG
GAAGAGACACAUUG
4981


12231
22826

agaaL96
228267

fuGfucucususc
UUGGAAGAA



48.1
75.1


6.1









AD-
A-
2282
gsasgacaCfaUfUfGfuuggaa
A-
2731
VPusUfsucuUfccaacaaU
AAGAGACACAUUGU
4982


12231
22826

gaaaL96
228267

fgUfgucucsusu
UGGAAGAAG



49.1
77.1


8.1









AD-
A-
2283
asgsacacAfuUfGfUfuggaag
A-
2732
VPusCfsuucUfuccaacaA
AGAGACACAUUGUU
4983


12231
22826

aagaL96
228268

fuGfugucuscsu
GGAAGAAGC



50.1
79.1


0.1









AD-
A-
2284
gsascacaUfuGfUfUfggaaga
A-
2733
VPusGfscuuCfuuccaacA
GAGACACAUUGUUG
4984


12231
22826

agcaL96
228268

faUfgugucsusc
GAAGAAGCA



51.1
81.1


2.1









AD-
A-
2285
ascsacauUfgUfUfGfgaagaa
A-
2734
VPusUfsgcuUfcuuccaaC
AGACACAUUGUUGG
4985


12231
22826

gcaaL96
228268

faAfugugusesu
AAGAAGCAG



52.1
83.1


4.1









AD-
A-
2286
csascauuGfuUfGfGfaagaag
A-
2735
VPusCfsugcUfucuuccaA
GACACAUUGUUGGA
4986


12231
22826

cagaL96
228268

fcAfaugugsusc
AGAAGCAGC



53.1
85.1


6.1









AD-
A-
2287
usasugucCfuCfAfCfaccauu
A-
2736
VPusUfsucaAfuggugug
CCUAUGUCCUCACA
4987


12231
22826

gaaaL96
228268

AfgGfacauasgsg
CCAUUGAAA



54.1
87.1


8.1









AD-
A-
2288
uscscucaCfaCfCfAfuugaaa
A-
2737
VPusUfsgguUfucaaugg
UGUCCUCACACCAU
4988


12231
22826

ccaaL96
228269

UfgUfgaggascsa
UGAAACCAC



55.1
89.1


0.1









AD-
A-
2289
cscsucacAfcCfAfUfugaaac
A-
2738
VPusGfsuggUfuucaaug
GUCCUCACACCAUU
4989


12231
22826

cacaL96
228269

GfuGfugaggsasc
GAAACCACU



56.1
91.1


2.1









AD-
A-
2290
csuscacaCfcAfUfUfgaaacca
A-
2739
VPusAfsgugGfuuucaau
UCCUCACACCAUUG
4990


12231
22826

cuaL96
228269

GfgUfgugagsgsa
AAACCACUA



57.1
93.1


4.1









AD-
A-
2291
uscsacacCfaUfUfGfaaaccac
A-
2740
VPusUfsaguGfguuucaa
CCUCACACCAUUGA
4991


12231
22826

uaaL96
228269

UfgGfugugasgsg
AACCACUAG



58.1
95.1


6.1









AD-
A-
2292
csascaccAfuUfGfAfaaccac
A-
2741
VPusCfsuagUfgguuuca
CUCACACCAUUGAA
4992


12231
22826

uagaL96
228269

AfuGfgugugsasg
ACCACUAGU



59.1
97.1


8.1









AD-
A-
2293
cscsauugAfaAfCfCfacuagu
A-
2742
VPusAfsgaaCfuaguggu
CACCAUUGAAACCA
4993


12231
22826

ucuaL96
228270

UfuCfaauggsusg
CUAGUUCUG



60.1
99.1


0.1









AD-
A-
2294
csasuugaAfaCfCfAfcuaguu
A-
2743
VPusCfsagaAfcuagugg
ACCAUUGAAACCAC
4994


12231
22827

cugaL96
228270

UfuUfcaaugsgsu
UAGUUCUGU



61.1
01.1


2.1









AD-
A-
2295
asusugaaAfcCfAfCfuaguuc
A-
2744
VPusAfscagAfacuagug
CCAUUGAAACCACU
4995


12231
22827

uguaL96
228270

GfuUfucaausgsg
AGUUCUGUC



62.1
03.1


4.1









AD-
A-
2296
ususgaaaCfAfCfUfaguucu
A-
2745
VPusGfsacaGfaacuaguG
CAUUGAAACCACUA
4996


12231
22827

gucaL96
228270

fgUfuucaasusg
GUUCUGUCC



63.1
05.1


6.1









AD-
A-
2297
usgsaaacCfaCfUfAfguucug
A-
2746
VPusGfsgacAfgaacuagU
AUUGAAACCACUAG
4997


12231
22827

uccaL96
228270

fgGfuuucasasu
UUCUGUCCC



64.1
07.1


8.1









AD-
A-
2298
gsasccugGfuUfGfUfgugug
A-
2747
VPusCfsacaCfacacacaAf
GAGACCUGGUUGUG
4998


12231
22827

ugugaL96
228271

cCfaggucsusc
UGUGUGUGA



65.1
09.1


0.1









AD-
A-
2299
ascscuggUfuGfUfGfugugu
A-
2748
VPusUfscacAfcacacacA
AGACCUGGUUGUGU
4999


12231
22827

gugaaL96
228271

faCfcagguscsu
GUGUGUGAG



66.1
11.1


2.1









AD-
A-
2300
cscsugguUfgUfGfUfgugug
A-
2749
VPusCfsucaCfacacacaCf
GACCUGGUUGUGUG
5000


12231
22827

ugagaL96
228271

aAfccaggsusc
UGUGUGAGU



67.1
13.1


4.1









AD-
A-
2301
csusgguuGfuGfUfGfugugu
A-
2750
VPusAfscucAfcacacacA
ACCUGGUUGUGUGU
5001


12231
22827

gaguaL96
228271

fcAfaccagsgsu
GUGUGAGUG



68.1
15.1


6.1









AD-
A-
2302
usgsguugUfgUfGfUfgugug
A-
2751
VPusCfsacuCfacacacaCf
CCUGGUUGUGUGUG
5002


12231
22827

agugaL96
228271

aCfaaccasgsg
UGUGAGUGG



69.1
17.1


8.1









AD-
A-
2303
gsgsuuguGfuGfUfGfuguga
A-
2752
VPusCfscacUfcacacacA
CUGGUUGUGUGUGU
1914


12231
22827

guggaL96
228272

fcAfcaaccsasg
GUGAGUGGU



70.1
19.1


0.1









AD-
A-
2304
gsusguguGfuGfUfGfagugg
A-
2753
VPusUfscaaCfcacucacA
UUGUGUGUGUGUG
1915


12231
22827

uugaaL96
228272

fcAfcacacsasa
AGUGGUUGAC



71.1
21.1


2.1









AD-
A-
2305
usgsugugUfgUfGfAfguggu
A-
2754
VPusGfsucaAfccacucaC
UGUGUGUGUGUGA
1916


12231
22827

ugacaL96
228272

faCfacacascsa
GUGGUUGACC



72.1
23.1


4.1









AD-
A-
2306
usgsugugUfgAfGfUfgguug
A-
2755
VPusAfsgguCfaaccacuC
UGUGUGUGUGAGU
1917


12231
22827

accuaL96
228272

faCfacacascsa
GGUUGACCUU



73.1
25.1


6.1









AD-
A-
2307
usgsugugAfgUfGfGfuugac
A-
2756
VPusGfsaagGfucaaccaC
UGUGUGUGAGUGG
1918


12231
22827

cuucaL96
228272

fuCfacacascsa
UUGACCUUCC



74.1
27.1


8.1









AD-
A-
2308
gsusgugaGfuGfGfUfugaccu
A-
2757
VPusGfsgaaGfgucaaccA
GUGUGUGAGUGGU
1919


12231
22827

uccaL96
228273

fcUfcacacsasc
UGACCUUCCU



75.1
29.1


0.1









AD-
A-
2309
usgsugagUfgGfUfUfgaccuu
A-
2758
VPusAfsggaAfggucaacC
UGUGUGAGUGGUU
1920


12231
22827

ccuaL96
228273

faCfucacascsa
GACCUUCCUC



76.1
31.1


2.1









AD-
A-
2310
usgsagugGfuUfGfAfccuucc
A-
2759
VPusGfsgagGfaagguca
UGUGAGUGGUUGAC
1921


12231
22827

uccaL96
228273

AfcCfacucascsa
CUUCCUCCA



77.1
33.1


4.1









AD-
A-
2311
gsusgguuGfaCfCfUfuccucc
A-
2760
VPusGfsaugGfaggaagg
GAGUGGUUGACCUU
1922


12231
22827

aucaL96
228273

UfcAfaccacsusc
CCUCCAUCC



78.1
35.1


6.1









AD-
A-
2312
ususguggAfgGfCfAfgagaaa
A-
2761
VPusUfscuuUfucucugc
CAUUGUGGAGGCAG
1923


12231
22827

agaaL96
228273

CfuCfcacaasusg
AGAAAAGAG



79.1
37.1


8.1









AD-
A-
2313
usgsuggaGfgCfAfGfagaaaa
A-
2762
VPusCfsucuUfuucucug
AUUGUGGAGGCAGA
1924


12231
22827

gagaL96
228274

CfcUfccacasasu
GAAAAGAGA



80.1
39.1


0.1









AD-
A-
2314
gsusggagGfcAfGfAfgaaaag
A-
2763
VPusUfscucUfuuucucu
UUGUGGAGGCAGAG
1925


12231
22827

agaaL96
228274

GfcCfuccacsasa
AAAAGAGAA



81.1
41.1


2.1









AD-
A-
2315
usgsgaggCfaGfAfGfaaaaga
A-
2764
VPusUfsucuCfuuuucuc
UGUGGAGGCAGAGA
1926


12231
22827

gaaaL96
228274

UfgCfcuccascsa
AAAGAGAAA



82.1
43.1


4.1









AD-
A-
2316
gsgsaggcAfgAfGfAfaaagag
A-
2765
VPusUfsuucUfcuuuucu
GUGGAGGCAGAGAA
1927


12231
22827

aaaaL96
228274

CfuGfccuccsasc
AAGAGAAAG



83.1
45.1


6.1









AD-
A-
2317
gsasggcaGfaGfAfAfaagaga
A-
2766
VPusCfsuuuCfucuuuuc
UGGAGGCAGAGAAA
1928


12231
22827

aagaL96
228274

UfcUfgccucscsa
AGAGAAAGU



84.1
47.1


8.1









AD-
A-
2318
asgsgcagAfgAfAfAfagagaa
A-
2767
VPusAfscuuUfcucuuuu
GGAGGCAGAGAAAA
1929


12231
22827

aguaL96
228275

CfuCfugccuscsc
GAGAAAGUG



85.1
49.1


0.1









AD-
A-
2319
gsgscagaGfaAfAfAfgagaaa
A-
2768
VPusCfsacuUfucucuuu
GAGGCAGAGAAAAG
1930


12231
22827

gugaL96
228275

UfcUfcugccsusc
AGAAAGUGU



86.1
51.1


2.1









AD-
A-
2320
gscsagagAfaAfAfGfagaaag
A-
2769
VPusAfscacUfuucucuu
AGGCAGAGAAAAGA
1931


12231
22827

uguaL96
228275

UfuCfucugcscsu
GAAAGUGUU



87.1
53.1


4.1









AD-
A-
2321
csasgagaAfaAfGfAfgaaagu
A-
2770
VPusAfsacaCfuuucucuU
GGCAGAGAAAAGAG
1932


12231
22827

guuaL96
228275

fuUfcucugscsc
AAAGUGUUU



88.1
55.1


6.1









AD-
A-
2322
asgsagaaAfaGfAfGfaaagug
A-
2771
VPusAfsaacAfcuuucucU
GCAGAGAAAAGAGA
1933


12231
22827

uuuaL96
228275

fuUfucucusgsc
AAGUGUUUU



89.1
57.1


8.1









AD-
A-
2323
gsasgaaaAfgAfGfAfaagugu
A-
2772
VPusAfsaaaCfacuuucuC
CAGAGAAAAGAGAA
1934


12231
22827

uuuaL96
228276

fuUfuucucsusg
AGUGUUUUA



90.1
59.1


0.1









AD-
A-
2324
asgsaaaaGfaGfAfAfaguguu
A-
2773
VPusUfsaaaAfcacuuucU
AGAGAAAAGAGAA
1935


12231
22827

uuaaL96
228276

fcUfuuucuscsu
AGUGUUUUAU



91.1
61.1


2.1









AD-
A-
2325
gsasaaagAfgAfAfAfguguuu
A-
2774
VPusAfsuaaAfacacuuuC
GAGAAAAGAGAAA
1936


12231
22827

uauaL96
228276

fuCfuuuucsusc
GUGUUUUAUA



92.1
63.1


4.1









AD-
A-
2326
asasaagaGfaAfAfGfuguuuu
A-
2775
VPusUfsauaAfaacacuuU
AGAAAAGAGAAAG
1937


12231
22827

auaaL96
228276

fcUfcuuuuscsu
UGUUUUAUAU



93.1
65.1


6.1









AD-
A-
2327
asasagagAfaAfGfUfguuuua
A-
2776
VPusAfsuauAfaaacacuU
GAAAAGAGAAAGU
1938


12231
22827

uauaL96
228276

fuCfucuuususc
GUUUUAUAUA



94.1
67.1


8.1









AD-
A-
2328
asasgagaAfaGfUfGfuuuuau
A-
2777
VPusUfsauaUfaaaacacU
AAAAGAGAAAGUG
1939


12231
22827

auaaL96
228277

fuUfcucuususu
UUUUAUAUAC



95.1
69.1


0.1









AD-
A-
2329
asgsagaaAfgUfGfUfuuuaua
A-
2778
VPusGfsuauAfuaaaacaC
AAAGAGAAAGUGU
1940


12231
22827

uacaL96
228277

fuUfucucususu
UUUAUAUACG



96.1
71.1


2.1









AD-
A-
2330
gsasgaaaGfuGfUfUfuuauau
A-
2779
VPusCfsguaUfauaaaacA
AAGAGAAAGUGUU
1941


12231
22827

acgaL96
228277

fcUfuucucsusu
UUAUAUACGG



97.1
73.1


4.1









AD-
A-
2331
asgsaaagUfgUfUfUfuauaua
A-
2780
VPusCfscguAfuauaaaaC
AGAGAAAGUGUUU
1942


12231
22827

cggaL96
228277

faCfuuucuscsu
UAUAUACGGU



98.1
75.1


6.1









AD-
A-
2332
asasagugUfuUfUfAfuauacg
A-
2781
VPusUfsaccGfuauauaaA
AGAAAGUGUUUUA
1943


12231
22827

guaaL96
228277

faCfacuuuscsu
UAUACGGUAC



99.1
77.1


8.1









AD-
A-
2333
asasguguUfuUfAfUfauacgg
A-
2782
VPusGfsuacCfguauauaA
GAAAGUGUUUUAU
1944


12232
22827

uacaL96
228278

faAfcacuususc
AUACGGUACU



00.1
79.1


0.1









AD-
A-
2334
asgsuguuUfuAfUfAfuacgg
A-
2783
VPusAfsguaCfcguauau
AAAGUGUUUUAUA
1945


12232
22827

uacuaL96
228278

AfaAfacacususu
UACGGUACUU



01.1
81.1


2.1









AD-
A-
2335
gsusguuuUfaUfAfUfacggua
A-
2784
VPusAfsaguAfccguaua
AAGUGUUUUAUAU
1946


12232
22827

cuuaL96
228278

UfaAfaacacsusu
ACGGUACUUA



02.1
83.1


4.1









AD-
A-
2336
usgsuuuuAfuAfUfAfcggua
A-
2785
VPusUfsaagUfaccguauA
AGUGUUUUAUAUAC
1947


12232
22827

cuuaaL96
228278

fuAfaaacascsu
GGUACUUAU



03.1
85.1


6.1









AD-
A-
2337
gsusuuuaUfaUfAfCfgguacu
A-
2786
VPusAfsuaaGfuaccguaU
GUGUUUUAUAUACG
1948


12232
22827

uauaL96
228278

faUfaaaacsasc
GUACUUAUU



04.1
87.1


8.1









AD-
A-
2338
ususuuauAfuAfCfGfguacuu
A-
2787
VPusAfsauaAfguaccgu
UGUUUUAUAUACGG
1949


12232
22827

auuaL96
228279

AfuAfuaaaascsa
UACUUAUUU



05.1
89.1


0.1









AD-
A-
2339
ususuauaUfaCfGfGfuacuua
A-
2788
VPusAfsaauAfaguaccgU
GUUUUAUAUACGGU
1950


12232
22827

uuuaL96
228279

faUfauaaasasc
ACUUAUUUA



06.1
91.1


2.1









AD-
A-
2340
ususauauAfcGfGfUfacuuau
A-
2789
VPusUfsaaaUfaaguaccG
UUUUAUAUACGGUA
5040


12232
22827

uuaaL96
228279

fuAfuauaasasa
CUUAUUUAA



07.1
93.1


4.1









AD-
A-
2341
usasuauaCfgGfUfAfcuuauu
A-
2790
VPusUfsuaaAfuaaguacC
UUUAUAUACGGUAC
5041


12232
22827

uaaaL96
228279

fgUfauauasasa
UUAUUUAAU



08.1
95.1


6.1









AD-
A-
2342
gsusacuuAfuUfUfAfauaucc
A-
2791
VPusAfsaggGfauauuaa
CGGUACUUAUUUAA
5042


12232
22827

cuuaL96
228279

AfuAfaguacscsg
UAUCCCUUU



09.1
97.1


8.1









AD-
A-
2343
usascuuaUfuUfAfAfuauccc
A-
2792
VPusAfsaagGfgauauua
GGUACUUAUUUAAU
5043


12232
22827

uuuaL96
228280

AfaUfaaguascsc
AUCCCUUUU



10.1
99.1


0.1









AD-
A-
2344
ususaugaGfaUfGfUfaucuuu
A-
2793
VPusGfscaaAfagauacaU
AUUUAUGAGAUGU
5044


12232
22828

ugcaL96
228280

fcUfcauaasasu
AUCUUUUGCU



11.1
01.1


2.1









AD-
A-
2345
usasugagAfuGfUfAfucuuu
A-
2794
VPusAfsgcaAfaagauacA
UUUAUGAGAUGUA
5045


12232
22828

ugcuaL96
228280

fuCfucauasasa
UCUUUUGCUC



12.1
03.1


4.1









AD-
A-
2346
asusgagaUfgUfAfUfcuuuug
A-
2795
VPusGfsagcAfaaagauaC
UUAUGAGAUGUAUC
5046


12232
22828

cucaL96
228280

faUfcucausasa
UUUUGCUCU



13.1
05.1


6.1









AD-
A-
2347
usgsagauGfuAfUfCfuuuugc
A-
2796
VPusAfsgagCfaaaagauA
UAUGAGAUGUAUCU
5047


12232
22828

ucuaL96
228280

fcAfucucasusa
UUUGCUCUC



14.1
07.1


8.1









AD-
A-
2348
gsasgaugUfaUfCfUfuuugcu
A-
2797
VPusGfsagaGfcaaaagaU
AUGAGAUGUAUCUU
5048


12232
22828

cucaL96
228281

faCfaucucsasu
UUGCUCUCU



15.1
09.1


0.1









AD-
A-
2349
asgsauguAfuCfUfUfuugcuc
A-
2798
VPusAfsgagAfgcaaaagA
UGAGAUGUAUCUUU
5049


12232
22828

ucuaL96
228281

fuAfcaucuscsa
UGCUCUCUC



16.1
11.1


2.1









AD-
A-
2350
gsasuguaUfcUfUfUfugcucu
A-
2799
VPusGfsagaGfagcaaaaG
GAGAUGUAUCUUUU
5050


12232
22828

cucaL96
228281

faUfacaucsusc
GCUCUCUCU



17.1
13.1


4.1









AD-
A-
2351
asusguauCfuUfUfUfgcucuc
A-
2800
VPusAfsgagAfgagcaaaA
AGAUGUAUCUUUUG
5051


12232
22828

ucuaL96
228281

fgAfuacauscsu
CUCUCUCUU



18.1
15.1


6.1









AD-
A-
2352
gscsucucUfcUfUfGfcucucu
A-
2801
VPusAfsuaaGfagagcaaG
UUGCUCUCUCUUGC
5052


12232
22828

uauaL96
228281

faGfagagcsasa
UCUCUUAUU



19.1
17.1


8.1









AD-
A-
2353
csuscucuCfuUfGfCfucucuu
A-
2802
VPusAfsauaAfgagagcaA
UGCUCUCUCUUGCU
5053


12232
22828

auuaL96
228282

fgAfgagagscsa
CUCUUAUUU



20.1
19.1


0.1









AD-
A-
2354
uscsucucUfuGfCfUfcucuua
A-
2803
VPusAfsaauAfagagagcA
GCUCUCUCUUGCUC
5054


12232
22828

uuuaL96
228282

faGfagagasgsc
UCUUAUUUG



21.1
21.1


2.1









AD-
A-
2355
csuscucuUfgCfUfCfucuuau
A-
2804
VPusCfsaaaUfaagagagC
CUCUCUCUUGCUCU
5055


12232
22828

uugaL96
228282

faAfgagagsasg
CUUAUUUGU



22.1
23.1


4.1









AD-
A-
2356
uscsucuuGfcUfCfUfcuuauu
A-
2805
VPusAfscaaAfuaagagaG
UCUCUCUUGCUCUC
5056


12232
22828

uguaL96
228282

fcAfagagasgsa
UUAUUUGUA



23.1
25.1


6.1









AD-
A-
2357
csuscuugCfuCfUfCfuuauuu
A-
2806
VPusUfsacaAfauaagagA
CUCUCUUGCUCUCU
5057


12232
22828

guaaL96
228282

fgCfaagagsasg
UAUUUGUAC



24.1
27.1


8.1









AD-
A-
2358
uscsuugcUfcUfCfUfuauuug
A-
2807
VPusGfsuacAfaauaagaG
UCUCUUGCUCUCUU
5058


12232
22828

uacaL96
228283

faGfcaagasgsa
AUUUGUACC



25.1
29.1


0.1









AD-
A-
2359
csusugcuCfuCfUfUfauuugu
A-
2808
VPusGfsguaCfaaauaagA
CUCUUGCUCUCUUA
5059


12232
22828

accaL96
228283

fgAfgcaagsasg
UUUGUACCG



26.1
31.1


2.1









AD-
A-
2360
ususgcucUfcUfUfAfuuugua
A-
2809
VPusCfsgguAfcaaauaaG
UCUUGCUCUCUUAU
5060


12232
22828

ccgaL96
228283

faGfagcaasgsa
UUGUACCGG



27.1
33.1


4.1









AD-
A-
2361
usgscucuCfuUfAfUfuuguac
A-
2810
VPusCfscggUfacaaauaA
CUUGCUCUCUUAUU
5061


12232
22828

cggaL96
228283

fgAfgagcasasg
UGUACCGGU



28.1
35.1


6.1









AD-
A-
2362
csuscucuUfaUfUfUfguaccg
A-
2811
VPusAfsaccGfguacaaaU
UGCUCUCUUAUUUG
5062


12232
22828

guuaL96
228283

faAfgagagscsa
UACCGGUUU



29.1
37.1


8.1









AD-
A-
2363
uscsucuuAfuUfUfGfuaccgg
A-
2812
VPusAfsaacCfgguacaaA
GCUCUCUUAUUUGU
5063


12232
22828

uuuaL96
228284

fuAfagagasgsc
ACCGGUUUU



30.1
39.1


0.1









AD-
A-
2364
csuscuuaUfuUfGfUfaccggu
A-
2813
VPusAfsaaaCfcgguacaA
CUCUCUUAUUUGUA
5064


12232
22828

uuuaL96
228284

faUfaagagsasg
CCGGUUUUU



31.1
41.1


2.1









AD-
A-
2365
uscsuuauUfuGfUfAfccgguu
A-
2814
VPusAfsaaaAfccgguacA
UCUCUUAUUUGUAC
5065


12232
22828

uuuaL96
228284

faAfuaagasgsa
CGGUUUUUG



32.1
43.1


4.1









AD-
A-
2366
csusuauuUfgUfAfCfcgguuu
A-
2815
VPusCfsaaaAfaccgguaC
CUCUUAUUUGUACC
5066


12232
22828

uugaL96
228284

faAfauaagsasg
GGUUUUUGU



33.1
45.1


6.1









AD-
A-
2367
ususauuuGfuAfCfCfgguuu
A-
2816
VPusAfscaaAfaaccgguA
UCUUAUUUGUACCG
5067


12232
22828

uuguaL96
228284

fcAfaauaasgsa
GUUUUUGUA



34.1
47.1


8.1









AD-
A-
2368
usasuuugUfaCfCfGfguuuuu
A-
2817
VPusUfsacaAfaaaccggU
CUUAUUUGUACCGG
5068


12232
22828

guaaL96
228285

faCfaaauasasg
UUUUUGUAU



35.1
49.1


0.1









AD-
A-
2369
asusuuguAfcCfGfGfuuuuu
A-
2818
VPusAfsuacAfaaaaccgG
UUAUUUGUACCGGU
5069


12232
22828

guauaL96
228285

fuAfcaaausasa
UUUUGUAUA



36.1
51.1


2.1









AD-
A-
2370
ususuguaCfcGfGfUfuuuug
A-
2819
VPusUfsauaCfaaaaaccG
UAUUUGUACCGGUU
5070


12232
22828

uauaaL96
228285

fgUfacaaasusa
UUUGUAUAU



37.1
53.1


4.1









AD-
A-
2371
ususguacCfgGfUfUfuuugua
A-
2820
VPusAfsuauAfcaaaaacC
AUUUGUACCGGUUU
5071


12232
22828

uauaL96
228285

fgGfuacaasasu
UUGUAUAUA



38.1
55.1


6.1









AD-
A-
2372
usgsuaccGfgUfUfUfuuguau
A-
2821
VPusUfsauaUfacaaaaaC
UUUGUACCGGUUUU
5072


12232
22828

auaaL96
228285

fcGfguacasasa
UGUAUAUAA



39.1
57.1


8.1









AD-
A-
2373
gsusaccgGfuUfUfUfuguaua
A-
2822
VPusUfsuauAfuacaaaaA
UUGUACCGGUUUUU
5073


12232
22828

uaaaL96
228286

fcCfgguacsasa
GUAUAUAAA



40.1
59.1


0.1









AD-
A-
2374
usasccggUfuUfUfUfguauau
A-
2823
VPusUfsuuaUfauacaaaA
UGUACCGGUUUUUG
5074


12232
22828

aaaaL96
228286

faCfcgguascsa
UAUAUAAAA



41.1
61.1


2.1









AD-
A-
2375
ascscgguUfuUfUfGfuauaua
A-
2824
VPusUfsuuuAfuauacaa
GUACCGGUUUUUGU
5075


12232
22828

aaaaL96
228286

AfaAfccggusasc
AUAUAAAAU



42.1
63.1


4.1









AD-
A-
2376
asusucauGfuUfUfCfcaaucu
A-
2825
VPusGfsagaGfauuggaa
AAAUUCAUGUUUCC
5076


12232
22828

cucaL96
228286

AfcAfugaaususu
AAUCUCUCU



43.1
65.1


6.1









AD-
A-
2377
ususcaugUfuUfCfCfaaucuc
A-
2826
VPusAfsgagAfgauugga
AAUUCAUGUUUCCA
5077


12232
22828

ucuaL96
228286

AfaCfaugaasusu
AUCUCUCUC



44.1
67.1


8.1









AD-
A-
2378
uscsauguUfuCfCfAfaucucu
A-
2827
VPusGfsagaGfagauugg
AUUCAUGUUUCCAA
5078


12232
22828

cucaL96
228287

AfaAfcaugasasu
UCUCUCUCU



45.1
69.1


0.1









AD-
A-
2379
csasuguuUfcCfAfAfucucuc
A-
2828
VPusAfsgagAfgagauug
UUCAUGUUUCCAAU
5079


12232
22828

ucuaL96
228287

GfaAfacaugsasa
CUCUCUCUC



46.1
71.1


2.1









AD-
A-
2380
asusguuuCfcAfAfUfcucucu
A-
2829
VPusGfsagaGfagagauu
UCAUGUUUCCAAUC
5080


12232
22828

cucaL96
228287

GfgAfaacausgsa
UCUCUCUCC



47.1
73.1


4.1









AD-
A-
2381
usgsuuucCfaAfUfCfucucuc
A-
2830
VPusGfsgagAfgagagau
CAUGUUUCCAAUCU
5081


12232
22828

uccaL96
228287

UfgGfaaacasusg
CUCUCUCCC



48.1
75.1


6.1









AD-
A-
2382
ususuccaAfuCfUfCfucucuc
A-
2831
VPusAfsgggAfgagagag
UGUUUCCAAUCUCU
5082


12232
22828

ccuaL96
228287

AfuUfggaaascsa
CUCUCCCUG



49.1
77.1


8.1









AD-
A-
2383
uscscaauCfuCfUfCfucuccc
A-
2832
VPusUfscagGfgagagag
UUUCCAAUCUCUCU
5083


12232
22828

ugaaL96
228288

AfgAfuuggasasa
CUCCCUGAU



50.1
79.1


0.1









AD-
A-
2384
csgsgugaCfaGfUfCfacuagc
A-
2833
VPusUfsaagCfuagugacU
AUCGGUGACAGUCA
5084


12232
22828

uuaaL96
228288

fgUfcaccgsasu
CUAGCUUAU



51.1
81.1


2.1









AD-
A-
2385
gsgsugacAfgUfCfAfcuagcu
A-
2834
VPusAfsuaaGfcuagugaC
UCGGUGACAGUCAC
5085


12232
22828

uauaL96
228288

fuGfucaccsgsa
UAGCUUAUC



52.1
83.1


4.1









AD-
A-
2386
asgsucacUfaGfCfUfuaucuu
A-
2835
VPusUfsucaAfgauaagcU
ACAGUCACUAGCUU
5086


12232
22828

gaaaL96
228288

faGfugacusgsu
AUCUUGAAC



53.1
85.1


6.1









AD-
A-
2387
gsuscacuAfgCfUfUfaucuug
A-
2836
VPusGfsuucAfagauaagC
CAGUCACUAGCUUA
5087


12232
22828

aacaL96
228288

fuAfgugacsusg
UCUUGAACA



54.1
87.1


8.1









AD-
A-
2388
uscsacuaGfcUfUfAfucuuga
A-
2837
VPusUfsguuCfaagauaaG
AGUCACUAGCUUAU
5088


12232
22828

acaaL96
228289

fcUfagugascsu
CUUGAACAG



55.1
89.1


0.1









AD-
A-
2389
ascsuagcUfuAfUfCfuugaac
A-
2838
VPusUfscugUfucaagau
UCACUAGCUUAUCU
5089


12232
22828

agaaL96
228289

AfaGfcuagusgsa
UGAACAGAU



56.1
91.1


2.1









AD-
A-
2390
csusagcuUfaUfCfUfugaaca
A-
2839
VPusAfsucuGfuucaaga
CACUAGCUUAUCUU
5090


12232
22828

gauaL96
228289

UfaAfgcuagsusg
GAACAGAUA



57.1
93.1


4.1









AD-
A-
2391
usasgcuuAfuCfUfUfgaacag
A-
2840
VPusUfsaucUfguucaag
ACUAGCUUAUCUUG
5091


12232
22828

auaaL96
228289

AfuAfagcuasgsu
AACAGAUAU



58.1
95.1


6.1









AD-
A-
2392
asgscuuaUfcUfUfGfaacaga
A-
2841
VPusAfsuauCfuguucaa
CUAGCUUAUCUUGA
5092


12232
22828

uauaL96
228289

GfaUfaagcusasg
ACAGAUAUU



59.1
97.1


8.1









AD-
A-
2393
gscsuuauCfuUfGfAfacagau
A-
2842
VPusAfsauaUfcuguuca
UAGCUUAUCUUGAA
5093


12232
22828

auuaL96
228290

AfgAfuaagcsusa
CAGAUAUUU



60.1
99.1


0.1









AD-
A-
2394
csasgcacAfcAfUfUfccuuug
A-
2843
VPusUfsuucAfaaggaau
CCCAGCACACAUUC
5094


12232
22829

aaaaL96
228290

GfuGfugcugsgsg
CUUUGAAAU



61.1
01.1


2.1









AD-
A-
2395
asgscacaCfaUfUfCfcuuuga
A-
2844
VPusAfsuuuCfaaaggaaU
CCAGCACACAUUCC
5095


12232
22829

aauaL96
228290

fgUfgugcusgsg
UUUGAAAUA



62.1
03.1


4.1









AD-
A-
2396
gscsacacAfuUfCfCfuuugaa
A-
2845
VPusUfsauuUfcaaaggaA
CAGCACACAUUCCU
5096


12232
22829

auaaL96
228290

fuGfugugcsusg
UUGAAAUAA



63.1
05.1


6.1









AD-
A-
2397
csascacaUfuCfCfUfuugaaa
A-
2846
VPusUfsuauUfucaaagg
AGCACACAUUCCUU
5097


12232
22829

uaaaL96
228290

AfaUfgugugscsu
UGAAAUAAG



64.1
07.1


8.1









AD-
A-
2398
csascauuCfcUfUfUfgaaaua
A-
2847
VPusCfscuuAfuuucaaaG
CACACAUUCCUUUG
5098


12232
22829

aggaL96
228291

fgAfaugugsusg
AAAUAAGGU



65.1
09.1


0.1









AD-
A-
2399
uscscuuuGfaAfAfUfaagguu
A-
2848
VPusUfsgaaAfccuuauu
AUUCCUUUGAAAUA
5099


12232
22829

ucaaL96
228291

UfcAfaaggasasu
AGGUUUCAA



66.1
11.1


2.1









AD-
A-
2400
csusuugaAfaUfAfAfgguuuc
A-
2849
VPusAfsuugAfaaccuua
UCCUUUGAAAUAAG
5100


12232
22829

aauaL96
228291

UfuUfcaaagsgsa
GUUUCAAUA



67.1
13.1


4.1









AD-
A-
2401
ususugaaAfuAfAfGfguuuca
A-
2850
VPusUfsauuGfaaaccuuA
CCUUUGAAAUAAGG
5101


12232
22829

auaaL96
228291

fuUfucaaasgsg
UUUCAAUAU



68.1
15.1


6.1









AD-
A-
2402
asgsguuuCfaAfUfAfuacauc
A-
2851
VPusGfsuagAfuguauau
UAAGGUUUCAAUAU
5102


12232
22829

uacaL96
228291

UfgAfaaccususa
ACAUCUACA



69.1
17.1


8.1









AD-
A-
2403
gsgsuuucAfaUfAfUfacaucu
A-
2852
VPusUfsguaGfauguaua
AAGGUUUCAAUAUA
5103


12232
22829

acaaL96
228292

UfuGfaaaccsusu
CAUCUACAU



70.1
19.1


0.1









AD-
A-
2404
gsusuucaAfuAfUfAfcaucua
A-
2853
VPusAfsuguAfgauguau
AGGUUUCAAUAUAC
5104


12232
22829

cauaL96
228292

AfuUfgaaacscsu
AUCUACAUA



71.1
21.1


2.1









AD-
A-
2405
ususucaaUfaUfAfCfaucuac
A-
2854
VPusUfsaugUfagaugua
GGUUUCAAUAUACA
5105


12232
22829

auaaL96
228292

UfaUfugaaascsc
UCUACAUAC



72.1
23.1


4.1









AD-
A-
2406
ususcaauAfuAfCfAfucuaca
A-
2855
VPusGfsuauGfuagaugu
GUUUCAAUAUACAU
5106


12232
22829

uacaL96
228292

AfuAfuugaasasc
CUACAUACU



73.1
25.1


6.1









AD-
A-
2407
usasuuugGfcAfAfCfuuguau
A-
2856
VPusCfsaaaUfacaaguuG
UAUAUUUGGCAACU
5107


12232
22829

uugaL96
228292

fcCfaaauasusa
UGUAUUUGU



74.1
27.1


8.1









AD-
A-
2408
ususuggcAfaCfUfUfguauuu
A-
2857
VPusCfsacaAfauacaagU
UAUUUGGCAACUUG
5108


12232
22829

gugaL96
228293

fuGfccaaasusa
UAUUUGUGU



75.1
29.1


0.1









AD-
A-
2409
usgsgcaaCfuUfGfUfauuugu
A-
2858
VPusCfsacaCfaaauacaA
UUUGGCAACUUGUA
5109


12232
22829

gugaL96
228293

fgUfugccasasa
UUUGUGUGU



76.1
31.1


2.1









AD-
A-
2410
gsgscaacUfuGfUfAfuuugug
A-
2859
VPusAfscacAfcaaauacA
UUGGCAACUUGUAU
5110


12232
22829

uguaL96
228293

faGfuugccsasa
UUGUGUGUA



77.1
33.1


4.1









AD-
A-
2411
gscsaacuUfgUfAfUfuugugu
A-
2860
VPusUfsacaCfacaaauaC
UGGCAACUUGUAUU
5111


12232
22829

guaaL96
228293

faAfguugcscsa
UGUGUGUAU



78.1
35.1


6.1









AD-
A-
2412
csasacuuGfuAfUfUfugugug
A-
2861
VPusAfsuacAfcacaaauA
GGCAACUUGUAUUU
5112


12232
22829

uauaL96
228293

fcAfaguugscsc
GUGUGUAUA



79.1
37.1


8.1









AD-
A-
2413
asascuugUfaUfUfUfgugugu
A-
2862
VPusUfsauaCfacacaaaU
GCAACUUGUAUUUG
5113


12232
22829

auaaL96
228294

faCfaaguusgsc
UGUGUAUAU



80.1
39.1


0.1









AD-
A-
2414
ascsuuguAfuUfUfGfugugu
A-
2863
VPusAfsuauAfcacacaaA
CAACUUGUAUUUGU
5114


12232
22829

auauaL96
228294

fuAfcaagususg
GUGUAUAUA



81.1
41.1


2.1









AD-
A-
2415
ususcugaUfaAfAfAfuagaca
A-
2864
VPusCfsaauGfucuauuu
GAUUCUGAUAAAAU
5115


12232
22829

uugaL96
228294

UfaUfcagaasusc
AGACAUUGC



82.1
43.1


4.1









AD-
A-
2416
usgsauaaAfaUfAfGfacauug
A-
2865
VPusUfsagcAfaugucua
UCUGAUAAAAUAGA
5116


12232
22829

cuaaL96
228294

UfuUfuaucasgsa
CAUUGCUAU



83.1
45.1


6.1









AD-
A-
2417
gsasuaaaAfuAfGfAfcauugc
A-
2866
VPusAfsuagCfaaugucu
CUGAUAAAAUAGAC
5117


12232
22829

uauaL96
228294

AfuUfuuaucsasg
AUUGCUAUU



84.1
47.1


8.1









AD-
A-
2418
usasaaauAfgAfCfAfuugcua
A-
2867
VPusGfsaauAfgcaauguC
GAUAAAAUAGACAU
5118


12232
22829

uucaL96
228295

fuAfuuuuasusc
UGCUAUUCU



85.1
49.1


0.1









AD-
A-
2419
usasgacaUfuGfCfUfauucug
A-
2868
VPusAfsaacAfgaauagcA
AAUAGACAUUGCUA
5119


12232
22829

uuuaL96
228295

faUfgucuasusu
UUCUGUUUU



86.1
51.1


2.1









AD-
A-
2420
asgsacauUfgCfUfAfuucugu
A-
2869
VPusAfsaaaCfagaauagC
AUAGACAUUGCUAU
5120


12232
22829

uuuaL96
228295

faAfugucusasu
UCUGUUUUU



87.1
53.1


4.1









AD-
A-
2421
uscsuacaUfaCfUfAfaaucuc
A-
2870
VPusAfsgagAfgauuuag
AUUCUACAUACUAA
5121


12232
22829

ucuaL96
228295

UfaUfguagasasu
AUCUCUCUC



88.1
55.1


6.1









AD-
A-
2422
csusacauAfcUfAfAfaucucu
A-
2871
VPusGfsagaGfagauuua
UUCUACAUACUAAA
5122


12232
22829

cucaL96
228295

GfuAfuguagsasa
UCUCUCUCC



89.1
57.1


8.1









AD-
A-
2423
usascauaCfuAfAfAfucucuc
A-
2872
VPusGfsgagAfgagauuu
UCUACAUACUAAAU
5123


12232
22829

uccaL96
228296

AfgUfauguasgsa
cucucuccu



90.1
59.1


0.1









AD-
A-
2424
ascsauacUfaAfAfUfcucucu
A-
2873
VPusAfsggaGfagagauu
CUACAUACUAAAUC
5124


12232
22829

ccuaL96
228296

UfaGfuaugusasg
UCUCUCCUU



91.1
61.1


2.1









AD-
A-
2425
csasuacuAfaAfUfCfucucuc
A-
2874
VPusAfsaggAfgagagau
UACAUACUAAAUCU
5125


12232
22829

cuuaL96
228296

UfuAfguaugsusa
CUCUCCUUU



92.1
63.1


4.1









AD-
A-
2426
asusacuaAfaUfCfUfcucucc
A-
2875
VPusAfsaagGfagagagaU
ACAUACUAAAUCUC
5126


12232
22829

uuuaL96
228296

fuUfaguausgsu
UCUCCUUUU



93.1
65.1


6.1









AD-
A-
2427
usascuaaAfuCfUfCfucuccu
A-
2876
VPusAfsaaaGfgagagagA
CAUACUAAAUCUCU
5127


12232
22829

uuuaL96
228296

fuUfuaguasusg
CUCCUUUUU



94.1
67.1


8.1









AD-
A-
2428
csasuuuaUfuUfAfUfuggugc
A-
2877
VPusGfsuagCfaccaauaA
AUCAUUUAUUUAUU
5128


12232
22829

uacaL96
228297

faUfaaaugsasu
GGUGCUACU



95.1
69.1


0.1









AD-
A-
2429
asusuuauUfuAfUfUfggugc
A-
2878
VPusAfsguaGfcaccaauA
UCAUUUAUUUAUUG
5129


12232
22829

uacuaL96
228297

faAfuaaausgsa
GUGCUACUG



96.1
71.1


2.1









AD-
A-
2430
ususuauuUfaUfUfGfgugcua
A-
2879
VPusCfsaguAfgcaccaaU
CAUUUAUUUAUUGG
5130


12232
22829

cugaL96
228297

faAfauaaasusg
UGCUACUGU



97.1
73.1


4.1









AD-
A-
2431
ususauuuAfuUfGfGfugcuac
A-
2880
VPusAfscagUfagcaccaA
AUUUAUUUAUUGG
5131


12232
22829

uguaL96
228297

fuAfaauaasasu
UGCUACUGUU



98.1
75.1


6.1









AD-
A-
2432
usasuuuaUfuGfGfUfgcuacu
A-
2881
VPusAfsacaGfuagcaccA
UUUAUUUAUUGGU
5132


12232
22829

guuaL96
228297

faUfaaauasasa
GCUACUGUUU



99.1
77.1


8.1









AD-
A-
2433
asusuuauUfgGfUfGfcuacug
A-
2882
VPusAfsaacAfguagcacC
UUAUUUAUUGGUGC
5133


12233
22829

uuuaL96
228298

faAfuaaausasa
UACUGUUUA



00.1
79.1


0.1









AD-
A-
2434
ususauugGfuGfCfUfacuguu
A-
2883
VPusAfsuaaAfcaguagcA
AUUUAUUGGUGCUA
5134


12233
22829

uauaL96
228298

fcCfaauaasasu
CUGUUUAUC



01.1
81.1


2.1









AD-
A-
2435
asusugguGfcUfAfCfuguuua
A-
2884
VPusGfsgauAfaacaguaG
UUAUUGGUGCUACU
5135


12233
22829

uccaL96
228298

fcAfccaausasa
GUUUAUCCG



02.1
83.1


4.1









AD-
A-
2436
gsasaaagAfuAfUfUfaacauc
A-
2885
VPusCfsgugAfuguuaau
GGGAAAAGAUAUU
5136


12233
22829

acgaL96
228298

AfuCfuuuucscsc
AACAUCACGU



03.1
85.1


6.1









AD-
A-
2437
asascaucAfcGfUfCfuuuguc
A-
2886
VPusAfsgagAfcaaagacG
UUAACAUCACGUCU
5137


12233
22829

ucuaL96
228298

fuGfauguusasa
UUGUCUCUA



04.1
87.1


8.1









AD-
A-
2438
ascsaucaCfgUfCfUfuugucu
A-
2887
VPusUfsagaGfacaaagaC
UAACAUCACGUCUU
5138


12233
22829

cuaaL96
228299

fgUfgaugususa
UGUCUCUAG



05.1
89.1


0.1









AD-
A-
2439
gsuscuuuGfuCfUfCfuagugc
A-
2888
VPusAfscugCfacuagagA
ACGUCUUUGUCUCU
5139


12233
22829

aguaL96
228299

fcAfaagacsgsu
AGUGCAGUU



06.1
91.1


2.1









AD-
A-
2440
uscsuuugUfcUfCfUfagugca
A-
2889
VPusAfsacuGfcacuagaG
CGUCUUUGUCUCUA
5140


12233
22829

guuaL96
228299

faCfaaagascsg
GUGCAGUUU



07.1
93.1


4.1









AD-
A-
2441
csusuuguCfuCfUfAfgugcag
A-
2890
VPusAfsaacUfgcacuagA
GUCUUUGUCUCUAG
5141


12233
22829

uuuaL96
228299

fgAfcaaagsasc
UGCAGUUUU



08.1
95.1


6.1









AD-
A-
2442
gsasgauaUfuCfCfGfuaguac
A-
2891
VPusUfsaugUfacuacgg
UCGAGAUAUUCCGU
5142


12233
22829

auaaL96
228299

AfaUfaucucsgsa
AGUACAUAU



09.1
97.1


8.1









AD-
A-
2443
asgsauauUfcCfGfUfaguaca
A-
2892
VPusAfsuauGfuacuacg
CGAGAUAUUCCGUA
5143


12233
22829

uauaL96
228300

GfaAfuaucuscsg
GUACAUAUU



10.1
99.1


0.1









AD-
A-
2444
gsasuauuCfcGfUfAfguacau
A-
2893
VPusAfsauaUfguacuacG
GAGAUAUUCCGUAG
5144


12233
22830

auuaL96
228300

fgAfauaucsusc
UACAUAUUU



11.1
01.1


2.1









AD-
A-
2445
csgsacaaAfgAfAfAfuacaga
A-
2894
VPusAfsuauCfuguauuu
AACGACAAAGAAAU
5145


12233
22830

uauaL96
228300

CfuUfugucgsusu
ACAGAUAUA



12.1
03.1


4.1









AD-
A-
2446
gsascaaaGfaAfAfUfacagau
A-
2895
VPusUfsauaUfcuguauu
ACGACAAAGAAAUA
5146


12233
22830

auaaL96
228300

UfcUfuugucsgsu
CAGAUAUAU



13.1
05.1


6.1









AD-
A-
2447
ascsaaagAfaAfUfAfcagaua
A-
2896
VPusAfsuauAfucuguau
CGACAAAGAAAUAC
5147


12233
22830

uauaL96
228300

UfuCfuuuguscsg
AGAUAUAUC



14.1
07.1


8.1









AD-
A-
2448
csasaagaAfaUfAfCfagauau
A-
2897
VPusGfsauaUfaucugua
GACAAAGAAAUACA
5148


12233
22830

aucaL96
228301

UfuUfcuuugsusc
GAUAUAUCU



15.1
09.1


0.1
















TABLE 8B







Exemplary Human VEGF-A siRNA Unmodified Single Strands and Duplex Sequences




















Anti-
SEQ ID





Sense
SEQ ID

mRNA
sense
NO:

mRNA


Duplex
Oligo
NO:

Target
Oligo
(Anti-

Target


Name
Name
(Sense)
Sense Sequence
Range
Name
sense)
Antisense Sequence
Range





AD-
A-
2898
CGGUGCUGGAAUUU
 123-
A-
3347
UAAUAUCAAAUUCCA
 121-


122286
228211

GAUAUUA
 143
2282112.

GCACCGAG
 143


6.1
1.1



1








AD-
A-
2899
GGUGCUGGAAUUUG
 124-
A-
3348
UGAAUAUCAAAUUCC
 122-


122286
228211

AUAUUCA
 144
2282114.

AGCACCGA
 144


7.1
3.1



1








AD-
A-
2900
UGCUGGAAUUUGAU
 126-
A-
3349
UAUGAAUAUCAAAUU
 124-


122286
228211

AUUCAUA
 146
2282116.

CCAGCACC
 146


8.1
5.1



1








AD-
A-
2901
GCUGGAAUUUGAUA
 127-
A-
3350
UAAUGAAUAUCAAAU
 125-


122286
228211

UUCAUUA
 147
2282118.

UCCAGCAC
 147


9.1
7.1



1








AD-
A-
2902
UGGAAUUUGAUAUU
 129-
A-
3351
UUCAAUGAAUAUCAA
 127-


122287
228211

CAUUGAA
 149
2282120.

AUUCCAGC
 149


0.1
9.1



1








AD-
A-
2903
GGAAUUUGAUAUUC
 130-
A-
3352
UAUCAAUGAAUAUCA
 128-


122287
228212

AUUGAUA
 150
2282122.

AAUUCCAG
 150


1.1
1.1



1








AD-
A-
2904
GAAUUUGAUAUUCA
 131-
A-
3353
UGAUCAAUGAAUAUC
 129-


122287
228212

UUGAUCA
 151
2282124.

AAAUUCCA
 151


2.1
3.1



1








AD-
A-
2905
AAUUUGAUAUUCAU
 132-
A-
3354
UGGAUCAAUGAAUAU
 130-


122287
228212

UGAUCCA
 152
2282126.

CAAAUUCC
 152


3.1
5.1



1








AD-
A-
2906
AUUUGAUAUUCAUU
 133-
A-
3355
UCGGAUCAAUGAAUA
 131-


122287
228212

GAUCCGA
 153
2282128.

UCAAAUUC
 153


4.1
7.1



1








AD-
A-
2907
UUUGAUAUUCAUUG
 134-
A-
3356
UCCGGAUCAAUGAAU
 132-


122287
228212

AUCCGGA
 154
2282130.

AUCAAAUU
 154


5.1
9.1



1








AD-
A-
2908
UUUAUUUUUGCUUG
 217-
A-
3357
UGAAUGGCAAGCAAA
 215-


122287
228213

CCAUUCA
 237
2282132.

AAUAAAUU
 237


6.1
1.1



1








AD-
A-
2909
UUAUUUUUGCUUGCC
 218-
A-
3358
UGGAAUGGCAAGCAA
 216-


122287
228213

AUUCCA
 238
2282134.

AAAUAAAU
 238


7.1
3.1



1








AD-
A-
2910
CAAAUCACUGUGGAU
 283-
A-
3359
UCCAAAAUCCACAGU
 281-


122287
228213

UUUGGA
 303
2282136.

GAUUUGGG
 303


8.1
5.1



1








AD-
A-
2911
AAAUCACUGUGGAU
 284-
A-
3360
UUCCAAAAUCCACAG
 282-


122287
228213

UUUGGAA
 304
2282138.

UGAUUUGG
 304


9.1
7.1



1








AD-
A-
2912
AAUCACUGUGGAUU
 285-
A-
3361
UUUCCAAAAUCCACA
 283-


122288
228213

UUGGAAA
 305
2282140.

GUGAUUUG
 305


0.1
9.1



1








AD-
A-
2913
AUCACUGUGGAUUU
 286-
A-
3362
UUUUCCAAAAUCCAC
 284-


122288
228214

UGGAAAA
 306
2282142.

AGUGAUUU
 306


1.1
1.1



1








AD-
A-
2914
UCACUGUGGAUUUU
 287-
A-
3363
UGUUUCCAAAAUCCA
 285-


122288
228214

GGAAACA
 307
2282144.

CAGUGAUU
 307


2.1
3.1



1








AD-
A-
2915
CACUGUGGAUUUUG
 288-
A-
3364
UGGUUUCCAAAAUCC
 286-


122288
228214

GAAACCA
 308
2282146.

ACAGUGAU
 308


3.1
5.1



1








AD-
A-
2916
ACUGUGGAUUUUGG
 289-
A-
3365
UUGGUUUCCAAAAUC
 287-


122288
228214

AAACCAA
 309
2282148.

CACAGUGA
 309


4.1
7.1



1








AD-
A-
2917
CUGUGGAUUUUGGA
 290-
A-
3366
UCUGGUUUCCAAAAU
 288-


122288
228214

AACCAGA
 310
2282150.

CCACAGUG
 310


5.1
9.1



1








AD-
A-
2918
UGUGGAUUUUGGAA
 291-
A-
3367
UGCUGGUUUCCAAAA
 289-


122288
228215

ACCAGCA
 311
2282152.

UCCACAGU
 311


6.1
1.1



1








AD-
A-
2919
GUGGAUUUUGGAAA
 292-
A-
3368
UUGCUGGUUUCCAAA
 290-


122288
228215

CCAGCAA
 312
2282154.

AUCCACAG
 312


7.1
3.1



1








AD-
A-
2920
GAUUUUGGAAACCA
 295-
A-
3369
UUUCUGCUGGUUUCC
 293-


122288
228215

GCAGAAA
 315
2282156.

AAAAUCCA
 315


8.1
5.1



1








AD-
A-
2921
AUUUUGGAAACCAGC
 296-
A-
3370
UUUUCUGCUGGUUUC
 294-


122288
228215

AGAAAA
 316
2282158.

CAAAAUCC
 316


9.1
7.1



1








AD-
A-
2922
UUUUGGAAACCAGCA
 297-
A-
3371
UCUUUCUGCUGGUUU
 295-


122289
228215

GAAAGA
 317
2282160.

CCAAAAUC
 317


0.1
9.1



1








AD-
A-
2923
UUUGGAAACCAGCAG
 298-
A-
3372
UUCUUUCUGCUGGUU
 296-


122289
228216

AAAGAA
 318
2282162.

UCCAAAAU
 318


1.1
1.1



1








AD-
A-
2924
GGAAACCAGCAGAAA
 301-
A-
3373
UUCCUCUUUCUGCUG
 299-


122289
228216

GAGGAA
 321
2282164.

GUUUCCAA
 321


2.1
3.1



1








AD-
A-
2925
AAACCAGCAGAAAGA
 303-
A-
3374
UUUUCCUCUUUCUGC
 301-


122289
228216

GGAAAA
 323
2282166.

UGGUUUCC
 323


3.1
5.1



1








AD-
A-
2926
AACCAGCAGAAAGAG
 304-
A-
3375
UCUUUCCUCUUUCUG
 302-


122289
228216

GAAAGA
 324
2282168.

CUGGUUUC
 324


4.1
7.1



1








AD-
A-
2927
ACCAGCAGAAAGAGG
 305-
A-
3376
UUCUUUCCUCUUUCU
 303-


122289
228216

AAAGAA
 325
2282170.

GCUGGUUU
 325


5.1
9.1



1








AD-
A-
2928
CCAGCAGAAAGAGGA
 306-
A-
3377
UCUCUUUCCUCUUUC
 304-


122289
228217

AAGAGA
 326
2282172.

UGCUGGUU
 326


6.1
1.1



1








AD-
A-
2929
CAGCAGAAAGAGGA
 307-
A-
3378
uccucuuuccucuuuc
 305-


122289
228217

AAGAGGA
 327
2282174.

UGCUGGU
 327


7.1
3.1



1








AD-
A-
2930
AGCAGAAAGAGGAA
 308-
A-
3379
UACCUCUUUCCUCUU
 306-


122289
228217

AGAGGUA
 328
2282176.

UCUGCUGG
 328


8.1
5.1



1








AD-
A-
2931
GCAGAAAGAGGAAA
 309-
A-
3380
UUACCUCUUUCCUCU
 307-


122289
228217

GAGGUAA
 329
2282178.

UUCUGCUG
 329


9.1
7.1



1








AD-
A-
2932
CAGAAAGAGGAAAG
 310-
A-
3381
UCUACCUCUUUCCUCU
 308-


122290
228217

AGGUAGA
 330
2282180.

UUCUGCU
 330


0.1
9.1



1








AD-
A-
2933
AAAGAGGAAAGAGG
 313-
A-
3382
UUUGCUACCUCUUUC
 311-


122290
228218

UAGCAAA
 333
2282182.

CUCUUUCU
 333


1.1
1.1



1








AD-
A-
2934
AAGAGGAAAGAGGU
 314-
A-
3383
UCUUGCUACCUCUUU
 312-


122290
228218

AGCAAGA
 334
2282184.

ccucuuuc
 334


2.1
3.1



1








AD-
A-
2935
AGAGGAAAGAGGUA
 315-
A-
3384
UUCUUGCUACCUCUU
 313-


122290
228218

GCAAGAA
 335
2282186.

uccucuuu
 335


3.1
5.1



1








AD-
A-
2936
GAGGAAAGAGGUAG
 316-
A-
3385
UCUCUUGCUACCUCU
 314-


122290
228218

CAAGAGA
 336
2282188.

uuccucuu
 336


4.1
7.1



1








AD-
A-
2937
GGAAAGAGGUAGCA
 318-
A-
3386
UAGCUCUUGCUACCU
 316-


122290
228218

AGAGCUA
 338
2282190.

cuuuccuc
 338


5.1
9.1



1








AD-
A-
2938
AGGUAGCAAGAGCUC
 324-
A-
3387
UCUCUGGAGCUCUUG
 322-


122290
228219

CAGAGA
 344
2282192.

CUACCUCU
 344


6.1
1.1



1








AD-
A-
2939
UCCAGAGAGAAGUCG
 337-
A-
3388
UUUCCUCGACUUCUC
 335-


122290
228219

AGGAAA
 357
2282194.

UCUGGAGC
 357


7.1
3.1



1








AD-
A-
2940
CCAGAGAGAAGUCGA
 338-
A-
3389
UCUUCCUCGACUUCUC
 336-


122290
228219

GGAAGA
 358
2282196.

UCUGGAG
 358


8.1
5.1



1








AD-
A-
2941
CAGAGAGAAGUCGA
 339-
A-
3390
UUCUUCCUCGACUUC
 337-


122290
228219

GGAAGAA
 359
2282198.

UCUCUGGA
 359


9.1
7.1



1








AD-
A-
2942
AGAGAAGUCGAGGA
 342-
A-
3391
UCUCUCUUCCUCGACU
 340-


122291
228219

AGAGAGA
 362
2282200.

UCUCUCU
 362


0.1
9.1



1








AD-
A-
2943
GAGAAGUCGAGGAA
 343-
A-
3392
UUCUCUCUUCCUCGAC
 341-


122291
228220

GAGAGAA
 363
2282202.

UUCUCUC
 363


1.1
1.1



1








AD-
A-
2944
GAAGUCGAGGAAGA
 345-
A-
3393
UUCUCUCUCUUCCUCG
 343-


122291
228220

GAGAGAA
 365
2282204.

ACUUCUC
 365


2.1
3.1



1








AD-
A-
2945
AGUGAGUGACCUGCU
 417-
A-
3394
UCCAAAAGCAGGUCA
 415-


122291
228220

UUUGGA
 437
2282206.

CUCACUUU
 437


3.1
5.1



1








AD-
A-
2946
GGCGUCGCACUGAAA
 643-
A-
3395
UAAAAGUUUCAGUGC
 641-


122291
228220

CUUUUA
 663
2282208.

GACGCCGC
 663


4.1
7.1



1








AD-
A-
2947
GUCGCACUGAAACUU
 646-
A-
3396
UACGAAAAGUUUCAG
 644-


122291
228220

UUCGUA
 666
2282210.

UGCGACGC
 666


5.1
9.1



1








AD-
A-
2948
UCGCACUGAAACUUU
 647-
A-
3397
UGACGAAAAGUUUCA
 645-


122291
228221

UCGUCA
 667
2282212.

GUGCGACG
 667


6.1
1.1



1








AD-
A-
2949
CACUGAAACUUUUCG
 650-
A-
3398
UUUGGACGAAAAGUU
 648-


122291
228221

UCCAAA
 670
2282214.

UCAGUGCG
 670


7.1
3.1



1








AD-
A-
2950
ACUGAAACUUUUCGU
 651-
A-
3399
UGUUGGACGAAAAGU
 649-


122291
228221

CCAACA
 671
2282216.

UUCAGUGC
 671


8.1
5.1



1








AD-
A-
2951
UGAAACUUUUCGUCC
 653-
A-
3400
UAAGUUGGACGAAAA
 651-


122292
228221

AACUUA
 673
2282220.

GUUUCAGU
 673


0.1
9.1



1








AD-
A-
2952
AACUUUUCGUCCAAC
 656-
A-
3401
UCAGAAGUUGGACGA
 654-


122292
228222

UUCUGA
 676
2282222.

AAAGUUUC
 676


1.1
1.1



1








AD-
A-
2953
CUGGGCUGUUCUCGC
 673-
A-
3402
UCCGAAGCGAGAACA
 671-


122292
228222

UUCGGA
 693
2282224.

GCCCAGAA
 693


2.1
3.1



1








AD-
A-
2954
UGGGCUGUUCUCGCU
 674-
A-
3403
UUCCGAAGCGAGAAC
 672-


122292
228222

UCGGAA
 694
2282226.

AGCCCAGA
 694


3.1
5.1



1








AD-
A-
2955
GGGCUGUUCUCGCUU
 675-
A-
3404
UCUCCGAAGCGAGAA
 673-


122292
228222

CGGAGA
 695
2282228.

CAGCCCAG
 695


4.1
7.1



1








AD-
A-
2956
GCUGUUCUCGCUUCG
 677-
A-
3405
UUCCUCCGAAGCGAG
 675-


122292
228222

GAGGAA
 697
2282230.

AACAGCCC
 697


5.1
9.1



1








AD-
A-
2957
GCCGCGAGAAGUGCU
 733-
A-
3406
UGAGCUAGCACUUCU
 731-


122292
228223

AGCUCA
 753
2282232.

CGCGGCUC
 753


6.1
1.1



1








AD-
A-
2958
CCGCGAGAAGUGCUA
 734-
A-
3407
UCGAGCUAGCACUUC
 732-


122292
228223

GCUCGA
 754
2282234.

UCGCGGCU
 754


7.1
3.1



1








AD-
A-
2959
GCCUCCGAAACCAUG
1027-
A-
3408
UAAGUUCAUGGUUUC
1025-


122292
228223

AACUUA
1047
2282236.

GGAGGCCC
1047


8.1
5.1



1








AD-
A-
2960
AAGGAGGAGGGCAG
1130-
A-
3409
UAUGAUUCUGCCCUC
1128-


122292
228223

AAUCAUA
1150
2282238.

CUCCUUCU
1150


9.1
7.1



1








AD-
A-
2961
GGCAGAAUCAUCACG
1139-
A-
3410
UCACUUCGUGAUGAU
1137-


122293
228223

AAGUGA
1159
2282240.

UCUGCCCU
1159


0.1
9.1



1








AD-
A-
2962
AAUCAUCACGAAGUG
1144-
A-
3411
UUUCACCACUUCGUG
1142-


122293
228224

GUGAAA
1164
2282242.

AUGAUUCU
1164


1.1
1.1



1








AD-
A-
2963
AUCAUCACGAAGUGG
1145-
A-
3412
UCUUCACCACUUCGU
1143-


122293
228224

UGAAGA
1165
2282244.

GAUGAUUC
1165


2.1
3.1



1








AD-
A-
2964
UCAUCACGAAGUGGU
1146-
A-
3413
UACUUCACCACUUCG
1144-


122293
228224

GAAGUA
1166
2282246.

UGAUGAUU
1166


3.1
5.1



1








AD-
A-
2965
CAUCACGAAGUGGUG
1147-
A-
3414
UAACUUCACCACUUC
1145-


122293
228224

AAGUUA
1167
2282248.

GUGAUGAU
1167


4.1
7.1



1








AD-
A-
2966
UCACGAAGUGGUGA
1149-
A-
3415
UUGAACUUCACCACU
1147-


122293
228224

AGUUCAA
1169
2282250.

UCGUGAUG
1169


5.1
9.1



1








AD-
A-
2967
AAGUGGUGAAGUUC
1154-
A-
3416
UAUCCAUGAACUUCA
1152-


122293
228225

AUGGAUA
1174
2282252.

CCACUUCG
1174


6.1
1.1



1








AD-
A-
2968
AGUGGUGAAGUUCA
1155-
A-
3417
UCAUCCAUGAACUUC
1153-


122293
228225

UGGAUGA
1175
2282254.

ACCACUUC
1175


7.1
3.1



1








AD-
A-
2969
GUGGUGAAGUUCAU
1156-
A-
3418
UACAUCCAUGAACUU
1154-


122293
228225

GGAUGUA
1176
2282256.

CACCACUU
1176


8.1
5.1



1








AD-
A-
2970
GGUGAAGUUCAUGG
1158-
A-
3419
UAGACAUCCAUGAAC
1156-


122293
228225

AUGUCUA
1178
2282258.

UUCACCAC
1178


9.1
7.1



1








AD-
A-
2971
GUGAAGUUCAUGGA
1159-
A-
3420
UUAGACAUCCAUGAA
1157-


122294
228225

UGUCUAA
1179
2282260.

CUUCACCA
1179


0.1
9.1



1








AD-
A-
2972
UGAAGUUCAUGGAU
1160-
A-
3421
UAUAGACAUCCAUGA
1158-


122294
228226

GUCUAUA
1180
2282262.

ACUUCACC
1180


1.1
1.1



1








AD-
A-
2973
AAGUUCAUGGAUGU
1162-
A-
3422
UUGAUAGACAUCCAU
1160-


122294
228226

CUAUCAA
1182
2282264.

GAACUUCA
1182


2.1
3.1



1








AD-
A-
2974
AGUUCAUGGAUGUC
1163-
A-
3423
UCUGAUAGACAUCCA
1161-


122294
228226

UAUCAGA
1183
2282266.

UGAACUUC
1183


3.1
5.1



1








AD-
A-
2975
UUCAUGGAUGUCUA
1165-
A-
3424
UCGCUGAUAGACAUC
1163-


122294
228226

UCAGCGA
1185
2282268.

CAUGAACU
1185


4.1
7.1



1








AD-
A-
2976
GUGGACAUCUUCCAG
1213-
A-
3425
UUACUCCUGGAAGAU
1211-


122294
228226

GAGUAA
1233
2282270.

GUCCACCA
1233


5.1
9.1



1








AD-
A-
2977
UCGAGUACAUCUUCA
1244-
A-
3426
UUGGCUUGAAGAUGU
1242-


122294
228227

AGCCAA
1264
2282272.

ACUCGAUC
1264


6.1
1.1



1








AD-
A-
2978
CGAGUACAUCUUCAA
1245-
A-
3427
UAUGGCUUGAAGAUG
1243-


122294
228227

GCCAUA
1265
2282274.

UACUCGAU
1265


7.1
3.1



1








AD-
A-
2979
GAGUACAUCUUCAAG
1246-
A-
3428
UGAUGGCUUGAAGAU
1244-


122294
228227

CCAUCA
1266
2282276.

GUACUCGA
1266


8.1
5.1



1








AD-
A-
2980
GUACAUCUUCAAGCC
1248-
A-
3429
UAGGAUGGCUUGAAG
1246-


122294
228227

AUCCUA
1268
2282278.

AUGUACUC
1268


9.1
7.1



1








AD-
A-
2981
CCAACAUCACCAUGC
1337-
A-
3430
UAAUCUGCAUGGUGA
1335-


122295
228227

AGAUUA
1357
2282280.

UGUUGGAC
1357


0.1
9.1



1








AD-
A-
2982
CAACAUCACCAUGCA
1338-
A-
3431
UUAAUCUGCAUGGUG
1336-


122295
228228

GAUUAA
1358
2282282.

AUGUUGGA
1358


1.1
1.1



1








AD-
A-
2983
ACAUCACCAUGCAGA
1340-
A-
3432
UCAUAAUCUGCAUGG
1338-


122295
228228

UUAUGA
1360
2282284.

UGAUGUUG
1360


2.1
3.1



1








AD-
A-
2984
CAUCACCAUGCAGAU
1341-
A-
3433
UGCAUAAUCUGCAUG
1339-


122295
228228

UAUGCA
1361
2282286.

GUGAUGUU
1361


3.1
5.1



1








AD-
A-
2985
ACCAUGCAGAUUAUG
1345-
A-
3434
UAUCCGCAUAAUCUG
1343-


122295
228228

CGGAUA
1365
2282288.

CAUGGUGA
1365


4.1
7.1



1








AD-
A-
2986
AUGCAGAUUAUGCG
1348-
A-
3435
UUUGAUCCGCAUAAU
1346-


122295
228228

GAUCAAA
1368
2282290.

CUGCAUGG
1368


5.1
9.1



1








AD-
A-
2987
UGCAGAUUAUGCGG
1349-
A-
3436
UUUUGAUCCGCAUAA
1347-


122295
228229

AUCAAAA
1369
2282292.

UCUGCAUG
1369


6.1
1.1



1








AD-
A-
2988
GCAGAUUAUGCGGA
1350-
A-
3437
UGUUUGAUCCGCAUA
1348-


122295
228229

UCAAACA
1370
2282294.

AUCUGCAU
1370


7.1
3.1



1








AD-
A-
2989
GAUUAUGCGGAUCA
1353-
A-
3438
UGAGGUUUGAUCCGC
1351-


122295
228229

AACCUCA
1373
2282296.

AUAAUCUG
1373


8.1
5.1



1








AD-
A-
2990
AUUAUGCGGAUCAA
1354-
A-
3439
UUGAGGUUUGAUCCG
1352-


122295
228229

ACCUCAA
1374
2282298.

CAUAAUCU
1374


9.1
7.1



1








AD-
A-
2991
CGGAUCAAACCUCAC
1360-
A-
3440
UCCUUGGUGAGGUUU
1358-


122296
228229

CAAGGA
1380
2282300.

GAUCCGCA
1380


0.1
9.1



1








AD-
A-
2992
GGAGAGAUGAGCUU
1390-
A-
3441
UUGUAGGAAGCUCAU
1388-


122296
228230

CCUACAA
1410
2282302.

CUCUCCUA
1410


1.1
1.1



1








AD-
A-
2993
GAGAUGAGCUUCCUA
1393-
A-
3442
UUGCUGUAGGAAGCU
1391-


122296
228230

CAGCAA
1413
2282304.

CAUCUCUC
1413


2.1
3.1



1








AD-
A-
2994
GAUGAGCUUCCUACA
1395-
A-
3443
UUGUGCUGUAGGAAG
1393-


122296
228230

GCACAA
1415
2282306.

CUCAUCUC
1415


3.1
5.1



1








AD-
A-
2995
AUGAGCUUCCUACAG
1396-
A-
3444
UUUGUGCUGUAGGAA
1394-


122296
228230

CACAAA
1416
2282308.

GCUCAUCU
1416


4.1
7.1



1








AD-
A-
2996
GAGCUUCCUACAGCA
1398-
A-
3445
UUGUUGUGCUGUAGG
1396-


122296
228230

CAACAA
1418
2282310.

AAGCUCAU
1418


5.1
9.1



1








AD-
A-
2997
AGCUUCCUACAGCAC
1399-
A-
3446
UUUGUUGUGCUGUAG
1397-


122296
228231

AACAAA
1419
2282312.

GAAGCUCA
1419


6.1
1.1



1








AD-
A-
2998
GCUUCCUACAGCACA
1400-
A-
3447
UUUUGUUGUGCUGUA
1398-


122296
228231

ACAAAA
1420
2282314.

GGAAGCUC
1420


7.1
3.1



1








AD-
A-
2999
CUUCCUACAGCACAA
1401-
A-
3448
UAUUUGUUGUGCUGU
1399-


122296
228231

CAAAUA
1421
2282316.

AGGAAGCU
1421


8.1
5.1



1








AD-
A-
3000
UCCUACAGCACAACA
1403-
A-
3449
UACAUUUGUUGUGCU
1401-


122296
228231

AAUGUA
1423
2282318.

GUAGGAAG
1423


9.1
7.1



1








AD-
A-
3001
CUACAGCACAACAAA
1405-
A-
3450
UUCACAUUUGUUGUG
1403-


122297
228231

UGUGAA
1425
2282320.

CUGUAGGA
1425


0.1
9.1



1








AD-
A-
3002
UACAGCACAACAAAU
1406-
A-
3451
UUUCACAUUUGUUGU
1404-


122297
228232

GUGAAA
1426
2282322.

GCUGUAGG
1426


1.1
1.1



1








AD-
A-
3003
AGCACAACAAAUGUG
1409-
A-
3452
UGCAUUCACAUUUGU
1407-


122297
228232

AAUGCA
1429
2282324.

UGUGCUGU
1429


2.1
3.1



1








AD-
A-
3004
GCACAACAAAUGUGA
1410-
A-
3453
UUGCAUUCACAUUUG
1408-


122297
228232

AUGCAA
1430
2282326.

UUGUGCUG
1430


3.1
5.1



1








AD-
A-
3005
CUCACCAGGAAAGAC
1786-
A-
3454
UUAUCAGUCUUUCCU
1784-


122297
228232

UGAUAA
1806
2282328.

GGUGAGAG
1806


4.1
7.1



1








AD-
A-
3006
UCACCAGGAAAGACU
1787-
A-
3455
UGUAUCAGUCUUUCC
1785-


122297
228232

GAUACA
1807
2282330.

UGGUGAGA
1807


5.1
9.1



1








AD-
A-
3007
CACCAGGAAAGACUG
1788-
A-
3456
UUGUAUCAGUCUUUC
1786-


122297
228233

AUACAA
1808
2282332.

CUGGUGAG
1808


6.1
1.1



1








AD-
A-
3008
ACCAGGAAAGACUGA
1789-
A-
3457
UCUGUAUCAGUCUUU
1787-


122297
228233

UACAGA
1809
2282334.

CCUGGUGA
1809


7.1
3.1



1








AD-
A-
3009
CCAGGAAAGACUGAU
1790-
A-
3458
UUCUGUAUCAGUCUU
1788-


122297
228233

ACAGAA
1810
2282336.

UCCUGGUG
1810


8.1
5.1



1








AD-
A-
3010
CAGGAAAGACUGAU
1791-
A-
3459
UUUCUGUAUCAGUCU
1789-


122297
228233

ACAGAAA
1811
2282338.

UUCCUGGU
1811


9.1
7.1



1








AD-
A-
3011
AGGAAAGACUGAUA
1792-
A-
3460
UGUUCUGUAUCAGUC
1790-


122298
228233

CAGAACA
1812
2282340.

UUUCCUGG
1812


0.1
9.1



1








AD-
A-
3012
GGAAAGACUGAUAC
1793-
A-
3461
UCGUUCUGUAUCAGU
1791-


122298
228234

AGAACGA
1813
2282342.

CUUUCCUG
1813


1.1
1.1



1








AD-
A-
3013
GAAAGACUGAUACA
1794-
A-
3462
UUCGUUCUGUAUCAG
1792-


122298
228234

GAACGAA
1814
2282344.

UCUUUCCU
1814


2.1
3.1



1








AD-
A-
3014
AAAGACUGAUACAG
1795-
A-
3463
UAUCGUUCUGUAUCA
1793-


122298
228234

AACGAUA
1815
2282346.

GUCUUUCC
1815


3.1
5.1



1








AD-
A-
3015
AAGACUGAUACAGA
1796-
A-
3464
UGAUCGUUCUGUAUC
1794-


122298
228234

ACGAUCA
1816
2282348.

AGUCUUUC
1816


4.1
7.1



1








AD-
A-
3016
AGACUGAUACAGAAC
1797-
A-
3465
UCGAUCGUUCUGUAU
1795-


122298
228234

GAUCGA
1817
2282350.

CAGUCUUU
1817


5.1
9.1



1








AD-
A-
3017
GACUGAUACAGAACG
1798-
A-
3466
UUCGAUCGUUCUGUA
1796-


122298
228235

AUCGAA
1818
2282352.

UCAGUCUU
1818


6.1
1.1



1








AD-
A-
3018
ACUGAUACAGAACGA
1799-
A-
3467
UAUCGAUCGUUCUGU
1797-


122298
228235

UCGAUA
1819
2282354.

AUCAGUCU
1819


7.1
3.1



1








AD-
A-
3019
CUGAUACAGAACGAU
1800-
A-
3468
UUAUCGAUCGUUCUG
1798-


122298
228235

CGAUAA
1820
2282356.

UAUCAGUC
1820


8.1
5.1



1








AD-
A-
3020
UGAUACAGAACGAUC
1801-
A-
3469
UGUAUCGAUCGUUCU
1799-


122298
228235

GAUACA
1821
2282358.

GUAUCAGU
1821


9.1
7.1



1








AD-
A-
3021
GAUACAGAACGAUCG
1802-
A-
3470
UUGUAUCGAUCGUUC
1800-


122299
228235

AUACAA
1822
2282360.

UGUAUCAG
1822


0.1
9.1



1








AD-
A-
3022
AUACAGAACGAUCGA
1803-
A-
3471
UCUGUAUCGAUCGUU
1801-


122299
228236

UACAGA
1823
2282362.

CUGUAUCA
1823


1.1
1.1



1








AD-
A-
3023
UACAGAACGAUCGAU
1804-
A-
3472
UUCUGUAUCGAUCGU
1802-


122299
228236

ACAGAA
1824
2282364.

UCUGUAUC
1824


2.1
3.1



1








AD-
A-
3024
ACAGAACGAUCGAUA
1805-
A-
3473
UUUCUGUAUCGAUCG
1803-


122299
228236

CAGAAA
1825
2282366.

UUCUGUAU
1825


3.1
5.1



1








AD-
A-
3025
CAGAACGAUCGAUAC
1806-
A-
3474
UUUUCUGUAUCGAUC
1804-


122299
228236

AGAAAA
1826
2282368.

GUUCUGUA
1826


4.1
7.1



1








AD-
A-
3026
AGAACGAUCGAUACA
1807-
A-
3475
UGUUUCUGUAUCGAU
1805-


122299
228236

GAAACA
1827
2282370.

CGUUCUGU
1827


5.1
9.1



1








AD-
A-
3027
GAACGAUCGAUACAG
1808-
A-
3476
UGGUUUCUGUAUCGA
1806-


122299
228237

AAACCA
1828
2282372.

UCGUUCUG
1828


6.1
1.1



1








AD-
A-
3028
AACGAUCGAUACAGA
1809-
A-
3477
UUGGUUUCUGUAUCG
1807-


122299
228237

AACCAA
1829
2282374.

AUCGUUCU
1829


7.1
3.1



1








AD-
A-
3029
ACGAUCGAUACAGAA
1810-
A-
3478
UGUGGUUUCUGUAUC
1808-


122299
228237

ACCACA
1830
2282376.

GAUCGUUC
1830


8.1
5.1



1








AD-
A-
3030
CGAUCGAUACAGAAA
1811-
A-
3479
UCGUGGUUUCUGUAU
1809-


122299
228237

CCACGA
1831
2282378.

CGAUCGUU
1831


9.1
7.1



1








AD-
A-
3031
CACCAUCACCAUCGA
1843-
A-
3480
UUUCUGUCGAUGGUG
1841-


122300
228237

CAGAAA
1863
2282380.

AUGGUGUG
1863


0.1
9.1



1








AD-
A-
3032
CAUCACCAUCGACAG
1846-
A-
3481
UCUGUUCUGUCGAUG
1844-


122300
228238

AACAGA
1866
2282382.

GUGAUGGU
1866


1.1
1.1



1








AD-
A-
3033
UCACCAUCGACAGAA
1848-
A-
3482
UGACUGUUCUGUCGA
1846-


122300
228238

CAGUCA
1868
2282384.

UGGUGAUG
1868


2.1
3.1



1








AD-
A-
3034
CACCAUCGACAGAAC
1849-
A-
3483
UGGACUGUUCUGUCG
1847-


122300
228238

AGUCCA
1869
2282386.

AUGGUGAU
1869


3.1
5.1



1








AD-
A-
3035
ACCAUCGACAGAACA
1850-
A-
3484
UAGGACUGUUCUGUC
1848-


122300
228238

GUCCUA
1870
2282388.

GAUGGUGA
1870


4.1
7.1



1








AD-
A-
3036
CCAUCGACAGAACAG
1851-
A-
3485
UAAGGACUGUUCUGU
1849-


122300
228238

UCCUUA
1871
2282390.

CGAUGGUG
1871


5.1
9.1



1








AD-
A-
3037
CAUCGACAGAACAGU
1852-
A-
3486
UUAAGGACUGUUCUG
1850-


122300
228239

CCUUAA
1872
2282392.

UCGAUGGU
1872


6.1
1.1



1








AD-
A-
3038
AUCGACAGAACAGUC
1853-
A-
3487
UUUAAGGACUGUUCU
1851-


122300
228239

CUUAAA
1873
2282394.

GUCGAUGG
1873


7.1
3.1



1








AD-
A-
3039
UCGACAGAACAGUCC
1854-
A-
3488
UAUUAAGGACUGUUC
1852-


122300
228239

UUAAUA
1874
2282396.

UGUCGAUG
1874


8.1
5.1



1








AD-
A-
3040
CGACAGAACAGUCCU
1855-
A-
3489
UGAUUAAGGACUGUU
1853-


122300
228239

UAAUCA
1875
2282398.

CUGUCGAU
1875


9.1
7.1



1








AD-
A-
3041
GACAGAACAGUCCUU
1856-
A-
3490
UGGAUUAAGGACUGU
1854-


122301
228239

AAUCCA
1876
2282400.

UCUGUCGA
1876


0.1
9.1



1








AD-
A-
3042
ACAGAACAGUCCUUA
1857-
A-
3491
UUGGAUUAAGGACUG
1855-


122301
228240

AUCCAA
1877
2282402.

UUCUGUCG
1877


1.1
1.1



1








AD-
A-
3043
AGAACAGUCCUUAAU
1859-
A-
3492
UUCUGGAUUAAGGAC
1857-


122301
228240

CCAGAA
1879
2282404.

UGUUCUGU
1879


2.1
3.1



1








AD-
A-
3044
GAACAGUCCUUAAUC
1860-
A-
3493
UUUCUGGAUUAAGGA
1858-


122301
228240

CAGAAA
1880
2282406.

CUGUUCUG
1880


3.1
5.1



1








AD-
A-
3045
AACAGUCCUUAAUCC
1861-
A-
3494
UUUUCUGGAUUAAGG
1859-


122301
228240

AGAAAA
1881
2282408.

ACUGUUCU
1881


4.1
7.1



1








AD-
A-
3046
ACAGUCCUUAAUCCA
1862-
A-
3495
UGUUUCUGGAUUAAG
1860-


122301
228240

GAAACA
1882
2282410.

GACUGUUC
1882


5.1
9.1



1








AD-
A-
3047
CAGUCCUUAAUCCAG
1863-
A-
3496
UGGUUUCUGGAUUAA
1861-


122301
228241

AAACCA
1883
2282412.

GGACUGUU
1883


6.1
1.1



1








AD-
A-
3048
AGUCCUUAAUCCAGA
1864-
A-
3497
UAGGUUUCUGGAUUA
1862-


122301
228241

AACCUA
1884
2282414.

AGGACUGU
1884


7.1
3.1



1








AD-
A-
3049
GUCCUUAAUCCAGAA
1865-
A-
3498
UCAGGUUUCUGGAUU
1863-


122301
228241

ACCUGA
1885
2282416.

AAGGACUG
1885


8.1
5.1



1








AD-
A-
3050
UCCUUAAUCCAGAAA
1866-
A-
3499
UUCAGGUUUCUGGAU
1864-


122301
228241

CCUGAA
1886
2282418.

UAAGGACU
1886


9.1
7.1



1








AD-
A-
3051
CCUUAAUCCAGAAAC
1867-
A-
3500
UUUCAGGUUUCUGGA
1865-


122302
228241

CUGAAA
1887
2282420.

UUAAGGAC
1887


0.1
9.1



1








AD-
A-
3052
CUUAAUCCAGAAACC
1868-
A-
3501
UUUUCAGGUUUCUGG
1866-


122302
228242

UGAAAA
1888
2282422.

AUUAAGGA
1888


1.1
1.1



1








AD-
A-
3053
UUAAUCCAGAAACCU
1869-
A-
3502
UAUUUCAGGUUUCUG
1867-


122302
228242

GAAAUA
1889
2282424.

GAUUAAGG
1889


2.1
3.1



1








AD-
A-
3054
CAGAAACCUGAAAUG
1875-
A-
3503
UUCCUUCAUUUCAGG
1873-


122302
228242

AAGGAA
1895
2282426.

UUUCUGGA
1895


3.1
5.1



1








AD-
A-
3055
AGAAACCUGAAAUG
1876-
A-
3504
UUUCCUUCAUUUCAG
1874-


122302
228242

AAGGAAA
1896
2282428.

GUUUCUGG
1896


4.1
7.1



1








AD-
A-
3056
GAAACCUGAAAUGA
1877-
A-
3505
UCUUCCUUCAUUUCA
1875-


122302
228242

AGGAAGA
1897
2282430.

GGUUUCUG
1897


5.1
9.1



1








AD-
A-
3057
AAACCUGAAAUGAA
1878-
A-
3506
UUCUUCCUUCAUUUC
1876-


122302
228243

GGAAGAA
1898
2282432.

AGGUUUCU
1898


6.1
1.1



1








AD-
A-
3058
AACCUGAAAUGAAG
1879-
A-
3507
UCUCUUCCUUCAUUU
1877-


122302
228243

GAAGAGA
1899
2282434.

CAGGUUUC
1899


7.1
3.1



1








AD-
A-
3059
CCUGAAAUGAAGGA
1881-
A-
3508
UUCCUCUUCCUUCAU
1879-


122302
228243

AGAGGAA
1901
2282436.

UUCAGGUU
1901


8.1
5.1



1








AD-
A-
3060
AUGAAGGAAGAGGA
1887-
A-
3509
UAGAGUCUCCUCUUC
1885-


122302
228243

GACUCUA
1907
2282438.

CUUCAUUU
1907


9.1
7.1



1








AD-
A-
3061
UCCCUCUUGGAAUUG
1977-
A-
3510
UGAAUCCAAUUCCAA
1975-


122303
228243

GAUUCA
1997
2282440.

GAGGGACC
1997


0.1
9.1



1








AD-
A-
3062
CCUCUUGGAAUUGGA
1979-
A-
3511
UGCGAAUCCAAUUCC
1977-


122303
228244

UUCGCA
1999
2282442.

AAGAGGGA
1999


1.1
1.1



1








AD-
A-
3063
CUCUUGGAAUUGGA
1980-
A-
3512
UGGCGAAUCCAAUUC
1978-


122303
228244

UUCGCCA
2000
2282444.

CAAGAGGG
2000


2.1
3.1



1








AD-
A-
3064
UUGGAAUUGGAUUC
1983-
A-
3513
UAAUGGCGAAUCCAA
1981-


122303
228244

GCCAUUA
2003
2282446.

UUCCAAGA
2003


3.1
5.1



1








AD-
A-
3065
UGGAAUUGGAUUCG
1984-
A-
3514
UAAAUGGCGAAUCCA
1982-


122303
228244

CCAUUUA
2004
2282448.

AUUCCAAG
2004


4.1
7.1



1








AD-
A-
3066
GGAAUUGGAUUCGCC
1985-
A-
3515
UAAAAUGGCGAAUCC
1983-


122303
228244

AUUUUA
2005
2282450.

AAUUCCAA
2005


5.1
9.1



1








AD-
A-
3067
GAAUUGGAUUCGCCA
1986-
A-
3516
UUAAAAUGGCGAAUC
1984-


122303
228245

UUUUAA
2006
2282452.

CAAUUCCA
2006


6.1
1.1



1








AD-
A-
3068
AAUUGGAUUCGCCAU
1987-
A-
3517
UAUAAAAUGGCGAAU
1985-


122303
228245

UUUAUA
2007
2282454.

CCAAUUCC
2007


7.1
3.1



1








AD-
A-
3069
AUUGGAUUCGCCAUU
1988-
A-
3518
UAAUAAAAUGGCGAA
1986-


122303
228245

UUAUUA
2008
2282456.

UCCAAUUC
2008


8.1
5.1



1








AD-
A-
3070
UUGGAUUCGCCAUUU
1989-
A-
3519
UAAAUAAAAUGGCGA
1987-


122303
228245

UAUUUA
2009
2282458.

AUCCAAUU
2009


9.1
7.1



1








AD-
A-
3071
UGGAUUCGCCAUUUU
1990-
A-
3520
UAAAAUAAAAUGGCG
1988-


122304
228245

AUUUUA
2010
2282460.

AAUCCAAU
2010


0.1
9.1



1








AD-
A-
3072
GGAUUCGCCAUUUUA
1991-
A-
3521
UAAAAAUAAAAUGGC
1989-


122304
228246

UUUUUA
2011
2282462.

GAAUCCAA
2011


1.1
1.1



1








AD-
A-
3073
GAUUCGCCAUUUUAU
1992-
A-
3522
UGAAAAAUAAAAUGG
1990-


122304
228246

UUUUCA
2012
2282464.

CGAAUCCA
2012


2.1
3.1



1








AD-
A-
3074
UCGCCAUUUUAUUUU
1995-
A-
3523
UCAAGAAAAAUAAAA
1993-


122304
228246

UCUUGA
2015
2282466.

UGGCGAAU
2015


3.1
5.1



1








AD-
A-
3075
CGCCAUUUUAUUUUU
1996-
A-
3524
UGCAAGAAAAAUAAA
1994-


122304
228246

CUUGCA
2016
2282468.

AUGGCGAA
2016


4.1
7.1



1








AD-
A-
3076
GCCAUUUUAUUUUUC
1997-
A-
3525
UAGCAAGAAAAAUAA
1995-


122304
228246

UUGCUA
2017
2282470.

AAUGGCGA
2017


5.1
9.1



1








AD-
A-
3077
CCAUUUUAUUUUUCU
1998-
A-
3526
UCAGCAAGAAAAAUA
1996-


122304
228247

UGCUGA
2018
2282472.

AAAUGGCG
2018


6.1
1.1



1








AD-
A-
3078
CAUUUUAUUUUUCU
1999-
A-
3527
UGCAGCAAGAAAAAU
1997-


122304
228247

UGCUGCA
2019
2282474.

AAAAUGGC
2019


7.1
3.1



1








AD-
A-
3079
AUUUUAUUUUUCUU
2000-
A-
3528
UAGCAGCAAGAAAAA
1998-


122304
228247

GCUGCUA
2020
2282476.

UAAAAUGG
2020


8.1
5.1



1








AD-
A-
3080
UUUUAUUUUUCUUG
2001-
A-
3529
UUAGCAGCAAGAAAA
1999-


122304
228247

CUGCUAA
2021
2282478.

AUAAAAUG
2021


9.1
7.1



1








AD-
A-
3081
UUUCUUGCUGCUAAA
2008-
A-
3530
UGGUGAUUUAGCAGC
2006-


122305
228247

UCACCA
2028
2282480.

AAGAAAAA
2028


0.1
9.1



1








AD-
A-
3082
UCACCGAGCCCGGAA
2023-
A-
3531
UUAAUCUUCCGGGCU
2021-


122305
228248

GAUUAA
2043
2282482.

CGGUGAUU
2043


1.1
1.1



1








AD-
A-
3083
GCCCGGAAGAUUAGA
2030-
A-
3532
UAACUCUCUAAUCUU
2028-


122305
228248

GAGUUA
2050
2282484.

CCGGGCUC
2050


2.1
3.1



1








AD-
A-
3084
CCCGGAAGAUUAGAG
2031-
A-
3533
UAAACUCUCUAAUCU
2029-


122305
228248

AGUUUA
2051
2282486.

UCCGGGCU
2051


3.1
5.1



1








AD-
A-
3085
CGGAAGAUUAGAGA
2033-
A-
3534
UUAAAACUCUCUAAU
2031-


122305
228248

GUUUUAA
2053
2282488.

CUUCCGGG
2053


4.1
7.1



1








AD-
A-
3086
GGAAGAUUAGAGAG
2034-
A-
3535
UAUAAAACUCUCUAA
2032-


122305
228248

UUUUAUA
2054
2282490.

UCUUCCGG
2054


5.1
9.1



1








AD-
A-
3087
GAAGAUUAGAGAGU
2035-
A-
3536
UAAUAAAACUCUCUA
2033-


122305
228249

UUUAUUA
2055
2282492.

AUCUUCCG
2055


6.1
1.1



1








AD-
A-
3088
AAGAUUAGAGAGUU
2036-
A-
3537
UAAAUAAAACUCUCU
2034-


122305
228249

UUAUUUA
2056
2282494.

AAUCUUCC
2056


7.1
3.1



1








AD-
A-
3089
AGAUUAGAGAGUUU
2037-
A-
3538
UGAAAUAAAACUCUC
2035-


122305
228249

UAUUUCA
2057
2282496.

UAAUCUUC
2057


8.1
5.1



1








AD-
A-
3090
AUUAGAGAGUUUUA
2039-
A-
3539
UCAGAAAUAAAACUC
2037-


122305
228249

UUUCUGA
2059
2282498.

UCUAAUCU
2059


9.1
7.1



1








AD-
A-
3091
UUAGAGAGUUUUAU
2040-
A-
3540
UCCAGAAAUAAAACU
2038-


122306
228249

UUCUGGA
2060
2282500.

CUCUAAUC
2060


0.1
9.1



1








AD-
A-
3092
UAGAGAGUUUUAUU
2041-
A-
3541
UCCCAGAAAUAAAAC
2039-


122306
228250

UCUGGGA
2061
2282502.

UCUCUAAU
2061


1.1
1.1



1








AD-
A-
3093
AGAGAGUUUUAUUU
2042-
A-
3542
UUCCCAGAAAUAAAA
2040-


122306
228250

CUGGGAA
2062
2282504.

CUCUCUAA
2062


2.1
3.1



1








AD-
A-
3094
GAGAGUUUUAUUUC
2043-
A-
3543
UAUCCCAGAAAUAAA
2041-


122306
228250

UGGGAUA
2063
2282506.

ACUCUCUA
2063


3.1
5.1



1








AD-
A-
3095
AGAGUUUUAUUUCU
2044-
A-
3544
UAAUCCCAGAAAUAA
2042-


122306
228250

GGGAUUA
2064
2282508.

AACUCUCU
2064


4.1
7.1



1








AD-
A-
3096
GAGUUUUAUUUCUG
2045-
A-
3545
UGAAUCCCAGAAAUA
2043-


122306
228250

GGAUUCA
2065
2282510.

AAACUCUC
2065


5.1
9.1



1








AD-
A-
3097
AGUUUUAUUUCUGG
2046-
A-
3546
UGGAAUCCCAGAAAU
2044-


122306
228251

GAUUCCA
2066
2282512.

AAAACUCU
2066


6.1
1.1



1








AD-
A-
3098
GUUUUAUUUCUGGG
2047-
A-
3547
UAGGAAUCCCAGAAA
2045-


122306
228251

AUUCCUA
2067
2282514.

UAAAACUC
2067


7.1
3.1



1








AD-
A-
3099
UUUUAUUUCUGGGA
2048-
A-
3548
UCAGGAAUCCCAGAA
2046-


122306
228251

UUCCUGA
2068
2282516.

AUAAAACU
2068


8.1
5.1



1








AD-
A-
3100
UUUAUUUCUGGGAU
2049-
A-
3549
UACAGGAAUCCCAGA
2047-


122306
228251

UCCUGUA
2069
2282518.

AAUAAAAC
2069


9.1
7.1



1








AD-
A-
3101
UUAUUUCUGGGAUU
2050-
A-
3550
UUACAGGAAUCCCAG
2048-


122307
228251

CCUGUAA
2070
2282520.

AAAUAAAA
2070


0.1
9.1



1








AD-
A-
3102
UAUUUCUGGGAUUCC
2051-
A-
3551
UCUACAGGAAUCCCA
2049-


122307
228252

UGUAGA
2071
2282522.

GAAAUAAA
2071


1.1
1.1



1








AD-
A-
3103
AUUUCUGGGAUUCCU
2052-
A-
3552
UUCUACAGGAAUCCC
2050-


122307
228252

GUAGAA
2072
2282524.

AGAAAUAA
2072


2.1
3.1



1








AD-
A-
3104
UUUCUGGGAUUCCUG
2053-
A-
3553
UGUCUACAGGAAUCC
2051-


122307
228252

UAGACA
2073
2282526.

CAGAAAUA
2073


3.1
5.1



1








AD-
A-
3105
UCUGGGAUUCCUGUA
2055-
A-
3554
UGUGUCUACAGGAAU
2053-


122307
228252

GACACA
2075
2282528.

CCCAGAAA
2075


4.1
7.1



1








AD-
A-
3106
CUGGGAUUCCUGUAG
2056-
A-
3555
UUGUGUCUACAGGAA
2054-


122307
228252

ACACAA
2076
2282530.

UCCCAGAA
2076


5.1
9.1



1








AD-
A-
3107
UGGGAUUCCUGUAG
2057-
A-
3556
UGUGUGUCUACAGGA
2055-


122307
228253

ACACACA
2077
2282532.

AUCCCAGA
2077


6.1
1.1



1








AD-
A-
3108
GGGAUUCCUGUAGAC
2058-
A-
3557
UGGUGUGUCUACAGG
2056-


122307
228253

ACACCA
2078
2282534.

AAUCCCAG
2078


7.1
3.1



1








AD-
A-
3109
ACACACCCACCCACA
2071-
A-
3558
UAUGUAUGUGGGUGG
2069-


122307
228253

UACAUA
2091
2282536.

GUGUGUCU
2091


8.1
5.1



1








AD-
A-
3110
ACCCACCCACAUACA
2075-
A-
3559
UAUGUAUGUAUGUGG
2073-


122307
228253

UACAUA
2095
2282538.

GUGGGUGU
2095


9.1
7.1



1








AD-
A-
3111
CCCACCCACAUACAU
2076-
A-
3560
UAAUGUAUGUAUGUG
2074-


122308
228253

ACAUUA
2096
2282540.

GGUGGGUG
2096


0.1
9.1



1








AD-
A-
3112
CCACCCACAUACAUA
2077-
A-
3561
UAAAUGUAUGUAUGU
2075-


122308
228254

CAUUUA
2097
2282542.

GGGUGGGU
2097


1.1
1.1



1








AD-
A-
3113
CACCCACAUACAUAC
2078-
A-
3562
UUAAAUGUAUGUAUG
2076-


122308
228254

AUUUAA
2098
2282544.

UGGGUGGG
2098


2.1
3.1



1








AD-
A-
3114
CCACAUACAUACAUU
2081-
A-
3563
UAUAUAAAUGUAUGU
2079-


122308
228254

UAUAUA
2101
2282546.

AUGUGGGU
2101


3.1
5.1



1








AD-
A-
3115
CACAUACAUACAUUU
2082-
A-
3564
UUAUAUAAAUGUAUG
2080-


122308
228254

AUAUAA
2102
2282548.

UAUGUGGG
2102


4.1
7.1



1








AD-
A-
3116
UUAAAUUAACAGUG
2171-
A-
3565
UCAUUAGCACUGUUA
2169-


122308
228254

CUAAUGA
2191
2282550.

AUUUAAAA
2191


5.1
9.1



1








AD-
A-
3117
UAAAUUAACAGUGC
2172-
A-
3566
UACAUUAGCACUGUU
2 nO-


122308
228255

UAAUGUA
2192
2282552.

AAUUUAAA
2192


6.1
1.1



1








AD-
A-
3118
AAAUUAACAGUGCU
2173-
A-
3567
UAACAUUAGCACUGU
2171-


122308
228255

AAUGUUA
2193
2282554.

UAAUUUAA
2193


7.1
3.1



1








AD-
A-
3119
AAUUAACAGUGCUA
2174-
A-
3568
UUAACAUUAGCACUG
2172-


122308
228255

AUGUUAA
2194
2282556.

UUAAUUUA
2194


8.1
5.1



1








AD-
A-
3120
AUUAACAGUGCUAA
2175-
A-
3569
UAUAACAUUAGCACU
2173-


122308
228255

UGUUAUA
2195
2282558.

GUUAAUUU
2195


9.1
7.1



1








AD-
A-
3121
UUAACAGUGCUAAU
2176-
A-
3570
UAAUAACAUUAGCAC
2174-


122309
228255

GUUAUUA
2196
2282560.

UGUUAAUU
2196


0.1
9.1



1








AD-
A-
3122
UAACAGUGCUAAUG
2177-
A-
3571
UCAAUAACAUUAGCA
2175-


122309
228256

UUAUUGA
2197
2282562.

CUGUUAAU
2197


1.1
1.1



1








AD-
A-
3123
AACAGUGCUAAUGU
2178-
A-
3572
UCCAAUAACAUUAGC
2176-


122309
228256

UAUUGGA
2198
2282564.

ACUGUUAA
2198


2.1
3.1



1








AD-
A-
3124
ACAGUGCUAAUGUU
2179-
A-
3573
UACCAAUAACAUUAG
2177-


122309
228256

AUUGGUA
2199
2282566.

CACUGUUA
2199


3.1
5.1



1








AD-
A-
3125
CAGUGCUAAUGUUA
2180-
A-
3574
UCACCAAUAACAUUA
2178-


122309
228256

UUGGUGA
2200
2282568.

GCACUGUU
2200


4.1
7.1



1








AD-
A-
3126
GUGCUAAUGUUAUU
2182-
A-
3575
UGACACCAAUAACAU
2180-


122309
228256

GGUGUCA
2202
2282570.

UAGCACUG
2202


5.1
9.1



1








AD-
A-
3127
UGCUAAUGUUAUUG
2183-
A-
3576
UAGACACCAAUAACA
2181-


122309
228257

GUGUCUA
2203
2282572.

UUAGCACU
2203


6.1
1.1



1








AD-
A-
3128
GCUAAUGUUAUUGG
2184-
A-
3577
UAAGACACCAAUAAC
2182-


122309
228257

UGUCUUA
2204
2282574.

AUUAGCAC
2204


7.1
3.1



1








AD-
A-
3129
CUAAUGUUAUUGGU
2185-
A-
3578
UGAAGACACCAAUAA
2183-


122309
228257

GUCUUCA
2205
2282576.

CAUUAGCA
2205


8.1
5.1



1








AD-
A-
3130
UAAUGUUAUUGGUG
2186-
A-
3579
UUGAAGACACCAAUA
2184-


122309
228257

UCUUCAA
2206
2282578.

ACAUUAGC
2206


9.1
7.1



1








AD-
A-
3131
AAUGUUAUUGGUGU
2187-
A-
3580
UGUGAAGACACCAAU
2185-


122310
228257

CUUCACA
2207
2282580.

AACAUUAG
2207


0.1
9.1



1








AD-
A-
3132
AUGUUAUUGGUGUC
2188-
A-
3581
UAGUGAAGACACCAA
2186-


122310
228258

UUCACUA
2208
2282582.

UAACAUUA
2208


1.1
1.1



1








AD-
A-
3133
UGUUAUUGGUGUCU
2189-
A-
3582
UCAGUGAAGACACCA
2187-


122310
228258

UCACUGA
2209
2282584.

AUAACAUU
2209


2.1
3.1



1








AD-
A-
3134
GUUAUUGGUGUCUU
2190-
A-
3583
UCCAGUGAAGACACC
2188-


122310
228258

CACUGGA
2210
2282586.

AAUAACAU
2210


3.1
5.1



1








AD-
A-
3135
UUAUUGGUGUCUUC
2191-
A-
3584
UUCCAGUGAAGACAC
2189-


122310
228258

ACUGGAA
2211
2282588.

CAAUAACA
2211


4.1
7.1



1








AD-
A-
3136
UGGUGUCUUCACUGG
2195-
A-
3585
UUACAUCCAGUGAAG
2193-


122310
228258

AUGUAA
2215
2282590.

ACACCAAU
2215


5.1
9.1



1








AD-
A-
3137
UGUCUUCACUGGAUG
2198-
A-
3586
UAAAUACAUCCAGUG
2196-


122310
228259

UAUUUA
2218
2282592.

AAGACACC
2218


6.1
1.1



1








AD-
A-
3138
CACUGGAUGUAUUU
2204-
A-
3587
UGCAGUCAAAUACAU
2202-


122310
228259

GACUGCA
2224
2282594.

CCAGUGAA
2224


7.1
3.1



1








AD-
A-
3139
ACUGGAUGUAUUUG
2205-
A-
3588
UAGCAGUCAAAUACA
2203-


122310
228259

ACUGCUA
2225
2282596.

UCCAGUGA
2225


8.1
5.1



1








AD-
A-
3140
UGGAUGUAUUUGAC
2207-
A-
3589
UACAGCAGUCAAAUA
2205-


122310
228259

UGCUGUA
2227
2282598.

CAUCCAGU
2227


9.1
7.1



1








AD-
A-
3141
UAUUUGACUGCUGU
2213-
A-
3590
UAAGUCCACAGCAGU
2211-


122311
228259

GGACUUA
2233
2282600.

CAAAUACA
2233


0.1
9.1



1








AD-
A-
3142
UUUGACUGCUGUGG
2215-
A-
3591
UUCAAGUCCACAGCA
2213-


122311
228260

ACUUGAA
2235
2282602.

GUCAAAUA
2235


1.1
1.1



1








AD-
A-
3143
GCUGUGGACUUGAG
2222-
A-
3592
UUCCCAACUCAAGUCC
2220-


122311
228260

UUGGGAA
2242
2282604.

ACAGCAG
2242


2.1
3.1



1








AD-
A-
3144
UCCCACUCAGAUCCU
2251-
A-
3593
UCUGUCAGGAUCUGA
2249-


122311
228260

GACAGA
2271
2282606.

GUGGGAAC
2271


3.1
5.1



1








AD-
A-
3145
CCCACUCAGAUCCUG
2252-
A-
3594
UCCUGUCAGGAUCUG
2250-


122311
228260

ACAGGA
2272
2282608.

AGUGGGAA
2272


4.1
7.1



1








AD-
A-
3146
GGAGGAGAUGAGAG
2277-
A-
3595
UCAGAGUCUCUCAUC
2275-


122311
228260

ACUCUGA
2297
2282610.

UCCUCCUC
2297


5.1
9.1



1








AD-
A-
3147
GAGGAGAUGAGAGA
2278-
A-
3596
UCCAGAGUCUCUCAU
2276-


122311
228261

CUCUGGA
2298
2282612.

CUCCUCCU
2298


6.1
1.1



1








AD-
A-
3148
GGAGAUGAGAGACU
2280-
A-
3597
UUGCCAGAGUCUCUC
2278-


122311
228261

CUGGCAA
2300
2282614.

AUCUCCUC
2300


7.1
3.1



1








AD-
A-
3149
GAGACUCUGGCAUGA
2288-
A-
3598
UAAAGAUCAUGCCAG
2286-


122311
228261

UCUUUA
2308
2282616.

AGUCUCUC
2308


8.1
5.1



1








AD-
A-
3150
AGACUCUGGCAUGAU
2289-
A-
3599
UAAAAGAUCAUGCCA
2287-


122311
228261

CUUUUA
2309
2282618.

GAGUCUCU
2309


9.1
7.1



1








AD-
A-
3151
UUUUGGGAACACCGA
2392-
A-
3600
UGUUUGUCGGUGUUC
2390-


122312
228261

CAAACA
2412
2282620.

CCAAAACU
2412


0.1
9.1



1








AD-
A-
3152
GAGCUUCAGGACAUU
2511-
A-
3601
UACAGCAAUGUCCUG
2509-


122312
228262

GCUGUA
2531
2282622.

AAGCUCCC
2531


1.1
1.1



1








AD-
A-
3153
GCUUCAGGACAUUGC
2513-
A-
3602
UGCACAGCAAUGUCC
2511-


122312
228262

UGUGCA
2533
2282624.

UGAAGCUC
2533


2.1
3.1



1








AD-
A-
3154
CUUCAGGACAUUGCU
2514-
A-
3603
UAGCACAGCAAUGUC
2512-


122312
228262

GUGCUA
2534
2282626.

CUGAAGCU
2534


3.1
5.1



1








AD-
A-
3155
UUCAGGACAUUGCUG
2515-
A-
3604
UAAGCACAGCAAUGU
2513-


122312
228262

UGCUUA
2535
2282628.

CCUGAAGC
2535


4.1
7.1



1








AD-
A-
3156
UCAGGACAUUGCUGU
2516-
A-
3605
UAAAGCACAGCAAUG
2514-


122312
228262

GCUUUA
2536
2282630.

UCCUGAAG
2536


5.1
9.1



1








AD-
A-
3157
CAGGACAUUGCUGUG
2517-
A-
3606
UCAAAGCACAGCAAU
2515-


122312
228263

CUUUGA
2537
2282632.

GUCCUGAA
2537


6.1
1.1



1








AD-
A-
3158
CGCUUACUCUCACCU
2615-
A-
3607
UGAAGCAGGUGAGAG
2613-


122312
228263

GCUUCA
2635
2282634.

UAAGCGAA
2635


7.1
3.1



1








AD-
A-
3159
GCUUACUCUCACCUG
2616-
A-
3608
UAGAAGCAGGUGAGA
2614-


122312
228263

CUUCUA
2636
2282636.

GUAAGCGA
2636


8.1
5.1



1








AD-
A-
3160
UUACUCUCACCUGCU
2618-
A-
3609
UUCAGAAGCAGGUGA
2616-


122312
228263

UCUGAA
2638
2282638.

GAGUAAGC
2638


9.1
7.1



1








AD-
A-
3161
CUCUCACCUGCUUCU
2621-
A-
3610
UAACUCAGAAGCAGG
2619-


122313
228263

GAGUUA
2641
2282640.

UGAGAGUA
2641


0.1
9.1



1








AD-
A-
3162
UCUCACCUGCUUCUG
2622-
A-
3611
UCAACUCAGAAGCAG
2620-


122313
228264

AGUUGA
2642
2282642.

GUGAGAGU
2642


1.1
1.1



1








AD-
A-
3163
CUCACCUGCUUCUGA
2623-
A-
3612
UGCAACUCAGAAGCA
2621-


122313
228264

GUUGCA
2643
2282644.

GGUGAGAG
2643


2.1
3.1



1








AD-
A-
3164
UCACCUGCUUCUGAG
2624-
A-
3613
UGGCAACUCAGAAGC
2622-


122313
228264

UUGCCA
2644
2282646.

AGGUGAGA
2644


3.1
5.1



1








AD-
A-
3165
CACCUGCUUCUGAGU
2625-
A-
3614
UGGGCAACUCAGAAG
2623-


122313
228264

UGCCCA
2645
2282648.

CAGGUGAG
2645


4.1
7.1



1








AD-
A-
3166
ACCUGCUUCUGAGUU
2626-
A-
3615
UUGGGCAACUCAGAA
2624-


122313
228264

GCCCAA
2646
2282650.

GCAGGUGA
2646


5.1
9.1



1








AD-
A-
3167
CCUGCUUCUGAGUUG
2627-
A-
3616
UCUGGGCAACUCAGA
2625-


122313
228265

CCCAGA
2647
2282652.

AGCAGGUG
2647


6.1
1.1



1








AD-
A-
3168
CGGCGAAGAGAAGA
2667-
A-
3617
UUGUGUCUCUUCUCU
2665-


122313
228265

GACACAA
2687
2282654.

UCGCCGGG
2687


7.1
3.1



1








AD-
A-
3169
GGCGAAGAGAAGAG
2668-
A-
3618
UAUGUGUCUCUUCUC
2666-


122313
228265

ACACAUA
2688
2282656.

UUCGCCGG
2688


8.1
5.1



1








AD-
A-
3170
GCGAAGAGAAGAGA
2669-
A-
3619
UAAUGUGUCUCUUCU
2667-


122313
228265

CACAUUA
2689
2282658.

CUUCGCCG
2689


9.1
7.1



1








AD-
A-
3171
CGAAGAGAAGAGAC
2670-
A-
3620
UCAAUGUGUCUCUUC
2668-


122314
228265

ACAUUGA
2690
2282660.

UCUUCGCC
2690


0.1
9.1



1








AD-
A-
3172
GAAGAGAAGAGACA
2671-
A-
3621
UACAAUGUGUCUCUU
2669-


122314
228266

CAUUGUA
2691
2282662.

CUCUUCGC
2691


1.1
1.1



1








AD-
A-
3173
AAGAGAAGAGACAC
2672-
A-
3622
UAACAAUGUGUCUCU
2670-


122314
228266

AUUGUUA
2692
2282664.

UCUCUUCG
2692


2.1
3.1



1








AD-
A-
3174
AGAGAAGAGACACA
2673-
A-
3623
UCAACAAUGUGUCUC
2671-


122314
228266

UUGUUGA
2693
2282666.

uucucuuc
2693


3.1
5.1



1








AD-
A-
3175
GAGAAGAGACACAU
2674-
A-
3624
UCCAACAAUGUGUCU
2672-


122314
228266

UGUUGGA
2694
2282668.

cuucucuu
2694


4.1
7.1



1








AD-
A-
3176
AGAAGAGACACAUU
2675-
A-
3625
UUCCAACAAUGUGUC
2673-


122314
228266

GUUGGAA
2695
2282670.

UCUUCUCU
2695


5.1
9.1



1








AD-
A-
3177
GAAGAGACACAUUG
2676-
A-
3626
UUUCCAACAAUGUGU
2674-


122314
228267

UUGGAAA
2696
2282672.

CUCUUCUC
2696


6.1
1.1



1








AD-
A-
3178
AAGAGACACAUUGU
2677-
A-
3627
UCUUCCAACAAUGUG
2675-


122314
228267

UGGAAGA
2697
2282674.

UCUCUUCU
2697


7.1
3.1



1








AD-
A-
3179
AGAGACACAUUGUU
2678-
A-
3628
UUCUUCCAACAAUGU
2676-


122314
228267

GGAAGAA
2698
2282676.

GUCUCUUC
2698


8.1
5.1



1








AD-
A-
3180
GAGACACAUUGUUG
2679-
A-
3629
UUUCUUCCAACAAUG
2677-


122314
228267

GAAGAAA
2699
2282678.

UGUCUCUU
2699


9.1
7.1



1








AD-
A-
3181
AGACACAUUGUUGG
2680-
A-
3630
UCUUCUUCCAACAAU
2678-


122315
228267

AAGAAGA
2700
2282680.

GUGUCUCU
2700


0.1
9.1



1








AD-
A-
3182
GACACAUUGUUGGA
2681-
A-
3631
UGCUUCUUCCAACAA
2679-


122315
228268

AGAAGCA
2701
2282682.

UGUGUCUC
2701


1.1
1.1



1








AD-
A-
3183
ACACAUUGUUGGAA
2682-
A-
3632
UUGCUUCUUCCAACA
2680-


122315
228268

GAAGCAA
2702
2282684.

AUGUGUCU
2702


2.1
3.1



1








AD-
A-
3184
CACAUUGUUGGAAG
2683-
A-
3633
UCUGCUUCUUCCAAC
2681-


122315
228268

AAGCAGA
2703
2282686.

AAUGUGUC
2703


3.1
5.1



1








AD-
A-
3185
UAUGUCCUCACACCA
2781-
A-
3634
UUUCAAUGGUGUGAG
2779-


122315
228268

UUGAAA
2801
2282688.

GACAUAGG
2801


4.1
7.1



1








AD-
A-
3186
UCCUCACACCAUUGA
2785-
A-
3635
UUGGUUUCAAUGGUG
2783-


122315
228268

AACCAA
2805
2282690.

UGAGGACA
2805


5.1
9.1



1








AD-
A-
3187
CCUCACACCAUUGAA
2786-
A-
3636
UGUGGUUUCAAUGGU
2784-


122315
228269

ACCACA
2806
2282692.

GUGAGGAC
2806


6.1
1.1



1








AD-
A-
3188
CUCACACCAUUGAAA
2787-
A-
3637
UAGUGGUUUCAAUGG
2785-


122315
228269

CCACUA
2807
2282694.

UGUGAGGA
2807


7.1
3.1



1








AD-
A-
3189
UCACACCAUUGAAAC
2788-
A-
3638
UUAGUGGUUUCAAUG
2786-


122315
228269

CACUAA
2808
2282696.

GUGUGAGG
2808


8.1
5.1



1








AD-
A-
3190
CACACCAUUGAAACC
2789-
A-
3639
UCUAGUGGUUUCAAU
2787-


122315
228269

ACUAGA
2809
2282698.

GGUGUGAG
2809


9.1
7.1



1








AD-
A-
3191
CCAUUGAAACCACUA
2793-
A-
3640
UAGAACUAGUGGUUU
2791-


122316
228269

GUUCUA
2813
2282700.

CAAUGGUG
2813


0.1
9.1



1








AD-
A-
3192
CAUUGAAACCACUAG
2794-
A-
3641
UCAGAACUAGUGGUU
2792-


122316
228270

UUCUGA
2814
2282702.

UCAAUGGU
2814


1.1
1.1



1








AD-
A-
3193
AUUGAAACCACUAGU
2795-
A-
3642
UACAGAACUAGUGGU
2793-


122316
228270

UCUGUA
2815
2282704.

UUCAAUGG
2815


2.1
3.1



1








AD-
A-
3194
UUGAAACCACUAGUU
2796-
A-
3643
UGACAGAACUAGUGG
2794-


122316
228270

CUGUCA
2816
2282706.

UUUCAAUG
2816


3.1
5.1



1








AD-
A-
3195
UGAAACCACUAGUUC
2797-
A-
3644
UGGACAGAACUAGUG
2795-


122316
228270

UGUCCA
2817
2282708.

GUUUCAAU
2817


4.1
7.1



1








AD-
A-
3196
GACCUGGUUGUGUG
2825-
A-
3645
UCACACACACACAACC
2823-


122316
228270

UGUGUGA
2845
2282710.

AGGUCUC
2845


5.1
9.1



1








AD-
A-
3197
ACCUGGUUGUGUGU
2826-
A-
3646
UUCACACACACACAAC
2824-


122316
228271

GUGUGAA
2846
2282712.

CAGGUCU
2846


6.1
1.1



1








AD-
A-
3198
CCUGGUUGUGUGUG
2827-
A-
3647
UCUCACACACACACAA
2825-


122316
228271

UGUGAGA
2847
2282714.

CCAGGUC
2847


7.1
3.1



1








AD-
A-
3199
CUGGUUGUGUGUGU
2828-
A-
3648
UACUCACACACACACA
2826-


122316
228271

GUGAGUA
2848
2282716.

ACCAGGU
2848


8.1
5.1



1








AD-
A-
3200
UGGUUGUGUGUGUG
2829-
A-
3649
UCACUCACACACACAC
2827-


122316
228271

UGAGUGA
2849
2282718.

AACCAGG
2849


9.1
7.1



1








AD-
A-
3201
GGUUGUGUGUGUGU
2830-
A-
3650
UCCACUCACACACACA
2828-


122317
228271

GAGUGGA
2850
2282720.

CAACCAG
2850


0.1
9.1



1








AD-
A-
3202
GUGUGUGUGUGAGU
2834-
A-
3651
UUCAACCACUCACACA
2832-


122317
228272

GGUUGAA
2854
2282722.

CACACAA
2854


1.1
1.1



1








AD-
A-
3203
UGUGUGUGUGAGUG
2835-
A-
3652
UGUCAACCACUCACAC
2833-


122317
228272

GUUGACA
2855
2282724.

ACACACA
2855


2.1
3.1



1








AD-
A-
3204
UGUGUGUGAGUGGU
2837-
A-
3653
UAGGUCAACCACUCA
2835-


122317
228272

UGACCUA
2857
2282726.

CACACACA
2857


3.1
5.1



1








AD-
A-
3205
UGUGUGAGUGGUUG
2839-
A-
3654
UGAAGGUCAACCACU
2837-


122317
228272

ACCUUCA
2859
2282728.

CACACACA
2859


4.1
7.1



1








AD-
A-
3206
GUGUGAGUGGUUGA
2840-
A-
3655
UGGAAGGUCAACCAC
2838-


122317
228272

CCUUCCA
2860
2282730.

UCACACAC
2860


5.1
9.1



1








AD-
A-
3207
UGUGAGUGGUUGAC
2841-
A-
3656
UAGGAAGGUCAACCA
2839-


122317
228273

CUUCCUA
2861
2282732.

CUCACACA
2861


6.1
1.1



1








AD-
A-
3208
UGAGUGGUUGACCU
2843-
A-
3657
UGGAGGAAGGUCAAC
2841-


122317
228273

UCCUCCA
2863
2282734.

CACUCACA
2863


7.1
3.1



1








AD-
A-
3209
GUGGUUGACCUUCCU
2846-
A-
3658
UGAUGGAGGAAGGUC
2844-


122317
228273

CCAUCA
2866
2282736.

AACCACUC
2866


8.1
5.1



1








AD-
A-
3210
UUGUGGAGGCAGAG
2926-
A-
3659
UUCUUUUCUCUGCCU
2924-


122317
228273

AAAAGAA
2946
2282738.

CCACAAUG
2946


9.1
7.1



1








AD-
A-
3211
UGUGGAGGCAGAGA
2927-
A-
3660
UCUCUUUUCUCUGCC
2925-


122318
228273

AAAGAGA
2947
2282740.

UCCACAAU
2947


0.1
9.1



1








AD-
A-
3212
GUGGAGGCAGAGAA
2928-
A-
3661
UUCUCUUUUCUCUGC
2926-


122318
228274

AAGAGAA
2948
2282742.

CUCCACAA
2948


1.1
1.1



1








AD-
A-
3213
UGGAGGCAGAGAAA
2929-
A-
3662
UUUCUCUUUUCUCUG
2927-


122318
228274

AGAGAAA
2949
2282744.

CCUCCACA
2949


2.1
3.1



1








AD-
A-
3214
GGAGGCAGAGAAAA
2930-
A-
3663
UUUUCUCUUUUCUCU
2928-


122318
228274

GAGAAAA
2950
2282746.

GCCUCCAC
2950


3.1
5.1



1








AD-
A-
3215
GAGGCAGAGAAAAG
2931-
A-
3664
UCUUUCUCUUUUCUC
2929-


122318
228274

AGAAAGA
2951
2282748.

UGCCUCCA
2951


4.1
7.1



1








AD-
A-
3216
AGGCAGAGAAAAGA
2932-
A-
3665
UACUUUCUCUUUUCU
2930-


122318
228274

GAAAGUA
2952
2282750.

CUGCCUCC
2952


5.1
9.1



1








AD-
A-
3217
GGCAGAGAAAAGAG
2933-
A-
3666
UCACUUUCUCUUUUC
2931-


122318
228275

AAAGUGA
2953
2282752.

UCUGCCUC
2953


6.1
1.1



1








AD-
A-
3218
GCAGAGAAAAGAGA
2934-
A-
3667
UACACUUUCUCUUUU
2932-


122318
228275

AAGUGUA
2954
2282754.

CUCUGCCU
2954


7.1
3.1



1








AD-
A-
3219
CAGAGAAAAGAGAA
2935-
A-
3668
UAACACUUUCUCUUU
2933-


122318
228275

AGUGUUA
2955
2282756.

UCUCUGCC
2955


8.1
5.1



1








AD-
A-
3220
AGAGAAAAGAGAAA
2936-
A-
3669
UAAACACUUUCUCUU
2934-


122318
228275

GUGUUUA
2956
2282758.

UUCUCUGC
2956


9.1
7.1



1








AD-
A-
3221
GAGAAAAGAGAAAG
2937-
A-
3670
UAAAACACUUUCUCU
2935-


122319
228275

UGUUUUA
2957
2282760.

UUUCUCUG
2957


0.1
9.1



1








AD-
A-
3222
AGAAAAGAGAAAGU
2938-
A-
3671
UUAAAACACUUUCUC
2936-


122319
228276

GUUUUAA
2958
2282762.

UUUUCUCU
2958


1.1
1.1



1








AD-
A-
3223
GAAAAGAGAAAGUG
2939-
A-
3672
UAUAAAACACUUUCU
2937-


122319
228276

UUUUAUA
2959
2282764.

CUUUUCUC
2959


2.1
3.1



1








AD-
A-
3224
AAAAGAGAAAGUGU
2940-
A-
3673
UUAUAAAACACUUUC
2938-


122319
228276

UUUAUAA
2960
2282766.

UCUUUUCU
2960


3.1
5.1



1








AD-
A-
3225
AAAGAGAAAGUGUU
2941-
A-
3674
UAUAUAAAACACUUU
2939-


122319
228276

UUAUAUA
2961
2282768.

CUCUUUUC
2961


4.1
7.1



1








AD-
A-
3226
AAGAGAAAGUGUUU
2942-
A-
3675
UUAUAUAAAACACUU
2940-


122319
228276

UAUAUAA
2962
2282770.

UCUCUUUU
2962


5.1
9.1



1








AD-
A-
3227
AGAGAAAGUGUUUU
2943-
A-
3676
UGUAUAUAAAACACU
2941-


122319
228277

AUAUACA
2963
2282772.

UUCUCUUU
2963


6.1
1.1



1








AD-
A-
3228
GAGAAAGUGUUUUA
2944-
A-
3677
UCGUAUAUAAAACAC
2942-


122319
228277

UAUACGA
2964
2282774.

UUUCUCUU
2964


7.1
3.1



1








AD-
A-
3229
AGAAAGUGUUUUAU
2945-
A-
3678
UCCGUAUAUAAAACA
2943-


122319
228277

AUACGGA
2965
2282776.

CUUUCUCU
2965


8.1
5.1



1








AD-
A-
3230
AAAGUGUUUUAUAU
2947-
A-
3679
UUACCGUAUAUAAAA
2945-


122319
228277

ACGGUAA
2967
2282778.

CACUUUCU
2967


9.1
7.1



1








AD-
A-
3231
AAGUGUUUUAUAUA
2948-
A-
3680
UGUACCGUAUAUAAA
2946-


122320
228277

CGGUACA
2968
2282780.

ACACUUUC
2968


0.1
9.1



1








AD-
A-
3232
AGUGUUUUAUAUAC
2949-
A-
3681
UAGUACCGUAUAUAA
2947-


122320
228278

GGUACUA
2969
2282782.

AACACUUU
2969


1.1
1.1



1








AD-
A-
3233
GUGUUUUAUAUACG
2950-
A-
3682
UAAGUACCGUAUAUA
2948-


122320
228278

GUACUUA
2970
2282784.

AAACACUU
2970


2.1
3.1



1








AD-
A-
3234
UGUUUUAUAUACGG
2951-
A-
3683
UUAAGUACCGUAUAU
2949-


122320
228278

UACUUAA
2971
2282786.

AAAACACU
2971


3.1
5.1



1








AD-
A-
3235
GUUUUAUAUACGGU
2952-
A-
3684
UAUAAGUACCGUAUA
2950-


122320
228278

ACUUAUA
2972
2282788.

UAAAACAC
2972


4.1
7.1



1








AD-
A-
3236
UUUUAUAUACGGUA
2953-
A-
3685
UAAUAAGUACCGUAU
2951-


122320
228278

CUUAUUA
2973
2282790.

AUAAAACA
2973


5.1
9.1



1








AD-
A-
3237
UUUAUAUACGGUAC
2954-
A-
3686
UAAAUAAGUACCGUA
2952-


122320
228279

UUAUUUA
2974
2282792.

UAUAAAAC
2974


6.1
1.1



1








AD-
A-
3238
UUAUAUACGGUACU
2955-
A-
3687
UUAAAUAAGUACCGU
2953-


122320
228279

UAUUUAA
2975
2282794.

AUAUAAAA
2975


7.1
3.1



1








AD-
A-
3239
UAUAUACGGUACUU
2956-
A-
3688
UUUAAAUAAGUACCG
2954-


122320
228279

AUUUAAA
2976
2282796.

UAUAUAAA
2976


8.1
5.1



1








AD-
A-
3240
GUACUUAUUUAAUA
2964-
A-
3689
UAAGGGAUAUUAAAU
2962-


122320
228279

UCCCUUA
2984
2282798.

AAGUACCG
2984


9.1
7.1



1








AD-
A-
3241
UACUUAUUUAAUAU
2965-
A-
3690
UAAAGGGAUAUUAAA
2963-


122321
228279

CCCUUUA
2985
2282800.

UAAGUACC
2985


0.1
9.1



1








AD-
A-
3242
UUAUGAGAUGUAUC
3068-
A-
3691
UGCAAAAGAUACAUC
3066-


122321
228280

UUUUGCA
3088
2282802.

UCAUAAAU
3088


1.1
1.1



1








AD-
A-
3243
UAUGAGAUGUAUCU
3069-
A-
3692
UAGCAAAAGAUACAU
3067-


122321
228280

UUUGCUA
3089
2282804.

CUCAUAAA
3089


2.1
3.1



1








AD-
A-
3244
AUGAGAUGUAUCUU
3070-
A-
3693
UGAGCAAAAGAUACA
3068-


122321
228280

UUGCUCA
3090
2282806.

UCUCAUAA
3090


3.1
5.1



1








AD-
A-
3245
UGAGAUGUAUCUUU
3071-
A-
3694
UAGAGCAAAAGAUAC
3069-


122321
228280

UGCUCUA
3091
2282808.

AUCUCAUA
3091


4.1
7.1



1








AD-
A-
3246
GAGAUGUAUCUUUU
3072-
A-
3695
UGAGAGCAAAAGAUA
3070-


122321
228280

GCUCUCA
3092
2282810.

CAUCUCAU
3092


5.1
9.1



1








AD-
A-
3247
AGAUGUAUCUUUUG
3073-
A-
3696
UAGAGAGCAAAAGAU
3071-


122321
228281

CUCUCUA
3093
2282812.

ACAUCUCA
3093


6.1
1.1



1








AD-
A-
3248
GAUGUAUCUUUUGC
3074-
A-
3697
UGAGAGAGCAAAAGA
3072-


122321
228281

UCUCUCA
3094
2282814.

UACAUCUC
3094


7.1
3.1



1








AD-
A-
3249
AUGUAUCUUUUGCUC
3075-
A-
3698
UAGAGAGAGCAAAAG
3073-


122321
228281

UCUCUA
3095
2282816.

AUACAUCU
3095


8.1
5.1



1








AD-
A-
3250
GCUCUCUCUUGCUCU
3086-
A-
3699
UAUAAGAGAGCAAGA
3084-


122321
228281

CUUAUA
3106
2282818.

GAGAGCAA
3106


9.1
7.1



1








AD-
A-
3251
CUCUCUCUUGCUCUC
3087-
A-
3700
UAAUAAGAGAGCAAG
3085-


122322
228281

UUAUUA
3107
2282820.

AGAGAGCA
3107


0.1
9.1



1








AD-
A-
3252
UCUCUCUUGCUCUCU
3088-
A-
3701
UAAAUAAGAGAGCAA
3086-


122322
228282

UAUUUA
3108
2282822.

GAGAGAGC
3108


1.1
1.1



1








AD-
A-
3253
CUCUCUUGCUCUCUU
3089-
A-
3702
UCAAAUAAGAGAGCA
3087-


122322
228282

AUUUGA
3109
2282824.

AGAGAGAG
3109


2.1
3.1



1








AD-
A-
3254
UCUCUUGCUCUCUUA
3090-
A-
3703
UACAAAUAAGAGAGC
3088-


122322
228282

UUUGUA
3110
2282826.

AAGAGAGA
3110


3.1
5.1



1








AD-
A-
3255
CUCUUGCUCUCUUAU
3091-
A-
3704
UUACAAAUAAGAGAG
3089-


122322
228282

UUGUAA
3111
2282828.

CAAGAGAG
3111


4.1
7.1



1








AD-
A-
3256
UCUUGCUCUCUUAUU
3092-
A-
3705
UGUACAAAUAAGAGA
3090-


122322
228282

UGUACA
3112
2282830.

GCAAGAGA
3112


5.1
9.1



1








AD-
A-
3257
CUUGCUCUCUUAUUU
3093-
A-
3706
UGGUACAAAUAAGAG
3091-


122322
228283

GUACCA
3113
2282832.

AGCAAGAG
3113


6.1
1.1



1








AD-
A-
3258
UUGCUCUCUUAUUUG
3094-
A-
3707
UCGGUACAAAUAAGA
3092-


122322
228283

UACCGA
3114
2282834.

GAGCAAGA
3114


7.1
3.1



1








AD-
A-
3259
UGCUCUCUUAUUUGU
3095-
A-
3708
UCCGGUACAAAUAAG
3093-


122322
228283

ACCGGA
3115
2282836.

AGAGCAAG
3115


8.1
5.1



1








AD-
A-
3260
CUCUCUUAUUUGUAC
3097-
A-
3709
UAACCGGUACAAAUA
3095-


122322
228283

CGGUUA
3117
2282838.

AGAGAGCA
3117


9.1
7.1



1








AD-
A-
3261
UCUCUUAUUUGUACC
3098-
A-
3710
UAAACCGGUACAAAU
3096-


122323
228283

GGUUUA
3118
2282840.

AAGAGAGC
3118


0.1
9.1



1








AD-
A-
3262
CUCUUAUUUGUACCG
3099-
A-
3711
UAAAACCGGUACAAA
3097-


122323
228284

GUUUUA
3119
2282842.

UAAGAGAG
3119


1.1
1.1



1








AD-
A-
3263
UCUUAUUUGUACCGG
3100-
A-
3712
UAAAAACCGGUACAA
3098-


122323
228284

UUUUUA
3120
2282844.

AUAAGAGA
3120


2.1
3.1



1








AD-
A-
3264
CUUAUUUGUACCGGU
3101-
A-
3713
UCAAAAACCGGUACA
3099-


122323
228284

UUUUGA
3121
2282846.

AAUAAGAG
3121


3.1
5.1



1








AD-
A-
3265
UUAUUUGUACCGGU
3102-
A-
3714
UACAAAAACCGGUAC
3100-


122323
228284

UUUUGUA
3122
2282848.

AAAUAAGA
3122


4.1
7.1



1








AD-
A-
3266
UAUUUGUACCGGUU
3103-
A-
3715
UUACAAAAACCGGUA
3101-


122323
228284

UUUGUAA
3123
2282850.

CAAAUAAG
3123


5.1
9.1



1








AD-
A-
3267
AUUUGUACCGGUUU
3104-
A-
3716
UAUACAAAAACCGGU
3102-


122323
228285

UUGUAUA
3124
2282852.

ACAAAUAA
3124


6.1
1.1



1








AD-
A-
3268
UUUGUACCGGUUUU
3105-
A-
3717
UUAUACAAAAACCGG
3103-


122323
228285

UGUAUAA
3125
2282854.

UACAAAUA
3125


7.1
3.1



1








AD-
A-
3269
UUGUACCGGUUUUU
3106-
A-
3718
UAUAUACAAAAACCG
3104-


122323
228285

GUAUAUA
3126
2282856.

GUACAAAU
3126


8.1
5.1



1








AD-
A-
3270
UGUACCGGUUUUUG
3107-
A-
3719
UUAUAUACAAAAACC
3105-


122323
228285

UAUAUAA
3127
2282858.

GGUACAAA
3127


9.1
7.1



1








AD-
A-
3271
GUACCGGUUUUUGU
3108-
A-
3720
UUUAUAUACAAAAAC
3106-


122324
228285

AUAUAAA
3128
2282860.

CGGUACAA
3128


0.1
9.1



1








AD-
A-
3272
UACCGGUUUUUGUA
3109-
A-
3721
UUUUAUAUACAAAAA
3107-


122324
228286

UAUAAAA
3129
2282862.

CCGGUACA
3129


1.1
1.1



1








AD-
A-
3273
ACCGGUUUUUGUAU
3110-
A-
3722
UUUUUAUAUACAAAA
3108-


122324
228286

AUAAAAA
3130
2282864.

ACCGGUAC
3130


2.1
3.1



1








AD-
A-
3274
AUUCAUGUUUCCAAU
3129-
A-
3723
UGAGAGAUUGGAAAC
3127-


122324
228286

CUCUCA
3149
2282866.

AUGAAUUU
3149


3.1
5.1



1








AD-
A-
3275
UUCAUGUUUCCAAUC
3130-
A-
3724
UAGAGAGAUUGGAAA
3128-


122324
228286

UCUCUA
3150
2282868.

CAUGAAUU
3150


4.1
7.1



1








AD-
A-
3276
UCAUGUUUCCAAUCU
3131-
A-
3725
UGAGAGAGAUUGGAA
3129-


122324
228286

CUCUCA
3151
2282870.

ACAUGAAU
3151


5.1
9.1



1








AD-
A-
3277
CAUGUUUCCAAUCUC
3132-
A-
3726
UAGAGAGAGAUUGGA
3130-


122324
228287

UCUCUA
3152
2282872.

AACAUGAA
3152


6.1
1.1



1








AD-
A-
3278
AUGUUUCCAAUCUCU
3133-
A-
3727
UGAGAGAGAGAUUGG
3131-


122324
228287

CUCUCA
3153
2282874.

AAACAUGA
3153


7.1
3.1



1








AD-
A-
3279
UGUUUCCAAUCUCUC
3134-
A-
3728
UGGAGAGAGAGAUUG
3132-


122324
228287

UCUCCA
3154
2282876.

GAAACAUG
3154


8.1
5.1



1








AD-
A-
3280
UUUCCAAUCUCUCUC
3136-
A-
3729
UAGGGAGAGAGAGAU
3134-


122324
228287

UCCCUA
3156
2282878.

UGGAAACA
3156


9.1
7.1



1








AD-
A-
3281
UCCAAUCUCUCUCUC
3138-
A-
3730
UUCAGGGAGAGAGAG
3136-


122325
228287

CCUGAA
3158
2282880.

AUUGGAAA
3158


0.1
9.1



1








AD-
A-
3282
CGGUGACAGUCACUA
3159-
A-
3731
UUAAGCUAGUGACUG
3157-


122325
228288

GCUUAA
3179
2282882.

UCACCGAU
3179


1.1
1.1



1








AD-
A-
3283
GGUGACAGUCACUAG
3160-
A-
3732
UAUAAGCUAGUGACU
3158-


122325
228288

CUUAUA
3180
2282884.

GUCACCGA
3180


2.1
3.1



1








AD-
A-
3284
AGUCACUAGCUUAUC
3166-
A-
3733
UUUCAAGAUAAGCUA
3164-


122325
228288

UUGAAA
3186
2282886.

GUGACUGU
3186


3.1
5.1



1








AD-
A-
3285
GUCACUAGCUUAUCU
3167-
A-
3734
UGUUCAAGAUAAGCU
3165-


122325
228288

UGAACA
3187
2282888.

AGUGACUG
3187


4.1
7.1



1








AD-
A-
3286
UCACUAGCUUAUCUU
3168-
A-
3735
UUGUUCAAGAUAAGC
3166-


122325
228288

GAACAA
3188
2282890.

UAGUGACU
3188


5.1
9.1



1








AD-
A-
3287
ACUAGCUUAUCUUGA
3170-
A-
3736
UUCUGUUCAAGAUAA
3168-


122325
228289

ACAGAA
3190
2282892.

GCUAGUGA
3190


6.1
1.1



1








AD-
A-
3288
CUAGCUUAUCUUGAA
3171-
A-
3737
UAUCUGUUCAAGAUA
3169-


122325
228289

CAGAUA
3191
2282894.

AGCUAGUG
3191


7.1
3.1



1








AD-
A-
3289
UAGCUUAUCUUGAAC
3172-
A-
3738
UUAUCUGUUCAAGAU
3 no-


122325
228289

AGAUAA
3192
2282896.

AAGCUAGU
3192


8.1
5.1



1








AD-
A-
3290
AGCUUAUCUUGAACA
3173-
A-
3739
UAUAUCUGUUCAAGA
3171-


122325
228289

GAUAUA
3193
2282898.

UAAGCUAG
3193


9.1
7.1



1








AD-
A-
3291
GCUUAUCUUGAACAG
3174-
A-
3740
UAAUAUCUGUUCAAG
3172-


122326
228289

AUAUUA
3194
2282900.

AUAAGCUA
3194


0.1
9.1



1








AD-
A-
3292
CAGCACACAUUCCUU
3241-
A-
3741
UUUUCAAAGGAAUGU
3239-


122326
228290

UGAAAA
3261
2282902.

GUGCUGGG
3261


1.1
1.1



1








AD-
A-
3293
AGCACACAUUCCUUU
3242-
A-
3742
UAUUUCAAAGGAAUG
3240-


122326
228290

GAAAUA
3262
2282904.

UGUGCUGG
3262


2.1
3.1



1








AD-
A-
3294
GCACACAUUCCUUUG
3243-
A-
3743
UUAUUUCAAAGGAAU
3241-


122326
228290

AAAUAA
3263
2282906.

GUGUGCUG
3263


3.1
5.1



1








AD-
A-
3295
CACACAUUCCUUUGA
3244-
A-
3744
UUUAUUUCAAAGGAA
3242-


122326
228290

AAUAAA
3264
2282908.

UGUGUGCU
3264


4.1
7.1



1








AD-
A-
3296
CACAUUCCUUUGAAA
3246-
A-
3745
UCCUUAUUUCAAAGG
3244-


122326
228290

UAAGGA
3266
2282910.

AAUGUGUG
3266


5.1
9.1



1








AD-
A-
3297
UCCUUUGAAAUAAG
3251-
A-
3746
UUGAAACCUUAUUUC
3249-


122326
228291

GUUUCAA
3271
2282912.

AAAGGAAU
3271


6.1
1.1



1








AD-
A-
3298
CUUUGAAAUAAGGU
3253-
A-
3747
UAUUGAAACCUUAUU
3251-


122326
228291

UUCAAUA
3273
2282914.

UCAAAGGA
3273


7.1
3.1



1








AD-
A-
3299
UUUGAAAUAAGGUU
3254-
A-
3748
UUAUUGAAACCUUAU
3252-


122326
228291

UCAAUAA
3274
2282916.

UUCAAAGG
3274


8.1
5.1



1








AD-
A-
3300
AGGUUUCAAUAUAC
3263-
A-
3749
UGUAGAUGUAUAUUG
3261-


122326
228291

AUCUACA
3283
2282918.

AAACCUUA
3283


9.1
7.1



1








AD-
A-
3301
GGUUUCAAUAUACA
3264-
A-
3750
UUGUAGAUGUAUAUU
3262-


122327
228291

UCUACAA
3284
2282920.

GAAACCUU
3284


0.1
9.1



1








AD-
A-
3302
GUUUCAAUAUACAUC
3265-
A-
3751
UAUGUAGAUGUAUAU
3263-


122327
228292

UACAUA
3285
2282922.

UGAAACCU
3285


1.1
1.1



1








AD-
A-
3303
UUUCAAUAUACAUCU
3266-
A-
3752
UUAUGUAGAUGUAUA
3264-


122327
228292

ACAUAA
3286
2282924.

UUGAAACC
3286


2.1
3.1



1








AD-
A-
3304
UUCAAUAUACAUCUA
3267-
A-
3753
UGUAUGUAGAUGUAU
3265-


122327
228292

CAUACA
3287
2282926.

AUUGAAAC
3287


3.1
5.1



1








AD-
A-
3305
UAUUUGGCAACUUG
3295-
A-
3754
UCAAAUACAAGUUGC
3293-


122327
228292

UAUUUGA
3315
2282928.

CAAAUAUA
3315


4.1
7.1



1








AD-
A-
3306
UUUGGCAACUUGUA
3297-
A-
3755
UCACAAAUACAAGUU
3295-


122327
228292

UUUGUGA
3317
2282930.

GCCAAAUA
3317


5.1
9.1



1








AD-
A-
3307
UGGCAACUUGUAUU
3299-
A-
3756
UCACACAAAUACAAG
3297-


122327
228293

UGUGUGA
3319
2282932.

UUGCCAAA
3319


6.1
1.1



1








AD-
A-
3308
GGCAACUUGUAUUU
3300-
A-
3757
UACACACAAAUACAA
3298-


122327
228293

GUGUGUA
3320
2282934.

GUUGCCAA
3320


7.1
3.1



1








AD-
A-
3309
GCAACUUGUAUUUG
3301-
A-
3758
UUACACACAAAUACA
3299-


122327
228293

UGUGUAA
3321
2282936.

AGUUGCCA
3321


8.1
5.1



1








AD-
A-
3310
CAACUUGUAUUUGU
3302-
A-
3759
UAUACACACAAAUAC
3300-


122327
228293

GUGUAUA
3322
2282938.

AAGUUGCC
3322


9.1
7.1



1








AD-
A-
3311
AACUUGUAUUUGUG
3303-
A-
3760
UUAUACACACAAAUA
3301-


122328
228293

UGUAUAA
3323
2282940.

CAAGUUGC
3323


0.1
9.1



1








AD-
A-
3312
ACUUGUAUUUGUGU
3304-
A-
3761
UAUAUACACACAAAU
3302-


122328
228294

GUAUAUA
3324
2282942.

ACAAGUUG
3324


1.1
1.1



1








AD-
A-
3313
UUCUGAUAAAAUAG
3354-
A-
3762
UCAAUGUCUAUUUUA
3352-


122328
228294

ACAUUGA
3374
2282944.

UCAGAAUC
3374


2.1
3.1



1








AD-
A-
3314
UGAUAAAAUAGACA
3357-
A-
3763
UUAGCAAUGUCUAUU
3355-


122328
228294

UUGCUAA
3377
2282946.

UUAUCAGA
3377


3.1
5.1



1








AD-
A-
3315
GAUAAAAUAGACAU
3358-
A-
3764
UAUAGCAAUGUCUAU
3356-


122328
228294

UGCUAUA
3378
2282948.

UUUAUCAG
3378


4.1
7.1



1








AD-
A-
3316
UAAAAUAGACAUUG
3360-
A-
3765
UGAAUAGCAAUGUCU
3358-


122328
228294

CUAUUCA
3380
2282950.

AUUUUAUC
3380


5.1
9.1



1








AD-
A-
3317
UAGACAUUGCUAUUC
3365-
A-
3766
UAAACAGAAUAGCAA
3363-


122328
228295

UGUUUA
3385
2282952.

UGUCUAUU
3385


6.1
1.1



1








AD-
A-
3318
AGACAUUGCUAUUCU
3366-
A-
3767
UAAAACAGAAUAGCA
3364-


122328
228295

GUUUUA
3386
2282954.

AUGUCUAU
3386


7.1
3.1



1








AD-
A-
3319
UCUACAUACUAAAUC
3422-
A-
3768
UAGAGAGAUUUAGUA
3420-


122328
228295

UCUCUA
3442
2282956.

UGUAGAAU
3442


8.1
5.1



1








AD-
A-
3320
CUACAUACUAAAUCU
3423-
A-
3769
UGAGAGAGAUUUAGU
3421-


122328
228295

CUCUCA
3443
2282958.

AUGUAGAA
3443


9.1
7.1



1








AD-
A-
3321
UACAUACUAAAUCUC
3424-
A-
3770
UGGAGAGAGAUUUAG
3422-


122329
228295

UCUCCA
3444
2282960.

UAUGUAGA
3444


0.1
9.1



1








AD-
A-
3322
ACAUACUAAAUCUCU
3425-
A-
3771
UAGGAGAGAGAUUUA
3423-


122329
228296

CUCCUA
3445
2282962.

GUAUGUAG
3445


1.1
1.1



1








AD-
A-
3323
CAUACUAAAUCUCUC
3426-
A-
3772
UAAGGAGAGAGAUUU
3424-


122329
228296

UCCUUA
3446
2282964.

AGUAUGUA
3446


2.1
3.1



1








AD-
A-
3324
AUACUAAAUCUCUCU
3427-
A-
3773
UAAAGGAGAGAGAUU
3425-


122329
228296

CCUUUA
3447
2282966.

UAGUAUGU
3447


3.1
5.1



1








AD-
A-
3325
UACUAAAUCUCUCUC
3428-
A-
3774
UAAAAGGAGAGAGAU
3426-


122329
228296

CUUUUA
3448
2282968.

UUAGUAUG
3448


4.1
7.1



1








AD-
A-
3326
CAUUUAUUUAUUGG
3468-
A-
3775
UGUAGCACCAAUAAA
3466-


122329
228296

UGCUACA
3488
2282970.

UAAAUGAU
3488


5.1
9.1



1








AD-
A-
3327
AUUUAUUUAUUGGU
3469-
A-
3776
UAGUAGCACCAAUAA
3467-


122329
228297

GCUACUA
3489
2282972.

AUAAAUGA
3489


6.1
1.1



1








AD-
A-
3328
UUUAUUUAUUGGUG
3470-
A-
3777
UCAGUAGCACCAAUA
3468-


122329
228297

CUACUGA
3490
2282974.

AAUAAAUG
3490


7.1
3.1



1








AD-
A-
3329
UUAUUUAUUGGUGC
3471-
A-
3778
UACAGUAGCACCAAU
3469-


122329
228297

UACUGUA
3491
2282976.

AAAUAAAU
3491


8.1
5.1



1








AD-
A-
3330
UAUUUAUUGGUGCU
3472-
A-
3779
UAACAGUAGCACCAA
3470-


122329
228297

ACUGUUA
3492
2282978.

UAAAUAAA
3492


9.1
7.1



1








AD-
A-
3331
AUUUAUUGGUGCUA
3473-
A-
3780
UAAACAGUAGCACCA
3471-


122330
228297

CUGUUUA
3493
2282980.

AUAAAUAA
3493


0.1
9.1



1








AD-
A-
3332
UUAUUGGUGCUACU
3475-
A-
3781
UAUAAACAGUAGCAC
3473-


122330
228298

GUUUAUA
3495
2282982.

CAAUAAAU
3495


1.1
1.1



1








AD-
A-
3333
AUUGGUGCUACUGU
3477-
A-
3782
UGGAUAAACAGUAGC
3475-


122330
228298

UUAUCCA
3497
2282984.

ACCAAUAA
3497


2.1
3.1



1








AD-
A-
3334
GAAAAGAUAUUAAC
3511-
A-
3783
UCGUGAUGUUAAUAU
3509-


122330
228298

AUCACGA
3531
2282986.

CUUUUCCC
3531


3.1
5.1



1








AD-
A-
3335
AACAUCACGUCUUUG
3522-
A-
3784
UAGAGACAAAGACGU
3520-


122330
228298

UCUCUA
3542
2282988.

GAUGUUAA
3542


4.1
7.1



1








AD-
A-
3336
ACAUCACGUCUUUGU
3523-
A-
3785
UUAGAGACAAAGACG
3521-


122330
228298

CUCUAA
3543
2282990.

UGAUGUUA
3543


5.1
9.1



1








AD-
A-
3337
GUCUUUGUCUCUAGU
3530-
A-
3786
UACUGCACUAGAGAC
3528-


122330
228299

GCAGUA
3550
2282992.

AAAGACGU
3550


6.1
1.1



1








AD-
A-
3338
UCUUUGUCUCUAGUG
3531-
A-
3787
UAACUGCACUAGAGA
3529-


122330
228299

CAGUUA
3551
2282994.

CAAAGACG
3551


7.1
3.1



1








AD-
A-
3339
CUUUGUCUCUAGUGC
3532-
A-
3788
UAAACUGCACUAGAG
3530-


122330
228299

AGUUUA
3552
2282996.

ACAAAGAC
3552


8.1
5.1



1








AD-
A-
3340
GAGAUAUUCCGUAG
3555-
A-
3789
UUAUGUACUACGGAA
3553-


122330
228299

UACAUAA
3575
2282998.

UAUCUCGA
3575


9.1
7.1



1








AD-
A-
3341
AGAUAUUCCGUAGU
3556-
A-
3790
UAUAUGUACUACGGA
3554-


122331
228299

ACAUAUA
3576
2283000.

AUAUCUCG
3576


0.1
9.1



1








AD-
A-
3342
GAUAUUCCGUAGUAC
3557-
A-
3791
UAAUAUGUACUACGG
3555-


122331
228300

AUAUUA
3577
2283002.

AAUAUCUC
3577


1.1
1.1



1








AD-
A-
3343
CGACAAAGAAAUACA
3590-
A-
3792
UAUAUCUGUAUUUCU
3588-


122331
228300

GAUAUA
3610
2283004.

UUGUCGUU
3610


2.1
3.1



1








AD-
A-
3344
GACAAAGAAAUACA
3591-
A-
3793
UUAUAUCUGUAUUUC
3589-


122331
228300

GAUAUAA
3611
2283006.

UUUGUCGU
3611


3.1
5.1



1








AD-
A-
3345
ACAAAGAAAUACAG
3592-
A-
3794
UAUAUAUCUGUAUUU
3590-


122331
228300

AUAUAUA
3612
2283008.

CUUUGUCG
3612


4.1
7.1



1








AD-
A-
3346
CAAAGAAAUACAGA
3593-
A-
3795
UGAUAUAUCUGUAUU
3591-


122331
228300

UAUAUCA
3613
2283010.

UCUUUGUC
3613


5.1
9.1



1
















TABLE 10A







Exemplary Human VEGF-A siRNA Modified Single Strands and Duplex Sequences



















Anti-
SEQ ID

mRNA Target
SEQ ID



Sense
SEQ

sense
NO:

Sequence
NO:


Duplex
Oligo
ID NO:

Oligo
(Anti-


(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence

target)





AD-
A-
3796
asasaag(Ahd)gadAadGugu
A-
3886
VPusdTsaudAadAaca
AGAAAAGAGAAA
5149


1353514.1
2521322.1

uuuausasa
2521323.1

cdTudTcdTcuuuuscsu
GUGUUUUAUAU






AD-
A-
3797
asasaag(Ahd)gaAfAfGfug
A-
3887
VPusdTsaudAadAaca
AGAAAAGAGAAA
5150


1353484.1
2521264.1

uuuuausasa
2521265.1

cdTuUfcucuuuuscsu
GUGUUUUAUAU






AD-
A-
3798
asasaag(Ahd)GfaAfAfGfu
A-
3888
VPusUfsauaAfaacacu
AGAAAAGAGAAA
5151


1353454.1
2521212.1

guuuuausasa
2282766.1

uUfcUfcuuuuscsu
GUGUUUUAUAU






AD-
A-
3799
asasaga(Chd)ugAfUfAfca
A-
3889
VPusdAsucdGudTcug
GGAAAGACUGAU
5152


1353468.1
2521232.1

gaacgasusa
2521233.1

udAuCfagucuuuscsc
ACAGAACGAUC






AD-
A-
3800
asasaga(Chd)ugdAudAcag
A-
3890
VPusdAsucdGudTcug
GGAAAGACUGAU
5153


1353498.1
2521292.1

aacgasusa
1800369.1

udAudCadGucuuuscsc
ACAGAACGAUC






AD-
A-
3801
asasaga(Chd)UfgAfUfAfc
A-
3891
VPusAfsucgUfucugua
GGAAAGACUGAU
5154


1353438.1
1700819.1

agaacgasusa
2282346.1

uCfaGfucuuuscsc
ACAGAACGAUC






AD-
A-
3802
asasagagaadAgdTguuu
A-
3892
VPusdAsuadTadAaac
GAAAAGAGAAAG
5155


1353515.1
2521324.1

(Uhd)auasusa
2521325.1

adCudTudCucuuususc
UGUUUUAUAUA






AD-
A-
3803
asasagagaaAfGfUfguuu
A-
3893
VPusdAsuadTadAaac
GAAAAGAGAAAG
5156


1353485.1
2521266.1

(Uhd)auasusa
2521267.1

adCuUfucucuuususc
UGUUUUAUAUA






AD-
A-
3804
asasagagAfaAfGfUfguuu
A-
3894
VPusAfsuauAfaaacac
GAAAAGAGAAAG
5157


1353455.1
2521213.1

(Uhd)auasusa
2282768.1

uUfuCfucuuususc
UGUUUUAUAUA






AD-
A-
3805
asascag(Uhd)gcdTadAugu
A-
3895
VPusdCscadAudAaca
UUAACAGUGCUA
5158


1353513.1
2521320.1

uauugsgsa
2521321.1

udTadGcdAcuguusgsg
AUGUUAUUGGU






AD-
A-
3806
asascag(Uhd)gcUfAfAfug
A-
3896
VPusdCscadAudAaca
UUAACAGUGCUA
5159


1353483.1
2521262.1

uuauugsgsa
2521263.1

udTaGfcacuguusgsg
AUGUUAUUGGU






AD-
A-
3807
asascag(Uhd)GfcUfAfAfu
A-
3897
VPusCfscaaUfaacauua
UUAACAGUGCUA
5160


1353453.1
1700832.1

guuauugsgsa
2521211.1

GfcAfcuguusgsg
AUGUUAUUGGU






AD-
A-
3808
asascga(Uhd)cgdAudAcag
A-
3898
VPusdTsggdTu(U2p)c
AGAACGAUCGAU
5161


1353502.1
2521298.1

aaaccsasa
2521299.1

ugudAudCgdAucguus
ACAGAAACCAC






AD-
A-
3809
asascga(Uhd)cgAfUfAfca
A-
3899
VPusdTsggdTu(U2p)c
AGAACGAUCGAU
5162


1353472.1
2521240.1

gaaaccsasa
2521241.1

ugudAuCfgaucguuscs
ACAGAAACCAC






AD-
A-
3810
asascga(Uhd)CfgAfUfAfc
A-
3900
VPusUfsggdTu(U2p)c
AGAACGAUCGAU
5163


1353442.1
2521195.1

agaaaccsasa
2521196.1

uguauCfgAfucguuscsu
ACAGAAACCAC






AD-
A-
3811
asasgac(Uhd)gadTadCaga
A-
3901
VPusdGsaudCg(U2p)
GAAAGACUGAUA
5164


1353499.1
2483623.1

acgauscsa
2521293.1

ucugdTadTedAgucuus
CAGAACGAUCG






AD-
A-
3812
asasgac(Uhd)gaUfAfCfag
A-
3902
VPusdGsaudCg(U2p)
GAAAGACUGAUA
5165


1353469.1
2521234.1

aacgauscsa
2521235.1

ucugdTaUfcagucuusus
CAGAACGAUCG






AD-
A-
3813
asasgac(Uhd)GfaUfAfCfa
A-
3903
VPusGfsaudCg(U2p)u
GAAAGACUGAUA
5166


1353439.1
1700820.1

gaacgauscsa
2521191.1

cuguaUfcAfgucuususc
CAGAACGAUCG






AD-
A-
3814
asasgag(Ahd)aadGudGuu
A-
3904
VPusdTsaudAudAaaa
AAAAGAGAAAGU
5167


1353516.1
2521326.1

uuauausasa
2521327.1

cdAcdTudTcucuususu
GUUUUAUAUAC






AD-
A-
3815
asasgag(Ahd)aaGfUfGfuu
A-
3905
VPusdTsaudAudAaaa
AAAAGAGAAAGU
5168


1353486.1
2521268.1

uuauausasa
2521269.1

cdAcUfuucucuususu
GUUUUAUAUAC






AD-
A-
3816
asasgag(Ahd)AfaGfUfGfu
A-
3906
VPusUfsauaUfaaaacac
AAAAGAGAAAGU
5169


1353456.1
2521214.1

uuuauausasa
2282770.1

UfuUfcucuususu
GUUUUAUAUAC






AD-
A-
3817
asasuuggaudTcdGccau
A-
3907
VPusdAsuadAadAugg
GGAAUUGGAUUC
5170


1353509.1
2521312.1

(Uhd)uuasusa
2521313.1

cdGadAudCcaauuscsc
GCCAUUUUAUU






AD-
A-
3818
asasuuggauUfCfGfccau
A-
3908
VPusdAsuadAadAugg
GGAAUUGGAUUC
5171


1353479.1
2521254.1

(Uhd)uuasusa
2521255.1

cdGaAfuccaauuscsc
GCCAUUUUAUU






AD-
A-
3819
asasuuggAfuUfCfGfccau
A-
3909
VPusAfsuaaAfauggcg
GGAAUUGGAUUC
5172


1353449.1
2521206.1

(Uhd)uuasusa
2282454.1

aAfuCfcaauuscsc
GCCAUUUUAUU






AD-
A-
3820
ascsaga(Ahd)cadGudCcuu
A-
3910
VPusdTsggdAudTaag
CGACAGAACAGUC
5173


1353503.1
2521300.1

aauccsasa
2521301.1

gdAcdTgdTucuguscsg
CUUAAUCCAG






AD-
A-
3821
ascsaga(Ahd)caGfUfCfcu
A-
3911
VPusdTsggdAudTaag
CGACAGAACAGUC
5174


1353473.1
2521242.1

uaauccsasa
2521243.1

gdAcUfguucuguscsg
CUUAAUCCAG






AD-
A-
3822
ascsaga(Ahd)CfaGfUfCfc
A-
3912
VPusUfsggaUfuaagga
CGACAGAACAGUC
5175


1353443.1
2521197.1

uuaauccsasa
2282402.1

cUfgUfucuguscsg
CUUAAUCCAG






AD-
A-
3823
ascsagu(Chd)cudTadAucc
A-
3913
VPusdGsuudTc(U2p)g
GAACAGUCCUUAA
5176


1353506.1
2521306.1

agaaascsa
2521307.1

gaudTadAgdGacugusu
UCCAGAAACC






AD-
A-
3824
ascsagu(Chd)cuUfAfAfuc
A-
3914
VPusdGsuudTc(U2p)g
GAACAGUCCUUAA
5177


1353476.1
2521248.1

cagaaascsa
2521249.1

gaudTaAfggacugususc
UCCAGAAACC






AD-
A-
3825
ascsagu(Chd)CfuUfAfAfu
A-
3915
VPusGfsuudTc(U2p)g
GAACAGUCCUUAA
5178


1353446.1
2521201.1

ccagaaascsa
2521202.1

gauuaAfgGfacugususc
UCCAGAAACC






AD-
A-
3826
ascscaggaadAgdAcuga
A-
3916
VPusdCsugdTadTcag
UCACCAGGAAAGA
5179


1353497.1
2521290.1

(Uhd)acasgsa
2521291.1

udCudTudCcuggusgsc
CUGAUACAGA






AD-
A-
3827
ascscaggaaAfGfAfcuga
A-
3917
VPusdCsugdTadTcag
UCACCAGGAAAGA
5180


1353467.1
2521230.1

(Uhd)acasgsa
2521231.1

udCuUfuccuggusgsc
CUGAUACAGA






AD-
A-
3828
ascscaggAfaAfGfAfcuga
A-
3918
VPusCfsuguAfucaguc
UCACCAGGAAAGA
5181


1353437.1
2521189.1

(Uhd)acasgsa
2521190.1

uUfuCfcuggusgsc
CUGAUACAGA






AD-
A-
3829
ascscaugcadGadTuaug
A-
3919
VPusdAsucdCg(C2p)a
UCACCAUGCAGAU
5182


1353494.1
2521284.1

(Chd)ggasusa
2521285.1

uaadTcdTgdCauggusg
UAUGCGGAUC






AD-
A-
3830
ascscaugcaGfAfUfuaug
A-
3920
VPusdAsucdCg(C2p)a
UCACCAUGCAGAU
5183


1353464.1
2521224.1

(Chd)ggasusa
2521225.1

uaadTcUfgcauggusgsc
UAUGCGGAUC






AD-
A-
3831
ascscaugCfaGfAfUfuaug
A-
3921
VPusAfsucdCg(C2p)a
UCACCAUGCAGAU
5184


1353434.1
2521183.1

(Chd)ggasusa
2521184.1

uaaucUfgCfauggusgsc
UAUGCGGAUC






AD-
A-
3832
asgsaac(Ahd)gudCcdTuaa
A-
3922
VPusdTscudGg(A2p)u
ACAGAACAGUCCU
5185


1353505.1
2521304.1

uccagsasa
2521305.1

uaadGgdAcdT guucusg
UAAUCCAGAA






AD-
A-
3833
asgsaac(Ahd)guCfCfUfua
A-
3923
VPusdTscudGg(A2p)u
ACAGAACAGUCCU
5186


1353475.1
2521246.1

auccagsasa
2521247.1

uaadGgAfcuguucusgs
UAAUCCAGAA






AD-
A-
3834
asgsaac(Ahd)GfuCfCfUfu
A-
3924
VPusUfscudGg(A2p)u
ACAGAACAGUCCU
5187


1353445.1
2521199.1

aauccagsasa
2521200.1

uaaggAfcUfguucusgsu
UAAUCCAGAA






AD-
A-
3835
asgsaug(Uhd)audCudTuug
A-
3925
VPusdAsgadGa(G2p)c
UGAGAUGUAUCU
5188


1353518.1
2521330.1

cucucsusa
2521331.1

aaadAgdAudAcaucusc
UUUGCUCUCUC






AD-
A-
3836
asgsaug(Uhd)auCfUfUfuu
A-
3926
VPusdAsgadGa(G2p)c
UGAGAUGUAUCU
5189


1353490.1
2521276.1

gcucucsusa
2521277.1

aaadAgAfuacaucuscsg
UUUGCUCUCUC






AD-
A-
3837
asgsaug(Uhd)AfuCfUfUfu
A-
3927
VPusAfsgadGa(G2p)c
UGAGAUGUAUCU
5190


1353460.1
2521217.1

ugcucucsusa
2521218.1

aaaagAfuAfcaucuscsg
UUUGCUCUCUC






AD-
A-
3838
asgsauu(Ahd)gadGadGuu
A-
3928
VPusdGsaadAudAaaa
GAAGAUUAGAGA
5191


1353512.1
2521318.1

uuauuuscsa
2521319.1

cdTcdTcdTaaucususc
GUUUUAUUUCU






AD-
A-
3839
asgsauu(Ahd)gaGfAfGfuu
A-
3929
VPusdGsaadAudAaaa
GAAGAUUAGAGA
5192


1353482.1
2521260.1

uuauuuscsa
2521261.1

cdTcUfcuaaucususc
GUUUUAUUUCU






AD-
A-
3840
asgsauu(Ahd)GfaGfAfGfu
A-
3930
VPusGfsaaaUfaaaacuc
GAAGAUUAGAGA
5193


1353452.1
2521210.1

uuuauuuscsa
2282496.1

UfcUfaaucususc
GUUUUAUUUCU






AD-
A-
3841
asusacagaadCgdAucga
A-
3931
VPusdCsugdTa(U2p)c
UGAUACAGAACG
5194


1353501.1
2521296.1

(Uhd)acasgsa
2521297.1

gaudCgdTudCuguausc
AUCGAUACAGA






AD-
A-
3842
asusacagaaCfGfAfucga
A-
3932
VPusdCsugdTa(U2p)c
UGAUACAGAACG
5195


1353471.1
2521238.1

(Uhd)acasgsa
2521239.1

gaudCgUfucuguauscs
AUCGAUACAGA






AD-
A-
3843
asusacagAfaCfGfAfucga
A-
3933
VPusCfsugdTa(U2p)c
UGAUACAGAACG
5196


1353441.1
2521193.1

(Uhd)acasgsa
2521194.1

gaucgUfuCfuguauscsg
AUCGAUACAGA






AD-
A-
3844
asusgcagaudTadTgcgg
A-
3934
VPusdTsugdAu(C2p)c
CCAUGCAGAUUAU
5197


1353495.1
2521286.1

(Ahd)ucasasa
2521287.1

gcadTadAudCugcausg
GCGGAUCAAA






AD-
A-
3845
asusgcagauUfAfUfgcgg
A-
3935
VPusdTsugdAu(C2p)c
CCAUGCAGAUUAU
5198


1353465.1
2521226.1

(Ahd)ucasasa
2521227.1

gcadTaAfucugcausgsg
GCGGAUCAAA






AD-
A-
3846
asusgcagAfuUfAfUfgcgg
A-
3936
VPusUfsugdAu(C2p)c
CCAUGCAGAUUAU
5199


1353435.1
2521185.1

(Ahd)ucasasa
2521186.1

gcauaAfuCfugcausgsg
GCGGAUCAAA






AD-
A-
3847
asusugg(Ahd)uudCgdCca
A-
3937
VPusdAsaudAadAaug
GAAUUGGAUUCG
5200


1353510.1
2521314.1

uuuuaususa
2521315.1

gdCgdAadTccaaususc
CCAUUUUAUUU






AD-
A-
3848
asusugg(Ahd)uuCfGfCfca
A-
3938
VPusdAsaudAadAaug
GAAUUGGAUUCG
5201


1353480.1
2521256.1

uuuuaususa
2521257.1

gdCgAfauccaaususc
CCAUUUUAUUU






AD-
A-
3849
asusugg(Ahd)UfuCfGfCfc
A-
3939
VPusAfsauaAfaauggc
GAAUUGGAUUCG
5202


1353450.1
2521207.1

auuuuaususa
2282456.1

gAfaUfccaaususc
CCAUUUUAUUU






AD-
A-
3850
csasaca(Uhd)cadCcdAugc
A-
3940
VPusdTsaadTc(U2p)g
UCCAACAUCACCA
5203


1353492.1
2521280.1

agauusasa
2521281.1

caudGgdTgdAuguugs
UGCAGAUUAU






AD-
A-
3851
csasaca(Uhd)caCfCfAfugc
A-
3941
VPusdTsaadTc(U2p)g
UCCAACAUCACCA
5204


1353462.1
2521220.1

agauusasa
2521221.1

caudGgUfgauguugsgs
UGCAGAUUAU






AD-
A-
3852
csasaca(Uhd)CfaCfCfAfu
A-
3942
VPusUfsaadTc(U2p)g
UCCAACAUCACCA
5205


1353432.1
2521180.1

gcagauusasa
2521181.1

cauggUfgAfuguugsgsc
UGCAGAUUAU






AD-
A-
3853
csasgaa(Chd)agdTcdCuua
A-
3943
VPusdCsugdGa(U2p)
GACAGAACAGUCC
5206


1353504.1
2521302.1

auccasgsa
2521303.1

uaagdGadCudGuucug
UUAAUCCAGA






AD-
A-
3854
csasgaa(Chd)agUfCfCfuu
A-
3944
VPusdCsugdGa(U2p)
GACAGAACAGUCC
5207


1353474.1
2521244.1

aauccasgsa
2521245.1

uaagdGaCfuguucugsu
UUAAUCCAGA






AD-
A-
3855
csasgaa(Chd)AfgUfCfCfu
A-
3945
VPusCfsugdGa(U2p)u
GACAGAACAGUCC
5208


1353444.1
1700826.1

uaauccasgsa
2521198.1

aaggaCfuGfuucugsusc
UUAAUCCAGA






AD-
A-
3856
csasuca(Chd)cadTgdCaga
A-
3946
VPusdGscadTadAucu
AACAUCACCAUGC
5209


1353493.1
2521282.1

uuaugscsa
2521283.1

gdCadTgdGugaugsusu
AGAUUAUGCG






AD-
A-
3857
csasuca(Chd)caUfGfCfaga
A-
3947
VPusdGscadTadAucu
AACAUCACCAUGC
5210


1353463.1
2521222.1

uuaugscsa
2521223.1

gdCaUfggugaugsusu
AGAUUAUGCG






AD-
A-
3858
csasuca(Chd)CfaUfGfCfa
A-
3948
VPusGfscauAfaucugc
AACAUCACCAUGC
5211


1353433.1
2521182.1

gauuaugscsa
2282286.1

aUfgGfugaugsusu
AGAUUAUGCG






AD-
A-
3859
cscsucu(Uhd)ggdAadTugg
A-
3949
VPusdGscgdAadTcca
UCCCUCUUGGAAU
5212


1353508.1
2521310.1

auucgscsa
2521311.1

adTudCcdAagaggsgsc
UGGAUUCGCC






AD-
A-
3860
cscsucu(Uhd)ggAfAfUfug
A-
3950
VPusdGscgdAadTcca
UCCCUCUUGGAAU
5213


1353478.1
2521252.1

gauucgscsa
2521253.1

adTuCfcaagaggsgsc
UGGAUUCGCC






AD-
A-
3861
cscsucu(Uhd)GfgAfAfUfu
A-
3951
VPusGfscgaAfuccaau
UCCCUCUUGGAAU
5214


1353448.1
2521204.1

ggauucgscsa
2521205.1

uCfcAfagaggsgsc
UGGAUUCGCC






AD-
A-
3862
csusacagcadCadAcaaa
A-
3952
VPusdTscadCadTuug
UCCUACAGCACAA
5215


1353496.1
2521288.1

(Uhd)gugsasa
2521289.1

udTgdTgdCuguagsgsg
CAAAUGUGAA






AD-
A-
3863
csusacagcaCfAfAfcaaa
A-
3953
VPusdTscadCadTuug
UCCUACAGCACAA
5216


1353466.1
2521228.1

(Uhd)gugsasa
2521229.1

udTgUfgcuguagsgsg
CAAAUGUGAA






AD-
A-
3864
csusacagCfaCfAfAfcaaa
A-
3954
VPusUfscacAfuuuguu
UCCUACAGCACAA
5217


1353436.1
2521187.1

(Uhd)gugsasa
2521188.1

gUfgCfuguagsgsg
CAAAUGUGAA






AD-
A-
3865
csusgau(Ahd)cadGadAcga
A-
3955
VPusdTsaudCg(A2p)u
GACUGAUACAGA
5218


1353500.1
2521294.1

ucgausasa
2521295.1

cgudTcdTgdTaucagsu
ACGAUCGAUAC






AD-
A-
3866
csusgau(Ahd)caGfAfAfcg
A-
3956
VPusdTsaudCg(A2p)u
GACUGAUACAGA
5219


1353470.1
2521236.1

aucgausasa
2521237.1

cgudTcUfguaucagsusc
ACGAUCGAUAC






AD-
A-
3867
csusgau(Ahd)CfaGfAfAfc
A-
3957
VPusUfsaudCg(A2p)u
GACUGAUACAGA
5220


1353440.1
1700824.1

gaucgausasa
2521192.1

cguucUfgUfaucagsusc
ACGAUCGAUAC






AD-
A-
3868
gsasaag(Uhd)gudTudTaua
A-
3958
VPusdAsccdGudAuau
GAGAAAGUGUUU
5221


1334067.3
2483626.1

uacggsusa
1800443.1

adAadAcdAcuuucsusc
UAUAUACGGUA






AD-
A-
3869
gsasaag(Uhd)guUfUfUfau
A-
3959
VPusdAsccdGudAuau
GAGAAAGUGUUU
5222


1353488.1
2521272.1

auacggsusa
2521273.1

adAaAfcacuuucsusc
UAUAUACGGUA






AD-
A-
3870
gsasaag(Uhd)GfuUfUfUfa
A-
3960
VPusAfsccgUfauauaa
GAGAAAGUGUUU
5223


1353458.1
1700894.1

uauacggsusa
2521215.1

aAfcAfcuuucsusc
UAUAUACGGUA






AD-
A-
3871
gsasgaa(Ahd)gudGudTuua
A-
3961
VPusdCsgudAudAuaa
AAGAGAAAGUGU
5224


1334065.3
2483624.1

uauacsgsa
1800396.1

adAcdAcdTuucucsusu
UUUAUAUACGG






AD-
A-
3872
gsasgaa(Ahd)guGfUfUfuu
A-
3962
VPusdCsgudAudAuaa
AAGAGAAAGUGU
5225


1353487.1
2521270.1

auauacsgsa
2521271.1

adAcAfcuuucucsusu
UUUAUAUACGG






AD-
A-
3873
gsasgaa(Ahd)GfuGfUfUfu
A-
3963
VPusCfsguaUfauaaaac
AAGAGAAAGUGU
5226


1353457.1
1700845.1

uauauacsgsa
2282774.1

AfcUfuucucsusu
UUUAUAUACGG






AD-
A-
3874
gsasuucgccdAudTuuau
A-
3964
VPusdGsaadAadAuaa
UGGAUUCGCCAUU
5227


1353511.1
2521316.1

(Uhd)uuuscsa
2521317.1

adAudGgdCgaaucscsg
UUAUUUUUCU






AD-
A-
3875
gsasuucgccAfUfUfuuau
A-
3965
VPusdGsaadAadAuaa
UGGAUUCGCCAUU
5228


1353481.1
2521258.1

(Uhd)uuuscsa
2521259.1

adAuGfgcgaaucscsg
UUAUUUUUCU






AD-
A-
3876
gsasuucgCfcAfUfUfuuau
A-
3966
VPusGfsaaaAfauaaaau
UGGAUUCGCCAUU
5229


1353451.1
2521208.1

(Uhd)uuuscsa
2521209.1

GfgCfgaaucscsg
UUAUUUUUCU






AD-
A-
3877
gsusccu(Uhd)aadTcdCaga
A-
3967
VPusdCsagdGudTucu
CAGUCCUUAAUCC
5230


1353507.1
2521308.1

aaccusgsa
2521309.1

gdGadTudAaggacsusg
AGAAACCUGA






AD-
A-
3878
gsusccu(Uhd)aaUfCfCfag
A-
3968
VPusdCsagdGudTucu
CAGUCCUUAAUCC
5231


1353477.1
2521250.1

aaaccusgsa
2521251.1

gdGaUfuaaggacsusg
AGAAACCUGA






AD-
A-
3879
gsusccu(Uhd)AfaUfCfCfa
A-
3969
VPusCfsaggUfuucugg
CAGUCCUUAAUCC
5232


1353447.1
2521203.1

gaaaccusgsa
2282416.1

aUfuAfaggacsusg
AGAAACCUGA






AD-
A-
3880
gsusguu(Uhd)uadTadTacg
A-
3970
VPusdAsagdTadCcgu
AAGUGUUUUAUA
5233


1353517.1
2521328.1

guacususa
2521329.1

adTadTadAaacacsusu
UACGGUACUUA






AD-
A-
3881
gsusguu(Uhd)uaUfAfUfac
A-
3971
VPusdAsagdTadCcgu
AAGUGUUUUAUA
5234


1353489.1
2521274.1

gguacususa
2521275.1

adTaUfaaaacacsusu
UACGGUACUUA






AD-
A-
3882
gsusguu(Uhd)UfaUfAfUfa
A-
3972
VPusAfsaguAfccguau
AAGUGUUUUAUA
5235


1353459.1
2521216.1

cgguacususa
2282784.1

aUfaAfaacacsusu
UACGGUACUUA






AD-
A-
3883
usasgac(Ahd)uudGcdTauu
A-
3973
VPusdAsaadCadGaau
AAUAGACAUUGC
5236


1353519.1
2521332.1

cuguususa
2521333.1

adGcdAadTgucuasusu
UAUUCUGUUUU






AD-
A-
3884
usasgac(Ahd)uuGfCfUfau
A-
3974
VPusdAsaadCadGaau
AAUAGACAUUGC
5237


1353491.1
2521278.1

ucuguususa
2521279.1

adGcAfaugucuasusu
UAUUCUGUUUU






AD-
A-
3885
usasgac(Ahd)UfuGfCfUfa
A-
3975
VPusAfsaacAfgaauag
AAUAGACAUUGC
5238


1353461.1
2521219.1

uucuguususa
2282952.1

cAfaUfgucuasusu
UAUUCUGUUUU







.1
















TABLE 10B







Exemplary Human VEGF-A siRNA Unmodified Single Strands and Duplex Sequences





















SEQ ID





Sense
SEQ ID

mRNA
Antisense
NO:

mRNA


Duplex
Oligo
NO:

Target
Oligo
(Anti-

Target


Name
Name
(Sense)
Sense Sequence
Range
Name
sense)
Antisense Sequence
Range





AD-
A-
3976
AAAAGAGAAAGUGU
2940-
A-
4066
UTAUAAAACACTUTCT
2938-


1353514.1
2521322.1

UUUAUAA
2960
2521323.1

CUUUUCU
2960





AD-
A-
3977
AAAAGAGAAAGUGU
2940-
A-
4067
UTAUAAAACACTUUCU
2938-


1353484.1
2521264.1

UUUAUAA
2960
2521265.1

CUUUUCU
2960





AD-
A-
3978
AAAAGAGAAAGUGU
2940-
A-
4068
UUAUAAAACACUUUC
2938-


1353454.1
2521212.1

UUUAUAA
2960
2282766.1

UCUUUUCU
2960





AD-
A-
3979
AAAGACUGAUACAG
1795-
A-
4069
UAUCGUTCUGUAUCA
1793-


1353468.1
2521232.1

AACGAUA
1815
2521233.1

GUCUUUCC
1815





AD-
A-
3980
AAAGACUGAUACAG
1795-
A-
4070
UAUCGUTCUGUAUCA
1793-


1353498.1
2521292.1

AACGAUA
1815
1800369.1

GUCUUUCC
1815





AD-
A-
3981
AAAGACUGAUACAG
1795-
A-
4071
UAUCGUUCUGUAUCA
1793-


1353438.1
1700819.1

AACGAUA
1815
2282346.1

GUCUUUCC
1815





AD-
A-
3982
AAAGAGAAAGTGUU
2941-
A-
4072
UAUATAAAACACUTUC
2939-


1353515.1
2521324.1

UUAUAUA
2961
2521325.1

UCUUUUC
2961





AD-
A-
3983
AAAGAGAAAGUGUU
2941-
A-
4073
UAUATAAAACACUUU
2939-


1353485.1
2521266.1

UUAUAUA
2961
2521267.1

CUCUUUUC
2961





AD-
A-
3984
AAAGAGAAAGUGUU
2941-
A-
4074
UAUAUAAAACACUUU
2939-


1353455.1
2521213.1

UUAUAUA
2961
2282768.1

CUCUUUUC
2961





AD-
A-
3985
AACAGUGCTAAUGUU
2178-
A-
4075
UCCAAUAACAUTAGC
2176-


1353513.1
2521320.1

AUUGGA
2198
2521321.1

ACUGUUGG
2198





AD-
A-
3986
AACAGUGCUAAUGU
2178-
A-
4076
UCCAAUAACAUTAGC
2176-


1353483.1
2521262.1

UAUUGGA
2198
2521263.1

ACUGUUGG
2198





AD-
A-
3987
AACAGUGCUAAUGU
2178-
A-
4077
UCCAAUAACAUUAGC
2176-


1353453.1
1700832.1

UAUUGGA
2198
2521211.1

ACUGUUGG
2198





AD-
A-
3988
AACGAUCGAUACAGA
1809-
A-
4078
UTGGTUUCUGUAUCG
1807-


1353502.1
2521298.1

AACCAA
1829
2521299.1

AUCGUUCU
1829





AD-
A-
3989
AACGAUCGAUACAGA
1809-
A-
4079
UTGGTUUCUGUAUCG
1807-


1353472.1
2521240.1

AACCAA
1829
2521241.1

AUCGUUCU
1829





AD-
A-
3990
AACGAUCGAUACAGA
1809-
A-
4080
UUGGTUUCUGUAUCG
1807-


1353442.1
2521195.1

AACCAA
1829
2521196.1

AUCGUUCU
1829





AD-
A-
3991
AAGACUGATACAGAA
1796-
A-
4081
UGAUCGUUCUGTATCA
1794-


1353499.1
2483623.1

CGAUCA
1816
2521293.1

GUCUUUC
1816





AD-
A-
3992
AAGACUGAUACAGA
1796-
A-
4082
UGAUCGUUCUGTAUC
1794-


1353469.1
2521234.1

ACGAUCA
1816
2521235.1

AGUCUUUC
1816





AD-
A-
3993
AAGACUGAUACAGA
1796-
A-
4083
UGAUCGUUCUGUAUC
1794-


1353439.1
1700820.1

ACGAUCA
1816
2521191.1

AGUCUUUC
1816





AD-
A-
3994
AAGAGAAAGUGUUU
2942-
A-
4084
UTAUAUAAAACACTUT
2940-


1353516.1
2521326.1

UAUAUAA
2962
2521327.1

CUCUUUU
2962





AD-
A-
3995
AAGAGAAAGUGUUU
2942-
A-
4085
UTAUAUAAAACACUU
2940-


1353486.1
2521268.1

UAUAUAA
2962
2521269.1

UCUCUUUU
2962





AD-
A-
3996
AAGAGAAAGUGUUU
2942-
A-
4086
UUAUAUAAAACACUU
2940-


1353456.1
2521214.1

UAUAUAA
2962
2282770.1

UCUCUUUU
2962





AD-
A-
3997
AAUUGGAUTCGCCAU
1987-
A-
4087
UAUAAAAUGGCGAAU
1985-


1353509.1
2521312.1

UUUAUA
2007
2521313.1

CCAAUUCC
2007





AD-
A-
3998
AAUUGGAUUCGCCAU
1987-
A-
4088
UAUAAAAUGGCGAAU
1985-


1353479.1
2521254.1

UUUAUA
2007
2521255.1

CCAAUUCC
2007





AD-
A-
3999
AAUUGGAUUCGCCAU
1987-
A-
4089
UAUAAAAUGGCGAAU
1985-


1353449.1
2521206.1

UUUAUA
2007
2282454.1

CCAAUUCC
2007





AD-
A-
4000
ACAGAACAGUCCUUA
1857-
A-
4090
UTGGAUTAAGGACTGT
1855-


1353503.1
2521300.1

AUCCAA
1877
2521301.1

UCUGUCG
1877





AD-
A-
4001
ACAGAACAGUCCUUA
1857-
A-
4091
UTGGAUTAAGGACUG
1855-


1353473.1
2521242.1

AUCCAA
1877
2521243.1

UUCUGUCG
1877





AD-
A-
4002
ACAGAACAGUCCUUA
1857-
A-
4092
UUGGAUUAAGGACUG
1855-


1353443.1
2521197.1

AUCCAA
1877
2282402.1

UUCUGUCG
1877





AD-
A-
4003
ACAGUCCUTAAUCCA
1862-
A-
4093
UGUUTCUGGAUTAAG
1860-


1353506.1
2521306.1

GAAACA
1882
2521307.1

GACUGUUC
1882





AD-
A-
4004
ACAGUCCUUAAUCCA
1862-
A-
4094
UGUUTCUGGAUTAAG
1860-


1353476.1
2521248.1

GAAACA
1882
2521249.1

GACUGUUC
1882





AD-
A-
4005
ACAGUCCUUAAUCCA
1862-
A-
4095
UGUUTCUGGAUUAAG
1860-


1353446.1
2521201.1

GAAACA
1882
2521202.1

GACUGUUC
1882





AD-
A-
4006
ACCAGGAAAGACUGA
1789-
A-
4096
UCUGTATCAGUCUTUC
1787-


1353497.1
2521290.1

UACAGA
1809
2521291.1

CUGGUGC
1809





AD-
A-
4007
ACCAGGAAAGACUGA
1789-
A-
4097
UCUGTATCAGUCUUUC
1787-


1353467.1
2521230.1

UACAGA
1809
2521231.1

CUGGUGC
1809





AD-
A-
4008
ACCAGGAAAGACUGA
1789-
A-
4098
UCUGUAUCAGUCUUU
1787-


1353437.1
2521189.1

UACAGA
1809
2521190.1

CCUGGUGC
1809





AD-
A-
4009
ACCAUGCAGATUAUG
1345-
A-
4099
UAUCCGCAUAATCTGC
1343-


1353494.1
2521284.1

CGGAUA
1365
2521285.1

AUGGUGC
1365





AD-
A-
4010
ACCAUGCAGAUUAUG
1345-
A-
4100
UAUCCGCAUAATCUGC
1343-


1353464.1
2521224.1

CGGAUA
1365
2521225.1

AUGGUGC
1365





AD-
A-
4011
ACCAUGCAGAUUAUG
1345-
A-
4101
UAUCCGCAUAAUCUG
1343-


1353434.1
2521183.1

CGGAUA
1365
2521184.1

CAUGGUGC
1365





AD-
A-
4012
AGAACAGUCCTUAAU
1859-
A-
4102
UTCUGGAUUAAGGAC
1857-


1353505.1
2521304.1

CCAGAA
1879
2521305.1

TGUUCUGU
1879





AD-
A-
4013
AGAACAGUCCUUAAU
1859-
A-
4103
UTCUGGAUUAAGGAC
1857-


1353475.1
2521246.1

CCAGAA
1879
2521247.1

UGUUCUGU
1879





AD-
A-
4014
AGAACAGUCCUUAAU
1859-
A-
4104
UUCUGGAUUAAGGAC
1857-


1353445.1
2521199.1

CCAGAA
1879
2521200.1

UGUUCUGU
1879





AD-
A-
4015
AGAUGUAUCUTUUGC
3073-
A-
4105
UAGAGAGCAAAAGAU
3071-


1353518.1
2521330.1

UCUCUA
3093
2521331.1

ACAUCUCG
3093





AD-
A-
4016
AGAUGUAUCUUUUG
3073-
A-
4106
UAGAGAGCAAAAGAU
3071-


1353490.1
2521276.1

CUCUCUA
3093
2521277.1

ACAUCUCG
3093





AD-
A-
4017
AGAUGUAUCUUUUG
3073-
A-
4107
UAGAGAGCAAAAGAU
3071-


1353460.1
2521217.1

CUCUCUA
3093
2521218.1

ACAUCUCG
3093





AD-
A-
4018
AGAUUAGAGAGUUU
2037-
A-
4108
UGAAAUAAAACTCTCT
2035-


1353512.1
2521318.1

UAUUUCA
2057
2521319.1

AAUCUUC
2057





AD-
A-
4019
AGAUUAGAGAGUUU
2037-
A-
4109
UGAAAUAAAACTCUC
2035-


1353482.1
2521260.1

UAUUUCA
2057
2521261.1

UAAUCUUC
2057





AD-
A-
4020
AGAUUAGAGAGUUU
2037-
A-
4110
UGAAAUAAAACUCUC
2035-


1353452.1
2521210.1

UAUUUCA
2057
2282496.1

UAAUCUUC
2057





AD-
A-
4021
AUACAGAACGAUCGA
1803-
A-
4111
UCUGTAUCGAUCGTUC
1801-


1353501.1
2521296.1

UACAGA
1823
2521297.1

UGUAUCG
1823





AD-
A-
4022
AUACAGAACGAUCGA
1803-
A-
4112
UCUGTAUCGAUCGUU
1801-


1353471.1
2521238.1

UACAGA
1823
2521239.1

CUGUAUCG
1823





AD-
A-
4023
AUACAGAACGAUCGA
1803-
A-
4113
UCUGTAUCGAUCGUU
1801-


1353441.1
2521193.1

UACAGA
1823
2521194.1

CUGUAUCG
1823





AD-
A-
4024
AUGCAGAUTATGCGG
1348-
A-
4114
UTUGAUCCGCATAAUC
1346-


1353495.1
2521286.1

AUCAAA
1368
2521287.1

UGCAUGG
1368





AD-
A-
4025
AUGCAGAUUAUGCG
1348-
A-
4115
UTUGAUCCGCATAAUC
1346-


1353465.1
2521226.1

GAUCAAA
1368
2521227.1

UGCAUGG
1368





AD-
A-
4026
AUGCAGAUUAUGCG
1348-
A-
4116
UUUGAUCCGCAUAAU
1346-


1353435.1
2521185.1

GAUCAAA
1368
2521186.1

CUGCAUGG
1368





AD-
A-
4027
AUUGGAUUCGCCAUU
1988-
A-
4117
UAAUAAAAUGGCGAA
1986-


1353510.1
2521314.1

UUAUUA
2008
2521315.1

TCCAAUUC
2008





AD-
A-
4028
AUUGGAUUCGCCAUU
1988-
A-
4118
UAAUAAAAUGGCGAA
1986-


1353480.1
2521256.1

UUAUUA
2008
2521257.1

UCCAAUUC
2008





AD-
A-
4029
AUUGGAUUCGCCAUU
1988-
A-
4119
UAAUAAAAUGGCGAA
1986-


1353450.1
2521207.1

UUAUUA
2008
2282456.1

UCCAAUUC
2008





AD-
A-
4030
CAACAUCACCAUGCA
1338-
A-
4120
UTAATCUGCAUGGTGA
1336-


1353492.1
2521280.1

GAUUAA
1358
2521281.1

UGUUGGC
1358





AD-
A-
4031
CAACAUCACCAUGCA
1338-
A-
4121
UTAATCUGCAUGGUG
1336-


1353462.1
2521220.1

GAUUAA
1358
2521221.1

AUGUUGGC
1358





AD-
A-
4032
CAACAUCACCAUGCA
1338-
A-
4122
UUAATCUGCAUGGUG
1336-


1353432.1
2521180.1

GAUUAA
1358
2521181.1

AUGUUGGC
1358





AD-
A-
4033
CAGAACAGTCCUUAA
1858-
A-
4123
UCUGGAUUAAGGACU
1856-


1353504.1
2521302.1

UCCAGA
1878
2521303.1

GUUCUGUC
1878





AD-
A-
4034
CAGAACAGUCCUUAA
1858-
A-
4124
UCUGGAUUAAGGACU
1856-


1353474.1
2521244.1

UCCAGA
1878
2521245.1

GUUCUGUC
1878





AD-
A-
4035
CAGAACAGUCCUUAA
1858-
A-
4125
UCUGGAUUAAGGACU
1856-


1353444.1
1700826.1

UCCAGA
1878
2521198.1

GUUCUGUC
1878





AD-
A-
4036
CAUCACCATGCAGAU
1341-
A-
4126
UGCATAAUCUGCATGG
1339-


1353493.1
2521282.1

UAUGCA
1361
2521283.1

UGAUGUU
1361





AD-
A-
4037
CAUCACCAUGCAGAU
1341-
A-
4127
UGCATAAUCUGCAUG
1339-


1353463.1
2521222.1

UAUGCA
1361
2521223.1

GUGAUGUU
1361





AD-
A-
4038
CAUCACCAUGCAGAU
1341-
A-
4128
UGCAUAAUCUGCAUG
1339-


1353433.1
2521182.1

UAUGCA
1361
2282286.1

GUGAUGUU
1361





AD-
A-
4039
CCUCUUGGAATUGGA
1979-
A-
4129
UGCGAATCCAATUCCA
1977-


1353508.1
2521310.1

UUCGCA
1999
2521311.1

AGAGGGC
1999





AD-
A-
4040
CCUCUUGGAAUUGGA
1979-
A-
4130
UGCGAATCCAATUCCA
1977-


1353478.1
2521252.1

UUCGCA
1999
2521253.1

AGAGGGC
1999





AD-
A-
4041
CCUCUUGGAAUUGGA
1979-
A-
4131
UGCGAAUCCAAUUCC
1977-


1353448.1
2521204.1

UUCGCA
1999
2521205.1

AAGAGGGC
1999





AD-
A-
4042
CUACAGCACAACAAA
1405-
A-
4132
UTCACATUUGUTGTGC
1403-


1353496.1
2521288.1

UGUGAA
1425
2521289.1

UGUAGGG
1425





AD-
A-
4043
CUACAGCACAACAAA
1405-
A-
4133
UTCACATUUGUTGUGC
1403-


1353466.1
2521228.1

UGUGAA
1425
2521229.1

UGUAGGG
1425





AD-
A-
4044
CUACAGCACAACAAA
1405-
A-
4134
UUCACAUUUGUUGUG
1403-


1353436.1
2521187.1

UGUGAA
1425
2521188.1

CUGUAGGG
1425





AD-
A-
4045
CUGAUACAGAACGAU
1800-
A-
4135
UTAUCGAUCGUTCTGT
1798-


1353500.1
2521294.1

CGAUAA
1820
2521295.1

AUCAGUC
1820





AD-
A-
4046
CUGAUACAGAACGAU
1800-
A-
4136
UTAUCGAUCGUTCUGU
1798-


1353470.1
2521236.1

CGAUAA
1820
2521237.1

AUCAGUC
1820





AD-
A-
4047
CUGAUACAGAACGAU
1800-
A-
4137
UUAUCGAUCGUUCUG
1798-


1353440.1
1700824.1

CGAUAA
1820
2521192.1

UAUCAGUC
1820





AD-
A-
4048
GAAAGUGUTUTAUAU
2946-
A-
4138
UACCGUAUAUAAAAC
2944-


1334067.3
2483626.1

ACGGUA
2966
1800443.1

ACUUUCUC
2966





AD-
A-
4049
GAAAGUGUUUUAUA
2946-
A-
4139
UACCGUAUAUAAAAC
2944-


1353488.1
2521272.1

UACGGUA
2966
2521273.1

ACUUUCUC
2966





AD-
A-
4050
GAAAGUGUUUUAUA
2946-
A-
4140
UACCGUAUAUAAAAC
2944-


1353458.1
1700894.1

UACGGUA
2966
2521215.1

ACUUUCUC
2966





AD-
A-
4051
GAGAAAGUGUTUUA
2944-
A-
4141
UCGUAUAUAAAACAC
2942-


1334065.3
2483624.1

UAUACGA
2964
1800396.1

TUUCUCUU
2964





AD-
A-
4052
GAGAAAGUGUUUUA
2944-
A-
4142
UCGUAUAUAAAACAC
2942-


1353487.1
2521270.1

UAUACGA
2964
2521271.1

UUUCUCUU
2964





AD-
A-
4053
GAGAAAGUGUUUUA
2944-
A-
4143
UCGUAUAUAAAACAC
2942-


1353457.1
1700845.1

UAUACGA
2964
2282774.1

UUUCUCUU
2964





AD-
A-
4054
GAUUCGCCAUTUUAU
1992-
A-
4144
UGAAAAAUAAAAUGG
1990-


1353511.1
2521316.1

UUUUCA
2012
2521317.1

CGAAUCCG
2012





AD-
A-
4055
GAUUCGCCAUUUUAU
1992-
A-
4145
UGAAAAAUAAAAUGG
1990-


1353481.1
2521258.1

UUUUCA
2012
2521259.1

CGAAUCCG
2012





AD-
A-
4056
GAUUCGCCAUUUUAU
1992-
A-
4146
UGAAAAAUAAAAUGG
1990-


1353451.1
2521208.1

UUUUCA
2012
2521209.1

CGAAUCCG
2012





AD-
A-
4057
GUCCUUAATCCAGAA
1865-
A-
4147
UCAGGUTUCUGGATU
1863-


1353507.1
2521308.1

ACCUGA
1885
2521309.1

AAGGACUG
1885





AD-
A-
4058
GUCCUUAAUCCAGAA
1865-
A-
4148
UCAGGUTUCUGGAUU
1863-


1353477.1
2521250.1

ACCUGA
1885
2521251.1

AAGGACUG
1885





AD-
A-
4059
GUCCUUAAUCCAGAA
1865-
A-
4149
UCAGGUUUCUGGAUU
1863-


1353447.1
2521203.1

ACCUGA
1885
2282416.1

AAGGACUG
1885





AD-
A-
4060
GUGUUUUATATACGG
2950-
A-
4150
UAAGTACCGUATATAA
2948-


1353517.1
2521328.1

UACUUA
2970
2521329.1

AACACUU
2970





AD-
A-
4061
GUGUUUUAUAUACG
2950-
A-
4151
UAAGTACCGUATAUA
2948-


1353489.1
2521274.1

GUACUUA
2970
2521275.1

AAACACUU
2970





AD-
A-
4062
GUGUUUUAUAUACG
2950-
A-
4152
UAAGUACCGUAUAUA
2948-


1353459.1
2521216.1

GUACUUA
2970
2282784.1

AAACACUU
2970





AD-
A-
4063
UAGACAUUGCTAUUC
3365-
A-
4153
UAAACAGAAUAGCAA
3363-


1353519.1
2521332.1

UGUUUA
3385
2521333.1

TGUCUAUU
3385





AD-
A-
4064
UAGACAUUGCUAUUC
3365-
A-
4154
UAAACAGAAUAGCAA
3363-


1353491.1
2521278.1

UGUUUA
3385
2521279.1

UGUCUAUU
3385





AD-
A-
4065
UAGACAUUGCUAUUC
3365-
A-
4155
UAAACAGAAUAGCAA
3363-


1353461.1
2521219.1

UGUUUA
3385
2282952.1

UGUCUAUU
3385
















TABLE 18A







Exemplary Human VEGF-A siRNA Modified Single Strands and Duplex Sequences




















SEQ









Anti-
ID


SEQ ID



Sense
SEQ ID

sense
NO:


NO:


Duplex
Oligo
NO:

Oligo
(Anti-

mRNA Target
(mRNA


Name
Name
(Sense)
Sense Sequence
Name
sense)
Antisense Sequence
Sequence
target)





AD-
A-
4164
csgsaca(Ghd)AfaCfAfGf
A-
4176
VPusGfsauua(Agn)ggac
AUCGACAGAACA
4188


1020574
1110770.1

uccuuaauscsa
1701268.1

ugUfuCfugucgsasu
GUCCUUAAUCC






AD-
A-
4165
csasgaa(Chd)AfgUfCfCf
A-
4177
VPusCfsuggAfuUfAfag
GACAGAACAGUC
4189


901094
1700826.1

uuaauccasgsa
1068918.1

gaCfuGfuucugsusc
CUUAAUCCAGA






AD-
A-
4166
csasgaa(Chd)AfgUfCfCf
A-
4178
VPusCfsugga(Tgn)uaag
GACAGAACAGUC
4190


1020575
1700826.1

uuaauccasgsa
1701270.1

gaCfuGfuucugsusc
CUUAAUCCAGA






AD-
A-
4167
asascag(Uhd)GfcUfAfAf
A-
4179
VPusCfscaaUfaAfCfauu
UUAACAGUGCUA
4191


901100
1700832.1

uguuauugsgsa
1069342.1

aGfcAfcuguusasa
AUGUUAUUGGU






AD-
A-
4168
asgsugc(Uhd)AfaUfGfUf
A-
4180
VPusAfscacCfaAfUfaac
ACAGUGCUAAUG
4192


901101
1700833.1

uauuggugsusa
1069348.1

aUfuAfgcacusgsu
UUAUUGGUGUC






AD-
A-
4169
gsasgaa(Ahd)GfuGfUfUf
A-
4181
VPusCfsguaUfaUfAfaaa
AAGAGAAAGUGU
4193


901113
1700845.1

uuauauacsgsa
1070290.1

cAfcUfuucucsusu
UUUAUAUACGG






AD-
A-
4170
asasaau(Ahd)GfaCfAfUf
A-
4182
VPusAfsgaaUfaGfCfaau
AUAAAAUAGACA
4194


901123
1700855.1

ugcuauucsusa
1070790.1

gUfcUfauuuusasu
UUGCUAUUCUG






AD-
A-
4171
asasaua(Ghd)AfcAfUfUf
A-
4183
VPusCfsagaAfuAfGfcaa
UAAAAUAGACAU
4195


901124
1700856.1

gcuauucusgsa
1070792.1

uGfuCfuauuususa
UGCUAUUCUGU






AD-
A-
4172
gsasaag(Uhd)GfuUfUfUf
A-
4184
VPusAfsccgUfaUfAfuaa
GAGAAAGUGUUU
4196


901158
1700894.1

auauacggsusa
1070294.1

aAfcAfcuuucsusc
UAUAUACGGUA






AD-
A-
4173
gsusuuu(Ahd)UfaUfAfCf
A-
4185
VPusAfsuaaGfuAfCfcgu
GUGUUUUAUAUA
4197


901159
1700895.1

gguacuuasusa
1070306.1

aUfaUfaaaacsasc
CGGUACUUAUU






AD-
A-
4174
asgsugc(Uhd)aadTgdTua
A-
4186
VPusdAscadCcdAauaad
ACAGUGCUAAUG
4198


1020573
1890520.1

uuggugsusa
1800384.1

CadTudAgcacusgsu
UUAUUGGUGUC






AD-
A-
4175
asasaau(Ahd)gadCadTug
A-
4187
VPusdAsgadAudAgcaad
AUAAAAUAGACA
4199


1023143
1895607.1

cuauucsusa
1800407.1

TgdTcdT auuuus asu
UUGCUAUUCUG
















TABLE 18B







Exemplary Human VEGF-A siRNA Unmodified Single Strands and Duplex Sequences





















SEQ ID

mRNA



Sense
SEQ ID

mRNA
Antisense
NO:




Duplex
Oligo
NO:

Target
Oligo
(Anti-
Antisense
Target


Name
Name
(Sense)
Sense Sequence
Range
Name
sense)
Sequence
Range





AD-
A-
4200
CGACAGAACAGUCCU
1855-
A-
4212
UGAUUAAGGACUGUU
1853-1875


1020574
1110770.1

UAAUCA
1875
1701268.1

CUGUCGAU






AD-
A-
4201
CAGAACAGUCCUUAA
1858-
A-
4213
UCUGGAUUAAGGACU
1856-1878


901094
1700826.1

UCCAGA
1878
1068918.1

GUUCUGUC






AD-
A-
4202
CAGAACAGUCCUUAA
1858-
A-
4214
UCUGGATUAAGGACU
1856-1878


1020575
1700826.1

UCCAGA
1878
1701270.1

GUUCUGUC






AD-
A-
4203
AACAGUGCUAAUGU
2178-
A-
4215
UCCAAUAACAUUAGC
2176-2198


901100
1700832.1

UAUUGGA
2198
1069342.1

ACUGUUAA






AD-
A-
4204
AGUGCUAAUGUUAU
2181-
A-
4216
UACACCAAUAACAUU
2179-2201


901101
1700833.1

UGGUGUA
2201
1069348.1

AGCACUGU






AD-
A-
4205
GAGAAAGUGUUUUA
2944-
A-
4217
UCGUAUAUAAAACAC
2942-2964


901113
1700845.1

UAUACGA
2964
1070290.1

UUUCUCUU






AD-
A-
4206
AAAAUAGACAUUGC
3361-
A-
4218
UAGAAUAGCAAUGUC
3359-3381


901123
1700855.1

UAUUCUA
3381
1070790.1

UAUUUUAU






AD-
A-
4207
AAAUAGACAUUGCU
3362-
A-
4219
UCAGAAUAGCAAUGU
3360-3382


901124
1700856.1

AUUCUGA
3382
1070792.1

CUAUUUUA






AD-
A-
4208
GAAAGUGUUUUAUA
2946-
A-
4220
UACCGUAUAUAAAAC
2944-2966


901158
1700894.1

UACGGUA
2966
1070294.1

ACUUUCUC






AD-
A-
4209
GUUUUAUAUACGGU
2952-
A-
4221
UAUAAGUACCGUAUA
2950-2972


901159
1700895.1

ACUUAUA
2972
1070306.1

UAAAACAC






AD-
A-
4210
AGUGCUAATGTUAUU
2181-
A-
4222
UACACCAAUAACATU
2179-2201


1020573
1890520.1

GGUGUA
2201
1800384.1

AGCACUGU






AD-
A-
4211
AAAAUAGACATUGCU
3361-
A-
4223
UAGAAUAGCAATGTCT
3359-3381


1023143
1895607.1

AUUCUA
3381
1800407.1

AUUUUAU









Example 2. In Vitro Screening of VEGF-A siRNA
Experimental Methods

Cell Culture and Transfections:


Cos 7 Cell Transfections


Cos-7 (ATCC) were transfected by adding 5 μl of 1 ng/μl psiCHECK2 vector (Blue Heron Biotechnology) containing either Cynomolgus monkey (XM_005552887) or mouse (NM_001025250), 4.9 μl of Opti-MEM, 0.1 μl of Lipofectamine 2000 (Invitrogen, Carlsbad Calif. cat #11668-019), and 5 μl of siRNA duplexes per well into a 384-well plate. Following a 15-minute incubation at room temperature, thirty-five μl of Dulbecco's Modified Eagle Medium (ThermoFisher) containing ˜5×103 cells were then added to the siRNA-transfection mixture. Cells were incubated for 48 hours followed by Firefly (transfection control) and Renilla (fused to target sequence) luciferase measurements. Experiments were performed at 10 nM, 1 nM, and 0.1 nM.


APRE-19 Cell, hTERT REP-1, and Primary Human Hepatocyte Cell Transfections


ARPE-19 cells, hTERT RPE-1, or primary human hepatocyte cells (ATCC) were transfected by adding 4.9 μl of Opti-MEM plus 0.1 μl of RNAiMAX per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well, with 4 replicates of each siRNA duplex, into a 384-well plate, and incubated at room temperature for 15 minutes. Forty μl of DMEM:F12 Medium (ThermoFisher) containing ˜5×103 cells were then added to the siRNA-transfection mixture. Cells were incubated for 24 hours prior to RNA purification. Experiments were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM.


Free Uptake Transfection:


Cryopreserved primary human hepatocytes were thawed at 37° C. in a water bath immediately prior to usage and re-suspended at 0.26×106 cells/mL in InVitroGRO CP (plating) medium (Celsis In Vitro Technologies, catalog number Z99029). During transfections, cells were plated onto a BD BioCoat 96 well collagen plate (BD, 356407) at 25,000 cells per well and incubated at 37° C. in an atmosphere of 5% CO2. Free Uptake experiments were performed by adding 10 μL of siRNA duplexes in PBS per well into a 96 well plate. Ninety μL of complete growth media containing appropriate cell number for the cell was then added to the siRNA. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at 500 nM, 100 nM, 10 nM, and 1 nM final duplex.


Total RNA Isolation Using DYNABEADS mRNA Isolation Kit:


RNA was isolated using an automated protocol on a BioTek-EL406 platform using DYNABEADs (Invitrogen, cat #61012). Briefly, 70 μl of Lysis/Binding Buffer and 10 μl of lysis buffer containing 3 μl of magnetic beads were added to the plate with cells. Plates were incubated on an electromagnetic shaker for 10 minutes at room temperature and then magnetic beads were captured and the supernatant was removed. Bead-bound RNA was then washed 2 times with 150 μl Wash Buffer A and once with Wash Buffer B. Beads were then washed with 150 μl Elution Buffer, re-captured and supernatant removed.


cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):


Ten μl of a master mix containing 1 μl 10× Buffer, 0.4 μl 25×dNTPs, 1 μl 10× Random primers, 0.5 μl Reverse Transcriptase, 0.5 μl RNase inhibitor and 6.6 μl of H2O per reaction was added to RNA isolated above. Plates were sealed, mixed, and incubated on an electromagnetic shaker for 10 minutes at room temperature, followed by 2 h 37° C.


Real Time PCR:


Two μl of cDNA and 50 Lightcycler 480 probe master mix (Roche Cat #04887301001) were added to either 0.5 μl of Human GAPDH TaqMan Probe (4326317E) and 0.5 μl VEGFA Human probe (Hs00900055_m1, Thermo) per well in a 384 well plates (Roche cat #04887301001). Real time PCR was done in a LightCycler480 Real Time PCR system (Roche). Each duplex was tested at least two times and data were normalized to cells transfected with a non-targeting control siRNA. To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with a non-targeting control siRNA.


Results

The results of the multi-dose screen in human retinal pigment epithelial cells (ARPE-19) and human hTERT-immortalized retinal pigment epithelial cells (hTERT RPE-1) with three sets of exemplary human VEGF-A siRNAs are shown in Table 6A (correspond to siRNAs in Table 2A and Table 2B), Table 6B (correspond to siRNAs in Table 3A and Table 3B), and 6C (correspond to siRNAs in Table 4A and Table 4B). The multi-dose experiments were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control. Of the exemplary siRNA duplexes evaluated, 28 achieved a knockdown of VEGF-A of >90%, 108 achieved a knockdown of


VEGF-A of ≥60%, and 229 achieved a knockdown of VEGF-A of ≥30% in in ARPE-19 cells when administered at the 10 nM concentration.









TABLE 6A







VEGF-A endogenous in vitro multi-dose screen with one set of exemplary human VEGF-A siRNAs










ARPE-19
hTERT RPE-1
























50

10

1

0.1

50

10

1

0.1



Sample_Name
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev


























AD-901349.1
29.9
4.1
24.7
3.0
34.0
3.0
54.3
5.7
26.5
7.9
26.0
1.7
64.1
11.3
94.0
17.7


AD-901376.1
28.3
4.6
25.4
7.6
35.7
8.8
50.3
14.1
15.1
2.7
20.9
4.1
37.6
8.3
46.9
4.6


AD-901356.1
30.6
2.9
27.9
2.8
36.5
2.5
60.3
7.6
21.0
3.5
25.3
9.7
39.3
8.9
91.6
12.5


AD-901355.1
42.0
2.2
28.7
3.7
39.6
0.2
65.7
11.5
26.9
2.3
27.4
9.6
44.8
4.0
92.6
22.9


AD-901407.1
27.8
11.7
30.9
4.0
55.4
6.2
106.1
19.2
39.0
7.9
41.1
12.4
69.5
10.9
87.5
21.1


AD-901367.1
39.0
4.8
31.5
3.7
38.6
7.1
50.4
2.2
31.0
6.3
39.3
5.5
38.1
5.2
77.0
13.4


AD-901352.1
42.7
1.8
34.6
6.1
48.5
6.6
57.4
4.9
27.1
7.7
28.9
4.5
51.6
10.4
76.8
15.3


AD-901348.1
44.5
7.3
35.0
7.2
40.6
4.7
62.4
9.1
35.4
6.8
23.0
4.2
50.0
18.5
97.9
21.6


AD-901354.1
45.0
3.6
35.9
7.1
40.9
2.1
61.2
4.0
34.1
8.9
27.0
6.2
34.7
8.7
81.9
18.7


AD-901353.1
50.8
5.9
37.6
8.6
29.8
4.7
52.4
2.4
36.1
6.5
21.5
4.3
40.4
8.7
98.2
11.7


AD-901375.1
44.5
7.1
40.2
2.0
43.0
6.6
60.0
12.2
30.5
1.8
30.4
3.3
46.9
24.4
61.3
4.9


AD-901345.1
53.1
6.0
42.9
9.0
74.3
13.7
73.0
16.3
74.8
12.7
62.2
18.1
61.7
9.5
85.2
14.5


AD-901357.1
39.8
11.7
42.9
1.1
54.2
3.3
78.1
14.9
37.2
7.4
42.3
15.4
43.2
2.9
97.9
19.8


AD-901334.1
55.7
4.7
43.4
7.2
77.4
9.8
76.7
6.0
74.9
18.4
47.9
12.8
73.3
17.2
85.9
8.5


AD-901313.1
32.9
3.6
44.2
9.8
77.8
17.5
64.1
7.0
39.7
12.8
47.9
5.8
101.3
4.5
69.6
18.2


AD-901344.1
71.9
5.4
46.9
6.7
78.6
16.2
59.4
9.0
75.8
6.0
72.9
21.0
62.0
13.2
78.4
7.8


AD-901366.1
56.1
9.1
47.2
7.4
61.9
5.7
69.1
6.6
42.5
11.3
49.6
12.8
58.3
14.2
97.4
18.8


AD-901337.1
70.7
7.9
47.7
9.4
101.6
21.1
82.6
9.4
91.8
17.2
64.0
25.7
80.8
21.3
86.4
7.4


AD-901335.1
58.7
9.2
48.0
7.7
109.6
32.9
84.5
9.8
75.6
4.6
62.1
15.5
72.2
19.6
92.4
18.7


AD-901398.1
51.6
2.2
48.0
8.3
63.3
5.6
91.1
11.3
39.6
8.2
55.7
9.8
71.8
10.1
56.2
8.4


AD-901314.1
43.1
10.7
48.7
10.8
94.3
25.4
99.6
15.1
49.9
6.0
50.9
10.9
67.9
15.4
100.9
31.8


AD-901386.1
51.7
6.0
49.5
2.7
82.7
59.5
75.9
21.6
62.6
20.0
42.9
8.8
55.4
20.7
45.8
8.9


AD-901336.1
67.6
5.1
51.4
12.8
88.0
14.9
74.3
9.5
88.1
10.2
51.7
16.0
77.8
19.7
85.0
16.0


AD-901310.1
40.9
8.2
53.0
5.6
88.6
18.3
82.0
5.8
46.8
7.6
52.4
10.7
71.9
11.7
76.1
7.3


AD-901321.1
41.4
7.4
53.1
13.3
87.7
15.2
67.0
16.0
36.4
8.2
40.2
4.3
87.2
13.0
89.2
8.0


AD-901382.1
57.5
4.2
53.7
3.0
62.8
4.5
90.1
19.4
41.0
12.4
37.9
9.3
68.2
10.5
63.9
9.5


AD-901384.1
49.7
6.8
53.8
12.8
54.0
12.3
87.8
38.9
43.5
5.7
52.6
5.1
60.1
9.4
56.1
12.1


AD-901339.1
80.3
16.6
54.0
7.4
76.7
11.8
74.7
3.5
96.3
18.7
68.3
12.5
68.9
13.3
89.7
11.8


AD-901363.1
68.5
11.9
55.2
9.3
54.3
4.3
71.2
8.6
52.2
5.7
54.8
12.0
45.5
1.5
86.0
15.8


AD-901325.1
71.6
2.4
55.6
7.1
111.4
11.4
95.5
4.4
77.5
15.7
69.8
10.8
88.4
10.0
96.8
6.0


AD-901350.1
60.4
9.5
56.5
8.4
66.9
6.6
73.3
3.1
50.7
6.7
45.6
3.9
85.0
8.9
92.4
12.9


AD-901365.1
68.6
5.1
56.5
6.6
64.8
7.6
79.6
12.3
48.9
18.5
52.3
13.3
56.8
16.7
96.1
8.8


AD-901306.1
55.1
12.5
57.7
5.8
96.6
17.2
97.3
24.5
66.5
10.5
74.7
16.8
75.6
9.7
108.6
25.5


AD-901361.1
50.8
6.9
58.5
18.8
45.6
3.1
68.6
10.3
44.9
4.3
36.2
9.9
57.7
6.5
95.4
14.9


AD-901320.1
52.3
11.4
60.0
5.7
94.3
23.4
69.8
3.8
48.1
19.3
48.3
3.8
68.9
13.2
84.4
18.8


AD-901405.1
64.5
3.4
60.5
9.8
80.4
7.5
83.6
15.4
63.1
9.2
72.3
21.9
74.6
9.3
55.6
6.4


AD-901338.1
52.7
5.1
61.7
4.1
82.0
12.2
86.9
13.2
73.4
8.4
60.8
20.1
58.8
9.8
103.1
16.6


AD-901383.1
62.0
8.9
62.2
7.7
78.2
11.8
92.7
14.8
57.0
9.8
62.6
11.9
75.1
16.6
75.2
7.0


AD-901333.1
82.0
7.2
62.5
12.2
94.1
17.3
85.2
6.9
92.2
5.4
66.8
12.1
79.2
15.9
70.5
37.8


AD-901330.1
75.7
8.7
63.0
9.7
96.4
6.3
104.5
23.5
90.8
8.4
63.2
16.4
82.5
16.6
109.3
30.1


AD-901360.1
61.4
8.8
64.0
10.3
59.9
6.5
90.6
32.4
77.5
3.7
63.7
6.4
64.1
14.7
95.1
14.9


AD-901358.1
67.4
11.4
65.3
5.4
71.0
3.6
82.3
6.7
58.5
5.3
49.5
6.5
62.8
4.6
94.4
11.9


AD-901406.1
67.6
7.4
65.6
7.7
77.2
6.7
93.5
2.0
63.3
13.4
65.2
5.7
69.4
9.5
86.9
30.3


AD-901326.1
78.8
14.8
65.8
16.8
120.8
26.0
88.1
8.0
85.9
5.7
69.6
11.8
88.6
15.2
98.3
14.6


AD-901377.1
47.2
7.3
65.8
11.4
57.5
12.7
68.0
22.8
42.8
6.2
47.4
6.3
54.8
10.2
63.4
15.1


AD-901351.1
69.4
9.6
66.9
10.1
82.5
6.8
85.7
5.3
73.9
8.0
56.8
13.1
81.2
30.7
97.6
36.5


AD-901415.1
77.8
13.7
68.1
18.4
78.6
14.7
119.6
45.3
85.6
6.4
57.2
10.5
83.8
7.7
78.5
19.4


AD-901342.1
87.4
20.2
70.1
10.3
113.4
21.8
79.3
12.1
90.5
27.6
56.2
11.2
80.2
21.4
91.5
14.4


AD-901420.1
61.1
7.0
71.0
5.7
75.3
4.0
107.9
37.3
52.4
2.8
43.5
7.9
67.8
13.7
80.8
8.9


AD-901312.1
62.1
10.7
71.2
8.0
102.4
22.9
76.5
2.4
75.1
7.7
60.1
15.4
100.2
30.7
73.8
17.5


AD-901340.1
88.8
12.8
71.6
10.3
100.4
19.9
93.3
12.4
94.1
31.9
69.3
11.0
87.6
24.7
100.6
10.9


AD-901392.1
49.7
9.0
71.6
13.2
69.0
4.0
81.0
47.1
41.3
2.9
61.4
10.0
77.7
12.1
74.3
5.4


AD-901327.1
72.4
15.6
71.8
8.7
114.4
13.3
80.6
2.7
89.8
13.6
75.7
12.3
82.7
23.2
92.0
8.8


AD-901328.1
77.7
13.0
72.6
6.3
104.1
10.6
76.9
7.7
87.2
16.3
70.5
4.1
89.5
8.4
86.4
10.7


AD-901370.1
65.9
6.5
72.9
7.8
79.9
6.7
70.6
4.4
67.8
9.5
81.6
5.6
70.3
16.6
52.8
35.3


AD-901399.1
63.2
10.4
72.9
7.8
79.3
5.9
98.0
11.8
52.6
4.9
78.5
18.2
62.3
12.7
68.9
7.0


AD-901359.1
83.7
13.3
73.4
12.1
66.6
8.8
69.4
7.1
80.2
20.5
63.3
20.6
70.5
6.9
90.7
19.1


AD-901373.1
81.5
10.9
73.4
4.6
73.5
2.4
69.8
8.7
52.1
11.0
61.9
17.9
60.7
10.9
56.7
12.5


AD-901332.1
79.6
17.9
73.7
4.9
123.3
17.1
93.6
6.1
95.2
13.6
56.4
15.2
96.5
7.9
89.0
14.4


AD-901311.1
53.7
10.4
74.5
9.5
98.0
27.9
72.0
4.0
67.5
16.0
69.0
9.2
64.6
10.3
73.9
3.3


AD-901423.1
61.8
10.6
74.5
9.5
72.3
8.7
104.0
24.4
48.8
3.6
56.4
10.5
68.3
12.8
73.5
8.2


AD-901374.1
92.4
18.4
74.5
9.6
86.9
12.5
71.0
14.7
90.5
13.9
52.7
13.4
81.5
12.0
61.3
12.7


AD-901319.1
73.3
19.5
75.1
6.3
126.0
19.4
77.4
7.6
88.5
16.0
81.3
7.2
64.0
20.9
93.5
33.9


AD-901341.1
88.8
12.2
75.5
8.1
107.3
10.6
79.2
5.8
77.2
20.8
86.1
24.0
96.8
15.9
93.0
10.6


AD-901422.1
51.3
3.2
75.8
5.2
55.6
5.8
95.6
25.5
40.2
4.1
39.9
9.4
61.8
15.0
76.2
19.9


AD-901385.1
67.7
13.9
75.8
16.1
86.8
10.9
93.1
21.7
72.9
11.6
72.2
14.5
76.4
13.2
65.1
10.3


AD-901391.1
72.0
11.9
76.2
8.8
82.3
12.0
76.8
22.5
71.6
14.7
63.4
16.7
81.2
6.6
85.9
13.3


AD-901329.1
72.5
10.6
76.3
11.1
107.1
12.2
79.8
9.2
98.2
17.4
75.5
10.9
100.5
15.9
93.9
6.9


AD-901331.1
101.1
11.5
77.9
13.7
120.0
24.9
84.0
10.0
126.3
25.1
76.3
19.3
82.2
6.1
79.0
22.0


AD-901368.1
73.7
9.1
79.5
11.1
82.4
5.5
90.1
31.1
98.3
21.8
97.4
7.8
64.4
19.9
85.4
4.9


AD-901364.1
82.5
10.9
79.5
16.7
75.7
8.9
81.4
2.6
65.8
7.1
65.3
18.7
48.4
7.4
90.9
5.5


AD-901389.1
69.1
10.2
80.3
6.1
80.4
9.2
87.2
22.8
50.7
2.4
55.9
6.4
82.8
21.5
59.0
16.1


AD-901421.1
54.9
7.1
80.9
6.9
63.4
9.2
96.5
25.7
50.4
9.2
37.8
3.8
70.9
15.3
61.1
11.7


AD-901380.1
85.6
16.8
81.0
6.5
60.9
9.0
83.7
9.2
74.9
12.3
77.7
6.6
54.5
11.3
75.8
19.3


AD-901343.1
102.8
17.6
81.8
13.7
127.7
32.4
99.8
11.8
133.1
18.9
81.7
20.5
93.1
6.4
81.8
13.4


AD-901317.1
89.8
12.2
81.8
4.8
131.2
51.1
90.6
5.2
120.7
22.3
86.4
4.5
69.7
11.0
76.7
7.1


AD-901424.1
62.9
4.8
82.2
14.8
64.9
10.2
86.0
8.1
68.7
13.3
63.1
22.6
76.5
15.9
71.8
24.4


AD-901431.1
84.8
11.4
82.9
20.5
75.7
10.5
96.4
29.5
79.4
15.9
88.8
25.2
85.1
8.9
80.8
21.7


AD-901378.1
71.4
5.4
82.9
5.5
77.3
8.5
80.6
9.3
56.8
14.3
40.8
13.4
82.0
24.4
78.9
14.1


AD-901434.1
70.3
11.3
83.8
8.4
59.4
1.3
92.1
11.3
62.6
8.3
72.7
17.5
69.9
12.0
82.0
11.3


AD-901412.1
83.4
15.9
84.5
32.2
94.4
4.4
81.6
19.4
82.3
3.9
50.8
5.2
85.6
21.9
74.5
8.0


AD-901426.1
96.7
7.7
85.1
13.5
68.2
7.2
104.4
9.3
92.5
15.3
61.5
4.0
56.0
7.0
80.4
15.0


AD-901322.1
74.9
14.5
85.5
12.4
118.1
15.9
117.4
22.0
107.2
20.0
92.5
15.9
98.9
16.0
107.3
8.5


AD-901381.1
92.6
10.5
85.7
4.9
93.9
10.2
90.8
17.0
72.5
15.0
74.0
16.8
85.0
21.6
71.5
16.1


AD-901324.1
93.0
10.1
87.3
14.3
142.1
25.2
92.9
5.5
133.9
8.1
94.9
11.1
94.3
9.2
91.4
4.7


AD-901347.1
84.2
11.6
87.7
9.5
101.8
19.4
83.9
4.4
96.1
10.3
84.6
25.5
105.8
6.4
96.3
13.4


AD-901379.1
81.1
5.9
87.8
6.2
72.1
6.9
80.4
6.7
79.3
7.6
59.9
15.5
82.5
18.4
59.1
18.7


AD-901428.1
71.8
4.4
88.2
18.3
74.5
8.0
93.0
16.6
89.7
13.0
52.5
12.6
65.9
17.7
76.7
13.3


AD-901371.1
75.5
7.5
88.2
15.6
77.3
5.7
82.5
5.9
71.7
8.5
56.8
12.0
68.6
10.7
71.2
20.0


AD-901408.1
74.4
14.1
88.8
30.8
91.5
5.1
85.5
11.2
75.4
14.5
57.2
15.1
97.4
21.5
76.5
13.3


AD-901417.1
94.8
14.8
89.2
14.0
101.7
5.9
117.2
33.3
85.4
23.1
76.9
12.4
92.6
6.8
76.2
21.6


AD-901400.1
82.9
10.1
89.7
8.6
97.9
11.3
97.7
22.9
97.5
12.8
101.9
12.3
98.8
13.0
65.3
17.5


AD-901323.1
74.6
14.8
90.4
12.0
130.1
25.7
86.8
3.3
101.8
5.7
93.7
18.2
80.4
12.4
96.3
20.5


AD-901316.1
91.0
18.0
90.8
8.3
139.5
42.5
96.3
3.1
99.6
17.7
93.6
8.8
80.1
28.4
96.5
18.2


AD-901315.1
86.7
14.1
90.8
6.4
130.0
40.3
92.6
4.0
125.3
13.0
107.4
11.9
72.7
22.2
97.5
7.6


AD-901395.1
77.9
11.7
90.9
5.9
80.0
4.0
86.9
20.7
65.9
13.2
63.8
10.5
87.3
8.0
74.9
19.2


AD-901318.1
78.6
6.2
92.1
11.8
131.0
50.7
90.2
11.5
112.5
21.6
91.5
12.2
73.0
12.4
83.6
15.4


AD-901390.1
75.3
12.2
93.3
5.9
95.8
9.4
96.1
23.2
47.0
6.9
66.4
7.4
71.5
4.7
64.3
14.3


AD-901387.1
91.5
9.4
94.9
6.0
100.0
18.9
93.5
10.9
131.7
17.8
89.3
10.7
89.1
17.7
69.4
13.4


AD-901307.1
66.0
13.3
95.4
11.1
105.1
21.0
90.1
4.9
119.0
15.4
100.5
12.7
74.3
28.2
105.8
10.9


AD-901410.1
91.1
15.6
96.5
28.2
104.3
15.4
91.4
7.4
93.9
9.4
55.3
10.6
98.9
32.4
79.6
13.4


AD-901433.1
86.9
4.6
96.9
18.9
74.6
2.3
98.2
8.3
81.1
19.2
58.0
15.9
81.0
12.6
73.6
12.0


AD-901308.1
67.0
5.1
97.7
18.4
136.0
31.1
89.2
5.3
116.8
18.1
109.3
4.6
99.4
12.4
80.8
8.5


AD-901414.1
88.8
12.1
98.1
31.3
94.5
2.6
94.0
16.9
88.5
4.8
64.8
17.5
70.2
8.3
82.3
11.3


AD-901309.1
67.5
6.9
98.7
12.4
124.9
29.1
91.8
3.9
111.9
21.4
84.7
12.8
97.9
16.1
88.3
18.1


AD-901362.1
75.1
11.6
99.1
22.7
91.0
7.1
91.6
12.6
93.3
9.1
99.8
38.1
69.3
19.5
92.9
13.0


AD-901397.1
86.1
9.0
99.3
8.7
94.9
5.6
88.4
19.5
99.2
14.2
119.6
15.6
83.0
11.1
67.2
17.1


AD-901419.1
74.3
12.2
100.1
11.9
80.7
8.0
116.8
34.6
74.5
14.5
49.9
4.4
89.7
14.6
72.7
12.1


AD-901413.1
92.5
12.3
101.4
37.9
97.6
3.4
96.1
18.3
77.1
5.9
59.3
11.9
75.0
18.1
67.4
2.0


AD-901401.1
95.3
6.8
101.8
10.4
116.3
16.9
98.8
24.7
138.0
19.8
97.0
15.7
102.4
24.1
81.1
10.2


AD-901411.1
83.9
8.7
102.6
36.0
93.3
8.6
105.0
4.3
79.2
14.1
55.2
8.4
80.4
7.4
75.1
28.5


AD-901372.1
85.7
9.4
103.1
18.7
89.3
4.3
89.9
12.5
100.5
7.7
97.0
20.4
73.8
9.6
47.5
4.4


AD-901425.1
86.6
13.9
104.1
15.8
100.2
12.0
110.9
21.8
88.0
11.6
66.1
22.7
87.1
20.1
74.9
17.6


AD-901409.1
110.5
16.6
106.3
26.4
112.3
10.1
98.9
9.1
102.0
12.9
53.7
18.0
90.5
8.8
87.0
24.0


AD-901418.1
91.4
17.7
106.6
12.5
104.2
5.8
115.4
41.5
84.9
16.8
58.5
14.0
94.1
2.4
79.4
3.5


AD-901393.1
95.9
14.4
107.2
19.2
104.5
7.5
79.9
14.8
95.8
15.0
101.9
28.1
94.8
18.2
65.6
22.0


AD-901388.1
83.2
14.1
108.9
4.0
102.2
9.0
96.5
10.3
69.7
4.2
93.0
12.0
90.5
5.4
63.6
22.4


AD-901404.1
99.7
7.5
110.2
6.7
119.3
24.1
94.8
6.8
130.3
22.2
108.2
6.2
83.6
13.6
84.4
9.4


AD-901346.1
78.3
11.7
110.7
28.7
97.5
15.9
70.1
4.8
89.4
8.0
75.4
20.2
76.7
24.4
105.1
10.9


AD-901403.1
92.7
11.1
111.4
9.2
101.5
5.3
96.1
9.3
94.2
13.5
111.6
19.8
79.3
7.0
62.3
6.4


AD-901396.1
95.6
12.6
112.1
20.6
101.1
10.1
97.7
11.4
88.7
6.9
116.5
36.0
89.3
3.2
79.8
22.4


AD-901432.1
86.4
16.0
113.4
16.6
68.0
6.3
97.4
15.6
98.3
13.9
67.9
6.9
81.5
17.3
77.7
17.1


AD-901435.1
93.4
6.6
115.4
12.9
82.5
12.0
97.1
10.8
100.4
9.0
68.1
31.6
82.2
25.7
78.0
11.7


AD-901416.1
103.4
18.0
116.6
18.3
110.7
16.3
98.3
27.8
102.4
25.4
77.5
16.6
100.2
4.4
82.1
22.3


AD-901394.1
106.8
12.4
118.1
11.0
111.8
9.5
92.1
16.4
137.8
38.9
117.2
37.8
100.6
17.2
71.2
11.1


AD-901429.1
94.4
7.7
118.8
28.5
93.2
6.7
101.2
12.0
92.5
7.3
64.3
18.4
85.1
6.6
75.3
16.0


AD-901402.1
99.4
13.8
118.9
25.5
107.3
6.3
100.5
9.5
99.8
15.7
108.9
8.5
94.6
9.5
75.2
18.7


AD-901430.1
95.7
16.4
119.8
30.7
82.8
5.5
98.2
12.4
95.2
10.9
90.0
30.2
72.8
6.4
74.4
9.7


AD-901369.1
79.4
12.7
135.3
57.4
89.5
2.4
75.0
10.6
112.5
21.8
82.9
15.8
88.4
2.8
66.5
21.4
















TABLE 6B







VEGF-A endogenous in vitro multi-dose screen with one set of exemplary human VEGF-A siRNAs










ARPE-19
hTERT RPE-1
























50

10

1

0.1

50

10

1

0.1



Sample Name
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev


























AD-953340.1
18.6
2.1
2.7
0.7
28.5
3.4
106.5
28.3
40.1
3.9
25.2
10.0
38.7
7.5
52.2
15.2


AD-953336.1
25.7
1.4
3.7
0.9
26.5
0.5
159.2
61.6
45.5
5.2
26.3
8.1
41.0
8.9
68.2
8.3


AD-953363.1
17.3
2.9
3.9
0.9
33.5
6.0
57.0
7.1
37.2
6.8
24.6
5.6
38.1
5.9
39.4
8.0


AD-953338.1
23.1
2.7
4.8
1.8
41.2
8.4
92.1
21.1
54.6
7.9
35.3
7.5
51.1
1.4
76.1
10.8


AD-953367.1
25.6
1.6
5.1
0.6
39.3
6.9
55.8
5.1
62.2
8.0
33.2
10.3
61.2
8.6
49.4
7.6


AD-953337.1
29.5
4.0
5.6
3.4
28.2
2.0
129.8
30.5
45.4
8.6
23.8
4.5
44.8
3.6
60.6
8.0


AD-953342.1
18.9
2.3
5.6
3.6
31.6
4.9
149.8
56.1
35.2
4.0
28.4
6.6
39.0
2.7
73.7
11.9


AD-953350.1
30.0
3.6
5.8
4.1
46.6
8.3
78.3
22.9
70.5
10.7
42.6
14.8
49.3
14.2
85.8
3.8


AD-953352.1
28.5
2.8
6.1
0.5
41.5
5.7
113.4
13.2
52.8
5.8
40.1
9.3
53.0
7.6
72.9
7.3


AD-953368.1
33.3
1.6
6.2
1.0
35.2
2.3
48.2
3.6
58.8
5.7
39.5
11.2
50.1
7.2
50.5
2.2


AD-953344.1
17.8
1.6
6.5
1.9
38.5
5.7
66.5
11.3
29.5
4.0
28.9
7.1
49.6
7.0
75.8
12.9


AD-953339.1
26.5
4.9
6.7
5.5
34.4
6.2
120.0
30.4
41.7
3.6
26.2
3.7
36.0
9.0
59.1
7.0


AD-953387.1
20.6
1.0
6.9
0.3
40.9
5.4
64.9
6.1
21.0
2.8
31.3
5.4
69.7
15.0
57.4
7.3


AD-953375.1
37.1
2.8
7.4
1.1
48.8
6.5
73.4
3.9
90.7
19.7
62.5
8.1
72.2
11.9
64.3
16.3


AD-953355.1
42.7
5.3
7.5
0.7
62.2
2.4
137.9
24.5
43.9
5.5
40.6
8.0
52.6
10.0
67.1
5.5


AD-953341.1
20.2
2.9
7.7
4.5
22.3
3.3
106.6
21.7
55.5
5.5
34.7
7.7
32.2
8.3
68.4
5.8


AD-953370.1
36.8
3.0
7.8
1.9
55.5
7.5
72.3
6.0
38.0
7.8
26.9
4.7
63.9
12.6
51.9
6.9


AD-953362.1
57.6
4.3
8.2
1.1
54.3
8.3
76.8
3.6
108.9
11.3
48.1
10.1
63.0
11.0
52.1
10.4


AD-953322.1
59.6
3.6
8.2
1.3
61.4
4.5
105.4
14.2
103.5
9.6
55.4
15.9
66.5
7.4
78.4
11.5


AD-953332.1
59.2
3.3
8.3
1.3
58.3
3.8
106.7
20.6
95.1
15.8
55.0
9.1
74.5
1.5
66.2
8.9


AD-953371.1
41.1
3.2
8.5
2.6
49.1
7.2
64.1
10.0
75.1
16.0
51.2
18.1
60.0
8.7
53.0
11.6


AD-953331.1
68.0
1.2
8.8
1.7
60.3
5.5
92.6
24.7
151.3
18.2
88.8
33.3
85.2
21.0
87.4
5.6


AD-953323.1
66.8
5.0
9.1
1.7
64.2
2.1
109.8
19.9
93.6
2.2
53.0
7.3
74.7
4.9
77.0
11.6


AD-953351.1
21.2
2.3
9.2
9.5
39.8
6.9
74.4
8.0
49.7
3.2
26.0
2.5
41.2
11.0
63.6
8.2


AD-953386.1
31.8
1.6
9.3
1.0
65.3
6.3
87.4
5.1
38.7
0.4
50.4
11.0
82.9
17.7
67.9
13.0


AD-953394.1
35.4
2.0
9.5
5.1
50.8
5.3
72.7
3.3
66.5
16.5
49.7
10.5
77.2
14.7
57.8
21.7


AD-953359.1
36.4
3.8
9.7
2.9
46.9
6.3
72.9
7.4
74.8
9.6
46.2
6.0
63.9
10.8
50.7
7.9


AD-953329.1
68.0
10.2
9.7
1.7
59.7
1.6
100.3
22.8
94.3
7.1
56.9
16.4
76.7
10.0
79.8
9.0


AD-953361.1
45.2
2.9
10.4
8.6
53.6
4.8
68.4
5.4
78.6
10.9
50.2
11.3
68.6
9.3
47.8
9.6


AD-953319.1
100.2
2.8
10.6
1.4
71.5
10.3
161.5
76.4
189.6
19.4
69.0
22.5
84.3
4.7
93.2
18.2


AD-953360.1
96.2
10.8
10.7
1.5
49.6
5.2
76.7
6.2
140.9
16.5
69.1
20.5
82.4
9.0
54.9
2.8


AD-953324.1
63.0
2.8
11.2
4.8
53.8
4.5
96.6
27.2
131.1
18.6
67.5
16.9
86.3
18.2
75.5
18.1


AD-953378.1
57.9
8.3
11.5
2.3
72.2
7.6
92.4
6.2
47.1
10.1
55.3
8.2
85.7
17.9
60.5
14.4


AD-953369.1
43.6
4.7
11.8
6.0
64.4
10.3
79.8
5.1
68.6
9.7
56.3
9.1
70.2
5.4
58.7
14.7


AD-953347.1
77.6
5.1
11.9
3.7
63.3
7.7
66.5
16.2
112.3
25.0
62.1
13.1
62.8
13.8
76.4
6.3


AD-953365.1
28.7
4.1
12.3
3.5
35.7
4.9
61.7
7.9
36.6
7.3
23.6
5.0
56.5
3.9
50.9
4.6


AD-953374.1
10.7
0.3
12.3
18.3
35.8
27.4
33.8
7.4
30.0
3.5
33.2
4.8
39.2
4.0
46.2
7.9


AD-953384.1
57.1
2.9
12.9
4.8
76.3
9.0
82.4
5.1
86.2
5.2
67.4
3.8
105.9
23.9
66.1
13.2


AD-953376.1
57.8
2.7
12.9
2.0
81.7
9.3
94.3
1.0
69.2
14.7
73.1
23.1
96.7
8.4
70.3
10.8


AD-953354.1
49.1
5.5
13.5
5.6
67.9
5.6
141.1
30.9
40.5
6.7
42.2
10.8
57.0
6.1
78.8
9.6


AD-953385.1
65.0
3.9
13.5
2.0
79.8
8.9
97.1
13.1
115.8
16.5
107.5
18.6
124.6
8.8
71.9
7.1


AD-953346.1
38.0
3.2
14.1
11.9
56.3
4.7
68.3
13.8
58.6
8.1
42.7
7.4
53.9
11.6
75.2
5.3


AD-953366.1
28.1
3.0
14.3
18.9
47.6
4.2
72.4
7.9
47.0
5.3
32.5
6.0
40.4
8.8
61.7
14.1


AD-953382.1
67.1
5.3
14.6
3.6
80.8
7.7
99.5
6.7
143.5
30.8
67.6
18.2
91.3
11.9
67.0
12.6


AD-953320.1
65.2
3.4
14.7
6.0
69.8
9.1
139.3
11.6
121.6
7.8
55.2
11.1
97.9
7.0
92.3
10.4


AD-953379.1
64.5
8.5
17.0
5.4
76.3
3.5
85.5
6.7
60.1
12.9
68.0
26.1
85.4
3.5
49.6
12.0


AD-953321.1
66.2
5.0
17.1
13.7
58.7
5.7
125.7
34.8
111.0
19.6
59.2
14.5
72.7
12.4
80.3
11.7


AD-953377.1
55.4
3.9
17.2
8.0
75.0
6.1
83.8
4.1
54.9
8.5
57.6
9.1
82.9
6.1
70.7
12.3


AD-953392.1
88.8
1.4
17.5
2.0
90.9
10.8
96.0
3.6
125.6
16.1
102.0
20.4
117.0
26.2
88.2
14.3


AD-953373.1
35.7
3.9
17.7
12.7
41.4
3.3
61.2
9.4
56.7
9.0
50.8
5.4
66.6
5.1
70.4
14.3


AD-953364.1
22.5
1.9
18.1
6.4
35.7
2.4
53.4
3.8
21.2
2.6
20.1
5.9
30.5
4.3
45.0
7.9


AD-953330.1
56.3
6.5
18.2
8.1
54.0
2.8
97.5
23.3
109.0
14.5
69.9
11.8
68.7
8.6
74.6
9.6


AD-953353.1
30.9
2.4
19.3
14.9
51.1
3.9
145.6
33.7
59.1
11.7
45.4
10.7
57.3
8.9
80.5
6.8


AD-953343.1
28.4
1.6
19.4
24.7
31.5
2.1
50.2
12.1
51.1
7.7
41.1
4.8
50.6
3.0
76.9
6.2


AD-953390.1
82.4
4.8
19.8
2.3
92.7
10.4
103.4
7.6
132.1
19.0
96.0
20.4
114.6
24.4
80.3
14.4


AD-953345.1
26.9
4.4
20.4
16.6
51.9
6.3
91.9
13.0
35.7
10.4
33.1
6.6
37.6
9.9
65.9
6.8


AD-953358.1
30.5
1.7
20.6
17.0
40.7
6.0
66.2
3.7
67.1
7.3
46.2
13.7
62.8
16.0
52.4
10.8


AD-953383.1
58.5
4.0
21.4
9.2
65.7
5.7
83.3
3.1
70.5
9.4
65.2
10.6
82.7
14.0
80.7
8.9


AD-953372.1
34.3
4.8
24.0
7.7
45.9
5.8
65.7
4.7
52.6
5.2
42.1
13.1
65.9
9.1
54.7
6.6


AD-953328.1
54.5
3.9
24.1
19.0
60.6
5.7
112.1
3.8
137.7
50.8
66.1
5.8
82.7
13.1
79.1
7.2


AD-953393.1
42.8
3.6
25.9
33.0
63.6
6.1
87.9
3.4
49.7
9.2
56.8
6.9
81.0
6.8
74.0
14.3


AD-953307.1
39.3
2.0
26.1
2.3
50.3
3.0
144.4
30.6
49.9
4.0
34.1
7.3
65.1
4.0
56.8
9.9


AD-953308.1
36.9
6.6
26.3
1.3
50.9
3.7
136.2
32.8
30.3
7.1
24.2
4.4
53.4
4.8
42.3
8.9


AD-953327.1
63.7
9.2
27.4
29.5
52.5
1.5
108.8
24.5
85.5
42.1
48.8
10.7
72.2
10.9
82.3
7.2


AD-953335.1
77.1
5.8
28.3
19.0
53.0
4.4
115.1
32.1
144.1
17.3
72.8
17.2
84.8
11.6
95.4
8.0


AD-953414.1
21.5
1.7
28.3
1.6
41.8
4.6
61.5
8.3
40.1
2.5
31.3
7.9
49.3
12.3
66.0
17.8


AD-953412.1
16.3
0.7
28.4
3.6
33.1
5.3
65.1
4.0
37.5
11.0
35.3
3.6
35.8
9.0
70.7
14.2


AD-953411.1
15.4
2.0
29.5
3.7
42.7
5.0
65.5
6.0
30.9
9.0
26.2
4.3
48.9
7.9
57.2
13.3


AD-953410.1
16.4
1.2
29.6
2.0
44.7
3.6
68.0
2.7
26.2
3.8
26.4
7.0
49.8
9.2
55.9
17.7


AD-953408.1
21.0
1.4
29.7
2.3
38.4
4.8
72.1
6.4
33.1
4.7
35.5
2.9
60.9
14.6
80.9
23.6


AD-953326.1
53.8
7.2
30.2
17.6
50.4
3.4
115.3
25.4
115.2
12.1
59.7
19.5
77.5
18.1
83.0
11.6


AD-953300.1
49.4
5.2
30.6
1.7
52.2
5.5
176.7
31.5
51.7
16.4
44.1
6.6
65.9
17.3
39.7
7.3


AD-953389.1
90.9
7.3
31.6
16.2
93.6
8.0
99.4
7.4
144.1
18.2
126.7
8.2
114.4
15.0
93.8
22.2


AD-953415.1
23.3
1.8
32.0
1.8
41.3
3.0
62.8
8.8
65.9
6.6
52.5
5.9
53.3
18.2
70.5
19.8


AD-953309.1
42.1
1.6
32.3
3.0
69.9
2.0
148.4
9.6
40.6
7.2
42.0
7.1
91.4
19.0
48.5
11.7


AD-953391.1
78.3
7.4
32.9
32.3
86.1
7.2
95.6
4.9
108.7
4.5
93.3
10.9
119.0
24.5
87.2
15.4


AD-953395.1
53.9
5.2
33.3
21.8
70.2
7.5
87.9
3.9
42.9
5.1
49.4
8.8
83.2
6.3
62.2
11.3


AD-953303.1
48.8
2.8
34.0
9.2
44.4
3.8
133.6
33.0
69.9
7.6
42.4
3.8
62.7
7.0
54.4
12.6


AD-953405.1
37.6
9.8
34.2
5.3
42.1
8.8
60.5
3.6
58.3
17.4
37.6
7.0
59.1
16.6
78.3
6.9


AD-953305.1
52.0
6.9
34.8
1.6
56.5
5.1
108.4
23.2
73.0
10.3
41.9
6.0
68.4
9.8
69.3
6.9


AD-953380.1
63.5
8.0
35.1
28.6
72.8
5.2
84.6
3.4
54.0
2.4
49.6
9.1
82.2
16.6
54.1
9.0


AD-953349.1
62.9
2.8
35.3
4.1
61.4
6.2
71.3
23.0
106.7
20.9
64.7
14.2
67.5
26.3
92.3
7.5


AD-953381.1
66.3
2.9
35.5
22.1
83.5
7.5
99.8
6.3
80.8
10.0
67.8
8.9
99.2
18.4
76.9
21.1


AD-953318.1
73.1
4.0
37.6
32.2
63.4
2.6
198.1
91.7
132.1
16.9
66.1
30.7
81.7
17.2
88.7
3.1


AD-953348.1
46.6
2.7
38.4
9.6
52.5
5.4
136.3
31.4
46.5
14.1
38.9
9.4
48.8
9.2
74.5
10.8


AD-953409.1
24.1
1.4
39.4
2.8
46.7
7.0
76.5
7.7
32.7
3.5
28.5
4.8
59.1
9.8
65.9
21.4


AD-953306.1
69.9
8.3
39.7
4.7
62.4
5.2
134.9
32.7
127.5
9.5
69.9
20.8
84.4
4.7
44.9
5.0


AD-953316.1
59.6
4.5
40.3
3.9
54.4
3.5
94.5
8.4
129.3
20.3
58.5
9.4
72.2
12.8
58.6
15.8


AD-953325.1
69.2
6.7
41.8
24.8
68.9
7.7
153.7
53.1
112.9
25.0
66.6
11.7
76.9
13.0
70.1
9.9


AD-953299.1
64.9
6.3
42.3
2.6
70.3
5.0
164.5
59.7
67.8
20.4
65.1
16.9
83.0
9.2
50.0
7.5


AD-953416.1
29.1
3.7
42.4
3.1
41.8
3.8
53.8
4.6
79.4
10.1
51.0
9.1
57.1
5.1
63.4
7.3


AD-953315.1
62.1
5.3
42.6
1.1
55.8
2.8
95.3
27.0
134.9
23.0
84.8
6.7
73.0
6.5
58.6
17.0


AD-953314.1
55.4
5.5
42.6
2.8
55.8
3.3
115.4
15.1
106.7
3.2
62.9
8.0
81.7
8.5
53.3
21.1


AD-953298.1
65.3
4.3
44.0
2.2
67.5
6.6
165.9
13.3
60.5
6.8
46.5
9.6
89.0
8.6
57.6
7.6


AD-953406.1
27.2
1.4
44.5
5.0
58.8
5.8
84.3
2.0
50.0
4.6
37.8
4.4
74.7
8.6
75.2
29.3


AD-953399.1
32.1
2.3
45.5
1.4
44.3
3.6
64.6
2.8
84.3
9.4
43.2
8.2
80.6
5.7
79.7
20.7


AD-953333.1
54.7
4.9
45.7
17.9
63.1
3.7
139.5
14.5
104.8
10.4
50.6
15.6
65.9
13.4
66.1
14.1


AD-953313.1
57.3
3.7
45.9
2.5
64.6
2.4
107.6
22.5
81.2
19.1
61.7
8.4
89.7
4.0
83.2
4.5


AD-953302.1
49.5
2.8
47.0
5.0
61.7
3.9
108.3
31.0
41.6
11.9
48.7
7.2
57.5
8.9
68.8
4.8


AD-953317.1
76.9
5.3
50.0
3.1
72.6
9.3
145.3
34.8
77.9
18.1
60.9
12.4
71.3
9.7
50.4
14.7


AD-953357.1
61.0
5.5
50.3
33.1
70.6
8.6
94.4
5.1
70.4
16.9
59.5
19.7
99.6
27.9
52.4
8.5


AD-953301.1
62.2
7.8
50.5
5.6
82.8
5.7
193.0
33.0
47.3
16.7
38.2
3.8
63.5
8.8
53.8
10.8


AD-953304.1
60.9
6.6
51.4
2.2
75.4
1.9
133.7
36.1
133.7
5.8
89.6
12.1
95.5
8.0
65.9
8.4


AD-953297.1
77.5
3.2
52.2
4.2
74.9
4.8
142.3
32.5
118.2
19.7
85.8
5.2
99.1
11.6
59.7
8.0


AD-953388.1
80.1
5.6
53.7
40.5
91.0
9.7
95.9
10.1
139.5
8.4
89.7
6.8
107.9
17.8
98.0
21.3


AD-953407.1
37.2
4.3
53.9
9.4
47.8
6.2
72.1
4.3
61.2
7.6
43.4
16.4
66.1
17.3
74.5
6.9


AD-953397.1
56.1
5.0
57.1
3.8
58.1
9.9
77.8
5.1
96.4
13.5
52.9
9.6
94.9
13.8
76.0
9.4


AD-953398.1
47.8
2.1
57.4
6.6
51.1
5.3
71.6
2.3
62.1
7.0
51.9
7.5
99.5
13.7
93.8
13.7


AD-953396.1
52.3
7.4
59.5
5.6
63.4
6.2
86.9
5.8
85.3
10.0
52.7
5.7
98.7
8.2
101.8
11.6


AD-953356.1
80.6
1.8
63.1
11.3
82.1
13.5
119.0
27.2
93.5
11.4
65.8
9.2
76.8
20.8
61.8
12.3


AD-953422.1
47.6
4.2
63.3
7.6
189.1
56.5
87.2
3.9
56.5
5.7
58.9
8.6
36.4
2.3
74.3
18.0


AD-953413.1
56.5
4.9
64.0
8.2
68.9
4.5
95.5
9.7
78.1
8.7
72.4
12.0
81.1
9.4
90.4
15.6


AD-953294.1
97.1
15.2
64.2
4.2
77.3
15.5
96.7
15.6
96.8
35.0
71.6
5.9
76.3
3.3
69.9
12.0


AD-953421.1
53.2
6.7
65.0
2.9
197.8
29.8
101.0
7.9
102.0
13.5
65.6
7.9
49.4
12.2
94.1
8.4


AD-953310.1
117.3
11.7
66.7
16.2
93.9
3.2
148.4
45.0
149.3
31.4
91.4
14.3
97.9
3.5
72.3
17.0


AD-953296.1
103.9
2.9
67.6
5.3
85.2
8.1
137.2
17.9
187.5
42.8
110.2
4.6
116.2
10.5
56.8
9.4


AD-953402.1
55.1
2.2
67.6
4.0
63.8
6.1
84.1
7.6
83.2
19.9
75.6
8.7
89.0
23.0
77.5
11.6


AD-953312.1
86.0
14.3
71.1
4.1
74.3
3.3
145.1
57.4
171.9
22.0
84.6
5.5
100.5
13.7
94.5
9.6


AD-953295.1
94.5
4.7
71.6
3.7
83.7
11.4
136.9
20.4
122.9
21.2
90.4
14.2
85.2
26.5
64.3
18.0


AD-953420.1
58.3
2.3
72.8
7.3
177.1
37.4
91.6
3.5
74.6
3.6
60.0
6.7
52.2
7.9
96.5
11.0


AD-953423.1
47.1
3.4
73.0
14.3
215.7
13.2
93.0
6.7
90.7
6.7
64.9
9.2
43.6
7.2
89.1
15.2


AD-953403.1
62.9
12.6
73.9
5.6
58.5
5.9
77.8
6.5
102.6
12.5
62.1
6.0
96.2
14.6
75.4
7.3


AD-953400.1
52.1
2.7
74.8
10.9
58.9
4.4
78.3
6.7
83.2
11.5
48.5
14.9
86.8
26.5
84.6
8.4


AD-953404.1
73.3
4.0
76.2
8.8
72.0
3.4
92.1
3.5
133.1
19.8
70.7
8.1
103.8
14.5
97.1
12.4


AD-953334.1
59.9
3.8
76.5
27.3
57.6
1.4
115.3
6.2
178.1
16.6
89.4
25.1
78.2
17.1
98.1
8.5


AD-953418.1
57.2
3.7
79.6
12.5
81.6
6.1
92.3
4.1
100.0
20.4
57.2
11.1
70.4
11.1
79.1
4.1


AD-953401.1
61.5
3.7
81.6
4.1
78.6
9.2
96.9
10.8
93.0
8.4
67.9
27.9
105.6
5.0
84.0
6.1


AD-953417.1
57.8
1.8
82.5
1.5
84.7
11.1
89.1
6.1
86.4
8.4
65.7
14.4
69.9
7.2
82.8
8.5


AD-953311.1
113.2
5.8
91.3
6.1
93.9
8.2
108.7
25.4
156.0
13.3
86.4
10.1
92.6
5.7
77.0
15.2


AD-953419.1
74.7
3.6
94.8
6.4
93.2
5.5
92.2
5.3
85.9
13.4
57.3
8.4
84.5
16.8
76.8
7.9
















TABLE 6C







VEGF-A endogenous in vitro multi-dose screen with one set of exemplary human VEGF-A siRNAs










ARPE-19
hTERT RPE-1
























50

10

1

0.1

50

10

1

0.1



Sample Name
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev
nM
StDev


























AD-953504.1
17.3
0.6
19.8
5.4
48.7
32.4
56.5
9.3
19.9
3.2
22.2
2.8
61.7
21.8
65.7
15.9


AD-953481.1
33.7
2.2
28.1
2.4
60.4
3.8
72.8
1.5
42.5
9.2
25.3
3.5
68.8
28.1
78.2
28.1


AD-953472.1
31.3
1.6
30.1
1.2
54.1
4.4
80.0
6.6
45.9
7.1
30.6
2.9
64.9
14.9
91.0
18.4


AD-953517.1
29.5
3.2
30.3
1.4
45.6
5.1
74.4
4.9
37.6
4.9
36.3
7.9
69.4
18.5
74.5
10.3


AD-953471.1
33.4
0.9
30.5
2.2
47.1
5.1
87.8
15.3
39.7
11.2
28.0
5.0
68.2
12.1
77.6
14.1


AD-953493.1
46.0
10.0
33.3
4.0
64.9
9.0
81.1
4.1
24.9
5.5
22.5
2.5
50.8
23.2
54.0
12.0


AD-953498.1
46.8
3.8
34.5
1.5
55.9
5.9
76.7
8.9
43.1
2.2
31.2
4.9
64.8
16.8
78.0
19.6


AD-953467.1
42.3
6.8
34.6
3.5
59.8
14.0
78.3
11.6
42.8
3.2
31.1
8.9
56.9
9.0
94.4
12.2


AD-953545.1
31.2
0.8
35.4
8.1
48.5
6.1
73.7
7.0
55.3
8.9
42.0
8.6
85.9
16.6
79.4
7.1


AD-953466.1
53.7
2.9
36.9
3.0
61.5
20.5
74.1
8.9
62.8
5.4
39.6
3.4
65.3
7.7
103.3
34.2


AD-953494.1
49.2
2.9
38.4
1.6
66.3
7.1
85.6
4.5
32.7
3.4
26.5
8.0
46.1
7.1
45.7
6.8


AD-953470.1
66.5
2.0
40.5
3.4
63.8
13.5
74.9
5.0
56.4
9.5
34.8
7.3
64.6
9.9
105.6
20.0


AD-953473.1
59.2
2.9
42.3
5.7
61.7
4.1
80.9
4.5
72.8
11.9
44.2
3.0
77.6
25.2
110.0
27.1


AD-953474.1
61.5
7.9
42.4
1.6
72.9
7.5
86.4
5.6
63.8
4.5
48.8
2.4
85.5
29.3
107.1
18.8


AD-953480.1
41.7
3.9
43.3
1.9
72.9
5.0
91.6
11.4
47.1
9.2
47.2
16.2
77.8
38.4
93.8
27.0


AD-953503.1
56.4
2.3
43.9
4.9
59.9
7.6
88.7
10.2
44.2
13.0
57.5
9.7
90.0
9.8
83.2
11.7


AD-953478.1
55.1
8.7
44.3
4.1
64.1
4.5
83.3
8.7
38.9
3.2
52.3
22.9
70.3
23.4
78.1
9.5


AD-953540.1
29.4
2.2
44.6
10.3
60.9
5.7
94.9
10.3
23.4
6.6
22.7
7.9
59.7
12.0
81.5
3.3


AD-953500.1
46.3
10.0
45.8
4.0
70.6
10.0
91.2
4.6
30.4
4.6
31.2
1.2
79.7
16.0
80.1
10.5


AD-953476.1
45.9
6.5
46.7
2.3
78.7
3.7
91.8
4.7
40.4
4.4
44.7
10.0
84.2
14.5
118.2
21.3


AD-953492.1
61.2
1.9
47.1
3.8
71.8
6.2
85.2
8.4
58.2
7.0
44.7
4.1
79.6
20.6
73.1
13.5


AD-953495.1
60.7
3.5
47.4
3.9
64.3
15.3
84.0
5.7
54.3
7.7
39.5
8.5
69.7
9.1
68.8
26.1


AD-953497.1
55.5
1.6
47.9
5.1
65.9
9.6
89.9
8.5
61.5
11.8
45.8
11.0
81.4
21.9
86.5
11.4


AD-953535.1
52.1
10.8
48.3
10.8
56.0
5.5
76.1
4.9
52.6
8.9
42.6
8.1
94.1
22.4
100.5
4.2


AD-953505.1
60.3
6.1
48.4
2.0
64.4
2.4
94.7
10.5
54.9
8.8
59.1
7.3
104.2
19.2
88.3
14.3


AD-953524.1
57.5
1.2
48.9
2.1
50.9
20.8
93.7
6.7
44.2
4.8
51.2
8.8
68.3
25.3
64.5
14.1


AD-953475.1
55.7
2.1
49.6
3.8
69.2
7.9
83.9
5.0
54.2
11.0
41.8
8.6
87.2
24.9
105.6
23.8


AD-953491.1
68.9
9.7
49.9
4.6
69.4
2.7
92.7
10.9
54.5
8.4
54.9
20.8
72.8
15.0
73.5
16.3


AD-953436.1
96.6
1.6
50.6
2.1
63.1
13.9
80.4
4.8
72.6
8.9
72.9
2.2
108.8
9.8
67.6
24.6


AD-953502.1
62.8
9.4
50.8
3.8
74.9
6.4
87.0
13.4
52.2
4.0
42.0
8.7
75.8
17.7
49.4
4.5


AD-953461.1
61.7
5.8
51.1
5.0
74.3
17.8
74.6
2.7
66.9
10.6
62.6
8.7
78.9
3.2
94.0
19.6


AD-953544.1
42.2
3.8
51.3
8.4
61.5
6.6
89.4
2.2
47.4
9.0
45.8
10.0
83.1
19.6
92.4
16.0


AD-953462.1
64.6
3.0
51.5
5.9
84.5
16.8
80.3
6.5
53.0
14.9
48.2
11.8
84.0
18.2
114.8
20.3


AD-953496.1
52.0
5.9
51.6
5.0
79.2
5.6
89.8
6.5
55.1
5.5
58.3
4.8
97.3
22.7
83.9
25.2


AD-953516.1
59.7
7.4
51.9
2.3
71.2
11.2
93.4
13.2
49.8
14.2
43.5
13.2
86.5
9.4
78.4
11.1


AD-953483.1
61.6
4.6
52.0
2.3
69.5
17.6
92.7
9.0
52.2
7.3
47.3
13.2
99.1
21.9
94.1
22.9


AD-953499.1
64.5
8.2
52.7
3.2
71.1
11.7
105.8
6.7
70.7
10.1
46.6
5.0
90.6
15.3
85.6
14.6


AD-953541.1
48.8
10.7
53.1
12.9
55.9
6.0
90.1
9.3
32.7
6.8
31.2
3.2
68.9
24.2
79.9
10.0


AD-953538.1
38.4
5.2
54.1
10.1
68.1
9.3
99.0
6.5
32.1
8.8
29.3
3.2
89.4
17.2
88.1
7.9


AD-953430.1
85.4
7.5
54.7
2.9
90.8
20.1
82.8
2.9
57.6
4.4
55.1
11.1
80.2
14.7
65.6
13.5


AD-953485.1
66.8
2.1
54.9
3.8
84.8
6.5
90.0
2.2
39.0
8.2
42.3
5.6
66.0
8.7
95.6
22.6


AD-953468.1
65.7
3.5
55.1
2.6
86.4
11.6
97.3
11.9
50.2
8.8
41.0
3.6
88.9
21.6
108.5
25.1


AD-953444.1
63.2
2.2
55.3
3.8
81.6
15.3
87.3
9.0
55.0
5.1
76.5
12.6
108.8
22.7
70.4
18.1


AD-953460.1
65.6
10.0
55.6
3.2
85.2
10.4
83.1
6.6
56.8
15.0
46.3
6.9
87.1
6.8
121.0
12.9


AD-953539.1
67.0
8.5
56.1
11.5
62.2
2.9
97.3
4.3
47.1
5.3
30.5
6.1
65.5
15.9
89.6
10.6


AD-953484.1
60.1
16.2
56.6
5.9
86.0
4.8
94.4
6.4
41.3
9.9
46.9
10.8
81.1
26.2
97.8
20.4


AD-953457.1
69.0
26.0
57.8
5.5
79.7
22.5
78.0
8.4
96.5
61.4
42.8
3.1
85.0
11.8
84.4
28.0


AD-953459.1
67.3
9.8
57.9
4.0
82.0
15.1
85.5
2.9
66.1
9.8
52.4
5.4
90.4
4.6
111.4
7.6


AD-953437.1
74.6
5.0
58.6
4.4
87.7
20.7
84.6
6.4
53.5
5.2
70.2
20.0
89.8
7.7
77.7
21.8


AD-953458.1
70.7
8.8
59.3
2.4
81.8
21.2
79.2
5.7
75.8
13.1
47.7
2.1
97.0
12.3
107.7
31.1


AD-953453.1
69.9
3.5
59.5
4.3
74.0
17.2
84.4
11.6
61.1
9.9
59.0
5.7
89.6
5.5
88.0
27.3


AD-953428.1
67.5
3.0
60.6
2.3
92.1
20.1
86.2
0.7
36.2
5.6
59.5
10.0
108.5
13.2
70.4
11.3


AD-953501.1
77.3
7.8
60.9
5.8
91.7
5.6
100.8
7.2
67.9
9.6
61.3
14.9
80.5
24.9
73.2
5.7


AD-953482.1
76.7
1.5
61.5
3.4
94.6
8.4
100.1
5.4
71.8
9.0
53.7
8.6
115.9
9.7
101.9
20.8


AD-953446.1
94.0
4.3
61.6
5.8
76.4
15.8
75.6
5.7
64.1
4.6
74.9
8.7
96.8
19.8
64.5
10.4


AD-953488.1
65.7
3.3
61.8
3.9
81.2
15.8
95.9
9.8
81.3
5.3
60.2
18.5
123.3
46.3
76.4
23.7


AD-953434.1
58.9
3.9
61.9
3.1
91.4
17.9
94.1
10.6
49.7
5.3
92.6
15.2
123.1
12.0
71.5
10.1


AD-953546.1
49.9
1.9
63.3
14.5
59.7
4.4
80.8
2.1
48.2
2.7
41.6
12.9
72.9
5.4
72.9
8.7


AD-953529.1
59.0
3.6
64.8
9.9
63.9
2.4
78.3
1.9
61.5
5.7
48.5
7.4
117.3
20.3
91.1
15.1


AD-953433.1
95.2
10.7
64.8
6.3
78.5
16.2
82.5
2.6
69.0
5.2
109.4
7.2
107.4
13.2
98.9
35.0


AD-953456.1
68.1
8.4
64.9
4.7
95.7
22.5
94.1
2.7
86.8
14.7
56.3
7.0
89.1
10.7
89.1
12.9


AD-953435.1
69.8
3.4
65.1
4.1
88.1
18.6
92.9
4.8
57.5
9.2
75.3
5.7
104.3
2.4
71.9
13.2


AD-953438.1
70.2
4.8
66.4
5.8
105.5
19.6
88.2
3.9
46.0
7.7
61.7
19.7
90.1
14.9
71.7
16.9


AD-953452.1
80.0
5.5
66.9
6.7
96.6
21.5
89.5
10.8
53.2
3.6
46.9
7.7
94.3
14.7
104.6
25.8


AD-953489.1
86.9
6.5
69.3
5.5
89.1
10.0
97.0
8.7
82.0
16.1
80.6
15.6
125.9
15.7
77.4
19.4


AD-953445.1
104.1
7.0
71.5
3.4
88.6
21.2
85.2
10.1
68.1
3.0
91.0
8.8
103.1
9.2
80.5
32.1


AD-953432.1
62.6
4.1
71.6
4.0
106.7
23.0
109.1
13.6
38.2
5.3
69.3
6.0
104.2
19.0
88.8
34.4


AD-953509.1
96.2
8.8
71.8
2.2
68.5
36.5
93.1
7.2
71.0
33.3
70.4
7.3
77.7
11.3
65.4
12.1


AD-953490.1
89.4
6.4
72.2
2.5
85.2
6.8
95.5
8.7
109.5
9.8
68.7
8.2
106.9
14.9
74.4
6.7


AD-953448.1
67.8
3.6
72.7
5.1
101.5
20.3
94.8
9.3
76.1
25.3
61.8
6.4
110.6
35.5
79.5
29.6


AD-953450.1
78.6
2.3
72.8
5.4
96.9
14.3
91.0
7.6
72.1
7.7
53.3
4.3
120.8
11.3
117.2
41.1


AD-953443.1
96.4
8.9
73.3
2.2
96.4
22.9
90.7
4.5
60.8
3.2
100.7
16.4
95.8
18.2
83.7
14.5


AD-953525.1
81.5
6.2
73.4
4.5
79.8
16.8
90.4
2.8
53.0
4.5
69.3
8.5
86.0
16.0
90.0
8.6


AD-953523.1
74.3
4.9
73.4
8.8
88.1
6.8
100.9
5.1
58.3
15.3
91.1
6.6
116.2
14.1
78.2
3.5


AD-953507.1
78.1
8.2
73.7
5.3
86.3
6.8
98.8
5.4
51.1
14.2
64.7
6.5
104.2
32.5
75.3
23.7


AD-953451.1
87.6
7.6
74.0
8.2
92.4
16.6
90.3
3.1
95.8
23.0
56.1
5.2
112.4
8.5
110.3
6.9


AD-953429.1
91.2
8.9
74.2
4.9
99.8
24.4
93.0
7.0
57.0
9.1
66.7
10.2
99.6
11.7
79.4
16.7


AD-953469.1
84.5
11.2
74.6
5.1
109.2
18.8
95.6
5.9
75.1
4.5
62.7
8.0
88.1
7.8
117.5
17.4


AD-953463.1
88.7
17.1
74.8
4.8
101.9
20.8
99.2
5.1
70.1
8.6
75.6
20.8
80.2
25.5
88.4
11.1


AD-953454.1
106.1
7.0
74.9
6.7
95.6
26.8
86.4
9.1
76.3
20.1
67.7
21.9
95.9
14.3
84.0
35.8


AD-953455.1
99.0
14.1
75.0
5.4
101.7
25.0
98.1
5.5
81.5
17.4
72.9
19.3
76.3
14.6
69.1
15.5


AD-953511.1
83.7
3.8
75.3
6.2
86.7
5.4
100.7
8.8
76.0
31.8
71.6
10.7
131.4
22.1
94.7
13.1


AD-953447.1
95.2
8.5
75.6
4.2
101.4
18.3
89.6
4.2
67.5
9.6
73.0
10.4
75.9
14.6
76.1
16.4


AD-953424.1
78.8
3.7
75.8
8.2
96.4
26.2
99.3
5.8
56.2
9.0
98.3
31.6
112.0
18.9
68.1
16.5


AD-953506.1
82.9
3.4
76.4
3.9
94.6
10.2
98.2
7.0
54.4
7.9
80.4
12.3
104.5
27.0
85.1
2.6


AD-953537.1
71.6
3.2
76.4
16.4
81.7
10.1
93.7
6.6
61.5
11.6
52.7
14.9
104.7
9.9
102.3
8.2


AD-953477.1
104.2
11.7
76.5
4.8
93.7
6.9
90.6
5.6
77.5
20.8
62.6
12.8
75.1
22.1
105.4
29.2


AD-953479.1
90.5
8.9
77.0
10.7
99.9
16.6
109.0
9.6
99.6
9.7
74.8
9.6
116.9
25.5
104.0
21.8


AD-953439.1
102.3
7.6
77.2
4.5
100.8
26.6
97.8
5.7
68.0
8.2
80.5
24.1
72.4
18.5
66.2
17.0


AD-953431.1
86.4
7.7
77.5
7.5
116.2
20.7
93.5
15.3
52.4
2.4
45.7
9.6
71.9
3.0
62.8
10.1


AD-953442.1
89.4
4.5
78.2
5.5
99.8
20.9
90.2
7.4
69.0
13.2
95.2
19.1
119.3
10.1
77.5
19.9


AD-953449.1
81.5
5.9
78.3
5.3
95.1
23.3
90.1
7.6
82.6
15.4
72.5
14.2
113.9
14.0
93.2
12.8


AD-953510.1
94.1
6.6
78.6
6.2
85.2
8.5
88.6
4.2
62.7
11.1
74.3
3.6
73.1
12.6
30.5
6.0


AD-953514.1
98.5
10.4
78.8
9.3
95.6
4.4
89.4
4.6
80.1
19.3
89.0
3.5
118.7
18.7
94.8
19.4


AD-953508.1
96.9
7.3
78.9
7.1
96.5
24.7
98.7
8.7
68.5
15.8
76.9
13.9
94.3
15.5
75.2
11.5


AD-953531.1
70.3
2.0
80.7
17.0
82.8
4.0
90.6
4.3
80.9
15.6
62.5
12.3
98.0
12.4
73.4
7.0


AD-953427.1
105.8
12.1
81.1
4.6
91.0
25.6
90.0
3.7
65.3
3.7
100.2
12.6
109.0
17.8
66.6
15.2


AD-953512.1
94.6
2.1
83.9
4.5
91.3
10.6
96.7
7.7
84.8
13.3
84.0
11.0
129.5
10.3
88.3
15.8


AD-953533.1
102.2
9.2
85.2
21.1
82.6
15.3
108.6
13.4
85.5
12.3
66.0
13.3
89.2
14.1
73.0
12.3


AD-953464.1
76.9
3.8
86.1
6.5
104.6
21.8
99.9
10.3
110.5
10.6
74.5
5.0
87.7
18.7
111.9
6.1


AD-953542.1
51.8
2.5
86.3
24.8
66.0
11.3
98.1
17.1
54.8
9.9
69.8
2.3
95.8
13.9
104.4
4.4


AD-953426.1
102.2
10.9
87.8
5.7
103.4
24.0
97.1
2.0
67.3
5.4
120.7
18.0
117.5
16.3
74.5
27.0


AD-953515.1
92.6
5.7
88.4
6.2
84.6
21.4
98.2
9.4
95.5
21.8
84.9
10.3
124.9
28.4
86.9
4.2


AD-953487.1
99.3
9.8
88.7
12.4
90.1
13.7
95.1
3.2
106.9
17.5
88.1
5.6
118.9
35.4
57.1
14.7


AD-953521.1
104.2
20.4
89.0
1.5
109.1
13.9
96.2
9.4
76.6
12.8
89.5
10.4
131.6
23.9
81.8
10.5


AD-953425.1
81.5
13.2
90.2
4.0
99.5
24.2
94.8
6.2
63.6
4.3
114.5
27.3
142.3
60.9
75.3
25.7


AD-953536.1
75.4
13.1
90.2
23.7
86.6
4.9
98.4
8.1
75.0
8.5
58.1
20.2
120.5
32.6
96.6
11.8


AD-953465.1
97.2
10.0
91.4
6.6
114.1
30.7
91.7
5.7
92.3
7.4
78.6
6.8
99.2
29.1
131.0
23.9


AD-953552.1
82.6
7.9
92.5
22.4
88.2
4.8
102.3
6.4
86.4
15.8
85.2
16.6
55.7
16.7
89.0
12.2


AD-953528.1
87.5
15.0
93.5
11.1
83.9
8.8
85.7
4.5
111.2
40.7
69.5
16.7
142.9
10.9
103.3
8.0


AD-953519.1
107.5
2.3
93.5
4.8
96.1
5.2
91.0
3.3
92.7
9.0
113.7
6.9
146.7
24.6
121.8
38.4


AD-953486.1
105.6
3.7
94.2
5.6
103.9
8.6
96.7
6.1
75.6
1.5
106.1
34.1
83.7
17.1
78.1
21.7


AD-953522.1
97.7
9.0
94.3
4.2
100.0
16.6
99.0
8.4
98.8
21.3
87.2
16.4
106.8
15.9
84.1
7.4


AD-953530.1
76.4
4.7
94.3
19.0
90.2
8.9
93.8
9.9
72.4
16.7
67.0
12.1
93.5
11.7
93.3
11.8


AD-953513.1
104.1
3.5
95.5
7.9
92.8
9.4
103.5
10.8
90.2
28.8
76.6
6.8
144.6
24.5
101.7
12.6


AD-953441.1
97.5
8.0
95.5
5.0
114.8
18.2
106.5
8.7
63.8
4.1
105.6
4.8
125.4
24.0
80.4
27.5


AD-953440.1
87.8
6.4
95.5
12.2
112.8
26.2
97.9
1.2
83.3
7.9
106.5
13.4
118.0
10.0
75.4
27.2


AD-953518.1
91.0
4.9
96.1
3.4
99.6
2.8
93.9
12.4
96.6
24.0
91.4
16.4
126.5
19.7
108.8
16.1


AD-953520.1
92.8
7.3
96.1
3.8
99.9
18.5
99.9
7.3
91.8
18.0
89.3
13.6
140.3
21.3
96.0
17.7


AD-953532.1
92.3
7.2
99.5
16.4
96.9
11.9
93.0
4.9
87.9
12.7
67.9
9.0
89.9
24.8
70.6
13.2


AD-953548.1
85.7
8.0
100.5
20.0
89.8
7.6
99.4
7.1
58.8
8.9
67.7
24.6
80.1
6.0
78.0
9.0


AD-953527.1
91.5
2.8
101.9
15.1
92.3
14.5
102.6
4.5
113.8
41.2
69.2
18.2
132.4
36.0
108.0
10.6


AD-953551.1
91.4
4.5
103.0
24.3
94.8
1.1
101.1
5.4
130.4
41.4
78.2
20.9
65.8
13.8
102.2
11.8


AD-953553.1
93.9
1.2
103.2
25.6
93.3
6.6
100.2
4.2
88.5
10.1
93.5
20.0
65.1
15.8
93.0
13.6


AD-953547.1
89.1
3.6
104.0
18.7
94.3
7.6
97.6
3.0
65.0
6.4
60.7
16.1
85.8
9.7
86.6
8.6


AD-953526.1
88.7
5.7
110.0
23.2
95.7
3.2
100.8
12.4
117.9
52.9
75.4
16.8
115.9
12.6
102.1
10.6


AD-953549.1
94.4
8.8
113.8
25.9
70.6
23.4
106.6
12.7
54.1
8.2
55.2
18.7
85.6
31.6
81.4
15.2


AD-953534.1
102.5
8.5
117.9
27.3
95.0
14.1
79.9
5.5
137.0
23.5
81.4
20.8
141.1
19.1
103.4
12.1


AD-953543.1
99.3
3.5
118.0
17.9
89.7
4.0
96.9
4.6
111.5
41.1
99.7
30.4
123.8
17.6
104.4
15.0


AD-953550.1
96.0
5.8
121.6
19.6
98.9
12.3
99.0
9.0
119.6
20.5
101.5
20.0
52.7
10.9
93.6
13.1









The results of the multi-dose screen in African green monkey kidney cells (Cos-7) transfected with Cynomolgus monkey VEGF-A with a set of exemplary rat VEGF-A siRNAs are shown in Table 7A (correspond to siRNAs in Table 5A and Table 5B). The results of the multi-dose screen in Cos-7 cells transfected with mouse VEGF-A with a set of exemplary rat VEGF-A siRNAs are shown in Table 7B (correspond to siRNAs in Table 5A and Table 5B). The multi-dose experiments were performed at 10 nM, 1 nM, and 0.1 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.









TABLE 7A







Cynomolgus monkey VEGF-A in vitro multi-dose


screen with one set of exemplary rat VEGF-A siRNAs

















Dose



Duplex Name
Average
StDev
Dose
Unit

















AD-579911.1
21.79
0.50
10
nM



AD-579912.1
20.38
3.81
10
nM



AD-579913.1
16.71
8.39
10
nM



AD-579914.1
45.98
4.11
10
nM



AD-579915.1
35.03
7.59
10
nM



AD-579916.1
12.14
1.83
10
nM



AD-579917.1
25.40
3.24
10
nM



AD-579918.1
26.56
2.53
10
nM



AD-579919.1
10.58
2.15
10
nM



AD-579921.1
12.64
2.73
10
nM



AD-579922.1
13.78
0.77
10
nM



AD-579923.1
17.37
1.62
10
nM



AD-579924.1
49.49
4.24
10
nM



AD-579925.1
10.62
1.31
10
nM



AD-579926.1
13.23
2.83
10
nM



AD-579927.1
25.34
3.60
10
nM



AD-579929.1
26.33
1.74
10
nM



AD-579930.1
81.28
12.54
10
nM



AD-579931.1
41.52
7.38
10
nM



AD-579932.1
12.14
3.92
10
nM



AD-579933.1
30.75
3.29
10
nM



AD-579934.1
186.16
29.32
10
nM



AD-579935.1
67.60
6.57
10
nM



AD-579936.1
81.10
20.59
10
nM



AD-579937.1
25.95
3.27
10
nM



AD-579938.1
60.65
8.90
10
nM



AD-579939.1
72.01
14.89
10
nM



AD-579940.1
96.52
8.39
10
nM



AD-579941.1
106.40
13.04
10
nM



AD-579942.1
61.87
12.12
10
nM



AD-579943.1
12.46
4.75
10
nM



AD-579944.1
28.49
4.13
10
nM



AD-579945.1
70.53
8.74
10
nM



AD-579946.1
24.47
6.19
10
nM



AD-579947.1
68.58
4.38
10
nM



AD-579948.1
77.63
5.92
10
nM



AD-579949.1
96.51
8.80
10
nM



AD-579950.1
230.10
21.51
10
nM



AD-579951.1
66.36
16.79
10
nM



AD-579953.1
18.42
5.42
10
nM



AD-579954.1
21.24
4.31
10
nM



AD-579955.1
69.32
6.99
10
nM



AD-579956.1
99.49
25.18
10
nM



AD-579957.1
49.05
14.80
10
nM



AD-579958.1
88.74
8.73
10
nM



AD-579959.1
100.41
9.53
10
nM



AD-579960.1
39.31
3.68
10
nM



AD-579961.1
96.81
13.20
10
nM



AD-579962.1
53.43
6.50
10
nM



AD-579963.1
21.24
3.25
10
nM



AD-579964.1
17.83
7.13
10
nM



AD-579965.1
92.27
14.22
10
nM



AD-579966.1
88.97
9.79
10
nM



AD-579967.1
47.49
7.04
10
nM



AD-579968.1
76.96
8.70
10
nM



AD-579969.1
90.81
8.30
10
nM



AD-579970.1
104.42
26.45
10
nM



AD-579971.1
14.37
6.47
10
nM



AD-579972.1
57.43
2.61
10
nM



AD-579973.1
103.95
3.97
10
nM



AD-579974.1
81.04
3.86
10
nM



AD-579975.1
33.28
7.01
10
nM



AD-579976.1
79.49
2.88
10
nM



AD-579977.1
80.67
6.29
10
nM



AD-579978.1
66.72
3.59
10
nM



AD-579979.1
92.24
3.77
10
nM



AD-579980.1
25.30
3.08
10
nM



AD-579981.1
48.69
11.03
10
nM



AD-579982.1
49.50
15.70
10
nM



AD-579983.1
10.78
4.14
10
nM



AD-579984.1
16.79
1.90
10
nM



AD-579985.1
11.35
0.96
10
nM



AD-579986.1
33.51
4.42
10
nM



AD-579987.1
26.04
3.89
10
nM



AD-579988.1
30.67
3.01
10
nM



AD-579989.1
33.51
6.72
10
nM



AD-579990.1
72.51
4.50
10
nM



AD-579992.1
61.70
6.74
10
nM



AD-579993.1
92.69
10.40
10
nM



AD-579995.1
30.40
4.51
10
nM



AD-579996.1
94.02
11.86
10
nM



AD-579997.1
34.79
5.90
10
nM



AD-579998.1
31.10
6.52
10
nM



AD-579999.1
137.05
8.03
10
nM



AD-580000.1
162.84
26.73
10
nM



AD-580001.1
125.00
7.31
10
nM



AD-580002.1
186.90
14.34
10
nM



AD-579911.1
34.63
4.90
1
nM



AD-579912.1
31.99
3.89
1
nM



AD-579913.1
36.38
2.19
1
nM



AD-579914.1
47.66
5.91
1
nM



AD-579915.1
33.92
0.98
1
nM



AD-579916.1
25.64
5.85
1
nM



AD-579917.1
38.41
8.43
1
nM



AD-579918.1
37.12
9.78
1
nM



AD-579919.1
13.33
2.62
1
nM



AD-579921.1
24.01
3.06
1
nM



AD-579922.1
21.65
1.29
1
nM



AD-579923.1
32.00
1.21
1
nM



AD-579924.1
74.46
5.43
1
nM



AD-579925.1
27.19
4.59
1
nM



AD-579926.1
23.17
2.37
1
nM



AD-579927.1
44.62
10.37
1
nM



AD-579929.1
32.40
3.90
1
nM



AD-579930.1
82.85
10.31
1
nM



AD-579931.1
53.35
11.21
1
nM



AD-579932.1
25.97
4.61
1
nM



AD-579933.1
64.26
11.63
1
nM



AD-579934.1
110.08
21.79
1
nM



AD-579935.1
75.45
3.94
1
nM



AD-579936.1
88.42
7.56
1
nM



AD-579937.1
25.63
2.94
1
nM



AD-579938.1
67.82
2.00
1
nM



AD-579939.1
69.81
7.16
1
nM



AD-579940.1
99.17
5.18
1
nM



AD-579941.1
108.34
7.84
1
nM



AD-579942.1
70.36
12.47
1
nM



AD-579943.1
26.50
3.47
1
nM



AD-579944.1
35.87
5.32
1
nM



AD-579945.1
82.17
15.84
1
nM



AD-579946.1
28.27
2.22
1
nM



AD-579947.1
77.96
16.94
1
nM



AD-579948.1
79.99
3.99
1
nM



AD-579949.1
108.10
12.09
1
nM



AD-579950.1
134.00
16.20
1
nM



AD-579951.1
66.05
9.65
1
nM



AD-579953.1
27.50
5.68
1
nM



AD-579954.1
20.74
3.51
1
nM



AD-579955.1
74.44
17.09
1
nM



AD-579956.1
113.45
9.64
1
nM



AD-579957.1
73.78
1.80
1
nM



AD-579958.1
94.21
11.02
1
nM



AD-579959.1
95.73
17.31
1
nM



AD-579960.1
37.92
6.36
1
nM



AD-579961.1
95.86
5.08
1
nM



AD-579962.1
79.16
6.58
1
nM



AD-579963.1
22.85
4.33
1
nM



AD-579964.1
23.33
2.88
1
nM



AD-579965.1
96.34
24.13
1
nM



AD-579966.1
85.86
12.83
1
nM



AD-579967.1
59.03
6.42
1
nM



AD-579968.1
72.33
7.43
1
nM



AD-579969.1
86.79
3.22
1
nM



AD-579970.1
100.80
8.64
1
nM



AD-579971.1
12.62
2.38
1
nM



AD-579972.1
52.06
7.34
1
nM



AD-579973.1
96.38
18.09
1
nM



AD-579974.1
90.54
6.77
1
nM



AD-579975.1
54.49
4.18
1
nM



AD-579976.1
83.49
18.12
1
nM



AD-579977.1
86.21
10.51
1
nM



AD-579978.1
73.79
28.62
1
nM



AD-579979.1
102.91
17.40
1
nM



AD-579980.1
22.61
1.11
1
nM



AD-579981.1
62.79
8.71
1
nM



AD-579982.1
57.63
7.73
1
nM



AD-579983.1
17.63
2.73
1
nM



AD-579984.1
25.44
1.54
1
nM



AD-579985.1
20.01
6.16
1
nM



AD-579986.1
45.92
2.90
1
nM



AD-579987.1
35.60
5.94
1
nM



AD-579988.1
41.30
3.29
1
nM



AD-579989.1
35.25
1.19
1
nM



AD-579990.1
75.79
12.51
1
nM



AD-579992.1
70.19
10.59
1
nM



AD-579993.1
81.86
8.27
1
nM



AD-579995.1
32.90
4.47
1
nM



AD-579996.1
91.93
9.06
1
nM



AD-579997.1
54.91
2.41
1
nM



AD-579998.1
35.62
5.31
1
nM



AD-579999.1
105.80
11.56
1
nM



AD-580000.1
151.28
8.84
1
nM



AD-580001.1
117.48
17.60
1
nM



AD-580002.1
148.64
32.44
1
nM



AD-579911.1
60.59
5.99
0.1
nM



AD-579912.1
58.68
4.12
0.1
nM



AD-579913.1
64.23
5.02
0.1
nM



AD-579914.1
74.48
8.13
0.1
nM



AD-579915.1
56.70
3.72
0.1
nM



AD-579916.1
41.93
5.43
0.1
nM



AD-579917.1
78.90
9.40
0.1
nM



AD-579918.1
66.57
10.31
0.1
nM



AD-579919.1
29.08
2.79
0.1
nM



AD-579921.1
59.28
4.60
0.1
nM



AD-579922.1
56.67
8.89
0.1
nM



AD-579923.1
75.33
12.81
0.1
nM



AD-579924.1
100.79
20.47
0.1
nM



AD-579925.1
72.05
13.30
0.1
nM



AD-579926.1
63.98
8.75
0.1
nM



AD-579927.1
78.12
11.58
0.1
nM



AD-579929.1
67.27
19.11
0.1
nM



AD-579930.1
96.27
17.88
0.1
nM



AD-579931.1
75.81
15.09
0.1
nM



AD-579932.1
61.06
2.54
0.1
nM



AD-579933.1
85.95
8.05
0.1
nM



AD-579934.1
100.61
4.77
0.1
nM



AD-579935.1
88.00
10.57
0.1
nM



AD-579936.1
88.13
9.64
0.1
nM



AD-579937.1
55.87
4.99
0.1
nM



AD-579938.1
90.35
12.54
0.1
nM



AD-579939.1
100.22
5.50
0.1
nM



AD-579940.1
117.60
9.00
0.1
nM



AD-579941.1
100.53
13.72
0.1
nM



AD-579942.1
100.72
12.00
0.1
nM



AD-579943.1
41.23
3.38
0.1
nM



AD-579944.1
73.67
9.65
0.1
nM



AD-579945.1
101.57
13.70
0.1
nM



AD-579946.1
42.00
1.99
0.1
nM



AD-579947.1
88.52
29.57
0.1
nM



AD-579948.1
94.78
13.34
0.1
nM



AD-579949.1
106.50
4.63
0.1
nM



AD-579950.1
112.38
10.41
0.1
nM



AD-579951.1
81.88
7.61
0.1
nM



AD-579953.1
65.43
5.35
0.1
nM



AD-579954.1
29.05
3.98
0.1
nM



AD-579955.1
101.64
8.13
0.1
nM



AD-579956.1
109.12
12.60
0.1
nM



AD-579957.1
95.19
6.14
0.1
nM



AD-579958.1
99.02
14.55
0.1
nM



AD-579959.1
96.08
7.16
0.1
nM



AD-579960.1
65.43
20.16
0.1
nM



AD-579961.1
89.02
11.37
0.1
nM



AD-579962.1
107.63
11.06
0.1
nM



AD-579963.1
54.55
6.58
0.1
nM



AD-579964.1
37.19
5.60
0.1
nM



AD-579965.1
93.32
9.87
0.1
nM



AD-579966.1
93.21
13.54
0.1
nM



AD-579967.1
78.97
5.07
0.1
nM



AD-579968.1
83.13
8.48
0.1
nM



AD-579969.1
97.62
21.40
0.1
nM



AD-579970.1
102.49
8.36
0.1
nM



AD-579971.1
22.84
3.85
0.1
nM



AD-579972.1
83.71
13.31
0.1
nM



AD-579973.1
97.02
12.16
0.1
nM



AD-579974.1
87.05
8.86
0.1
nM



AD-579975.1
85.49
9.25
0.1
nM



AD-579976.1
89.61
16.73
0.1
nM



AD-579977.1
93.52
7.83
0.1
nM



AD-579978.1
87.68
5.19
0.1
nM



AD-579979.1
93.22
6.02
0.1
nM



AD-579980.1
39.04
7.41
0.1
nM



AD-579981.1
75.66
11.68
0.1
nM



AD-579982.1
90.44
10.96
0.1
nM



AD-579983.1
50.03
2.51
0.1
nM



AD-579984.1
58.06
3.26
0.1
nM



AD-579985.1
33.30
3.60
0.1
nM



AD-579986.1
74.91
4.29
0.1
nM



AD-579987.1
71.15
8.39
0.1
nM



AD-579988.1
81.86
6.80
0.1
nM



AD-579989.1
59.63
7.75
0.1
nM



AD-579990.1
95.13
9.94
0.1
nM



AD-579992.1
94.26
5.07
0.1
nM



AD-579993.1
99.78
15.90
0.1
nM



AD-579995.1
73.91
9.98
0.1
nM



AD-579996.1
101.07
13.27
0.1
nM



AD-579997.1
89.33
7.03
0.1
nM



AD-579998.1
60.03
5.93
0.1
nM



AD-579999.1
109.04
17.76
0.1
nM



AD-580000.1
108.28
13.14
0.1
nM



AD-580001.1
88.49
11.96
0.1
nM



AD-580002.1
122.07
18.09
0.1
nM

















TABLE 7B







Mouse VEGF-A in vitro multi-dose screen


with one set of exemplary rat VEGF-A siRNAs















Dose


Duplex Name
Average
StDev
Dose
Unit














AD-579911.1
21.27
3.91
10
nM


AD-579912.1
16.53
5.79
10
nM


AD-579913.1
16.73
4.22
10
nM


AD-579914.1
16.51
1.15
10
nM


AD-579915.1
18.33
6.95
10
nM


AD-579916.1
25.18
1.82
10
nM


AD-579917.1
12.22
1.48
10
nM


AD-579918.1
11.07
2.65
10
nM


AD-579919.1
12.63
1.67
10
nM


AD-579921.1
11.45
2.37
10
nM


AD-579922.1
14.90
3.21
10
nM


AD-579923.1
13.67
3.59
10
nM


AD-579924.1
26.37
2.49
10
nM


AD-579925.1
10.16
1.07
10
nM


AD-579926.1
14.22
0.82
10
nM


AD-579927.1
32.32
5.45
10
nM


AD-579929.1
22.15
6.29
10
nM


AD-579930.1
74.90
13.83
10
nM


AD-579931.1
53.69
19.88
10
nM


AD-579932.1
24.54
2.62
10
nM


AD-579933.1
20.31
4.52
10
nM


AD-579934.1
36.61
3.37
10
nM


AD-579935.1
24.55
4.10
10
nM


AD-579936.1
22.50
4.65
10
nM


AD-579937.1
32.75
3.55
10
nM


AD-579938.1
13.39
2.36
10
nM


AD-579939.1
4.62
0.19
10
nM


AD-579940.1
3.68
1.38
10
nM


AD-579941.1
8.87
1.96
10
nM


AD-579942.1
3.71
1.54
10
nM


AD-579943.1
11.89
1.92
10
nM


AD-579944.1
12.26
1.40
10
nM


AD-579945.1
16.73
1.86
10
nM


AD-579946.1
18.67
5.27
10
nM


AD-579947.1
6.39
1.71
10
nM


AD-579948.1
27.00
3.21
10
nM


AD-579949.1
35.57
2.31
10
nM


AD-579950.1
53.80
4.29
10
nM


AD-579951.1
17.89
3.43
10
nM


AD-579953.1
24.48
3.96
10
nM


AD-579954.1
21.78
1.63
10
nM


AD-579955.1
30.54
3.58
10
nM


AD-579956.1
27.17
1.58
10
nM


AD-579957.1
16.61
1.30
10
nM


AD-579958.1
53.03
4.43
10
nM


AD-579959.1
40.73
3.55
10
nM


AD-579960.1
41.68
1.59
10
nM


AD-579961.1
29.58
7.59
10
nM


AD-579962.1
19.90
1.25
10
nM


AD-579963.1
14.55
3.30
10
nM


AD-579964.1
23.53
4.62
10
nM


AD-579965.1
5.85
1.35
10
nM


AD-579966.1
3.37
0.46
10
nM


AD-579967.1
8.12
3.03
10
nM


AD-579968.1
15.39
2.69
10
nM


AD-579969.1
41.77
5.27
10
nM


AD-579970.1
35.40
4.42
10
nM


AD-579971.1
9.46
1.20
10
nM


AD-579972.1
13.66
4.21
10
nM


AD-579973.1
15.20
4.13
10
nM


AD-579974.1
3.60
1.49
10
nM


AD-579975.1
3.08
0.33
10
nM


AD-579976.1
7.90
0.37
10
nM


AD-579977.1
22.23
1.40
10
nM


AD-579978.1
15.03
2.22
10
nM


AD-579979.1
29.83
5.08
10
nM


AD-579980.1
25.34
2.41
10
nM


AD-579981.1
20.80
1.40
10
nM


AD-579982.1
20.12
8.04
10
nM


AD-579983.1
22.13
4.26
10
nM


AD-579984.1
11.34
1.30
10
nM


AD-579985.1
10.84
0.91
10
nM


AD-579986.1
22.36
1.53
10
nM


AD-579987.1
26.77
5.29
10
nM


AD-579988.1
25.91
6.97
10
nM


AD-579989.1
17.89
1.51
10
nM


AD-579990.1
29.33
3.43
10
nM


AD-579992.1
19.38
7.67
10
nM


AD-579993.1
23.19
0.70
10
nM


AD-579995.1
4.97
1.31
10
nM


AD-579996.1
63.08
6.91
10
nM


AD-579997.1
26.46
4.46
10
nM


AD-579998.1
17.58
4.81
10
nM


AD-579999.1
33.79
5.04
10
nM


AD-580000.1
28.19
4.07
10
nM


AD-580001.1
23.17
4.55
10
nM


AD-580002.1
51.58
4.73
10
nM


AD-579911.1
29.66
4.64
1
nM


AD-579912.1
26.43
3.94
1
nM


AD-579913.1
40.12
5.03
1
nM


AD-579914.1
24.93
2.78
1
nM


AD-579915.1
34.06
4.64
1
nM


AD-579916.1
45.46
4.47
1
nM


AD-579917.1
19.16
2.98
1
nM


AD-579918.1
16.77
1.65
1
nM


AD-579919.1
17.09
1.57
1
nM


AD-579921.1
21.90
0.76
1
nM


AD-579922.1
24.16
3.67
1
nM


AD-579923.1
28.64
5.98
1
nM


AD-579924.1
54.14
8.12
1
nM


AD-579925.1
27.88
2.54
1
nM


AD-579926.1
29.26
2.01
1
nM


AD-579927.1
44.60
5.25
1
nM


AD-579929.1
31.53
4.15
1
nM


AD-579930.1
93.72
13.68
1
nM


AD-579931.1
54.78
5.31
1
nM


AD-579932.1
46.12
4.65
1
nM


AD-579933.1
27.01
5.56
1
nM


AD-579934.1
40.35
6.96
1
nM


AD-579935.1
31.13
5.41
1
nM


AD-579936.1
29.73
3.71
1
nM


AD-579937.1
44.09
4.36
1
nM


AD-579938.1
21.66
3.66
1
nM


AD-579939.1
4.58
0.75
1
nM


AD-579940.1
3.56
0.91
1
nM


AD-579941.1
7.55
2.31
1
nM


AD-579942.1
5.56
2.57
1
nM


AD-579943.1
19.30
3.06
1
nM


AD-579944.1
18.70
1.80
1
nM


AD-579945.1
26.86
1.35
1
nM


AD-579946.1
21.86
3.32
1
nM


AD-579947.1
9.84
0.95
1
nM


AD-579948.1
26.84
1.26
1
nM


AD-579949.1
57.75
9.08
1
nM


AD-579950.1
54.60
4.99
1
nM


AD-579951.1
23.18
1.60
1
nM


AD-579953.1
35.85
4.89
1
nM


AD-579954.1
33.37
3.57
1
nM


AD-579955.1
43.72
4.02
1
nM


AD-579956.1
40.52
0.43
1
nM


AD-579957.1
22.05
1.37
1
nM


AD-579958.1
63.71
6.37
1
nM


AD-579959.1
54.17
7.09
1
nM


AD-579960.1
45.58
4.07
1
nM


AD-579961.1
40.91
2.43
1
nM


AD-579962.1
28.65
3.39
1
nM


AD-579963.1
22.65
6.61
1
nM


AD-579964.1
28.01
5.38
1
nM


AD-579965.1
3.88
1.04
1
nM


AD-579966.1
4.08
1.00
1
nM


AD-579967.1
14.72
0.97
1
nM


AD-579968.1
19.71
4.24
1
nM


AD-579969.1
54.35
7.63
1
nM


AD-579970.1
52.04
1.90
1
nM


AD-579971.1
13.28
3.80
1
nM


AD-579972.1
22.49
5.22
1
nM


AD-579973.1
23.49
2.63
1
nM


AD-579974.1
6.50
0.84
1
nM


AD-579975.1
3.65
1.14
1
nM


AD-579976.1
10.00
2.25
1
nM


AD-579977.1
30.06
5.34
1
nM


AD-579978.1
21.05
2.77
1
nM


AD-579979.1
54.05
6.94
1
nM


AD-579980.1
26.38
3.38
1
nM


AD-579981.1
22.68
2.02
1
nM


AD-579982.1
39.84
3.32
1
nM


AD-579983.1
34.64
6.02
1
nM


AD-579984.1
16.95
2.53
1
nM


AD-579985.1
31.39
1.48
1
nM


AD-579986.1
27.74
3.81
1
nM


AD-579987.1
51.76
4.91
1
nM


AD-579988.1
29.45
2.77
1
nM


AD-579989.1
21.33
2.08
1
nM


AD-579990.1
47.89
1.76
1
nM


AD-579992.1
30.71
4.73
1
nM


AD-579993.1
35.91
7.25
1
nM


AD-579995.1
6.70
0.49
1
nM


AD-579996.1
74.23
4.02
1
nM


AD-579997.1
51.99
10.00
1
nM


AD-579998.1
20.92
4.64
1
nM


AD-579999.1
40.31
1.99
1
nM


AD-580000.1
38.17
1.63
1
nM


AD-580001.1
28.86
5.37
1
nM


AD-580002.1
51.52
7.91
1
nM


AD-579911.1
59.37
8.87
0.1
nM


AD-579912.1
59.39
5.09
0.1
nM


AD-579913.1
64.08
23.73
0.1
nM


AD-579914.1
49.48
3.64
0.1
nM


AD-579915.1
56.56
6.31
0.1
nM


AD-579916.1
96.79
16.03
0.1
nM


AD-579917.1
45.36
7.75
0.1
nM


AD-579918.1
57.38
4.03
0.1
nM


AD-579919.1
55.62
5.60
0.1
nM


AD-579921.1
53.70
9.76
0.1
nM


AD-579922.1
62.44
4.87
0.1
nM


AD-579923.1
63.54
9.06
0.1
nM


AD-579924.1
92.45
9.57
0.1
nM


AD-579925.1
61.94
18.45
0.1
nM


AD-579926.1
70.86
8.69
0.1
nM


AD-579927.1
78.15
23.69
0.1
nM


AD-579929.1
71.46
14.26
0.1
nM


AD-579930.1
90.78
6.27
0.1
nM


AD-579931.1
68.75
9.57
0.1
nM


AD-579932.1
77.69
9.74
0.1
nM


AD-579933.1
51.36
9.29
0.1
nM


AD-579934.1
77.13
7.91
0.1
nM


AD-579935.1
49.67
7.46
0.1
nM


AD-579936.1
44.13
6.15
0.1
nM


AD-579937.1
77.96
4.22
0.1
nM


AD-579938.1
29.19
7.09
0.1
nM


AD-579939.1
10.14
1.04
0.1
nM


AD-579940.1
6.98
3.06
0.1
nM


AD-579941.1
7.68
1.31
0.1
nM


AD-579942.1
8.97
1.33
0.1
nM


AD-579943.1
37.14
5.93
0.1
nM


AD-579944.1
39.47
3.54
0.1
nM


AD-579945.1
54.76
10.45
0.1
nM


AD-579946.1
54.38
7.47
0.1
nM


AD-579947.1
22.79
5.03
0.1
nM


AD-579948.1
38.00
6.15
0.1
nM


AD-579949.1
80.25
7.57
0.1
nM


AD-579950.1
73.79
5.42
0.1
nM


AD-579951.1
47.34
5.57
0.1
nM


AD-579953.1
75.21
13.06
0.1
nM


AD-579954.1
49.75
4.87
0.1
nM


AD-579955.1
84.04
10.95
0.1
nM


AD-579956.1
73.48
18.05
0.1
nM


AD-579957.1
37.29
3.15
0.1
nM


AD-579958.1
96.73
8.67
0.1
nM


AD-579959.1
86.90
10.17
0.1
nM


AD-579960.1
71.64
12.07
0.1
nM


AD-579961.1
86.22
11.71
0.1
nM


AD-579962.1
59.52
4.17
0.1
nM


AD-579963.1
53.65
1.36
0.1
nM


AD-579964.1
60.89
5.53
0.1
nM


AD-579965.1
10.37
1.33
0.1
nM


AD-579966.1
9.37
1.18
0.1
nM


AD-579967.1
33.20
1.60
0.1
nM


AD-579968.1
36.38
8.49
0.1
nM


AD-579969.1
83.90
5.81
0.1
nM


AD-579970.1
104.17
11.38
0.1
nM


AD-579971.1
29.04
4.62
0.1
nM


AD-579972.1
47.77
5.87
0.1
nM


AD-579973.1
67.38
5.17
0.1
nM


AD-579974.1
21.80
3.23
0.1
nM


AD-579975.1
10.78
2.10
0.1
nM


AD-579976.1
20.60
3.17
0.1
nM


AD-579977.1
86.60
5.20
0.1
nM


AD-579978.1
53.36
3.32
0.1
nM


AD-579979.1
92.09
11.37
0.1
nM


AD-579980.1
52.60
2.36
0.1
nM


AD-579981.1
46.23
7.60
0.1
nM


AD-579982.1
94.15
11.36
0.1
nM


AD-579983.1
76.94
11.93
0.1
nM


AD-579984.1
34.98
2.84
0.1
nM


AD-579985.1
69.50
9.11
0.1
nM


AD-579986.1
62.04
6.78
0.1
nM


AD-579987.1
89.22
9.48
0.1
nM


AD-579988.1
72.80
14.40
0.1
nM


AD-579989.1
52.85
3.85
0.1
nM


AD-579990.1
94.01
8.85
0.1
nM


AD-579992.1
67.82
6.38
0.1
nM


AD-579993.1
81.30
15.42
0.1
nM


AD-579995.1
19.72
5.72
0.1
nM


AD-579996.1
97.03
10.38
0.1
nM


AD-579997.1
87.06
12.93
0.1
nM


AD-579998.1
52.54
4.98
0.1
nM


AD-579999.1
71.80
3.62
0.1
nM


AD-580000.1
75.04
9.15
0.1
nM


AD-580001.1
59.52
8.32
0.1
nM


AD-580002.1
90.07
10.26
0.1
nM









The results of the multi-dose screen in primary human hepatocytes transfected with one set of exemplary human VEGF-A siRNAs is shown in Table 9A (correspond to siRNAs in Table 8A and 8B) The multi-dose experiments were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.


Of the exemplary siRNA duplexes evaluated in Table 9A, 1 achieved a knockdown of VEGF-A of ≥80%, 119 achieved a knockdown of VEGF-A of ≥60%, and 363 achieved a knockdown of VEGF-A of ≥30% when administered at the 50 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9A, 2 achieved a knockdown of VEGF-A of ≥80%, 103 achieved a knockdown of VEGF-A of ≥60%, and 364 achieved a knockdown of VEGF-A of ≥30% when administered at the 10 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9A, 13 achieved a knockdown of VEGF-A of ≥70%, 52 achieved a knockdown of VEGF-A of ≥60%, and 312 achieved a knockdown of VEGF-A of ≥30% when administered at the 1 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9A, 8 achieved a knockdown of VEGF-A of ≥50%, 75 achieved a knockdown of VEGF-A of ≥40%, and 170 achieved a knockdown of VEGF-A of ≥30% when administered at the 0.1 nM concentration.









TABLE 9A







VEGF-A endogenous in vitro multi-dose screen following cellular


transfection with one set of exemplary human VEGF-A siRNAs















DuplexID
50 nM
StDev
10 nM
StDev
1 nM
StDev
0.1 nM
StDev


















AD-1222866.1
70
22
58
9
69
9
60
6


AD-1222867.1
64
14
38
6
55
3
54
2


AD-1222868.1
60
7
42
6
56
8
55
3


AD-1222869.1
61
3
51
1
56
3
56
0


AD-1222870.1
43
7
39
6
47
7
52
4


AD-1222871.1
41
3
38
7
42
2
56
3


AD-1222872.1
54
4
46
9
50
1
56
2


AD-1222873.1
44
1
44
4
46
2
58
1


AD-1222874.1
78
22
66
18
69
4
70
2


AD-1222875.1
56
7
51
5
64
3
59
4


AD-1222876.1
56
9
64
6
71
8
67
4


AD-1222877.1
60
19
50
5
59
7
67
3


AD-1222878.1
64
7
60
2
63
3
72
4


AD-1222879.1
64
3
57
9
52
4
64
9


AD-1222880.1
54
4
53
9
49
4
57
4


AD-1222881.1
58
10
51
2
46
1
63
9


AD-1222882.1
93
12
74
14
93
12
91
12


AD-1222883.1
72
12
59
10
64
7
78
9


AD-1222884.1
63
5
58
8
61
0
79
10


AD-1222885.1
70
12
66
9
69
11
81
4


AD-1222886.1
77
7
76
7
69
3
80
6


AD-1222887.1
62
5
58
11
57
4
70
9


AD-1222888.1
69
6
68
8
64
7
65
4


AD-1222889.1
95
16
81
13
98
11
128
54


AD-1222890.1
88
4
85
11
81
10
97
15


AD-1222891.1
91
15
70
7
77
7
84
16


AD-1222892.1
77
3
75
16
82
22
84
5


AD-1222893.1
84
4
77
14
74
4
85
3


AD-1222894.1
66
6
53
0
61
8
77
10


AD-1222895.1
66
8
68
11
69
6
71
8


AD-1222896.1
99
18
82
25
88
13
124
18


AD-1222897.1
94
10
95
6
76
7
88
14


AD-1222898.1
107
13
93
3
85
10
91
15


AD-1222899.1
98
15
108
5
78
3
90
9


AD-1222900.1
83
14
83
2
82
1
91
8


AD-1222901.1
85
11
81
10
90
15
82
11


AD-1222902.1
71
11
70
6
78
7
87
11


AD-1222903.1
85
5
66
10
80
11
81
6


AD-1222904.1
99
13
87
18
87
9
109
20


AD-1222905.1
109
10
97
14
91
10
103
20


AD-1222906.1
117
6
94
14
85
8
78
3


AD-1222907.1
91
15
85
11
73
20
81
13


AD-1222908.1
82
5
77
11
81
19
90
11


AD-1222909.1
83
8
85
16
62
13
89
8


AD-1222910.1
71
7
78
9
70
2
86
9


AD-1222911.1
129
1
93
17
102
3
116
24


AD-1222912.1
117
11
115
10
98
10
114
7


AD-1222913.1
103
9
89
6
91
5
110
19


AD-1222914.1
72
3
63
3
80
16
91
11


AD-1222915.1
59
11
60
6
80
7
100
8


AD-1222916.1
49
6
42
5
43
12
94
10


AD-1222917.1
61
2
49
6
62
7
85
4


AD-1222918.1
70
12
69
4
77
4
94
4


AD-1222920.1
87
15
71
6
59
5
90
10


AD-1222921.1
104
8
105
6
89
10
103
13


AD-1222922.1
68
7
78
3
88
18
78
14


AD-1222923.1
58
4
64
8
64
5
90
2


AD-1222924.1
82
10
84
13
83
17
100
2


AD-1222925.1
71
7
83
11
84
13
91
0


AD-1222926.1
90
9
87
9
80
2
101
2


AD-1222927.1
95
14
84
3
76
4
103
21


AD-1222928.1
62
4
54
5
54
4
84
3


AD-1222929.1
79
9
61
6
69
2
87
23


AD-1222930.1
59
1
62
1
68
2
95
8


AD-1222931.1
55
4
58
2
64
3
89
16


AD-1222932.1
75
18
87
8
93
11
88
7


AD-1222933.1
40
12
47
5
45
3
87
17


AD-1222934.1
56
8
42
5
48
10
68
8


AD-1222935.1
41
0
41
2
46
4
66
8


AD-1222936.1
39
3
50
2
54
1
73
8


AD-1222937.1
50
13
52
10
63
7
89
9


AD-1222938.1
46
5
67
8
72
4
96
7


AD-1222939.1
37
2
41
7
57
13
82
4


AD-1222940.1
36
6
45
8
47
8
74
17


AD-1222941.1
89
12
76
9
85
6
85
17


AD-1222942.1
44
7
39
3
43
6
67
4


AD-1222943.1
81
17
77
6
85
5
100
5


AD-1222944.1
53
11
50
4
59
14
85
9


AD-1222945.1
74
12
73
0
84
23
92
4


AD-1222946.1
37
3
44
4
76
7
89
7


AD-1222947.1
31
4
31
3
52
3
54
4


AD-1222948.1
58
12
60
6
88
14
111
52


AD-1222949.1
52
12
52
11
63
17
109
13


AD-1222950.1
52
18
51
1
72
7
113
21


AD-1222951.1
37
12
34
5
42
1
95
19


AD-1222952.1
78
4
89
6
103
1
137
44


AD-1222953.1
27
6
30
2
57
6
119
47


AD-1222954.1
33
4
40
4
68
12
102
35


AD-1222955.1
38
9
39
3
53
5
116
54


AD-1222956.1
34
6
42
7
58
20
69
5


AD-1222957.1
23
3
30
2
55
20
62
9


AD-1222958.1
21
3
35
15
35
8
59
4


AD-1222959.1
21
2
30
8
39
7
65
1


AD-1222960.1
25
2
32
6
39
1
68
11


AD-1222961.1
32
5
25
1
41
7
54
2


AD-1222962.1
33
3
34
6
34
8
55
5


AD-1222963.1
26
3
24
0
34
13
61
3


AD-1222964.1
37
1
47
7
78
10
87
14


AD-1222965.1
49
0
58
19
81
11
88
3


AD-1222966.1
48
7
51
4
59
6
82
3


AD-1222967.1
36
2
34
2
49
6
67
8


AD-1222968.1
39
3
47
5
53
10
73
7


AD-1222969.1
30
1
28
3
41
11
55
5


AD-1222970.1
18
1
19
2
25
10
41
2


AD-1222971.1
40
5
35
2
44
4
58
4


AD-1222972.1
41
4
47
8
87
7
87
11


AD-1222973.1
28
2
31
10
52
7
71
8


AD-1222974.1
38
4
29
2
57
8
67
11


AD-1222975.1
35
3
28
2
48
15
72
6


AD-1222976.1
24
1
23
5
33
2
49
2


AD-1222977.1
22
1
20
2
28
5
47
4


AD-1222978.1
27
6
24
6
31
7
50
3


AD-1222979.1
52
11
52
0
71
13
103
26


AD-1222980.1
46
5
41
5
65
9
91
2


AD-1222981.1
49
4
41
3
59
11
76
2


AD-1222982.1
35
5
29
1
44
7
64
4


AD-1222983.1
32
4
28
2
35
10
54
1


AD-1222984.1
29
2
25
1
32
1
53
3


AD-1222985.1
37
3
34
7
43
6
57
3


AD-1222986.1
34
2
34
1
65
13
94
23


AD-1222987.1
38
5
35
7
48
10
73
9


AD-1222988.1
31
0
27
1
38
2
59
7


AD-1222989.1
35
2
29
5
42
2
59
4


AD-1222990.1
30
4
34
10
37
7
59
6


AD-1222991.1
26
1
21
2
37
9
59
9


AD-1222992.1
39
5
38
0
49
14
65
1


AD-1222993.1
39
1
36
3
43
5
80
17


AD-1222994.1
46
3
48
6
54
1
82
3


AD-1222995.1
47
5
36
5
67
16
76
7


AD-1222996.1
58
7
50
4
60
4
79
2


AD-1222997.1
40
8
37
5
50
4
53
9


AD-1222998.1
43
8
39
4
51
3
51
7


AD-1222999.1
40
1
43
12
45
2
60
5


AD-1223000.1
55
12
45
4
53
2
69
4


AD-1223001.1
56
7
62
9
77
15
103
15


AD-1223002.1
69
1
65
1
78
6
86
9


AD-1223003.1
52
10
46
10
60
9
72
5


AD-1223004.1
34
2
32
3
41
9
58
4


AD-1223005.1
47
1
51
12
51
12
67
7


AD-1223006.1
35
2
32
2
39
1
61
7


AD-1223007.1
55
7
42
3
54
10
61
6


AD-1223008.1
32
4
29
1
37
1
68
10


AD-1223009.1
40
3
47
7
54
6
97
15


AD-1223010.1
52
2
46
3
58
8
85
6


AD-1223011.1
44
2
39
5
39
7
58
7


AD-1223012.1
32
3
37
4
39
5
61
7


AD-1223013.1
78
9
65
10
60
4
79
4


AD-1223014.1
64
10
50
4
46
7
76
4


AD-1223015.1
38
5
29
3
43
8
64
4


AD-1223016.1
47
11
31
3
35
6
81
17


AD-1223017.1
55
4
52
2
53
8
89
23


AD-1223018.1
39
0
45
12
47
1
75
16


AD-1223019.1
39
5
36
4
46
14
67
2


AD-1223020.1
48
9
47
15
44
9
68
2


AD-1223021.1
50
7
42
5
41
1
68
13


AD-1223022.1
34
4
31
2
37
5
61
13


AD-1223023.1
66
7
56
2
59
9
80
13


AD-1223024.1
55
10
52
6
78
9
115
31


AD-1223025.1
49
4
47
4
60
1
109
9


AD-1223026.1
55
6
55
6
59
14
86
10


AD-1223027.1
66
3
63
10
70
19
90
1


AD-1223028.1
54
6
48
6
53
3
82
15


AD-1223029.1
52
3
50
8
62
1
81
7


AD-1223030.1
53
7
49
7
48
2
74
12


AD-1223031.1
44
8
38
3
60
5
88
14


AD-1223032.1
51
2
53
2
57
4
88
8


AD-1223033.1
46
2
49
15
63
10
77
18


AD-1223034.1
53
18
36
4
57
19
81
11


AD-1223035.1
50
2
49
15
50
9
65
4


AD-1223036.1
40
3
34
6
43
5
77
31


AD-1223037.1
42
3
33
5
37
6
55
8


AD-1223038.1
30
4
32
1
29
1
62
2


AD-1223039.1
67
3
48
8
68
12
74
14


AD-1223040.1
61
1
54
13
56
9
73
10


AD-1223041.1
57
7
44
4
65
17
91
7


AD-1223042.1
62
32
46
6
55
13
71
4


AD-1223043.1
41
5
40
3
46
8
79
6


AD-1223044.1
53
17
39
2
43
6
73
9


AD-1223045.1
54
0
40
2
44
3
67
9


AD-1223046.1
49
13
43
3
32
3
103
1


AD-1223047.1
55
4
41
4
26
7
97
8


AD-1223048.1
43
2
39
3
25
8
99
14


AD-1223049.1
31
2
35
1
36
10
107
9


AD-1223050.1
32
4
37
3
63
5
106
21


AD-1223051.1
55
4
48
3
74
30
114
16


AD-1223052.1
50
12
39
3
62
4
107
14


AD-1223053.1
37
2
44
6
41
13
90
12


AD-1223054.1
51
23
48
1
28
5
98
11


AD-1223055.1
63
41
44
1
22
2
79
8


AD-1223056.1
49
1
45
1
25
5
83
11


AD-1223057.1
41
13
42
6
39
15
79
11


AD-1223058.1
26
3
33
2
53
25
77
10


AD-1223059.1
32
2
37
0
50
11
71
10


AD-1223060.1
41
13
38
3
50
2
78
2


AD-1223061.1
40
16
43
2
52
5
80
20


AD-1223062.1
52
15
57
4
29
7
99
2


AD-1223063.1
40
8
52
7
31
1
91
10


AD-1223064.1
61
13
60
12
60
14
94
5


AD-1223065.1
51
11
42
5
69
19
72
11


AD-1223066.1
30
7
34
2
57
16
73
16


AD-1223067.1
33
0
49
3
83
21
85
14


AD-1223068.1
44
14
49
7
50
3
71
6


AD-1223069.1
48
3
69
1
49
3
111
5


AD-1223070.1
40
16
66
5
44
18
89
7


AD-1223071.1
38
6
48
12
45
13
89
11


AD-1223072.1
55
8
58
4
82
10
78
9


AD-1223073.1
39
5
47
7
96
9
69
5


AD-1223074.1
38
3
43
2
60
10
68
6


AD-1223075.1
35
2
46
2
55
14
66
8


AD-1223076.1
42
9
67
2
30
2
108
21


AD-1223077.1
43
4
75
5
58
20
99
7


AD-1223078.1
63
9
74
10
79
22
91
6


AD-1223079.1
76
13
52
2
75
10
92
23


AD-1223080.1
39
3
45
4
70
8
69
11


AD-1223081.1
53
14
57
4
76
4
74
14


AD-1223082.1
34
3
43
3
46
7
60
4


AD-1223083.1
41
11
50
0
47
12
53
4


AD-1223084.1
53
11
58
7
44
9
64
4


AD-1223085.1
46
0
60
1
58
7
91
12


AD-1223086.1
57
11
51
1
73
6
67
9


AD-1223087.1
68
3
71
1
87
5
84
17


AD-1223088.1
64
17
61
12
86
1
88
9


AD-1223089.1
35
5
37
4
50
8
71
7


AD-1223090.1
48
11
51
4
56
7
65
2


AD-1223091.1
45
13
54
5
60
15
63
4


AD-1223092.1
48
18
63
5
83
13
86
7


AD-1223093.1
52
5
48
1
79
18
73
1


AD-1223094.1
40
14
52
10
81
13
76
10


AD-1223095.1
41
11
42
1
66
14
65
7


AD-1223096.1
33
5
51
2
81
23
71
4


AD-1223097.1
31
3
48
6
52
2
77
10


AD-1223098.1
31
8
39
3
41
6
57
1


AD-1223099.1
42
15
58
5
56
8
60
1


AD-1223100.1
35
9
55
7
54
5
62
5


AD-1223101.1
52
3
57
8
111
6
62
8


AD-1223102.1
43
13
62
1
75
13
62
6


AD-1223103.1
54
13
50
8
79
7
72
6


AD-1223104.1
36
17
50
12
50
4
53
5


AD-1223105.1
29
4
46
3
50
12
56
2


AD-1223106.1
43
14
50
9
63
22
54
5


AD-1223107.1
31
3
56
2
63
33
68
3


AD-1223108.1
41
13
53
4
55
11
68
5


AD-1223109.1
58
11
69
12
71
2
73
3


AD-1223110.1
65
10
80
11
87
6
83
7


AD-1223111.1
54
14
58
10
58
15
68
4


AD-1223112.1
52
4
82
2
75
14
78
4


AD-1223113.1
55
11
73
6
81
21
84
1


AD-1223114.1
60
8
66
1
83
16
82
1


AD-1223115.1
81
10
73
6
77
1
84
10


AD-1223116.1
79
3
87
8
79
13
82
6


AD-1223117.1
58
6
92
2
74
18
74
5


AD-1223118.1
38
1
82
2
57
2
71
8


AD-1223119.1
51
9
67
5
79
47
78
8


AD-1223120.1
43
1
72
2
53
10
73
3


AD-1223121.1
46
5
68
5
69
5
67
6


AD-1223122.1
61
26
63
8
75
11
78
7


AD-1223123.1
43
12
59
3
59
8
69
4


AD-1223124.1
66
17
76
3
75
14
67
3


AD-1223125.1
54
15
77
3
68
3
64
4


AD-1223126.1
56
10
70
2
53
2
75
16


AD-1223127.1
47
13
70
4
41
7
62
6


AD-1223128.1
52
3
87
1
50
5
75
1


AD-1223129.1
39
1
65
9
55
11
70
5


AD-1223130.1
43
8
66
4
62
8
71
8


AD-1223131.1
48
14
63
5
55
2
70
3


AD-1223132.1
51
8
74
6
75
13
72
2


AD-1223133.1
37
2
61
0
60
4
70
6


AD-1223134.1
41
3
69
2
55
1
71
9


AD-1223135.1
59
20
85
10
54
8
73
4


AD-1223136.1
79
12
134
13
62
9
118
26


AD-1223137.1
65
7
99
30
69
10
127
19


AD-1223138.1
77
19
100
23
68
6
112
28


AD-1223139.1
53
1
127
15
60
15
106
20


AD-1223140.1
59
22
67
7
46
8
98
23


AD-1223141.1
50
6
69
4
52
19
73
22


AD-1223142.1
49
3
63
5
42
11
72
6


AD-1223143.1
45
10
56
11
52
13
68
14


AD-1223144.1
50
8
54
11
60
2
115
5


AD-1223145.1
49
4
74
13
62
19
90
2


AD-1223146.1
81
3
97
35
111
9
107
21


AD-1223147.1
65
15
71
18
62
9
106
13


AD-1223148.1
63
8
74
12
63
11
100
31


AD-1223149.1
49
6
59
13
51
10
100
26


AD-1223150.1
49
2
67
14
47
16
89
21


AD-1223151.1
51
1
62
11
42
5
98
6


AD-1223152.1
67
9
90
20
63
11
123
11


AD-1223153.1
77
3
88
18
109
9
126
12


AD-1223154.1
53
9
46
2
70
8
87
3


AD-1223155.1
55
15
40
4
53
15
129
41


AD-1223156.1
54
9
48
3
48
12
91
13


AD-1223157.1
49
8
53
14
52
11
92
13


AD-1223158.1
45
3
49
9
40
9
84
9


AD-1223159.1
42
7
77
29
59
13
109
7


AD-1223160.1
55
8
55
4
98
7
122
18


AD-1223161.1
49
10
57
9
66
18
118
16


AD-1223162.1
73
5
59
6
52
2
91
13


AD-1223163.1
57
16
59
7
61
13
94
20


AD-1223164.1
58
18
70
8
54
3
120
9


AD-1223165.1
49
13
65
2
50
6
98
6


AD-1223166.1
70
13
72
14
92
9
125
21


AD-1223167.1
78
8
71
9
101
34
119
26


AD-1223168.1
75
17
77
10
98
18
115
15


AD-1223169.1
87
3
57
2
76
27
133
23


AD-1223170.1
87
11
73
12
93
19
85
8


AD-1223171.1
67
20
72
31
70
4
96
12


AD-1223172.1
41
10
44
4
54
9
93
5


AD-1223173.1
62
14
81
21
58
24
116
16


AD-1223174.1
60
14
65
2
96
2
101
9


AD-1223175.1
80
29
61
6
91
19
98
15


AD-1223176.1
77
4
85
6
123
19
109
22


AD-1223177.1
72
14
51
6
70
17
92
1


AD-1223178.1
80
3
77
8
72
16
96
11


AD-1223179.1
82
14
111
9
66
9
81
15


AD-1223180.1
47
9
45
2
54
15
81
12


AD-1223181.1
82
8
76
11
74
17
131
27


AD-1223182.1
58
11
56
13
72
15
80
7


AD-1223183.1
79
20
55
4
94
11
90
9


AD-1223184.1
39
3
38
1
51
4
72
5


AD-1223185.1
63
4
52
10
48
5
76
8


AD-1223186.1
56
17
54
11
48
11
70
4


AD-1223187.1
37
2
39
3
45
14
74
9


AD-1223188.1
32
6
42
7
34
2
68
3


AD-1223189.1
43
14
41
5
56
1
65
12


AD-1223190.1
38
7
41
3
53
14
53
1


AD-1223191.1
55
13
41
7
50
2
56
12


AD-1223192.1
33
3
38
5
43
6
57
6


AD-1223193.1
34
2
30
2
33
9
44
9


AD-1223194.1
45
11
33
6
25
5
48
3


AD-1223195.1
50
19
31
4
39
13
51
4


AD-1223196.1
42
2
29
6
29
11
62
4


AD-1223197.1
42
2
29
0
26
1
59
12


AD-1223198.1
54
10
41
10
61
2
79
8


AD-1223199.1
39
4
36
6
52
16
70
4


AD-1223200.1
35
11
31
2
32
12
57
3


AD-1223201.1
46
18
36
7
32
1
55
7


AD-1223202.1
38
8
31
3
39
3
66
6


AD-1223203.1
39
6
39
6
34
9
66
1


AD-1223204.1
45
4
40
7
45
5
78
2


AD-1223205.1
60
14
54
15
58
4
72
10


AD-1223206.1
43
11
31
5
40
3
57
5


AD-1223207.1
73
2
65
10
57
10
77
12


AD-1223208.1
73
22
68
8
57
10
73
8


AD-1223209.1
48
9
44
10
45
5
73
15


AD-1223210.1
46
9
34
2
43
16
84
9


AD-1223211.1
26
4
40
12
39
7
63
3


AD-1223212.1
46
10
33
3
49
11
68
1


AD-1223213.1
58
6
36
4
46
3
57
2


AD-1223214.1
34
1
35
1
43
6
62
8


AD-1223215.1
41
9
33
6
39
8
61
9


AD-1223216.1
43
8
31
2
47
13
59
4


AD-1223217.1
41
6
39
2
38
7
66
7


AD-1223218.1
31
6
36
4
43
10
65
7


AD-1223219.1
35
7
47
7
48
4
68
1


AD-1223220.1
36
9
39
3
40
11
62
3


AD-1223221.1
43
13
31
0
39
13
58
6


AD-1223222.1
65
27
50
7
57
10
68
9


AD-1223223.1
45
2
39
5
47
2
66
11


AD-1223224.1
32
4
33
5
40
6
60
2


AD-1223225.1
35
8
37
3
31
5
70
9


AD-1223226.1
93
9
62
10
55
5
74
16


AD-1223227.1
100
15
77
12
69
6
69
5


AD-1223228.1
83
5
44
7
44
5
55
3


AD-1223229.1
101
29
59
9
56
7
62
11


AD-1223230.1
85
16
45
6
48
2
52
8


AD-1223231.1
97
18
56
2
57
3
68
12


AD-1223232.1
110
15
79
9
60
2
54
1


AD-1223233.1
95
9
62
4
60
9
58
3


AD-1223234.1
105
8
68
14
72
1
78
13


AD-1223235.1
81
5
64
14
69
12
67
3


AD-1223236.1
83
12
53
6
63
5
90
15


AD-1223237.1
146
33
95
26
82
15
92
16


AD-1223238.1
72
5
68
17
60
5
69
7


AD-1223239.1
75
17
49
3
51
5
67
5


AD-1223240.1
63
2
59
10
53
2
55
9


AD-1223241.1
78
18
55
10
49
5
53
7


AD-1223242.1
77
10
57
6
64
8
70
6


AD-1223243.1
108
1
60
10
70
2
66
11


AD-1223244.1
50
9
62
9
56
9
75
15


AD-1223245.1
59
0
63
12
72
1
79
5


AD-1223246.1
52
4
51
9
44
4
71
9


AD-1223247.1
68
9
58
4
49
3
61
9


AD-1223248.1
80
9
58
8
50
5
54
7


AD-1223249.1
81
16
69
4
96
25
63
13


AD-1223250.1
77
16
72
11
123
20
65
14


AD-1223251.1
58
15
65
7
88
7
60
9


AD-1223252.1
69
12
60
8
80
12
80
21


AD-1223253.1
68
31
48
5
67
13
53
1


AD-1223254.1
49
7
56
12
84
0
54
7


AD-1223255.1
46
5
50
8
59
6
46
8


AD-1223256.1
63
21
53
5
75
16
73
2


AD-1223257.1
74
34
70
3
88
14
71
11


AD-1223258.1
68
19
73
14
91
17
104
7


AD-1223259.1
92
37
106
2
114
20
101
3


AD-1223260.1
59
12
79
8
79
16
99
13


AD-1223261.1
47
13
66
15
86
8
77
15


AD-1223262.1
39
6
45
4
68
12
58
4


AD-1223263.1
39
3
44
2
64
1
44
9


AD-1223264.1
42
10
43
3
79
20
59
8


AD-1223265.1
58
11
56
10
101
7
88
8


AD-1223266.1
49
5
48
7
68
5
72
6


AD-1223267.1
79
30
70
14
95
11
102
19


AD-1223268.1
54
7
64
7
83
9
96
6


AD-1223269.1
45
13
49
8
78
16
80
9


AD-1223270.1
53
14
70
16
76
4
70
6


AD-1223271.1
55
17
61
5
88
14
83
13


AD-1223272.1
57
28
60
6
75
9
77
6


AD-1223273.1
33
3
56
7
77
17
94
6


AD-1223274.1
49
5
67
14
81
9
110
17


AD-1223275.1
53
4
63
11
67
6
115
15


AD-1223276.1
53
3
80
15
89
6
98
9


AD-1223277.1
41
7
67
14
75
6
82
19


AD-1223278.1
47
2
60
7
69
6
58
7


AD-1223279.1
57
9
64
8
93
12
102
24


AD-1223280.1
59
8
72
2
86
11
100
9


AD-1223281.1
52
5
66
8
86
17
95
13


AD-1223282.1
35
4
56
9
67
4
103
18


AD-1223283.1
36
5
43
3
46
2
97
3


AD-1223284.1
32
1
51
9
60
15
65
7


AD-1223285.1
37
4
64
19
57
7
76
6


AD-1223286.1
37
7
38
6
51
7
56
8


AD-1223287.1
36
8
40
5
60
8
73
23


AD-1223288.1
46
6
64
10
87
5
77
6


AD-1223289.1
41
7
61
7
78
1
119
2


AD-1223290.1
46
6
56
5
76
12
98
9


AD-1223291.1
41
4
68
9
81
9
94
15


AD-1223292.1
39
10
84
36
71
4
73
9


AD-1223293.1
47
7
53
1
65
11
59
7


AD-1223294.1
38
1
53
4
59
1
61
20


AD-1223295.1
58
3
67
7
81
8
106
8


AD-1223296.1
72
1
87
10
87
14
113
19


AD-1223297.1
54
9
73
11
78
9
99
2


AD-1223298.1
55
17
65
10
75
9
94
11


AD-1223299.1
58
9
78
8
85
12
73
12


AD-1223300.1
54
6
67
7
79
20
70
9


AD-1223301.1
44
6
61
4
66
4
58
8


AD-1223302.1
44
6
67
10
77
3
75
9


AD-1223303.1
37
2
70
9
79
8
74
14


AD-1223304.1
49
3
71
8
75
9
111
13


AD-1223305.1
42
4
53
6
71
11
79
9


AD-1223306.1
39
1
60
12
64
4
71
9


AD-1223307.1
37
2
62
5
70
17
76
4


AD-1223308.1
33
1
51
12
57
15
58
6


AD-1223309.1
45
10
62
14
61
3
63
14


AD-1223310.1
41
6
54
14
62
2
62
20


AD-1223311.1
54
5
66
11
72
16
66
12


AD-1223312.1
38
7
39
2
54
8
67
19


AD-1223313.1
29
2
40
2
57
6
51
3


AD-1223314.1
33
9
43
1
47
7
58
8


AD-1223315.1
28
1
40
4
48
11
61
15









The results of the multi-dose screen in primary human hepatocytes allowed to freely uptake one set of exemplary human VEGF-A siRNAs is shown in Table 9B (correspond to siRNAs in Table 8A and 8B) The multi-dose experiments were performed at 500 nM, 100 nM, 10 nM, and 1 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.


Of the exemplary siRNA duplexes evaluated in Table 9B, 2 achieved a knockdown of VEGF-A of ≥80%, 53 achieved a knockdown of VEGF-A of ≥60%, and 239 achieved a knockdown of VEGF-A of ≥30% when administered at the 500 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9B, 4 achieved a knockdown of VEGF-A of ≥70%, 33 achieved a knockdown of VEGF-A of ≥60%, and 235 achieved a knockdown of VEGF-A of ≥30% when administered at the 100 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9B, 3 achieved a knockdown of VEGF-A of ≥60%, 52 achieved a knockdown of VEGF-A of ≥40%, and 113 achieved a knockdown of VEGF-A of ≥30% when administered at the 10 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 9B, 13 achieved a knockdown of VEGF-A of ≥50%, 88 achieved a knockdown of VEGF-A of ≥30%, and 146 achieved a knockdown of VEGF-A of ≥20% when administered at the 1 nM concentration.









TABLE 9B







VEGF-A endogenous in vitro multi-dose screen following


free uptake of one set of exemplary human VEGF-A siRNAs















DuplexID
500 nM
StDev
100 nM
StDev
10 nM
StDev
1 nM
StDev


















AD-1222866.1
114
23
103
40
117
14
117
9


AD-1222867.1
114
11
176
58
104
9
134
24


AD-1222868.1
140
19
168
85
123
18
134
6


AD-1222869.1
110
12
149
62
149
23
131
25


AD-1222870.1
107
20
191
9
138
24
124
15


AD-1222871.1
102
11
140
48
130
13
138
18


AD-1222872.1
95
20
112
27
112
15
120
9


AD-1222873.1
73
17
94
10
107
1
110
6


AD-1222874.1
148
27
109
6
137
5
113
9


AD-1222875.1
132
7
93
4
161
25
139
11


AD-1222876.1
142
12
141
1
131
11
145
8


AD-1222877.1
119
2
111
3
176
15
132
4


AD-1222878.1
160
43
128
10
139
8
128
16


AD-1222879.1
150
21
119
13
139
22
116
16


AD-1222880.1
107
22
113
9
145
21
120
7


AD-1222881.1
90
28
91
4
106
2
113
7


AD-1222882.1
151
4
118
7
136
4
114
4


AD-1222883.1
143
13
120
11
147
12
129
8


AD-1222884.1
137
22
135
23
174
18
120
12


AD-1222885.1
162
16
130
13
169
15
120
4


AD-1222886.1
128
26
114
1
155
16
107
14


AD-1222887.1
143
32
128
24
124
10
116
13


AD-1222888.1
77
7
113
2
123
1
116
10


AD-1222889.1
142
11
92
18
143
31
113
13


AD-1222890.1
160
11
129
12
166
27
133
2


AD-1222891.1
138
12
126
6
173
27
136
17


AD-1222892.1
136
7
127
9
153
27
106
7


AD-1222893.1
111
11
118
6
141
10
130
16


AD-1222894.1
111
12
118
10
119
24
123
2


AD-1222895.1
96
8
103
0
121
27
122
18


AD-1222896.1
142
23
97
18
134
6
113
3


AD-1222897.1
155
13
126
6
157
21
129
12


AD-1222898.1
152
53
124
18
141
19
111
10


AD-1222899.1
138
21
110
9
147
28
120
1


AD-1222900.1
123
15
115
20
166
13
108
8


AD-1222901.1
106
6
116
6
161
17
105
15


AD-1222902.1
86
7
106
12
126
28
91
3


AD-1222903.1
84
5
95
2
138
6
112
23


AD-1222904.1
115
19
92
3
127
2
103
7


AD-1222905.1
137
10
129
11
132
22
107
3


AD-1222906.1
122
23
142
8
131
19
119
15


AD-1222907.1
126
35
120
11
143
22
103
3


AD-1222908.1
113
12
108
7
155
32
91
10


AD-1222909.1
104
2
106
13
134
23
106
2


AD-1222910.1
79
1
102
4
104
14
82
9


AD-1222911.1
114
8
106
22
98
11
102
6


AD-1222912.1
107
4
120
14
119
4
114
13


AD-1222913.1
126
31
115
5
109
13
103
11


AD-1222914.1
109
17
118
20
116
5
108
18


AD-1222915.1
88
3
95
11
120
21
88
14


AD-1222916.1
91
12
98
13
114
27
99
18


AD-1222917.1
70
1
93
6
88
16
86
2


AD-1222918.1
93
6
104
6
85
3
101
5


AD-1222920.1
88
12
90
10
95
6
100
8


AD-1222921.1
109
19
108
5
111
27
105
18


AD-1222922.1
91
20
87
5
124
12
104
10


AD-1222923.1
70
19
91
6
109
11
82
2


AD-1222924.1
85
14
103
13
107
14
83
17


AD-1222925.1
82
22
97
14
88
12
78
4


AD-1222926.1
103
9
86
14
92
18
93
13


AD-1222927.1
73
8
59
11
78
16
80
2


AD-1222928.1
80
1
71
11
85
9
94
7


AD-1222929.1
80
8
85
3
80
5
94
17


AD-1222930.1
76
6
85
6
97
11
74
3


AD-1222931.1
79
18
89
9
90
15
74
10


AD-1222932.1
85
1
81
16
76
3
57
7


AD-1222933.1
62
2
64
4
77
5
67
10


AD-1222934.1
43
3
45
9
63
6
62
1


AD-1222935.1
43
3
53
12
73
2
78
2


AD-1222936.1
66
11
56
11
65
10
75
6


AD-1222937.1
72
13
75
5
90
16
72
5


AD-1222938.1
65
6
71
14
78
11
81
8


AD-1222939.1
55
6
70
4
77
10
85
7


AD-1222940.1
61
16
44
1
71
6
74
2


AD-1222941.1
44
7
42
10
51
5
43
4


AD-1222942.1
31
0
37
3
64
8
59
6


AD-1222943.1
58
7
54
11
65
2
58
11


AD-1222944.1
46
6
49
6
69
7
63
12


AD-1222945.1
57
6
62
14
69
11
55
11


AD-1222946.1
50
5
60
16
55
2
57
3


AD-1222947.1
37
4
43
9
59
5
62
9


AD-1222948.1
60
1
63
16
61
13
57
1


AD-1222949.1
40
7
41
12
61
7
46
1


AD-1222950.1
36
4
36
7
55
1
44
4


AD-1222951.1
34
5
32
6
52
4
41
5


AD-1222952.1
61
6
48
14
65
7
44
8


AD-1222953.1
34
6
30
5
51
6
43
1


AD-1222954.1
15
2
25
5
47
4
36
1


AD-1222955.1
19
3
26
5
52
8
40
1


AD-1222956.1
64
8
72
5
110
6
123
6


AD-1222957.1
132
19
98
5
109
14
122
3


AD-1222958.1
72
10
96
7
120
26
133
3


AD-1222959.1
76
13
88
2
119
29
125
4


AD-1222960.1
71
3
123
14
136
39
141
8


AD-1222961.1
112
10
119
10
128
41
115
1


AD-1222962.1
88
4
97
16
120
31
142
12


AD-1222963.1
81
13
83
7
129
23
123
2


AD-1222964.1
90
6
89
2
130
39
134
10


AD-1222965.1
141
16
118
6
118
10
145
19


AD-1222966.1
105
8
119
9
113
11
145
20


AD-1222967.1
127
12
126
3
116
6
143
6


AD-1222968.1
128
7
144
9
120
19
138
11


AD-1222969.1
114
12
121
17
110
6
126
7


AD-1222970.1
58
6
92
7
104
10
120
5


AD-1222971.1
81
6
109
9
106
7
127
8


AD-1222972.1
95
21
76
5
100
11
119
12


AD-1222973.1
97
12
87
2
101
34
143
1


AD-1222974.1
119
8
122
8
105
11
116
5


AD-1222975.1
115
11
113
8
102
9
130
10


AD-1222976.1
97
22
100
13
91
8
106
11


AD-1222977.1
90
13
86
12
98
5
109
4


AD-1222978.1
66
7
77
2
104
12
136
1


AD-1222979.1
92
5
93
4
98
1
125
4


AD-1222980.1
98
1
117
12
103
3
133
9


AD-1222981.1
147
17
147
19
110
10
119
10


AD-1222982.1
95
10
99
16
92
10
114
6


AD-1222983.1
77
9
86
14
86
3
108
10


AD-1222984.1
73
15
93
5
78
3
108
10


AD-1222985.1
89
12
103
20
101
22
119
10


AD-1222986.1
65
1
75
1
97
8
120
10


AD-1222987.1
105
10
92
6
106
9
122
6


AD-1222988.1
74
0
79
1
90
11
128
7


AD-1222989.1
116
1
99
7
112
29
114
11


AD-1222990.1
87
1
95
8
97
15
116
7


AD-1222991.1
81
11
95
14
100
10
109
6


AD-1222992.1
78
10
100
5
89
7
109
6


AD-1222993.1
78
3
111
9
105
10
124
7


AD-1222994.1
78
12
76
0
99
13
116
16


AD-1222995.1
103
18
93
0
97
6
120
3


AD-1222996.1
108
4
122
17
104
5
114
11


AD-1222997.1
108
12
96
3
94
8
113
15


AD-1222998.1
101
11
77
3
87
7
106
2


AD-1222999.1
94
8
99
8
116
8
105
5


AD-1223000.1
80
14
97
25
80
10
97
8


AD-1223001.1
79
10
84
8
108
17
111
5


AD-1223002.1
95
15
93
12
109
11
120
16


AD-1223003.1
97
9
105
9
105
10
115
8


AD-1223004.1
64
9
80
9
93
16
101
10


AD-1223005.1
85
11
104
1
89
16
93
11


AD-1223006.1
70
1
83
9
82
5
96
1


AD-1223007.1
76
2
86
15
88
20
100
8


AD-1223008.1
37
3
66
9
88
2
110
2


AD-1223009.1
57
9
73
10
83
9
102
4


AD-1223010.1
73
7
82
6
108
19
109
9


AD-1223011.1
71
2
86
16
89
15
107
7


AD-1223012.1
71
10
92
14
96
11
99
6


AD-1223013.1
99
9
114
19
79
23
100
5


AD-1223014.1
77
4
95
10
87
4
101
5


AD-1223015.1
69
13
86
8
82
14
97
12


AD-1223016.1
52
1
76
7
95
18
101
11


AD-1223017.1
45
6
55
1
67
7
84
8


AD-1223018.1
39
9
60
2
80
9
90
4


AD-1223019.1
62
6
59
11
87
6
86
4


AD-1223020.1
60
13
65
2
68
28
82
13


AD-1223021.1
76
6
73
19
70
10
85
8


AD-1223022.1
60
10
64
3
70
3
77
5


AD-1223023.1
56
4
62
3
90
24
73
7


AD-1223024.1
52
3
60
3
63
5
71
21


AD-1223025.1
53
10
64
3
76
3
86
10


AD-1223026.1
63
5
53
7
62
15
85
10


AD-1223027.1
72
14
79
14
80
10
83
4


AD-1223028.1
64
7
68
7
74
3
81
11


AD-1223029.1
78
4
75
17
68
11
82
6


AD-1223030.1
41
8
49
6
68
4
69
7


AD-1223031.1
26
1
34
1
37
6
48
4


AD-1223032.1
35
1
49
5
56
8
73
1


AD-1223033.1
34
6
43
3
59
13
71
3


AD-1223034.1
49
5
50
1
68
2
82
6


AD-1223035.1
36
3
42
8
55
1
74
8


AD-1223036.1
32
5
39
11
49
2
75
5


AD-1223037.1
28
8
29
4
47
11
68
6


AD-1223038.1
23
4
38
6
49
5
69
5


AD-1223039.1
26
9
40
1
41
4
61
11


AD-1223040.1
29
5
37
6
37
4
54
3


AD-1223041.1
31
1
35
2
41
1
53
6


AD-1223042.1
29
4
32
5
42
12
64
10


AD-1223043.1
27
3
40
7
47
6
58
4


AD-1223044.1
29
2
40
3
39
1
55
1


AD-1223045.1
31
2
44
3
42
8
62
5


AD-1223046.1
39
2
42
3
69
4
92
15


AD-1223047.1
35
8
38
5
69
5
80
7


AD-1223048.1
30
2
40
4
71
4
92
21


AD-1223049.1
38
1
45
11
65
2
86
16


AD-1223050.1
36
5
51
6
67
3
82
17


AD-1223051.1
47
7
56
7
68
3
66
10


AD-1223052.1
39
12
47
2
68
1
66
7


AD-1223053.1
42
4
58
15
63
1
56
6


AD-1223054.1
43
9
53
5
87
2
88
1


AD-1223055.1
38
10
52
10
84
6
93
2


AD-1223056.1
49
17
51
9
80
6
125
26


AD-1223057.1
50
3
45
11
81
3
95
12


AD-1223058.1
29
6
38
8
77
4
92
27


AD-1223059.1
28
2
37
6
77
7
67
15


AD-1223060.1
33
1
51
10
68
3
58
1


AD-1223061.1
31
1
44
4
67
3
68
13


AD-1223062.1
57
10
59
4
103
8
80
13


AD-1223063.1
66
5
57
5
102
6
98
24


AD-1223064.1
65
16
75
11
109
14
91
1


AD-1223065.1
50
2
67
22
103
2
91
19


AD-1223066.1
30
5
37
4
84
6
76
1


AD-1223067.1
40
3
54
12
81
9
71
11


AD-1223068.1
36
1
37
5
70
6
61
6


AD-1223069.1
67
27
73
11
99
17
103
21


AD-1223070.1
65
19
58
3
105
3
116
24


AD-1223071.1
40
5
58
14
96
8
90
2


AD-1223072.1
65
14
85
24
115
15
74
15


AD-1223073.1
39
1
59
9
110
14
79
17


AD-1223074.1
42
6
54
5
87
4
63
5


AD-1223075.1
47
10
38
2
78
3
54
2


AD-1223076.1
78
20
70
16
68
14
99
22


AD-1223077.1
70
14
76
11
103
19
90
5


AD-1223078.1
105
6
113
26
106
9
122
9


AD-1223079.1
64
11
76
4
107
7
98
16


AD-1223080.1
79
10
67
19
87
4
89
19


AD-1223081.1
67
21
80
17
99
5
82
16


AD-1223082.1
37
4
45
16
85
13
68
15


AD-1223083.1
44
16
50
7
78
6
64
12


AD-1223084.1
59
12
57
1
96
17
95
3


AD-1223085.1
86
28
79
8
100
3
101
15


AD-1223086.1
67
8
58
6
93
9
123
3


AD-1223087.1
82
21
101
5
95
13
97
8


AD-1223088.1
76
25
92
2
127
20
100
21


AD-1223089.1
78
17
68
17
93
2
83
17


AD-1223090.1
38
3
55
13
84
10
63
16


AD-1223091.1
78
15
60
9
97
23
113
3


AD-1223092.1
66
3
69
16
112
13
79
18


AD-1223093.1
65
1
60
5
119
23
95
15


AD-1223094.1
57
10
61
11
92
7
87
11


AD-1223095.1
67
2
60
9
88
11
97
4


AD-1223096.1
52
20
57
5
100
23
66
13


AD-1223097.1
40
2
64
8
80
7
57
4


AD-1223098.1
41
13
47
6
72
2
50
6


AD-1223099.1
60
18
66
5
76
17
103
20


AD-1223100.1
46
15
54
10
77
6
81
4


AD-1223101.1
76
8
67
16
110
15
91
17


AD-1223102.1
45
6
69
13
96
15
90
6


AD-1223103.1
70
17
71
2
107
18
65
1


AD-1223104.1
57
22
52
8
73
9
55
4


AD-1223105.1
48
15
69
16
84
25
64
16


AD-1223106.1
61
8
59
13
95
6
53
4


AD-1223107.1
71
2
60
20
77
9
89
11


AD-1223108.1
78
3
62
5
85
13
78
5


AD-1223109.1
74
18
63
18
85
0
84
19


AD-1223110.1
64
4
78
9
104
29
73
10


AD-1223111.1
90
8
74
19
83
21
72
15


AD-1223112.1
71
10
87
14
78
14
66
8


AD-1223113.1
62
12
80
1
83
20
60
5


AD-1223114.1
71
18
62
9
68
1
62
10


AD-1223115.1
111
5
80
15
82
7
82
3


AD-1223116.1
80
22
80
10
73
7
92
2


AD-1223117.1
84
23
98
2
92
23
73
17


AD-1223118.1
71
25
67
17
82
26
63
5


AD-1223119.1
66
15
91
33
82
31
87
21


AD-1223120.1
61
6
64
13
88
7
59
4


AD-1223121.1
66
9
49
11
66
5
59
6


AD-1223122.1
90
11
68
20
62
10
74
15


AD-1223123.1
61
22
52
20
53
0
63
4


AD-1223124.1
89
12
72
16
65
5
83
11


AD-1223125.1
77
22
72
18
65
7
73
8


AD-1223126.1
96
18
80
20
77
32
74
13


AD-1223127.1
54
11
60
9
53
9
64
12


AD-1223128.1
58
16
45
1
67
1
65
8


AD-1223129.1
45
7
39
6
56
5
60
1


AD-1223130.1
37
2
50
3
51
5
74
7


AD-1223131.1
57
17
45
13
66
5
70
2


AD-1223132.1
72
16
53
5
71
18
92
7


AD-1223133.1
42
3
57
7
54
2
61
9


AD-1223134.1
49
11
46
1
59
1
84
22


AD-1223135.1
46
3
50
11
57
5
69
1


AD-1223136.1
101
19
100
15
88
26
159
78


AD-1223137.1
88
14
92
13
98
19
91
23


AD-1223138.1
75
9
67
4
71
17
86
26


AD-1223139.1
89
19
63
6
97
31
82
10


AD-1223140.1
90
28
71
8
59
10
76
12


AD-1223141.1
83
3
64
9
62
6
75
14


AD-1223142.1
102
5
61
1
74
19
73
2


AD-1223143.1
96
31
54
1
57
15
88
15


AD-1223144.1
91
16
82
10
112
9
129
35


AD-1223145.1
86
15
74
10
86
5
125
21


AD-1223146.1
81
10
85
3
94
1
143
21


AD-1223147.1
99
15
80
17
86
10
109
24


AD-1223148.1
93
22
82
12
91
17
115
18


AD-1223149.1
88
6
74
4
88
15
110
11


AD-1223150.1
79
6
66
1
71
5
103
17


AD-1223151.1
98
20
64
9
61
17
108
20


AD-1223152.1
121
28
92
14
78
5
102
17


AD-1223153.1
80
15
93
9
105
7
122
23


AD-1223154.1
73
14
85
5
87
13
109
10


AD-1223155.1
87
2
68
3
92
12
108
17


AD-1223156.1
74
19
72
2
73
8
102
12


AD-1223157.1
83
21
76
5
78
12
101
20


AD-1223158.1
78
22
64
12
75
2
97
24


AD-1223159.1
102
36
75
9
115
22
104
16


AD-1223160.1
116
20
122
15
105
13
154
18


AD-1223161.1
80
14
96
7
114
14
99
6


AD-1223162.1
60
5
76
7
97
18
111
24


AD-1223163.1
85
18
79
10
83
15
118
22


AD-1223164.1
75
1
95
21
78
8
113
7


AD-1223165.1
73
7
68
8
66
2
111
28


AD-1223166.1
106
19
92
4
98
37
100
11


AD-1223167.1
111
12
116
21
121
5
124
11


AD-1223168.1
102
20
93
2
124
25
145
4


AD-1223169.1
93
23
89
18
132
17
133
5


AD-1223170.1
85
14
79
25
111
11
119
26


AD-1223171.1
82
19
77
9
89
12
121
30


AD-1223172.1
90
3
76
5
92
7
89
6


AD-1223173.1
74
14
79
15
85
18
119
36


AD-1223174.1
135
52
80
8
90
3
95
15


AD-1223175.1
86
20
96
8
87
4
116
5


AD-1223176.1
88
17
104
12
99
15
123
3


AD-1223177.1
81
14
78
6
90
8
109
23


AD-1223178.1
106
7
80
14
88
2
118
15


AD-1223179.1
83
14
71
10
93
8
95
18


AD-1223180.1
61
19
67
9
79
9
127
4


AD-1223181.1
105
31
80
5
99
12
106
12


AD-1223182.1
69
2
81
12
88
5
105
20


AD-1223183.1
108
38
85
6
106
9
123
17


AD-1223184.1
45
6
61
4
75
8
82
12


AD-1223185.1
59
4
76
15
75
3
107
20


AD-1223186.1
66
12
62
10
88
11
89
7


AD-1223187.1
63
10
58
10
72
7
99
20


AD-1223188.1
51
12
47
8
71
9
90
19


AD-1223189.1
73
15
56
3
75
11
85
2


AD-1223190.1
57
13
61
5
80
13
89
18


AD-1223191.1
55
14
68
9
71
1
100
8


AD-1223192.1
39
3
61
9
73
4
92
16


AD-1223193.1
41
9
51
2
72
9
69
4


AD-1223194.1
34
2
44
5
61
9
79
18


AD-1223195.1
52
17
38
5
65
11
89
12


AD-1223196.1
36
4
39
4
89
22
85
20


AD-1223197.1
66
13
40
6
62
16
70
10


AD-1223198.1
56
8
66
5
78
23
95
14


AD-1223199.1
56
17
61
6
75
5
113
30


AD-1223200.1
51
14
51
9
68
14
102
17


AD-1223201.1
60
15
53
3
59
6
81
3


AD-1223202.1
36
10
46
3
57
9
95
1


AD-1223203.1
43
13
34
1
66
13
82
19


AD-1223204.1
63
16
49
3
60
5
57
3


AD-1223205.1
51
14
57
5
75
3
75
12


AD-1223206.1
30
4
49
10
69
14
67
6


AD-1223207.1
67
11
67
6
67
7
77
11


AD-1223208.1
64
11
61
8
68
4
84
24


AD-1223209.1
56
12
62
7
73
11
86
16


AD-1223210.1
58
33
40
2
69
8
93
2


AD-1223211.1
39
0
48
4
52
15
57
5


AD-1223212.1
65
5
57
2
53
2
95
20


AD-1223213.1
55
11
57
3
69
5
78
10


AD-1223214.1
28
2
46
1
53
8
70
5


AD-1223215.1
37
2
52
1
61
12
80
11


AD-1223216.1
42
14
47
3
67
31
72
6


AD-1223217.1
43
7
52
3
66
5
86
2


AD-1223218.1
64
26
45
6
59
13
86
11


AD-1223219.1
70
10
55
7
56
8
58
3


AD-1223220.1
54
15
64
3
42
4
57
2


AD-1223221.1
51
15
55
6
45
8
62
8


AD-1223222.1
70
5
66
5
58
6
86
20


AD-1223223.1
37
5
54
4
59
14
61
15


AD-1223224.1
55
4
40
1
51
4
61
3


AD-1223225.1
49
17
41
6
61
11
68
1


AD-1223226.1
57
3
46
12
71
4
83
19


AD-1223227.1
73
7
55
1
80
7
92
14


AD-1223228.1
51
5
41
3
72
4
89
6


AD-1223229.1
63
7
54
11
86
5
99
13


AD-1223230.1
52
7
46
8
81
8
81
12


AD-1223231.1
61
4
52
1
78
9
88
11


AD-1223232.1
76
6
64
7
75
8
80
13


AD-1223233.1
70
8
53
6
77
5
66
12


AD-1223234.1
68
11
56
14
81
5
94
14


AD-1223235.1
58
4
41
2
94
2
96
7


AD-1223236.1
72
4
62
19
101
10
99
6


AD-1223237.1
78
10
63
3
109
5
103
20


AD-1223238.1
67
16
65
22
102
14
100
15


AD-1223239.1
58
2
57
3
90
8
89
21


AD-1223240.1
57
1
53
8
87
7
79
12


AD-1223241.1
62
9
50
10
73
11
70
18


AD-1223242.1
54
9
55
11
70
8
87
4


AD-1223243.1
62
11
48
4
77
6
114
6


AD-1223244.1
57
5
54
9
94
9
105
18


AD-1223245.1
75
8
78
2
111
28
116
9


AD-1223246.1
51
4
49
3
85
8
92
6


AD-1223247.1
61
7
53
11
87
10
81
6


AD-1223248.1
60
2
54
11
75
1
72
11


AD-1223249.1
65
7
71
5
85
12
111
8


AD-1223250.1
85
15
89
3
118
14
131
1


AD-1223251.1
74
6
88
5
108
8
102
2


AD-1223252.1
55
3
78
19
107
19
95
11


AD-1223253.1
48
7
69
6
94
9
90
13


AD-1223254.1
58
11
59
21
96
15
83
5


AD-1223255.1
48
5
58
11
79
5
68
2


AD-1223256.1
51
9
53
7
75
4
99
11


AD-1223257.1
44
2
43
6
98
10
120
15


AD-1223258.1
68
8
67
6
107
12
111
6


AD-1223259.1
96
7
103
8
111
15
106
1


AD-1223260.1
82
2
80
7
114
15
112
11


AD-1223261.1
62
1
64
3
99
20
95
1


AD-1223262.1
48
10
48
9
86
8
90
6


AD-1223263.1
51
5
49
6
71
3
71
5


AD-1223264.1
51
2
56
13
75
7
79
3


AD-1223265.1
48
3
47
1
82
1
94
12


AD-1223266.1
42
6
49
5
84
1
105
9


AD-1223267.1
76
2
101
20
105
7
108
11


AD-1223268.1
63
12
83
28
96
13
86
17


AD-1223269.1
43
4
51
17
93
0
84
10


AD-1223270.1
63
3
56
7
96
6
95
1


AD-1223271.1
58
1
63
18
71
2
93
11


AD-1223272.1
55
7
56
11
82
1
106
7


AD-1223273.1
66
10
63
18
106
9
120
15


AD-1223274.1
67
6
64
13
97
13
98
12


AD-1223275.1
67
8
88
17
103
9
79
8


AD-1223276.1
75
10
64
13
94
13
84
3


AD-1223277.1
73
5
62
6
88
15
82
1


AD-1223278.1
60
3
61
7
83
10
81
5


AD-1223279.1
65
3
64
12
88
12
93
13


AD-1223280.1
67
2
67
9
89
4
119
9


AD-1223281.1
68
8
62
16
95
10
96
2


AD-1223282.1
57
7
73
2
87
8
95
3


AD-1223283.1
50
3
75
3
75
2
80
1


AD-1223284.1
51
7
61
26
84
9
80
2


AD-1223285.1
70
13
70
10
89
15
87
8


AD-1223286.1
43
1
48
8
73
18
77
8


AD-1223287.1
50
4
46
16
65
4
76
0


AD-1223288.1
56
9
55
20
75
10
78
3


AD-1223289.1
72
19
57
10
87
3
91
10


AD-1223290.1
67
2
73
5
88
13
89
6


AD-1223291.1
74
11
69
15
81
1
70
8


AD-1223292.1
61
2
58
5
81
2
78
1


AD-1223293.1
63
9
60
6
82
4
74
6


AD-1223294.1
54
2
56
10
53
2
68
1


AD-1223295.1
80
14
90
3
75
10
76
13


AD-1223296.1
92
20
109
8
87
10
95
11


AD-1223297.1
75
9
89
2
80
5
96
4


AD-1223298.1
75
6
79
10
86
11
94
2


AD-1223299.1
77
8
79
6
89
6
82
1


AD-1223300.1
78
15
72
5
76
5
71
8


AD-1223301.1
64
4
67
9
57
2
60
8


AD-1223302.1
66
5
79
17
66
4
71
9


AD-1223303.1
78
9
86
14
68
1
74
9


AD-1223304.1
64
2
76
10
72
7
72
5


AD-1223305.1
59
4
72
11
66
3
78
13


AD-1223306.1
58
1
51
33
77
23
81
13


AD-1223307.1
61
9
78
15
63
4
70
5


AD-1223308.1
52
7
52
10
63
5
58
6


AD-1223309.1
60
1
39
4
59
4
60
5


AD-1223310.1
52
5
40
7
60
2
55
4


AD-1223311.1
62
7
59
13
62
2
54
5


AD-1223312.1
49
8
44
8
50
5
56
8


AD-1223313.1
43
5
44
9
51
3
50
0


AD-1223314.1
45
8
39
4
53
5
49
6


AD-1223315.1
53
4
46
7
56
5
50
6









The results of the multi-dose screen in primary human hepatocytes transfected with an additional set of exemplary human VEGF-A siRNAs is shown in Table 11 (correspond to modified siRNAs in Table 10A). The multi-dose experiments were performed at 50 nM, 10 nM, 1 nM, and 0.1 nM final duplex concentrations and the data are expressed as percent message remaining relative to non-targeting control.


Of the exemplary siRNA duplexes evaluated in Table 11, 6 achieved a knockdown of VEGF-A of ≥70%, 34 achieved a knockdown of VEGF-A of ≥60%, 49 achieved a knockdown of VEGF-A of ≥50%, 62 achieved a knockdown of VEGF-A of ≥30%, and 75 achieved a knockdown of VEGF-A of ≥20% when administered at the 50 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 11, 2 achieved a knockdown of VEGF-A of ≥70%, 18 achieved a knockdown of VEGF-A of ≥60%, 35 achieved a knockdown of VEGF-A of ≥50%, 66 achieved a knockdown of VEGF-A of ≥30%, and 77 achieved a knockdown of VEGF-A of ≥20% when administered at the 10 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 11, 13 achieved a knockdown of VEGF-A of ≥50%, 33 achieved a knockdown of VEGF-A of ≥40%, 49 achieved a knockdown of VEGF-A of ≥30%, 62 achieved a knockdown of VEGF-A of ≥20%, and 74 achieved a knockdown of VEGF-A of ≥10% when administered at the 1 nM concentration.


Of the exemplary siRNA duplexes evaluated in Table 11, 2 achieved a knockdown of VEGF-A of ≥40%, 7 achieved a knockdown of VEGF-A of ≥30%, 25 achieved a knockdown of VEGF-A of ≥20%, 46 achieved a knockdown of VEGF-A of ≥10%, and 55 achieved a knockdown of VEGF-A of ≥5% when administered at the 0.1 nM concentration.









TABLE 11







VEGF-A endogenous in vitro multi-dose screen following cellular


transfection with additional set of exemplary human VEGF-A siRNAs












50 nM dose
10 nM dose
1 nM dose
0.1 nM dose















Duplex
Avg
SD
Avg
SD
Avg
SD
Avg
SD


















AD-1353514.1
73.2
14.7
47.83
6.33
89.52
8.82
108.56
17.50


AD-1353484.1
60.9
2.1
30.99
3.11
46.98
8.32
74.34
10.43


AD-1353454.1
32.1
2.1
31.33
5.04
48.05
7.92
52.74
3.79


AD-1353468.1
36.5
10.1
37.70
11.20
54.44
8.95
76.93
5.45


AD-1353498.1
71.4
8.9
70.68
17.79
91.31
15.16
119.43
2.90


AD-1353438.1
30.4
5.0
36.17
11.97
49.92
9.56
68.61
10.47


AD-1353515.1
85.4
4.7
59.45
15.56
86.89
15.76
119.70
10.55


AD-1353485.1
61.2
3.6
67.37
28.56
73.00
19.46
101.36
12.30


AD-1353455.1
37.7
5.8
39.73
4.39
57.46
11.43
75.26
9.60


AD-1353513.1
72.4
19.2
70.36
7.66
65.81
2.00
99.31
4.26


AD-1353483.1
45.4
7.9
59.48
13.52
63.00
1.14
88.59
7.06


AD-1353453.1
49.4
3.1
52.47
11.81
73.02
14.48
87.42
1.86


AD-1353502.1
111.8
3.9
122.89
9.45
108.63
2.65
101.24
12.32


AD-1353472.1
77.7
1.1
77.95
21.21
82.89
10.59
110.13
1.33


AD-1353442.1
43.1
5.9
58.75
26.58
53.92
6.62
86.50
13.94


AD-1353499.1
52.6
8.5
50.86
1.41
60.86
4.25
68.29
32.87


AD-1353469.1
34.2
4.9
26.91
8.25
52.31
12.97
68.94
3.00


AD-1353439.1
40.5
7.0
33.92
5.01
47.72
5.18
59.98
0.64


AD-1353516.1
73.4
2.3
91.54
6.70
96.22
13.84
109.69
16.01


AD-1353486.1
55.2
10.8
69.54
22.45
66.89
15.26
85.60
12.44


AD-1353456.1
36.7
2.3
40.99
2.33
47.06
0.75
77.80
12.27


AD-1353509.1
78.2
15.5
65.05
19.24
79.91
15.99
92.15
6.76


AD-1353479.1
34.1
1.7
59.07
11.65
61.37
12.56
81.86
11.12


AD-1353449.1
37.2
3.1
43.76
2.00
64.46
14.54
94.21
15.51


AD-1353503.1
107.2
12.2
124.19
25.48
129.99
12.55
103.32
5.51


AD-1353473.1
69.5
12.8
81.70
4.74
73.09
4.34
96.57
7.16


AD-1353443.1
56.0
5.3
47.76
1.37
60.14
2.14
78.45
2.90


AD-1353506.1
125.4
15.1
72.10
10.55
98.53
31.92
139.95
25.71


AD-1353476.1
31.1
0.9
52.33
18.02
53.46
8.06
81.81
20.46


AD-1353446.1
33.5
3.9
49.43
19.14
48.57
12.81
89.09
18.37


AD-1353497.1
73.7
15.2
76.17
18.94
110.55
19.54
108.38
14.24


AD-1353467.1
24.1
1.6
68.83
36.91
60.52
9.05
88.11
6.79


AD-1353437.1
26.6
1.3
36.54
18.99
58.73
11.11
78.39
13.30


AD-1353494.1
78.9
18.5
64.78
5.56
80.76
28.61
105.16
8.40


AD-1353464.1
39.2
11.1
43.51
10.28
46.64
1.22
86.15
13.43


AD-1353434.1
25.8
2.3
35.87
7.53
46.49
2.58
88.48
12.93


AD-1353505.1
79.3
14.0
90.37
26.82
88.87
9.99
118.05
27.89


AD-1353475.1
45.8
4.4
81.74
24.42
61.65
9.73
113.65
24.35


AD-1353445.1
33.1
4.6
34.12
2.32
58.71
12.42
76.70
5.84


AD-1353518.1
106.7
9.5
66.77
10.60
101.34
19.91
116.14
13.23


AD-1353490.1
57.6
2.9
65.55
2.51
59.72
1.89
82.32
10.94


AD-1353460.1
43.3
2.2
57.20
17.51
57.83
6.41
81.60
3.42


AD-1353512.1
49.3
2.8
56.05
16.30
73.12
5.01
80.00
12.61


AD-1353482.1
31.8
7.0
41.02
4.08
49.87
13.58
75.30
11.76


AD-1353452.1
22.0
0.8
27.69
6.99
49.18
8.36
64.25
8.77


AD-1353501.1
93.4
14.4
73.05
23.54
91.52
22.64
118.07
3.73


AD-1353471.1
35.3
16.6
55.66
10.36
62.03
8.43
74.30
10.30


AD-1353441.1
42.8
12.1
37.07
2.05
55.05
11.83
87.87
11.35


AD-1353495.1
64.9
6.6
57.36
3.08
76.11
7.59
91.83
2.54


AD-1353465.1
46.1
9.0
52.06
2.82
71.33
9.34
96.77
3.94


AD-1353435.1
26.6
0.6
34.92
2.32
52.83
10.26
75.24
2.38


AD-1353510.1
119.8
18.1
101.24
29.18
93.46
10.24
113.16
12.92


AD-1353480.1
31.4
6.3
39.32
0.42
41.34
14.17
67.02
5.59


AD-1353450.1
34.6
7.4
66.32
23.95
50.20
0.35
73.85
1.29


AD-1353492.1
77.7
10.8
71.56
11.36
77.86
8.02
121.84
4.81


AD-1353462.1
77.9
8.7
61.05
3.21
84.55
11.04
95.78
4.27


AD-1353432.1
53.3
2.4
54.18
15.15
77.02
10.61
91.59
3.58


AD-1353504.1
112.3
16.9
103.54
22.58
96.95
21.25
104.68
1.67


AD-1353474.1
37.3
0.8
45.61
7.93
64.86
13.55
90.57
9.24


AD-1353444.1
34.6
2.7
46.49
12.28
64.50
3.69
90.43
15.39


AD-1353493.1
115.2
3.5
109.69
24.35
115.11
15.22
148.20
6.03


AD-1353463.1
37.4
10.6
39.98
1.58
67.51
13.18
101.55
10.32


AD-1353433.1
41.6
2.6
49.27
11.07
57.69
7.11
85.23
1.77


AD-1353508.1
99.1
18.5
108.35
7.54
119.28
22.06
127.04
26.81


AD-1353478.1
61.3
7.9
80.29
6.74
84.40
5.07
106.24
18.11


AD-1353448.1
46.8
10.5
45.28
0.83
70.79
13.97
93.49
2.61


AD-1353496.1
71.4
11.4
72.67
26.10
75.08
10.38
78.24
0.83


AD-1353466.1
27.1
2.2
41.23
4.27
46.93
8.96
74.57
10.13


AD-1353436.1
34.3
12.7
44.21
16.99
76.15
17.23
100.46
13.86


AD-1353500.1
93.3
10.4
71.79
21.42
90.97
13.97
121.98
8.36


AD-1353470.1
56.5
18.5
68.60
21.85
66.08
16.35
98.20
16.07


AD-1353440.1
42.7
13.9
32.74
2.42
47.72
4.01
87.22
13.60


AD-1334067.3
62.0
5.0
66.03
15.65
104.31
6.24
118.77
15.26


AD-1353488.1
45.4
9.5
54.95
18.87
66.30
5.64
93.92
6.82


AD-1353458.1
49.9
2.7
42.68
4.29
52.79
7.82
86.26
5.91


AD-1334065.3
71.1
12.6
78.09
22.23
84.66
18.18
114.25
13.96


AD-1353487.1
34.9
4.5
66.90
18.73
56.96
8.69
78.72
9.61


AD-1353457.1
38.2
9.3
58.10
28.97
54.23
13.92
72.52
6.80


AD-1353511.1
83.9
11.7
62.66
20.11
82.39
4.29
108.94
17.57


AD-1353481.1
37.4
5.3
33.15
14.70
53.45
6.54
89.49
20.18


AD-1353451.1
36.5
3.0
50.19
3.34
70.69
2.05
89.11
5.24


AD-1353507.1
88.8
24.1
103.80
3.43
118.16
22.78
109.81
8.53


AD-1353477.1
58.1
13.7
71.67
24.75
89.22
12.01
97.98
5.38


AD-1353447.1
35.9
5.8
35.44
0.37
69.83
7.21
93.70
5.60


AD-1353517.1
81.4
27.8
65.25
15.18
87.98
15.64
87.33
5.55


AD-1353489.1
39.1
8.5
48.80
14.60
53.72
2.50
78.25
4.63


AD-1353459.1
36.3
3.0
42.48
5.66
55.07
0.79
88.61
15.57


AD-1353519.1
99.4
27.7
81.48
9.81
93.30
21.44
129.30
24.38


AD-1353491.1
49.6
22.3
68.94
16.28
84.63
0.34
82.41
4.90


AD-1353461.1
36.0
7.6
42.22
11.83
52.71
11.40
75.56
6.49









Example 3. In Vivo Screening of VEGF-A siRNA

This Example investigates the effects of the exemplary VEGF-A targeting siRNAs for in vivo efficacy for human VEGF-A knockdown in AAV mice. The first exemplary set of VEGF-A targeting siRNAs investigated includes AD-64228, AD-953374, AD-953504, AD-953336, AD-953337, AD-901376, AD-953364, AD-953340, AD-953351, AD-953342, AD-953308, AD-953344, AD-953339, and AD-953363 (summarized in Table 12 and FIGS. 1A-1B). The second set of exemplary VEGF-A targeting siRNAs investigated included AD-901349, AD-953481, AD-901356, AD-901355, AD-953365, AD-953410, AD-953411, AD-953338, AD-953350, AD-953375, AD-953341, AD-953370, AD-953386, AD-64958 (summarized in Table 13 and FIGS. 3A-3B) The final set of exemplary VEGF-A targeting siRNAs investigated included AD-1397050, AD-1397051, AD-1397052, AD-1397053, AD-1397054, AD-1397055, AD-1397056, AD-1397058, AD-1397059, AD-1397060, AD-1397061, AD-1397062, AD-1397064, AD-1397065, AD-1397066, AD-1397067, AD-1397068, AD-1397069, and AD-64958 (summarized in Table 14 and FIGS. 5A-5C).









TABLE 12







VEGF-A in vivo single-dose screen with one set of exemplary VEGF-A siRNA


duplexes. In this table the column “Duplex Name” provides the numerical part


of the duplex name. The duplex name can comprise a suffix (number following


the decimal point in a duplex name) that merely refers to a batch  production


number. The suffix can be omitted from the duplex name without changing the


chemical structure. For example, duplex AD-953504.1 in Table 4A refers to the


same duplex as AD-953504 in Table 12.











Duplex



SEQ ID


Name
Strand
Target
Modified Sequence (5′-3′)
NO





AD-64228
sense
None
asascaguGfuUfCfUfugcucuauaaL96
4162



anti-
mTTR
usUfsauaGfaGfCfaagaAfcAfcuguususu
4163



sense








AD-953504
sense
VEGF-A
asasaau(Ahd)gadCadTugcuauucuaL96
1037



anti-
VEGF-A
VPusdAsgadAudAgcaadTgdTcdTauuuusasu
1167



sense








AD-953308
sense
VEGF-A
csascca(Uhd)GfcAfGfAfuuaugcggaaL96
 579



anti-
VEGF-A
VPusUfsccgCfaUfAfaucuGfcAfuggugsasu
 709



sense








AD-953336
sense
VEGF-A
asasaga(Chd)UfgAfUfAfcagaacgauaL96
 518



anti-
VEGF-A
VPusAfsucgUfuCfUfguauCfaGfucuuuscsc
 648



sense








AD-953337
sense
VEGF-A
asasgac(Uhd)GfaUfAfCfagaacgaucaL96
 522



anti-
VEGF-A
VPusGfsaucGfuUfCfuguaUfcAfgucuususc
 652



sense








AD-953339
sense
VEGF-A
gsascug(Ahd)UfaCfAfGfaacgaucgaaL96
 528



anti-
VEGF-A
VPusUfscgaUfcGfUfucugUfaUfcagucsusu
 658



sense








AD-953340
sense
VEGF-A
ascsuga(Uhd)AfcAfGfAfacgaucgauaL96
 517



anti-
VEGF-A
VPusAfsucgAfuCfGfuucuGfuAfucaguscsu
 647



sense








AD-953342
sense
VEGF-A
asusaca(Ghd)AfaCfGfAfucgauacagaL96
 523



anti-
VEGF-A
VPusCfsuguAfuCfGfaucgUfuCfuguauscsa
 653



sense








AD-953344
sense
VEGF-A
csasgaa(Chd)AfgUfCfCfuuaauccagaL96
 527



anti-
VEGF-A
VPusCfsuggAfuUfAfaggaCfuGfuucugsusc
 657



sense








AD-953351
sense
VEGF-A
asgsugc(Uhd)AfaUfGfUfuauugguguaL96
 540



anti-
VEGF-A
VPusAfscacCfaAfUfaacaUfuAfgcacusgsu
 670



sense








AD-953363
sense
VEGF-A
gsasgaa(Ahd)GfuGfUfUfuuauauacgaL96
 519



anti-
VEGF-A
VPusCfsguaUfaUfAfaaacAfcUfuucucsusu
 649



sense








AD-953364
sense
VEGF-A
ascsggu(Ahd)CfuUfAfUfuuaauauccaL96
 567



anti-
VEGF-A
VPusGfsgauAfuUfAfaauaAfgUfaccgusasu
 697



sense








AD-901376
sense
VEGF-A
ascsggu(Ahd)CfuUfAfUfuuaauauccaL96
4157



anti-
VEGF-A
VPusGfsgaua(Tgn)uaaauaAfgUfaccgusasu
 131



sense








AD-953374
sense
VEGF-A
asasaau(Ahd)GfaCfAfUfugcuauucuaL96
 553



anti-
VEGF-A
VPusAfsgaaUfaGfCfaaugUfcUfauuuusasu
 683



sense
















TABLE 13







VEGF-A in vivo single-dose screen with one set of exemplary VEGF-A siRNA


duplexes. In this table the column “Duplex Name” provides the numerical part of the


duplex name. The duplex name can comprise a suffix (number following the decimal point


in a duplex name) that merely refers to a batch production number. The suffix can be


omitted from the duplex name without changing the chemical structure. For example,


duplex AD-953481.1 in Table 4A refers to the same duplex as AD-953481 in Table 13.











Duplex






Name
Strand
Target
Modified Sequence (5′-3′)
SEQ ID NO





AD-64958
sense
None
asascaguGfuUfCfUfugcucuauaaL96
5003



anti-
None
usUfsauaGfagcaagaAfcAfcuguususu
5004



sense








AD-953481
sense
VEGF-A
asgsugc(Uhd)aadTgdTuauugguguaL96
1038



anti-
VEGF-A
VPusdAscadCcdAauaadCadTudAgcacusgsu
1168



sense








AD-901349
sense
VEGF-A
asasgac(Uhd)GfaUfAfCfagaacgaucaL96
4156



anti-
VEGF-A
VPusGfsaucg(Tgn)ucuguaUfcAfgucuususc
 130



sense








AD-953338
sense
VEGF-A
asgsacu(Ghd)AfuAfCfAfgaacgaucgaL96
 520



anti-
VEGF-A
VPusCfsgauCfgUfUfcuguAfuCfagucususu
 650



sense








AD-953341
sense
VEGF-A
csusgau(Ahd)CfaGfAfAfcgaucgauaaL96
 532



anti-
VEGF-A
VPusUfsaucGfaUfCfguucUfgUfaucagsusc
 662



sense








AD-901355
sense
VEGF-A
csgsaca(Ghd)AfaCfAfGfuccuuaaucaL96
   4



anti-
VEGF-A
VPusGfsauua(Agn)ggacugUfuCfugucgsasu
 133



sense








AD-901356
sense
VEGF-A
csasgaa(Chd)AfgUfCfCfuuaauccagaL96
   3



anti-
VEGF-A
VPusCfsugga(Tgn)uaaggaCfuGfuucugsusc
 132



sense








AD-953350
sense
VEGF-A
asascag(Uhd)GfcUfAfAfuguuauuggaL96
 524



anti-
VEGF-A
VPusCfscaaUfaAfCfauuaGfcAfcuguusasa
 654



sense








AD-953365
sense
VEGF-A
csgsgua(Chd)UfuAfUfUfuaauaucccaL96
 552



anti-
VEGF-A
VPusGfsggaUfaUfUfaaauAfaGfuaccgsusa
 682



sense








AD-953370
sense
VEGF-A
gscsucu(Chd)UfuAfUfUfuguaccgguaL96
 533



anti-
VEGF-A
VPusAfsccgGfuAfCfaaauAfaGfagagcsasa
 663



sense








AD-953375
sense
VEGF-A
asasaua(Ghd)AfcAfUfUfgcuauucugaL96
 530



anti-
VEGF-A
VPusCfsagaAfuAfGfcaauGfuCfuauuususa
 660



sense








AD-953386
sense
VEGF-A
csgsaag(Uhd)GfgUfGfAfaguucauggaL96
 541



anti-
VEGF-A
VPusCfscauGfaAfCfuucaCfcAfcuucgsusg
 671



sense








AD-953410
sense
VEGF-A
gsasaag(Uhd)GfuUfUfUfauauacgguaL96
 585



anti-
VEGF-A
VPusAfsccgUfaUfAfuaaaAfcAfcuuucsusc
 715



sense








AD-953411
sense
VEGF-A
gsusuuu(Ahd)UfaUfAfCfgguacuuauaL96
 584



anti-
VEGF-A
VPusAfsuaaGfuAfCfcguaUfaUfaaaacsasc
 714



sense
















TABLE 14







VEGF-A in vivo single-dose screen with one set of exemplary VEGF-A siRNA


duplexes. In this table, the columns “Duplex Name” and “Strand Name” provide the numerical


part of the duplex or strand name. The duplex or strand name can comprise a suffix (number


following the decimal point in a duplex name) that merely refers to a batch production number.


The suffix can be omitted from the duplex name without changing the chemical structure. For


example, the antisense strand name A-2521293.1 in Table 10A refers to the same antisense


strand as A-2521293 in Table 14.


















SEQ

Unmodified
SEQID NO


Duplex
Strand


ID NO
Modified Sequence
Sequence
(un-


Name
Name
Strand
Target
(modified)
(5′-3′)
(5′-3′)
modified)





AD-
A-
sense
None
5003
asascaguGfuUfCfUfu
AACAGUGUUC
5021


64958
128009



gcucuauaaL96
UUGCUCUAUA









A




A-
anti-
None
5004
usUfsauaGfagcaaga
UUAUAGAGCA
5022



126312
sense


AfcAfcuguususu
AGAACACUGU









UUU






AD-
A-
sense
VEGF-
1044
asasgac(Uhd)gadTad
AAGACUGATAC
1304


1397068
1700995

A

CagaacgaucaL96
AGAACGAUCA




A-
anti-
VEGF-
3901
VPusdGsaudCg(U2p)
UGAUCGUUCU
4081



2521293
sense
A

ucugdTadTcdAgucu
GTATCAGUCU








USUSC
UUC






AD-
A-
sense
VEGF-
10
csusgau(Ahd)CfaGfA
CUGAUACAGA
268


1397052
1701263

A

fAfcgaucgauaaL96
ACGAUCGAUA









A




A-
anti-
VEGF-
3957
VPusUfsaudCg(A2p)
UUAUCGAUCG
4137



2521192
sense
A

ucguucUfgUfaucags
UUCUGUAUCA








use
GUC






AD-
A-
sense
VEGF-
5005
asusgcagAfuUfAfUfg
AUGCAGAUUA
5023


1397050
2600337

A

cgg(Ahd)ucaaaL96
UGCGGAUCAA









A




A-
anti-
VEGF-
3936
VPusUfsugdAu(C2p)
UUUGAUCCGC
4116



2521186
sense
A

cgcauaAfuCfugcausg
AUAAUCUGCA








sg
UGG






AD-
A-
sense
VEGF-
5006
ascscaggAfaAfGfAfc
ACCAGGAAAG
5024


1397051
2600338

A

uga(Uhd)acagaL96
ACUGAUACAG









A




A-
anti-
VEGF-
3918
VPusCfsuguAfucagu
UCUGUAUCAG
4098



2521190
sense
A

cuUfuCfcuggusgsc
UCUUUCCUGG









UGC






AD-
A-
sense
VEGF-
5007
asgsaac(Ahd)GfuCfC
AGAACAGUCC
5025


1397053
2600339

A

fUfuaauccagaaL96
UUAAUCCAGA









A




A-
anti-
VEGF-
3924
VPusUfscudGg(A2p)
UUCUGGAUUA
4104



2521200
sense
A

uuaaggAfcUfguucus
AGGACUGUUC








gsu
UGU






AD-
A-
sense
VEGF-
5008
asgsauu(Ahd)GfaGfA
AGAUUAGAGA
5026


1397054
2600340

A

fGfuuuuauuucaL96
GUUUUAUUUC









A




A-
anti-
VEGF-
2640
VPusGfsaaaUfaaaac
UGAAAUAAAA
4110



2282496
sense
A

ucUfcUfaaucususc
CUCUCUAAUC









UUC






AD-
A-
sense
VEGF-
5009
asasaag(Ahd)GfaAfA
AAAAGAGAAA
5027


1397055
2600341

A

fGfuguuuuauaaL96
GUGUUUUAUA









A




A-
anti-
VEGF-
2775
VPusUfsauaAfaacac
UUAUAAAACA
3673



2282766
sense
A

uuUfcUfcuuuuscsu
CUUUCUCUUU









UCU






AD-
A-
sense
VEGF-
5010
asasagagAfaAfGfUfg
AAAGAGAAAG
5028


1397056
2600342

A

uuu(Uhd)auauaL96
UGUUUUAUAU









A




A-
anti-
VEGF-
2776
VPusAfsuauAfaaaca
UAUAUAAAAC
3674



2282768
sense
A

cuUfuCfucuuususc
ACUUUCUCUU









UUC






AD-
A-
sense
VEGF-
5011
csusacagcaCfAfAfca
CUACAGCACAA
5029


1397058
2600344

A

aa(Uhd)gugaaL96
CAAAUGUGAA




A-
anti-
VEGF-
3953
VPusdTscadCadTuug
UTCACATUUG
4133



2521229
sense
A

udTgUfgcuguagsgsg
UTGUGCUGUA









GGG






AD-
A-
sense
VEGF-
5012
asasaga(Chd)ugAfUf
AAAGACUGAU
5030


1397059
2600345

A

AfcagaacgauaL96
ACAGAACGAU









A




A-
anti-
VEGF-
3889
VPusdAsucdGudTcu
UAUCGUTCUG
4069



2521233
sense
A

gudAuCfagucuuuscs
UAUCAGUCUU








c
UCC






AD-
A-
sense
VEGF-
5013
asasgac(Uhd)gaUfAf
AAGACUGAUA
5031


1397060
2600346

A

CfagaacgaucaL96
CAGAACGAUC









A




A-
anti-
VEGF-
3902
VPusdGsaudCg(U2p)
UGAUCGUUCU
5039



2521235
sense
A

ucugdTaUfcagucuus
GTAUCAGUCU








use
UUC






AD-
A-
sense
VEGF-
5014
asusacagaaCfGfAfuc
AUACAGAACG
5032


1397061
2600347

A

ga(Uhd)acagaL96
AUCGAUACAG









A




A-
anti-
VEGF-
3932
VPusdCsugdTa(U2p)
UCUGTAUCGA
4112



2521239
sense
A

cgaudCgUfucuguaus
UCGUUCUGUA








esg
UCG






AD-
A-
sense
VEGF-
5015
csasgaa(Chd)agUfCf
CAGAACAGUCC
5033


1397062
2600348

A

CfuuaauccagaL96
UUAAUCCAGA




A-
anti-
VEGF-
3944
VPusdCsugdGa(U2p)
UCUGGAUUAA
4124



2521245
sense
A

uaagdGaCfuguucugs
GGACUGUUCU








use
GUC






AD-
A-
sense
VEGF-
5016
asusugg(Ahd)uuCfGf
AUUGGAUUCG
5034


1397064
2600350

A

CfcauuuuauuaL96
CCAUUUUAUU









A




A-
anti-
VEGF-
3938
VPusdAsaudAadAau
UAAUAAAAUG
4118



2521257
sense
A

ggdCgAfauccaaususc
GCGAAUCCAA









UUC






AD-
A-
sense
VEGF-
5017
gsasuucgccAfUfUfuu
GAUUCGCCAU
5035


1397065
2600351

A

au(Uhd)uuucaL96
UUUAUUUUUC









A




A-
anti-
VEGF-
3965
VPusdGsaadAadAua
UGAAAAAUAA
4145



2521259
sense
A

aadAuGfgcgaaucscs
AAUGGCGAAU








g
CCG






AD-
A-
sense
VEGF-
5018
gsasgaa(Ahd)guGfUf
GAGAAAGUGU
5036


1397066
2600352

A

UfuuauauacgaL96
UUUAUAUACG









A




A-
anti-
VEGF-
3962
VPusdCsgudAudAua
UCGUAUAUAA
4142



2521271
sense
A

aadAcAfcuuucucsus
AACACUUUCU








u
CUU






AD-
A-
sense
VEGF-
5019
gsusguu(Uhd)uaUfA
GUGUUUUAUA
5037


1397067
2600353

A

fUfacgguacuuaL96
UACGGUACUU









A




A-
anti-
VEGF-
3971
VPusd AsagdT adCcgu
UAAGTACCGU
4151



2521275
sense
A

adTaUfaaaacacsusu
ATAUAAAACAC









UU






AD-
A-
sense
VEGF-
5020
asgsauu(Ahd)gadGa
AGAUUAGAGA
5038


1397069
2600354

A

dGuuuuauuucaL96
GUUUUAUUUC









A




A-
anti-
VEGF-
3928
VPusdGsaadAudAaa
UGAAAUAAAA
4108



2521319
sense
A

acdTcdTcdTaaucusu
CTCTCTAAUCU








sc
UC









Experimental Methods

An AAV vector harboring Homo sapiens VEGF-A was injected in 6-8 week old C57BL/6 female mice (2×1011 viral particles/mouse), and at 14 days post-AAV administration, a selected siRNA or a control agent were subcutaneously injected at 3 mg/kg in mice (n=3 per group). Mice were sacrificed and their livers were assessed for VEGF-A mRNA levels at 14 days post-injection of the siRNAs or control.


Results

Table 15 and FIG. 2 demonstrate the results of the in vivo screen with the siRNA duplexes corresponding to the siRNA sequences in Table 12. Of the siRNA duplexes evaluated in vivo in Table 15, 2 achieved a knockdown of VEGF-A of ≥60%, 4 achieved a knockdown of VEGF-A of ≥50%, 9 achieved a knockdown of VEGF-A of ≥40%, 11 achieved a knockdown of VEGF-A of ≥30%, and 13 achieved a knockdown of VEGF-A of ≥15%.









TABLE 15







Efficacy of exemplary VEGF-A siRNAs in mice. In this


table the column “Duplex Name” provides the numerical


part of the duplex name with a suffix (number following


the decimal point in a duplex name) that merely refers


to a batch production number. The suffix can be omitted


from the duplex name without changing the chemical


structure. For example, duplex AD-953504 in Table 12


refers to the same duplex as AD-953504.2 in Table 15.









Day 14 post-treatment









Duplex
% VEGF-A



(Administered at 3 mg/kg)
Message Remaining
St Dev












PBS
101.85
21.59


Naïve
106.47
14.34


AD-64228.39
62.99
16.53


AD-901376.2
72.86
10.62


AD-953308.2
81.89
34.49


AD-953336.2
51.31
16.11


AD-953337.2
44.93
 5.57


AD-953339.2
58.33
25.29


AD-953340.2
33.05
18.66


AD-953342.2
35.97
 8.19


AD-953344.2
56.71
14.45


AD-953351.2
43.75
29.11


AD-953363.2
52.28
10.56


AD-953364.2
69.25
10.87


AD-953374.2
59.51
18.65


AD-953504.2
63.66
10.61









Table 16 and FIG. 4 demonstrate the results of the in vivo screen with the siRNA duplexes corresponding to the siRNA sequences in Table 13. Of the siRNA duplexes evaluated in vivo in Table 16, 3 achieved a knockdown of VEGF-A of ≥70%, 6 achieved a knockdown of VEGF-A of ≥60%, 9 achieved a knockdown of VEGF-A of ≥50%, 12 achieved a knockdown of VEGF-A of ≥40%, and 13 achieved a knockdown of VEGF-A of ≥30%.









TABLE 16







Efficacy of exemplary VEGF-A siRNAs in mice. In this


table the column “Duplex Name” provides the numerical


part of the duplex name with a suffix (number following


the decimal point in a duplex name) that merely refers


to a batch production number. The suffix can be omitted


from the duplex name without changing the chemical


structure. For example, duplex AD-901349 in Table 13


refers to the same duplex as AD-901349.1 in Table 16.









Day 14 post-treatment









Duplex
% VEGF-A



(Administered at 3 mg/kg)
Message Remaining
St Dev












PBS
102.2
24.0


Naïve
56.8
 8.9


AD-901349.1
26.4
14.1


AD-953481.1
22.6
26.2


AD-901356.1
34.5
 6.4


AD-901355.1
43.0
 4.4


AD-953365.1
60.5
 3.3


AD-953410.1
38.8
16.4


AD-953411.1
56.2
10.5


AD-953338.1
58.1
 5.6


AD-953350.1
42.0
 2.5


AD-953375.1
45.6
 6.1


AD-953341.1
30.1
12.4


AD-953370.1
28.3
 8.5


AD-953386.1
52.9
13.3


AD-64958
57.1
 6.1


(ELF8 TTR control)











Table 17 and FIG. 6 demonstrate the results of the in vivo screen with the siRNA duplexes corresponding to the siRNA sequences in Table 14. Of the siRNA duplexes evaluated in vivo in Table 17, 5 achieved a knockdown of VEGF-A of ≥40%, 10 achieved a knockdown of VEGF-A of ≥30%, 15 achieved a knockdown of VEGF-A of ≥20%, and 17 achieved a knockdown of VEGF-A of ≥10%.









TABLE 17







Efficacy of exemplary VEGF-A siRNAs in mice. In this


table the column “Duplex Name” provides the numerical


part of the duplex name with a suffix (number following


the decimal point in a duplex name) that merely refers


to a batch production number. The suffix can be omitted


from the duplex name without changing the chemical


structure. For example, duplex AD-1397050 in Table 14


refers to the same duplex as AD-1397050.2 in Table 17.









Day 14 post-treatment









Duplex
% VEGF-A



(Administered at 3 mg/kg)
Message Remaining
St Dev












PBS
89.7
45.3


Naïve
100.0
17.4


AD-1397050.2
50.1
15.3


AD-1397051.2
76.7
28.9


AD-1397052.2
63.6
19.6


AD-1397053.2
50.9
15.6


AD-1397054.2
53.0
12.1


AD-1397055.2
84.4
32.4


AD-1397056.2
59.2
23.8


AD-1397058.2
77.5
20.7


AD-1397059.2
77.1
13.4


AD-1397060.2
68.9
 6.8


AD-1397061.2
58.2
12.9


AD-1397062.2
68.7
12.0


AD-1397064.2
62.9
 6.7


AD-1397065.2
85.2
29.9


AD-1397066.2
77.7
 8.7


AD-1397067.2
93.5
37.3


AD-1397068.2
62.0
15.7


AD-1397069.2
76.9
26.1


AD-64958.100
66.0
 2.6








Claims
  • 1. A double stranded ribonucleic acid (dsRNA) agent for inhibiting expression of vascular endothelial growth factor A (VEGF-A), wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region, wherein the antisense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from one of the antisense sequences listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A, and 18B, and wherein the sense strand comprises a nucleotide sequence comprising at least 15 contiguous nucleotides, with 0, 1, 2, or 3 mismatches, from a sense sequence listed in any one of Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 8A, 8B, 10A, 10B, 12, 13, 14, 18A, and 18B that corresponds to the antisense sequence.
  • 2. The dsRNA agent of claim 1, wherein the portion of the sense strand is a portion within nucleotides 1855-1875, 1858-1878, 2178-2198, 2181-2201, 2944-2964, 2946-2966, 2952-2972, 3361-3381, or 3362-3382 of SEQ ID NO: 1.
  • 3. The dsRNA agent of claim 1 or 2, wherein the portion of the sense strand is a portion within a sense strand from a duplex chosen from AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)).
  • 4. The dsRNA agent of any one of claims 1-3, wherein the portion of the sense strand is a sense strand chosen from the sense strands of AD-1020574 (CGACAGAACAGUCCUUAAUCA (SEQ ID NO: 4200)), AD-901094 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4201)), AD-1020575 (CAGAACAGUCCUUAAUCCAGA (SEQ ID NO: 4202)), AD-901100 (AACAGUGCUAAUGUUAUUGGA (SEQ ID NO: 4203)), AD-901101 (AGUGCUAAUGUUAUUGGUGUA (SEQ ID NO: 4204)), AD-901113 (GAGAAAGUGUUUUAUAUACGA (SEQ ID NO: 4205)), AD-901123 (AAAAUAGACAUUGCUAUUCUA (SEQ ID NO: 4206)), AD-901124 (AAAUAGACAUUGCUAUUCUGA (SEQ ID NO: 4207)), AD-901158 (GAAAGUGUUUUAUAUACGGUA (SEQ ID NO: 4208)), AD-901159 (GUUUUAUAUACGGUACUUAUA (SEQ ID NO: 4209)), AD-1020573 (AGUGCUAATGTUAUUGGUGUA (SEQ ID NO: 4210)), or AD-1023143 (AAAAUAGACATUGCUAUUCUA (SEQ ID NO: 4211)).
  • 5. The dsRNA of any one of claims 1-4, wherein the portion of the antisense strand is a portion within an antisense strand from a duplex chosen from AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)).
  • 6. The dsRNA of any one of claims 1-5, wherein the portion of the antisense strand is an antisense strand chosen the antisense strands of AD-1020574 (UGAUUAAGGACUGUUCUGUCGAU (SEQ ID NO: 4212)), AD-901094 (UCUGGAUUAAGGACUGUUCUGUC (SEQ ID NO: 4213)), AD-1020575 (UCUGGATUAAGGACUGUUCUGUC (SEQ ID NO: 4214)), AD-901100 (UCCAAUAACAUUAGCACUGUUAA (SEQ ID NO: 4215)), AD-901101 (UACACCAAUAACAUUAGCACUGU (SEQ ID NO: 4216)), AD-901113 (UCGUAUAUAAAACACUUUCUCUU (SEQ ID NO: 4217)), AD-901123 (UAGAAUAGCAAUGUCUAUUUUAU (SEQ ID NO: 4218)), AD-901124 (UCAGAAUAGCAAUGUCUAUUUUA (SEQ ID NO: 4219)), AD-901158 (UACCGUAUAUAAAACACUUUCUC (SEQ ID NO: 4220)), AD-901159 (UAUAAGUACCGUAUAUAAAACAC (SEQ ID NO: 4221)), AD-1020573 (UACACCAAUAACATUAGCACUGU (SEQ ID NO: 4222)), or AD-1023143 (UAGAAUAGCAATGTCTAUUUUAU (SEQ ID NO: 4223)).
  • 7. The dsRNA of any one of claims 1-6, wherein the sense strand and the antisense strand comprise nucleotide sequences of the paired sense strand and antisense strand of a duplex selected from AD-1020574 (SEQ ID NO: 4200 and 4212), AD-901094 (SEQ ID NO: 4201 and 4213), AD-1020575 (SEQ ID NO: 4202 and 4214), AD-901100 (SEQ ID NO: 4203 and 4215), AD-901101 (SEQ ID NO: 4204 and 4216), AD-901113 (SEQ ID NO: 4205 and 4217), AD-901123 (SEQ ID NO: 4206 and 4218), AD-901124 (SEQ ID NO: 4207 and 4219), AD-901158 (SEQ ID NO: 4208 and 4220), AD-901159 (SEQ ID NO: 4209 and 4221), AD-1020573 (SEQ ID NO: 4210 and 4222), or AD-1023143 (SEQ ID NO: 4211 and 4223).
  • 8. The dsRNA agent of any one of claims 1-7, wherein the antisense strand comprises a nucleotide sequence of an antisense sequence listed in Table 18A, and the sense strand comprises a nucleotide sequence of a sense sequence listed in Table 18A that corresponds to the antisense sequence.
  • 9. The dsRNA agent of any one of claims 1-8, wherein the dsRNA agent is AD-1020574, AD-901094, AD-1020575, AD-901100, AD-901101, AD-901113, AD-901123, AD-901124, AD-901158, AD-901159, AD-1020573, or AD-1023143.
  • 10. The dsRNA agent of any one of claims 1-9, wherein at least one of the sense strand and the antisense strand is conjugated to one or more lipophilic moieties.
  • 11. The dsRNA agent of claim 10, wherein the lipophilic moiety is conjugated via a linker or carrier.
  • 12. The dsRNA agent of claim 10 or 11, wherein one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand.
  • 13. The dsRNA agent of claim 12, wherein the one or more lipophilic moieties are conjugated to one or more internal positions on at least one strand via a linker or carrier.
  • 14. The dsRNA agent of any one of claims 10-13, wherein the lipophilic moiety is an aliphatic, alicyclic, or polyalicyclic compound.
  • 15. The dsRNA agent of claim 14, wherein the lipophilic moiety contains a saturated or unsaturated C16 hydrocarbon chain.
  • 16. The dsRNA agent of any one of claims 10-15, wherein the lipophilic moiety is conjugated via a carrier that replaces one or more nucleotide(s) in the internal position(s) or the double stranded region.
  • 17. The dsRNA agent of any one of claims 10-15, wherein the lipophilic moiety is conjugated to the sense strand or the antisense strand via a linker containing an ether, thioether, urea, carbonate, amine, amide, maleimide-thioether, disulfide, phosphodiester, sulfonamide linkage, a product of a click reaction, or carbamate.
  • 18. The dsRNA agent of any one of claims 10-16, wherein the lipophilic moiety is conjugated to a nucleobase, sugar moiety, or internucleosidic linkage.
  • 19. The dsRNA agent of any of the preceding claims, wherein the dsRNA agent comprises at least one modified nucleotide.
  • 20. The dsRNA agent of claim 19, wherein no more than five of the sense strand nucleotides and not more than five of the nucleotides of the antisense strand are unmodified nucleotides.
  • 21. The dsRNA agent of claim 19, wherein all of the nucleotides of the sense strand and all of the nucleotides of the antisense strand comprise a modification.
  • 22. The dsRNA agent of any one of claims 19-21, wherein at least one of the modified nucleotides is selected from the group consisting of a deoxy-nucleotide, a 3′-terminal deoxy-thymine (dT) nucleotide, a 2′-O-methyl modified nucleotide, a 2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an unlocked nucleotide, a conformationally restricted nucleotide, a constrained ethyl nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-O-allyl-modified nucleotide, 2′-C-alkyl-modified nucleotide, a 2′-methoxyethyl modified nucleotide, a 2′-O-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, a non-natural base comprising nucleotide, a tetrahydropyran modified nucleotide, a 1,5-anhydrohexitol modified nucleotide, a cyclohexenyl modified nucleotide, a nucleotide comprising a phosphorothioate group, a nucleotide comprising a methylphosphonate group, a nucleotide comprising a 5′-phosphate, a nucleotide comprising a 5′-phosphate mimic, a glycol modified nucleotide, and a 2-O-(N-methylacetamide) modified nucleotide; and combinations thereof.
  • 23. The dsRNA agent of any of the preceding claims, wherein at least one strand comprises a 3′ overhang of at least 2 nucleotides.
  • 24. The dsRNA agent of any of the preceding claims, wherein the double stranded region is 15-30 nucleotide pairs in length.
  • 25. The dsRNA agent of claim 24, wherein the double stranded region is 17-23 nucleotide pairs in length.
  • 26. The dsRNA agent of any of the preceding claims, wherein each strand has 19-30 nucleotides.
  • 27. The dsRNA agent of any of the preceding claims, wherein the agent comprises at least one phosphorothioate or methylphosphonate internucleotide linkage.
  • 28. The dsRNA agent of any one of claims 10-27, further comprising a targeting ligand, e.g., a ligand that targets an ocular tissue.
  • 29. The dsRNA agent of claim 28, wherein the ocular tissue is a retinal pigment epithelium (RPE) or choroid tissue, e.g., a choroid vessel.
  • 30. The dsRNA agent of any one of the preceding claims, further comprising a phosphate or phosphate mimic at the 5′-end of the antisense strand.
  • 31. The dsRNA agent of claim 30, wherein the phosphate mimic is a 5′-vinyl phosphonate (VP).
  • 32. The dsRNA agent of any one of the preceding claims, comprising: (i) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 4164, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4176;(ii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1465, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4177;(iii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1466, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4178;(iv) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1467, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4179;(v) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1468, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4180;(vi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1469, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4181;(vii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1470, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4182;(viii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1471, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4183;(ix) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1472, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4184;(x) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1473, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4185;(xi) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1474, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4186; or(xii) the sense strand comprises the sequence and all the modifications of SEQ ID NO: 1475, and the antisense strand comprises the sequence and all the modifications of SEQ ID NO: 4187.
  • 33. A cell containing the dsRNA agent of any one of claims 1-32.
  • 34. A pharmaceutical composition for inhibiting expression of a VEGF-A, comprising the dsRNA agent of any one of claims 1-32.
  • 35. A method of inhibiting expression of VEGF-A in a cell, the method comprising: (a) contacting the cell with the dsRNA agent of any one of claims 1-32, or a pharmaceutical composition of claim 34; and(b) maintaining the cell produced in step (a) for a time sufficient to reduce levels of VEGF-A mRNA, VEGF-A protein, or both of VEGF-A mRNA and protein, thereby inhibiting expression of VEGF-A in the cell.
  • 36. The method of claim 35, wherein the cell is within a subject.
  • 37. The method of claim 36, wherein the subject is a human.
  • 38. The method of claim 37, wherein the subject has been diagnosed with a VEGF-A-associated disorder, e.g., wet age-related macular degeneration (wet AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal vein occlusion (RVO), macular edema following retinal vein occlusion (MEfRVO), retinopathy of prematurity (ROP), or myopic choroidal neovascularization (mCNV).
  • 39. A method of treating a subject diagnosed with a VEGF-A-associated disorder comprising administering to the subject a therapeutically effective amount of the dsRNA agent of any one of claims 1-23 or a pharmaceutical composition of claim 25, thereby treating the disorder.
  • 40. The method of claim 39, wherein the VEGF-A-associated disorder is an angiogenic ocular disorder.
  • 41. The method of claim 40, wherein the angiogenic ocular disorder is selected from the group consisting of AMD, DR, DME, RVO, MEfRVO, ROP, and mCNV.
  • 42. The method of any one of claims 39-41, wherein treating comprises amelioration of at least one sign or symptom of the disorder.
  • 43. The method of any one of claims 39-42, wherein the treating comprises (a) inhibiting angiogenesis; (b) inhibiting or reducing the expression or activity of VEGF-A; (c) inhibiting choroidal neovascularization; (d) inhibiting growth of new blood vessels in the choriocapillaris; (e) reducing retinal thickness; (f) increasing visual acuity; or (g) reducing intraocular inflammation.
  • 44. The method of any one of claims 36-43, wherein the dsRNA agent is administered to the subject intraocularly, intravenously, or topically.
  • 45. The method of claim 44, wherein the intraocular administration comprises intravitreal administration (e.g., intravitreal injection), transscleral administration (e.g., transscleral injection), subconjunctival administration (e.g., subconjunctival injection), retrobulbar administration (e.g., retrobulbar injection), intracameral administration (e.g., intracameral injection), or subretinal administration (e.g., subretinal injection).
  • 46. The method of any one of claims 36-45, further comprising administering to the subject an additional agent or therapy suitable for treatment or prevention of an VEGF-A-associated disorder (e.g., one or more of a photodynamic therapy, photocoagulation therapy, a steroid, a non-steroidal anti-inflammatory agent, an anti-VEGF agent, or a vitrectomy).
RELATED APPLICATIONS

This application claims priority to U.S. provisional application No. 62/972,519, filed on Feb. 10, 2020, U.S. provisional application No. 63/055,627, filed on Jul. 23, 2020, and U.S. provisional application No. 63/140,714, filed on Jan. 22, 2021. The entire contents of the foregoing applications are hereby incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/017276 2/9/2021 WO
Provisional Applications (3)
Number Date Country
63140714 Jan 2021 US
63055627 Jul 2020 US
62972519 Feb 2020 US