Compositions and methods for treating CEP290-associated disease

Information

  • Patent Grant
  • 11339437
  • Patent Number
    11,339,437
  • Date Filed
    Wednesday, August 2, 2017
    7 years ago
  • Date Issued
    Tuesday, May 24, 2022
    2 years ago
Abstract
Compositions and methods for treatment of CEP290 related diseases are disclosed.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 2, 2017, is named SequenceListing.txt and is 1,440,000 bytes in size.


FIELD OF THE INVENTION

The invention relates to CRISPR/CAS-related methods and components for editing of a target nucleic acid sequence, and applications thereof in connection with Leber's Congenital Amaurosis 10 (LCA10).


BACKGROUND

Leber's congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy, with an onset of disease symptoms in the first years of life (Leber 1869) and an estimated prevalence of approximately 1 in 50,000 worldwide (Koenekoop 2007; Stone 2007). Genetically, LCA is a heterogeneous disease. To date, fifteen genes have been identified with mutations that result in LCA (den Hollander 2008; Estrada-Cuzcano 2011). The CEP290 gene is the most frequently mutated LCA gene accounting for approximately 15% of all cases (Stone 2007; den Hollander 2008; den Hollander 2006; Perrault 2007). Severe mutations in CEP290 have also been reported to cause systemic diseases that are characterized by brain defects, kidney malformations, polydactyly and/or obesity (Baal 2007; den Hollander 2008; Helou 2007; Valente 2006). Mutations of CEP290 are observed in several diseases, including Senior-Loken syndrome, Meckel Gruber syndrome, Bardet-Biedle syndrome, Joubert Syndrome, and Leber Congenital Amaurosis 10 (LCA10). Patients with LCA and early-onset retinal dystrophy often carry hypomorphic CEP290 alleles (Stone 2007; den Hollander 2006; Perrault 2007; Coppieters 2010; Littink 2010).


LCA, and other retinal dystrophies such as Retinitis Pigmentosa (RP), have long been considered incurable diseases. However, the first phase I/II clinical trials using gene augmentation therapy have led to promising results in a selected group of adult LCA/RP patients with mutations in the RPE65 gene (Bainbridge 2008; Cideciyan 2008; Hauswirth 2008; Maguire 2008). Unilateral subretinal injections of adeno-associated virus particles carrying constructs encoding the wild-type RPE65 cDNA were shown to be safe and moderately effective in some patients, without causing any adverse effects. In a follow-up study including adults and children, visual improvements were more sustained, especially in the children all of whom gained ambulatory vision (Maguire 2009). Although these studies demonstrated the potential to treat LCA using gene augmentation therapy and increased the development of therapeutic strategies for other genetic subtypes of retinal dystrophies (den Hollander 2010), it is hard to control the expression levels of the therapeutic genes when using gene augmentation therapy.


LCA10, one type of LCA, is an inherited (autosomal recessive) retinal degenerative disease characterized by severe loss of vision at birth. All subjects having LCA10 have had at least one c.2991+1655A to G (adenine to guanine) mutation in the CEP290 gene. Heterozygous nonsense, frameshift, and splice-site mutations have been identified on the remaining allele. A c.2991+1655A to G mutation in the CEP290 gene give rise to a cryptic splice donor cite in intron 26 which results in the inclusion of an aberrant exon of 128 bp in the mutant CEP290 mRNA, and inserts a premature stop codon (P.C998X). The sequence of the cryptic exon contains part of an Alu repeat.


There are currently no approved therapeutics for LCA10. Despite advances that have been made using gene therapy, there remains a need for therapeutics to treat retinal dystrophies, including LCA10.


SUMMARY OF THE INVENTION

The inventors have addressed a key unmet need in the field by providing new and effective means of delivering genome editing systems to the affected tissues of subjects suffering from CEP290 associated diseases and other inherited retinal dystrophies. This disclosure provides nucleic acids and vectors for efficient transduction of genome editing systems in retinal cells and cells in other tissues, as well as methods of using these vectors to treat subjects. These nucleic acids, vectors and methods represent an important step forward in the development of treatments for CEP290 associated diseases.


In one aspect, the disclosure relates to a method for treating or altering a cell in a subject (e.g., a human subject or an animal subject), that includes administering to the subject a nucleic acid encoding a Cas9 and first and second guide RNAs (gRNAs) targeted to the CEP290 gene of the subject. In certain embodiments, the first and second gRNAs are targeted to one or more target sequences that encompass or are proximal to a CEP290 target position. The first gRNA may include a targeting domain selected from SEQ ID NOs: 389-391 (corresponding RNA sequences in SEQ ID NOs: 530, 468, and 538, respectively), while the second gRNA may include a targeting domain selected from SEQ ID NOs: 388, 392, and 394 (corresponding RNA sequences in SEQ ID NOs: 558, 460, 568, respectively). The Cas9, which may be a modified Cas9 (e.g., a Cas9 engineered to alter PAM specificity, improve fidelity, or to alter or improve another structural or functional aspect of the Cas9), may include one or more of a nuclear localization signal (NLS) and/or a polyadenylation signal. Certain embodiments are characterized by Cas9s that include both a C-terminal and an N-terminal NLS. The Cas9 is encoded, in certain embodiments, by SEQ ID NO: 39, and its expression is optionally driven by one of a CMV, EFS, or hGRK1 promoter, as set out in SEQ ID NOs: 401-403 respectively. The nucleic acid also includes, in various cases, first and second inverted terminal repeat sequences (ITRs).


Continuing with this aspect of the disclosure, a nucleic acid comprising any or all of the features described above may be administered to the subject via an adeno-associated viral (AAV) vector, such as an AAV5 vector. The vector may be delivered to the retina of the subject (for example, by subretinal injection). Various embodiments of the method may be used in the treatment of human subjects. For example, the methods may be used to treat subjects suffering from a CEP290 associated disease such as LCA10, to restore CEP290 function in a subject in need thereof, and/or to alter a cell in the subject, such as a retinal cell and/or a photoreceptor cell.


In another aspect, this disclosure relates to a nucleic acid encoding a Cas9, a first gRNA with a targeting domain selected from SEQ ID NOs: 389-391 (corresponding RNA sequences in SEQ ID NOs: 530, 468, and 538, respectively), and a second gRNA with a targeting domain selected from SEQ ID NOs: 388, 392, and 394 (corresponding RNA sequences in SEQ ID NOs: 558, 460, and 568, respectively). The nucleic acid may, in various embodiments, incorporate any or all of the features described above (e.g., the NLS and/or polyadenylation signal; the CMV, EFS or hGRK1 promoter; and/or the ITRs). The nucleic acid may be part of an AAV vector, which vector may be used in medicine, for example to treat a CEP290 associated disease such as LCA10, and/or may be used to edit specific cells including retinal cells, for instance retinal photoreceptor cells. The nucleic acid may also be used for the production of a medicament.


In yet another aspect, this disclosure relates to a method of treating a subject that includes the step of contacting a retina of the subject with one or more recombinant viral vectors (e.g., AAV vectors) that encode a Cas9 and first and second gRNAs. The first and second gRNAs are adapted to form first and second ribonucleoprotein complexes with the Cas9, and the first and second complexes in turn are adapted to cleave first and second target sequences, respectively, on either side of a CEP290 target position as that term is defined below. This cleavage results in the alteration of the nucleic acid sequence of the CEP290 target position. In some embodiments, the step of contacting the retina with one or more recombinant viral vectors includes administering to the retina of the subject, by subretinal injection, a composition comprising the one or more recombinant viral vectors. The alteration of the nucleic acid sequence of the CEP290 target position can include formation of an indel, deletion of part or all of the CEP290 target position, and/or inversion of a nucleotide sequence in the CEP290 target position. The subject, in certain embodiments, is a primate.


The genome editing systems, compositions, and methods of the present disclosure can support high levels of productive editing in retinal cells, e.g., in photoreceptor cells. In certain embodiments, 10%, 15%, 20%, or 25% of retinal cells in samples modified according to the methods of this disclosure (e.g., in retinal samples contacted with a genome editing system of this disclosure) comprise a productive alteration of an allele of the CEP290 gene. A productive alteration may include, variously, a deletion and/or inversion of a sequence comprising an IVS26 mutation, or another modification that results in an increase in the expression of functional CEP290 protein in a cell. In certain embodiments, 25%, 30%, 35%, 40%, 45%, 50%, or more than 50% of photoreceptor cells in retinal samples modified according to the methods of this disclosure (e.g., in retinal samples contacted with a genome editing system of this disclosure) comprise a productive alteration of an allele of the CEP290 gene.


In another aspect, this disclosure relates to a nucleic acid encoding a Cas9 and first and second gRNAs targeted to a CEP290 gene of a subject for use in therapy, e.g. in the treatment of CEP290-associated disease. The CEP290 associated disease may be, in some embodiments, LCA10, and in other embodiments may be selected from the group consisting of Senior-Loken syndrome, Meckel Gruber syndrome, Bardet-Biedle syndrome and Joubert Syndrome. A targeting domain of the first gRNA may comprise a sequence selected from SEQ ID NOs: 389-391 (corresponding RNA sequences in SEQ ID NOs: 530, 468, and 538, respectively), and a targeting domain of the second gRNA may comprise a sequence selected from SEQ ID NOs: 388, 392, and 394, respectively (corresponding RNA sequences in SEQ ID NOs: 558, 460, and 568, respectively). In certain embodiments, the first and second gRNA targeting domains comprise SEQ ID NOs: 389 and 388, respectively. In other embodiments, the first and second gRNA targeting domains comprise the sequences of SEQ ID NOs: 389 and 392, respectively; SEQ ID NOs: 389 and 394, respectively; SEQ ID NOs: 390 and 388, respectively; SEQ ID NOs: 391 and 388, respectively; or SEQ ID NOs: 391 and 392, respectively. In still other embodiments, the first and second targeting domains comprise the sequences of SEQ ID NOs: 390 and 392, respectively; SEQ ID NOs: 390 and 394, respectively; or SEQ ID NOs: 391 and 394, respectively. The gRNAs according to this aspect of the disclosure may be unimolecular, and may comprise RNA sequences according to SEQ ID NOs: 2779 or 2786 (corresponding to the DNA sequences of SEQ ID NOs: 2785 and 2787, respectively). Alternatively, the gRNAs may be two-part modular gRNAs according to either sequence, where the crRNA component comprises the portion of SEQ ID NO: 2785/2779 or 2787/2786 that is underlined below, and the tracrRNA component comprises the portion that is double-underlined below:









DNA:







(SEQ ID NO: 2785)








[N]

16-24

GTTTTAGTACTCTGGAAACAGAATCTACTAAAACAAGGCAAA







ATGCCGTGTTTATCTCGTCAACTTGTTGGCGAGATTTTTT



and





RNA:







(SEQ ID NO: 2779)








[N]

16-24

GUUUUAGUACUCUGGAAACAGAAUCUACUAAAACAAGGCAAA







AUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGAUUUUUU.






DNA:







(SEQ ID NO: 2787)








[N]

16-24

GTTATAGTACTCTGGAAACAGAATCTACTATAACAAGGCAAA







ATGCCGTGTTTATCTCGTCAACTTGTTGGCGAGATTTTTT



and





RNA:







(SEQ ID NO: 2786)








[N]

16-24

GUUAUAGUACUCUGGAAACAGAAUCUACUAUAACAAGGCAAA







AUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGAUUUUUU.







Continuing with this aspect of the disclosure, the Cas9 encoded by the nucleic acid is, in certain embodiments, a Staphylococcus aureus Cas9, which may be encoded by a sequence comprising SEQ ID NO: 39, or having at least 80%, 85%, 90%, 95% or 99% sequence identity thereto. The Cas9 encoded by the nucleic acid may comprise the amino acid sequence of SEQ ID NO: 26 or may share at least 80%, 85%, 90%, 95% or 99% sequence identity therewith. The Cas9 may be modified in some instances, for example to include one or more nuclear localization signals (NLSs) (e.g., a C-terminal and an N-terminal NLS) and/or a polyadenylation signal. Cas9 expression may be driven by a promoter sequence such as the promoter sequence comprising SEQ ID NO: 401, the promoter sequence comprising SEQ ID NO: 402, or the promoter sequence comprising SEQ ID NO: 403.


Staying with this aspect of the disclosure, the promoter sequence for driving the expression of the Cas9 comprises, in certain embodiments, the sequence of a human GRK1 promoter. In other embodiments, the promoter comprises the sequence of a cytomegalovirus (CMV) promoter or an EFS promoter. For example, the nucleic acid may comprise, in various embodiments, (a) a CMV promoter for Cas9 and gRNAs comprising (or differing by no more than 3 nucleotides from) targeting domains according to SEQ ID NOs: 389 and 392, or (b) a CMV promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394, or c) a CMV promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388, or d) a CMV promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388, or e) a CMV promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392, or f) an EFS promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 392, or g) an EFS promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394, or h) an EFS promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388, or i) an EFS promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388, or j) an EFS promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392, or k) an hGRK1 promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 392, or g) an hGRK1 promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394, or h) an hGRK1 promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388, or i) an hGRK1 promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388, or j) an hGRK1 promoter for Cas9 and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392. In other embodiments, the nucleic acid comprises a CMV promoter and guide RNA targeting sequences according to SEQ ID NOs: 389 and 388. In still other embodiments, the nucleic acid comprises an hGRK promoter and guide RNA targeting sequences according to SEQ ID NOs: 390 and 392, or it comprises a CMV promoter and guide RNA targeting sequences according to SEQ ID NOs: 390 and 392, or an hGRK promoter and guide RNA targeting sequences according to SEQ ID NOs: 390 and 394, or it comprises a CMV promoter and guide RNA targeting sequences according to SEQ ID NOs: 391 and 394, or an hGRK promoter and guide RNA targeting sequences according to SEQ ID NOs: 391 and 394, or it comprises a CMV promoter and guide RNA targeting sequences according to SEQ ID NOs: 390 and 392. And in further embodiments, the promoter is hGRK or CMV while the first and second gRNA targeting domains comprise the sequences of SEQ ID NOs: 389 and 392, SEQ ID NOs: 389 and 394, SEQ ID NOs: 390 and 388, SEQ ID NOs: 391 and 388, or SEQ ID NOs: 391 and 392.


In another aspect, the present disclosure relates to adeno-associated virus (AAV) vectors comprising the nucleic acids described above. AAV vectors comprising the foregoing nucleic acids may be administered to a variety of tissues of a subject, though in certain embodiments the AAV vectors are administered to a retina of the subject, and/or are administered by subretinal injection. The AAV vector may comprise an AAV5 capsid.


An additional aspect of this disclosure relates to a nucleic acid as described above, for delivery via an AAV vector also as described above. The nucleic acid includes in some embodiments, first and second inverted terminal repeat sequences (ITRs), a first guide RNA comprising a targeting domain sequence selected from SEQ ID NOs: 389-391 (corresponding RNA sequences in SEQ ID NOs: 530, 468, and 538, respectively), a second guide RNA comprising a targeting domain sequence selected from SEQ ID NOs: 388, 392, and 394 (corresponding RNA sequences in SEQ ID NOs: 558, 460, and 568, respectively), and a promoter for driving Cas9 expression comprising a sequence selected from SEQ ID NOs: 401-403. In certain embodiments, the nucleic acid includes first and second ITRs and first and second guide RNAs comprising a guide RNA sequence selected from SEQ ID NOs: 2785 and 2787 (e.g., both first and second guide RNAs comprise the sequence of SEQ ID NO: 2787). The nucleic acid may be used in the treatment of human subjects, and/or in the production of a medicament.


The nucleic acids and vectors according to these aspects of the disclosure may be used in medicine, for instance in the treatment of disease. In some embodiments, they are used in the treatment of a CEP290-associated disease, in the treatment of LCA10, or in the treatment of one or more of the following: Senior-Loken syndrome, Meckel Gruber syndrome, Bardet-Biedle syndrome, and/or Joubert Syndrome. Vectors and nucleic acids according to this disclosure may be administered to the retina of a subject, for instance by subretinal injection.


This disclosure also relates to recombinant viral vectors comprising the nucleic acids described above, and to the use of such viral vectors in the treatment of disease. In some embodiments, one or more viral vectors encodes a Cas9, a first gRNA and a second gRNA for use in a method of altering a nucleotide sequence of a CEP 290 target position wherein (a) the first and second gRNAs are adapted to form first and second ribonucleoprotein complexes with the Cas9, and (b) the first and second ribonucleoprotein complexes are adapted to cleave first and second cellular nucleic acid sequences on first and second sides of a CEP290 target position, thereby altering a nucleotide sequence of the CEP290 target position. In use, the one or more recombinant viral vectors is contacted to the retina of a subject, for instance by subretinal injection.


Another aspect of this disclosure relates to AAV vectors, AAV vector genomes and/or nucleic acids that may be carried by AAV vectors, which encode one or more guide RNAs, each comprising a sequence selected from—or having at least 90% sequence identity to—one of SEQ ID NOs: 2785 or 2787, a sequence encoding a Cas9 and a promoter sequence operably coupled to the Cas9 coding sequence, which promoter sequence comprises a sequence selected from—or having at least 90% sequence identity to—one of SEQ ID NOs: 401-403. The Cas9 coding sequence may comprise the sequence of SEQ ID NO: 39, or it may share at least 90% sequence identity therewith. Alternatively or additionally, the Cas9 coding sequence may encode an amino acid sequence comprising SEQ ID NO: 26, or sharing at least 90% sequence identity therewith. In certain embodiments, the AAV vector, vector genome or nucleic acid further comprises one or more of the following: left and right ITR sequences, optionally selected from—or having at least 90% sequence identity to—SEQ ID NOs: 408 and 437, respectively; and one or more U6 promoter sequences operably coupled to the one or more guide RNA sequences. The U6 promoter sequences may comprise, or share at least 90% sequence identity with, SEQ ID NO: 417.


Methods and compositions discussed herein, provide for treating or delaying the onset or progression of diseases of the eye, e.g., disorders that affect retinal cells, e.g., photoreceptor cells.


Methods and compositions discussed herein, provide for treating or delaying the onset or progression of Leber's Congenital Amaurosis 10 (LCA10), an inherited retinal degenerative disease characterized by severe loss of vision at birth. LCA10 is caused by a mutation in the CEP290 gene, e.g., a c.2991+1655A to G (adenine to guanine) mutation in the CEP290 gene which gives rise to a cryptic splice site in intron 26. This is a mutation at nucleotide 1655 of intron 26 of CEP290, e.g., an A to G mutation. CEP290 is also known as: CT87; MKS4; POC3; rd16; BBS14; JBTS5; LCA10; NPHP6; SLSN6; and 3H11Ag.


Methods and compositions discussed herein, provide for treating or delaying the onset or progression of LCA10 by gene editing, e.g., using CRISPR-Cas9 mediated methods to alter a LCA10 target position, as disclosed below.


“LCA10 target position” as used herein refers to nucleotide 1655 of intron 26 of the CEP290 gene, and the mutation at that site that gives rise to a cryptic splice donor site in intron 26 which results in the inclusion of an aberrant exon of 128 bp (c.2991+1523 to c.2991+1650) in the mutant CEP290 mRNA, and inserts a premature stop codon (p.C998X). The sequence of the cryptic exon contains part of an Alu repeat region. The Alu repeats span from c.2991+1162 to c.2991+1638. In an embodiment, the LCA10 target position is occupied by an adenine (A) to guanine (G) mutation (c.2991+1655A to G).


In one aspect, methods and compositions discussed herein, provide for altering a LCA10 target position in the CEP290 gene. The methods and compositions described herein introduce one or more breaks near the site of the LCA target position (e.g., c.2991+1655A to G) in at least one allele of the CEP290 gene. Altering the LCA10 target position refers to (1) break-induced introduction of an indel (also referred to herein as NHEJ-mediated introduction of an indel) in close proximity to or including a LCA10 target position (e.g., c.2991+1655A to G), or (2) break-induced deletion (also referred to herein as NHEJ-mediated deletion) of genomic sequence including the mutation at a LCA10 target position (e.g., c.2991+1655A to G). Both approaches give rise to the loss or destruction of the cryptic splice site resulting from the mutation at the LCA10 target position (e.g., c.2991+1655A to G).


In an embodiment, a single strand break is introduced in close proximity to or at the LCA10 target position (e.g., c.2991+1655A to G) in the CEP290 gene. While not wishing to be bound by theory, it is believed that break-induced indels (e.g., indels created following NHEJ) destroy the cryptic splice site. In an embodiment, the single strand break will be accompanied by an additional single strand break, positioned by a second gRNA molecule.


In an embodiment, a double strand break is introduced in close proximity to or at the LCA10 target position (e.g., c.2991+1655A to G) in the CEP290 gene. While not wishing to be bound by theory, it is believed that break-induced indels (e.g., indels created following NHEJ) destroy the cryptic splice site. In an embodiment, a double strand break will be accompanied by an additional single strand break may be positioned by a second gRNA molecule. In an embodiment, a double strand break will be accompanied by two additional single strand breaks positioned by a second gRNA molecule and a third gRNA molecule.


In an embodiment, a pair of single strand breaks is introduced in close proximity to or at the LCA10 target position (e.g., c.2991+1655A to G) in the CEP290 gene. While not wishing to be bound by theory, it is believed that break-induced indels destroy the cryptic splice site. In an embodiment, the pair of single strand breaks will be accompanied by an additional double strand break, positioned by a third gRNA molecule. In an embodiment, the pair of single strand breaks will be accompanied by an additional pair of single strand breaks positioned by a third gRNA molecule and a fourth gRNA molecule.


In an embodiment, two double strand breaks are introduced to flank the LCA10 target position in the CEP290 gene (one 5′ and the other one 3′ to the mutation at the LCA10 target position, e.g., c.2991+1655A to G) to remove (e.g., delete) the genomic sequence including the mutation at the LCA10 target position. It is contemplated herein that in an embodiment the break-induced deletion of the genomic sequence including the mutation at the LCA10 target position is mediated by NHEJ. In an embodiment, the breaks (i.e., the two double strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat. The breaks, i.e., two double strand breaks, can be positioned upstream and downstream of the LCA10 target position, as discussed herein.


In an embodiment, one double strand break (either 5′ or 3′ to the mutation at the LCA10 target position, e.g., c.2991+1655A to G) and two single strand breaks (on the other side of the mutation at the LCA10 target position from the double strand break) are introduced to flank the LCA10 target position in the CEP290 gene to remove (e.g., delete) the genomic sequence including the mutation at the LCA10 target position. It is contemplated herein that in an embodiment the break-induced deletion of the genomic sequence including the mutation at the LCA10 target position is mediated by NHEJ. In an embodiment, the breaks (i.e., the double strand break and the two single strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat. The breaks, e.g., one double strand break and two single strand breaks, can be positioned upstream and downstream of the LCA10 target position, as discussed herein.


In an embodiment, two pairs of single strand breaks (two 5′ and the other two 3′ to the mutation at the LCA10 target position, e.g., c.2991+1655A to G) are introduced to flank the LCA10 target position in the CEP290 gene to remove (e.g., delete) the genomic sequence including the mutation at the LCA10 target position. It is contemplated herein that in an embodiment the break-induced deletion of the genomic sequence including the mutation at the LCA10 target position is mediated by NHEJ. In an embodiment, the breaks (e.g., two pairs of single strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat. The breaks, e.g., two pairs of single strand breaks, can be positioned upstream or downstream of the LCA10 target position, as discussed herein.


The LCA10 target position may be targeted by cleaving with either a single nuclease or dual nickases, e.g., to induce break-induced indel in close proximity to or including the LCA10 target position or break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene. The method can include acquiring knowledge of the mutation carried by the subject, e.g., by sequencing the appropriate portion of the CEP290 gene.


In one aspect, disclosed herein is a gRNA molecule, e.g., an isolated or non-naturally occurring gRNA molecule, comprising a targeting domain which is complementary with a target domain from the CEP290 gene.


When two or more gRNAs are used to position two or more cleavage events, e.g., double strand or single strand breaks, in a target nucleic acid, it is contemplated that in an embodiment the two or more cleavage events may be made by the same or different Cas9 proteins. For example, when two gRNAs are used to position two double strand breaks, a single Cas9 nuclease may be used to create both double strand breaks. When two or more gRNAs are used to position two or more single stranded breaks (single strand breaks), a single Cas9 nickase may be used to create the two or more single strand breaks. When two or more gRNAs are used to position at least one double strand break and at least one single strand break, two Cas9 proteins may be used, e.g., one Cas9 nuclease and one Cas9 nickase. It is contemplated that in an embodiment when two or more Cas9 proteins are used that the two or more Cas9 proteins may be delivered sequentially to control specificity of a double strand versus a single strand break at the desired position in the target nucleic acid.


In some embodiments, the targeting domain of the first gRNA molecule and the targeting domain of the second gRNA molecule hybridize to the target domain from the target nucleic acid molecule (i.e., the CEP290 gene) through complementary base pairing to opposite strands of the target nucleic acid molecule. In some embodiments, the first gRNA molecule and the second gRNA molecule are configured such that the PAMs are oriented outward.


In an embodiment, the targeting domain of a gRNA molecule is configured to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat, or the endogenous CEP290 splice sites, in the target domain. The gRNA molecule may be a first, second, third and/or fourth gRNA molecule.


In an embodiment, the targeting domain of a gRNA molecule is configured to position a cleavage event sufficiently far from a preselected nucleotide, e.g., the nucleotide of a coding region, such that the nucleotide is not altered. In an embodiment, the targeting domain of a gRNA molecule is configured to position an intronic cleavage event sufficiently far from an intron/exon border, or naturally occurring splice signal, to avoid alteration of the exonic sequence or unwanted splicing events. The gRNA molecule may be a first, second, third and/or fourth gRNA molecule, as described herein.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Table 11. In some embodiments, the targeting domain is selected from those in Table 11. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 387)









GACACTGCCAATAGGGATAGGT;











(SEQ ID NO: 388)









GTCAAAAGCTACCGGTTACCTG;











(SEQ ID NO: 389)









GTTCTGTCCTCAGTAAAAGGTA;











(SEQ ID NO: 390)









GAATAGTTTGTTCTGGGTAC;











(SEQ ID NO: 391)









GAGAAAGGGATGGGCACTTA;











(SEQ ID NO: 392)









GATGCAGAACTAGTGTAGAC;











(SEQ ID NO: 393)









GTCACATGGGAGTCACAGGG;



or











(SEQ ID NO: 394)









GAGTATCTCCTGTTTGGCA.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Table 11. In an embodiment, the two or more gRNAs or targeting domains are selected from one or more of the pairs of gRNAs or targeting domains described herein, e.g., as indicated in Table 11. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Table 11.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Table 2A-2D. In some embodiments, the targeting domain is selected from those in Table 2A-2D. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 395)









GAGAUACUCACAAUUACAAC;



or











(SEQ ID NO: 396)









GAUACUCACAAUUACAACUG.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 2A-2D. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 2A-2D.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 3A-3C. In some embodiments, the targeting domain is selected from those in Tables 3A-3C. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 395)









GAGAUACUCACAAUUACAAC;



or











(SEQ ID NO: 397)









GAUACUCACAAUUACAA.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 3A-3C. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 3A-3C.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 7A-7D. In some embodiments, the targeting domain is selected from those in Tables 7A-7D. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 398)









GCACCUGGCCCCAGUUGUAAUU.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 7A-7D. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 7A-7D.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 4A-4D. In some embodiments, the targeting domain is selected from those in Tables 4A-4D. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 457)









GCUACCGGUUACCUGAA;











(SEQ ID NO: 458)









GCAGAACUAGUGUAGAC;











(SEQ ID NO: 459)









GUUGAGUAUCUCCUGUU;











(SEQ ID NO: 460)









GAUGCAGAACUAGUGUAGAC;



or











(SEQ ID NO: 461)









GCUUGAACUCUGUGCCAAAC.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 4A-4D. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 4A-4D.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 8A-8D. In some embodiments, the targeting domain is selected from those in Tables 8A-8D. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 457)









GCUACCGGUUACCUGAA;











(SEQ ID NO: 458)









GCAGAACUAGUGUAGAC;











(SEQ ID NO: 459)









GUUGAGUAUCUCCUGUU;











(SEQ ID NO: 460)









GAUGCAGAACUAGUGUAGAC;











(SEQ ID NO: 461)









GCUUGAACUCUGUGCCAAAC;











(SEQ ID NO: 462)









GAAAGAUGAAAAAUACUCUU;











(SEQ ID NO: 463)









GAAAUAGAUGUAGAUUG;











(SEQ ID NO: 464)









GAAAUAUUAAGGGCUCUUCC;











(SEQ ID NO: 465)









GAACAAAAGCCAGGGACCAU;











(SEQ ID NO: 466)









GAACUCUAUACCUUUUACUG;











(SEQ ID NO: 467)









GAAGAAUGGAAUAGAUAAUA;











(SEQ ID NO: 468)









GAAUAGUUUGUUCUGGGUAC;











(SEQ ID NO: 469)









GAAUGGAAUAGAUAAUA;











(SEQ ID NO: 470)









GAAUUUACAGAGUGCAUCCA;











(SEQ ID NO: 471)









GAGAAAAAGGAGCAUGAAAC;











(SEQ ID NO: 472)









GAGAGCCACAGUGCAUG;











(SEQ ID NO: 473)









GAGGUAGAAUCAAGAAG;











(SEQ ID NO: 474)









GAGUGCAUCCAUGGUCC;











(SEQ ID NO: 475)









GAUAACUACAAAGGGUC;











(SEQ ID NO: 476)









GAUAGAGACAGGAAUAA;











(SEQ ID NO: 477)









GAUGAAAAAUACUCUUU;











(SEQ ID NO: 478)









GAUGACAUGAGGUAAGU;











(SEQ ID NO: 479)









GCAUGUGGUGUCAAAUA;











(SEQ ID NO: 480)









GCCUGAACAAGUUUUGAAAC;











(SEQ ID NO: 481)









GCUCUUUUCUAUAUAUA;











(SEQ ID NO: 482)









GCUUUUGACAGUUUUUAAGG;











(SEQ ID NO: 483)









GCUUUUGUUCCUUGGAA;











(SEQ ID NO: 484)









GGAACAAAAGCCAGGGACCA;











(SEQ ID NO: 485)









GGACUUGACUUUUACCCUUC;











(SEQ ID NO: 486)









GGAGAAUAGUUUGUUCU;











(SEQ ID NO: 487)









GGAGUCACAUGGGAGUCACA;











(SEQ ID NO: 488)









GGAUAGGACAGAGGACA;











(SEQ ID NO: 489)









GGCUGUAAGAUAACUACAAA;











(SEQ ID NO: 490)









GGGAGAAUAGUUUGUUC;











(SEQ ID NO: 491)









GGGAGUCACAUGGGAGUCAC;











(SEQ ID NO: 492)









GGGCUCUUCCUGGACCA;











(SEQ ID NO: 493)









GGGUACAGGGGUAAGAGAAA;











(SEQ ID NO: 494)









GGUCCCUGGCUUUUGUUCCU;











(SEQ ID NO: 495)









GUAAAGGUUCAUGAGACUAG;











(SEQ ID NO: 496)









GUAACAUAAUCACCUCUCUU;











(SEQ ID NO: 497)









GUAAGACUGGAGAUAGAGAC;











(SEQ ID NO: 498)









GUACAGGGGUAAGAGAA;











(SEQ ID NO: 499)









GUAGCUUUUGACAGUUUUUA;











(SEQ ID NO: 500)









GUCACAUGGGAGUCACA;











(SEQ ID NO: 501)









GUGGAGAGCCACAGUGCAUG;











(SEQ ID NO: 502)









GUUACAAUCUGUGAAUA;











(SEQ ID NO: 503)









GUUCUGUCCUCAGUAAA;











(SEQ ID NO: 504)









GUUUAGAAUGAUCAUUCUUG;











(SEQ ID NO: 505)









GUUUGUUCUGGGUACAG;











(SEQ ID NO: 506)









UAAAAACUGUCAAAAGCUAC;











(SEQ ID NO: 507)









UAAAAGGUAUAGAGUUCAAG;











(SEQ ID NO: 508)









UAAAUCAUGCAAGUGACCUA;



or











(SEQ ID NO: 509)









UAAGAUAACUACAAAGGGUC.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 8A-8D. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 8A-8D.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Table 5A-5D. In some embodiments, the targeting domain is selected from those in Table 5A-5D. For example, in certain embodiments, the targeting domain is:


GAAUCCUGAAAGCUACU (SEQ ID NO: 510).


In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 5A-5D. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 5A-5D.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 9A-9E. In some embodiments, the targeting domain is selected from those in Tables 9A-9E. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 460)









GAUGCAGAACUAGUGUAGAC;











(SEQ ID NO: 468)









GAAUAGUUUGUUCUGGGUAC;











(SEQ ID NO: 480)









GCCUGAACAAGUUUUGAAAC;











(SEQ ID NO: 494)









GGUCCCUGGCUUUUGUUCCU;











(SEQ ID NO: 497)









GUAAGACUGGAGAUAGAGAC;











(SEQ ID NO: 511)









GCUAAAUCAUGCAAGUGACCUAAG;











(SEQ ID NO: 512)









GGUCACUUGCAUGAUUUAG;











(SEQ ID NO: 513)









GUCACUUGCAUGAUUUAG;











(SEQ ID NO: 514)









GCCUAGGACUUUCUAAUGCUGGA;











(SEQ ID NO: 515)









GGACUUUCUAAUGCUGGA;











(SEQ ID NO: 516)









GGGACCAUGGGAGAAUAGUUUGUU;











(SEQ ID NO: 517)









GGACCAUGGGAGAAUAGUUUGUU;











(SEQ ID NO: 518)









GACCAUGGGAGAAUAGUUUGUU;











(SEQ ID NO: 519)









GGUCCCUGGCUUUUGUUCCUUGGA;











(SEQ ID NO: 520)









GUCCCUGGCUUUUGUUCCUUGGA;











(SEQ ID NO: 521)









GAAAACGUUGUUCUGAGUAGCUUU;











(SEQ ID NO: 522)









GUUGUUCUGAGUAGCUUU;











(SEQ ID NO: 523)









GUCCCUGGCUUUUGUUCCU;











(SEQ ID NO: 524)









GACAUCUUGUGGAUAAUGUAUCA;











(SEQ ID NO: 525)









GUCCUAGGCAAGAGACAUCUU;











(SEQ ID NO: 526)









GCCAGCAAAAGCUUUUGAGCUAA;











(SEQ ID NO: 527)









GCAAAAGCUUUUGAGCUAA;











(SEQ ID NO: 528)









GAUCUUAUUCUACUCCUGUGA;











(SEQ ID NO: 529)









GCUUUCAGGAUUCCUACUAAAUU;











(SEQ ID NO: 530)









GUUCUGUCCUCAGUAAAAGGUA;











(SEQ ID NO: 531)









GAACAACGUUUUCAUUUA;











(SEQ ID NO: 532)









GUAGAAUAUCAUAAGUUACAAUCU;











(SEQ ID NO: 533)









GAAUAUCAUAAGUUACAAUCU;











(SEQ ID NO: 534)









GUGGCUGUAAGAUAACUACA;











(SEQ ID NO: 535)









GGCUGUAAGAUAACUACA;











(SEQ ID NO: 536)









GUUUAACGUUAUCAUUUUCCCA;











(SEQ ID NO: 537)









GUAAGAGAAAGGGAUGGGCACUUA;











(SEQ ID NO: 538)









GAGAAAGGGAUGGGCACUUA;











(SEQ ID NO: 539)









GAAAGGGAUGGGCACUUA;











(SEQ ID NO: 540)









GUAAAUGAAAACGUUGUU;











(SEQ ID NO: 541)









GAUAAACAUGACUCAUAAUUUAGU;











(SEQ ID NO: 542)









GGAACAAAAGCCAGGGACCAUGG;











(SEQ ID NO: 543)









GAACAAAAGCCAGGGACCAUGG;











(SEQ ID NO: 544)









GGGAGAAUAGUUUGUUCUGGGUAC;











(SEQ ID NO: 545)









GGAGAAUAGUUUGUUCUGGGUAC;











(SEQ ID NO: 546)









GAGAAUAGUUUGUUCUGGGUAC;











(SEQ ID NO: 547)









GAAAUAGAGGCUUAUGGAUU;











(SEQ ID NO: 548)









GUUCUGGGUACAGGGGUAAGAGAA;











(SEQ ID NO: 549)









GGGUACAGGGGUAAGAGAA;











(SEQ ID NO: 550)









GGUACAGGGGUAAGAGAA;











(SEQ ID NO: 551)









GUAAAUUCUCAUCAUUUUUUAUUG;











(SEQ ID NO: 552)









GGAGAGGAUAGGACAGAGGACAUG;











(SEQ ID NO: 553)









GAGAGGAUAGGACAGAGGACAUG;











(SEQ ID NO: 554)









GAGGAUAGGACAGAGGACAUG;











(SEQ ID NO: 555)









GGAUAGGACAGAGGACAUG;











(SEQ ID NO: 556)









GAUAGGACAGAGGACAUG;











(SEQ ID NO: 557)









GAAUAAAUGUAGAAUUUUAAUG;











(SEQ ID NO: 558)









GUCAAAAGCUACCGGUUACCUG;











(SEQ ID NO: 559)









GUUUUUAAGGCGGGGAGUCACAU;











(SEQ ID NO: 560)









GUCUUACAUCCUCCUUACUGCCAC;











(SEQ ID NO: 561)









GAGUCACAGGGUAGGAUUCAUGUU;











(SEQ ID NO: 562)









GUCACAGGGUAGGAUUCAUGUU;











(SEQ ID NO: 563)









GGCACAGAGUUCAAGCUAAUACAU;











(SEQ ID NO: 564)









GCACAGAGUUCAAGCUAAUACAU;











(SEQ ID NO: 565)









GAGUUCAAGCUAAUACAU;











(SEQ ID NO: 566)









GUGUUGAGUAUCUCCUGUUUGGCA;











(SEQ ID NO: 567)









GUUGAGUAUCUCCUGUUUGGCA;











(SEQ ID NO: 568)









GAGUAUCUCCUGUUUGGCA;











(SEQ ID NO: 569)









GAAAAUCAGAUUUCAUGUGUG;











(SEQ ID NO: 570)









GCCACAAGAAUGAUCAUUCUAAAC;











(SEQ ID NO: 571)









GGCGGGGAGUCACAUGGGAGUCA;











(SEQ ID NO: 572)









GCGGGGAGUCACAUGGGAGUCA;











(SEQ ID NO: 573)









GGGGAGUCACAUGGGAGUCA;











(SEQ ID NO: 574)









GGGAGUCACAUGGGAGUCA;











(SEQ ID NO: 575)









GGAGUCACAUGGGAGUCA;











(SEQ ID NO: 576)









GCUUUUGACAGUUUUUAAGGCG;











(SEQ ID NO: 577)









GAUCAUUCUUGUGGCAGUAAG;











(SEQ ID NO: 578)









GAGCAAGAGAUGAACUAG;











(SEQ ID NO: 579)









GUAGAUUGAGGUAGAAUCAAGAA;











(SEQ ID NO: 580)









GAUUGAGGUAGAAUCAAGAA;











(SEQ ID NO: 581)









GGAUGUAAGACUGGAGAUAGAGAC;











(SEQ ID NO: 582)









GAUGUAAGACUGGAGAUAGAGAC;











(SEQ ID NO: 583)









GGGAGUCACAUGGGAGUCACAGGG;











(SEQ ID NO: 584)









GGAGUCACAUGGGAGUCACAGGG;











(SEQ ID NO: 585)









GAGUCACAUGGGAGUCACAGGG;











(SEQ ID NO: 586)









GUCACAUGGGAGUCACAGGG;











(SEQ ID NO: 587)









GUUUACAUAUCUGUCUUCCUUAA;



or











(SEQ ID NO: 588)









GAUUUCAUGUGUGAAGAA.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 9A-9E. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 9A-9E.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 6A-6B. In some embodiments, the targeting domain is selected from those in Tables 6A-6B. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 589)









GAGUUCAAGCUAAUACAUGA;











(SEQ ID NO: 590)









GUUGUUCUGAGUAGCUU;



or











(SEQ ID NO: 591)









GGCAAAAGCAGCAGAAAGCA.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 6A-6B. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 6A-6B.


In an embodiment, the LCA10 target position in the CEP290 gene is targeted. In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Tables 10A-10B. In some embodiments, the targeting domain is selected from those in Tables 10A-10B. For example, in certain embodiments, the targeting domain is:









(SEQ ID NO: 589)









GAGUUCAAGCUAAUACAUGA;











(SEQ ID NO: 590)









GUUGUUCUGAGUAGCUU;











(SEQ ID NO: 591)









GGCAAAAGCAGCAGAAAGCA;











(SEQ ID NO: 592)









GUGGCUGAAUGACUUCU;



or











(SEQ ID NO: 593)









GACUAGAGGUCACGAAA.






In an embodiment, when two or more gRNAs are used to position two or more breaks, e.g., two or more single stranded breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 10A-10B. In an embodiment, when two or more gRNAs are used to position four breaks, e.g., four single strand breaks in the target nucleic acid sequence, each guide RNA is independently selected from one of Tables 10A-10B.


In an embodiment, the gRNA, e.g., a gRNA comprising a targeting domain, which is complementary with a target domain from the CEP290 gene, is a modular gRNA. In other embodiments, the gRNA is a chimeric gRNA.


In an embodiment, when two gRNAs are used to position two breaks, e.g., two single strand breaks, in the target nucleic acid sequence, each guide RNA is independently selected from one or more of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


In an embodiment, the targeting domain which is complementary with a target domain from the CEP290 gene comprises 16 or more nucleotides in length. In an embodiment, the targeting domain which is complementary with a target domain from the CEP290 gene is 16 nucleotides or more in length. In an embodiment, the targeting domain is 16 nucleotides in length. In an embodiment, the targeting domain is 17 nucleotides in length. In an embodiment, the targeting domain is 18 nucleotides in length. In an embodiment, the targeting domain is 19 nucleotides in length. In an embodiment, the targeting domain is 20 nucleotides in length. In an embodiment, the targeting domain is 21 nucleotides in length. In an embodiment, the targeting domain is 22 nucleotides in length. In an embodiment, the targeting domain is 23 nucleotides in length. In an embodiment, the targeting domain is 24 nucleotides in length. In an embodiment, the targeting domain is 25 nucleotides in length. In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


A gRNA as described herein may comprise from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In some embodiments, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


A cleavage event, e.g., a double strand or single strand break, is generated by a Cas9 molecule. The Cas9 molecule may be an enzymatically active Cas9 (eaCas9) molecule, e.g., an eaCas9 molecule that forms a double strand break in a target nucleic acid or an eaCas9 molecule forms a single strand break in a target nucleic acid (e.g., a nickase molecule).


In an embodiment, the eaCas9 molecule catalyzes a double strand break.


In some embodiments, the eaCas9 molecule comprises HNH-like domain cleavage activity but has no, or no significant, N-terminal RuvC-like domain cleavage activity. In this case, the eaCas9 molecule is an HNH-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at D10, e.g., D10A. In other embodiments, the eaCas9 molecule comprises N-terminal RuvC-like domain cleavage activity but has no, or no significant, HNH-like domain cleavage activity. In an embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H840, e.g., H840A. In an embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H863, e.g., H863A.


In an embodiment, a single strand break is formed in the strand of the target nucleic acid to which the targeting domain of said gRNA is complementary. In another embodiment, a single strand break is formed in the strand of the target nucleic acid other than the strand to which the targeting domain of said gRNA is complementary.


In another aspect, disclosed herein is a nucleic acid, e.g., an isolated or non-naturally occurring nucleic acid, e.g., DNA, that comprises (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in CEP290 gene as disclosed herein.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., the first gRNA molecule, comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. In an embodiment, the nucleic acid encodes a gRNA molecule comprising a targeting domain that is selected from those in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


In an embodiment, the nucleic acid encodes a modular gRNA, e.g., one or more nucleic acids encode a modular gRNA. In other embodiments, the nucleic acid encodes a chimeric gRNA. The nucleic acid may encode a gRNA, e.g., the first gRNA molecule, comprising a targeting domain comprising 16 nucleotides or more in length. In one embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 16 nucleotides in length. In other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 17 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 18 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 19 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 20 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 21 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 22 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 23 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 24 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 25 nucleotides in length. In still other embodiments, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA comprising from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In some embodiments, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA comprising e.g., the first gRNA molecule, a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid comprises (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290 gene as disclosed herein, and further comprises (b) a sequence that encodes a Cas9 molecule.


The Cas9 molecule may be a nickase molecule, a enzymatically activating Cas9 (eaCas9) molecule, e.g., an eaCas9 molecule that forms a double strand break in a target nucleic acid and an eaCas9 molecule forms a single strand break in a target nucleic acid. In an embodiment, a single strand break is formed in the strand of the target nucleic acid to which the targeting domain of said gRNA is complementary. In another embodiment, a single strand break is formed in the strand of the target nucleic acid other than the strand to which the targeting domain of said gRNA is complementary.


In an embodiment, the eaCas9 molecule catalyzes a double strand break.


In some embodiments, the eaCas9 molecule comprises HNH-like domain cleavage activity but has no, or no significant, N-terminal RuvC-like domain cleavage activity. In other embodiments, the said eaCas9 molecule is an HNH-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at D10, e.g., D10A. In other embodiments, the eaCas9 molecule comprises N-terminal RuvC-like domain cleavage activity but has no, or no significant, HNH-like domain cleavage activity. In another embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H840, e.g., H840A. In another embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H863, e.g., H863A.


A nucleic acid disclosed herein may comprise (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290 gene as disclosed herein; and (b) a sequence that encodes a Cas9 molecule.


A nucleic acid disclosed herein may comprise (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290 gene as disclosed herein; (b) a sequence that encodes a Cas9 molecule; and further comprises (c)(i) a sequence that encodes a second gRNA molecule described herein having a targeting domain that is complementary to a second target domain of the CEP290 gene, and optionally, (ii) a sequence that encodes a third gRNA molecule described herein having a targeting domain that is complementary to a third target domain of the CEP290 gene; and optionally, (iii) a sequence that encodes a fourth gRNA molecule described herein having a targeting domain that is complementary to a fourth target domain of the CEP290 gene.


In an embodiment, a nucleic acid encodes a second gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, of the LCA10 target position, either alone or in combination with the break positioned by said first gRNA molecule.


In an embodiment, a nucleic acid encodes a third gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, either alone or in combination with the break positioned by the first and/or second gRNA molecule.


In an embodiment, a nucleic acid encodes a fourth gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, either alone or in combination with the break positioned by the first gRNA molecule, the second gRNA molecule and/or the third gRNA molecule.


In an embodiment, a nucleic acid encodes a second gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, in combination with the break position by said first gRNA molecule, sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, of the a LCA 10 target position in the CEP290 gene, either alone or in combination with the break positioned by said first gRNA molecule.


In an embodiment, a nucleic acid encodes a third gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, in combination with the break position by said first and/or second gRNA molecule sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, either alone or in combination with the break positioned by the first and/or second gRNA molecule.


In an embodiment, a nucleic acid encodes a fourth gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, in combination with the break positioned by the first gRNA molecule, the second gRNA molecule and/or the third gRNA molecule, sufficiently close to a LCA10 target position in the CEP290 gene to allow alteration, e.g., alteration associated with NHEJ, either alone or in combination with the break positioned by the first gRNA molecule, the second gRNA molecule and/or the third gRNA molecule.


In an embodiment, the nucleic acid encodes a second gRNA molecule. The second gRNA is selected to target the LCA10 target position. Optionally, the nucleic acid may encode a third gRNA, and further optionally, the nucleic acid may encode a fourth gRNA molecule.


In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain selected from those in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. In an embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. In a further embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain selected from those in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


In an embodiment, the nucleic acid encodes a second gRNA which is a modular gRNA, e.g., wherein one or more nucleic acid molecules encode a modular gRNA. In other embodiments, the nucleic acid encoding a second gRNA is a chimeric gRNA. In other embodiments, when a nucleic acid encodes a third or fourth gRNA, the third and fourth gRNA may be a modular gRNA or a chimeric gRNA. When multiple gRNAs are used, any combination of modular or chimeric gRNAs may be used.


A nucleic acid may encode a second, a third, and/or a fourth gRNA, each independently, comprising a targeting domain comprising 16 nucleotides or more in length. In an embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 16 nucleotides in length. In other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 17 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 18 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 19 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 20 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 21 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 22 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 23 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 24 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 25 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In some embodiments, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain of equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In some embodiments, when the CEP290 gene is altered, e.g., by NHEJ, the nucleic acid encodes (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290 gene as disclosed herein; (b) a sequence that encodes a Cas9 molecule; optionally, (c)(i) a sequence that encodes a second gRNA molecule described herein having a targeting domain that is complementary to a second target domain of the CEP290 gene, and further optionally, (ii) a sequence that encodes a third gRNA molecule described herein having a targeting domain that is complementary to a third target domain of the CEP290 gene; and still further optionally, (iii) a sequence that encodes a fourth gRNA molecule described herein having a targeting domain that is complementary to a fourth target domain of the CEP290 gene.


As described above, a nucleic acid may comprise (a) a sequence encoding a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290, and (b) a sequence encoding a Cas9 molecule. In some embodiments, (a) and (b) are present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., the same adeno-associated virus (AAV) vector. In an embodiment, the nucleic acid molecule is an AAV vector, e.g., an AAV vector described herein. Exemplary AAV vectors that may be used in any of the described compositions and methods include an AAV1 vector, a modified AAV1 vector, an AAV2 vector, a modified AAV2 vector, an AAV3 vector, a modified AAV3 vector, an AAV4 vector, a modified AAV4 vector, an AAV5 vector, a modified AAV5 vector, an AAV6 vector, a modified AAV6 vector, an AAV7 vector, a modified AAV7 vector, an AAV8 vector, an AAV9 vector, an AAV.rh10 vector, a modified AAV.rh10 vector, an AAV.rh32/33 vector, a modified AAV.rh32/33 vector, an AAV.rh43 vector, a modified AAV.rh43 vector, an AAV.rh64R1 vector, and a modified AAV.rh64R1 vector.


In other embodiments, (a) is present on a first nucleic acid molecule, e.g. a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (b) is present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecules may be AAV vectors, e.g., the AAV vectors described herein.


In other embodiments, the nucleic acid may further comprise (c)(i) a sequence that encodes a second gRNA molecule as described herein. In some embodiments, the nucleic acid comprises (a), (b) and (c)(i). Each of (a) and (c)(i) may be present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., the same adeno-associated virus (AAV) vector. In an embodiment, the nucleic acid molecule is an AAV vector, e.g., an AAV vectors described herein.


In other embodiments, (a) and (c)(i) are on different vectors. For example, (a) may be present on a first nucleic acid molecule, e.g. a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (c)(i) may be present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. In an embodiment, the first and second nucleic acid molecules are AAV vectors, e.g., the AAV vectors described herein.


In another embodiment, each of (a), (b), and (c)(i) are present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., an AAV vector. In an embodiment, the nucleic acid molecule is an AAV vector. In an alternate embodiment, one of (a), (b), and (c)(i) is encoded on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and a second and third of (a), (b), and (c)(i) is encoded on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors, e.g., the AAV vectors described herein.


In an embodiment, (a) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, a first AAV vector; and (b) and (c)(i) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors, e.g., the AAV vectors described herein.


In other embodiments, (b) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (a) and (c)(i) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors, e.g., the AAV vectors described herein.


In other embodiments, (c)(i) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (b) and (a) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors, e.g., the AAV vectors described herein.


In another embodiment, each of (a), (b) and (c)(i) are present on different nucleic acid molecules, e.g., different vectors, e.g., different viral vectors, e.g., different AAV vector. For example, (a) may be on a first nucleic acid molecule, (b) on a second nucleic acid molecule, and (c)(i) on a third nucleic acid molecule. The first, second and third nucleic acid molecule may be AAV vectors, e.g., the AAV vectors described herein.


In another embodiment, when a third and/or fourth gRNA molecule are present, each of (a), (b), (c)(i), (c) (ii) and (c)(iii) may be present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., an AAV vector. In an embodiment, the nucleic acid molecule is an AAV vector, e.g., an AAV vector. In an alternate embodiment, each of (a), (b), (c)(i), (c)(ii) and (c)(iii) may be present on the different nucleic acid molecules, e.g., different vectors, e.g., the different viral vectors, e.g., different AAV vectors. In further embodiments, each of (a), (b), (c)(i), (c) (ii) and (c)(iii) may be present on more than one nucleic acid molecule, but fewer than five nucleic acid molecules, e.g., AAV vectors, e.g., the AAV vectors described herein.


The nucleic acids described herein may comprise a promoter operably linked to the sequence that encodes the gRNA molecule of (a), e.g., a promoter described herein, e.g., a promoter described in Table 20. The nucleic acid may further comprise a second promoter operably linked to the sequence that encodes the second, third and/or fourth gRNA molecule of (c), e.g., a promoter described herein. The promoter and second promoter differ from one another. In some embodiments, the promoter and second promoter are the same.


The nucleic acids described herein may further comprise a promoter operably linked to the sequence that encodes the Cas9 molecule of (b), e.g., a promoter described herein, e.g., a promoter described in Table 20.


In another aspect, disclosed herein is a composition comprising (a) a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CEP290 gene, as described herein. The composition of (a) may further comprise (b) a Cas9 molecule, e.g., a Cas9 molecule as described herein. A composition of (a) and (b) may further comprise (c) a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein.


In another aspect, methods and compositions discussed herein, provide for treating or delaying the onset or progression of LCA10 by altering the LCA10 target position in the CEP290 gene.


In another aspect, disclosed herein is a method of altering a cell, e.g., altering the structure, e.g., altering the sequence, of a target nucleic acid of a cell, comprising contacting said cell with: (a) a gRNA that targets the CEP290 gene, e.g., a gRNA as described herein; (b) a Cas9 molecule, e.g., a Cas9 molecule as described herein; and optionally, (c) a second, third and/or fourth gRNA that targets CEP290 gene, e.g., a gRNA as described herein.


In some embodiments, the method comprises contacting said cell with (a) and (b).


In some embodiments, the method comprises contacting said cell with (a), (b), and (c).


The gRNA of (a) may be selected from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, or a gRNA that differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. The gRNA of (c) may be selected from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, or a gRNA that differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


In some embodiments, the method comprises contacting a cell from a subject suffering from or likely to develop LCA10. The cell may be from a subject having a mutation at a LCA10 target position.


In some embodiments, the cell being contacted in the disclosed method is a photoreceptor cell. The contacting may be performed ex vivo and the contacted cell may be returned to the subject's body after the contacting step. In other embodiments, the contacting step may be performed in vivo.


In some embodiments, the method of altering a cell as described herein comprises acquiring knowledge of the presence of a LCA10 target position in said cell, prior to the contacting step. Acquiring knowledge of the presence of a LCA10 target position in the cell may be by sequencing the CEP290 gene, or a portion of the CEP290 gene.


In some embodiments, the contacting step of the method comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, e.g., an AAV vector described herein, that expresses at least one of (a), (b), and (c). In some embodiments, the contacting step of the method comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, that expresses each of (a), (b), and (c). In another embodiment, the contacting step of the method comprises delivering to the cell a Cas9 molecule of (b) and a nucleic acid which encodes a gRNA (a) and optionally, a second gRNA (c)(i) (and further optionally, a third gRNA (c)(iv) and/or fourth gRNA (c)(iii)).


In an embodiment, contacting comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, e.g., an AAV1 vector, a modified AAV1 vector, an AAV2 vector, a modified AAV2 vector, an AAV3 vector, a modified AAV3 vector, an AAV4 vector, a modified AAV4 vector, an AAV5 vector, a modified AAV5 vector, an AAV6 vector, a modified AAV6 vector, an AAV7 vector, a modified AAV7 vector, an AAV8 vector, an AAV9 vector, an AAV.rh10 vector, a modified AAV.rh10 vector, an AAV.rh32/33 vector, a modified AAV.rh32/33 vector, an AAV.rh43 vector, a modified AAV.rh43 vector, an AAV.rh64R1 vector, and a modified AAV.rh64R1 vector, e.g., an AAV vector described herein.


In an embodiment, contacting comprises delivering to said cell said Cas9 molecule of (b), as a protein or an mRNA, and a nucleic acid which encodes and (a) and optionally (c).


In an embodiment, contacting comprises delivering to said cell said Cas9 molecule of (b), as a protein or an mRNA, said gRNA of (a), as an RNA, and optionally said second gRNA of (c), as an RNA.


In an embodiment, contacting comprises delivering to said cell said gRNA of (a) as an RNA, optionally said second gRNA of (c) as an RNA, and a nucleic acid that encodes the Cas9 molecule of (b).


In another aspect, disclosed herein is a method of treating, or preventing a subject suffering from developing, LCA10, e.g., by altering the structure, e.g., sequence, of a target nucleic acid of the subject, comprising contacting the subject (or a cell from the subject) with:


(a) a gRNA that targets the CEP290 gene, e.g., a gRNA disclosed herein;


(b) a Cas9 molecule, e.g., a Cas9 molecule disclosed herein; and


optionally, (c)(i) a second gRNA that targets the CEP290 gene, e.g., a second gRNA disclosed herein, and


further optionally, (c)(ii) a third gRNA, and still further optionally, (c)(iii) a fourth gRNA that target the CEP290, e.g., a third and fourth gRNA disclosed herein.


In some embodiments, contacting comprises contacting with (a) and (b).


In some embodiments, contacting comprises contacting with (a), (b), and (c)(i).


In some embodiments, contacting comprises contacting with (a), (b), (c)(i) and (c)(ii).


In some embodiments, contacting comprises contacting with (a), (b), (c)(i), (c)(ii) and (c)(iii).


The gRNA of (a) or (c) (e.g., (c)(i), (c)(ii), or (c)(iii)) may be independently selected from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, or a gRNA that differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


In an embodiment, said subject is suffering from, or likely to develop LCA10. In an embodiment, said subject has a mutation at a LCA10 target position.


In an embodiment, the method comprises acquiring knowledge of the presence of a mutation at a LCA10 target position in said subject.


In an embodiment, the method comprises acquiring knowledge of the presence of a mutation a LCA10 target position in said subject by sequencing the CEP290 gene or a portion of the CEP290 gene.


In an embodiment, the method comprises altering the LCA10 target position in the CEP290 gene.


In an embodiment, a cell of said subject is contacted ex vivo with (a), (b) and optionally (c). In an embodiment, said cell is returned to the subject's body.


In an embodiment, the method comprises introducing a cell into said subject's body, wherein said cell subject was contacted ex vivo with (a), (b) and optionally (c).


In an embodiment, the method comprises said contacting is performed in vivo. In an embodiment, the method comprises sub-retinal delivery. In an embodiment, contacting comprises sub-retinal injection. In an embodiment, contacting comprises intra-vitreal injection.


In an embodiment, contacting comprises contacting the subject with a nucleic acid, e.g., a vector, e.g., an AAV vector described herein, e.g., a nucleic acid that encodes at least one of (a), (b), and optionally (c).


In an embodiment, contacting comprises delivering to said subject said Cas9 molecule of (b), as a protein or mRNA, and a nucleic acid which encodes and (a) and optionally (c).


In an embodiment, contacting comprises delivering to said subject said Cas9 molecule of (b), as a protein or mRNA, said gRNA of (a), as an RNA, and optionally said second gRNA of (c), as an RNA.


In an embodiment, contacting comprises delivering to said subject said gRNA of (a), as an RNA, optionally said second gRNA of (c), as an RNA, and a nucleic acid that encodes the Cas9 molecule of (b).


In another aspect, disclosed herein is a reaction mixture comprising a gRNA, a nucleic acid, or a composition described herein, and a cell, e.g., a cell from a subject having, or likely to develop LCA10, or a subject having a mutation at a LCA10 target position.


In another aspect, disclosed herein is a kit comprising, (a) a gRNA molecule described herein, or a nucleic acid that encodes said gRNA, and one or more of the following:


(b) a Cas9 molecule, e.g., a Cas9 molecule described herein, or a nucleic acid or mRNA that encodes the Cas9;


(c)(i) a second gRNA molecule, e.g., a second gRNA molecule described herein or a nucleic acid that encodes (c)(i);


(c)(ii) a third gRNA molecule, e.g., a second gRNA molecule described herein or a nucleic acid that encodes (c)(ii); or


(c)(iii) a fourth gRNA molecule, e.g., a second gRNA molecule described herein or a nucleic acid that encodes (c)(iii).


In an embodiment, the kit comprises nucleic acid, e.g., an AAV vector, e.g., an AAV vector described herein, that encodes one or more of (a), (b), (c)(i), (c)(ii), and (c)(iii). In an embodiment, the kit further comprises a governing gRNA molecule, or a nucleic acid that encodes a governing gRNA molecule.


In yet another aspect, disclosed herein is a gRNA molecule, e.g., a gRNA molecule described herein, for use in treating LCA10 in a subject, e.g., in accordance with a method of treating LCA10 as described herein.


In an embodiment, the gRNA molecule in used in combination with a Cas9 molecule, e.g., a Cas9 molecule described herein. Additionally or alternatively, in an embodiment, the gRNA molecule is used in combination with a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein.


In still another aspect, disclosed herein is use of a gRNA molecule, e.g., a gRNA molecule described herein, in the manufacture of a medicament for treating LCA10 in a subject, e.g., in accordance with a method of treating LCA10 as described herein.


In an embodiment, the medicament comprises a Cas9 molecule, e.g., a Cas9 molecule described herein. Additionally or alternatively, in an embodiment, the medicament comprises a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein.


In one aspect, disclosed herein is a recombinant adenovirus-associated virus (AAV) genome comprising the components set forth in FIG. 33:


wherein the left ITR component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the left ITR nucleotide sequences disclosed in Table 25, or any of the nucleotide sequences of SEQ ID NOs: 407-415;


wherein the spacer 1 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 416;


wherein the PIII promoter component comprises, or consists of, an RNA polymerase III promoter sequence;


wherein the gRNA component comprises a targeting domain and a scaffold domain,

    • wherein the targeting domain is 16-26 nucleotides in length, and comprises, or consists of, a targeting domain sequence disclosed herein, e.g., in any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11; and
    • wherein the scaffold domain (also referred to as a tracr domain in FIGS. 20A-25F) comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, a nucleotide sequence of SEQ ID NO: 418;


wherein the spacer 2 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length e.g., SEQ ID NO: 419;


wherein the PII promoter component comprises, or consists of, a polymerase II promoter sequence, e.g., a constitutive or tissue specific promoter, e.g., a promoter disclosed in Table 20;


wherein the N-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 420 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 434;


wherein the Cas9 component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 421 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 26;


wherein the C-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 422 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 434;


wherein the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the nucleotide sequences disclosed in Table 27, or any of the nucleotide sequences of SEQ ID NOs: 424, 455 or 456;


wherein the spacer 3 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 425; and


wherein the right ITR component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the right ITR nucleotide sequences disclosed in Table 25, or any of the nucleotide sequences of SEQ ID NOs: 436-444.


In an embodiment, the left ITR component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences of SEQ ID NOs: 407-415.


In an embodiment, the spacer 1 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 416.


In an embodiment, the PIII promoter component is a U6 promoter component.


In an embodiment, the U6 promoter component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 417;


In an embodiment, the U6 promoter component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 417.


In an embodiment, the PIII promoter component is an H1 promoter component that comprises an H1 promoter sequence.


In an embodiment, the PIII promoter component is a tRNA promoter component that comprises a tRNA promoter sequence.


In an embodiment, the targeting domain comprises, or consists of, a nucleotide sequence that is the same as a nucleotide sequence selected from Table 11.


In an embodiment, the gRNA scaffold domain comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 418.


In an embodiment, the spacer 2 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 419; In an embodiment, the PII promoter component is a CMV promoter component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 401. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 401.


In an embodiment, the PII promoter component is an EFS promoter component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 402. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 402.


In an embodiment, the PII promoter component is a GRK1 promoter (e.g., a human GRK1 promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 403. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 403.


In an embodiment, the PII promoter component is a CRX promoter (e.g., a human CRX promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 404. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 404.


In an embodiment, the PII promoter component is an NRL promoter (e.g., a human NRL promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 405. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 405.


In an embodiment, the PII promoter component is an RCVRN promoter (e.g., a human RCVRN promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 406. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 406.


In an embodiment, the N-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 420 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 434.


In an embodiment, the Cas9 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 421 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 26.


In an embodiment, the C-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 422 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 434.


In an embodiment, the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences disclosed in Table 27, or any of the nucleotide sequences of SEQ ID NOs: 424, 455 or 456. In an embodiment, the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 424.


In an embodiment, the spacer 3 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 425.


In an embodiment, the right ITR component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences of SEQ ID NOs: 436-444.


In an embodiment, the recombinant AAV genome further comprises a second gRNA component comprising a targeting domain and a scaffold domain,


wherein the targeting domain consists of a targeting domain sequence disclosed herein, in any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11; and


wherein the scaffold domain (also referred to as a tracr domain in FIGS. 20A-25F) comprises, or consists of, a nucleotide sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 418.


In an embodiment, the targeting domain of the second gRNA component comprises, or consists of, a nucleotide sequence that is the same as a nucleotide sequence selected from Table 11. In an embodiment, the second gRNA component is between the first gRNA component and the spacer 2 component.


In an embodiment, the second gRNA component has the same nucleotide sequence as the first gRNA component. In another embodiment, the second gRNA component has a nucleotide sequence that is different from the second gRNA component.


In an embodiment, the recombinant AAV genome further comprises a second PIII promoter component that comprises, or consists of, an RNA polymerase III promoter sequence;


In an embodiment, the recombinant AAV genome further comprises a second PIII promoter component (e.g., a second U6 promoter component) between the first gRNA component and the second gRNA component.


In an embodiment, the second PIII promoter component (e.g., the second U6 promoter component) has the same nucleotide sequence as the first PIII promoter component (e.g., the first U6 promoter component). In another embodiment, the second PIII promoter component (e.g., the second U6 promoter component) has a nucleotide sequence that is different from the first PIII promoter component (e.g. the first U6 promoter component).


In an embodiment, the PIII promoter component is an H1 promoter component that comprises an H1 promoter sequence.


In an embodiment, the PIII promoter component is a tRNA promoter component that comprises a tRNA promoter sequence.


In an embodiment, the recombinant AAV genome further comprises a spacer 4 component between the first gRNA component and the second PIII promoter component (e.g., the second U6 promoter component). In an embodiment, the spacer 4 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 427. In an embodiment, the spacer 4 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 427.


In an embodiment, the recombinant AAV genome comprises the components set forth in FIG. 34.


In an embodiment, the recombinant AAV genome further comprises an affinity tag component (e.g., 3×FLAG component), wherein the affinity tag component (e.g., 3×FLAG component) comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotides sequence of SEQ ID NO: 423, or a nucleotide sequence encoding any of the amino acid sequences disclosed in Table 26 or any of the amino acid sequences of SEQ ID NOs: 426 or 451-454.


In an embodiment, the affinity tag component (e.g., 3×FLAG component) is between the C-ter NLS component and the poly(A) signal component. In an embodiment, the an affinity tag component (e.g., 3×FLAG component) comprises, or consists of, a nucleotide sequence that is the same as, the nucleotides sequence of SEQ ID NO: 423, or a nucleotide sequence encoding any of the amino acid sequences of SEQ ID NOs: 426 or 451-454.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 401, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 402, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 403, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 404, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 405, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 406, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome further comprises SEQ ID NOs: 416, 419, and 425, and, optionally, SEQ ID NO 427.


In an embodiment, the recombinant AAV genome further comprises the nucleotide sequence of SEQ ID NO: 423.


In an embodiment, the recombinant AAV genome comprises or consists of one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all) of the component sequences shown in FIG. 19A-19G, 20A-20F, 21A-21F, 22A-22F, 23A-23F, or 24A-24F, Tables 20 or 25-27, or any of the nucleotide sequences of SEQ ID NOs: 428-433 or 436-444.


In another aspect, disclosed herein is a recombinant adenovirus-associated virus (AAV) genome comprising the components set forth in FIG. 35:


wherein the left ITR component comprises, or consists of, a nucleotide sequence that is the same as, or differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the left ITR nucleotide sequences disclosed in Table 25, or any of the nucleotide sequences of SEQ ID NOs: 407-415;


wherein the spacer 1 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 416;


wherein the first PIII promoter component (e.g., a first U6 promoter component) comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 417;


wherein the first gRNA component comprises a targeting domain and a scaffold domain,

    • wherein the targeting domain is 16-26 nucleotides in length, and comprises, or consists of, a targeting domain sequence disclosed herein, e.g., in any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11; and
    • wherein the scaffold domain (also referred to herein as a tracr domain in FIGS. 19A-24F) comprises, or consists of, a nucleotide sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 418;


wherein the spacer 4 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 427.


wherein the second gRNA component comprises a targeting domain and a scaffold domain,

    • wherein the targeting domain of the second gRNA component is 16-26 nucleotides in length and comprises, or consists of, a targeting domain sequence disclosed herein, e.g., in any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11; and
    • wherein the scaffold domain (also referred to as a tracr domain in FIGS. 19A-24F) of the second gRNA component comprises, or consists of, a nucleotide sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 418.


wherein the spacer 2 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length e.g., SEQ ID NO: 419;


wherein the PII promoter component comprises, or consists of, a polymerase II promoter sequence, e.g., a constitutive or tissue specific promoter, e.g., a promoter disclosed in Table 20;


wherein the N-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 420 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 434;


wherein the Cas9 component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 421 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 26;


wherein the C-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 422 or a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 434;


wherein the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the nucleotide sequences disclosed in Table 27, or any of the nucleotide sequence of SEQ ID NO: 424, 455 or 456;


wherein the spacer 3 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length, e.g., SEQ ID NO: 425; and


wherein the right ITR component comprises, or consists of, a nucleotide sequence that is the same as, or differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, any of the right ITR nucleotide sequences disclosed in Table 25, or SEQ ID NOs: 436-444.


In an embodiment, the left ITR component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences of SEQ ID NOs: 407-415.


In an embodiment, the spacer 1 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 416.


In an embodiment, the first PIII promoter component (e.g., the first U6 promoter component) comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 417.


In an embodiment, the first PIII promoter is an H1 promoter component that comprises an H1 promoter sequence. In another embodiment, the first PIII promoter is a tRNA promoter component that comprises a tRNA promoter sequence.


In an embodiment, the targeting domain of the first gRNA component comprises, or consists of, a nucleotide sequence that is the same as a nucleotide sequence selected from Table 11.


In an embodiment, the gRNA scaffold domain of the first gRNA component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 418.


In an embodiment, the spacer 4 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 427.


In an embodiment, the second PIII promoter component (e.g., the first U6 promoter component) has the same nucleotide sequence as the first PIII promoter component (e.g., the first U6 promoter component). In another embodiment, the second PIII promoter component (e.g., the second U6 promoter component) has a nucleotide sequence that is different from the first PIII promoter component (e.g., the first U6 promoter component).


In an embodiment, the second PIII promoter is an H1 promoter component that comprises an H1 promoter sequence. In another embodiment, the second PIII promoter is a tRNA promoter component that comprises a tRNA promoter sequence.


In an embodiment, the targeting domain of the second gRNA component comprises, or consists of, a nucleotide sequence that is the same as a nucleotide sequence selected from Table 11.


In an embodiment, the second gRNA component has the same nucleotide sequence as the first gRNA component. In another embodiment, the second gRNA component has a nucleotide sequence that is different from the second gRNA component.


In an embodiment, the spacer 2 component comprises, or consists of, a nucleotide sequence having 0 to 150 nucleotides in length e.g., SEQ ID NO: 419;


In an embodiment, the PII promoter component is a CMV promoter component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 401. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 401.


In an embodiment, the PII promoter component is an EFS promoter component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 402. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 402.


In an embodiment, the PII promoter component is a GRK1 promoter (e.g., a human GRK1 promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 403. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 403.


In an embodiment, the PII promoter component is a CRX promoter (e.g., a human CRX promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 404. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 404.


In an embodiment, the PII promoter component is an NRL promoter (e.g., a human NRL promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 405. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 405.


In an embodiment, the PII promoter component is an RCVRN promoter (e.g., a human RCVRN promoter) component, and comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 406. In an embodiment, the PII promoter comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 406.


In an embodiment, the N-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 420 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 434.


In an embodiment, the Cas9 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 421 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 26.


In an embodiment, the C-ter NLS component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 422 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 434.


In an embodiment, the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences disclosed in Table 27, or any of the nucleotide sequences of SEQ ID NOs: 424, 455 or 456. In an embodiment, the poly(A) signal component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 424.


In an embodiment, the spacer 3 component comprises, or consists of, a nucleotide sequence that is the same as the nucleotide sequence of SEQ ID NO: 425.


In an embodiment, the right ITR component comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences disclosed in Table 25, or any of the nucleotide sequences of SEQ ID NOs: 436-444.


In an embodiment, the recombinant AAV genome further comprises an affinity tag component (e.g., a 3×FLAG component). In an embodiment, the affinity tag component (e.g., the 3×FLAG component) comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 1, 2, 3, 4, or 5 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with, the nucleotide sequence of SEQ ID NO: 423, or a nucleotide sequence encoding any of the amino acid sequences disclosed in Table 26 or any of the amino acid sequences of SEQ ID NO: 426 or 451-454.


In an embodiment, the affinity tag component (e.g., the 3×FLAG component) is between the C-ter NLS component and the poly(A) signal component. In an embodiment, the affinity tag component (e.g., the 3×FLAG component) comprises, or consists of, a nucleotide sequence that is the same as, the nucleotide sequence of SEQ ID NO: 423 or a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 426.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 401, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 402, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 403, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 404, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 405, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome comprises the nucleotide sequences of SEQ ID NOs: 408, 417, 418, 406, 420, 421, 422, 424, and 437.


In an embodiment, the recombinant AAV genome further comprises the nucleotide sequences of SEQ ID NO: 416, 419, 425, and 427.


In an embodiment, the recombinant AAV genome further comprises the nucleotide sequence of SEQ ID NO: 423.


In an embodiment, the recombinant AAV genome comprises any of the nucleotide sequences of SEQ ID NOs: 428-433.


In an embodiment, the recombinant AAV genome comprises, or consists of, a nucleotide sequence that is the same as, differs by no more than 100, 200, 300, 400, or 500 nucleotides from, or has at least has at least 90%, 92%, 94%, 96%, 98%, or 99% homology with any of the nucleotide sequences shown in FIG. 19A-19G, 20A-20F, 21A-21F, 22A-22F, 23A-23F, or 24A-24F, or any of the nucleotide sequences of SEQ ID NOs: 428-433 or 436-444.


In an embodiment, the recombinant AAV genome comprises, or consists of, a nucleotide sequence that is the same as any of the nucleotide sequences shown in FIGS. 19A-19G, 20A-20F, 21A-21F, 22A-22F, 23A-23F, or 24A-24F, or any of the nucleotide sequences of SEQ ID NOs: 428-433 or 436-444.


In an embodiment, the recombinant AAV genome comprises or consists of one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all) of the component sequences shown in FIG. 19A-19G, 20A-20F, 21A-21F, 22A-22F, 23A-23F, or 24A-24F, or Tables 20 or 25-27, or any of the nucleotide sequences of SEQ ID NOs: 428-433 or 436-444.


Unless otherwise indicated, when components of a recombinant AAV genome are described herein, the order can be as provided, but other orders are included as well. In other words, in an embodiment, the order is as set out in the text, but in other embodiments, the order can be different.


It is understood that the recombinant AAV genomes disclosed herein can be single stranded or double stranded. Disclosed herein are also the reverse, complementary form of any of the recombinant AAV genomes disclosed herein, and the double stranded form thereof.


In another aspect, disclosed herein is a nucleic acid molecule (e.g., an expression vector) that comprises a recombinant AAV genome disclosed herein. In an embodiment, the nucleic acid molecule further comprises a nucleotide sequence that encodes an antibiotic resistant gene (e.g., an Amp resistant gene). In an embodiment, the nucleic acid molecule further comprises replication origin sequence (e.g., a ColE1 origin, an M13 origin, or both).


In another aspect, disclosed herein is a recombinant AAV viral particle comprising a recombinant AAV genome disclosed herein.


In an embodiment, the recombinant AAV viral particle has any of the serotype disclosed herein, e.g., in Table 25, or a combination thereof. In another embodiment, the recombinant AAV viral particle has a tissue specificity of retinal pigment epithelium cells, photoreceptors, horizontal cells, bipolar cells, amacrine cells, ganglion cells, or a combination thereof.


In another aspect, disclosed herein is a method of producing a recombinant AAV viral particle disclosed herein comprising providing a recombinant AAV genome disclosed herein and one or more capsid proteins under conditions that allow for assembly of an AAV viral particle.


In another aspect, disclosed herein is a method of altering a cell comprising contacting the cell with a recombinant AAV viral particle disclosed herein.


In another aspect, disclosed herein is a method of treating a subject having or likely to develop LCA10 comprising contacting the subject (or a cell from the subject) with a recombinant viral particle disclosed herein.


In another aspect, disclosed herein is a recombinant AAV viral particle comprising a recombinant AAV genome disclosed herein for use in treating LCA10 in a subject.


In another aspect, disclosed herein is use of a recombinant AAV viral particle comprising a recombinant AAV genome disclosed herein in the manufacture of a medicament for treating LCA10 in a subject.


The gRNA molecules and methods, as disclosed herein, can be used in combination with a governing gRNA molecule, comprising a targeting domain which is complementary to a target domain on a nucleic acid that encodes a component of the CRISPR/Cas system introduced into a cell or subject. In an embodiment, the governing gRNA molecule targets a nucleic acid that encodes a Cas9 molecule or a nucleic acid that encodes a target gene gRNA molecule. In an embodiment, the governing gRNA comprises a targeting domain that is complementary to a target domain in a sequence that encodes a Cas9 component, e.g., a Cas9 molecule or target gene gRNA molecule. In an embodiment, the target domain is designed with, or has, minimal homology to other nucleic acid sequences in the cell, e.g., to minimize off-target cleavage. For example, the targeting domain on the governing gRNA can be selected to reduce or minimize off-target effects. In an embodiment, a target domain for a governing gRNA can be disposed in the control or coding region of a Cas9 molecule or disposed between a control region and a transcribed region. In an embodiment, a target domain for a governing gRNA can be disposed in the control or coding region of a target gene gRNA molecule or disposed between a control region and a transcribed region for a target gene gRNA. While not wishing to be bound by theory, in an embodiment, it is believed that altering, e.g., inactivating, a nucleic acid that encodes a Cas9 molecule or a nucleic acid that encodes a target gene gRNA molecule can be effected by cleavage of the targeted nucleic acid sequence or by binding of a Cas9 molecule/governing gRNA molecule complex to the targeted nucleic acid sequence.


The compositions, reaction mixtures and kits, as disclosed herein, can also include a governing gRNA molecule, e.g., a governing gRNA molecule disclosed herein.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Headings, including numeric and alphabetical headings and subheadings, are for organization and presentation and are not intended to be limiting.


Other features and advantages of the invention will be apparent from the detailed description, drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1G are representations of several exemplary gRNAs.



FIG. 1A depicts a modular gRNA molecule derived in part (or modeled on a sequence in part) from Streptococcus pyogenes (S. pyogenes) as a duplexed structure (SEQ ID NOs: 42 and 43, respectively, in order of appearance);



FIG. 1B depicts a unimolecular (or chimeric) gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 44);



FIG. 1C depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 45);



FIG. 1D depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 46);



FIG. 1E depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 47);



FIG. 1F depicts a modular gRNA molecule derived in part from Streptococcus thermophilus (S. thermophilus) as a duplexed structure (SEQ ID NOs: 48 and 49, respectively, in order of appearance);



FIG. 1G depicts an alignment of modular gRNA molecules of S. pyogenes (SEQ ID NOs: 42 and 52) and S. thermophilus (SEQ ID NOs: 48 and 49).



FIGS. 2A-2G depict an alignment of Cas9 sequences from Chylinski 2013. The N-terminal RuvC-like domain is boxed and indicated with a “Y”. The other two RuvC-like domains are boxed and indicated with a “B”. The HNH-like domain is boxed and indicated by a “G”. Sm: S. mutans (SEQ ID NO: 1); Sp: S. pyogenes (SEQ ID NO: 2); St: S. thermophilus (SEQ ID NO: 3); Li: L. innocua (SEQ ID NO: 4). Motif: this is a motif based on the four sequences: residues conserved in all four sequences are indicated by single letter amino acid abbreviation; “*” indicates any amino acid found in the corresponding position of any of the four sequences; and “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids.



FIGS. 3A-3B show an alignment of the N-terminal RuvC-like domain from the Cas9 molecules disclosed in Chylinski 2013 (SEQ ID NOs: 54, 56, and 58-103, respectively, in order of appearance). The last line of FIG. 3B identifies 4 highly conserved residues.



FIGS. 4A-4B show an alignment of the N-terminal RuvC-like domain from the Cas9 molecules disclosed in Chylinski 2013 with sequence outliers removed. The last line of FIG. 4B identifies 3 highly conserved residues.



FIGS. 5A-5C show an alignment of the HNH-like domain from the Cas9 molecules disclosed in Chylinski 2013 (SEQ ID NOs: 178-252, respectively, in order of appearance). The last line of FIG. 5C identifies conserved residues.



FIGS. 6A-6B show an alignment of the HNH-like domain from the Cas9 molecules disclosed in Chylinski 2013 with sequence outliers removed. The last line of FIG. 6B identifies 3 highly conserved residues.



FIGS. 7A-7B depict an alignment of Cas9 sequences from S. pyogenes and Neisseria meningitidis (N. meningitidis). The N-terminal RuvC-like domain is boxed and indicated with a “Y”. The other two RuvC-like domains are boxed and indicated with a “B”. The HNH-like domain is boxed and indicated with a “G”. Sp: S. pyogenes; Nm: N. meningitidis. Motif: this is a motif based on the two sequences: residues conserved in both sequences are indicated by a single amino acid designation; “*” indicates any amino acid found in the corresponding position of any of the two sequences; “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids, and “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids, or absent.



FIG. 8 shows a nucleic acid sequence encoding Cas9 of N. meningitidis (SEQ ID NO: 303). Sequence indicated by an “R” is an SV40 NLS; sequence indicated as “G” is an HA tag; and sequence indicated by an “O” is a synthetic NLS sequence; the remaining (unmarked) sequence is the open reading frame (ORF).



FIGS. 9A-9B are schematic representations of the domain organization of S. pyogenes Cas 9. FIG. 9A shows the organization of the Cas9 domains, including amino acid positions, in reference to the two lobes of Cas9 (recognition (REC) and nuclease (NUC) lobes). FIG. 9B shows the percent homology of each domain across 83 Cas9 orthologs.)



FIG. 10 shows the nucleotide locations of the Alu repeats, cryptic exon and point mutation, c.2991+1655 A to G in the human CEP290 locus. “X” indicates the cryptic exon. The blue triangle indicates the LCA target position c.2991+1655A to G.



FIG. 11A-11B show the rates of indels induced by various gRNAs at the CEP290 locus. FIG. 11A shows gene editing (% indels) as assessed by sequencing for S. pyogenes and S. aureus gRNAs when co-expressed with Cas9 in patient-derived IVS26 primary fibroblasts. FIG. 11B shows gene editing (% indels) as assessed by sequencing for S. aureus gRNAs when co-expressed with Cas9 in HEK293 cells.



FIGS. 12A-12B show changes in expression of the wild-type and mutant (including cryptic exon) alleles of CEP290 in cells transfected with Cas9 and the indicated gRNA pairs. Total RNA was isolated from modified cells and qRT-PCR with Taqman primer-probe sets was used to quantify expression. Expression is normalized to the Beta-Actin housekeeping gene and each sample is normalized to the GFP control sample (cells transfected with only GFP). Error bars represent standard deviation of 4 technical replicates.



FIG. 13 shows changes in gene expression of the wild-type and mutant (including cryptic exon) alleles of CEP290 in cells transfected with Cas9 and pairs of gRNAs shown to have in initial qRT-PCR screening. Total RNA was isolated from modified cells and qRT-PCR with Taqman primer-probe sets was used to quantify expression. Expression is normalized to the Beta-Actin housekeeping gene and each sample is normalized to the GFP control sample (cells transfected with only GFP). Error bars represent standard error of the mean of two to six biological replicates.



FIG. 14 shows deletion rates in cells transfected with indicated gRNA pairs and Cas9 as measured by droplet digital PCR (ddPCR). % deletion was calculated by dividing the number of positive droplets in deletion assay by the number of positive droplets in a control assay. Three biological replicates are shown for two different gRNA pairs.



FIG. 15 shows deletion rates in 293T cells transfected with exemplary AAV expression plasmids. pSS10 encodes EFS-driven saCas9 without gRNA. pSS15 and pSS17 encode EFS-driven saCas9 and one U6-driven gRNA, CEP290-64 and CEP290-323 respectively. pSS11 encodes EFS-driven saCas9 and two U6-driven gRNAs, CEP290-64 and CEP290-323 in the same vector. Deletion PCR were performed with gDNA exacted from 293T cells post transfection. The size of the PCR amplicons indicates the presence or absence of deletion events, and the deletion ratio was calculated.



FIG. 16 shows the composition of structural proteins in AAV2 viral preps expressing Cas9. Reference AAV2 vectors (lanes 1 & 2) were obtained from Vector Core at University of North Carolina, Chapel Hill. AAV2-CMV-GFP (lane 3) and AAV2-CMV-saCas9-minpA (lane4) were packaged and purified with “Triple Transfection Protocol” followed by CsCl ultracentrifugation. Titers were obtained by quantitative PCR with primers annealing to the ITR structures on these vectors. Viral preps were denatured and probed with B1 antibody on Western Blots to demonstrate three structural proteins composing AAV2, VP1, VP2, and VP3 respectively.



FIG. 17 depicts the deletion rates in 293T cells transduced with AAV viral vectors at MOI of 1000 viral genome (vg) per cell and 10,000 vg per cell. AAV2 viral vectors were produced with “Triple Transfection Protocol” using pHelper, pRep2Cap2, pSS8 encoding gRNAs CEP290-64 and CEP290-323, and CMV-driven saCas9. Viral preps were titered with primers annealing to ITRs on pSS8. 6 days post transduction, gDNA were extracted from 293T cells. Deletion PCR was carried out on the CEP290 locus, and deletion rates were calculated based on the predicted amplicons. Western blotting was carried out to show the AAV-mediated saCas9 expression in 293T cells (primary antibody: anti-Flag, M2; loading control: anti-alphaTubulin).



FIG. 18A-18B depicts additional exemplary structures of unimolecular gRNA molecules. FIG. 18A (SEQ ID NO: 45) shows an exemplary structure of a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure. FIG. 18B (SEQ ID NO: 2779) shows an exemplary structure of a unimolecular gRNA molecule derived in part from S. aureus as a duplexed structure.



FIGS. 19A-19G depicts the nucleotide sequence of an exemplary recombinant AAV genome containing a CMV promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: 5′→6′ (SEQ ID NO: 428); lower stand: 3′→5′ SEQ ID NO: 445).



FIGS. 20A-20F depicts the nucleotide sequence of an exemplary recombinant AAV genome containing an EFS promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: 5′→6′ (SEQ ID NO: 429); lower stand: 3′→45′ (SEQ ID NO: 446).



FIGS. 21A-21F depicts the nucleotide sequence of an exemplary recombinant AAV genome containing a CRK1 promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: (SEQ ID NO: 430); lower stand: 3′→5′ (SEQ ID NO: 447).



FIGS. 22A-22F depicts the nucleotide sequence of an exemplary recombinant AAV genome containing a CRX promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: 5′→6′ (SEQ ID NO: 431); lower stand: 3′→6′ (SEQ ID NO: 448).



FIGS. 23A-23F depicts the nucleotide sequence of an exemplary recombinant AAV genome containing a NRL promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: 5′→43′ (SEQ ID NO: 432); lower stand: 3′→5′ (SEQ ID NO: 449).



FIGS. 24A-24F depicts the nucleotide sequence of an exemplary recombinant AAV genome containing a NRL promoter. Various components of the recombinant AAV genome are also indicated. N=A, T, G or C. The number of N residues can vary, e.g., from 16 to 26 nucleotides. Upper stand: 5′→6′ (SEQ ID NO: 433); lower stand: 3′→5′ (SEQ ID NO: 450).



FIGS. 25A-C include schematic depictions of exemplary AAV viral genome according to certain embodiments of the disclosure. FIG. 25A shows an AAV genome for use in altering a CEP290 target position which encodes, inter alia, two guide RNAs having specific targeting domains selected from SEQ ID NOs: 389-391, 388, 392, and 394 and an S. aureus Cas9. FIG. 25B shows an AAV genome that may be used for a variety of applications, including without limitation the alteration of the CEP290 target position, encoding two guide RNAs comprising the sequences of SEQ ID NOs: 2785 and 2787 and an S. aureus Cas9. FIG. 25C shows an AAV genome encoding one or two guide RNAs, each driven by a U6 promoter, and an S. aureus Cas9. In the figure, N may be 1 or two.



FIG. 26 illustrates the genome editing strategy implemented in certain embodiments of this disclosure.



FIG. 27A shows a photomicrograph of a mouse retinal explant on a support matrix; retinal tissue is indicated by the arrow. FIG. 27B shows a fluorescence micrograph from a histological section of a mouse retinal explant illustrating AAV transduction of cells in multiple retinal layers with a GFP reporter. FIG. 27C shows a micrograph from a histological section of a primate retinal tissue treated with vehicle. FIG. 27D shows a micrograph from a histological section of a primate retinal tissue treated with AAV5 vector encoding S. aureus Cas9 operably linked to the photoreceptor-specific hGRK1 promoter. Dark staining in the outer nuclear layer (ONL) indicates that cells were successfully transduced with AAV and express Cas9.



FIG. 28A and FIG. 28B show expression of Cas9 mRNA and gRNA, respectively, normalized to GAPDH mRNA expression. UT denotes untreated; GRK1-Cas refers to a vector in which Cas9 expression is driven by the photoreceptor-specific hGRK1 promoter; dCMV-Cas and EFS-Cas similarly refer to vectors in which Cas9 expression is driven by the dCMV promoter or the EFS promoter. Conditions in which gRNAs are included in the vector are denoted by the bar captioned “with gRNA.” Light and dark bars depict separate experimental replicates.



FIG. 29 summarizes the edits observed in mouse retinal explants 7 days after transduction with AAV5-mCEPgRNAs-Cas9. Edits were binned into one of three categories: no edit, indel at one of two guide sites, and deletion of sequence between the guide sites. Each bar graph depicts the observed edits as a percentage of sequence reads from individual explants transduced with AAV vectors in which Cas9 was driven by the promoter listed (hGRK1, CMV or EFS).



FIG. 30 summarizes the edits observed in the CEP290 gene in retinal punch samples obtained from cynomolgus monkeys treated with AAV vectors encoding genome editing systems according to the present disclosure.



FIG. 31A depicts a reporter construct that was used to assess the effect of certain editing outcomes, including inversions and deletions, on the IVS26 splicing defect. FIG. 31B depicts the relative levels of GFP reporter expression in WT, IVS26, deletion and inversion conditions, normalized to mCherry expression.



FIG. 32 summarizes the productive CEP290 edits observed in human retinal explants 14 or 28 days after transduction with AAV vectors in which Cas9 was driven by the promoter listed (hGRK1 or CMV).



FIG. 33 shows components of a recombinant adenovirus-associated virus (AAV) genome.



FIG. 34 shows components of a recombinant adenovirus-associated virus (AAV) genome.



FIG. 35 shows components of a recombinant adenovirus-associated virus (AAV) genome.





DETAILED DESCRIPTION
Definitions

Unless otherwise specified, each of the following terms has the meaning set forth in this section.


The indefinite articles “a” and “an” denote at least one of the associated noun, and are used interchangeably with the terms “at least one” and “one or more.” For example, the phrase “a module” means at least one module, or one or more modules.


The conjunctions “or” and “and/or” are used interchangeably.


“Domain” as used herein is used to describe segments of a protein or nucleic acid. Unless otherwise indicated, a domain is not required to have any specific functional property.


An “indel” is an insertion and/or deletion in a nucleic acid sequence. An indel may be the product of the repair of a DNA double strand break, such as a double strand break formed by a genome editing system of the present disclosure. An indel is most commonly formed when a break is repaired by an “error prone” repair pathway such as the NHEJ pathway described below. Indels are typically assessed by sequencing (most commonly by “next-gen” or “sequencing-by-synthesis” methods, though Sanger sequencing may still be used) and are quantified by the relative frequency of numerical changes (e.g., ±1, ±2 or more bases) at a site of interest among all sequencing reads. DNA samples for sequencing can be prepared by a variety of methods known in the art, and may involve the amplification of sites of interest by polymerase chain reaction (PCR) or the capture of DNA ends generated by double strand breaks, as in the GUIDEseq process described in Tsai 2016 (incorporated by reference herein). Other sample preparation methods are known in the art. Indels may also be assessed by other methods, including in situ hybridization methods such as the FiberComb™ system commercialized by Genomic Vision (Bagneux, France), and other methods known in the art.


“CEP290 target position” and “CEP290 target site” are used interchangeably herein to refer to a nucleotide or nucleotides in or near the CEP290 gene that are targeted for alteration using the methods described herein. In certain embodiments, a mutation at one or more of these nucleotides is associated with a CEP290 associated disease. The terms “CEP290 target position” and “CEP290 target site” are also used herein to refer to these mutations. For example, the IVS26 mutation is one non-limiting embodiment of a CEP290 target position/target site.


Calculations of homology or sequence identity between two sequences (the terms are used interchangeably herein) are performed as follows. The sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The optimal alignment is determined as the best score using the GAP program in the GCG software package with a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences.


“Governing gRNA molecule” as used herein refers to a gRNA molecule that comprises a targeting domain that is complementary to a target domain on a nucleic acid that comprises a sequence that encodes a component of the CRISPR/Cas system that is introduced into a cell or subject. A governing gRNA does not target an endogenous cell or subject sequence. In an embodiment, a governing gRNA molecule comprises a targeting domain that is complementary with a target sequence on: (a) a nucleic acid that encodes a Cas9 molecule; (b) a nucleic acid that encodes a gRNA which comprises a targeting domain that targets the CEP290 gene (a target gene gRNA); or on more than one nucleic acid that encodes a CRISPR/Cas component, e.g., both (a) and (b). In an embodiment, a nucleic acid molecule that encodes a CRISPR/Cas component, e.g., that encodes a Cas9 molecule or a target gene gRNA, comprises more than one target domain that is complementary with a governing gRNA targeting domain. While not wishing to be bound by theory, it is believed that a governing gRNA molecule complexes with a Cas9 molecule and results in Cas9 mediated inactivation of the targeted nucleic acid, e.g., by cleavage or by binding to the nucleic acid, and results in cessation or reduction of the production of a CRISPR/Cas system component. In an embodiment, the Cas9 molecule forms two complexes: a complex comprising a Cas9 molecule with a target gene gRNA, which complex will alter the CEP290 gene; and a complex comprising a Cas9 molecule with a governing gRNA molecule, which complex will act to prevent further production of a CRISPR/Cas system component, e.g., a Cas9 molecule or a target gene gRNA molecule. In an embodiment, a governing gRNA molecule/Cas9 molecule complex binds to or promotes cleavage of a control region sequence, e.g., a promoter, operably linked to a sequence that encodes a Cas9 molecule, a sequence that encodes a transcribed region, an exon, or an intron, for the Cas9 molecule. In an embodiment, a governing gRNA molecule/Cas9 molecule complex binds to or promotes cleavage of a control region sequence, e.g., a promoter, operably linked to a gRNA molecule, or a sequence that encodes the gRNA molecule. In an embodiment, the governing gRNA, e.g., a Cas9-targeting governing gRNA molecule, or a target gene gRNA-targeting governing gRNA molecule, limits the effect of the Cas9 molecule/target gene gRNA molecule complex-mediated gene targeting. In an embodiment, a governing gRNA places temporal, level of expression, or other limits, on activity of the Cas9 molecule/target gene gRNA molecule complex. In an embodiment, a governing gRNA reduces off-target or other unwanted activity. In an embodiment, a governing gRNA molecule inhibits, e.g., entirely or substantially entirely inhibits, the production of a component of the Cas9 system and thereby limits, or governs, its activity.


“Modulator” as used herein refers to an entity, e.g., a drug that can alter the activity (e.g., enzymatic activity, transcriptional activity, or translational activity), amount, distribution, or structure of a subject molecule or genetic sequence. In an embodiment, modulation comprises cleavage, e.g., breaking of a covalent or non-covalent bond, or the forming of a covalent or non-covalent bond, e.g., the attachment of a moiety, to the subject molecule. In an embodiment, a modulator alters the, three dimensional, secondary, tertiary, or quaternary structure, of a subject molecule. A modulator can increase, decrease, initiate, or eliminate a subject activity.


“Large molecule” as used herein refers to a molecule having a molecular weight of at least 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kD. Large molecules include proteins, polypeptides, nucleic acids, biologics, and carbohydrates.


“Polypeptide” as used herein refers to a polymer of amino acids having less than 100 amino acid residues. In an embodiment, it has less than 50, 20, or 10 amino acid residues.


“Non-homologous end joining” or “NHEJ”, as used herein, refers to ligation mediated repair and/or non-template mediated repair including, e.g., canonical NHEJ (cNHEJ), alternative NHEJ (altNHEJ), microhomology-mediated end joining (MMEJ), single-strand annealing (SSA), and synthesis-dependent microhomology-mediated end joining (SD-MMEJ).


“Reference molecule”, e.g., a reference Cas9 molecule or reference gRNA, as used herein refers to a molecule to which a subject molecule, e.g., a subject Cas9 molecule of subject gRNA molecule, e.g., a modified or candidate Cas9 molecule is compared. For example, a Cas9 molecule can be characterized as having no more than 10% of the nuclease activity of a reference Cas9 molecule. Examples of reference Cas9 molecules include naturally occurring unmodified Cas9 molecules, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, S. aureus, or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology with the Cas9 molecule to which it is being compared. In an embodiment, the reference Cas9 molecule is a sequence, e.g., a naturally occurring or known sequence, which is the parental form on which a change, e.g., a mutation has been made.


“Replacement”, or “replaced”, as used herein with reference to a modification of a molecule does not require a process limitation but merely indicates that the replacement entity is present.


“Small molecule” as used herein refers to a compound having a molecular weight less than about 2 kD, e.g., less than about 2 kD, less than about 1.5 kD, less than about 1 kD, or less than about 0.75 kD.


“Subject” as used herein means a human, mouse, or non-human primate. A human subject can be any age (e.g., an infant, child, young adult, or adult), and may suffer from a disease, or may be in need of alteration of a gene.


“Treat,” “treating,” and “treatment” as used herein mean the treatment of a disease in a subject (e.g., a human subject), including one or more of inhibiting the disease, i.e., arresting or preventing its development or progression; relieving the disease, i.e., causing regression of the disease state; relieving one or more symptoms of the disease; and curing the disease.


“Prevent,” “preventing,” and “prevention” as used herein means the prevention of a disease in a subject, e.g., in a human, including (a) avoiding or precluding the disease; (b) affecting the predisposition toward the disease; (c) preventing or delaying the onset of at least one symptom of the disease.


The terms “polynucleotide”, “nucleotide sequence”, “nucleic acid”, “nucleic acid molecule”, “nucleic acid sequence”, and “oligonucleotide” as used herein refer to a series of nucleotide bases (also called “nucleotides”) in DNA and RNA, and mean any chain of two or more nucleotides. The polynucleotides can be chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, its hybridization parameters, etc. A nucleotide sequence typically carries genetic information, including the information used by cellular machinery to make proteins and enzymes. These terms include double- or single-stranded genomic DNA, RNA, any synthetic and genetically manipulated polynucleotide, and both sense and antisense polynucleotides. This also includes nucleic acids containing modified bases.


“X” as used herein in the context of an amino acid sequence, refers to any amino acid (e.g., any of the twenty natural amino acids) unless otherwise specified.


Conventional IUPAC notation is used in nucleotide sequences presented herein, as shown in Table 1, below (see also Cornish-Bowden 1985, incorporated by reference herein). It should be noted, however, that “T” denotes “Thymine or Uracil” insofar as a given sequence (such as a gRNA sequence) may be encoded by either DNA or RNA.









TABLE 1







IUPAC nucleic acid notation








Character
Base





A
Adenine


T
Thymine


G
Guanine


C
Cytosine


U
Uracil


K
G or T/U


M
A or C


R
A or G


Y
C or T/U


S
C or G


W
A or T/U


B
C, G, or T/U


V
A, C, or G


H
A, C, or T/U


D
A, G, or T/U


N
A, C, G, or T/U









The terms “protein,” “peptide” and “polypeptide” are used interchangeably herein to refer to a sequential chain of amino acids linked together via peptide bonds. The terms include individual proteins, groups or complexes of proteins that associate together, as well as fragments, variants, derivatives and analogs of such proteins. Peptide sequences are presented using conventional notation, beginning with the amino or N-terminus on the left, and proceeding to the carboxyl or C-terminus on the right. Standard one-letter or three-letter abbreviations may be used.


Methods of Altering CEP290


CEP290 encodes a centrosomal protein that plays a role in centrosome and cilia development. The CEP290 gene is involved in forming cilia around cells, particularly in the photoreceptors at the back of the retina, which are needed to detect light and color.


Disclosed herein are methods and compositions for altering the LCA10 target position in the CEP290 gene. LCA10 target position can be altered (e.g., corrected) by gene editing, e.g., using CRISPR-Cas9 mediated methods. The alteration (e.g., correction) of the mutant CEP290 gene can be mediated by any mechanism. Exemplary mechanisms that can be associated with the alteration (e.g., correction) of the mutant CEP290 gene include, but are not limited to, non-homologous end joining (e.g., classical or alternative), microhomology-mediated end joining (MMEJ), homology-directed repair (e.g., endogenous donor template mediated), SDSA (synthesis dependent strand annealing), single strand annealing or single strand invasion. Methods described herein introduce one or more breaks near the site of the LCA target position (e.g., c.2991+1655A to G) in at least one allele of the CEP290 gene. In an embodiment, the one or more breaks are repaired by NHEJ. During repair of the one or more breaks, DNA sequences are inserted and/or deleted resulting in the loss or destruction of the cryptic splice site resulting from the mutation at the LCA10 target position (e.g., c.2991+1655A to G). The method can include acquiring knowledge of the mutation carried by the subject, e.g., by sequencing the appropriate portion of the CEP290 gene.


Altering the LCA10 target position refers to (1) break-induced introduction of an indel (also referred to herein as NHEJ-mediated introduction of an indel) in close proximity to or including a LCA10 target position (e.g., c.2991+1655A to G), or (2) break-induced deletion (also referred to herein as NHEJ-mediated deletion) of genomic sequence including the mutation at a LCA10 target position (e.g., c.2991+1655A to G). Both approaches give rise to the loss or destruction of the cryptic splice site.


In an embodiment, the method comprises introducing a break-induced indel in close proximity to or including the LCA10 target position (e.g., c.2991+1655A to G). As described herein, in one embodiment, the method comprises the introduction of a double strand break sufficiently close to (e.g., either 5′ or 3′ to) the LCA10 target position, e.g., c.2991+1655A to G, such that the break-induced indel could be reasonably expected to span the mutation. A single gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, is configured to position a double strand break sufficiently close to the LCA10 target position in the CEP290 gene. In an embodiment, the break is positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat. The double strand break may be positioned within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) upstream of the LCA10 target position, or within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) downstream of the LCA10 target position (see FIG. 9). While not wishing to be bound by theory, in an embodiment, it is believed that NHEJ-mediated repair of the double strand break allows for the NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position.


In another embodiment, the method comprises the introduction of a pair of single strand breaks sufficiently close to (either 5′ or 3′ to, respectively) the mutation at the LCA10 target position (e.g., c.2991+1655A to G) such that the break-induced indel could be reasonably expected to span the mutation. Two gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, are configured to position the two single strand breaks sufficiently close to the LCA10 target position in the CEP290 gene. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat. In an embodiment, the pair of single strand breaks is positioned within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) upstream of the LCA10 target position, or within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) downstream of the LCA10 target position (see FIG. 9). While not wishing to be bound by theory, in an embodiment, it is believed that NHEJ mediated repair of the pair of single strand breaks allows for the NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position. In an embodiment, the pair of single strand breaks may be accompanied by an additional double strand break, positioned by a third gRNA molecule, as is discussed below. In another embodiment, the pair of single strand breaks may be accompanied by two additional single strand breaks positioned by a third gRNA molecule and a fourth gRNA molecule, as is discussed below.


In an embodiment, the method comprises introducing a break-induced deletion of genomic sequence including the mutation at the LCA10 target position (e.g., c.2991+1655A to G). As described herein, in one embodiment, the method comprises the introduction of two double strand breaks—one 5′ and the other 3′ to (i.e., flanking) the LCA10 target position. Two gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, are configured to position the two double strand breaks on opposite sides of the LCA10 target position in the CEP290 gene. In an embodiment, the first double strand break is positioned upstream of the LCA10 target position within intron 26 (e.g., within 1654 nucleotides), and the second double strand break is positioned downstream of the LCA10 target position within intron 26 (e.g., within 4183 nucleotides) (see FIG. 10). In an embodiment, the breaks (i.e., the two double strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat, or the endogenous CEP290 splice sites.


The first double strand break may be positioned as follows:

    • (1) upstream of the 5′ end of the Alu repeat in intron 26,
    • (2) between the 3′ end of the Alu repeat and the LCA10 target position in intron 26, or
    • (3) within the Alu repeat provided that a sufficient length of the gRNA fall outside of the repeat so as to avoid binding to other Alu repeats in the genome, and the second double strand break to be paired with the first double strand break may be positioned downstream of the LCA10 target position in intron 26.


For example, the first double strand break may be positioned:

    • (1) within 1162 nucleotides upstream of the 5′ end of the Alu repeat,
    • (2) within 1000 nucleotides upstream of the 5′ end of the Alu repeat,
    • (3) within 900 nucleotides upstream of the 5′ end of the Alu repeat,
    • (4) within 800 nucleotides upstream of the 5′ end of the Alu repeat,
    • (5) within 700 nucleotides upstream of the 5′ end of the Alu repeat,
    • (6) within 600 nucleotides upstream of the 5′ end of the Alu repeat,
    • (7) within 500 nucleotides upstream of the 5′ end of the Alu repeat,
    • (8) within 400 nucleotides upstream of the 5′ end of the Alu repeat,
    • (9) within 300 nucleotides upstream of the 5′ end of the Alu repeat,
    • (10) within 200 nucleotides upstream of the 5′ end of the Alu repeat,
    • (11) within 100 nucleotides upstream of the 5′ end of the Alu repeat,
    • (12) within 50 nucleotides upstream of the 5′ end of the Alu repeat,
    • (13) within the Alu repeat provided that a sufficient length of the gRNA falls outside of the repeat so as to avoid binding to other Alu repeats in the genome,
    • (14) within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) upstream of the LCA10 target position, or
    • (15) within 17 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16 or 17 nucleotides) upstream of the LCA10 target position, and the second double strand breaks to be paired with the first double strand break may be positioned:
    • (1) within 4183 nucleotides downstream of the LCA10 target position,
    • (2) within 4000 nucleotides downstream of the LCA10 target position,
    • (3) within 3000 nucleotides downstream of the LCA10 target position,
    • (4) within 2000 nucleotides downstream of the LCA10 target position,
    • (5) within 1000 nucleotides downstream of the LCA10 target position,
    • (6) within 700 nucleotides downstream of the LCA10 target position,
    • (7) within 500 nucleotides downstream of the LCA10 target position,
    • (8) within 300 nucleotides downstream of the LCA10 target position,
    • (9) within 100 nucleotides downstream of the LCA10 target position,
    • (10) within 60 nucleotides downstream of the LCA10 target position, or
    • (11) within 40 (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35 or 40 nucleotides)
    • nucleotides downstream of the LCA10 target position.


While not wishing to be bound by theory, in an embodiment, it is believed that the two double strand breaks allow for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene.


The method also comprises the introduction of two sets of breaks, e.g., one double strand break (either 5′ or 3′ to the mutation at the LCA10 target position, e.g., c.2991+1655A to G) and a pair of single strand breaks (on the other side of the LCA10 target position opposite from the double strand break) such that the two sets of breaks are positioned to flank the LCA10 target position. Three gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, are configured to position the one double strand break and the pair of single strand breaks on opposite sides of the LCA10 target position in the CEP290 gene. In an embodiment, the first set of breaks (either the double strand break or the pair of single strand breaks) is positioned upstream of the LCA10 target position within intron 26 (e.g., within 1654 nucleotides), and the second set of breaks (either the double strand break or the pair of single strand breaks) are positioned downstream of the LCA10 target position within intron 26 (e.g., within 4183 nucleotides) (see FIG. 10). In an embodiment, the two sets of breaks (i.e., the double strand break and the pair of single strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat, or the endogenous CEP290 splice sites.


The first set of breaks (either the double strand break or the pair of single strand breaks) may be positioned:

    • (1) upstream of the 5′ end of the Alu repeat in intron 26,
    • (2) between the 3′ end of the Alu repeat and the LCA10 target position in intron 26, or
    • (3) within the Alu repeat provided that a sufficient length of the gRNA falls outside of the repeat so as to avoid binding to other Alu repeats in the genome,


      and the second set of breaks to be paired with the first set of breaks (either the double strand break or the pair of single strand breaks) may be positioned downstream of the LCA10 target position in intron 26.


For example, the first set of breaks (either the double strand break or the pair of single strand breaks) may be positioned:

    • (1) within 1162 nucleotides upstream of the 5′ end of the Alu repeat,
    • (2) within 1000 nucleotides upstream of the 5′ end of the Alu repeat,
    • (3) within 900 nucleotides upstream of the 5′ end of the Alu repeat,
    • (4) within 800 nucleotides upstream of the 5′ end of the Alu repeat,
    • (5) within 700 nucleotides upstream of the 5′ end of the Alu repeat,
    • (6) within 600 nucleotides upstream of the 5′ end of the Alu repeat,
    • (7) within 500 nucleotides upstream of the 5′ end of the Alu repeat,
    • (8) within 400 nucleotides upstream of the 5′ end of the Alu repeat,
    • (9) within 300 nucleotides upstream of the 5′ end of the Alu repeat,
    • (10) within 200 nucleotides upstream of the 5′ end of the Alu repeat,
    • (11) within 100 nucleotides upstream of the 5′ end of the Alu repeat,
    • (12) within 50 nucleotides upstream of the 5′ end of the Alu repeat,
    • (13) within the Alu repeat provided that a sufficient length of the gRNA falls outside of the repeat so as to avoid binding to other Alu repeats in the genome,
    • (14) within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) upstream of the LCA10 target position, or
    • (15) within 17 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16 or 17 nucleotides) upstream of the LCA10 target position,


      and the second set of breaks to be paired with the first set of breaks (either the double strand break or the pair of single strand breaks) may be positioned:
    • (1) within 4183 nucleotides downstream of the LCA10 target position,
    • (2) within 4000 nucleotides downstream of the LCA10 target position,
    • (3) within 3000 nucleotides downstream of the LCA10 target position,
    • (4) within 2000 nucleotides downstream of the LCA10 target position,
    • (5) within 1000 nucleotides downstream of the LCA10 target position,
    • (6) within 700 nucleotides downstream of the LCA10 target position,
    • (7) within 500 nucleotides downstream of the LCA10 target position,
    • (8) within 300 nucleotides downstream of the LCA10 target position,
    • (9) within 100 nucleotides downstream of the LCA10 target position,
    • (10) within 60 nucleotides downstream of the LCA10 target position, or
    • (11) within 40 (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35 or 40 nucleotides) nucleotides downstream of the LCA10 target position.


While not wishing to be bound by theory, it is believed that the two sets of breaks (either the double strand break or the pair of single strand breaks) allow for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene.


The method also comprises the introduction of two sets of breaks, e.g., two pairs of single strand breaks, wherein the two sets of single-stranded breaks are positioned to flank the LCA10 target position. In an embodiment, the first set of breaks (e.g., the first pair of single strand breaks) is 5′ to the mutation at the LCA10 target position (e.g., c.2991+1655A to G) and the second set of breaks (e.g., the second pair of single strand breaks) is 3′ to the mutation at the LCA10 target position. Four gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, are configured to position the two pairs of single strand breaks on opposite sides of the LCA10 target position in the CEP290 gene. In an embodiment, the first set of breaks (e.g., the first pair of single strand breaks) is positioned upstream of the LCA10 target position within intron 26 (e.g., within 1654 nucleotides), and the second set of breaks (e.g., the second pair of single strand breaks) is positioned downstream of the LCA10 target position within intron 26 (e.g., within 4183 nucleotides) (see FIG. 10). In an embodiment, the two sets of breaks (i.e., the two pairs of single strand breaks) are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat, or the endogenous CEP290 splice sites.


The first set of breaks (e.g., the first pair of single strand breaks) may be positioned:

    • (1) upstream of the 5′ end of the Alu repeat in intron 26,
    • (2) between the 3′ end of the Alu repeat and the LCA10 target position in intron 26, or
    • (3) within the Alu repeat provided that a sufficient length of the gRNA falls outside of the repeat so as to avoid binding to other Alu repeats in the genome,


      and the second set of breaks to be paired with the first set of breaks (e.g., the second pair of single strand breaks) may be positioned downstream of the LCA10 target position in intron 26.


For example, the first set of breaks (e.g., the first pair of single strand breaks) may be positioned:

    • (1) within 1162 nucleotides upstream of the 5′ end of the Alu repeat,
    • (2) within 1000 nucleotides upstream of the 5′ end of the Alu repeat,
    • (3) within 900 nucleotides upstream of the 5′ end of the Alu repeat,
    • (4) within 800 nucleotides upstream of the 5′ end of the Alu repeat,
    • (5) within 700 nucleotides upstream of the 5′ end of the Alu repeat,
    • (6) within 600 nucleotides upstream of the 5′ end of the Alu repeat,
    • (7) within 500 nucleotides upstream of the 5′ end of the Alu repeat,
    • (8) within 400 nucleotides upstream of the 5′ end of the Alu repeat,
    • (9) within 300 nucleotides upstream of the 5′ end of the Alu repeat,
    • (10) within 200 nucleotides upstream of the 5′ end of the Alu repeat,
    • (11) within 100 nucleotides upstream of the 5′ end of the Alu repeat,
    • (12) within 50 nucleotides upstream of the 5′ end of the Alu repeat,
    • (13) within the Alu repeat provided that a sufficient length of the gRNA falls outside of the repeat so as to avoid binding to other Alu repeats in the genome,
    • (14) within 40 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 25, 30, 35 or 40 nucleotides) upstream of the LCA10 target position, or
    • (15) within 17 nucleotides (e.g., within 1, 2, 3, 4, 5, 10, 15, 16 or 17 nucleotides) upstream of the LCA10 target position,


      and the second set of breaks to be paired with the first set of breaks (e.g., the second pair of single strand breaks) may be positioned:
    • (1) within 4183 nucleotides downstream of the LCA10 target position,
    • (2) within 4000 nucleotides downstream of the LCA10 target position,
    • (3) within 3000 nucleotides downstream of the LCA10 target position,
    • (4) within 2000 nucleotides downstream of the LCA10 target position,
    • (5) within 1000 nucleotides downstream of the LCA10 target position,
    • (6) within 700 nucleotides downstream of the LCA10 target position,
    • (7) within 500 nucleotides downstream of the LCA10 target position,
    • (8) within 300 nucleotides downstream of the LCA10 target position,
    • (9) within 100 nucleotides downstream of the LCA10 target position,
    • (10) within 60 nucleotides downstream of the LCA10 target position, or
    • (11) within 40 (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35 or 40 nucleotides) nucleotides downstream of the LCA10 target position.


While not wishing to be bound by theory, it is believed that the two sets of breaks (e.g., the two pairs of single strand breaks) allow for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene.


Methods of Treating or Preventing LCA10


Described herein are methods for treating or delaying the onset or progression of Leber's Congenital Amaurosis 10 (LCA10) caused by a c.2991+1655 A to G (adenine to guanine) mutation in the CEP290 gene. The disclosed methods for treating or delaying the onset or progression of LCA10 alter the CEP290 gene by genome editing using a gRNA targeting the LCA10 target position and a Cas9 enzyme. Details on gRNAs targeting the LCA10 target position and Cas9 enzymes are provided below.


In an embodiment, treatment is initiated prior to onset of the disease.


In an embodiment, treatment is initiated after onset of the disease.


In an embodiment, treatment is initiated prior to loss of visual acuity and/or sensitivity to glare.


In an embodiment, treatment is initiated at onset of loss of visual acuity.


In an embodiment, treatment is initiated after onset of loss of visual acuity and/or sensitivity to glare.


In an embodiment, treatment is initiated in utero.


In an embodiment, treatment is initiated after birth.


In an embodiment, treatment is initiated prior to the age of 1.


In an embodiment, treatment is initiated prior to the age of 2.


In an embodiment, treatment is initiated prior to the age of 5.


In an embodiment, treatment is initiated prior to the age of 10.


In an embodiment, treatment is initiated prior to the age of 15.


In an embodiment, treatment is initiated prior to the age of 20.


A subject's vision can evaluated, e.g., prior to treatment, or after treatment, e.g., to monitor the progress of the treatment. In an embodiment, the subject's vision is evaluated prior to treatment, e.g., to determine the need for treatment. In an embodiment, the subject's vision is evaluated after treatment has been initiated, e.g., to access the effectiveness of the treatment. Vision can be evaluated by one or more of: evaluating changes in function relative to the contralateral eye, e.g., by utilizing retinal analytical techniques; by evaluating mean, median and distribution of change in best corrected visual acuity (BCVA); evaluation by Optical Coherence Tomography; evaluation of changes in visual field using perimetry; evaluation by full-field electroretinography (ERG); evaluation by slit lamp examination; evaluation of intraocular pressure; evaluation of autofluorescence, evaluation with fundoscopy; evaluation with fundus photography; evaluation with fluorescein angiography (FA); or evaluation of visual field sensitivity (FFST).


In an embodiment, a subject's vision may be assessed by measuring the subject's mobility, e.g., the subject's ability to maneuver in space.


In an embodiment, treatment is initiated in a subject who has tested positive for a mutation in the CEP290 gene, e.g., prior to disease onset or in the earliest stages of disease.


In an embodiment, a subject has a family member that has been diagnosed with LCA10. For example, the subject has a family member that has been diagnosed with LCA10, and the subject demonstrates a symptom or sign of the disease or has been found to have a mutation in the CEP290 gene.


In an embodiment, a cell (e.g., a retinal cell, e.g., a photoreceptor cell) from a subject suffering from or likely to develop LCA10 is treated ex vivo. In an embodiment, the cell is removed from the subject, altered as described herein, and introduced into, e.g., returned to, the subject.


In an embodiment, a cell (e.g., a retinal cell, e.g., a photoreceptor cell) altered to correct a mutation in the LCA10 target position is introduced into the subject.


In an embodiment, the cell is a retinal cell (e.g., retinal pigment epithelium cell), a photoreceptor cell, a horizontal cell, a bipolar cell, an amacrine cell, or a ganglion cell. In an embodiment, it is contemplated herein that a population of cells (e.g., a population of retinal cells, e.g., a population of photoreceptor cells) from a subject may be contacted ex vivo to alter a mutation in CEP290, e.g., a 2991+1655 A to G. In an embodiment, such cells are introduced to the subject's body to prevent or treat LCA10.


In an embodiment, the population of cells are a population of retinal cells (e.g., retinal pigment epithelium cells), photoreceptor cells, horizontal cells, bipolar cells, amacrine cells, ganglion cells, or a combination thereof.


In an embodiment, the method described herein comprises delivery of gRNA or other components described herein, e.g., a Cas9 molecule, by one or more AAV vectors, e.g., one or more AAV vectors described herein.


I. Genome Editing Systems


The term “genome editing system” refers to any system having RNA-guided DNA editing activity. Genome editing systems of the present disclosure include at least two components adapted from naturally occurring CRISPR systems: a gRNA and an RNA-guided nuclease. These two components form a complex that is capable of associating with a specific nucleic acid sequence in a cell and editing the DNA in or around that nucleic acid sequence, for example by making one or more of a single-strand break (an SSB or nick), a double-strand break (a DSB) and/or a base substitution.


Naturally occurring CRISPR systems are organized evolutionarily into two classes and five types (Makarova 2011, incorporated by reference herein), and while genome editing systems of the present disclosure may adapt components of any type or class of naturally occurring CRISPR system, the embodiments presented herein are generally adapted from Class 2, and type II or V CRISPR systems. Class 2 systems, which encompass types II and V, are characterized by relatively large, multidomain RNA-guided nuclease proteins (e.g., Cas9 or Cpf1) that form ribonucleoprotein (RNP) complexes with gRNAs. gRNAs, which are discussed in greater detail below, can include single crRNAs in the case of Cpf1 or duplexed crRNAs and tracrRNAs in the case of Cas9. RNP complexes, in turn, associate with (i.e., target) and cleave specific loci complementary to a targeting (or spacer) sequence of the crRNA. Genome editing systems according to the present disclosure similarly target and edit cellular DNA sequences. but differ significantly from CRISPR systems occurring in nature. For example, the unimolecular gRNAs described herein do not occur in nature, and both gRNAs and RNA-guided nucleases according to this disclosure can incorporate any number of non-naturally occurring modifications.


Genome editing systems can be implemented in a variety of ways, and different implementations may be suitable for any particular application. For example, a genome editing system is implemented, in certain embodiments, as a protein/RNA complex (a ribonucleoprotein, or RNP), which can be included in a pharmaceutical composition that optionally includes a pharmaceutically acceptable carrier and/or an encapsulating agent, such as a lipid or polymer micro- or nano-particle, micelle, liposome, etc. In other embodiments, a genome editing system is implemented as one or more nucleic acids encoding the RNA-guided nuclease and gRNA components described above (optionally with one or more additional components); in still other embodiments, the genome editing system is implemented as one or more vectors comprising such nucleic acids, for example a viral vector such as an AAV; and in still other embodiments, the genome editing system is implemented as a combination of any of the foregoing. Additional or modified implementations that operate according to the principles set forth herein will be apparent to the skilled artisan and are within the scope of this disclosure.


It should be noted that the genome editing systems of the present invention can be targeted to a single specific nucleotide sequence, or can be targeted to—and capable of editing in parallel—two or more specific nucleotide sequences through the use of two or more gRNAs. The use of two or more gRNAs targeted to different sites is referred to as “multiplexing” throughout this disclosure, and can be employed to target multiple, unrelated target sequences of interest, or to form multiple SSBs and/or DSBs within a single target domain and, in some cases, to generate specific edits within such target domain. For example, this disclosure and International Patent Publication No. WO2015/138510 by Maeder et al. (“Maeder”), which is incorporated by reference herein, both describe a genome editing system for correcting a point mutation (C.2991+1655A to G) in the human CEP290 gene that results in the creation of a cryptic splice site, which in turn reduces or eliminates the function of the gene. The genome editing system of Maeder utilizes two gRNAs targeted to sequences on either side of (i.e., flanking) the point mutation, and forms DSBs that flank the mutation. This, in turn, promotes deletion of the intervening sequence, including the mutation, thereby eliminating the cryptic splice site and restoring normal gene function.


As another example, International Patent Publication No. WO2016/073990 by Cotta-Ramusino et al. (“Cotta-Ramusino”), incorporated by reference herein, describes a genome editing system that utilizes two gRNAs in combination with a Cas9 nickase (a Cas9 that makes a single strand nick such as S. pyogenes D10A), an arrangement termed a “dual-nickase system.” The dual-nickase system of Cotta-Ramusino is configured to make two nicks on opposite strands of a sequence of interest that are offset by one or more nucleotides, which nicks combine to create a double strand break having an overhang (5′ in the case of Cotta-Ramusino, though 3′ overhangs are also possible). The overhang, in turn, can facilitate homology directed repair events in some circumstances. As another example, International Patent Publication No. WO2015/070083 by Zhang et al., incorporated by reference herein, describes a gRNA targeted to a nucleotide sequence encoding Cas9 (referred to as a “governing” gRNA), which can be included in a genome editing system comprising one or more additional gRNAs to permit transient expression of a Cas9 that might otherwise be constitutively expressed, for example in some virally transduced cells. These multiplexing applications are intended to be exemplary, rather than limiting, and the skilled artisan will appreciate that other applications of multiplexing are generally compatible with the genome editing systems described here.


Genome editing systems can, in some instances, form double strand breaks that are repaired by cellular DNA double-strand break mechanisms such as non-homologous end joining (NHEJ), or homology directed repair (HDR). These mechanisms are described throughout the literature (see, e.g., Davis 2014 (describing Alt-HDR), Frit 2014 (describing Alt-NHEJ), and Iyama 2013 (describing canonical HDR and NHEJ pathways generally), all of which are incorporated by reference herein).


Where genome editing systems operate by forming DSBs, such systems optionally include one or more components that promote or facilitate a particular mode of double-strand break repair or a particular repair outcome. For example, Cotta-Ramusino also describes genome editing systems in which a single stranded oligonucleotide “donor template” is added; the donor template is incorporated into a target region of cellular DNA that is cleaved by the genome editing system, and can result in a change in the target sequence.


In other cases, genome editing systems modify a target sequence, or modify expression of a gene in or near the target sequence, without causing single- or double-strand breaks. For example, a genome editing system can include an RNA-guided nuclease/cytidine deaminase fusion protein, and can operate by generating targeted C-to-A substitutions. Suitable nuclease/deaminase fusions are described in Komor 2016, which is incorporated by reference. Alternatively, a genome editing system can utilize a cleavage-inactivated (i.e., a “dead”) nuclease, such as a dead Cas9, and can operate by forming stable complexes on one or more targeted regions of cellular DNA, thereby interfering with functions involving the targeted region(s) such as mRNA transcription and chromatin remodeling.


II. gRNA Molecules


The terms guide RNA and gRNA refer to any nucleic acid that promotes the specific association (or “targeting”) of an RNA-guided nuclease such as a Cas9 or a Cpf1 to a target sequence such as a genomic or episomal sequence in a cell. gRNAs can be unimolecular (comprising a single RNA molecule, and referred to alternatively as chimeric), or modular (comprising more than one, and typically two, separate RNA molecules, such as a crRNA and a tracrRNA, which are usually associated with one another, for example by duplexing). gRNAs and their component parts are described throughout the literature (see, e.g., Briner 2014, which is incorporated by reference; see also Cotta-Ramusino).


In bacteria and archea, type II CRISPR systems generally comprise an RNA-guided nuclease protein such as Cas9, a CRISPR RNA (crRNA) that includes a 5′ region that is complementary to a foreign sequence, and a trans-activating crRNA (tracrRNA) that includes a 5′ region that is complementary to, and forms a duplex with, a 3′ region of the crRNA. While not intending to be bound by any theory, it is thought that this duplex facilitates the formation of—and is necessary for the activity of—the Cas9/gRNA complex. As type II CRISPR systems were adapted for use in gene editing, it was discovered that the crRNA and tracrRNA could be joined into a single unimolecular or chimeric gRNA, for example by means of a four nucleotide (e.g., GAAA) “tetraloop” or “linker” sequence bridging complementary regions of the crRNA (at its 3′ end) and the tracrRNA (at its 5′ end) (Mali 2013; Jiang 2013; Jinek 2012; all incorporated by reference herein).


gRNAs, whether unimolecular or modular, include a targeting domain that is fully or partially complementary to a target domain within a target sequence, such as a DNA sequence in the genome of a cell where editing is desired. In certain embodiments, this target sequence encompasses or is proximal to a CEP290 target position. Targeting domains are referred to by various names in the literature, including without limitation “guide sequences” (Hsu 2013, incorporated by reference herein), “complementarity regions” (Cotta-Ramusino), “spacers” (Briner 2014), and generically as “crRNAs” (Jiang 2013). Irrespective of the names they are given, targeting domains are typically 10-30 nucleotides in length, preferably 16-24 nucleotides in length (for example, 16, 17, 18, 19, 20, 21, 22, 23 or 24 nucleotides in length), and are at or near the 5′ terminus of in the case of a Cas9 gRNA, and at or near the 3′ terminus in the case of a Cpf1 gRNA.


In addition to the targeting domains, gRNAs typically (but not necessarily, as discussed below) include a plurality of domains that influence the formation or activity of gRNA/Cas9 complexes. For example, as mentioned above, the duplexed structure formed by first and secondary complementarity domains of a gRNA (also referred to as a repeat:anti-repeat duplex) interacts with the recognition (REC) lobe of Cas9 and may mediate the formation of Cas9/gRNA complexes (Nishimasu 2014; Nishimasu 2015; both incorporated by reference herein). It should be noted that the first and/or second complementarity domains can contain one or more poly-A tracts, which can be recognized by RNA polymerases as a termination signal. The sequence of the first and second complementarity domains are, therefore, optionally modified to eliminate these tracts and promote the complete in vitro transcription of gRNAs, for example through the use of A-G swaps as described in Briner 2014, or A-U swaps. These and other similar modifications to the first and second complementarity domains are within the scope of the present disclosure.


Along with the first and second complementarity domains, Cas9 gRNAs typically include two or more additional duplexed regions that are necessary for nuclease activity in vivo but not necessarily in vitro (Nishimasu 2015). A first stem-loop near the 3′ portion of the second complementarity domain is referred to variously as the “proximal domain” (Cotta-Ramusino) “stem loop 1” (Nishimasu 2014; Nishimasu 2015) and the “nexus” (Briner 2014). One or more additional stem loop structures are generally present near the 3′ end of the gRNA, with the number varying by species: S. pyogenes gRNAs typically include two 3′ stem loops (for a total of four stem loop structures including the repeat:anti-repeat duplex), while S. aureus and other species have only one (for a total of three). A description of conserved stem loop structures (and gRNA structures more generally) organized by species is provided in Briner 2014.


Skilled artisans will appreciate that gRNAs can be modified in a number of ways, some of which are described below, and these modifications are within the scope of disclosure. For economy of presentation in this disclosure, gRNAs may be presented by reference solely to their targeting domain sequences.


A gRNA molecule comprises a number of domains. The gRNA molecule domains are described in more detail below.


Several exemplary gRNA structures, with domains indicated thereon, are provided in FIG. 1. While not wishing to be bound by theory, with regard to the three dimensional form, or intra- or inter-strand interactions of an active form of a gRNA, regions of high complementarity are sometimes shown as duplexes in FIG. 1 and other depictions provided herein.


In an embodiment, a unimolecular, or chimeric, gRNA comprises, preferably from 5′ to 3′:

    • a targeting domain (which is complementary to a target nucleic acid in the CEP290 gene, e.g., a targeting domain from any of Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11);
    • a first complementarity domain;
    • a linking domain;
    • a second complementarity domain (which is complementary to the first complementarity domain);
    • a proximal domain; and
    • optionally, a tail domain.


In an embodiment, a modular gRNA comprises:

    • a first strand comprising, preferably from 5′ to 3′;
      • a targeting domain (which is complementary to a target nucleic acid in the CEP290 gene, e.g., a targeting domain from Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11); and
      • a first complementarity domain; and
    • a second strand, comprising, preferably from 5′ to 3′:
      • optionally, a 5′ extension domain;
      • a second complementarity domain;
      • a proximal domain; and
      • optionally, a tail domain.


The domains are discussed briefly below.


Targeting Domain



FIGS. 1A-1G provide examples of the placement of targeting domains.


The targeting domain comprises a nucleotide sequence that is complementary, e.g., at least 80, 85, 90, or 95% complementary, e.g., fully complementary, to the target sequence on the target nucleic acid. The targeting domain is part of an RNA molecule and will therefore comprise the base uracil (U), while any DNA encoding the gRNA molecule will comprise the base thymine (T). While not wishing to be bound by theory, in an embodiment, it is believed that the complementarity of the targeting domain with the target sequence contributes to specificity of the interaction of the gRNA molecule/Cas9 molecule complex with a target nucleic acid. It is understood that in a targeting domain and target sequence pair, the uracil bases in the targeting domain will pair with the adenine bases in the target sequence. In an embodiment, the target domain itself comprises in the 5′ to 3′ direction, an optional secondary domain, and a core domain. In an embodiment, the core domain is fully complementary with the target sequence. In an embodiment, the targeting domain is 5 to 50 nucleotides in length. The strand of the target nucleic acid with which the targeting domain is complementary is referred to herein as the complementary strand. Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


In an embodiment, the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


Targeting domains are discussed in more detail below.


First Complementarity Domain



FIGS. 1A-1G provide examples of first complementarity domains.


The first complementarity domain is complementary with the second complementarity domain, and in an embodiment, has sufficient complementarity to the second complementarity domain to form a duplexed region under at least some physiological conditions. In an embodiment, the first complementarity domain is 5 to 30 nucleotides in length. In an embodiment, the first complementarity domain is 5 to 25 nucleotides in length. In an embodiment, the first complementary domain is 7 to 25 nucleotides in length. In an embodiment, the first complementary domain is 7 to 22 nucleotides in length. In an embodiment, the first complementary domain is 7 to 18 nucleotides in length. In an embodiment, the first complementary domain is 7 to 15 nucleotides in length. In an embodiment, the first complementary domain is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.


In an embodiment, the first complementarity domain comprises 3 subdomains, which, in the 5′ to 3′ direction are: a 5′ subdomain, a central subdomain, and a 3′ subdomain. In an embodiment, the 5′ subdomain is 4-9, e.g., 4, 5, 6, 7, 8 or 9 nucleotides in length. In an embodiment, the central subdomain is 1, 2, or 3, e.g., 1, nucleotide in length. In an embodiment, the 3′ subdomain is 3 to 25, e.g., 4-22, 4-18, or 4 to 10, or 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25, nucleotides in length.


The first complementarity domain can share homology with, or be derived from, a naturally occurring first complementarity domain. In an embodiment, it has at least 50% homology with a first complementarity domain disclosed herein, e.g., an S. pyogenes, S. aureus, or S. thermophilus, first complementarity domain.


Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


First complementarity domains are discussed in more detail below.


Linking Domain



FIGS. 1A-1G provide examples of linking domains.


A linking domain serves to link the first complementarity domain with the second complementarity domain of a unimolecular gRNA. The linking domain can link the first and second complementarity domains covalently or non-covalently. In an embodiment, the linkage is covalent. In an embodiment, the linking domain covalently couples the first and second complementarity domains, see, e.g., FIGS. 1B-1E. In an embodiment, the linking domain is, or comprises, a covalent bond interposed between the first complementarity domain and the second complementarity domain. Typically the linking domain comprises one or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides.


In modular gRNA molecules the two molecules are associated by virtue of the hybridization of the complementarity domains see e.g., FIG. 1A.


A wide variety of linking domains are suitable for use in unimolecular gRNA molecules. Linking domains can consist of a covalent bond, or be as short as one or a few nucleotides, e.g., 1, 2, 3, 4, or 5 nucleotides in length. In an embodiment, a linking domain is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 or more nucleotides in length. In an embodiment, a linking domain is 2 to 50, 2 to 40, 2 to 30, 2 to 20, 2 to 10, or 2 to 5 nucleotides in length. In an embodiment, a linking domain shares homology with, or is derived from, a naturally occurring sequence, e.g., the sequence of a tracrRNA that is 5′ to the second complementarity domain. In an embodiment, the linking domain has at least 50% homology with a linking domain disclosed herein.


Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


Linking domains are discussed in more detail below.


5′ Extension Domain


In an embodiment, a modular gRNA can comprise additional sequence, 5′ to the second complementarity domain, referred to herein as the 5′ extension domain, see, e.g., FIG. 1A. In an embodiment, the 5′ extension domain is, 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, or 2-4 nucleotides in length. In an embodiment, the 5′ extension domain is 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides in length.


Second Complementarity Domain



FIGS. 1A-1G provide examples of second complementarity domains.


The second complementarity domain is complementary with the first complementarity domain, and in an embodiment, has sufficient complementarity to the second complementarity domain to form a duplexed region under at least some physiological conditions. In an embodiment, e.g., as shown in FIGS. 1A-1B, the second complementarity domain can include sequence that lacks complementarity with the first complementarity domain, e.g., sequence that loops out from the duplexed region.


In an embodiment, the second complementarity domain is 5 to 27 nucleotides in length. In an embodiment, it is longer than the first complementarity region. In an embodiment the second complementary domain is 7 to 27 nucleotides in length. In an embodiment, the second complementary domain is 7 to 25 nucleotides in length. In an embodiment, the second complementary domain is 7 to 20 nucleotides in length. In an embodiment, the second complementary domain is 7 to 17 nucleotides in length. In an embodiment, the complementary domain is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the second complementarity domain comprises 3 subdomains, which, in the 5′ to 3′ direction are: a 5′ subdomain, a central subdomain, and a 3′ subdomain. In an embodiment, the 5′ subdomain is 3 to 25, e.g., 4 to 22, 4 to 18, or 4 to 10, or 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In an embodiment, the central subdomain is 1, 2, 3, 4 or 5, e.g., 3, nucleotides in length. In an embodiment, the 3′ subdomain is 4 to 9, e.g., 4, 5, 6, 7, 8 or 9 nucleotides in length.


In an embodiment, the 5′ subdomain and the 3′ subdomain of the first complementarity domain, are respectively, complementary, e.g., fully complementary, with the 3′ subdomain and the 5′ subdomain of the second complementarity domain.


The second complementarity domain can share homology with or be derived from a naturally occurring second complementarity domain. In an embodiment, it has at least 50% homology with a second complementarity domain disclosed herein, e.g., an S. pyogenes, S. aureus, or S. thermophilus, first complementarity domain.


Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


Proximal Domain



FIGS. 1A-1G provide examples of proximal domains.


In an embodiment, the proximal domain is 5 to 20 nucleotides in length. In an embodiment, the proximal domain can share homology with or be derived from a naturally occurring proximal domain. In an embodiment, it has at least 50% homology with a proximal domain disclosed herein, e.g., an S. pyogenes, S. aureus, or S. thermophilus, proximal domain.


Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


Tail Domain



FIGS. 1A-1G provide examples of tail domains.


As can be seen by inspection of the tail domains in FIGS. 1A and 1B-1F, a broad spectrum of tail domains are suitable for use in gRNA molecules. In an embodiment, the tail domain is 0 (absent), 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. In embodiment, the tail domain nucleotides are from or share homology with sequence from the 5′ end of a naturally occurring tail domain, see e.g., FIG. 1D or 1E. In an embodiment, the tail domain includes sequences that are complementary to each other and which, under at least some physiological conditions, form a duplexed region.


In an embodiment, the tail domain is absent or is 1 to 50 nucleotides in length. In an embodiment, the tail domain can share homology with or be derived from a naturally occurring proximal tail domain. In an embodiment, it has at least 50% homology with a tail domain disclosed herein, e.g., an S. pyogenes, S. aureus, or S. thermophilus, tail domain.


In an embodiment, the tail domain includes nucleotides at the 3′ end that are related to the method of in vitro or in vivo transcription. When a T7 promoter is used for in vitro transcription of the gRNA, these nucleotides may be any nucleotides present before the 3′ end of the DNA template. When a U6 promoter is used for in vivo transcription, these nucleotides may be the sequence UUUUUU. When alternate pol-III promoters are used, these nucleotides may be various numbers or uracil bases or may include alternate bases.


The domains of gRNA molecules are described in more detail below.


Targeting Domain


The “targeting domain” of the gRNA is complementary to the “target domain” on the target nucleic acid. The strand of the target nucleic acid comprising the core domain target is referred to herein as the “complementary strand” of the target nucleic acid. Guidance on the selection of targeting domains can be found, e.g., in Fu 2014 and Sternberg 2014.


In an embodiment, the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length. In the figures and sequence listing provided herein, targeting domains are generally shown with 20 nucleotides. In each of these instances, the targeting domain may actually be shorter or longer as disclosed herein, for example from 16 to 26 nucleotides.


In an embodiment, the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


In an embodiment, the targeting domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the targeting domain is 20+/−5 nucleotides in length.


In an embodiment, the targeting domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the targeting domain is 30+/−10 nucleotides in length.


In an embodiment, the targeting domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length. In other embodiments, the targeting domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


Typically the targeting domain has full complementarity with the target sequence. In some embodiments the targeting domain has or includes 1, 2, 3, 4, 5, 6, 7 or 8 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain.


In an embodiment, the target domain includes 1, 2, 3, 4 or 5 nucleotides that are complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 5′ end. In an embodiment, the target domain includes 1, 2, 3, 4 or 5 nucleotides that are complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 3′ end.


In an embodiment, the target domain includes 1, 2, 3, or 4 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 5′ end. In an embodiment, the target domain includes 1, 2, 3, or 4 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 3′ end.


In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In some embodiments, the targeting domain comprises two consecutive nucleotides that are not complementary to the target domain (“non-complementary nucleotides”), e.g., two consecutive noncomplementary nucleotides that are within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, no two consecutive nucleotides within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain, are not complementary to the targeting domain.


In an embodiment, there are no noncomplementary nucleotides within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, the targeting domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the targeting domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the targeting domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment, a nucleotide of the targeting domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the targeting domain includes 1, 2, 3, 4, 5, 6, 7 or 8 or more modifications. In an embodiment, the targeting domain includes 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the targeting domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In some embodiments, the targeting domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain.


Modifications in the targeting domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNAs having a candidate targeting domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in a system in Section V. The candidate targeting domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In some embodiments, all of the modified nucleotides are complementary to and capable of hybridizing to corresponding nucleotides present in the target domain. In other embodiments, 1, 2, 3, 4, 5, 6, 7 or 8 or more modified nucleotides are not complementary to or capable of hybridizing to corresponding nucleotides present in the target domain.


In an embodiment, the targeting domain comprises, preferably in the 5′→3′ direction: a secondary domain and a core domain. These domains are discussed in more detail below.


Core Domain and Secondary Domain of the Targeting Domain


The “core domain” of the targeting domain is complementary to the “core domain target” on the target nucleic acid. In an embodiment, the core domain comprises about 8 to about 13 nucleotides from the 3′ end of the targeting domain (e.g., the most 3′ 8 to 13 nucleotides of the targeting domain).


In an embodiment, the secondary domain is absent or optional.


In an embodiment, the core domain and targeting domain, are independently, 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 15+/−2, 16+/−2, 17+/−2, or 18+/−2, nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently, 10+/−2 nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently, 10+/−4 nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18, nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently 3 to 20, 4 to 20, 5 to 20, 6 to 20, 7 to 20, 8 to 20, 9 to 20 10 to 20 or 15 to 20 nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently 3 to 15, e.g., 6 to 15, 7 to 14, 7 to 13, 6 to 12, 7 to 12, 7 to 11, 7 to 10, 8 to 14, 8 to 13, 8 to 12, 8 to 11, 8 to 10 or 8 to 9 nucleotides in length.


The core domain is complementary with the core domain target. Typically the core domain has exact complementarity with the core domain target. In some embodiments, the core domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the core domain. In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


The “secondary domain” of the targeting domain of the gRNA is complementary to the “secondary domain target” of the target nucleic acid.


In an embodiment, the secondary domain is positioned 5′ to the core domain.


In an embodiment, the secondary domain is absent or optional.


In an embodiment, if the targeting domain is 26 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 12 to 17 nucleotides in length.


In an embodiment, if the targeting domain is 25 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 12 to 17 nucleotides in length.


In an embodiment, if the targeting domain is 24 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 11 to 16 nucleotides in length.


In an embodiment, if the targeting domain is 23 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 10 to 15 nucleotides in length.


In an embodiment, if the targeting domain is 22 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 9 to 14 nucleotides in length.


In an embodiment, if the targeting domain is 21 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 8 to 13 nucleotides in length.


In an embodiment, if the targeting domain is 20 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 7 to 12 nucleotides in length.


In an embodiment, if the targeting domain is 19 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 6 to 11 nucleotides in length.


In an embodiment, if the targeting domain is 18 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 5 to 10 nucleotides in length.


In an embodiment, if the targeting domain is 17 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 4 to 9 nucleotides in length.


In an embodiment, if the targeting domain is 16 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 3 to 8 nucleotides in length.


In an embodiment, the secondary domain is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 nucleotides in length.


The secondary domain is complementary with the secondary domain target. Typically the secondary domain has exact complementarity with the secondary domain target. In some embodiments the secondary domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the secondary domain. In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In an embodiment, the core domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the core domain comprise one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the core domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the core domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII. Typically, a core domain will contain no more than 1, 2, or 3 modifications.


Modifications in the core domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate core domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section V. The candidate core domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the secondary domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the secondary domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the secondary domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the secondary domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII. Typically, a secondary domain will contain no more than 1, 2, or 3 modifications.


Modifications in the secondary domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate secondary domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section V. The candidate secondary domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, (1) the degree of complementarity between the core domain and its target, and (2) the degree of complementarity between the secondary domain and its target, may differ. In an embodiment, (1) may be greater (2). In an embodiment, (1) may be less than (2). In an embodiment, (1) and (2) are the same, e.g., each may be completely complementary with its target.


In an embodiment, (1) the number of modification (e.g., modifications from Section VIII) of the nucleotides of the core domain and (2) the number of modification (e.g., modifications from Section VIII) of the nucleotides of the secondary domain, may differ. In an embodiment, (1) may be less than (2). In an embodiment, (1) may be greater than (2). In an embodiment, (1) and (2) may be the same, e.g., each may be free of modifications.


First and Second Complementarity Domains


The first complementarity domain is complementary with the second complementarity domain.


Typically the first domain does not have exact complementarity with the second complementarity domain target. In some embodiments, the first complementarity domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the second complementarity domain. In an embodiment, 1, 2, 3, 4, 5 or 6, e.g., 3 nucleotides, will not pair in the duplex, and, e.g., form a non-duplexed or looped-out region. In an embodiment, an unpaired, or loop-out, region, e.g., a loop-out of 3 nucleotides, is present on the second complementarity domain. In an embodiment, the unpaired region begins 1, 2, 3, 4, 5, or 6, e.g., 4, nucleotides from the 5′ end of the second complementarity domain.


In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In an embodiment, the first and second complementarity domains are:


independently, 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 15+/−2, 16+/−2, 17+/−2, 18+/−2, 19+/−2, or 20+/−2, 21+/−2, 22+/−2, 23+/−2, or 24+/−2 nucleotides in length;


independently, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26, nucleotides in length; or


independently, 5 to 24, 5 to 23, 5 to 22, 5 to 21, 5 to 20, 7 to 18, 9 to 16, or 10 to 14 nucleotides in length.


In an embodiment, the second complementarity domain is longer than the first complementarity domain, e.g., 2, 3, 4, 5, or 6, e.g., 6, nucleotides longer.


In an embodiment, the first and second complementary domains, independently, do not comprise modifications, e.g., modifications of the type provided in Section VIII.


In an embodiment, the first and second complementary domains, independently, comprise one or more modifications, e.g., modifications that the render the domain less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In an embodiment, the first and second complementary domains, independently, include 1, 2, 3, 4, 5, 6, 7 or 8 or more modifications. In an embodiment, the first and second complementary domains, independently, include 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the first and second complementary domains, independently, include as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In an embodiment, the first and second complementary domains, independently, include modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or more than 5 nucleotides away from one or both ends of the domain. In an embodiment, the first and second complementary domains, independently, include no two consecutive nucleotides that are modified, within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or within a region that is more than 5 nucleotides away from one or both ends of the domain. In an embodiment, the first and second complementary domains, independently, include no nucleotide that is modified within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or within a region that is more than 5 nucleotides away from one or both ends of the domain.


Modifications in a complementarity domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate complementarity domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described in Section V. The candidate complementarity domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the first complementarity domain has at least 60, 70, 80, 85%, 90% or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference first complementarity domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus, or S. thermophilus, first complementarity domain, or a first complementarity domain described herein, e.g., from FIGS. 1A-1G.


In an embodiment, the second complementarity domain has at least 60, 70, 80, 85%, 90%, or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference second complementarity domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus, or S. thermophilus, second complementarity domain, or a second complementarity domain described herein, e.g., from FIG. 1A-1G.


The duplexed region formed by first and second complementarity domains is typically 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22 base pairs in length (excluding any looped out or unpaired nucleotides).


In some embodiments, the first and second complementarity domains, when duplexed, comprise 11 paired nucleotides, for example, in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 5)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC.






In some embodiments, the first and second complementarity domains, when duplexed, comprise 15 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 27)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGAAAAGCAUAGCAA





GUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG





GUGC.






In some embodiments the first and second complementarity domains, when duplexed, comprise 16 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 28)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGGAAACAGCAUAGC





AAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGU





CGGUGC.






In some embodiments the first and second complementarity domains, when duplexed, comprise 21 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 29)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGUUUUGGAAACAAA






ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU






GGCACCGAGUCGGUGC.






In some embodiments, nucleotides are exchanged to remove poly-U tracts, for example in the gRNA sequences (exchanged nucleotides underlined):









(SEQ ID NO: 30)







NNNNNNNNNNNNNNNNNNNNGUAUUAGAGCUAGAAAUAGCAAGUUAAUAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;










(SEQ ID NO: 31)







NNNNNNNNNNNNNNNNNNNNGUUUAAGAGCUAGAAAUAGCAAGUUUAAAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;


and










(SEQ ID NO: 32)







NNNNNNNNNNNNNNNNNNNNGUAUUAGAGCUAUGCUGUAUUGGAAACAAU





ACAGCAUAGCAAGUUAAUAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU





GGCACCGAGUCGGUGC.







5′ Extension Domain


In an embodiment, a modular gRNA can comprise additional sequence, 5′ to the second complementarity domain. In an embodiment, the 5′ extension domain is 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, or 2 to 4 nucleotides in length. In an embodiment, the 5′ extension domain is 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides in length.


In an embodiment, the 5′ extension domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the 5′ extension domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the 5′ extension domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment, a nucleotide of the 5′ extension domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the 5′ extension domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the 5′ extension domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end, e.g., in a modular gRNA molecule. In an embodiment, the 5′ extension domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end, e.g., in a modular gRNA molecule.


In some embodiments, the 5′ extension domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or more than 5 nucleotides away from one or both ends of the 5′ extension domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or within a region that is more than 5 nucleotides away from one or both ends of the 5′ extension domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or within a region that is more than 5 nucleotides away from one or both ends of the 5′ extension domain.


Modifications in the 5′ extension domain can be selected to not interfere with gRNA molecule efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate 5′ extension domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section V. The candidate 5′ extension domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the 5′ extension domain has at least 60, 70, 80, 85, 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference 5′ extension domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus, or S. thermophilus, 5′ extension domain, or a 5′ extension domain described herein, e.g., from FIGS. 1A-1G.


Linking Domain


In a unimolecular gRNA molecule the linking domain is disposed between the first and second complementarity domains. In a modular gRNA molecule, the two molecules are associated with one another by the complementarity domains.


In an embodiment, the linking domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the linking domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the linking domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length. In other embodiments, the linking domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


In an embodiment, the linking domain is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 17, 18, 19, or 20 nucleotides in length.


In an embodiment, the linking domain is a covalent bond.


In an embodiment, the linking domain comprises a duplexed region, typically adjacent to or within 1, 2, or 3 nucleotides of the 3′ end of the first complementarity domain and/or the S-end of the second complementarity domain. In an embodiment, the duplexed region can be 20+/−10 base pairs in length. In an embodiment, the duplexed region can be 10+/−5, 15+/−5, 20+/−5, or 30+/−5 base pairs in length. In an embodiment, the duplexed region can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 base pairs in length.


Typically the sequences forming the duplexed region have exact complementarity with one another, though in some embodiments as many as 1, 2, 3, 4, 5, 6, 7 or 8 nucleotides are not complementary with the corresponding nucleotides.


In an embodiment, the linking domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the linking domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the linking domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the linking domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII. In some embodiments, the linking domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications.


Modifications in a linking domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate linking domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated a system described in Section V. A candidate linking domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the linking domain has at least 60, 70, 80, 85, 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference linking domain, e.g., a linking domain described herein, e.g., from FIGS. 1A-1G.


Proximal Domain


In an embodiment, the proximal domain is 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 14+/−2, 16+/−2, 17+/−2, 18+/−2, 19+/−2, or 20+/−2 nucleotides in length.


In an embodiment, the proximal domain is 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 16, 17, 18, 19, or 20 nucleotides in length.


In an embodiment, the proximal domain is 5 to 20, 7, to 18, 9 to 16, or 10 to 14 nucleotides in length.


In an embodiment, the proximal domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the proximal domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the proximal domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the proximal domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the proximal domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the proximal domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end, e.g., in a modular gRNA molecule. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end, e.g., in a modular gRNA molecule.


In some embodiments, the proximal domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or more than 5 nucleotides away from one or both ends of the proximal domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or within a region that is more than 5 nucleotides away from one or both ends of the proximal domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or within a region that is more than 5 nucleotides away from one or both ends of the proximal domain.


Modifications in the proximal domain can be selected to not interfere with gRNA molecule efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNA's having a candidate proximal domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section V. The candidate proximal domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the proximal domain has at least 60, 70, 80, 85 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference proximal domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus, or S. thermophilus, proximal domain, or a proximal domain described herein, e.g., from FIGS. 1A-1G.


Tail Domain


In an embodiment, the tail domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the tail domain is 20+/−5 nucleotides in length.


In an embodiment, the tail domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the tail domain is 25+/−10 nucleotides in length.


In an embodiment, the tail domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length.


In other embodiments, the tail domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


In an embodiment, the tail domain is 1 to 20, 1 to 1, 1 to 10, or 1 to 5 nucleotides in length.


In an embodiment, the tail domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the tail domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the tail domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the tail domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the tail domain can have as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In an embodiment, the tail domain comprises a tail duplex domain, which can form a tail duplexed region. In an embodiment, the tail duplexed region can be 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 base pairs in length. In an embodiment, a further single stranded domain, exists 3′ to the tail duplexed domain. In an embodiment, this domain is 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. In an embodiment it is 4 to 6 nucleotides in length.


In an embodiment, the tail domain has at least 60, 70, 80, or 90% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference tail domain, e.g., a naturally occurring, e.g., an S. pyogenes, or S. thermophilus, tail domain, or a tail domain described herein, e.g., from FIGS. 1A-1G.


In an embodiment, the proximal and tail domain, taken together comprise the following sequences:









(SEQ ID NO: 33)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU,










(SEQ ID NO: 34)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGGUGC,










(SEQ ID NO: 35)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCGGAU





C,










(SEQ ID NO: 36)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUG,










(SEQ ID NO: 37)







AAGGCUAGUCCGUUAUCA,


or










(SEQ ID NO: 38)







AAGGCUAGUCCG.






In an embodiment, the tail domain comprises the 3′ sequence UUUUUU, e.g., if a U6 promoter is used for transcription.


In an embodiment, the tail domain comprises the 3′ sequence UUUU, e.g., if an H1 promoter is used for transcription.


In an embodiment, tail domain comprises variable numbers of 3′ Us depending, e.g., on the termination signal of the pol-III promoter used.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template if a T7 promoter is used.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template, e.g., if in vitro transcription is used to generate the RNA molecule.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template, e., if a pol-II promoter is used to drive transcription.


Modifications in the tail domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section V. gRNAs having a candidate tail domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described in Section V. The candidate tail domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In some embodiments, the tail domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or more than 5 nucleotides away from one or both ends of the tail domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or within a region that is more than 5 nucleotides away from one or both ends of the tail domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or within a region that is more than 5 nucleotides away from one or both ends of the tail domain.


In an embodiment a gRNA has the following structure:


5′ [targeting domain]-[first complementarity domain]-[linking domain]-[second complementarity domain]-[proximal domain]-[tail domain]-3′


wherein, the targeting domain comprises a core domain and optionally a secondary domain, and is 10 to 50 nucleotides in length;


the first complementarity domain is 5 to 25 nucleotides in length and, In an embodiment has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference first complementarity domain disclosed herein;


the linking domain is 1 to 5 nucleotides in length;


the proximal domain is 5 to 20 nucleotides in length and, in an embodiment has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference proximal domain disclosed herein; and


the tail domain is absent or a nucleotide sequence is 1 to 50 nucleotides in length and, in an embodiment has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference tail domain disclosed herein.


Exemplary Chimeric gRNAs


In an embodiment, a unimolecular, or chimeric, gRNA comprises, preferably from 5′ to 3′:


a targeting domain, e.g., comprising 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides (which is complementary to a target nucleic acid);


a first complementarity domain;


a linking domain;


a second complementarity domain (which is complementary to the first complementarity domain);


a proximal domain; and


a tail domain,


wherein,


(a) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides;


(b) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain; or


(c) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the sequence from (a), (b), or (c), has at least 60, 75, 80, 85, 90, 95, or 99% homology with the corresponding sequence of a naturally occurring gRNA, or with a gRNA described herein.


In an embodiment, the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the unimolecular, or chimeric, gRNA molecule (comprising a targeting domain, a first complementary domain, a linking domain, a second complementary domain, a proximal domain and, optionally, a tail domain) comprises the following sequence in which the targeting domain is depicted as 20 Ns but could be any sequence and range in length from 16 to 26 nucleotides and in which the gRNA sequence is followed by 6 Us, which serve as a termination signal for the U6 promoter, but which could be either absent or fewer in number: NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 45). In an embodiment, the unimolecular, or chimeric, gRNA molecule is a S. pyogenes gRNA molecule.


In some embodiments, the unimolecular, or chimeric, gRNA molecule (comprising a targeting domain, a first complementary domain, a linking domain, a second complementary domain, a proximal domain and, optionally, a tail domain) comprises the following sequence in which the targeting domain is depicted as 20 Ns but could be any sequence and range in length from 16 to 26 nucleotides and in which the gRNA sequence is followed by 6 Us, which serve as a termination signal for the U6 promoter, but which could be either absent or fewer in number: NNNNNNNNNNNNNNNNNNNNGUUUUAGUACUCUGGAAACAGAAUCUACUAAAAC AAGGCAAAAUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGAUUUUUU (SEQ ID NO: 2779) (corresponding DNA sequence in SEQ ID NO: 2785). In an embodiment, the unimolecular, or chimeric, gRNA molecule is a S. aureus gRNA molecule.


The sequences and structures of exemplary chimeric gRNAs of SEQ ID NOs: 45 and 2779 are shown in FIGS. 18A-18B, respectively.


Exemplary Modular gRNAs


In an embodiment, a modular gRNA comprises:


a first strand comprising, preferably from 5′ to 3′:


a targeting domain, e.g., comprising 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides;


a first complementarity domain; and


a second strand, comprising, preferably from 5′ to 3′:


optionally a 5′ extension domain;


a second complementarity domain;


a proximal domain; and


a tail domain,


wherein:


(a) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides;


(b) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain; or


(c) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the sequence from (a), (b), or (c), has at least 60, 75, 80, 85, 90, 95, or 99% homology with the corresponding sequence of a naturally occurring gRNA, or with a gRNA described herein.


In an embodiment, the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


gRNA Modifications


The activity, stability, or other characteristics of gRNAs can be altered through the incorporation of chemical and/or sequential modifications. As one example, transiently expressed or delivered nucleic acids can be prone to degradation by, e.g., cellular nucleases. Accordingly, the gRNAs described herein can contain one or more modified nucleosides or nucleotides which introduce stability toward nucleases. While not wishing to be bound by theory it is also believed that certain modified gRNAs described herein can exhibit a reduced innate immune response when introduced into a population of cells, particularly the cells of the present invention. As noted above, the term “innate immune response” includes a cellular response to exogenous nucleic acids, including single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death.


One common 3′ end modification is the addition of a poly A tract comprising one or more (and typically 5-200) adenine (A) residues. The poly A tract can be contained in the nucleic acid sequence encoding the gRNA, or can be added to the gRNA during chemical synthesis, or following in vitro transcription using a polyadenosine polymerase (e.g., E. coli Poly(A)Polymerase). In vivo, poly-A tracts can be added to sequences transcribed from DNA vectors through the use of polyadenylation signals. Examples of such signals are provided in Maeder.


III. Methods for Designing gRNAs


Methods for designing gRNAs are described herein, including methods for selecting, designing and validating target domains. Exemplary targeting domains are also provided herein. Targeting Domains discussed herein can be incorporated into the gRNAs described herein.


Methods for selection and validation of target sequences as well as off-target analyses are described, e.g., in Mali 2013; Hsu 2013; Fu 2014; Heigwer 2014; Bae 2014; Xiao 2014.


For example, a software tool can be used to optimize the choice of gRNA within a user's target sequence, e.g., to minimize total off-target activity across the genome. Off target activity may be other than cleavage. For each possible gRNA choice using S. pyogenes Cas9, software tools can identify all potential off-target sequences (preceding either NAG or NGG PAMs) across the genome that contain up to a certain number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) of mismatched base-pairs. The cleavage efficiency at each off-target sequence can be predicted, e.g., using an experimentally-derived weighting scheme. Each possible gRNA can then ranked according to its total predicted off-target cleavage; the top-ranked gRNAs represent those that are likely to have the greatest on-target and the least off-target cleavage. Other functions, e.g., automated reagent design for gRNA vector construction, primer design for the on-target Surveyor assay, and primer design for high-throughput detection and quantification of off-target cleavage via next-generation sequencing, can also be included in the tool. Candidate gRNA molecules can be evaluated by art-known methods or as described in Section V herein.


Guide RNAs (gRNAs) for use with S. pyogenes, S. aureus and N. meningitidis Cas9s were identified using a DNA sequence searching algorithm. Guide RNA design was carried out using a custom guide RNA design software based on the public tool cas-offinder (Bae 2014). Said custom guide RNA design software scores guides after calculating their genomewide off-target propensity. Typically matches ranging from perfect matches to 7 mismatches are considered for guides ranging in length from 17 to 24. Once the off-target sites are computationally determined, an aggregate score is calculated for each guide and summarized in a tabular output using a web-interface. In addition to identifying potential gRNA sites adjacent to PAM sequences, the software also identifies all PAM adjacent sequences that differ by 1, 2, 3 or more nucleotides from the selected gRNA sites. Genomic DNA sequence for each gene was obtained from the UCSC Genome browser and sequences were screened for repeat elements using the publically available RepeatMasker program. RepeatMasker searches input DNA sequences for repeated elements and regions of low complexity. The output is a detailed annotation of the repeats present in a given query sequence.


Following identification, gRNAs were ranked into tiers based on their distance to the target site, their orthogonality and presence of a 5′ G (based on identification of close matches in the human genome containing a relevant PAM, e.g., in the case of S. pyogenes, a NGG PAM, in the case of S. aureus, NNGRR (e.g., a NNGRRT or NNGRRV) PAM, and in the case of N. meningitides, a NNNNGATT or NNNNGCTT PAM. Orthogonality refers to the number of sequences in the human genome that contain a minimum number of mismatches to the target sequence. A “high level of orthogonality” or “good orthogonality” may, for example, refer to 20-mer gRNAs that have no identical sequences in the human genome besides the intended target, nor any sequences that contain one or two mismatches in the target sequence. Targeting domains with good orthogonality are selected to minimize off-target DNA cleavage.


As an example, for S. pyogenes and N. meningitides targets, 17-mer, or 20-mer gRNAs were designed. As another example, for S. aureus targets, 18-mer, 19-mer, 20-mer, 21-mer, 22-mer, 23-mer and 24-mer gRNAs were designed. Targeting domains, disclosed herein, may comprises the 17-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 18 or more nucleotides may comprise the 17-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 18-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 19 or more nucleotides may comprise the 18-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 19-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 20 or more nucleotides may comprise the 19-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 20-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 21 or more nucleotides may comprise the 20-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 21-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 22 or more nucleotides may comprise the 21-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 22-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 23 or more nucleotides may comprise the 22-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 23-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 24 or more nucleotides may comprise the 23-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11. Targeting domains, disclosed herein, may comprises the 24-mer described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11, e.g., the targeting domains of 25 or more nucleotides may comprise the 24-mer gRNAs described in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


gRNAs were identified for both single-gRNA nuclease cleavage and for a dual-gRNA paired “nickase” strategy. Criteria for selecting gRNAs and the determination for which gRNAs can be used for the dual-gRNA paired “nickase” strategy is based on two considerations:

    • 1. gRNA pairs should be oriented on the DNA such that PAMs are facing out and cutting with the D10A Cas9 nickase will result in 5′ overhangs.
    • 2. An assumption that cleaving with dual nickase pairs will result in deletion of the entire intervening sequence at a reasonable frequency. However, cleaving with dual nickase pairs can also result in indel mutations at the site of only one of the gRNAs. Candidate pair members can be tested for how efficiently they remove the entire sequence versus causing indel mutations at the site of one gRNA.


The Targeting Domains discussed herein can be incorporated into the gRNAs described herein.


Three strategies were utilized to identify gRNAs for use with S. pyogenes, S. aureus and N. meningitidis Cas9 enzymes.


In one strategy, gRNAs were designed for use with S. pyogenes and S. aureus Cas9 enzymes to induce an indel mediated by NHEJ in close proximity to or including the LCA10 target position (e.g., c.2991+1655A to G). The gRNAs were identified and ranked into 4 tiers for S. pyogenes (Tables 2A-2D). The targeting domain for tier 1 gRNA molecules to be used with S. pyogenes Cas9 molecules were selected based on (1) a short distance to the target position, e.g., within 40 bp upstream and 40 bp downstream of the mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a short distance and high orthogonality were required but the presence of a 5′G was not required. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G. The gRNAs were identified and ranked into 4 tiers for S. aureus, when the relevant PAM was NNGRR (Tables 3A-3C). The targeting domain for tier 1 gRNA molecules to be used with S. pyogenes Cas9 molecules were selected based on (1) a short distance to the target position, e.g., within 40 bp upstream and 40 bp downstream of the mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a short distance and high orthogonality were required but the presence of a 5′G was not required. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G. The gRNAs were identified and ranked into 5 tiers for S. aureus when the relevant PAM was NNGRRT or NNGRRV (Tables 7A-7D). The targeting domain for tier 1 gRNA molecules to be used with S. aureus Cas9 molecules were selected based on (1) a short distance to the target position, e.g., within 40 bp upstream and 40 bp downstream of the mutation, (2) a high level of orthogonality, (3) the presence of a 5′ G and (4) PAM was NNGRRT. For selection of tier 2 gRNAs, a short distance and high orthogonality were required but the presence of a 5′G was not required, and PAM was NNGRRT. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality, and PAM was NNGRRT. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G, and PAM was NNGRRT. Tier 5 required a short distance to the target position, e.g., within 40 bp upstream and 40 bp downstream of the mutation and PAM was NNGRRV. Note that tiers are non-inclusive (each gRNA is listed only once for the strategy). In certain instances, no gRNA was identified based on the criteria of the particular tier.


In a second strategy, gRNAs were designed for use with S. pyogenes, S. aureus and N. meningitidis Cas9 molecules to delete a genomic sequence including the mutation at the LCA10 target position (e.g., c.2991+1655A to G), e.g., mediated by NHEJ. The gRNAs were identified and ranked into 4 tiers for S. pyogenes (Tables 4A-4D). The targeting domain to be used with S. pyogenes Cas9 molecules for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 400 bp upstream of an Alu repeat or 700 bp downstream of mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G. The gRNAs were identified and ranked into 4 tiers for S. aureus, when the relevant PAM was NNGRR (Tables 5A-5D). The targeting domain to be used with S. aureus Cas9 molecules for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 400 bp upstream of an Alu repeat or 700 bp downstream of mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G. The gRNAs were identified and ranked into 2 tiers for N. meningitides (Tables 6A-6B). The targeting domain to be used with N. meningitides Cas9 molecules for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 400 bp upstream of an Alu repeat or 700 bp downstream of mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required. Note that tiers are non-inclusive (each gRNA is listed only once for the strategy). In certain instances, no gRNA was identified based on the criteria of the particular tier. In a third strategy, gRNAs were designed for use with S. pyogenes, S. aureus and N. meningitidis Cas9 molecules to delete a genomic sequence including the mutation at the LCA10 target position (e.g., c.2991+1655A to G), e.g., mediated by NHEJ. The gRNAs were identified and ranked into 4 tiers for S. pyogenes (Tables 8A-8D). The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 1000 bp upstream of an Alu repeat or 1000 bp downstream of mutation, (2) a high level of orthogonality, (3) the presence of a 5′ G and (4) and PAM was NNGRRT. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required, and PAM was NNGRRT. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality, and PAM was NNGRRT. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G, and PAM was NNGRRT. The gRNAs were identified and ranked into 4 tiers for S. aureus, when the relevant PAM was NNGRRT or NNGRRV (Tables 9A-9E). The targeting domain to be used with S. aureus Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 1000 bp upstream of an Alu repeat or 1000 bp downstream of mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required. Tier 3 uses the same distance restriction and the requirement for a 5′G, but removes the requirement of good orthogonality. Tier 4 uses the same distance restriction but removes the requirement of good orthogonality and the 5′G. Tier 5 used the same distance restriction and PAM was NNGRRV. The gRNAs were identified and ranked into 2 tiers for N. meningitides (Tables 10A-10B). The targeting domain to be used with N. meningitides Cas9 molecules for tier 1 gRNA molecules were selected based on (1) flanking the mutation without targeting unwanted chromosome elements, such as an Alu repeat, e.g., within 1000 bp upstream of an Alu repeat or 1000 bp downstream of mutation, (2) a high level of orthogonality, and (3) the presence of a 5′ G. For selection of tier 2 gRNAs, a reasonable distance and high orthogonality were required but the presence of a 5′G was not required. Note that tiers are non-inclusive (each gRNA is listed only once for the strategy). In certain instances, no gRNA was identified based on the criteria of the particular tier.


In an embodiment, when a single gRNA molecule is used to target a Cas9 nickase to create a single strand break to introduce a break-induced indel in close proximity to or including the LCA10 target position, the gRNA is used to target either upstream of (e.g., within 40 bp upstream of the LCA10 target position), or downstream of (e.g., within 40 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, when a single gRNA molecule is used to target a Cas9 nuclease to create a double strand break to introduce a break-induced indel in close proximity to or including the LCA10 target position, the gRNA is used to target either upstream of (e.g., within 40 bp upstream of the LCA10 target position), or downstream of (e.g., within 40 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, dual targeting is used to create two double strand breaks to delete a genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. In an embodiment, the first and second gRNAs are used target two Cas9 nucleases to flank, e.g., the first of gRNA is used to target upstream of (e.g., within 400 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position), and the second gRNA is used to target downstream of (e.g., within 700 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, dual targeting is used to create a double strand break and a pair of single strand breaks to delete a genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. In an embodiment, the first, second and third gRNAs are used to target one Cas9 nuclease and two Cas9 nickases to flank, e.g., the first gRNA that will be used with the Cas9 nuclease is used to target upstream of (e.g., within 400 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position) or downstream of (e.g., within 700 bp downstream) of the LCA10 target position, and the second and third gRNAs that will be used with the Cas9 nickase pair are used to target the opposite side of the LCA10 target position (e.g., within 400 bp upstream of the Alu repeat, within 40 bp upstream of the LCA10 target position, or within 700 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, when four gRNAs (e.g., two pairs) are used to target four Cas9 nickases to create four single strand breaks to delete genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ, the first pair and second pair of gRNAs are used to target four Cas9 nickases to flank, e.g., the first pair of gRNAs are used to target upstream of (e.g., within 400 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position), and the second pair of gRNAs are used to target downstream of (e.g., within 700 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 400 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 2A-2C and Tables 4A-4D can be paired with any downstream gRNA (e.g., within 700 downstream of LCA10 target position) in Tables 4A-4D to be used with a S. pyogenes Cas9 molecule to generate dual targeting. Exemplary pairs including selecting a targeting domain that is labeled as upstream from Tables 2A-2C or Tables 4A-4D and a second targeting domain that is labeled as downstream from Tables 4A-4D. In an embodiment, a targeting domain that is labeled as upstream in Tables 2A-2C or Tables 4A-4D can be combined with any of the targeting domains that is labeled as downstream in Tables 4A-4D.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 400 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 3A-3C and Tables 5A-5D can be paired with any downstream gRNA (e.g., within 700 downstream of LCA10 target position) in Tables 5A-5D to be used with a S. aureus Cas9 molecule to generate dual targeting. Exemplary pairs include selecting a targeting domain that is labeled as upstream from Tables 3A-3C or Tables 5A-5D and a second targeting domain that is labeled as downstream from Tables 5A-5D. In an embodiment, a targeting domain that is labeled as upstream in Tables 3A-3C or Tables 5A-5D can be combined with any of the targeting domains that is labeled as downstream in Tables 5A-5D.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 400 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 6A-6B can be paired with any downstream gRNA (e.g., within 700 downstream of LCA10 target position) in Tables 6A-6B to be used with a N. meningitidis Cas9 molecule to generate dual targeting. Exemplary pairs include selecting a targeting domain that is labeled as upstream from Tables 6A-6B and a second targeting domain that is labeled as downstream from Tables 6A-6B. In an embodiment, a targeting domain that is labeled as upstream in Tables 6A-6B can be combined with any of the targeting domains that is labeled as downstream in Tables 6A-6B.


In an embodiment, dual targeting (e.g., dual double strand cleavage) is used to create two double strand breaks to delete a genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. In an embodiment, the first and second gRNAs are used target two Cas9 nucleases to flank, e.g., the first of gRNA is used to target upstream of (e.g., within 1000 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position), and the second gRNA is used to target downstream of (e.g., within 1000 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, dual targeting (e.g., dual double strand cleavage) is used to create a double strand break and a pair of single strand breaks to delete a genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. In an embodiment, the first, second and third gRNAs are used to target one Cas9 nuclease and two Cas9 nickases to flank, e.g., the first gRNA that will be used with the Cas9 nuclease is used to target upstream of (e.g., within 1000 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position) or downstream of (e.g., within 1000 bp downstream) of the LCA10 target position, and the second and third gRNAs that will be used with the Cas9 nickase pair are used to target the opposite side of the LCA10 target position (e.g., within 1000 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position or within 1000 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, when four gRNAs (e.g., two pairs) are used to target four Cas9 nickases to create four single strand breaks to delete genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ, the first pair and second pair of gRNAs are used to target four Cas9 nickases to flank, e.g., the first pair of gRNAs are used to target upstream of (e.g., within 1000 bp upstream of the Alu repeat, or within 40 bp upstream of the LCA10 target position), and the second pair of gRNAs are used to target downstream of (e.g., within 1000 bp downstream of the LCA10 target position) in the CEP290 gene.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 1000 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D can be paired with any downstream gRNA (e.g., within 1000 downstream of LCA10 target position) in Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D to be used with a S. pyogenes Cas9 molecule to generate dual targeting. Exemplary pairs including selecting a targeting domain that is labeled as upstream from Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D and a second targeting domain that is labeled as downstream from Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D. In an embodiment, a targeting domain that is labeled as upstream in Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D can be combined with any of the targeting domains that is labeled as downstream in Tables 2A-2C, Tables 4A-4D, or Tables 8A-8D.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 1000 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E can be paired with any downstream gRNA (e.g., within 1000 downstream of LCA10 target position) in Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E to be used with a S. aureus Cas9 molecule to generate dual targeting. Exemplary pairs include selecting a targeting domain that is labeled as upstream from Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E and a second targeting domain that is labeled as downstream from Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E. In an embodiment, a targeting domain that is labeled as upstream in Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E can be combined with any of the targeting domains that is labeled as downstream in Tables 3A-3C, Tables 5A-5D, Tables 7A-7D, or Tables 9A-9E.


In an embodiment, dual targeting is utilized to delete genomic sequence including the mutation at the LCA10 target position, e.g., mediated by NHEJ. It is contemplated herein that in an embodiment any upstream gRNA (e.g., within 1000 bp upstream of an Alu repeat, or within 40 bp upstream of the LCA10 target position) in Tables 6A-6B or Tables 10A-10B can be paired with any downstream gRNA (e.g., within 1000 downstream of LCA10 target position) in Tables 6A-6D to be used with a N. meningitidis Cas9 molecule to generate dual targeting. Exemplary pairs include selecting a targeting domain that is labeled as upstream from Tables 6A-6B or Tables 10A-10B and a second targeting domain that is labeled as downstream from Tables 6A-6B or Tables 10A-10B. In an embodiment, a targeting domain that is labeled as upstream in Tables 6A-6B or Tables 10A-10B and can be combined with any of the targeting domains that is labeled as downstream in Tables 6A-6B or Tables 10A-10B.


Any of the targeting domains in the tables described herein can be used with a Cas9 nickase molecule to generate a single strand break.


Any of the targeting domains in the tables described herein can be used with a Cas9 nuclease molecule to generate a double strand break.


In an embodiment, dual targeting (e.g., dual nicking) is used to create two nicks on opposite DNA strands by using S. pyogenes, S. aureus and N. meningitidis Cas9 nickases with two targeting domains that are complementary to opposite DNA strands, e.g., a gRNA comprising any minus strand targeting domain may be paired any gRNA comprising a plus strand targeting domain provided that the two gRNAs are oriented on the DNA such that PAMs face outward and the distance between the 5′ ends of the gRNAs is 0-50 bp. Exemplary nickase pairs including selecting a targeting domain from Group A and a second targeting domain from Group B in Table 2D (for S. pyogenes), or selecting a targeting domain from Group A and a second targeting domain from Group B in Table 7D (for S. aureus). It is contemplated herein that in an embodiment a targeting domain of Group A can be combined with any of the targeting domains of Group B in Table 2D (for S. pyogenes). For example, CEP290-B5 or CEP290-B10 can be combined with CEP290-B1 or CEP290-B6. It is contemplated herein that in an embodiment a targeting domain of Group A can be combined with any of the targeting domains of Group B in Table 7D (for S. aureus). For example, CEP290-12 or CEP290-17 can be combined with CEP290-11 or CEP290-16.


In an embodiment, dual targeting (e.g., dual double strand cleavage) is used to create two double strand breaks by using S. pyogenes, S. aureus and N. meningitidis Cas9 nucleases with two targeting domains. It is contemplated herein that in an embodiment any upstream gRNA of any of Tables 2A-2C, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7C, Tables 8A-8D, Tables 9A-9E, or Tables 10A-10B can be paired with any downstream gRNA of any of Tables 2A-2C, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7C, Tables 8A-8D, Tables 9A-9E, or Tables 10A-10B. Exemplary nucleases pairs are shown in Table 11, e.g., CEP290-323 can be combined with CEP290-11, CEP290-323 can be combined with CEP290-64, CEP290-490 can be combined with CEP290-496, CEP290-490 can be combined with CEP290-502, CEP290-490 can be combined with CEP290-504, CEP290-492 can be combined with CEP290-502, or CEP290-492 can be combined with CEP290-504.


It is contemplated herein that any upstream gRNA described herein may be paired with any downstream gRNA described herein. When an upstream gRNA designed for use with one species of Cas9 is paired with a downstream gRNA designed for use from a different species of Cas9, both Cas9 species are used to generate a single or double-strand break, as desired.


Exemplary Targeting Domains


Table 2A provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 2A








Target




DNA

Site
Position relative


gRNA Name
Strand
Targeting Domain
Length
to mutation







CEP290-B4
+
GAGAUACUCACAAUUACAAC
20
upstream




(SEQ ID NO: 395)





CEP290-B28
+
GAUACUCACAAUUACAACUG
20
upstream




(SEQ ID NO: 396)









Table 2B provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 2B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B6

CUCAUACCUAUCCCUAU
17
downstream




(SEQ ID NO: 594)





CEP290-B20
+
ACACUGCCAAUAGGGAU
17
downstream




(SEQ ID NO: 595)





CEP290-B10
+
CAAUUACAACUGGGGCC
17
upstream




(SEQ ID NO: 596)





CEP290-B21
+
CUAAGACACUGCCAAUA
17
downstream




(SEQ ID NO: 597)





CEP290-B9
+
AUACUCACAAUUACAAC
17
upstream




(SEQ ID NO: 598)





CEP290-B1

UAUCUCAUACCUAUCCCUAU
20
downstream




(SEQ ID NO: 599)





CEP290-B29
+
AAGACACUGCCAAUAGGGAU
20
downstream




(SEQ ID NO: 600)





CEP290-B5
+
UCACAAUUACAACUGGGGCC
20
upstream




(SEQ ID NO: 601)





CEP290-B30
+
AGAUACUCACAAUUACAACU
20
upstream




(SEQ ID NO: 602)









Table 2C provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 40 bases of the LCA10 target position and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 2C








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B22
+
ACUAAGACACUGCCAAU (SEQ
17
downstream




ID NO: 603)





CEP290-B23
+
UACUCACAAUUACAACU (SEQ
17
upstream




ID NO: 604)





CEP290-B24
+
ACUCACAAUUACAACUG (SEQ
17
upstream




ID NO: 605)





CEP290-B25
+
ACAACUGGGGCCAGGUG (SEQ
17
upstream




ID NO: 606)





CEP290-B26
+
ACUGGGGCCAGGUGCGG (SEQ
17
upstream




ID NO: 607)





CEP290-B27

AUGUGAGCCACCGCACC (SEQ
17
upstream




ID NO: 608)





CEP290-B31
+
AAACUAAGACACUGCCAAUA
20
downstream




(SEQ ID NO: 609)





CEP290-B32
+
AAAACUAAGACACUGCCAAU
20
upstream




(SEQ ID NO: 610)





CEP290-B33
+
AUUACAACUGGGGCCAGGUG
20
upstream




(SEQ ID NO: 611)





CEP290-B34
+
ACAACUGGGGCCAGGUGCGG
20
upstream




(SEQ ID NO: 612)









Table 2D provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene that can be used for dual targeting. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 (nickase) molecule to generate a single stranded break.


Exemplary nickase pairs including selecting a targeting domain from Group A and a second targeting domain from Group B. It is contemplated herein that a targeting domain of Group A can be combined with any of the targeting domains of Group B. For example, the CEP290-B5 or CEP290-B10 can be combined with CEP290-B1 or CEP290-B6.












TABLE 2D







Group A
Group B









CEP290-B5
CEP290-B1



CEP290-B10
CEP290-B6










Table 3A provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 3A








Target




DNA

Site
Position relative


gRNA Name
Strand
Targeting Domain
Length
to mutation







CEP290-B1000
+
GAGAUACUCACAAUUACAAC
20
upstream




(SEQ ID NO: 395)





CEP290-B1001
+
GAUACUCACAAUUACAA
17
upstream




(SEQ ID NO: 397)









Table 3B provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 3B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B1002
+
CACUGCCAAUAGGGAUAGGU
20
downstream




(SEQ ID NO: 613)





CEP290-B1003
+
UGCCAAUAGGGAUAGGU (SEQ
17
downstream




ID NO: 614)





CEP290-B1004
+
UGAGAUACUCACAAUUACAA
20
upstream




(SEQ ID NO: 615)





CEP290-B1005
+
AUACUCACAAUUACAAC (SEQ
17
upstream




ID NO: 598)









Table 3C provides targeting domains for NHEJ-mediated introduction of an indel in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 40 bases of the LCA10 target position, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 3C








Target




DNA

Site
Position relative


gRNA Name
Strand
Targeting Domain
Length
to mutation







CEP290-B1006

ACCUGGCCCCAGUUGUAAUU
20
upstream




(SEQ ID NO: 616)





CEP290-B1007

UGGCCCCAGUUGUAAUU
17
upstream




(SEQ ID NO: 617)









Table 4A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 4A








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B8

GCUACCGGUUACCUGAA
17
downstream




(SEQ ID NO: 457)





CEP290-B217
+
GCAGAACUAGUGUAGAC
17
downstream




(SEQ ID NO: 458)





CEP290-B69

GUUGAGUAUCUCCUGUU
17
downstream




(SEQ ID NO: 459)





CEP290-B115
+
GAUGCAGAACUAGUGUAGAC
20
downstream




(SEQ ID NO: 460)





CEP290-B187
+
GCUUGAACUCUGUGCCAAAC
20
downstream




(SEQ ID NO: 461)









Table 4B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 4B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B269

AGCUACCGGUUACCUGA
17
downstream




(SEQ ID NO: 618)





CEP290-B285
+
UUUAAGGCGGGGAGUCACAU
20
downstream




(SEQ ID NO: 619)





CEP290-B3

AAAGCUACCGGUUACCUGAA
20
downstream




(SEQ ID NO: 620)





CEP290-B207

AAAAGCUACCGGUUACCUGA
20
downstream




(SEQ ID NO: 621)





CEP290-B106

CUCAUACCUAUCCCUAU (SEQ
17
downstream




ID NO: 594)





CEP290-B55
+
ACACUGCCAAUAGGGAU
17
downstream




(SEQ ID NO: 595)





CEP290-B138

UAUCUCAUACCUAUCCCUAU
20
downstream




(SEQ ID NO: 599)





CEP290-B62

ACGUGCUCUUUUCUAUAUAU
20
downstream




(SEQ ID NO: 622)





CEP290-B121
+
AUUUGACACCACAUGCACUG
20
downstream




(SEQ ID NO: 623)





CEP290-B120

CGUGCUCUUUUCUAUAUAUA
20
downstream




(SEQ ID NO: 624)





CEP290-B36

UGGUGUCAAAUAUGGUGCUU
20
downstream




(SEQ ID NO: 625)





CEP290-B236
+
ACUUUUACCCUUCAGGUAAC
20
downstream




(SEQ ID NO: 626)





CEP290-B70

AGUGCAUGUGGUGUCAAAUA
20
downstream




(SEQ ID NO: 627)





CEP290-B177

UACAUGAGAGUGAUUAGUGG
20
downstream




(SEQ ID NO: 628)





CEP290-B451

CGUUGUUCUGAGUAGCUUUC
20
upstream




(SEQ ID NO: 629)





CEP290-B452
+
CCACAAGAUGUCUCUUGCCU
20
upstream




(SEQ ID NO: 630)





CEP290-B453

CCUAGGCAAGAGACAUCUUG
20
upstream




(SEQ ID NO: 631)





CEP290-B454
+
UGCCUAGGACUUUCUAAUGC
20
upstream




(SEQ ID NO: 632)





CEP290-B498

CGUUGUUCUGAGUAGCUUUC
20
upstream




(SEQ ID NO: 629)





CEP290-B523

AUUAGCUCAAAAGCUUUUGC
20
upstream




(SEQ ID NO: 633)









Table 4C provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the third tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 4C








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B87

GCAUGUGGUGUCAAAUA
17
downstream




(SEQ ID NO: 479)





CEP290-B50
+
GAUGACAUGAGGUAAGU
17
downstream




(SEQ ID NO: 478)





CEP290-B260
+
GUCACAUGGGAGUCACA
17
downstream




(SEQ ID NO: 500)





CEP290-B283

GAGAGCCACAGUGCAUG
17
downstream




(SEQ ID NO: 472)





CEP290-B85

GCUCUUUUCUAUAUAUA
17
downstream




(SEQ ID NO: 481)





CEP290-B78
+
GCUUUUGACAGUUUUUA
17
downstream




(SEQ ID NO: 634)





CEP290-B292
+
GAUAGAGACAGGAAUAA
17
downstream




(SEQ ID NO: 476)





CEP290-B278
+
GGACUUGACUUUUACCCUUC
20
downstream




(SEQ ID NO: 485)





CEP290-B227
+
GGGAGUCACAUGGGAGUCAC
20
downstream




(SEQ ID NO: 491)





CEP290-B261

GUGGAGAGCCACAGUGCAUG
20
downstream




(SEQ ID NO: 501)





CEP290-B182
+
GCCUGAACAAGUUUUGAAAC
20
downstream




(SEQ ID NO: 480)





CEP290-B67
+
GGAGUCACAUGGGAGUCACA
20
downstream




(SEQ ID NO: 487)





CEP290-B216
+
GUAAGACUGGAGAUAGAGAC
20
downstream




(SEQ ID NO: 497)





CEP290-B241
+
GCUUUUGACAGUUUUUAAGG
20
downstream




(SEQ ID NO: 482)





CEP290-B161
+
GUUUAGAAUGAUCAUUCUUG
20
downstream




(SEQ ID NO: 504)





CEP290-B259
+
GUAGCUUUUGACAGUUUUUA
20
downstream




(SEQ ID NO: 499)





CEP290-B79
+
GGAGAUAGAGACAGGAAUAA
20
downstream




(SEQ ID NO: 635)





CEP290-B436
+
GUUCUGUCCUCAGUAAA
17
upstream




(SEQ ID NO: 503)





CEP290-B444
+
GGAUAGGACAGAGGACA
17
upstream




(SEQ ID NO: 488)





CEP290-B445
+
GAUGAAAAAUACUCUUU
17
upstream




(SEQ ID NO: 477)





CEP290-B459

GAACUCUAUACCUUUUACUG
20
upstream




(SEQ ID NO: 466)





CEP290-B465
+
GUAACAUAAUCACCUCUCUU
20
upstream




(SEQ ID NO: 496)





CEP290-B473
+
GAAAGAUGAAAAAUACUCUU
20
upstream




(SEQ ID NO: 462)





CEP290-B528
+
GUAACAUAAUCACCUCUCUU
20
upstream




(SEQ ID NO: 496)









Table 4D provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 4D








Target




DNA

Site


gRNA Name
Strand
Targeting Domain
Length







CEP290-B233
+
AAGGCGGGGAGUCACAU
17
downstream




(SEQ ID NO: 636)





CEP290-B175
+
UAAGGCGGGGAGUCACA
17
downstream




(SEQ ID NO: 637)





CEP290-B280
+
UGAACUCUGUGCCAAAC
17
downstream




(SEQ ID NO: 638)





CEP290-B92
+
CUAAGACACUGCCAAUA
17
downstream




(SEQ ID NO: 597)





CEP290-B268
+
UUUACCCUUCAGGUAAC
17
downstream




(SEQ ID NO: 639)





CEP290-B154
+
UGACACCACAUGCACUG
17
downstream




(SEQ ID NO: 640)





CEP290-B44
+
ACUAAGACACUGCCAAU
17
downstream




(SEQ ID NO: 603)





CEP290-B231
+
UUGCUCUAGAUGACAUG
17
downstream




(SEQ ID NO: 641)





CEP290-B242
+
UGACAGUUUUUAAGGCG
17
downstream




(SEQ ID NO: 642)





CEP290-B226

UGUCAAAUAUGGUGCUU
17
downstream




(SEQ ID NO: 643)





CEP290-B159
+
AGUCACAUGGGAGUCAC
17
downstream




(SEQ ID NO: 644)





CEP290-B222

AUGAGAGUGAUUAGUGG
17
downstream




(SEQ ID NO: 645)





CEP290-B274
+
UGACAUGAGGUAAGUAG
17
downstream




(SEQ ID NO: 646)





CEP290-B68

UACAUGAGAGUGAUUAG
17
downstream




(SEQ ID NO: 647)





CEP290-B212
+
UAAGGAGGAUGUAAGAC
17
downstream




(SEQ ID NO: 648)





CEP290-B270
+
CUUGACUUUUACCCUUC
17
downstream




(SEQ ID NO: 649)





CEP290-B96
+
UCACUGAGCAAAACAAC
17
downstream




(SEQ ID NO: 650)





CEP290-B104
+
AGACUUAUAUUCCAUUA
17
downstream




(SEQ ID NO: 651)





CEP290-B122
+
CAUGGGAGUCACAGGGU
17
downstream




(SEQ ID NO: 652)





CEP290-B229
+
UAGAAUGAUCAUUCUUG
17
downstream




(SEQ ID NO: 653)





CEP290-B99
+
UUGACAGUUUUUAAGGC
17
downstream




(SEQ ID NO: 654)





CEP290-B7

AAACUGUCAAAAGCUAC
17
downstream




(SEQ ID NO: 655)





CEP290-B41
+
UCAUUCUUGUGGCAGUA
17
downstream




(SEQ ID NO: 2780)





CEP290-B37
+
AUGACAUGAGGUAAGUA
17
downstream




(SEQ ID NO: 656)





CEP290-B97

UGUUUCAAAACUUGUUC
17
downstream




(SEQ ID NO: 657)





CEP290-B173

AUAUCUGUCUUCCUUAA
17
downstream




(SEQ ID NO: 658)





CEP290-B136
+
UGAACAAGUUUUGAAAC
17
downstream




(SEQ ID NO: 659)





CEP290-B71

UUCUGCAUCUUAUACAU
17
downstream




(SEQ ID NO: 660)





CEP290-B172

AUAAGUCUUUUGAUAUA
17
downstream




(SEQ ID NO: 661)





CEP290-B238
+
UUUGACAGUUUUUAAGG
17
downstream




(SEQ ID NO: 662)





CEP290-B148

UGCUCUUUUCUAUAUAU
17
downstream




(SEQ ID NO: 663)





CEP290-B208
+
AGACUGGAGAUAGAGAC
17
downstream




(SEQ ID NO: 664)





CEP290-B53
+
CAUAAGAAAGAACACUG
17
downstream




(SEQ ID NO: 665)





CEP290-B166
+
UUCUUGUGGCAGUAAGG
17
downstream




(SEQ ID NO: 666)





CEP290-B247

AAGCAUACUUUUUUUAA
17
downstream




(SEQ ID NO: 667)





CEP290-B245
+
CAACUGGAAGAGAGAAA
17
downstream




(SEQ ID NO: 668)





CEP290-B167
+
UAUGCUUAAGAAAAAAA
17
downstream




(SEQ ID NO: 669)





CEP290-B171

UUUUAUUAUCUUUAUUG
17
downstream




(SEQ ID NO: 670)





CEP290-B140
+
CUAGAUGACAUGAGGUAAGU
20
downstream




(SEQ ID NO: 671)





CEP290-B147
+
UUUUAAGGCGGGGAGUCACA
20
downstream




(SEQ ID NO: 672)





CEP290-B253
+
AAGACACUGCCAAUAGGGAU
20
downstream




(SEQ ID NO: 600)





CEP290-B73

UCCUGUUUCAAAACUUGUUC
20
downstream




(SEQ ID NO: 673)





CEP290-B206

UGUGUUGAGUAUCUCCUGUU
20
downstream




(SEQ ID NO: 674)





CEP290-B57
+
CUCUUGCUCUAGAUGACAUG
20
downstream




(SEQ ID NO: 675)





CEP290-B82
+
CAGUAAGGAGGAUGUAAGAC
20
downstream




(SEQ ID NO: 676)





CEP290-B265
+
AGAUGACAUGAGGUAAGUAG
20
downstream




(SEQ ID NO: 677)





CEP290-B105
+
AAUUCACUGAGCAAAACAAC
20
downstream




(SEQ ID NO: 678)





CEP290-B239
+
UCACAUGGGAGUCACAGGGU
20
downstream




(SEQ ID NO: 679)





CEP290-B180
+
UAGAUGACAUGAGGUAAGUA
20
downstream




(SEQ ID NO: 680)





CEP290-B103
+
UUUUGACAGUUUUUAAGGCG
20
downstream




(SEQ ID NO: 681)





CEP290-B254

UAAUACAUGAGAGUGAUUAG
20
downstream




(SEQ ID NO: 682)





CEP290-B134

UAGUUCUGCAUCUUAUACAU
20
downstream




(SEQ ID NO: 683)





CEP290-B151
+
AAACUAAGACACUGCCAAUA
20
downstream




(SEQ ID NO: 609)





CEP290-B196
+
AAAACUAAGACACUGCCAAU
20
downstream




(SEQ ID NO: 610)





CEP290-B2

UAAAAACUGUCAAAAGCUAC
20
downstream




(SEQ ID NO: 506)





CEP290-B240
+
CUUUUGACAGUUUUUAAGGC
20
downstream




(SEQ ID NO: 684)





CEP290-B116
+
AAAAGACUUAUAUUCCAUUA
20
downstream




(SEQ ID NO: 685)





CEP290-B39
+
AUACAUAAGAAAGAACACUG
20
downstream




(SEQ ID NO: 686)





CEP290-B91

AAUAUAAGUCUUUUGAUAUA
20
downstream




(SEQ ID NO: 687)





CEP290-B126
+
UGAUCAUUCUUGUGGCAGUA
20
downstream




(SEQ ID NO: 688)





CEP290-B202

UACAUAUCUGUCUUCCUUAA
20
downstream




(SEQ ID NO: 689)





CEP290-B152

CUUAAGCAUACUUUUUUUAA
20
downstream




(SEQ ID NO: 690)





CEP290-B77
+
AAACAACUGGAAGAGAGAAA
20
downstream




(SEQ ID NO: 691)





CEP290-B145
+
UCAUUCUUGUGGCAGUAAGG
20
downstream




(SEQ ID NO: 692)





CEP290-B72
+
AAGUAUGCUUAAGAAAAAAA
20
downstream




(SEQ ID NO: 693)





CEP290-B221

AUUUUUUAUUAUCUUUAUUG
20
downstream




(SEQ ID NO: 694)





CEP290-B424
+
CUAGGACUUUCUAAUGC
17
upstream




(SEQ ID NO: 695)





CEP290-B425

AUCUAAGAUCCUUUCAC
17
upstream




(SEQ ID NO: 696)





CEP290-B426
+
UUAUCACCACACUAAAU
17
upstream




(SEQ ID NO: 697)





CEP290-B427

AGCUCAAAAGCUUUUGC
17
upstream




(SEQ ID NO: 698)





CEP290-B428

UGUUCUGAGUAGCUUUC
17
upstream




(SEQ ID NO: 699)





CEP290-B429
+
ACUUUCUAAUGCUGGAG
17
upstream




(SEQ ID NO: 700)





CEP290-B430

CUCUAUACCUUUUACUG
17
upstream




(SEQ ID NO: 701)





CEP290-B431
+
CAAGAUGUCUCUUGCCU
17
upstream




(SEQ ID NO: 702)





CEP290-B432

AUUAUGCCUAUUUAGUG
17
upstream




(SEQ ID NO: 703)





CEP290-B433
+
AUGACUCAUAAUUUAGU
17
upstream




(SEQ ID NO: 704)





CEP290-B434

UAGAGGCUUAUGGAUUU
17
upstream




(SEQ ID NO: 705)





CEP290-B435
+
UAUUCUACUCCUGUGAA
17
upstream




(SEQ ID NO: 706)





CEP290-B437
+
CUAAUGCUGGAGAGGAU
17
upstream




(SEQ ID NO: 707)





CEP290-B438

AGGCAAGAGACAUCUUG
17
upstream




(SEQ ID NO: 708)





CEP290-B439
+
AGCCUCUAUUUCUGAUG
17
upstream




(SEQ ID NO: 709)





CEP290-B440

CAGCAUUAGAAAGUCCU
17
upstream




(SEQ ID NO: 710)





CEP290-B441

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-B442
+
ACAUAAUCACCUCUCUU
17
upstream




(SEQ ID NO: 712)





CEP290-B443

UCAGAAAUAGAGGCUUA
17
upstream




(SEQ ID NO: 713)





CEP290-B446

UUCCUCAUCAGAAAUAG
17
upstream




(SEQ ID NO: 714)





CEP290-B447
+
ACAGAGGACAUGGAGAA
17
upstream




(SEQ ID NO: 715)





CEP290-B448
+
UGGAGAGGAUAGGACAG
17
upstream




(SEQ ID NO: 716)





CEP290-B449
+
AGGAAGAUGAACAAAUC
17
upstream




(SEQ ID NO: 717)





CEP290-B450
+
AGAUGAAAAAUACUCUU
17
upstream




(SEQ ID NO: 718)





CEP290-B455
+
AGGACUUUCUAAUGCUGGAG
20
upstream




(SEQ ID NO: 719)





CEP290-B456

AUUAGCUCAAAAGCUUUUGC
20
upstream




(SEQ ID NO: 633)





CEP290-B457

CUCCAGCAUUAGAAAGUCCU
20
upstream




(SEQ ID NO: 720)





CEP290-B458
+
AACAUGACUCAUAAUUUAGU
20
upstream




(SEQ ID NO: 721)





CEP290-B460

AUCUUCCUCAUCAGAAAUAG
20
upstream




(SEQ ID NO: 722)





CEP290-B461
+
AUAAGCCUCUAUUUCUGAUG
20
upstream




(SEQ ID NO: 723)





CEP290-B462
+
UCUUAUUCUACUCCUGUGAA
20
upstream




(SEQ ID NO: 724)





CEP290-B463

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)





CEP290-B464
+
UUUCUAAUGCUGGAGAGGAU
20
upstream




(SEQ ID NO: 726)





CEP290-B466
+
AAAUUAUCACCACACUAAAU
20
upstream




(SEQ ID NO: 727)





CEP290-B467
+
CUUGUUCUGUCCUCAGUAAA
20
upstream




(SEQ ID NO: 728)





CEP290-B468

AAAAUUAUGCCUAUUUAGUG
20
upstream




(SEQ ID NO: 729)





CEP290-B469

UCAUCAGAAAUAGAGGCUUA
20
upstream




(SEQ ID NO: 730)





CEP290-B470

AAAUAGAGGCUUAUGGAUUU
20
upstream




(SEQ ID NO: 731)





CEP290-B471
+
UGCUGGAGAGGAUAGGACAG
20
upstream




(SEQ ID NO: 732)





CEP290-B472
+
AUGAGGAAGAUGAACAAAUC
20
upstream




(SEQ ID NO: 733)





CEP290-B474

CUUAUCUAAGAUCCUUUCAC
20
upstream




(SEQ ID NO: 734)





CEP290-B475
+
AGAGGAUAGGACAGAGGACA
20
upstream




(SEQ ID NO: 735)





CEP290-B476
+
AGGACAGAGGACAUGGAGAA
20
upstream




(SEQ ID NO: 736)





CEP290-B477
+
AAAGAUGAAAAAUACUCUUU
20
upstream




(SEQ ID NO: 737)





CEP290-B495

AGCUCAAAAGCUUUUGC
17
upstream




(SEQ ID NO: 698)





CEP290-B529

UGUUCUGAGUAGCUUUC
17
upstream




(SEQ ID NO: 699)





CEP290-B513
+
AUGACUCAUAAUUUAGU
17
upstream




(SEQ ID NO: 704)





CEP290-B490
+
UAUUCUACUCCUGUGAA
17
upstream




(SEQ ID NO: 706)





CEP290-B485

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-B492
+
ACAUAAUCACCUCUCUU
17
upstream




(SEQ ID NO: 712)





CEP290-B506
+
AACAUGACUCAUAAUUUAGU
20
upstream




(SEQ ID NO: 721)





CEP290-B500
+
UCUUAUUCUACUCCUGUGAA
20
upstream




(SEQ ID NO: 724)





CEP290-B521

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)









Table 5A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 5A









Position





Target
relative



DNA

Site
to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-
+
GAAUCCUGAAAGCUACU
17
upstream


B1008

(SEQ ID NO: 510)









Table 5B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 5B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B1009

CCUACUUACCUCAUGUCAUC
20
downstream




(SEQ ID NO: 747)





CEP290-B1010
+
CUAUGAGCCAGCAAAAGCUU
20
upstream




(SEQ ID NO: 748)





CEP290-B1011

AC GUUGUUCUGAGUAGCUUU
20
upstream




(SEQ ID NO: 749)





CEP290-B1012

CAUAGAGACACAUUCAGUAA
20
upstream




(SEQ ID NO: 750)





CEP290-B1013

ACUUACCUCAUGUCAUC
17
downstream




(SEQ ID NO: 751)





CEP290-B1014
+
UGAGCCAGCAAAAGCUU
17
upstream




(SEQ ID NO: 752)





CEP290-B1015

UUGUUCUGAGUAGCUUU
17
upstream




(SEQ ID NO: 753)





CEP290-B1016

AGAGACACAUUCAGUAA
17
upstream




(SEQ ID NO: 754)





CEP290-B1017
+
UUUAAGGCGGGGAGUCACAU
20
upstream




(SEQ ID NO: 619)





CEP290-B1018

CAAAAGCUACCGGUUACCUG
20
downstream




(SEQ ID NO: 755)





CEP290-B1019
+
UUUUAAGGCGGGGAGUCACA
20
downstream




(SEQ ID NO: 672)





CEP290-B1020

UGUCAAAAGCUACCGGUUAC
20
downstream




(SEQ ID NO: 757)





CEP290-B1021
+
AAGGCGGGGAGUCACAU
17
downstream




(SEQ ID NO: 636)





CEP290-B1022

AAGCUACCGGUUACCUG
17
downstream




(SEQ ID NO: 758)





CEP290-B1023
+
UAAGGCGGGGAGUCACA
17
downstream




(SEQ ID NO: 637)





CEP290-B1024

CAAAAGCUACCGGUUAC
17
downstream




(SEQ ID NO: 759)





CEP290-B1025
+
UAGGAAUCCUGAAAGCUACU
20
upstream




(SEQ ID NO: 760)





CEP290-B1026
+
CAGAACAACGUUUUCAUUUA
20
upstream




(SEQ ID NO: 761)





CEP290-B1027

CAAAAGCUUUUGCUGGCUCA
20
upstream




(SEQ ID NO: 762)





CEP290-B1028
+
AGCAAAAGCUUUUGAGCUAA
20
upstream




(SEQ ID NO: 763)





CEP290-B1029
+
AUCUUAUUCUACUCCUGUGA
20
upstream




(SEQ ID NO: 764)





CEP290-B1030
+
AACAACGUUUUCAUUUA
17
upstream




(SEQ ID NO: 765)





CEP290-B1031

AAGCUUUUGCUGGCUCA
17
upstream




(SEQ ID NO: 766)





CEP290-B1032
+
AAAAGCUUUUGAGCUAA
17
upstream




(SEQ ID NO: 767)





CEP290-B1033
+
UUAUUCUACUCCUGUGA
17
upstream




(SEQ ID NO: 768)









Table 5C provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the third tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 5C








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B1034
+
GAAACAGGAAUAGAAAUUCA
20
downstream




(SEQ ID NO: 769)





CEP290-B1035
+
GAAAGAUGAAAAAUACUCUU
20
upstream




(SEQ ID NO: 462)





CEP290-B1036

GAAAUAGAGGCUUAUGGAUU
20
upstream




(SEQ ID NO: 547)





CEP290-B1037

GAAUAUAAGUCUUUUGAUAU
20
downstream




(SEQ ID NO: 770)





CEP290-B1038
+
GAGAAAUGGUUCCCUAUAUA
20
downstream




(SEQ ID NO: 771)





CEP290-B1039
+
GAGAGGAUAGGACAGAGGAC
20
upstream




(SEQ ID NO: 772)





CEP290-B1040
+
GAUGAGGAAGAUGAACAAAU
20
upstream




(SEQ ID NO: 773)





CEP290-B1041
+
GAUGCAGAACUAGUGUAGAC
20
downstream




(SEQ ID NO: 460)





CEP290-B1042

GAUUUGUUCAUCUUCCUCAU
20
upstream




(SEQ ID NO: 774)





CEP290-B1043
+
GCAGUAAGGAGGAUGUAAGA
20
downstream




(SEQ ID NO: 775)





CEP290-B1044
+
GCCUGAACAAGUUUUGAAAC
20
downstream




(SEQ ID NO: 480)





CEP290-B1045
+
GCUUGAACUCUGUGCCAAAC
20
downstream




(SEQ ID NO: 461)





CEP290-B1046

GCUUUCUGCUGCUUUUGCCA
20
upstream




(SEQ ID NO: 776)





CEP290-B1047

GCUUUCUGCUGCUUUUGCCA
20
upstream




(SEQ ID NO: 776)





CEP290-B1048
+
GCUUUUGACAGUUUUUAAGG
20
downstream




(SEQ ID NO: 482)





CEP290-B1049
+
GGAAAGAUGAAAAAUACUCU
20
upstream




(SEQ ID NO: 778)





CEP290-B1050
+
GGAGGAUGUAAGACUGGAGA
20
downstream




(SEQ ID NO: 779)





CEP290-B1051
+
GGGGAGUCACAUGGGAGUCA
20
downstream




(SEQ ID NO: 573)





CEP290-B1052

GGUGAUUAUGUUACUUUUUA
20
upstream




(SEQ ID NO: 780)





CEP290-B1053

GGUGAUUAUGUUACUUUUUA
20
upstream




(SEQ ID NO: 780)





CEP290-B1054
+
GUAAGACUGGAGAUAGAGAC
20
downstream




(SEQ ID NO: 497)





CEP290-B1055
+
GUCACAUGGGAGUCACAGGG
20
downstream




(SEQ ID NO: 586)





CEP290-B1056

GUGGUGUCAAAUAUGGUGCU
20
downstream




(SEQ ID NO: 782)





CEP290-B1057
+
GAAAAAAAAGGUAAUGC
17
downstream




(SEQ ID NO: 783)





CEP290-B1058
+
GAAAAGAGCACGUACAA
17
downstream




(SEQ ID NO: 784





CEP290-B1059
+
GAAUCCUGAAAGCUACU
17
upstream




(SEQ ID NO: 510)





CEP290-B1060

GAAUGAUCAUUCUAAAC
17
downstream




(SEQ ID NO: 785)





CEP290-B1061
+
GACAGAGGACAUGGAGA
17
upstream




(SEQ ID NO: 786)





CEP290-B1062
+
GACUUUCUAAUGCUGGA
17
upstream




(SEQ ID NO: 787)





CEP290-B1063

GAGAGUGAUUAGUGGUG
17
downstream




(SEQ ID NO: 788)





CEP290-B1064
+
GAGCAAAACAACUGGAA
17
downstream




(SEQ ID NO: 789)





CEP290-B1065
+
GAGGAAGAUGAACAAAU
17
upstream




(SEQ ID NO: 790)





CEP290-B1066
+
GAGUCACAUGGGAGUCA
17
downstream




(SEQ ID NO: 791)





CEP290-B1067
+
GAUCUUAUUCUACUCCU
17
upstream




(SEQ ID NO: 792)





CEP290-B1068
+
GAUCUUAUUCUACUCCU
17
upstream




(SEQ ID NO: 792)





CEP290-B1069
+
GAUGAAAAAUACUCUUU
17
upstream




(SEQ ID NO: 477)





CEP290-B1070
+
GAUGACAUGAGGUAAGU
17
downstream




(SEQ ID NO: 478)





CEP290-B1071

GAUUAUGUUACUUUUUA
17
upstream




(SEQ ID NO: 793)





CEP290-B1072

GAUUAUGUUACUUUUUA
17
upstream




(SEQ ID NO: 793)





CEP290-B1073
+
GCAAAACAACUGGAAGA
17
downstream




(SEQ ID NO: 794)





CEP290-B1074
+
GCAGAACUAGUGUAGAC
17
downstream




(SEQ ID NO: 458)





CEP290-B1075

GCUCUUUUCUAUAUAUA
17
downstream




(SEQ ID NO: 481)





CEP290-B1076
+
GGAUAGGACAGAGGACA
17
upstream




(SEQ ID NO: 488)





CEP290-B1077
+
GGAUGUAAGACUGGAGA
17
downstream




(SEQ ID NO: 795)





CEP290-B1078
+
GUAAGGAGGAUGUAAGA
17
downstream




(SEQ ID NO: 796)





CEP290-B1079

GUAUCUCCUGUUUGGCA
17
downstream




(SEQ ID NO: 797)





CEP290-B1080

GUCAUCUAGAGCAAGAG
17
downstream




(SEQ ID NO: 798)





CEP290-B1081
+
GUCCUCAGUAAAAGGUA
17
upstream




(SEQ ID NO: 799)





CEP290-B1082
+
GUGAAAGGAUCUUAGAU
17
upstream




(SEQ ID NO: 800)





CEP290-B1083

GUGCUCUUUUCUAUAUA
17
downstream




(SEQ ID NO: 801)





CEP290-B1084

GUGUCAAAUAUGGUGCU
17
downstream




(SEQ ID NO: 802)





CEP290-B1085
+
GUUCCCUAUAUAUAGAA
17
downstream




(SEQ ID NO: 803)









Table 5D provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 5D








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B1086
+
AAAACUAAGACACUGCCAAU
20
downstream




(SEQ ID NO: 610)





CEP290-B1087
+
AAAAGACUUAUAUUCCAUUA
20
downstream




(SEQ ID NO: 685)





CEP290-B1088
+
AAACAUGACUCAUAAUUUAG
20
upstream




(SEQ ID NO: 805)





CEP290-B1089
+
AAACAUGACUCAUAAUUUAG
20
upstream




(SEQ ID NO: 805)





CEP290-B1090
+
AAAGAUGAAAAAUACUCUUU
20
upstream




(SEQ ID NO: 737)





CEP290-B1091
+
AAAUUCACUGAGCAAAACAA
20
downstream




(SEQ ID NO: 808)





CEP290-B1092
+
AACAAGUUUUGAAACAGGAA
20
downstream




(SEQ ID NO: 809)





CEP290-B1093
+
AACAGGAGAUACUCAACACA
20
downstream




(SEQ ID NO: 810)





CEP290-B1094
+
AACAUGACUCAUAAUUUAGU
20
upstream




(SEQ ID NO: 721)





CEP290-B1095
+
AACAUGACUCAUAAUUUAGU
20
upstream




(SEQ ID NO: 721)





CEP290-B1096

AAUAUAAGUCUUUUGAUAUA
20
downstream




(SEQ ID NO: 687)





CEP290-B1097
+
AAUCACUCUCAUGUAUUAGC
20
downstream




(SEQ ID NO: 814)





CEP290-B1098
+
AAUUCACUGAGCAAAACAAC
20
downstream




(SEQ ID NO: 678)





CEP290-B1099
+
ACAAAAGAACAUACAUAAGA
20
downstream




(SEQ ID NO: 816)





CEP290-B1100
+
ACGUACAAAAGAACAUACAU
20
downstream




(SEQ ID NO: 817)





CEP290-B1101

ACGUGCUCUUUUCUAUAUAU
20
downstream




(SEQ ID NO: 622)





CEP290-B1102

AC GUUGUUCUGAGUAGCUUU
20
upstream




(SEQ ID NO: 749)





CEP290-B1103
+
ACUGAGCAAAACAACUGGAA
20
downstream




(SEQ ID NO: 819)





CEP290-B1104
+
AGAGGAUAGGACAGAGGACA
20
upstream




(SEQ ID NO: 735)





CEP290-B1105
+
AGAUGCAGAACUAGUGUAGA
20
downstream




(SEQ ID NO: 821)





CEP290-B1106
+
AGCAAAAGCUUUUGAGCUAA
20
upstream




(SEQ ID NO: 763)





CEP290-B1107

AGCAUUAGAAAGUCCUAGGC
20
upstream




(SEQ ID NO: 823)





CEP290-B1108
+
AGCUUGAACUCUGUGCCAAA
20
downstream




(SEQ ID NO: 824)





CEP290-B1109
+
AGCUUUUGACAGUUUUUAAG
20
downstream




(SEQ ID NO: 825)





CEP290-B1110
+
AGGACAGAGGACAUGGAGAA
20
upstream




(SEQ ID NO: 736)





CEP290-B1111
+
AGGAUAGGACAGAGGACAUG
20
upstream




(SEQ ID NO: 827)





CEP290-B1112
+
AGGUAAUGCCUGAACAAGUU
20
downstream




(SEQ ID NO: 828)





CEP290-B1113
+
AUAAGAAAGAACACUGUGGU
20
downstream




(SEQ ID NO: 829)





CEP290-B1114
+
AUAAGCCUCUAUUUCUGAUG
20
upstream




(SEQ ID NO: 723)





CEP290-B1115

AUACAUGAGAGUGAUUAGUG
20
downstream




(SEQ ID NO: 831)





CEP290-B1116
+
AUAGAAAAGAGCACGUACAA
20
downstream




(SEQ ID NO: 832)





CEP290-B1117
+
AUCAUUCUUGUGGCAGUAAG
20
downstream




(SEQ ID NO: 833)





CEP290-B1118
+
AUCUUAUUCUACUCCUGUGA
20
upstream




(SEQ ID NO: 764)





CEP290-B1119

AUCUUGUGGAUAAUGUAUCA
20
upstream




(SEQ ID NO: 835)





CEP290-B1120
+
AUGAGGAAGAUGAACAAAUC
20
upstream




(SEQ ID NO: 733)





CEP290-B1121
+
AUGAUCAUUCUUGUGGCAGU
20
downstream




(SEQ ID NO: 837)





CEP290-B1122
+
AUGCUGGAGAGGAUAGGACA
20
upstream




(SEQ ID NO: 838)





CEP290-B1123
+
AUGGUUCCCUAUAUAUAGAA
20
downstream




(SEQ ID NO: 839)





CEP290-B1124

AUUUAAUUUGUUUCUGUGUG
20
downstream




(SEQ ID NO: 840)





CEP290-B1125
+
CAAAACCUAUGUAUAAGAUG
20
downstream




(SEQ ID NO: 841)





CEP290-B1126
+
CAAAAGACUUAUAUUCCAUU
20
downstream




(SEQ ID NO: 842)





CEP290-B1127

CAAAAGCUUUUGCUGGCUCA
20
upstream




(SEQ ID NO: 762)





CEP290-B1128

CAAGAAUGAUCAUUCUAAAC
20
downstream




(SEQ ID NO: 844)





CEP290-B1129

CACAGAGUUCAAGCUAAUAC
20
downstream




(SEQ ID NO: 845)





CEP290-B1130
+
CACAGGGUAGGAUUCAUGUU
20
downstream




(SEQ ID NO: 846)





CEP290-B1131
+
CACUGCCAAUAGGGAUAGGU
20
downstream




(SEQ ID NO: 613)





CEP290-B1132
+
CAGAACAACGUUUUCAUUUA
20
upstream




(SEQ ID NO: 761)





CEP290-B1133

CAGAGUUCAAGCUAAUACAU
20
downstream




(SEQ ID NO: 848)





CEP290-B1134

CAGUAAAUGAAAACGUUGUU
20
upstream




(SEQ ID NO: 849)





CEP290-B1135

CAGUAAAUGAAAACGUUGUU
20
upstream




(SEQ ID NO: 849)





CEP290-B1136
+
CAGUAAGGAGGAUGUAAGAC
20
downstream




(SEQ ID NO: 676)





CEP290-B1137
+
CAUAAGCCUCUAUUUCUGAU
20
upstream




(SEQ ID NO: 851)





CEP290-B1138

CAUAGAGACACAUUCAGUAA
20
upstream




(SEQ ID NO: 750)





CEP290-B1139
+
CAUCUCUUGCUCUAGAUGAC
20
downstream




(SEQ ID NO: 853)





CEP290-B1140

CAUGAGAGUGAUUAGUGGUG
20
downstream




(SEQ ID NO: 854)





CEP290-B1141

CAUGUCAUCUAGAGCAAGAG
20
downstream




(SEQ ID NO: 855)





CEP290-B1142
+
CAUUUACUGAAUGUGUCUCU
20
upstream




(SEQ ID NO: 856)





CEP290-B1143
+
CAUUUACUGAAUGUGUCUCU
20
upstream




(SEQ ID NO: 856)





CEP290-B1144
+
CCAUUAAAAAAAGUAUGCUU
20
downstream




(SEQ ID NO: 857)





CEP290-B1145
+
CCUAGGACUUUCUAAUGCUG
20
upstream




(SEQ ID NO: 858)





CEP290-B1146
+
CCUCUCUUUGGCAAAAGCAG
20
upstream




(SEQ ID NO: 859)





CEP290-B1147
+
CCUCUCUUUGGCAAAAGCAG
20
upstream




(SEQ ID NO: 859)





CEP290-B1148
+
CCUGUGAAAGGAUCUUAGAU
20
upstream




(SEQ ID NO: 860)





CEP290-B1149

CGUGCUCUUUUCUAUAUAUA
20
downstream




(SEQ ID NO: 624)





CEP290-B1150

CUAAGAUCCUUUCACAGGAG
20
upstream




(SEQ ID NO: 861)





CEP290-B1151
+
CUAGAUGACAUGAGGUAAGU
20
downstream




(SEQ ID NO: 671)





CEP290-B1152
+
CUAUGAGCCAGCAAAAGCUU
20
upstream




(SEQ ID NO: 748)





CEP290-B1153
+
CUCAUAAUUUAGUAGGAAUC
20
upstream




(SEQ ID NO: 864)





CEP290-B1154
+
CUCAUAAUUUAGUAGGAAUC
20
upstream




(SEQ ID NO: 864)





CEP290-B1155

CUCAUCAGAAAUAGAGGCUU
20
upstream




(SEQ ID NO: 865)





CEP290-B1156
+
CUCUAUUUCUGAUGAGGAAG
20
upstream




(SEQ ID NO: 866)





CEP290-B1157

CUUAAGCAUACUUUUUUUAA
20
downstream




(SEQ ID NO: 690)





CEP290-B1158

CUUAUCUAAGAUCCUUUCAC
20
upstream




(SEQ ID NO: 734)





CEP290-B1159
+
CUUUCUAAUGCUGGAGAGGA
20
upstream




(SEQ ID NO: 869)





CEP290-B1160
+
CUUUUGACAGUUUUUAAGGC
20
downstream




(SEQ ID NO: 684)





CEP290-B1161
+
UAAAACUAAGACACUGCCAA
20
downstream




(SEQ ID NO: 871)





CEP290-B1162
+
UAAGAAAAAAAAGGUAAUGC
20
downstream




(SEQ ID NO: 872)





CEP290-B1163
+
UAAUGCUGGAGAGGAUAGGA
20
upstream




(SEQ ID NO: 873)





CEP290-B1164

UACAUAUCUGUCUUCCUUAA
20
downstream




(SEQ ID NO: 689)





CEP290-B1165

UACAUCCUCCUUACUGCCAC
20
downstream




(SEQ ID NO: 875)





CEP290-B1166

UACAUGAGAGUGAUUAGUGG
20
downstream




(SEQ ID NO: 628)





CEP290-B1167

UACCUCAUGUCAUCUAGAGC
20
downstream




(SEQ ID NO: 876)





CEP290-B1168

UACGUGCUCUUUUCUAUAUA
20
downstream




(SEQ ID NO: 877)





CEP290-B1169

UAGAGCAAGAGAUGAACUAG
20
downstream




(SEQ ID NO: 878)





CEP290-B1170
+
UAGAUGACAUGAGGUAAGUA
20
downstream




(SEQ ID NO: 680)





CEP290-B1171
+
UAGGAAUCCUGAAAGCUACU
20
upstream




(SEQ ID NO: 760)





CEP290-B1172
+
UAGGACAGAGGACAUGGAGA
20
upstream




(SEQ ID NO: 881)





CEP290-B1173
+
UAGGACUUUCUAAUGCUGGA
20
upstream




(SEQ ID NO: 882)





CEP290-B1174
+
UCACUGAGCAAAACAACUGG
20
downstream




(SEQ ID NO: 883)





CEP290-B1175

UCAUGUUUAUCAAUAUUAUU
20
upstream




(SEQ ID NO: 884)





CEP290-B1176

UCAUGUUUAUCAAUAUUAUU
20
upstream




(SEQ ID NO: 884)





CEP290-B1177
+
UCCACAAGAUGUCUCUUGCC
20
upstream




(SEQ ID NO: 885)





CEP290-B1178
+
UCCAUAAGCCUCUAUUUCUG
20
upstream




(SEQ ID NO: 886)





CEP290-B1179

UCCUAGGCAAGAGACAUCUU
20
upstream




(SEQ ID NO: 887)





CEP290-B1180
+
UCUAGAUGACAUGAGGUAAG
20
downstream




(SEQ ID NO: 888)





CEP290-B1181

UCUAUACCUUUUACUGAGGA
20
upstream




(SEQ ID NO: 889)





CEP290-B1182
+
UCUGUCCUCAGUAAAAGGUA
20
upstream




(SEQ ID NO: 890)





CEP290-B1183

UCUUAAGCAUACUUUUUUUA
20
downstream




(SEQ ID NO: 891)





CEP290-B1184

UCUUAUCUAAGAUCCUUUCA
20
upstream




(SEQ ID NO: 892)





CEP290-B1185

UCUUCCAGUUGUUUUGCUCA
20
downstream




(SEQ ID NO: 893)





CEP290-B1186
+
UGAGCAAAACAACUGGAAGA
20
downstream




(SEQ ID NO: 894)





CEP290-B1187

UGAGUAUCUCCUGUUUGGCA
20
downstream




(SEQ ID NO: 895)





CEP290-B1188
+
UGAUCAUUCUUGUGGCAGUA
20
downstream




(SEQ ID NO: 688)





CEP290-B1189
+
UGCCUAGGACUUUCUAAUGC
20
upstream




(SEQ ID NO: 632)





CEP290-B1190
+
UGCCUGAACAAGUUUUGAAA
20
downstream




(SEQ ID NO: 897)





CEP290-B1191

UGGUGUCAAAUAUGGUGCUU
20
downstream




(SEQ ID NO: 625)





CEP290-B1192
+
UGUAAGACUGGAGAUAGAGA
20
downstream




(SEQ ID NO: 898)





CEP290-B1193

UGUCCUAUCCUCUCCAGCAU
20
upstream




(SEQ ID NO: 899)





CEP290-B1194

UUAACGUUAUCAUUUUCCCA
20
upstream




(SEQ ID NO: 900)





CEP290-B1195

UUACAUAUCUGUCUUCCUUA
20
downstream




(SEQ ID NO: 901)





CEP290-B1196
+
UUAGAUCUUAUUCUACUCCU
20
upstream




(SEQ ID NO: 902)





CEP290-B1197
+
UUAGAUCUUAUUCUACUCCU
20
upstream




(SEQ ID NO: 902)





CEP290-B1198

UUCAGGAUUCCUACUAAAUU
20
upstream




(SEQ ID NO: 904)





CEP290-B1199

UUCAGGAUUCCUACUAAAUU
20
upstream




(SEQ ID NO: 904)





CEP290-B1200

UUCAUCUUCCUCAUCAGAAA
20
upstream




(SEQ ID NO: 905)





CEP290-B1201
+
UUGCCUAGGACUUUCUAAUG
20
upstream




(SEQ ID NO: 906)





CEP290-B1202

UUUCUGCUGCUUUUGCCAAA
20
upstream




(SEQ ID NO: 907)





CEP290-B1203

UUUCUGCUGCUUUUGCCAAA
20
upstream




(SEQ ID NO: 907)





CEP290-B1204
+
UUUUGACAGUUUUUAAGGCG
20
downstream




(SEQ ID NO: 681)





CEP290-B1205
+
UUUUUAAGGCGGGGAGUCAC
20
downstream




(SEQ ID NO: 909)





CEP290-B1206
+
AAAAGCUUUUGAGCUAA
17
upstream




(SEQ ID NO: 767)





CEP290-B1207
+
AAAGAACAUACAUAAGA
17
downstream




(SEQ ID NO: 911)





CEP290-B1208
+
AAAUGGUUCCCUAUAUA
17
downstream




(SEQ ID NO: 912)





CEP290-B1209
+
AACAACGUUUUCAUUUA
17
upstream




(SEQ ID NO: 765)





CEP290-B1210
+
AACCUAUGUAUAAGAUG
17
downstream




(SEQ ID NO: 914)





CEP290-B1211
+
AACUAAGACACUGCCAA
17
downstream




(SEQ ID NO: 915)





CEP290-B1212
+
AAGACUGGAGAUAGAGA
17
downstream




(SEQ ID NO: 916)





CEP290-B1213
+
AAGACUUAUAUUCCAUU
17
downstream




(SEQ ID NO: 917)





CEP290-B1214
+
AAGAUGAAAAAUACUCU
17
upstream




(SEQ ID NO: 918)





CEP290-B1215

AAGCAUACUUUUUUUAA
17
downstream




(SEQ ID NO: 667)





CEP290-B1216
+
AAGCCUCUAUUUCUGAU
17
upstream




(SEQ ID NO: 920)





CEP290-B1217

AAGCUUUUGCUGGCUCA
17
upstream




(SEQ ID NO: 766)





CEP290-B1218
+
AAGUUUUGAAACAGGAA
17
downstream




(SEQ ID NO: 922)





CEP290-B1219
+
ACAAGAUGUCUCUUGCC
17
upstream




(SEQ ID NO: 923)





CEP290-B1220
+
ACAGAGGACAUGGAGAA
17
upstream




(SEQ ID NO: 715)





CEP290-B1221
+
ACAGGAAUAGAAAUUCA
17
downstream




(SEQ ID NO: 925)





CEP290-B1222
+
ACAUGGGAGUCACAGGG
17
downstream




(SEQ ID NO: 926)





CEP290-B1223

ACGUUAUCAUUUUCCCA
17
upstream




(SEQ ID NO: 927)





CEP290-B1224
+
ACUAAGACACUGCCAAU
17
downstream




(SEQ ID NO: 603)





CEP290-B1225
+
AGAAAGAACACUGUGGU
17
downstream




(SEQ ID NO: 928)





CEP290-B1226
+
AGACUGGAGAUAGAGAC
17
downstream




(SEQ ID NO: 664)





CEP290-B1227
+
AGACUUAUAUUCCAUUA
17
downstream




(SEQ ID NO: 651)





CEP290-B1228

AGAGACACAUUCAGUAA
17
up stream




(SEQ ID NO: 754)





CEP290-B1229

AGAGUUCAAGCUAAUAC
17
downstream




(SEQ ID NO: 931)





CEP290-B1230

AGAUCCUUUCACAGGAG
17
up stream




(SEQ ID NO: 932)





CEP290-B1231
+
AGAUGAAAAAUACUCUU
17
up stream




(SEQ ID NO: 718)





CEP290-B1232
+
AGAUGACAUGAGGUAAG
17
downstream




(SEQ ID NO: 934)





CEP290-B1233

AGCAAGAGAUGAACUAG
17
downstream




(SEQ ID NO: 935)





CEP290-B1234
+
AGCCUCUAUUUCUGAUG
17
up stream




(SEQ ID NO: 709)





CEP290-B1235
+
AGGAAGAUGAACAAAUC
17
up stream




(SEQ ID NO: 717)





CEP290-B1236
+
AGGACUUUCUAAUGCUG
17
up stream




(SEQ ID NO: 938)





CEP290-B1237
+
AGGAGAUACUCAACACA
17
downstream




(SEQ ID NO: 939)





CEP290-B1238
+
AGGAUAGGACAGAGGAC
17
up stream




(SEQ ID NO: 940)





CEP290-B1239

AGGAUUCCUACUAAAUU
17
up stream




(SEQ ID NO: 941)





CEP290-B1240

AGGAUUCCUACUAAAUU
17
up stream




(SEQ ID NO: 941)





CEP290-B1241
+
AGGGUAGGAUUCAUGUU
17
downstream




(SEQ ID NO: 942)





CEP290-B1242

AGUUCAAGCUAAUACAU
17
downstream




(SEQ ID NO: 943)





CEP290-B1243
+
AUAAGCCUCUAUUUCUG
17
up stream




(SEQ ID NO: 944)





CEP290-B1244

AUAAGUCUUUUGAUAUA
17
downstream




(SEQ ID NO: 661)





CEP290-B1245
+
AUAAUUUAGUAGGAAUC
17
up stream




(SEQ ID NO: 946)





CEP290-B1246
+
AUAAUUUAGUAGGAAUC
17
upstream




(SEQ ID NO: 946)





CEP290-B1247

AUACCUUUUACUGAGGA
17
upstream




(SEQ ID NO: 947)





CEP290-B1248

AUAGAGGCUUAUGGAUU
17
upstream




(SEQ ID NO: 948)





CEP290-B1249
+
AUAGGACAGAGGACAUG
17
upstream




(SEQ ID NO: 949)





CEP290-B1250

AUAUCUGUCUUCCUUAA
17
downstream




(SEQ ID NO: 658)





CEP290-B1251

AUCAGAAAUAGAGGCUU
17
upstream




(SEQ ID NO: 951)





CEP290-B1252
+
AUCAUUCUUGUGGCAGU
17
downstream




(SEQ ID NO: 952)





CEP290-B1253

AUCCUCCUUACUGCCAC (SEQ
17
downstream




ID NO: 953)





CEP290-B1254

AUCUAAGAUCCUUUCAC
17
upstream




(SEQ ID NO: 696)





CEP290-B1255

AUCUUCCUCAUCAGAAA
17
upstream




(SEQ ID NO: 955)





CEP290-B1256
+
AUGACAUGAGGUAAGUA
17
downstream




(SEQ ID NO: 656)





CEP290-B1257
+
AUGACUCAUAAUUUAGU
17
upstream




(SEQ ID NO: 704)





CEP290-B1258
+
AUGACUCAUAAUUUAGU
17
upstream




(SEQ ID NO: 704)





CEP290-B1259

AUGAGAGUGAUUAGUGG
17
downstream




(SEQ ID NO: 645)





CEP290-B1260

AUUAGAAAGUCCUAGGC
17
upstream




(SEQ ID NO: 957)





CEP290-B1261
+
AUUCUUGUGGCAGUAAG
17
downstream




(SEQ ID NO: 958)





CEP290-B1262
+
CACUCUCAUGUAUUAGC
17
downstream




(SEQ ID NO: 959)





CEP290-B1263

CAUAUCUGUCUUCCUUA
17
downstream




(SEQ ID NO: 960)





CEP290-B1264
+
CAUGACUCAUAAUUUAG
17
upstream




(SEQ ID NO: 961)





CEP290-B1265
+
CAUGACUCAUAAUUUAG
17
upstream




(SEQ ID NO: 961)





CEP290-B1266

CAUGAGAGUGAUUAGUG
17
downstream




(SEQ ID NO: 962)





CEP290-B1267
+
CCUAGGACUUUCUAAUG
17
upstream




(SEQ ID NO: 963)





CEP290-B1268

CCUAUCCUCUCCAGCAU (SEQ
17
upstream




ID NO: 964)





CEP290-B1269
+
CUAGGACUUUCUAAUGC
17
upstream




(SEQ ID NO: 695)





CEP290-B1270

CUCAUGUCAUCUAGAGC
17
downstream




(SEQ ID NO: 966)





CEP290-B1271
+
CUCUUGCUCUAGAUGAC
17
downstream




(SEQ ID NO: 967)





CEP290-B1272
+
CUCUUUGGCAAAAGCAG
17
upstream




(SEQ ID NO: 968)





CEP290-B1273
+
CUCUUUGGCAAAAGCAG
17
upstream




(SEQ ID NO: 968)





CEP290-B1274
+
CUGAACAAGUUUUGAAA
17
downstream




(SEQ ID NO: 970)





CEP290-B1275
+
CUGAGCAAAACAACUGG
17
downstream




(SEQ ID NO: 971)





CEP290-B1276

CUGCUGCUUUUGCCAAA
17
upstream




(SEQ ID NO: 972)





CEP290-B1277

CUGCUGCUUUUGCCAAA
17
upstream




(SEQ ID NO: 972)





CEP290-B1278
+
CUGGAGAGGAUAGGACA
17
upstream




(SEQ ID NO: 973)





CEP290-B1279

UAAAUGAAAACGUUGUU
17
upstream




(SEQ ID NO: 974)





CEP290-B1280

UAAAUGAAAACGUUGUU
17
upstream




(SEQ ID NO: 974)





CEP290-B1281

UAAGCAUACUUUUUUUA
17
downstream




(SEQ ID NO: 975)





CEP290-B1282
+
UAAGGAGGAUGUAAGAC
17
downstream




(SEQ ID NO: 648)





CEP290-B1283
+
UAAUGCCUGAACAAGUU
17
downstream




(SEQ ID NO: 976)





CEP290-B1284

UAAUUUGUUUCUGUGUG
17
downstream




(SEQ ID NO: 977)





CEP290-B1285
+
UACAAAAGAACAUACAU
17
downstream




(SEQ ID NO: 978)





CEP290-B1286

UAGGCAAGAGACAUCUU
17
upstream




(SEQ ID NO: 979)





CEP290-B1287

UAUAAGUCUUUUGAUAU
17
downstream




(SEQ ID NO: 980)





CEP290-B1288

UAUCUAAGAUCCUUUCA
17
upstream




(SEQ ID NO: 981)





CEP290-B1289
+
UAUUUCUGAUGAGGAAG
17
upstream




(SEQ ID NO: 982)





CEP290-B1290
+
UCACUGAGCAAAACAAC
17
downstream




(SEQ ID NO: 650)





CEP290-B1291
+
UCAUUCUUGUGGCAGUA
17
downstream




(SEQ ID NO: 2780)





CEP290-B1292

UCCAGUUGUUUUGCUCA
17
downstream




(SEQ ID NO: 983)





CEP290-B1293
+
UCUAAUGCUGGAGAGGA
17
upstream




(SEQ ID NO: 984)





CEP290-B1294
+
UGAACAAGUUUUGAAAC
17
downstream




(SEQ ID NO: 659)





CEP290-B1295
+
UGAACUCUGUGCCAAAC
17
downstream




(SEQ ID NO: 638)





CEP290-B1296
+
UGACAGUUUUUAAGGCG
17
downstream




(SEQ ID NO: 642)





CEP290-B1297
+
UGAGCCAGCAAAAGCUU
17
upstream




(SEQ ID NO: 752)





CEP290-B1298
+
UGCAGAACUAGUGUAGA
17
downstream




(SEQ ID NO: 987)





CEP290-B1299
+
UGCCAAUAGGGAUAGGU
17
downstream




(SEQ ID NO: 614)





CEP290-B1300

UGCUCUUUUCUAUAUAU
17
downstream




(SEQ ID NO: 663)





CEP290-B1301
+
UGCUGGAGAGGAUAGGA
17
upstream




(SEQ ID NO: 989)





CEP290-B1302

UGUCAAAUAUGGUGCUU
17
downstream




(SEQ ID NO: 643)





CEP290-B1303

UGUUUAUCAAUAUUAUU
17
upstream




(SEQ ID NO: 990)





CEP290-B1304

UGUUUAUCAAUAUUAUU
17
upstream




(SEQ ID NO: 990)





CEP290-B1305
+
UUAAAAAAAGUAUGCUU
17
downstream




(SEQ ID NO: 991)





CEP290-B1306
+
UUAAGGCGGGGAGUCAC
17
downstream




(SEQ ID NO: 992)





CEP290-B1307
+
UUACUGAAUGUGUCUCU
17
upstream




(SEQ ID NO: 993)





CEP290-B1308
+
UUACUGAAUGUGUCUCU
17
upstream




(SEQ ID NO: 993)





CEP290-B1309
+
UUAUUCUACUCCUGUGA
17
upstream




(SEQ ID NO: 768)





CEP290-B1310
+
UUCACUGAGCAAAACAA
17
downstream




(SEQ ID NO: 995)





CEP290-B1311

UUCUGCUGCUUUUGCCA
17
upstream




(SEQ ID NO: 996)





CEP290-B1312

UUCUGCUGCUUUUGCCA
17
upstream




(SEQ ID NO: 996)





CEP290-B1313
+
UUGAACUCUGUGCCAAA
17
downstream




(SEQ ID NO: 997)





CEP290-B1314
+
UUGACAGUUUUUAAGGC
17
downstream




(SEQ ID NO: 654)





CEP290-B1315

UUGUGGAUAAUGUAUCA
17
upstream




(SEQ ID NO: 999)





CEP290-B1316

UUGUUCAUCUUCCUCAU
17
upstream




(SEQ ID NO: 1000)





CEP290-B1317

UUGUUCUGAGUAGCUUU
17
upstream




(SEQ ID NO: 753)





CEP290-B1318
+
UUUGACAGUUUUUAAGG
17
downstream




(SEQ ID NO: 662)





CEP290-B1319
+
UUUUGACAGUUUUUAAG
17
downstream




(SEQ ID NO: 1003)









Table 6A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 6A








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B65

GAGUUCAAGCUAAUACAUGA
20
downstream




(SEQ ID NO: 589)





CEP290-B296

GUUGUUCUGAGUAGCUU
17
upstream




(SEQ ID NO: 590)





CEP290-B308
+
GGCAAAAGCAGCAGAAAGCA
20
upstream




(SEQ ID NO: 591)





CEP290-B536

GUUGUUCUGAGUAGCUU
17
upstream




(SEQ ID NO: 590)





CEP290-B482
+
GGCAAAAGCAGCAGAAAGCA
20
upstream




(SEQ ID NO: 591)









Table 6B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 400 bp upstream of an Alu repeat or 700 bp downstream of the mutation, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 6B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-B235

UUCAAGCUAAUACAUGA
17
downstream




(SEQ ID NO: 1004)





CEP290-B109
+
CACAUGGGAGUCACAGG
17
downstream




(SEQ ID NO: 1005)





CEP290-B129
+
AGUCACAUGGGAGUCACAGG
20
downstream




(SEQ ID NO: 1006)





CEP290-B295

AAUAGAGGCUUAUGGAU
17
upstream




(SEQ ID NO: 1007)





CEP290-B297

CUGAGGACAGAACAAGC
17
upstream




(SEQ ID NO: 1008)





CEP290-B298

CAUCAGAAAUAGAGGCU
17
upstream




(SEQ ID NO: 1009)





CEP290-B299

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-B300
+
AGCAGAAAGCAAACUGA
17
upstream




(SEQ ID NO: 1011)





CEP290-B301
+
AAAAGCAGCAGAAAGCA
17
upstream




(SEQ ID NO: 1012)





CEP290-B302

UUACUGAGGACAGAACAAGC
20
upstream




(SEQ ID NO: 1013)





CEP290-B303

AACGUUGUUCUGAGUAGCUU
20
upstream




(SEQ ID NO: 1014)





CEP290-B304

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)





CEP290-B305

AGAAAUAGAGGCUUAUGGAU
20
upstream




(SEQ ID NO: 1016)





CEP290-B306

CCUCAUCAGAAAUAGAGGCU
20
upstream




(SEQ ID NO: 1017)





CEP290-B307
+
AGCAGCAGAAAGCAAACUGA
20
upstream




(SEQ ID NO: 1018)





CEP290-B531

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-B522
+
AGCAGAAAGCAAACUGA
17
upstream




(SEQ ID NO: 1011)





CEP290-B537
+
AAAAGCAGCAGAAAGCA
17
upstream




(SEQ ID NO: 1012)





CEP290-B504

AACGUUGUUCUGAGUAGCUU
20
upstream




(SEQ ID NO: 1014)





CEP290-B478

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)





CEP290-B526
+
AGCAGCAGAAAGCAAACUGA
20
upstream




(SEQ ID NO: 1018)









Table 7A provides targeting domains for introduction of an indel (e.g., mediated by NHEJ) in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, start with G and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).












TABLE 7A








Target



DNA

Site


gRNA Name
Strand
Targeting Domain
Length







CEP290-12

GCACCUGGCCCCAGUUGUAAUU
22




(SEQ ID NO: 398)









Table 7B provides targeting domains for introduction of an indel (e.g., mediated by NHEJ) in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 40 bases of the LCA10 target position, have good orthogonality, and PAM is NNGRRT. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).












TABLE 7B








Target



DNA

Site


gRNA Name
Strand
Targeting Domain
Length







CEP290-35
+
AAAUAAAACUAAGACACUGCCAAU
24




(SEQ ID NO: 1025)





CEP290-36
+
AAUAAAACUAAGACACUGCCAAU
23




(SEQ ID NO: 1026)





CEP290-37
+
AUAAAACUAAGACACUGCCAAU
22




(SEQ ID NO: 1027)





CEP290-38
+
AAAACUAAGACACUGCCAAU (SEQ
20




ID NO: 610)





CEP290-39
+
AAACUAAGACACUGCCAAU (SEQ
19




ID NO: 1028)





CEP290-40
+
AACUAAGACACUGCCAAU (SEQ ID
18




NO: 1029)





CEP290-512

ACCUGGCCCCAGUUGUAAUU (SEQ
20




ID NO: 616)





CEP290-17

CCGCACCUGGCCCCAGUUGUAAUU
24




(SEQ ID NO: 1030)





CEP290-41

CGCACCUGGCCCCAGUUGUAAUU
23




(SEQ ID NO: 1031)





CEP290-42

CACCUGGCCCCAGUUGUAAUU
21




(SEQ ID NO: 1032)





CEP290-513

CCUGGCCCCAGUUGUAAUU (SEQ
19




ID NO: 1033)





CEP290-514

CUGGCCCCAGUUGUAAUU (SEQ ID
18




NO: 1034)





CEP290-43
+
UAAAACUAAGACACUGCCAAU
21




(SEQ ID NO: 1035)









Table 7C provides targeting domains for introduction of an indel (e.g., mediated by NHEJ) in close proximity to or including the LCA10 target position in the CEP290 gene selected according to the fifth tier parameters. The targeting domains are within 40 bases of the LCA10 target position, and PAM is NNGRRV. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).












TABLE 7C








Target



DNA

Site


gRNA Name
Strand
Targeting Domain
Length







CEP290-44
+
AAAAUAAAACUAAGACACUGCCAA
24




(SEQ ID NO: 1036)





CEP290-45
+
AAAUAAAACUAAGACACUGCCAA
23




(SEQ ID NO: 1037)





CEP290-46
+
AAUAAAACUAAGACACUGCCAA
22




(SEQ ID NO: 1038)





CEP290-47
+
AUAAAACUAAGACACUGCCAA
21




(SEQ ID NO: 1039)





CEP290-48
+
AAAACUAAGACACUGCCAA (SEQ
19




ID NO: 1040)





CEP290-49
+
AAACUAAGACACUGCCAA (SEQ ID
18




NO: 1041)





CEP290-16
+
AAGACACUGCCAAUAGGGAUAGGU
24




(SEQ ID NO: 1042)





CEP290-50
+
AGACACUGCCAAUAGGGAUAGGU
23




(SEQ ID NO: 1043)





CEP290-51
+
ACACUGCCAAUAGGGAUAGGU
21




(SEQ ID NO: 1044)





CEP290-510
+
ACUGCCAAUAGGGAUAGGU (SEQ
19




ID NO: 1045)





CEP290-509
+
CACUGCCAAUAGGGAUAGGU (SEQ
20




ID NO: 613)





CEP290-511
+
CUGCCAAUAGGGAUAGGU (SEQ ID
18




NO: 1046)





CEP290-11
+
GACACUGCCAAUAGGGAUAGGU
22




(SEQ ID NO: 1047)





CEP290-52
+
UAAAACUAAGACACUGCCAA (SEQ
20




ID NO: 871)





CEP290-13
+
AUGAGAUACUCACAAUUACAAC
22




(SEQ ID NO: 1049)





CEP290-53
+
AGAUACUCACAAUUACAAC (SEQ
19




ID NO: 1050)





CEP290-18
+
GUAUGAGAUACUCACAAUUACAAC
24




(SEQ ID NO: 1051)





CEP290-54
+
GAGAUACUCACAAUUACAAC (SEQ
20




ID NO: 395)





CEP290-55
+
GAUACUCACAAUUACAAC (SEQ ID
18




NO: 1052)





CEP290-14
+
UAUGAGAUACUCACAAUUACAAC
23




(SEQ ID NO: 1053)





CEP290-57
+
UGAGAUACUCACAAUUACAAC
21




(SEQ ID NO: 1054)





CEP290-58
+
AUGAGAUAUUCACAAUUACAA
21




(SEQ ID NO: 1055)





CEP290-59
+
AGAUAUUCACAAUUACAA (SEQ ID
18




NO: 1056)





CEP290-19
+
GGUAUGAGAUAUUCACAAUUACAA
24




(SEQ ID NO: 1057)





CEP290-61
+
GUAUGAGAUAUUCACAAUUACAA
23




(SEQ ID NO: 1058)





CEP290-63
+
GAGAUAUUCACAAUUACAA (SEQ
19




ID NO: 1059)





CEP290-65
+
UAUGAGAUAUUCACAAUUACAA
22




(SEQ ID NO: 1060)





CEP290-66
+
UGAGAUAUUCACAAUUACAA (SEQ
20




ID NO: 1061)









Table 7D provides targeting domains for introduction of an indel (e.g., mediated by NHEJ) in close proximity to or including the LCA10 target position in the CEP290 gene that can be used for dual targeting. Any of the targeting domains in the table can be used with a S. aureus Cas9 (nickase) molecule to generate a single stranded break. Exemplary nickase pairs including selecting a targeting domain from Group A and a second targeting domain from Group B. It is contemplated herein that a targeting domain of Group A can be combined with any of the targeting domains of Group B. For example, the CEP290-12 or CEP290-17 can be combined with CEP290-11 or CEP290-16.












TABLE 7D







Group A
Group B









CEP290-12
CEP290-11



CEP290-17
CEP290-16










Table 8A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 8A








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-67
+
GAAAGAUGAAAAAUACUCUU
20
upstream




(SEQ ID NO: 462)





CEP290-68

GAAAUAGAUGUAGAUUG
17
downstream




(SEQ ID NO: 463)





CEP290-70

GAAAUAUUAAGGGCUCUUCC
20
upstream




(SEQ ID NO: 464)





CEP290-71
+
GAACAAAAGCCAGGGACCAU
20
upstream




(SEQ ID NO: 465)





CEP290-72

GAACUCUAUACCUUUUACUG
20
upstream




(SEQ ID NO: 466)





CEP290-73

GAAGAAUGGAAUAGAUAAUA
20
downstream




(SEQ ID NO: 467)





CEP290-74
+
GAAUAGUUUGUUCUGGGUAC
20
upstream




(SEQ ID NO: 468)





CEP290-75

GAAUGGAAUAGAUAAUA
17
downstream




(SEQ ID NO: 469)





CEP290-76
+
GAAUUUACAGAGUGCAUCCA
20
upstream




(SEQ ID NO: 470)





CEP290-77

GAGAAAAAGGAGCAUGAAAC
20
upstream




(SEQ ID NO: 471)





CEP290-78

GAGAGCCACAGUGCAUG
17
downstream




(SEQ ID NO: 472)





CEP290-79

GAGGUAGAAUCAAGAAG
17
downstream




(SEQ ID NO: 473)





CEP290-80
+
GAGUGCAUCCAUGGUCC
17
upstream




(SEQ ID NO: 474)





CEP290-81
+
GAUAACUACAAAGGGUC
17
upstream




(SEQ ID NO: 475)





CEP290-82
+
GAUAGAGACAGGAAUAA
17
downstream




(SEQ ID NO: 476)





CEP290-83
+
GAUGAAAAAUACUCUUU
17
upstream




(SEQ ID NO: 477)





CEP290-84
+
GAUGACAUGAGGUAAGU
17
downstream




(SEQ ID NO: 478)





CEP290-85
+
GAUGCAGAACUAGUGUAGAC
20
downstream




(SEQ ID NO: 460)





CEP290-86
+
GCAGAACUAGUGUAGAC
17
downstream




(SEQ ID NO: 458)





CEP290-87

GCAUGUGGUGUCAAAUA
17
downstream




(SEQ ID NO: 479)





CEP290-88
+
GCCUGAACAAGUUUUGAAAC
20
downstream




(SEQ ID NO: 480)





CEP290-89

GCUACCGGUUACCUGAA
17
downstream




(SEQ ID NO: 457)





CEP290-90

GCUCUUUUCUAUAUAUA
17
downstream




(SEQ ID NO: 481)





CEP290-91
+
GCUUGAACUCUGUGCCAAAC
20
downstream




(SEQ ID NO: 461)





CEP290-92
+
GCUUUUGACAGUUUUUAAGG
20
downstream




(SEQ ID NO: 482)





CEP290-93

GCUUUUGUUCCUUGGAA
17
upstream




(SEQ ID NO: 483)





CEP290-94
+
GGAACAAAAGCCAGGGACCA
20
upstream




(SEQ ID NO: 484)





CEP290-95
+
GGACUUGACUUUUACCCUUC
20
downstream




(SEQ ID NO: 485)





CEP290-96
+
GGAGAAUAGUUUGUUCU
17
upstream




(SEQ ID NO: 486)





CEP290-97
+
GGAGUCACAUGGGAGUCACA
20
downstream




(SEQ ID NO: 487)





CEP290-98
+
GGAUAGGACAGAGGACA
17
upstream




(SEQ ID NO: 488)





CEP290-99
+
GGCUGUAAGAUAACUACAAA
20
upstream




(SEQ ID NO: 489)





CEP290-100
+
GGGAGAAUAGUUUGUUC
17
upstream




(SEQ ID NO: 490)





CEP290-101
+
GGGAGUCACAUGGGAGUCAC
20
downstream




(SEQ ID NO: 491)





CEP290-102

GGGCUCUUCCUGGACCA (SEQ
17
upstream




ID NO: 492)





CEP290-103
+
GGGUACAGGGGUAAGAGAAA
20
upstream




(SEQ ID NO: 493)





CEP290-104

GGUCCCUGGCUUUUGUUCCU
20
upstream




(SEQ ID NO: 494)





CEP290-105

GUAAAGGUUCAUGAGACUAG
20
downstream




(SEQ ID NO: 495)





CEP290-106
+
GUAACAUAAUCACCUCUCUU
20
upstream




(SEQ ID NO: 496)





CEP290-107
+
GUAAGACUGGAGAUAGAGAC
20
downstream




(SEQ ID NO: 497)





CEP290-108
+
GUACAGGGGUAAGAGAA
17
upstream




(SEQ ID NO: 498)





CEP290-109
+
GUAGCUUUUGACAGUUUUUA
20
downstream




(SEQ ID NO: 499)





CEP290-110
+
GUCACAUGGGAGUCACA
17
downstream




(SEQ ID NO: 500)





CEP290-111

GUGGAGAGCCACAGUGCAUG
20
downstream




(SEQ ID NO: 501)





CEP290-112

GUUACAAUCUGUGAAUA
17
upstream




(SEQ ID NO: 502)





CEP290-113
+
GUUCUGUCCUCAGUAAA
17
upstream




(SEQ ID NO: 503)





CEP290-114

GUUGAGUAUCUCCUGUU
17
downstream




(SEQ ID NO: 459)





CEP290-115
+
GUUUAGAAUGAUCAUUCUUG
20
downstream




(SEQ ID NO: 504)





CEP290-116
+
GUUUGUUCUGGGUACAG
17
upstream




(SEQ ID NO: 505)





CEP290-117

UAAAAACUGUCAAAAGCUAC
20
downstream




(SEQ ID NO: 506)





CEP290-118
+
UAAAAGGUAUAGAGUUCAAG
20
upstream




(SEQ ID NO: 507)





CEP290-119
+
UAAAUCAUGCAAGUGACCUA
20
upstream




(SEQ ID NO: 508)





CEP290-120
+
UAAGAUAACUACAAAGGGUC
20
upstream




(SEQ ID NO: 509)









Table 8B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 8B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-121

AAAAAGGAGCAUGAAAC
17
upstream




(SEQ ID NO: 1062)





CEP290-122
+
AAAACUAAGACACUGCCAAU
20
downstream




(SEQ ID NO: 610)





CEP290-123
+
AAAAGACUUAUAUUCCAUUA
20
downstream




(SEQ ID NO: 685)





CEP290-124

AAAAGCUACCGGUUACCUGA
20
downstream




(SEQ ID NO: 621)





CEP290-125

AAAAUUAUGCCUAUUUAGUG
20
upstream




(SEQ ID NO: 729)





CEP290-126
+
AAACAACUGGAAGAGAGAAA
20
downstream




(SEQ ID NO: 691)





CEP290-127
+
AAACUAAGACACUGCCAAUA
20
downstream




(SEQ ID NO: 609)





CEP290-128

AAACUGUCAAAAGCUAC
17
downstream




(SEQ ID NO: 655)





CEP290-129

AAAGAAAUAGAUGUAGAUUG
20
downstream




(SEQ ID NO: 1066)





CEP290-130
+
AAAGAUGAAAAAUACUCUUU
20
upstream




(SEQ ID NO: 737)





CEP290-131

AAAGCUACCGGUUACCUGAA
20
downstream




(SEQ ID NO: 620)





CEP290-133

AAAUAGAGGCUUAUGGAUUU
20
upstream




(SEQ ID NO: 731)





CEP290-134
+
AAAUUAUCACCACACUAAAU
20
upstream




(SEQ ID NO: 727)





CEP290-135

AACAAACUAUUCUCCCA (SEQ
17
upstream




ID NO: 1070)





CEP290-136

AACAGUAGCUGAAAUAUUAA
20
upstream




(SEQ ID NO: 1071)





CEP290-137
+
AACAUGACUCAUAAUUUAGU
20
upstream




(SEQ ID NO: 721)





CEP290-138

AACUAUUCUCCCAUGGUCCC
20
upstream




(SEQ ID NO: 1073)





CEP290-140
+
AAGACACUGCCAAUAGGGAU
20
downstream




(SEQ ID NO: 600)





CEP290-141

AAGGAAAUACAAAAACUGGA
20
downstream




(SEQ ID NO: 1074)





CEP290-142
+
AAGGUAUAGAGUUCAAG
17
upstream




(SEQ ID NO: 1075)





CEP290-143

AAGGUUCAUGAGACUAG
17
downstream




(SEQ ID NO: 1076)





CEP290-144
+
AAUAGUUUGUUCUGGGUACA
20
upstream




(SEQ ID NO: 1077)





CEP290-145

AAUAUAAGUCUUUUGAUAUA
20
downstream




(SEQ ID NO: 687)





CEP290-146

AAUAUAUUAUCUAUUUAUAG
20
upstream




(SEQ ID NO: 1079)





CEP290-147

AAUAUUGUAAUCAAAGG
17
upstream




(SEQ ID NO: 1080)





CEP290-148
+
AAUAUUUCAGCUACUGU
17
upstream




(SEQ ID NO: 1081)





CEP290-149

AAUUAUUGUUGCUUUUUGAG
20
downstream




(SEQ ID NO: 1082)





CEP290-150
+
AAUUCACUGAGCAAAACAAC
20
downstream




(SEQ ID NO: 678)





CEP290-151
+
ACAAAAGCCAGGGACCA
17
upstream




(SEQ ID NO: 1084)





CEP290-152
+
ACACUGCCAAUAGGGAU
17
downstream




(SEQ ID NO: 595)





CEP290-153
+
ACAGAGUGCAUCCAUGGUCC
20
upstream




(SEQ ID NO: 1085)





CEP290-154
+
ACAUAAUCACCUCUCUU (SEQ
17
upstream




ID NO: 712)





CEP290-155

ACCAGACAUCUAAGAGAAAA
20
upstream




(SEQ ID NO: 1087)





CEP290-156

ACGUGCUCUUUUCUAUAUAU
20
downstream




(SEQ ID NO: 622)





CEP290-157
+
ACUUUCUAAUGCUGGAG
17
upstream




(SEQ ID NO: 700)





CEP290-158
+
ACUUUUACCCUUCAGGUAAC
20
downstream




(SEQ ID NO: 626)





CEP290-159

AGAAUAUUGUAAUCAAAGGA
20
upstream




(SEQ ID NO: 1089)





CEP290-160

AGACAUCUAAGAGAAAA
17
upstream




(SEQ ID NO: 1090)





CEP290-161
+
AGACUUAUAUUCCAUUA
17
downstream




(SEQ ID NO: 651)





CEP290-162
+
AGAGGAUAGGACAGAGGACA
20
upstream




(SEQ ID NO: 735)





CEP290-163
+
AGAUGACAUGAGGUAAGUAG
20
downstream




(SEQ ID NO: 677)





CEP290-164
+
AGAUGUCUGGUUAAAAG
17
upstream




(SEQ ID NO: 1093)





CEP290-165
+
AGCCUCUAUUUCUGAUG
17
upstream




(SEQ ID NO: 709)





CEP290-166

AGCUACCGGUUACCUGA
17
downstream




(SEQ ID NO: 618)





CEP290-167

AGCUCAAAAGCUUUUGC
17
upstream




(SEQ ID NO: 698)





CEP290-168

AGGAAAUACAAAAACUGGAU
20
downstream




(SEQ ID NO: 1096)





CEP290-169
+
AGGAAGAUGAACAAAUC
17
upstream




(SEQ ID NO: 717)





CEP290-170
+
AGGACAGAGGACAUGGAGAA
20
upstream




(SEQ ID NO: 736)





CEP290-171
+
AGGACUUUCUAAUGCUGGAG
20
upstream




(SEQ ID NO: 719)





CEP290-172

AGGCAAGAGACAUCUUG
17
upstream




(SEQ ID NO: 708)





CEP290-173

AGGUAGAAUAUUGUAAUCAA
20
upstream




(SEQ ID NO: 1101)





CEP290-174

AGUAGCUGAAAUAUUAA
17
upstream




(SEQ ID NO: 1102)





CEP290-175
+
AGUCACAUGGGAGUCAC
17
downstream




(SEQ ID NO: 644)





CEP290-176

AGUGCAUGUGGUGUCAAAUA
20
downstream




(SEQ ID NO: 627)





CEP290-177
+
AGUUUGUUCUGGGUACA
17
upstream




(SEQ ID NO: 1103)





CEP290-178
+
AUAAGCCUCUAUUUCUGAUG
20
upstream




(SEQ ID NO: 723)





CEP290-179

AUAAGUCUUUUGAUAUA
17
downstream




(SEQ ID NO: 661)





CEP290-180
+
AUACAUAAGAAAGAACACUG
20
downstream




(SEQ ID NO: 686)





CEP290-181
+
AUAGUUUGUUCUGGGUACAG
20
upstream




(SEQ ID NO: 1107)





CEP290-182

AUAUCUGUCUUCCUUAA
17
downstream




(SEQ ID NO: 658)





CEP290-183

AUAUUAAGGGCUCUUCC
17
upstream




(SEQ ID NO: 1109)





CEP290-184

AUAUUGUAAUCAAAGGA
17
upstream




(SEQ ID NO: 1110)





CEP290-185
+
AUCAUGCAAGUGACCUA
17
upstream




(SEQ ID NO: 1111)





CEP290-186

AUCUAAGAUCCUUUCAC
17
upstream




(SEQ ID NO: 696)





CEP290-187

AUCUUCCUCAUCAGAAAUAG
20
upstream




(SEQ ID NO: 722)





CEP290-188
+
AUGACAUGAGGUAAGUA
17
downstream




(SEQ ID NO: 656)





CEP290-189
+
AUGACUCAUAAUUUAGU
17
upstream




(SEQ ID NO: 704)





CEP290-190

AUGAGAGUGAUUAGUGG
17
downstream




(SEQ ID NO: 645)





CEP290-191
+
AUGAGGAAGAUGAACAAAUC
20
upstream




(SEQ ID NO: 733)





CEP290-192
+
AUGGGAGAAUAGUUUGUUCU
20
upstream




(SEQ ID NO: 1116)





CEP290-193

AUUAGCUCAAAAGCUUUUGC
20
upstream




(SEQ ID NO: 633)





CEP290-194

AUUAUGCCUAUUUAGUG
17
upstream




(SEQ ID NO: 703)





CEP290-195
+
AUUCCAAGGAACAAAAGCCA
20
upstream




(SEQ ID NO: 1118)





CEP290-196

AUUGAGGUAGAAUCAAGAAG
20
downstream




(SEQ ID NO: 1119)





CEP290-197
+
AUUUGACACCACAUGCACUG
20
downstream




(SEQ ID NO: 623)





CEP290-198
+
CAAAAGCCAGGGACCAU
17
upstream




(SEQ ID NO: 1120)





CEP290-199

CAACAGUAGCUGAAAUAUUA
20
upstream




(SEQ ID NO: 1121)





CEP290-200
+
CAAGAUGUCUCUUGCCU
17
upstream




(SEQ ID NO: 702)





CEP290-201

CAGAACAAACUAUUCUCCCA
20
upstream




(SEQ ID NO: 1123)





CEP290-202

CAGAUUUCAUGUGUGAAGAA
20
downstream




(SEQ ID NO: 1124)





CEP290-204

CAGCAUUAGAAAGUCCU
17
upstream




(SEQ ID NO: 710)





CEP290-205
+
CAGGGGUAAGAGAAAGGGAU
20
upstream




(SEQ ID NO: 1126)





CEP290-206
+
CAGUAAGGAGGAUGUAAGAC
20
downstream




(SEQ ID NO: 676)





CEP290-207

CAGUAGCUGAAAUAUUA
17
upstream




(SEQ ID NO: 1128)





CEP290-208
+
CAUAAGAAAGAACACUG
17
downstream




(SEQ ID NO: 665)





CEP290-209
+
CAUGGGAGAAUAGUUUGUUC
20
upstream




(SEQ ID NO: 1130)





CEP290-210
+
CAUGGGAGUCACAGGGU
17
downstream




(SEQ ID NO: 652)





CEP290-211
+
CAUUCCAAGGAACAAAAGCC
20
upstream




(SEQ ID NO: 1131)





CEP290-212
+
CCACAAGAUGUCUCUUGCCU
20
upstream




(SEQ ID NO: 630)





CEP290-213

CCUAGGCAAGAGACAUCUUG
20
upstream




(SEQ ID NO: 631)





CEP290-214

CGUGCUCUUUUCUAUAUAUA
20
downstream




(SEQ ID NO: 624)





CEP290-215

CGUUGUUCUGAGUAGCUUUC
20
upstream




(SEQ ID NO: 629)





CEP290-216
+
CUAAGACACUGCCAAUA
17
downstream




(SEQ ID NO: 597)





CEP290-217
+
CUAAUGCUGGAGAGGAU
17
upstream




(SEQ ID NO: 707)





CEP290-218
+
CUAGAUGACAUGAGGUAAGU
20
downstream




(SEQ ID NO: 671)





CEP290-219
+
CUAGGACUUUCUAAUGC
17
upstream




(SEQ ID NO: 695)





CEP290-220

CUCAUACCUAUCCCUAU (SEQ
17
downstream




ID NO: 594)





CEP290-221

CUCCAGCAUUAGAAAGUCCU
20
upstream




(SEQ ID NO: 720)





CEP290-222

CUCUAUACCUUUUACUG
17
upstream




(SEQ ID NO: 701)





CEP290-223
+
CUCUUGCUCUAGAUGACAUG
20
downstream




(SEQ ID NO: 675)





CEP290-224

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)





CEP290-225

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-226

CUGGCUUUUGUUCCUUGGAA
20
upstream




(SEQ ID NO: 1140)





CEP290-227
+
CUGUAAGAUAACUACAA
17
upstream




(SEQ ID NO: 1141)





CEP290-228

CUUAAGCAUACUUUUUUUAA
20
downstream




(SEQ ID NO: 690)





CEP290-229
+
CUUAAUAUUUCAGCUACUGU
20
upstream




(SEQ ID NO: 1143)





CEP290-231
+
CUUAGAUGUCUGGUUAAAAG
20
upstream




(SEQ ID NO: 1144)





CEP290-232

CUUAUCUAAGAUCCUUUCAC
20
upstream




(SEQ ID NO: 734)





CEP290-233
+
CUUGACUUUUACCCUUC (SEQ
17
downstream




ID NO: 649)





CEP290-234
+
CUUGUUCUGUCCUCAGUAAA
20
upstream




(SEQ ID NO: 728)





CEP290-235
+
CUUUUGACAGUUUUUAAGGC
20
downstream




(SEQ ID NO: 684)









Table 8C provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the third tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 8C








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-236

GAAAUACAAAAACUGGA
17
downstream




(SEQ ID NO: 1148)





CEP290-237
+
GCUUUUGACAGUUUUUA
17
downstream




(SEQ ID NO: 634)





CEP290-238
+
GGAGAUAGAGACAGGAAUAA
20
downstream




(SEQ ID NO: 635)





CEP290-239

GGAGUGCAGUGGAGUGAUCU
20
downstream




(SEQ ID NO: 1149)





CEP290-240
+
GGGGUAAGAGAAAGGGA
17
upstream




(SEQ ID NO: 1150)





CEP290-241
+
GGGUAAGAGAAAGGGAU
17
upstream




(SEQ ID NO: 1151)





CEP290-242

GUCUCACUGUGUUGCCC (SEQ
17
downstream




ID NO: 1152)





CEP290-243

GUGCAGUGGAGUGAUCU
17
downstream




(SEQ ID NO: 1153)





CEP290-244
+
GUGUGUGUGUGUGUGUUAUG
20
upstream




(SEQ ID NO: 1154)





CEP290-245
+
GUGUGUGUGUGUUAUGU
17
upstream




(SEQ ID NO: 1155)









Table 8D provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 8D








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation







CEP290-246

AAAUACAAAAACUGGAU
17
downstream




(SEQ ID NO: 1156)





CEP290-247

AAGCAUACUUUUUUUAA
17
downstream




(SEQ ID NO: 667)





CEP290-248
+
AAGGCGGGGAGUCACAU
17
downstream




(SEQ ID NO: 636)





CEP290-249
+
AAGUAUGCUUAAGAAAAAAA
20
downstream




(SEQ ID NO: 693)





CEP290-250
+
ACAGAGGACAUGGAGAA
17
upstream




(SEQ ID NO: 715)





CEP290-251
+
ACAGGGGUAAGAGAAAGGGA
20
upstream




(SEQ ID NO: 1160)





CEP290-253
+
ACUAAGACACUGCCAAU
17
downstream




(SEQ ID NO: 603)





CEP290-254
+
ACUCCACUGCACUCCAGCCU
20
downstream




(SEQ ID NO: 1161)





CEP290-255
+
AGACUGGAGAUAGAGAC
17
downstream




(SEQ ID NO: 664)





CEP290-256

AGAGUCUCACUGUGUUGCCC
20
downstream




(SEQ ID NO: 1163)





CEP290-257
+
AGAUGAAAAAUACUCUU
17
upstream




(SEQ ID NO: 718)





CEP290-258

AUAUUAUCUAUUUAUAG
17
upstream




(SEQ ID NO: 1165)





CEP290-259

AUUUCAUGUGUGAAGAA
17
downstream




(SEQ ID NO: 1166)





CEP290-260

AUUUUUUAUUAUCUUUAUUG
20
downstream




(SEQ ID NO: 694)





CEP290-261
+
CAACUGGAAGAGAGAAA
17
downstream




(SEQ ID NO: 668)





CEP290-262
+
CACUCCACUGCACUCCAGCC
20
downstream




(SEQ ID NO: 1169)





CEP290-263

CACUGUGUUGCCCAGGC (SEQ
17
downstream




ID NO: 1170)





CEP290-264
+
CCAAGGAACAAAAGCCA
17
upstream




(SEQ ID NO: 1171)





CEP290-265
+
CCACUGCACUCCAGCCU (SEQ
17
downstream




ID NO: 1172)





CEP290-266

CCCAGGCUGGAGUGCAG
17
downstream




(SEQ ID NO: 1173)





CEP290-267

CCCUGGCUUUUGUUCCU (SEQ
17
upstream




ID NO: 1174)





CEP290-268
+
CGCUUGAACCUGGGAGGCAG
20
downstream




(SEQ ID NO: 1175)





CEP290-269

UAAGGAAAUACAAAAAC
17
downstream




(SEQ ID NO: 1176)





CEP290-270

UAAUAAGGAAAUACAAAAAC
20
downstream




(SEQ ID NO: 1177)





CEP290-271

UACUGCAACCUCUGCCUCCC
20
downstream




(SEQ ID NO: 1178)





CEP290-272
+
UAUGCUUAAGAAAAAAA
17
downstream




(SEQ ID NO: 669)





CEP290-273
+
UCAUUCUUGUGGCAGUAAGG
20
downstream




(SEQ ID NO: 692)





CEP290-274
+
UCCACUGCACUCCAGCC (SEQ
17
downstream




ID NO: 1181)





CEP290-275

UCUCACUGUGUUGCCCAGGC
20
downstream




(SEQ ID NO: 1182)





CEP290-276
+
UGAACAAGUUUUGAAAC
17
downstream




(SEQ ID NO: 659)





CEP290-277

UGCAACCUCUGCCUCCC (SEQ
17
downstream




ID NO: 1184)





CEP290-278
+
UGUGUGUGUGUGUGUUAUGU
20
upstream




(SEQ ID NO: 1185)





CEP290-279
+
UGUGUGUGUGUGUUAUG
17
upstream




(SEQ ID NO: 1186)





CEP290-280
+
UUCUUGUGGCAGUAAGG
17
downstream




(SEQ ID NO: 666)





CEP290-281
+
UUGAACCUGGGAGGCAG
17
downstream




(SEQ ID NO: 1188)





CEP290-282

UUGCCCAGGCUGGAGUGCAG
20
downstream




(SEQ ID NO: 1189)





CEP290-283

UUUUAUUAUCUUUAUUG
17
downstream




(SEQ ID NO: 670)









Table 9A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, have good orthogonality, start with G and PAM is NNGRRT. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 9A







1st Tier














Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation





CEP290-284
+
GCUAAAUCAUGCAAGUGACCUAAG
24
upstream




(SEQ ID NO: 511)





CEP290-487

GGUCACUUGCAUGAUUUAG (SEQ ID
19
upstream




NO: 512)





CEP290-486

GUCACUUGCAUGAUUUAG (SEQ ID
18
upstream




NO: 513)





CEP290-285
+
GCCUAGGACUUUCUAAUGCUGGA
23
upstream




(SEQ ID NO: 514)





CEP290-479
+
GGACUUUCUAAUGCUGGA (SEQ ID
18
upstream




NO: 515)





CEP290-286
+
GGGACCAUGGGAGAAUAGUUUGUU
24
upstream




(SEQ ID NO: 516)





CEP290-287
+
GGACCAUGGGAGAAUAGUUUGUU
23
upstream




(SEQ ID NO: 517)





CEP290-288
+
GACCAUGGGAGAAUAGUUUGUU
22
upstream




(SEQ ID NO: 518)





CEP290-289

GGUCCCUGGCUUUUGUUCCUUGGA
24
upstream




(SEQ ID NO: 519)





CEP290-290

GUCCCUGGCUUUUGUUCCUUGGA
23
upstream




(SEQ ID NO: 520)





CEP290-374

GAAAACGUUGUUCUGAGUAGCUUU
24
upstream




(SEQ ID NO: 521)





CEP290-478

GUUGUUCUGAGUAGCUUU (SEQ ID
18
upstream




NO: 522)





CEP290-489

GGUCCCUGGCUUUUGUUCCU (SEQ
20
upstream




ID NO: 494)





CEP290-488

GUCCCUGGCUUUUGUUCCU (SEQ ID
19
upstream




NO: 523)





CEP290-291

GACAUCUUGUGGAUAAUGUAUCA
23
upstream




(SEQ ID NO: 524)





CEP290-292

GUCCUAGGCAAGAGACAUCUU
21
upstream




(SEQ ID NO: 525)





CEP290-293
+
GCCAGCAAAAGCUUUUGAGCUAA
23
upstream




(SEQ ID NO: 526)





CEP290-481
+
GCAAAAGCUUUUGAGCUAA (SEQ ID
19
upstream




NO: 527)





CEP290-294
+
GAUCUUAUUCUACUCCUGUGA
21
upstream




(SEQ ID NO: 528)





CEP290-295

GCUUUCAGGAUUCCUACUAAAUU
23
upstream




(SEQ ID NO: 529)





CEP290-323
+
GUUCUGUCCUCAGUAAAAGGUA
22
upstream




(SEQ ID NO: 530)





CEP290-480
+
GAACAACGUUUUCAUUUA (SEQ ID
18
upstream




NO: 531)





CEP290-296

GUAGAAUAUCAUAAGUUACAAUCU
24
upstream




(SEQ ID NO: 532)





CEP290-297

GAAUAUCAUAAGUUACAAUCU
21
upstream




(SEQ ID NO: 533)





CEP290-298
+
GUGGCUGUAAGAUAACUACA (SEQ
20
upstream




ID NO: 534)





CEP290-299
+
GGCUGUAAGAUAACUACA (SEQ ID
18
upstream




NO: 535)





CEP290-300

GUUUAACGUUAUCAUUUUCCCA
22
upstream




(SEQ ID NO: 536)





CEP290-301
+
GUAAGAGAAAGGGAUGGGCACUUA
24
upstream




(SEQ ID NO: 537)





CEP290-492
+
GAGAAAGGGAUGGGCACUUA (SEQ
20
upstream




ID NO: 538)





CEP290-491
+
GAAAGGGAUGGGCACUUA (SEQ ID
18
upstream




NO: 539)





CEP290-483

GUAAAUGAAAACGUUGUU (SEQ ID
18
upstream




NO: 540)





CEP290-302
+
GAUAAACAUGACUCAUAAUUUAGU
24
upstream




(SEQ ID NO: 541)





CEP290-303
+
GGAACAAAAGCCAGGGACCAUGG
23
upstream




(SEQ ID NO: 542)





CEP290-304
+
GAACAAAAGCCAGGGACCAUGG
22
upstream




(SEQ ID NO: 543)





CEP290-305
+
GGGAGAAUAGUUUGUUCUGGGUAC
24
upstream




(SEQ ID NO: 544)





CEP290-306
+
GGAGAAUAGUUUGUUCUGGGUAC
23
upstream




(SEQ ID NO: 545)





CEP290-307
+
GAGAAUAGUUUGUUCUGGGUAC
22
upstream




(SEQ ID NO: 546)





CEP290-490
+
GAAUAGUUUGUUCUGGGUAC (SEQ
20
upstream




ID NO: 468)





CEP290-482

GAAAUAGAGGCUUAUGGAUU (SEQ
20
upstream




ID NO: 547)





CEP290-308
+
GUUCUGGGUACAGGGGUAAGAGAA
24
upstream




(SEQ ID NO: 548)





CEP290-494
+
GGGUACAGGGGUAAGAGAA (SEQ
19
upstream




ID NO: 549)





CEP290-493
+
GGUACAGGGGUAAGAGAA (SEQ ID
18
upstream




NO: 550)





CEP290-309

GUAAAUUCUCAUCAUUUUUUAUUG
24
upstream




(SEQ ID NO: 551)





CEP290-310
+
GGAGAGGAUAGGACAGAGGACAUG
24
upstream




(SEQ ID NO: 552)





CEP290-311
+
GAGAGGAUAGGACAGAGGACAUG
23
upstream




(SEQ ID NO: 553)





CEP290-313
+
GAGGAUAGGACAGAGGACAUG
21
upstream




(SEQ ID NO: 554)





CEP290-485
+
GGAUAGGACAGAGGACAUG (SEQ
19
upstream




ID NO: 555)





CEP290-484
+
GAUAGGACAGAGGACAUG (SEQ ID
18
upstream




NO: 556)





CEP290-314

GAAUAAAUGUAGAAUUUUAAUG
22
upstream




(SEQ ID NO: 557)





CEP290-64

GUCAAAAGCUACCGGUUACCUG
22
downstream




(SEQ ID NO: 558)





CEP290-315
+
GUUUUUAAGGCGGGGAGUCACAU
23
downstream




(SEQ ID NO: 559)





CEP290-203

GUCUUACAUCCUCCUUACUGCCAC
24
downstream




(SEQ ID NO: 560)





CEP290-316
+
GAGUCACAGGGUAGGAUUCAUGUU
24
downstream




(SEQ ID NO: 561)





CEP290-317
+
GUCACAGGGUAGGAUUCAUGUU
22
downstream




(SEQ ID NO: 562)





CEP290-318

GGCACAGAGUUCAAGCUAAUACAU
24
downstream




(SEQ ID NO: 563)





CEP290-319

GCACAGAGUUCAAGCUAAUACAU
23
downstream




(SEQ ID NO: 564)





CEP290-505

GAGUUCAAGCUAAUACAU (SEQ ID
18
downstream




NO: 565)





CEP290-496
+
GAUGCAGAACUAGUGUAGAC (SEQ
20
downstream




ID NO: 460)





CEP290-320

GUGUUGAGUAUCUCCUGUUUGGCA
24
downstream




(SEQ ID NO: 566)





CEP290-321

GUUGAGUAUCUCCUGUUUGGCA
22
downstream




(SEQ ID NO: 567)





CEP290-504

GAGUAUCUCCUGUUUGGCA (SEQ ID
19
downstream




NO: 568)





CEP290-322

GAAAAUCAGAUUUCAUGUGUG
21
downstream




(SEQ ID NO: 569)





CEP290-324

GCCACAAGAAUGAUCAUUCUAAAC
24
downstream




(SEQ ID NO: 570)





CEP290-325
+
GGCGGGGAGUCACAUGGGAGUCA
23
downstream




(SEQ ID NO: 571)





CEP290-326
+
GCGGGGAGUCACAUGGGAGUCA
22
downstream




(SEQ ID NO: 572)





CEP290-499
+
GGGGAGUCACAUGGGAGUCA (SEQ
20
downstream




ID NO: 573)





CEP290-498
+
GGGAGUCACAUGGGAGUCA (SEQ ID
19
downstream




NO: 574)





CEP290-497
+
GGAGUCACAUGGGAGUCA (SEQ ID
18
downstream




NO: 575)





CEP290-327
+
GCUUUUGACAGUUUUUAAGGCG
22
downstream




(SEQ ID NO: 576)





CEP290-328
+
GAUCAUUCUUGUGGCAGUAAG
21
downstream




(SEQ ID NO: 577)





CEP290-329

GAGCAAGAGAUGAACUAG (SEQ ID
18
downstream




NO: 578)





CEP290-500
+
GCCUGAACAAGUUUUGAAAC (SEQ
20
downstream




ID NO: 480)





CEP290-330

GUAGAUUGAGGUAGAAUCAAGAA
23
downstream




(SEQ ID NO: 579)





CEP290-506

GAUUGAGGUAGAAUCAAGAA (SEQ
20
downstream




ID NO: 580)





CEP290-331
+
GGAUGUAAGACUGGAGAUAGAGAC
24
downstream




(SEQ ID NO: 581)





CEP290-332
+
GAUGUAAGACUGGAGAUAGAGAC
23
downstream




(SEQ ID NO: 582)





CEP290-503
+
GUAAGACUGGAGAUAGAGAC (SEQ
20
downstream




ID NO: 497)





CEP290-333
+
GGGAGUCACAUGGGAGUCACAGGG
24
downstream




(SEQ ID NO: 583)





CEP290-334
+
GGAGUCACAUGGGAGUCACAGGG
23
downstream




(SEQ ID NO: 584)





CEP290-335
+
GAGUCACAUGGGAGUCACAGGG
22
downstream




(SEQ ID NO: 585)





CEP290-502
+
GUCACAUGGGAGUCACAGGG (SEQ
20
downstream




ID NO: 586)





CEP290-336

GUUUACAUAUCUGUCUUCCUUAA
23
downstream




(SEQ ID NO: 587)





CEP290-507

GAUUUCAUGUGUGAAGAA (SEQ ID
18
downstream




NO: 588)









Table 9B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, and have good orthogonality. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 9B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-337
+
AAAUCAUGCAAGUGACCUAAG
21
upstream




(SEQ ID NO: 1191)





CEP290-338
+
AAUCAUGCAAGUGACCUAAG (SEQ
20
upstream




ID NO: 1192)





CEP290-339
+
AUCAUGCAAGUGACCUAAG (SEQ ID
19
upstream




NO: 1193)





CEP290-340

AGGUCACUUGCAUGAUUUAG (SEQ
20
upstream




ID NO: 1194)





CEP290-341

AAUAUUAAGGGCUCUUCCUGGACC
24
upstream




(SEQ ID NO: 1195)





CEP290-342

AUAUUAAGGGCUCUUCCUGGACC
23
upstream




(SEQ ID NO: 1196)





CEP290-343

AUUAAGGGCUCUUCCUGGACC (SEQ
21
upstream




ID NO: 1197)





CEP290-344

AAGGGCUCUUCCUGGACC (SEQ ID
18
upstream




NO: 1198)





CEP290-345
+
AGGACUUUCUAAUGCUGGA (SEQ ID
19
upstream




NO: 1199)





CEP290-346
+
ACCAUGGGAGAAUAGUUUGUU
21
upstream




(SEQ ID NO: 1200)





CEP290-347
+
AUGGGAGAAUAGUUUGUU (SEQ ID
18
upstream




NO: 1201)





CEP290-348
+
ACUCCUGUGAAAGGAUCUUAGAU
23
upstream




(SEQ ID NO: 1202)





CEP290-349

AAAACGUUGUUCUGAGUAGCUUU
23
upstream




(SEQ ID NO: 1203)





CEP290-350

AAACGUUGUUCUGAGUAGCUUU
22
upstream




(SEQ ID NO: 1204)





CEP290-351

AACGUUGUUCUGAGUAGCUUU
21
upstream




(SEQ ID NO: 1205)





CEP290-352

ACGUUGUUCUGAGUAGCUUU (SEQ
20
upstream




ID NO: 749)





CEP290-353

AUUUAUAGUGGCUGAAUGACUU
22
upstream




(SEQ ID NO: 1207)





CEP290-354

AUAGUGGCUGAAUGACUU (SEQ ID
18
upstream




NO: 1208)





CEP290-355

AUGGUCCCUGGCUUUUGUUCCU
22
upstream




(SEQ ID NO: 1209)





CEP290-356

AGACAUCUUGUGGAUAAUGUAUCA
24
upstream




(SEQ ID NO: 1210)





CEP290-357

ACAUCUUGUGGAUAAUGUAUCA
22
upstream




(SEQ ID NO: 1211)





CEP290-358

AUCUUGUGGAUAAUGUAUCA (SEQ
20
upstream




ID NO: 835)





CEP290-359

AAAGUCCUAGGCAAGAGACAUCUU
24
upstream




(SEQ ID NO: 1213)





CEP290-360

AAGUCCUAGGCAAGAGACAUCUU
23
upstream




(SEQ ID NO: 1214)





CEP290-361

AGUCCUAGGCAAGAGACAUCUU
22
upstream




(SEQ ID NO: 1215)





CEP290-362
+
AGCCAGCAAAAGCUUUUGAGCUAA
24
upstream




(SEQ ID NO: 1216)





CEP290-363
+
AGCAAAAGCUUUUGAGCUAA (SEQ
20
upstream




ID NO: 763)





CEP290-364
+
AGAUCUUAUUCUACUCCUGUGA
22
upstream




(SEQ ID NO: 1218)





CEP290-365
+
AUCUUAUUCUACUCCUGUGA (SEQ
20
upstream




ID NO: 764)





CEP290-366

AUCUAAGAUCCUUUCACAGGAG
22
upstream




(SEQ ID NO: 1220)





CEP290-369

AAGAUCCUUUCACAGGAG (SEQ ID
18
upstream




NO: 1221)





CEP290-370

AGCUUUCAGGAUUCCUACUAAAUU
24
upstream




(SEQ ID NO: 1222)





CEP290-371
+
ACUCAGAACAACGUUUUCAUUUA
23
upstream




(SEQ ID NO: 1223)





CEP290-372
+
AGAACAACGUUUUCAUUUA (SEQ ID
19
upstream




NO: 1224)





CEP290-373

AGAAUAUCAUAAGUUACAAUCU
22
upstream




(SEQ ID NO: 1225)





CEP290-375

AAUAUCAUAAGUUACAAUCU (SEQ
20
upstream




ID NO: 1226)





CEP290-376

AUAUCAUAAGUUACAAUCU (SEQ ID
19
upstream




NO: 1227)





CEP290-377
+
AAGUGGCUGUAAGAUAACUACA
22
upstream




(SEQ ID NO: 1228)





CEP290-378
+
AGUGGCUGUAAGAUAACUACA
21
upstream




(SEQ ID NO: 1229)





CEP290-379

AUGUUUAACGUUAUCAUUUUCCCA
24
upstream




(SEQ ID NO: 1230)





CEP290-380

AACGUUAUCAUUUUCCCA (SEQ ID
18
upstream




NO: 1231)





CEP290-381
+
AAGAGAAAGGGAUGGGCACUUA
22
upstream




(SEQ ID NO: 1232)





CEP290-382
+
AGAGAAAGGGAUGGGCACUUA
21
upstream




(SEQ ID NO: 1233)





CEP290-383
+
AGAAAGGGAUGGGCACUUA (SEQ
19
upstream




ID NO: 1234)





CEP290-384

AUUCAGUAAAUGAAAACGUUGUU
23
upstream




(SEQ ID NO: 1235)





CEP290-385

AGUAAAUGAAAACGUUGUU (SEQ
19
upstream




ID NO: 1236)





CEP290-386
+
AUAAACAUGACUCAUAAUUUAGU
23
upstream




(SEQ ID NO: 1237)





CEP290-387
+
AAACAUGACUCAUAAUUUAGU
21
upstream




(SEQ ID NO: 1238)





CEP290-388
+
AACAUGACUCAUAAUUUAGU (SEQ
20
upstream




ID NO: 721)





CEP290-389
+
ACAUGACUCAUAAUUUAGU (SEQ ID
19
upstream




NO: 1240)





CEP290-390

AUUCUUAUCUAAGAUCCUUUCAC
23
upstream




(SEQ ID NO: 1241)





CEP290-391
+
AGGAACAAAAGCCAGGGACCAUGG
24
upstream




(SEQ ID NO: 1242)





CEP290-392
+
AACAAAAGCCAGGGACCAUGG
21
upstream




(SEQ ID NO: 1243)





CEP290-393
+
ACAAAAGCCAGGGACCAUGG (SEQ
20
upstream




ID NO: 1244)





CEP290-394
+
AAAAGCCAGGGACCAUGG (SEQ ID
18
upstream




NO: 1245)





CEP290-395
+
AGAAUAGUUUGUUCUGGGUAC
21
upstream




(SEQ ID NO: 1246)





CEP290-396
+
AAUAGUUUGUUCUGGGUAC (SEQ
19
upstream




ID NO: 1247)





CEP290-397
+
AUAGUUUGUUCUGGGUAC (SEQ ID
18
upstream




NO: 1248)





CEP290-398

AUCAGAAAUAGAGGCUUAUGGAUU
24
upstream




(SEQ ID NO: 1249)





CEP290-399

AGAAAUAGAGGCUUAUGGAUU
21
upstream




(SEQ ID NO: 1250)





CEP290-400

AAAUAGAGGCUUAUGGAUU (SEQ
19
upstream




ID NO: 1251)





CEP290-401

AAUAGAGGCUUAUGGAUU (SEQ ID
18
upstream




NO: 1252)





CEP290-402

AAUAUAUUAUCUAUUUAUAGUGG
23
upstream




(SEQ ID NO: 1253)





CEP290-403

AUAUAUUAUCUAUUUAUAGUGG
22
upstream




(SEQ ID NO: 1254)





CEP290-404

AUAUUAUCUAUUUAUAGUGG (SEQ
20
upstream




ID NO: 1255)





CEP290-405

AUUAUCUAUUUAUAGUGG (SEQ ID
18
upstream




NO: 1256)





CEP290-406

AAAUUCUCAUCAUUUUUUAUUG
22
upstream




(SEQ ID NO: 1257)





CEP290-407

AAUUCUCAUCAUUUUUUAUUG
21
upstream




(SEQ ID NO: 1258)





CEP290-408

AUUCUCAUCAUUUUUUAUUG (SEQ
20
upstream




ID NO: 1259)





CEP290-409
+
AGAGGAUAGGACAGAGGACAUG
22
upstream




(SEQ ID NO: 1260)





CEP290-410
+
AGGAUAGGACAGAGGACAUG (SEQ
20
upstream




ID NO: 827)





CEP290-411

AGAAUAAAUGUAGAAUUUUAAUG
23
upstream




(SEQ ID NO: 1262)





CEP290-412

AAUAAAUGUAGAAUUUUAAUG
21
upstream




(SEQ ID NO: 1263)





CEP290-413

AUAAAUGUAGAAUUUUAAUG (SEQ
20
upstream




ID NO: 1264)





CEP290-414

AAAUGUAGAAUUUUAAUG (SEQ ID
18
upstream




NO: 1265)





CEP290-415

AUUUUUUAUUGUAGAAUAAAUG
22
upstream




(SEQ ID NO: 1266)





CEP290-416
+
CUAAAUCAUGCAAGUGACCUAAG
23
upstream




(SEQ ID NO: 1267)





CEP290-417

CCUUAGGUCACUUGCAUGAUUUAG
24
upstream




(SEQ ID NO: 1268)





CEP290-418

CUUAGGUCACUUGCAUGAUUUAG
23
upstream




(SEQ ID NO: 1269)





CEP290-419
+
CCUAGGACUUUCUAAUGCUGGA
22
upstream




(SEQ ID NO: 1270)





CEP290-420
+
CUAGGACUUUCUAAUGCUGGA
21
upstream




(SEQ ID NO: 1271)





CEP290-421
+
CCAUGGGAGAAUAGUUUGUU (SEQ
20
upstream




ID NO: 1272)





CEP290-422
+
CAUGGGAGAAUAGUUUGUU (SEQ
19
upstream




ID NO: 1273)





CEP290-423
+
CUCCUGUGAAAGGAUCUUAGAU
22
upstream




(SEQ ID NO: 1274)





CEP290-424
+
CCUGUGAAAGGAUCUUAGAU (SEQ
20
upstream




ID NO: 860)





CEP290-426
+
CUGUGAAAGGAUCUUAGAU (SEQ
19
upstream




ID NO: 1276)





CEP290-427

CCCUGGCUUUUGUUCCUUGGA (SEQ
21
upstream




ID NO: 1277)





CEP290-428

CCUGGCUUUUGUUCCUUGGA (SEQ
20
upstream




ID NO: 1278)





CEP290-429

CUGGCUUUUGUUCCUUGGA (SEQ ID
19
upstream




NO: 1279)





CEP290-430

CGUUGUUCUGAGUAGCUUU (SEQ ID
19
upstream




NO: 1280)





CEP290-431

CUAUUUAUAGUGGCUGAAUGACUU
24
upstream




(SEQ ID NO: 1281)





CEP290-432

CCAUGGUCCCUGGCUUUUGUUCCU
24
upstream




(SEQ ID NO: 1282)





CEP290-433

CAUGGUCCCUGGCUUUUGUUCCU
23
upstream




(SEQ ID NO: 1283)





CEP290-434

CAUCUUGUGGAUAAUGUAUCA
21
upstream




(SEQ ID NO: 1284)





CEP290-435

CUUGUGGAUAAUGUAUCA (SEQ ID
18
upstream




NO: 1285)





CEP290-437

CCUAGGCAAGAGACAUCUU (SEQ ID
19
upstream




NO: 1286)





CEP290-438

CUAGGCAAGAGACAUCUU (SEQ ID
18
upstream




NO: 1287)





CEP290-439
+
CCAGCAAAAGCUUUUGAGCUAA
22
upstream




(SEQ ID NO: 1288)





CEP290-440
+
CAGCAAAAGCUUUUGAGCUAA
21
upstream




(SEQ ID NO: 1289)





CEP290-441
+
CAAAAGCUUUUGAGCUAA (SEQ ID
18
upstream




NO: 1290)





CEP290-442
+
CUUAUUCUACUCCUGUGA (SEQ ID
18
upstream




NO: 1291)





CEP290-443

CUAAGAUCCUUUCACAGGAG (SEQ
20
upstream




ID NO: 861)





CEP290-444

CUUCCUCAUCAGAAAUAGAGGCUU
24
upstream




(SEQ ID NO: 1293)





CEP290-445

CCUCAUCAGAAAUAGAGGCUU
21
upstream




(SEQ ID NO: 1294)





CEP290-446

CUCAUCAGAAAUAGAGGCUU (SEQ
20
upstream




ID NO: 865)





CEP290-447

CAUCAGAAAUAGAGGCUU (SEQ ID
18
upstream




NO: 1296)





CEP290-448

CUUUCAGGAUUCCUACUAAAUU
22
upstream




(SEQ ID NO: 1297)





CEP290-449

CAGGAUUCCUACUAAAUU (SEQ ID
18
upstream




NO: 1298)





CEP290-450
+
CUGUCCUCAGUAAAAGGUA (SEQ ID
19
upstream




NO: 1299)





CEP290-451
+
CUCAGAACAACGUUUUCAUUUA
22
upstream




(SEQ ID NO: 1300)





CEP290-452
+
CAGAACAACGUUUUCAUUUA (SEQ
20
upstream




ID NO: 761)





CEP290-453
+
CAAGUGGCUGUAAGAUAACUACA
23
upstream




(SEQ ID NO: 1302)





CEP290-454

CAUUCAGUAAAUGAAAACGUUGUU
24
upstream




(SEQ ID NO: 1303)





CEP290-457

CAGUAAAUGAAAACGUUGUU (SEQ
20
upstream




ID NO: 849)





CEP290-458
+
CAUGACUCAUAAUUUAGU (SEQ ID
18
upstream




NO: 1305)





CEP290-459

CUUAUCUAAGAUCCUUUCAC (SEQ
20
upstream




ID NO: 734)





CEP290-460
+
CAAAAGCCAGGGACCAUGG (SEQ ID
19
upstream




NO: 1307)





CEP290-461

CAGAAAUAGAGGCUUAUGGAUU
22
upstream




(SEQ ID NO: 1308)





CEP290-462
+
CUGGGUACAGGGGUAAGAGAA
21
upstream




(SEQ ID NO: 1309)





CEP290-463

CAAUAUAUUAUCUAUUUAUAGUGG
24
upstream




(SEQ ID NO: 1310)





CEP290-464

CAUUUUUUAUUGUAGAAUAAAUG
23
upstream




(SEQ ID NO: 1311)





CEP290-465
+
UAAAUCAUGCAAGUGACCUAAG
22
upstream




(SEQ ID NO: 1312)





CEP290-466
+
UCAUGCAAGUGACCUAAG (SEQ ID
18
upstream




NO: 1313)





CEP290-467

UUAGGUCACUUGCAUGAUUUAG
22
upstream




(SEQ ID NO: 1314)





CEP290-468

UAGGUCACUUGCAUGAUUUAG
21
upstream




(SEQ ID NO: 1315)





CEP290-469

UAUUAAGGGCUCUUCCUGGACC
22
upstream




(SEQ ID NO: 1316)





CEP290-470

UUAAGGGCUCUUCCUGGACC (SEQ
20
upstream




ID NO: 1317)





CEP290-471

UAAGGGCUCUUCCUGGACC (SEQ ID
19
upstream




NO: 1318)





CEP290-472
+
UGCCUAGGACUUUCUAAUGCUGGA
24
upstream




(SEQ ID NO: 1319)





CEP290-473
+
UAGGACUUUCUAAUGCUGGA (SEQ
20
upstream




ID NO: 882)





CEP290-474
+
UACUCCUGUGAAAGGAUCUUAGAU
24
upstream




(SEQ ID NO: 1321)





CEP290-475
+
UCCUGUGAAAGGAUCUUAGAU
21
upstream




(SEQ ID NO: 1322)





CEP290-476
+
UGUGAAAGGAUCUUAGAU (SEQ ID
18
upstream




NO: 1323)





CEP290-477

UCCCUGGCUUUUGUUCCUUGGA
22
upstream




(SEQ ID NO: 1324)





CEP290-515

UGGCUUUUGUUCCUUGGA (SEQ ID
18
upstream




NO: 1325)





CEP290-516

UAUUUAUAGUGGCUGAAUGACUU
23
upstream




(SEQ ID NO: 1326)





CEP290-517

UUUAUAGUGGCUGAAUGACUU
21
upstream




(SEQ ID NO: 1327)





CEP290-518

UUAUAGUGGCUGAAUGACUU (SEQ
20
upstream




ID NO: 1328)





CEP290-519

UAUAGUGGCUGAAUGACUU (SEQ
19
upstream




ID NO: 1329)





CEP290-520

UGGUCCCUGGCUUUUGUUCCU (SEQ
21
upstream




ID NO: 1330)





CEP290-521

UCCCUGGCUUUUGUUCCU (SEQ ID
18
upstream




NO: 1331)





CEP290-522

UCUUGUGGAUAAUGUAUCA (SEQ
19
upstream




ID NO: 1332)





CEP290-523

UCCUAGGCAAGAGACAUCUU (SEQ
20
upstream




ID NO: 887)





CEP290-524
+
UUAGAUCUUAUUCUACUCCUGUGA
24
upstream




(SEQ ID NO: 1334)





CEP290-525
+
UAGAUCUUAUUCUACUCCUGUGA
23
upstream




(SEQ ID NO: 1335)





CEP290-526
+
UCUUAUUCUACUCCUGUGA (SEQ ID
19
upstream




NO: 1336)





CEP290-527

UUAUCUAAGAUCCUUUCACAGGAG
24
upstream




(SEQ ID NO: 1337)





CEP290-528

UAUCUAAGAUCCUUUCACAGGAG
23
upstream




(SEQ ID NO: 1338)





CEP290-529

UCUAAGAUCCUUUCACAGGAG
21
upstream




(SEQ ID NO: 1339)





CEP290-530

UAAGAUCCUUUCACAGGAG (SEQ ID
19
upstream




NO: 1340)





CEP290-531

UUCCUCAUCAGAAAUAGAGGCUU
23
upstream




(SEQ ID NO: 1341)





CEP290-532

UCCUCAUCAGAAAUAGAGGCUU
22
upstream




(SEQ ID NO: 1342)





CEP290-533

UCAUCAGAAAUAGAGGCUU (SEQ ID
19
upstream




NO: 1343)





CEP290-534

UUUCAGGAUUCCUACUAAAUU
21
upstream




(SEQ ID NO: 1344)





CEP290-535

UUCAGGAUUCCUACUAAAUU (SEQ
20
upstream




ID NO: 904)





CEP290-536

UCAGGAUUCCUACUAAAUU (SEQ ID
19
upstream




NO: 1346)





CEP290-537
+
UUGUUCUGUCCUCAGUAAAAGGUA
24
upstream




(SEQ ID NO: 1347)





CEP290-538
+
UGUUCUGUCCUCAGUAAAAGGUA
23
upstream




(SEQ ID NO: 1348)





CEP290-539
+
UUCUGUCCUCAGUAAAAGGUA
21
upstream




(SEQ ID NO: 1349)





CEP290-540
+
UCUGUCCUCAGUAAAAGGUA (SEQ
20
upstream




ID NO: 890)





CEP290-541
+
UGUCCUCAGUAAAAGGUA (SEQ ID
18
upstream




NO: 1351)





CEP290-542
+
UACUCAGAACAACGUUUUCAUUUA
24
upstream




(SEQ ID NO: 1352)





CEP290-543
+
UCAGAACAACGUUUUCAUUUA
21
upstream




(SEQ ID NO: 1353)





CEP290-544

UAGAAUAUCAUAAGUUACAAUCU
23
upstream




(SEQ ID NO: 1354)





CEP290-545

UAUCAUAAGUUACAAUCU (SEQ ID
18
upstream




NO: 1355)





CEP290-546
+
UCAAGUGGCUGUAAGAUAACUACA
24
upstream




(SEQ ID NO: 1356)





CEP290-547
+
UGGCUGUAAGAUAACUACA (SEQ ID
19
upstream




NO: 1357)





CEP290-548

UGUUUAACGUUAUCAUUUUCCCA
23
upstream




(SEQ ID NO: 1358)





CEP290-549

UUUAACGUUAUCAUUUUCCCA
21
upstream




(SEQ ID NO: 1359)





CEP290-550

UUAACGUUAUCAUUUUCCCA (SEQ
20
upstream




ID NO: 900)





CEP290-551

UAACGUUAUCAUUUUCCCA (SEQ ID
19
upstream




NO: 1361)





CEP290-552
+
UAAGAGAAAGGGAUGGGCACUUA
23
upstream




(SEQ ID NO: 1362)





CEP290-553

UUCAGUAAAUGAAAACGUUGUU
22
upstream




(SEQ ID NO: 1363)





CEP290-554

UCAGUAAAUGAAAACGUUGUU
21
upstream




(SEQ ID NO: 1364)





CEP290-555
+
UAAACAUGACUCAUAAUUUAGU
22
upstream




(SEQ ID NO: 1365)





CEP290-556

UAUUCUUAUCUAAGAUCCUUUCAC
24
upstream




(SEQ ID NO: 1366)





CEP290-557

UUCUUAUCUAAGAUCCUUUCAC
22
upstream




(SEQ ID NO: 1367)





CEP290-558

UCUUAUCUAAGAUCCUUUCAC (SEQ
21
upstream




ID NO: 1368)





CEP290-559

UUAUCUAAGAUCCUUUCAC (SEQ ID
19
upstream




NO: 1369)





CEP290-560

UAUCUAAGAUCCUUUCAC (SEQ ID
18
upstream




NO: 1370)





CEP290-561

UCAGAAAUAGAGGCUUAUGGAUU
23
upstream




(SEQ ID NO: 1371)





CEP290-562
+
UUCUGGGUACAGGGGUAAGAGAA
23
upstream




(SEQ ID NO: 1372)





CEP290-563
+
UCUGGGUACAGGGGUAAGAGAA
22
upstream




(SEQ ID NO: 1373)





CEP290-564
+
UGGGUACAGGGGUAAGAGAA (SEQ
20
upstream




ID NO: 1374)





CEP290-565

UAUAUUAUCUAUUUAUAGUGG
21
upstream




(SEQ ID NO: 1375)





CEP290-566

UAUUAUCUAUUUAUAGUGG (SEQ
19
upstream




ID NO: 1376)





CEP290-567

UAAAUUCUCAUCAUUUUUUAUUG
23
upstream




(SEQ ID NO: 1377)





CEP290-568

UUCUCAUCAUUUUUUAUUG (SEQ ID
19
upstream




NO: 1378)





CEP290-569

UCUCAUCAUUUUUUAUUG (SEQ ID
18
upstream




NO: 1379)





CEP290-570

UAGAAUAAAUGUAGAAUUUUAAUG
24
upstream




(SEQ ID NO: 1380)





CEP290-571

UAAAUGUAGAAUUUUAAUG (SEQ
19
upstream




ID NO: 1381)





CEP290-572

UCAUUUUUUAUUGUAGAAUAAAUG
24
upstream




(SEQ ID NO: 1382)





CEP290-573

UUUUUUAUUGUAGAAUAAAUG
21
upstream




(SEQ ID NO: 1383)





CEP290-574

UUUUUAUUGUAGAAUAAAUG (SEQ
20
upstream




ID NO: 1384)





CEP290-575

UUUUAUUGUAGAAUAAAUG (SEQ
19
upstream




ID NO: 1385)





CEP290-576

UUUAUUGUAGAAUAAAUG (SEQ ID
18
upstream




NO: 1386)





CEP290-577

AAAAGCUACCGGUUACCUG (SEQ ID
19
downstream




NO: 1387)





CEP290-578

AAAGCUACCGGUUACCUG (SEQ ID
18
downstream




NO: 1388)





CEP290-579
+
AGUUUUUAAGGCGGGGAGUCACAU
24
downstream




(SEQ ID NO: 1389)





CEP290-580

ACAUCCUCCUUACUGCCAC (SEQ ID
19
downstream




NO: 1390)





CEP290-581
+
AGUCACAGGGUAGGAUUCAUGUU
23
downstream




(SEQ ID NO: 1391)





CEP290-582
+
ACAGGGUAGGAUUCAUGUU (SEQ
19
downstream




ID NO: 1392)





CEP290-583

ACAGAGUUCAAGCUAAUACAU
21
downstream




(SEQ ID NO: 1393)





CEP290-584

AGAGUUCAAGCUAAUACAU (SEQ ID
19
downstream




NO: 1394)





CEP290-585
+
AUAAGAUGCAGAACUAGUGUAGAC
24
downstream




(SEQ ID NO: 1395)





CEP290-586
+
AAGAUGCAGAACUAGUGUAGAC
22
downstream




(SEQ ID NO: 1396)





CEP290-587
+
AGAUGCAGAACUAGUGUAGAC
21
downstream




(SEQ ID NO: 1397)





CEP290-588
+
AUGCAGAACUAGUGUAGAC (SEQ ID
19
downstream




NO: 1398)





CEP290-589

AGUAUCUCCUGUUUGGCA (SEQ ID
18
downstream




NO: 1399)





CEP290-590

ACGAAAAUCAGAUUUCAUGUGUG
23
downstream




(SEQ ID NO: 1400)





CEP290-591

AAAAUCAGAUUUCAUGUGUG (SEQ
20
downstream




ID NO: 1401)





CEP290-592

AAAUCAGAUUUCAUGUGUG (SEQ
19
downstream




ID NO: 1402)





CEP290-593

AAUCAGAUUUCAUGUGUG (SEQ ID
18
downstream




NO: 1403)





CEP290-594

ACAAGAAUGAUCAUUCUAAAC
21
downstream




(SEQ ID NO: 1404)





CEP290-595

AAGAAUGAUCAUUCUAAAC (SEQ ID
19
downstream




NO: 1405)





CEP290-596

AGAAUGAUCAUUCUAAAC (SEQ ID
18
downstream




NO: 1406)





CEP290-597
+
AGGCGGGGAGUCACAUGGGAGUCA
24
downstream




(SEQ ID NO: 1407)





CEP290-598
+
AGCUUUUGACAGUUUUUAAGGCG
23
downstream




(SEQ ID NO: 1408)





CEP290-599
+
AAUGAUCAUUCUUGUGGCAGUAAG
24
downstream




(SEQ ID NO: 1409)





CEP290-600
+
AUGAUCAUUCUUGUGGCAGUAAG
23
downstream




(SEQ ID NO: 1410)





CEP290-601
+
AUCAUUCUUGUGGCAGUAAG (SEQ
20
downstream




ID NO: 833)





CEP290-602

AUCUAGAGCAAGAGAUGAACUAG
23
downstream




(SEQ ID NO: 1412)





CEP290-603

AGAGCAAGAGAUGAACUAG (SEQ
19
downstream




ID NO: 1413)





CEP290-604
+
AAUGCCUGAACAAGUUUUGAAAC
23
downstream




(SEQ ID NO: 1414)





CEP290-605
+
AUGCCUGAACAAGUUUUGAAAC
22
downstream




(SEQ ID NO: 1415)





CEP290-606

AGAUUGAGGUAGAAUCAAGAA
21
downstream




(SEQ ID NO: 1416)





CEP290-607

AUUGAGGUAGAAUCAAGAA (SEQ
19
downstream




ID NO: 1417)





CEP290-608
+
AUGUAAGACUGGAGAUAGAGAC
22
downstream




(SEQ ID NO: 1418)





CEP290-609
+
AAGACUGGAGAUAGAGAC (SEQ ID
18
downstream




NO: 1419)





CEP290-610
+
AGUCACAUGGGAGUCACAGGG
21
downstream




(SEQ ID NO: 1420)





CEP290-611

ACAUAUCUGUCUUCCUUAA (SEQ ID
19
downstream




NO: 1421)





CEP290-612

AAAUCAGAUUUCAUGUGUGAAGAA
24
downstream




(SEQ ID NO: 1422)





CEP290-613

AAUCAGAUUUCAUGUGUGAAGAA
23
downstream




(SEQ ID NO: 1423)





CEP290-614

AUCAGAUUUCAUGUGUGAAGAA
22
downstream




(SEQ ID NO: 1424)





CEP290-615

AGAUUUCAUGUGUGAAGAA (SEQ
19
downstream




ID NO: 1425)





CEP290-616
+
AAAUAAAACUAAGACACUGCCAAU
24
downstream




(SEQ ID NO: 1025)





CEP290-617
+
AAUAAAACUAAGACACUGCCAAU
23
downstream




(SEQ ID NO: 1026)





CEP290-618
+
AUAAAACUAAGACACUGCCAAU
22
downstream




(SEQ ID NO: 1027)





CEP290-619
+
AAAACUAAGACACUGCCAAU (SEQ
20
downstream




ID NO: 610)





CEP290-620
+
AAACUAAGACACUGCCAAU (SEQ ID
19
downstream




NO: 1028)





CEP290-621
+
AACUAAGACACUGCCAAU (SEQ ID
18
downstream




NO: 1029)





CEP290-622

AACUAUUUAAUUUGUUUCUGUGUG
24
downstream




(SEQ ID NO: 1431)





CEP290-623

ACUAUUUAAUUUGUUUCUGUGUG
23
downstream




(SEQ ID NO: 1432)





CEP290-624

AUUUAAUUUGUUUCUGUGUG (SEQ
20
downstream




ID NO: 840)





CEP290-625

CUGUCAAAAGCUACCGGUUACCUG
24
downstream




(SEQ ID NO: 1434)





CEP290-626

CAAAAGCUACCGGUUACCUG (SEQ
20
downstream




ID NO: 755)





CEP290-627

CUUACAUCCUCCUUACUGCCAC
22
downstream




(SEQ ID NO: 1436)





CEP290-628

CAUCCUCCUUACUGCCAC (SEQ ID
18
downstream




NO: 1437)





CEP290-629
+
CACAGGGUAGGAUUCAUGUU (SEQ
20
downstream




ID NO: 846)





CEP290-630
+
CAGGGUAGGAUUCAUGUU (SEQ ID
18
downstream




NO: 1439)





CEP290-631

CACAGAGUUCAAGCUAAUACAU
22
downstream




(SEQ ID NO: 1440)





CEP290-632

CAGAGUUCAAGCUAAUACAU (SEQ
20
downstream




ID NO: 848)





CEP290-633

CACGAAAAUCAGAUUUCAUGUGUG
24
downstream




(SEQ ID NO: 1442)





CEP290-634

CGAAAAUCAGAUUUCAUGUGUG
22
downstream




(SEQ ID NO: 1443)





CEP290-635

CCACAAGAAUGAUCAUUCUAAAC
23
downstream




(SEQ ID NO: 1444)





CEP290-636

CACAAGAAUGAUCAUUCUAAAC
22
downstream




(SEQ ID NO: 1445)





CEP290-637

CAAGAAUGAUCAUUCUAAAC (SEQ
20
downstream




ID NO: 844)





CEP290-638
+
CGGGGAGUCACAUGGGAGUCA
21
downstream




(SEQ ID NO: 1447)





CEP290-639
+
CUUUUGACAGUUUUUAAGGCG
21
downstream




(SEQ ID NO: 1448)





CEP290-640
+
CAUUCUUGUGGCAGUAAG (SEQ ID
18
downstream




NO: 1449)





CEP290-641

CAUCUAGAGCAAGAGAUGAACUAG
24
downstream




(SEQ ID NO: 1450)





CEP290-642

CUAGAGCAAGAGAUGAACUAG
21
downstream




(SEQ ID NO: 1451)





CEP290-643
+
CCUGAACAAGUUUUGAAAC (SEQ ID
19
downstream




NO: 1452)





CEP290-644
+
CUGAACAAGUUUUGAAAC (SEQ ID
18
downstream




NO: 1453)





CEP290-645

CUCUCUUCCAGUUGUUUUGCUCA
23
downstream




(SEQ ID NO: 1454)





CEP290-646

CUCUUCCAGUUGUUUUGCUCA (SEQ
21
downstream




ID NO: 1455)





CEP290-647

CUUCCAGUUGUUUUGCUCA (SEQ ID
19
downstream




NO: 1456)





CEP290-648
+
CACAUGGGAGUCACAGGG (SEQ ID
18
downstream




NO: 1457)





CEP290-649

CAUAUCUGUCUUCCUUAA (SEQ ID
18
downstream




NO: 1458)





CEP290-650

CAGAUUUCAUGUGUGAAGAA (SEQ
20
downstream




ID NO: 1124)





CEP290-651

CUAUUUAAUUUGUUUCUGUGUG
22
downstream




(SEQ ID NO: 1460)





CEP290-652

UGUCAAAAGCUACCGGUUACCUG
23
downstream




(SEQ ID NO: 1461)





CEP290-653

UCAAAAGCUACCGGUUACCUG (SEQ
21
downstream




ID NO: 1462)





CEP290-654
+
UUUUUAAGGCGGGGAGUCACAU
22
downstream




(SEQ ID NO: 1463)





CEP290-655
+
UUUUAAGGCGGGGAGUCACAU
21
downstream




(SEQ ID NO: 1464)





CEP290-656
+
UUUAAGGCGGGGAGUCACAU (SEQ
20
downstream




ID NO: 619)





CEP290-657
+
UUAAGGCGGGGAGUCACAU (SEQ ID
19
downstream




NO: 1466)





CEP290-658
+
UAAGGCGGGGAGUCACAU (SEQ ID
18
downstream




NO: 1467)





CEP290-659

UCUUACAUCCUCCUUACUGCCAC
23
downstream




(SEQ ID NO: 1468)





CEP290-660

UUACAUCCUCCUUACUGCCAC (SEQ
21
downstream




ID NO: 1469)





CEP290-661

UACAUCCUCCUUACUGCCAC (SEQ
20
downstream




ID NO: 875)





CEP290-662
+
UCACAGGGUAGGAUUCAUGUU
21
downstream




(SEQ ID NO: 1471)





CEP290-663
+
UAAGAUGCAGAACUAGUGUAGAC
23
downstream




(SEQ ID NO: 1472)





CEP290-664
+
UGCAGAACUAGUGUAGAC (SEQ ID
18
downstream




NO: 1473)





CEP290-665

UGUUGAGUAUCUCCUGUUUGGCA
23
downstream




(SEQ ID NO: 1474)





CEP290-666

UUGAGUAUCUCCUGUUUGGCA
21
downstream




(SEQ ID NO: 1475)





CEP290-667

UGAGUAUCUCCUGUUUGGCA (SEQ
20
downstream




ID NO: 895)





CEP290-668
+
UAGCUUUUGACAGUUUUUAAGGCG
24
downstream




(SEQ ID NO: 1477)





CEP290-669
+
UUUUGACAGUUUUUAAGGCG (SEQ
20
downstream




ID NO: 681)





CEP290-670
+
UUUGACAGUUUUUAAGGCG (SEQ
19
downstream




ID NO: 1479)





CEP290-671
+
UUGACAGUUUUUAAGGCG (SEQ ID
18
downstream




NO: 1480)





CEP290-672
+
UGAUCAUUCUUGUGGCAGUAAG
22
downstream




(SEQ ID NO: 1481)





CEP290-673
+
UCAUUCUUGUGGCAGUAAG (SEQ ID
19
downstream




NO: 1482)





CEP290-674

UCUAGAGCAAGAGAUGAACUAG
22
downstream




(SEQ ID NO: 1483)





CEP290-675

UAGAGCAAGAGAUGAACUAG (SEQ
20
downstream




ID NO: 878)





CEP290-676
+
UAAUGCCUGAACAAGUUUUGAAAC
24
downstream




(SEQ ID NO: 1485)





CEP290-677
+
UGCCUGAACAAGUUUUGAAAC
21
downstream




(SEQ ID NO: 1486)





CEP290-678

UGUAGAUUGAGGUAGAAUCAAGAA
24
downstream




(SEQ ID NO: 1487)





CEP290-679

UAGAUUGAGGUAGAAUCAAGAA
22
downstream




(SEQ ID NO: 1488)





CEP290-680

UUGAGGUAGAAUCAAGAA (SEQ ID
18
downstream




NO: 1489)





CEP290-681
+
UGUAAGACUGGAGAUAGAGAC
21
downstream




(SEQ ID NO: 1490)





CEP290-682
+
UAAGACUGGAGAUAGAGAC (SEQ
19
downstream




ID NO: 1491)





CEP290-683

UCUCUCUUCCAGUUGUUUUGCUCA
24
downstream




(SEQ ID NO: 1492)





CEP290-684

UCUCUUCCAGUUGUUUUGCUCA
22
downstream




(SEQ ID NO: 1493)





CEP290-685

UCUUCCAGUUGUUUUGCUCA (SEQ
20
downstream




ID NO: 893)





CEP290-686

UUCCAGUUGUUUUGCUCA (SEQ ID
18
downstream




NO: 1495)





CEP290-687
+
UCACAUGGGAGUCACAGGG (SEQ ID
19
downstream




NO: 1496)





CEP290-688

UGUUUACAUAUCUGUCUUCCUUAA
24
downstream




(SEQ ID NO: 1497)





CEP290-689

UUUACAUAUCUGUCUUCCUUAA
22
downstream




(SEQ ID NO: 1498)





CEP290-690

UUACAUAUCUGUCUUCCUUAA
21
downstream




(SEQ ID NO: 1499)





CEP290-691

UACAUAUCUGUCUUCCUUAA (SEQ
20
downstream




ID NO: 689)





CEP290-692

UCAGAUUUCAUGUGUGAAGAA
21
downstream




(SEQ ID NO: 1501)





CEP290-693
+
UAAAACUAAGACACUGCCAAU
21
downstream




(SEQ ID NO: 1035)





CEP290-694

UAUUUAAUUUGUUUCUGUGUG
21
downstream




(SEQ ID NO: 1503)





CEP290-695

UUUAAUUUGUUUCUGUGUG (SEQ
19
downstream




ID NO: 1504)





CEP290-696

UUAAUUUGUUUCUGUGUG (SEQ ID
18
downstream




NO: 1505)









Table 9C provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the third tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, start with G and PAM is NNGRRT. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 9C








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-697

GUAGAAUAAAUUUAUUUAAUG
21
upstream




(SEQ ID NO: 1506)





CEP290-495

GAAUAAAUUUAUUUAAUG (SEQ
18
upstream




ID NO: 1507)





CEP290-698

GAGAAAAAGGAGCAUGAAACAG
23
upstream




G (SEQ ID NO: 1508)





CEP290-699

GAAAAAGGAGCAUGAAACAGG
21
upstream




(SEQ ID NO: 1509)





CEP290-700

GUAGAAUAAAAAAUAAAAAAAC
22
upstream




(SEQ ID NO: 1510)





CEP290-701

GAAUAAAAAAUAAAAAAAC
19
upstream




(SEQ ID NO: 1511)





CEP290-702

GAAUAAAAAAUAAAAAAACUAG
24
upstream




AG (SEQ ID NO: 1512)





CEP290-508

GAAAUAGAUGUAGAUUGAGG
20
downstream




(SEQ ID NO: 1513)





CEP290-703

GAUAAUAAGGAAAUACAAAAA
21
downstream




(SEQ ID NO: 1514)





CEP290-704

GUGUUGCCCAGGCUGGAGUGCA
23
downstream




G (SEQ ID NO: 1515)





CEP290-705

GUUGCCCAGGCUGGAGUGCAG
21
downstream




(SEQ ID NO: 1516)





CEP290-706

GCCCAGGCUGGAGUGCAG (SEQ
18
downstream




ID NO: 1517)





CEP290-707

GUUGUUUUUUUUUUUGAAA
19
downstream




(SEQ ID NO: 1518)





CEP290-708

GAGUCUCACUGUGUUGCCCAGG
23
downstream




C (SEQ ID NO: 1519)





CEP290-709

GUCUCACUGUGUUGCCCAGGC
21
downstream




(SEQ ID NO: 1520)









Table 9D provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the fourth tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation and PAM is NNGRRT. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 9D








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-710

AAUGUAGAAUAAAUUUAUUUAA
24
upstream




UG (SEQ ID NO: 1521)





CEP290-711

AUGUAGAAUAAAUUUAUUUAAU
23
upstream




G (SEQ ID NO: 1522)





CEP290-712

AGAAUAAAUUUAUUUAAUG (SEQ
19
upstream




ID NO: 1523)





CEP290-713
+
AUUUAUUCUACAAUAAAAAAUGA
24
upstream




U (SEQ ID NO: 1524)





CEP290-714
+
AUUCUACAAUAAAAAAUGAU
20
upstream




(SEQ ID NO: 1525)





CEP290-715

AGAGAAAAAGGAGCAUGAAACAG
24
upstream




G (SEQ ID NO: 1526)





CEP290-716

AGAAAAAGGAGCAUGAAACAGG
22
upstream




(SEQ ID NO: 1527)





CEP290-717

AAAAAGGAGCAUGAAACAGG
20
upstream




(SEQ ID NO: 1528)





CEP290-718

AAAAGGAGCAUGAAACAGG (SEQ
19
upstream




ID NO: 1529)





CEP290-719

AAAGGAGCAUGAAACAGG (SEQ
18
upstream




ID NO: 1530)





CEP290-720
+
ACAAUAAAAAAUGAUGAGAAUU
24
upstream




UA (SEQ ID NO: 1531)





CEP290-721
+
AAUAAAAAAUGAUGAGAAUUUA
22
upstream




(SEQ ID NO: 1532)





CEP290-722
+
AUAAAAAAUGAUGAGAAUUUA
21
upstream




(SEQ ID NO: 1533)





CEP290-723
+
AAAAAAUGAUGAGAAUUUA (SEQ
19
upstream




ID NO: 1534)





CEP290-724
+
AAAAAUGAUGAGAAUUUA (SEQ
18
upstream




ID NO: 1535)





CEP290-725

AUGUAGAAUAAAAAAUAAAAAA
24
upstream




AC (SEQ ID NO: 1536)





CEP290-726

AGAAUAAAAAAUAAAAAAAC
20
upstream




(SEQ ID NO: 1537)





CEP290-727

AAUAAAAAAUAAAAAAAC (SEQ
18
upstream




ID NO: 1538)





CEP290-728

AAUAAAAAAUAAAAAAACUAGA
23
upstream




G (SEQ ID NO: 1539)





CEP290-729

AUAAAAAAUAAAAAAACUAGAG
22
upstream




(SEQ ID NO: 1540)





CEP290-730

AAAAAAUAAAAAAACUAGAG
20
upstream




(SEQ ID NO: 1541)





CEP290-731

AAAAAUAAAAAAACUAGAG (SEQ
19
upstream




ID NO: 1542)





CEP290-732

AAAAUAAAAAAACUAGAG (SEQ
18
upstream




ID NO: 1543)





CEP290-733
+
CAAUAAAAAAUGAUGAGAAUUU
23
upstream




A (SEQ ID NO: 1544)





CEP290-734

UGUAGAAUAAAUUUAUUUAAUG
22
upstream




(SEQ ID NO: 1545)





CEP290-735

UAGAAUAAAUUUAUUUAAUG
20
upstream




(SEQ ID NO: 1546)





CEP290-736
+
UUUAUUCUACAAUAAAAAAUGAU
23
upstream




(SEQ ID NO: 1547)





CEP290-737
+
UUAUUCUACAAUAAAAAAUGAU
22
upstream




(SEQ ID NO: 1548)





CEP290-738
+
UAUUCUACAAUAAAAAAUGAU
21
upstream




(SEQ ID NO: 1549)





CEP290-739
+
UUCUACAAUAAAAAAUGAU (SEQ
19
upstream




ID NO: 1550)





CEP290-740
+
UCUACAAUAAAAAAUGAU (SEQ
18
upstream




ID NO: 1551)





CEP290-741
+
UAAAAAAUGAUGAGAAUUUA
20
upstream




(SEQ ID NO: 1552)





CEP290-742

UGUAGAAUAAAAAAUAAAAAAA
23
upstream




C (SEQ ID NO: 1553)





CEP290-743

UAGAAUAAAAAAUAAAAAAAC
21
upstream




(SEQ ID NO: 1554)





CEP290-744

UAAAAAAUAAAAAAACUAGAG
21
upstream




(SEQ ID NO: 1555)





CEP290-745

AAAAGAAAUAGAUGUAGAUUGA
24
downstream




GG (SEQ ID NO: 1556)





CEP290-746

AAAGAAAUAGAUGUAGAUUGAG
23
downstream




G (SEQ ID NO: 1557)





CEP290-747

AAGAAAUAGAUGUAGAUUGAGG
22
downstream




(SEQ ID NO: 1558)





CEP290-748

AGAAAUAGAUGUAGAUUGAGG
21
downstream




(SEQ ID NO: 1559)





CEP290-749

AAAUAGAUGUAGAUUGAGG (SEQ
19
downstream




ID NO: 1560)





CEP290-750

AAUAGAUGUAGAUUGAGG (SEQ
18
downstream




ID NO: 1561)





CEP290-751

AUAAUAAGGAAAUACAAAAACUG
24
downstream




G (SEQ ID NO: 1562)





CEP290-752

AAUAAGGAAAUACAAAAACUGG
22
downstream




(SEQ ID NO: 1563)





CEP290-753

AUAAGGAAAUACAAAAACUGG
21
downstream




(SEQ ID NO: 1564)





CEP290-754

AAGGAAAUACAAAAACUGG (SEQ
19
downstream




ID NO: 1565)





CEP290-755

AGGAAAUACAAAAACUGG (SEQ
18
downstream




ID NO: 1566)





CEP290-756

AUAGAUAAUAAGGAAAUACAAA
24
downstream




AA (SEQ ID NO: 1567)





CEP290-757

AGAUAAUAAGGAAAUACAAAAA
22
downstream




(SEQ ID NO: 1568)





CEP290-758

AUAAUAAGGAAAUACAAAAA
20
downstream




(SEQ ID NO: 1569)





CEP290-759

AAUAAGGAAAUACAAAAA (SEQ
18
downstream




ID NO: 1570)





CEP290-760
+
AAAAAAAAAAACAACAAAAA
20
downstream




(SEQ ID NO: 1571)





CEP290-761
+
AAAAAAAAAACAACAAAAA (SEQ
19
downstream




ID NO: 1572)





CEP290-762
+
AAAAAAAAACAACAAAAA (SEQ
18
downstream




ID NO: 1573)





CEP290-763

AGAGUCUCACUGUGUUGCCCAGG
24
downstream




C (SEQ ID NO: 1574)





CEP290-764

AGUCUCACUGUGUUGCCCAGGC
22
downstream




(SEQ ID NO: 1575)





CEP290-765
+
CAAAAAAAAAAACAACAAAAA
21
downstream




(SEQ ID NO: 1576)





CEP290-766

CUCACUGUGUUGCCCAGGC (SEQ
19
downstream




ID NO: 1577)





CEP290-767

UAAUAAGGAAAUACAAAAACUGG
23
downstream




(SEQ ID NO: 1578)





CEP290-768

UAAGGAAAUACAAAAACUGG
20
downstream




(SEQ ID NO: 1579)





CEP290-769

UAGAUAAUAAGGAAAUACAAAA
23
downstream




A (SEQ ID NO: 1580)





CEP290-770

UAAUAAGGAAAUACAAAAA (SEQ
19
downstream




ID NO: 1581)





CEP290-771

UGUGUUGCCCAGGCUGGAGUGCA
24
downstream




G (SEQ ID NO: 1582)





CEP290-772

UGUUGCCCAGGCUGGAGUGCAG
22
downstream




(SEQ ID NO: 1583)





CEP290-773

UUGCCCAGGCUGGAGUGCAG
20
downstream




(SEQ ID NO: 1189)





CEP290-774

UGCCCAGGCUGGAGUGCAG (SEQ
19
downstream




ID NO: 1585)





CEP290-775
+
UUUCAAAAAAAAAAACAACAAAA
24
downstream




A (SEQ ID NO: 1586)





CEP290-776
+
UUCAAAAAAAAAAACAACAAAAA
23
downstream




(SEQ ID NO: 1587)





CEP290-777
+
UCAAAAAAAAAAACAACAAAAA
22
downstream




(SEQ ID NO: 1588)





CEP290-778

UUUUUGUUGUUUUUUUUUUUGA
24
downstream




AA (SEQ ID NO: 1589)





CEP290-779

UUUUGUUGUUUUUUUUUUUGAA
23
downstream




A (SEQ ID NO: 1590)





CEP290-780

UUUGUUGUUUUUUUUUUUGAAA
22
downstream




(SEQ ID NO: 1591)





CEP290-781

UUGUUGUUUUUUUUUUUGAAA
21
downstream




(SEQ ID NO: 1592)





CEP290-782

UGUUGUUUUUUUUUUUGAAA
20
downstream




(SEQ ID NO: 1593)





CEP290-783

UUGUUUUUUUUUUUGAAA (SEQ
18
downstream




ID NO: 1594)





CEP290-784

UCUCACUGUGUUGCCCAGGC (SEQ
20
downstream




ID NO: 1182)





CEP290-785

UCACUGUGUUGCCCAGGC (SEQ ID
18
downstream




NO: 1596)









Table 9E provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the fifth tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation and PAM is NNGRRV. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 9E








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-786
+
ACUGUUGGCUACAUCCAUUCC (SEQ ID
21
upstream




NO: 1597)





CEP290-787
+
AAUUUACAGAGUGCAUCCAUGGUC
24
upstream




(SEQ ID NO: 1598)





CEP290-788
+
AUUUACAGAGUGCAUCCAUGGUC (SEQ
23
upstream




ID NO: 1599)





CEP290-789
+
ACAGAGUGCAUCCAUGGUC (SEQ ID
19
upstream




NO: 1600)





CEP290-790

AGCAUUAGAAAGUCCUAGGC (SEQ ID
20
upstream




NO: 823)





CEP290-791

AUGGUCCCUGGCUUUUGUUCC (SEQ ID
21
upstream




NO: 1602)





CEP290-792

AUAGAGACACAUUCAGUAA (SEQ ID
19
upstream




NO: 1603)





CEP290-793

AGCUCAAAAGCUUUUGCUGGCUCA
24
upstream




(SEQ ID NO: 1604)





CEP290-794

AAAAGCUUUUGCUGGCUCA (SEQ ID
19
upstream




NO: 1605)





CEP290-795

AAAGCUUUUGCUGGCUCA (SEQ ID NO:
18
upstream




1606)





CEP290-796
+
AAUCCAUAAGCCUCUAUUUCUGAU
24
upstream




(SEQ ID NO: 1607)





CEP290-797
+
AUCCAUAAGCCUCUAUUUCUGAU (SEQ
23
upstream




ID NO: 1608)





CEP290-798
+
AUAAGCCUCUAUUUCUGAU (SEQ ID
19
upstream




NO: 1609)





CEP290-799
+
AGCUAAAUCAUGCAAGUGACCUA (SEQ
23
upstream




ID NO: 1610)





CEP290-800
+
AAAUCAUGCAAGUGACCUA (SEQ ID
19
upstream




NO: 1611)





CEP290-801
+
AAUCAUGCAAGUGACCUA (SEQ ID NO:
18
upstream




1612)





CEP290-802

AAACCUCUUUUAACCAGACAUCU (SEQ
23
upstream




ID NO: 1613)





CEP290-803

AACCUCUUUUAACCAGACAUCU (SEQ
22
upstream




ID NO: 1614)





CEP290-804

ACCUCUUUUAACCAGACAUCU (SEQ ID
21
upstream




NO: 1615)





CEP290-805
+
AGUUUGUUCUGGGUACAGGGGUAA
24
upstream




(SEQ ID NO: 1616)





CEP290-806
+
AUGACUCAUAAUUUAGUAGGAAUC
24
upstream




(SEQ ID NO: 1617)





CEP290-807
+
ACUCAUAAUUUAGUAGGAAUC (SEQ ID
21
upstream




NO: 1618)





CEP290-808

AAUGGAUGUAGCCAACAGUAG (SEQ ID
21
upstream




NO: 1619)





CEP290-809

AUGGAUGUAGCCAACAGUAG (SEQ ID
20
upstream




NO: 1620)





CEP290-810
+
AUCACCUCUCUUUGGCAAAAGCAG
24
upstream




(SEQ ID NO: 1621)





CEP290-811
+
ACCUCUCUUUGGCAAAAGCAG (SEQ ID
21
upstream




NO: 1622)





CEP290-812

AGGUAGAAUAUUGUAAUCAAAGG
23
upstream




(SEQ ID NO: 1623)





CEP290-813

AGAAUAUUGUAAUCAAAGG (SEQ ID
19
upstream




NO: 1624)





CEP290-814
+
AAGGAACAAAAGCCAGGGACC (SEQ ID
21
upstream




NO: 1625)





CEP290-815
+
AGGAACAAAAGCCAGGGACC (SEQ ID
20
upstream




NO: 1626)





CEP290-816
+
ACAUCCAUUCCAAGGAACAAAAGC
24
upstream




(SEQ ID NO: 1627)





CEP290-817
+
AUCCAUUCCAAGGAACAAAAGC (SEQ
22
upstream




ID NO: 1628)





CEP290-818
+
AUUCCAAGGAACAAAAGC (SEQ ID NO:
18
upstream




1629)





CEP290-819
+
AGAAUUAGAUCUUAUUCUACUCCU
24
upstream




(SEQ ID NO: 1630)





CEP290-820
+
AAUUAGAUCUUAUUCUACUCCU (SEQ
22
upstream




ID NO: 1631)





CEP290-821
+
AUUAGAUCUUAUUCUACUCCU (SEQ ID
21
upstream




NO: 1632)





CEP290-822
+
AGAUCUUAUUCUACUCCU (SEQ ID NO:
18
upstream




1633)





CEP290-823

AUUUGUUCAUCUUCCUCAU (SEQ ID
19
upstream




NO: 1634)





CEP290-824

AGAGGUGAUUAUGUUACUUUUUA
23
upstream




(SEQ ID NO: 1635)





CEP290-825

AGGUGAUUAUGUUACUUUUUA (SEQ
21
upstream




ID NO: 1636)





CEP290-826

AACCUCUUUUAACCAGACAUCUAA
24
upstream




(SEQ ID NO: 1637)





CEP290-827

ACCUCUUUUAACCAGACAUCUAA (SEQ
23
upstream




ID NO: 1638)





CEP290-828
+
AUAAACAUGACUCAUAAUUUAG (SEQ
22
upstream




ID NO: 1639)





CEP290-829
+
AAACAUGACUCAUAAUUUAG (SEQ ID
20
upstream




NO: 805)





CEP290-830
+
AACAUGACUCAUAAUUUAG (SEQ ID
19
upstream




NO: 1641)





CEP290-831
+
ACAUGACUCAUAAUUUAG (SEQ ID NO:
18
upstream




1642)





CEP290-832

ACAGGUAGAAUAUUGUAAUCAAAG
24
upstream




(SEQ ID NO: 1643)





CEP290-833

AGGUAGAAUAUUGUAAUCAAAG (SEQ
22
upstream




ID NO: 1644)





CEP290-834

AGAAUAUUGUAAUCAAAG (SEQ ID NO:
18
upstream




1645)





CEP290-835
+
AUAGUUUGUUCUGGGUACAGGGGU
24
upstream




(SEQ ID NO: 1646)





CEP290-836
+
AGUUUGUUCUGGGUACAGGGGU (SEQ
22
upstream




ID NO: 1647)





CEP290-837

AGACAUCUAAGAGAAAAAGGAGC
23
upstream




(SEQ ID NO: 1648)





CEP290-838

ACAUCUAAGAGAAAAAGGAGC (SEQ ID
21
upstream




NO: 1649)





CEP290-839

AUCUAAGAGAAAAAGGAGC (SEQ ID
19
upstream




NO: 1650)





CEP290-840
+
AGAGGAUAGGACAGAGGACA (SEQ ID
20
upstream




NO: 735)





CEP290-841
+
AGGAUAGGACAGAGGACA (SEQ ID NO:
18
upstream




1652)





CEP290-842
+
AGGAAAGAUGAAAAAUACUCUU (SEQ
22
upstream




ID NO: 1653)





CEP290-843
+
AAAGAUGAAAAAUACUCUU (SEQ ID
19
upstream




NO: 1654)





CEP290-844
+
AAGAUGAAAAAUACUCUU (SEQ ID NO:
18
upstream




1655)





CEP290-845
+
AGGAAAGAUGAAAAAUACUCUUU
23
upstream




(SEQ ID NO: 1656)





CEP290-846
+
AAAGAUGAAAAAUACUCUUU (SEQ ID
20
upstream




NO: 737)





CEP290-847
+
AAGAUGAAAAAUACUCUUU (SEQ ID
19
upstream




NO: 1658)





CEP290-848
+
AGAUGAAAAAUACUCUUU (SEQ ID NO:
18
upstream




1659)





CEP290-849
+
AGGAAAGAUGAAAAAUACUCU (SEQ ID
21
upstream




NO: 1660)





CEP290-850
+
AAAGAUGAAAAAUACUCU (SEQ ID NO:
18
upstream




1661)





CEP290-851
+
AUAGGACAGAGGACAUGGAGAA (SEQ
22
upstream




ID NO: 1662)





CEP290-852
+
AGGACAGAGGACAUGGAGAA (SEQ ID
20
upstream




NO: 736)





CEP290-853
+
AGGAUAGGACAGAGGACAUGGAGA
24
upstream




(SEQ ID NO: 1664)





CEP290-854
+
AUAGGACAGAGGACAUGGAGA (SEQ ID
21
upstream




NO: 1665)





CEP290-855
+
AGGACAGAGGACAUGGAGA (SEQ ID
19
upstream




NO: 1666)





CEP290-856
+
AAGGAACAAAAGCCAGGGACCAU (SEQ
23
upstream




ID NO: 1667)





CEP290-857
+
AGGAACAAAAGCCAGGGACCAU (SEQ
22
upstream




ID NO: 1668)





CEP290-858
+
AACAAAAGCCAGGGACCAU (SEQ ID
19
upstream




NO: 1669)





CEP290-859
+
ACAAAAGCCAGGGACCAU (SEQ ID NO:
18
upstream




1670)





CEP290-860
+
ACAUUUAUUCUACAAUAAAAAAUG
24
upstream




(SEQ ID NO: 1671)





CEP290-861
+
AUUUAUUCUACAAUAAAAAAUG (SEQ
22
upstream




ID NO: 1672)





CEP290-862
+
AUUCUACAAUAAAAAAUG (SEQ ID NO:
18
upstream




1673)





CEP290-863
+
AUUGUGUGUGUGUGUGUGUGUUAU
24
upstream




(SEQ ID NO: 1674)





CEP290-864
+
CUACUGUUGGCUACAUCCAUUCC (SEQ
23
upstream




ID NO: 1675)





CEP290-865
+
CUGUUGGCUACAUCCAUUCC (SEQ ID
20
upstream




NO: 1676)





CEP290-866
+
CAGAGUGCAUCCAUGGUC (SEQ ID NO:
18
upstream




1677)





CEP290-867

CUCCAGCAUUAGAAAGUCCUAGGC
24
upstream




(SEQ ID NO: 1678)





CEP290-868

CCAGCAUUAGAAAGUCCUAGGC (SEQ
22
upstream




ID NO: 1679)





CEP290-869

CAGCAUUAGAAAGUCCUAGGC (SEQ ID
21
upstream




NO: 1680)





CEP290-870

CAUUAGAAAGUCCUAGGC (SEQ ID NO:
18
upstream




1681)





CEP290-871

CCCAUGGUCCCUGGCUUUUGUUCC
24
upstream




(SEQ ID NO: 1682)





CEP290-872

CCAUGGUCCCUGGCUUUUGUUCC (SEQ
23
upstream




ID NO: 1683)





CEP290-873

CAUGGUCCCUGGCUUUUGUUCC (SEQ
22
upstream




ID NO: 1684)





CEP290-874

CUCAUAGAGACACAUUCAGUAA (SEQ
22
upstream




ID NO: 1685)





CEP290-875

CAUAGAGACACAUUCAGUAA (SEQ ID
20
upstream




NO: 750)





CEP290-876

CUCAAAAGCUUUUGCUGGCUCA (SEQ
22
upstream




ID NO: 1687)





CEP290-877

CAAAAGCUUUUGCUGGCUCA (SEQ ID
20
upstream




NO: 762)





CEP290-878
+
CCAUAAGCCUCUAUUUCUGAU (SEQ ID
21
upstream




NO: 1689)





CEP290-879
+
CAUAAGCCUCUAUUUCUGAU (SEQ ID
20
upstream




NO: 851)





CEP290-880
+
CAGCUAAAUCAUGCAAGUGACCUA
24
upstream




(SEQ ID NO: 1691)





CEP290-881
+
CUAAAUCAUGCAAGUGACCUA (SEQ ID
21
upstream




NO: 1692)





CEP290-882

CAAACCUCUUUUAACCAGACAUCU
24
upstream




(SEQ ID NO: 1693)





CEP290-883

CCUCUUUUAACCAGACAUCU (SEQ ID
20
upstream




NO: 1694)





CEP290-884

CUCUUUUAACCAGACAUCU (SEQ ID
19
upstream




NO: 1695)





CEP290-885
+
CUCAUAAUUUAGUAGGAAUC (SEQ ID
20
upstream




NO: 864)





CEP290-886
+
CAUAAUUUAGUAGGAAUC (SEQ ID NO:
18
upstream




1697)





CEP290-887
+
CACCUCUCUUUGGCAAAAGCAG (SEQ
22
upstream




ID NO: 1698)





CEP290-888
+
CCUCUCUUUGGCAAAAGCAG (SEQ ID
20
upstream




NO: 859)





CEP290-889
+
CUCUCUUUGGCAAAAGCAG (SEQ ID
19
upstream




NO: 1700)





CEP290-890

CAGGUAGAAUAUUGUAAUCAAAGG
24
upstream




(SEQ ID NO: 1701)





CEP290-891
+
CCAAGGAACAAAAGCCAGGGACC (SEQ
23
upstream




ID NO: 1702)





CEP290-892
+
CAAGGAACAAAAGCCAGGGACC (SEQ
22
upstream




ID NO: 1703)





CEP290-893
+
CAUCCAUUCCAAGGAACAAAAGC (SEQ
23
upstream




ID NO: 1704)





CEP290-894
+
CCAUUCCAAGGAACAAAAGC (SEQ ID
20
upstream




NO: 1705)





CEP290-895
+
CAUUCCAAGGAACAAAAGC (SEQ ID
19
upstream




NO: 1706)





CEP290-896
+
CUCUUGCCUAGGACUUUCUAAUGC
24
upstream




(SEQ ID NO: 1707)





CEP290-897
+
CUUGCCUAGGACUUUCUAAUGC (SEQ
22
upstream




ID NO: 1708)





CEP290-898
+
CCUAGGACUUUCUAAUGC (SEQ ID NO:
18
upstream




1709)





CEP290-899

CCUGAUUUGUUCAUCUUCCUCAU (SEQ
23
upstream




ID NO: 1710)





CEP290-900

CUGAUUUGUUCAUCUUCCUCAU (SEQ
22
upstream




ID NO: 1711)





CEP290-901

CCUCUUUUAACCAGACAUCUAA (SEQ
22
upstream




ID NO: 1712)





CEP290-902

CUCUUUUAACCAGACAUCUAA (SEQ ID
21
upstream




NO: 1713)





CEP290-903

CUUUUAACCAGACAUCUAA (SEQ ID
19
upstream




NO: 1714)





CEP290-904

CCUCUGUCCUAUCCUCUCCAGCAU
24
upstream




(SEQ ID NO: 1715)





CEP290-905

CUCUGUCCUAUCCUCUCCAGCAU (SEQ
23
upstream




ID NO: 1716)





CEP290-906

CUGUCCUAUCCUCUCCAGCAU (SEQ ID
21
upstream




NO: 1717)





CEP290-907

CAGGUAGAAUAUUGUAAUCAAAG
23
upstream




(SEQ ID NO: 1718)





CEP290-908
+
CUGGGUACAGGGGUAAGAGA (SEQ ID
20
upstream




NO: 1719)





CEP290-909

CUUUCUGCUGCUUUUGCCA (SEQ ID
19
upstream




NO: 1720)





CEP290-910

CAGACAUCUAAGAGAAAAAGGAGC
24
upstream




(SEQ ID NO: 1721)





CEP290-911

CAUCUAAGAGAAAAAGGAGC (SEQ ID
20
upstream




NO: 1722)





CEP290-912
+
CUGGAGAGGAUAGGACAGAGGACA
24
upstream




(SEQ ID NO: 1723)





CEP290-913
+
CAAGGAACAAAAGCCAGGGACCAU
24
upstream




(SEQ ID NO: 1724)





CEP290-914
+
CAUUUAUUCUACAAUAAAAAAUG
23
upstream




(SEQ ID NO: 1725)





CEP290-915
+
GCUACUGUUGGCUACAUCCAUUCC
24
upstream




(SEQ ID NO: 1726)





CEP290-916
+
GUUGGCUACAUCCAUUCC (SEQ ID NO:
18
upstream




1727)





CEP290-917

GCAUUAGAAAGUCCUAGGC (SEQ ID
19
upstream




NO: 1728)





CEP290-918

GGUCCCUGGCUUUUGUUCC (SEQ ID
19
upstream




NO: 1729)





CEP290-919

GUCCCUGGCUUUUGUUCC (SEQ ID NO:
18
upstream




1730)





CEP290-920

GGCUCAUAGAGACACAUUCAGUAA
24
upstream




(SEQ ID NO: 1731)





CEP290-921

GCUCAUAGAGACACAUUCAGUAA (SEQ
23
upstream




ID NO: 1732)





CEP290-922

GCUCAAAAGCUUUUGCUGGCUCA (SEQ
23
upstream




ID NO: 1733)





CEP290-923
+
GCUAAAUCAUGCAAGUGACCUA (SEQ
22
upstream




ID NO: 1734)





CEP290-924
+
GUUUGUUCUGGGUACAGGGGUAA
23
upstream




(SEQ ID NO: 1735)





CEP290-925
+
GUUCUGGGUACAGGGGUAA (SEQ ID
19
upstream




NO: 1736)





CEP290-926
+
GACUCAUAAUUUAGUAGGAAUC (SEQ
22
upstream




ID NO: 1737)





CEP290-927

GGAAUGGAUGUAGCCAACAGUAG
23
upstream




(SEQ ID NO: 1738)





CEP290-928

GAAUGGAUGUAGCCAACAGUAG (SEQ
22
upstream




ID NO: 1739)





CEP290-929

GGAUGUAGCCAACAGUAG (SEQ ID NO:
18
upstream




1740)





CEP290-930

GGUAGAAUAUUGUAAUCAAAGG (SEQ
22
upstream




ID NO: 1741)





CEP290-931

GUAGAAUAUUGUAAUCAAAGG (SEQ
21
upstream




ID NO: 1742)





CEP290-932

GAAUAUUGUAAUCAAAGG (SEQ ID NO:
18
upstream




1743)





CEP290-933
+
GGAACAAAAGCCAGGGACC (SEQ ID
19
upstream




NO: 1744)





CEP290-934
+
GAACAAAAGCCAGGGACC (SEQ ID NO:
18
upstream




1745)





CEP290-935
+
GAAUUAGAUCUUAUUCUACUCCU (SEQ
23
upstream




ID NO: 1746)





CEP290-936
+
GCCUAGGACUUUCUAAUGC (SEQ ID
19
upstream




NO: 1747)





CEP290-937

GAUUUGUUCAUCUUCCUCAU (SEQ ID
20
upstream




NO: 774)





CEP290-938

GAGAGGUGAUUAUGUUACUUUUUA
24
upstream




(SEQ ID NO: 1749)





CEP290-939

GAGGUGAUUAUGUUACUUUUUA (SEQ
22
upstream




ID NO: 1750)





CEP290-940

GGUGAUUAUGUUACUUUUUA (SEQ ID
20
upstream




NO: 780)





CEP290-941

GUGAUUAUGUUACUUUUUA (SEQ ID
19
upstream




NO: 1752)





CEP290-942

GUCCUAUCCUCUCCAGCAU (SEQ ID
19
upstream




NO: 1753)





CEP290-943
+
GAUAAACAUGACUCAUAAUUUAG
23
upstream




(SEQ ID NO: 1754)





CEP290-944

GGUAGAAUAUUGUAAUCAAAG (SEQ
21
upstream




ID NO: 1755)





CEP290-945

GUAGAAUAUUGUAAUCAAAG (SEQ ID
20
upstream




NO: 1756)





CEP290-946
+
GUUCUGGGUACAGGGGUAAGAGA
23
upstream




(SEQ ID NO: 1757)





CEP290-947
+
GGGUACAGGGGUAAGAGA (SEQ ID NO:
18
upstream




1758)





CEP290-948
+
GUUUGUUCUGGGUACAGGGGU (SEQ ID
21
upstream




NO: 1759)





CEP290-949

GUUUGCUUUCUGCUGCUUUUGCCA
24
upstream




(SEQ ID NO: 1760)





CEP290-950

GCUUUCUGCUGCUUUUGCCA (SEQ ID
20
upstream




NO: 776)





CEP290-951

GACAUCUAAGAGAAAAAGGAGC (SEQ
22
upstream




ID NO: 1762)





CEP290-952
+
GGAGAGGAUAGGACAGAGGACA (SEQ
22
upstream




ID NO: 1763)





CEP290-953
+
GAGAGGAUAGGACAGAGGACA (SEQ ID
21
upstream




NO: 1764)





CEP290-954
+
GAGGAUAGGACAGAGGACA (SEQ ID
19
upstream




NO: 1765)





CEP290-955
+
GGAAAGAUGAAAAAUACUCUU (SEQ ID
21
upstream




NO: 1766)





CEP290-956
+
GAAAGAUGAAAAAUACUCUU (SEQ ID
20
upstream




NO: 462)





CEP290-957
+
GGAAAGAUGAAAAAUACUCUUU (SEQ
22
upstream




ID NO: 1767)





CEP290-958
+
GAAAGAUGAAAAAUACUCUUU (SEQ ID
21
upstream




NO: 1768)





CEP290-959
+
GGAAAGAUGAAAAAUACUCU (SEQ ID
20
upstream




NO: 778)





CEP290-960
+
GAAAGAUGAAAAAUACUCU (SEQ ID
19
upstream




NO: 1770)





CEP290-961
+
GGAUAGGACAGAGGACAUGGAGAA
24
upstream




(SEQ ID NO: 1771)





CEP290-962
+
GAUAGGACAGAGGACAUGGAGAA
23
upstream




(SEQ ID NO: 1772)





CEP290-963
+
GGACAGAGGACAUGGAGAA (SEQ ID
19
upstream




NO: 1773)





CEP290-964
+
GACAGAGGACAUGGAGAA (SEQ ID NO:
18
upstream




1774)





CEP290-965
+
GGAUAGGACAGAGGACAUGGAGA
23
upstream




(SEQ ID NO: 1775)





CEP290-966
+
GAUAGGACAGAGGACAUGGAGA (SEQ
22
upstream




ID NO: 1776)





CEP290-967
+
GGACAGAGGACAUGGAGA (SEQ ID NO:
18
upstream




1777)





CEP290-968
+
GGAACAAAAGCCAGGGACCAU (SEQ ID
21
upstream




NO: 1778)





CEP290-969
+
GAACAAAAGCCAGGGACCAU (SEQ ID
20
upstream




NO: 465)





CEP290-970
+
GUGUGUGUGUGUGUGUGUUAU (SEQ
21
upstream




ID NO: 1779)





CEP290-971
+
GUGUGUGUGUGUGUGUUAU (SEQ ID
19
upstream




NO: 1780)





CEP290-972
+
GUGUGUGUGUGUGUGUGUUAUG (SEQ
22
upstream




ID NO: 1781)





CEP290-973
+
GUGUGUGUGUGUGUGUUAUG (SEQ ID
20
upstream




NO: 1154)





CEP290-974
+
GUGUGUGUGUGUGUUAUG (SEQ ID NO:
18
upstream




1783)





CEP290-975
+
UACUGUUGGCUACAUCCAUUCC (SEQ
22
upstream




ID NO: 1784)





CEP290-976
+
UGUUGGCUACAUCCAUUCC (SEQ ID
19
upstream




NO: 1785)





CEP290-977
+
UUUACAGAGUGCAUCCAUGGUC (SEQ
22
upstream




ID NO: 1786)





CEP290-978
+
UUACAGAGUGCAUCCAUGGUC (SEQ ID
21
upstream




NO: 1787)





CEP290-979
+
UACAGAGUGCAUCCAUGGUC (SEQ ID
20
upstream




NO: 1788)





CEP290-980

UCCAGCAUUAGAAAGUCCUAGGC (SEQ
23
upstream




ID NO: 1789)





CEP290-981

UGGUCCCUGGCUUUUGUUCC (SEQ ID
20
upstream




NO: 1790)





CEP290-982

UCAUAGAGACACAUUCAGUAA (SEQ ID
21
upstream




NO: 1791)





CEP290-983

UAGAGACACAUUCAGUAA (SEQ ID NO:
18
upstream




1792)





CEP290-984

UCAAAAGCUUUUGCUGGCUCA (SEQ ID
21
upstream




NO: 1793)





CEP290-985
+
UCCAUAAGCCUCUAUUUCUGAU (SEQ
22
upstream




ID NO: 1794)





CEP290-986
+
UAAGCCUCUAUUUCUGAU (SEQ ID NO:
18
upstream




1795)





CEP290-987
+
UAAAUCAUGCAAGUGACCUA (SEQ ID
20
upstream




NO: 508)





CEP290-988

UCUUUUAACCAGACAUCU (SEQ ID NO:
18
upstream




1796)





CEP290-989
+
UUUGUUCUGGGUACAGGGGUAA (SEQ
22
upstream




ID NO: 1797)





CEP290-990
+
UUGUUCUGGGUACAGGGGUAA (SEQ ID
21
upstream




NO: 1798)





CEP290-991
+
UGUUCUGGGUACAGGGGUAA (SEQ ID
20
upstream




NO: 1799)





CEP290-992
+
UUCUGGGUACAGGGGUAA (SEQ ID NO:
18
upstream




1800)





CEP290-993
+
UGACUCAUAAUUUAGUAGGAAUC
23
upstream




(SEQ ID NO: 1801)





CEP290-994
+
UCAUAAUUUAGUAGGAAUC (SEQ ID
19
upstream




NO: 1802)





CEP290-995

UGGAAUGGAUGUAGCCAACAGUAG
24
upstream




(SEQ ID NO: 1803)





CEP290-996

UGGAUGUAGCCAACAGUAG (SEQ ID
19
upstream




NO: 1804)





CEP290-997
+
UCACCUCUCUUUGGCAAAAGCAG (SEQ
23
upstream




ID NO: 1805)





CEP290-998
+
UCUCUUUGGCAAAAGCAG (SEQ ID NO:
18
upstream




1806)





CEP290-999

UAGAAUAUUGUAAUCAAAGG (SEQ ID
20
upstream




NO: 1807)





CEP290-
+
UCCAAGGAACAAAAGCCAGGGACC
24
upstream


1000

(SEQ ID NO: 1808)





CEP290-
+
UCCAUUCCAAGGAACAAAAGC (SEQ ID
21
upstream


1001

NO: 1809)





CEP290-
+
UUAGAUCUUAUUCUACUCCU (SEQ ID
20
upstream


1002

NO: 902)





CEP290-
+
UAGAUCUUAUUCUACUCCU (SEQ ID
19
upstream


1003

NO: 1811)





CEP290-
+
UCUUGCCUAGGACUUUCUAAUGC (SEQ
23
upstream


1004

ID NO: 1812)





CEP290-
+
UUGCCUAGGACUUUCUAAUGC (SEQ ID
21
upstream


1005

NO: 1813)





CEP290-
+
UGCCUAGGACUUUCUAAUGC (SEQ ID
20
upstream


1006

NO: 632)





CEP290-

UCCUGAUUUGUUCAUCUUCCUCAU
24
upstream


1007

(SEQ ID NO: 1814)





CEP290-

UGAUUUGUUCAUCUUCCUCAU (SEQ ID
21
upstream


1008

NO: 1815)





CEP290-

UUUGUUCAUCUUCCUCAU (SEQ ID NO:
18
upstream


1009

1816)





CEP290-

UGAUUAUGUUACUUUUUA (SEQ ID NO:
18
upstream


1010

1817)





CEP290-

UCUUUUAACCAGACAUCUAA (SEQ ID
20
upstream


1011

NO: 1818)





CEP290-

UUUUAACCAGACAUCUAA (SEQ ID NO:
18
upstream


1012

1819)





CEP290-

UCUGUCCUAUCCUCUCCAGCAU (SEQ
22
upstream


1013

ID NO: 1820)





CEP290-

UGUCCUAUCCUCUCCAGCAU (SEQ ID
20
upstream


1014

NO: 899)





CEP290-

UCCUAUCCUCUCCAGCAU (SEQ ID NO:
18
upstream


1015

1822)





CEP290-
+
UGAUAAACAUGACUCAUAAUUUAG
24
upstream


1016

(SEQ ID NO: 1823)





CEP290-
+
UAAACAUGACUCAUAAUUUAG (SEQ ID
21
upstream


1017

NO: 1824)





CEP290-

UAGAAUAUUGUAAUCAAAG (SEQ ID
19
upstream


1018

NO: 1825)





CEP290-
+
UGUUCUGGGUACAGGGGUAAGAGA
24
upstream


1019

(SEQ ID NO: 1826)





CEP290-
+
UUCUGGGUACAGGGGUAAGAGA (SEQ
22
upstream


1020

ID NO: 1827)





CEP290-
+
UCUGGGUACAGGGGUAAGAGA (SEQ ID
21
upstream


1021

NO: 1828)





CEP290-
+
UGGGUACAGGGGUAAGAGA (SEQ ID
19
upstream


1022

NO: 1829)





CEP290-
+
UAGUUUGUUCUGGGUACAGGGGU
23
upstream


1023

(SEQ ID NO: 1830)





CEP290-
+
UUUGUUCUGGGUACAGGGGU (SEQ ID
20
upstream


1024

NO: 1831)





CEP290-
+
UUGUUCUGGGUACAGGGGU (SEQ ID
19
upstream


1025

NO: 1832)





CEP290-
+
UGUUCUGGGUACAGGGGU (SEQ ID NO:
18
upstream


1026

1833)





CEP290-

UUUGCUUUCUGCUGCUUUUGCCA (SEQ
23
upstream


1027

ID NO: 1834)





CEP290-

UUGCUUUCUGCUGCUUUUGCCA (SEQ
22
upstream


1028

ID NO: 1835)





CEP290-

UGCUUUCUGCUGCUUUUGCCA (SEQ ID
21
upstream


1029

NO: 1836)





CEP290-

UUUCUGCUGCUUUUGCCA (SEQ ID NO:
18
upstream


1030

1837)





CEP290-

UCUAAGAGAAAAAGGAGC (SEQ ID NO:
18
upstream


1031

1838)





CEP290-
+
UGGAGAGGAUAGGACAGAGGACA
23
upstream


1032

(SEQ ID NO: 1839)





CEP290-
+
UUAGGAAAGAUGAAAAAUACUCUU
24
upstream


1033

(SEQ ID NO: 1840)





CEP290-
+
UAGGAAAGAUGAAAAAUACUCUU
23
upstream


1034

(SEQ ID NO: 1841)





CEP290-
+
UAGGAAAGAUGAAAAAUACUCUUU
24
upstream


1035

(SEQ ID NO: 1842)





CEP290-
+
UUUAGGAAAGAUGAAAAAUACUCU
24
upstream


1036

(SEQ ID NO: 1843)





CEP290-
+
UUAGGAAAGAUGAAAAAUACUCU
23
upstream


1037

(SEQ ID NO: 1844)





CEP290-
+
UAGGAAAGAUGAAAAAUACUCU (SEQ
22
upstream


1038

ID NO: 1845)





CEP290-
+
UAGGACAGAGGACAUGGAGAA (SEQ ID
21
upstream


1039

NO: 1846)





CEP290-
+
UAGGACAGAGGACAUGGAGA (SEQ ID
20
upstream


1040

NO: 881)





CEP290-
+
UUUAUUCUACAAUAAAAAAUG (SEQ ID
21
upstream


1041

NO: 1848)





CEP290-
+
UUAUUCUACAAUAAAAAAUG (SEQ ID
20
upstream


1042

NO: 1849)





CEP290-
+
UAUUCUACAAUAAAAAAUG (SEQ ID
19
upstream


1043

NO: 1850)





CEP290-
+
UUGUGUGUGUGUGUGUGUGUUAU
23
upstream


1044

(SEQ ID NO: 1851)





CEP290-
+
UGUGUGUGUGUGUGUGUGUUAU (SEQ
22
upstream


1045

ID NO: 1852)





CEP290-
+
UGUGUGUGUGUGUGUGUUAU (SEQ ID
20
upstream


1046

NO: 1853)





CEP290-
+
UGUGUGUGUGUGUGUUAU (SEQ ID NO:
18
upstream


1047

1854)





CEP290-
+
UUGUGUGUGUGUGUGUGUGUUAUG
24
upstream


1048

(SEQ ID NO: 1855)





CEP290-
+
UGUGUGUGUGUGUGUGUGUUAUG
23
upstream


1049

(SEQ ID NO: 1856)





CEP290-
+
UGUGUGUGUGUGUGUGUUAUG (SEQ
21
upstream


1050

ID NO: 1857)





CEP290-
+
UGUGUGUGUGUGUGUUAUG (SEQ ID
19
upstream


1051

NO: 1858)





CEP290-
+
ACUGUUGGCUACAUCCAUUCCA (SEQ
22
upstream


1052

ID NO: 1859)





CEP290-
+
AUUAUCCACAAGAUGUCUCUUGCC
24
upstream


1053

(SEQ ID NO: 1860)





CEP290-
+
AUCCACAAGAUGUCUCUUGCC (SEQ ID
21
upstream


1054

NO: 1861)





CEP290-
+
AUGAGCCAGCAAAAGCUU (SEQ ID NO:
18
upstream


1055

1862)





CEP290-
+
ACAGAGUGCAUCCAUGGUCCAGG (SEQ
23
upstream


1056

ID NO: 1863)





CEP290-
+
AGAGUGCAUCCAUGGUCCAGG (SEQ ID
21
upstream


1057

NO: 1864)





CEP290-
+
AGUGCAUCCAUGGUCCAGG (SEQ ID
19
upstream


1058

NO: 1865)





CEP290-

AGCUGAAAUAUUAAGGGCUCUUC (SEQ
23
upstream


1059

ID NO: 1866)





CEP290-

AAAUAUUAAGGGCUCUUC (SEQ ID NO:
18
upstream


1060

1867)





CEP290-

AACUCUAUACCUUUUACUGAGGA (SEQ
23
upstream


1061

ID NO: 1868)





CEP290-

ACUCUAUACCUUUUACUGAGGA (SEQ
22
upstream


1062

ID NO: 1869)





CEP290-

ACUUGAACUCUAUACCUUUUACU (SEQ
23
upstream


1063

ID NO: 1870)





CEP290-

AACUCUAUACCUUUUACU (SEQ ID NO:
18
upstream


1064

1871)





CEP290-
+
AGUAGGAAUCCUGAAAGCUACU (SEQ
22
upstream


1065

ID NO: 1872)





CEP290-
+
AGGAAUCCUGAAAGCUACU (SEQ ID
19
upstream


1066

NO: 1873)





CEP290-

AGCCAACAGUAGCUGAAAUAUU (SEQ
22
upstream


1067

ID NO: 1874)





CEP290-

AACAGUAGCUGAAAUAUU (SEQ ID NO:
18
upstream


1068

1875)





CEP290-
+
AUCCAUUCCAAGGAACAAAAGCC (SEQ
23
upstream


1069

ID NO: 1876)





CEP290-
+
AUUCCAAGGAACAAAAGCC (SEQ ID
19
upstream


1070

NO: 1877)





CEP290-

AUCCCUUUCUCUUACCCCUGUACC
24
upstream


1071

(SEQ ID NO: 1878)





CEP290-
+
AGGACUUUCUAAUGCUGGAGAGGA
24
upstream


1072

(SEQ ID NO: 1879)





CEP290-
+
ACUUUCUAAUGCUGGAGAGGA (SEQ ID
21
upstream


1073

NO: 1880)





CEP290-
+
AAUGCUGGAGAGGAUAGGACA (SEQ ID
21
upstream


1074

NO: 1881)





CEP290-
+
AUGCUGGAGAGGAUAGGACA (SEQ ID
20
upstream


1075

NO: 838)





CEP290-

AUCAUAAGUUACAAUCUGUGAAU
23
upstream


1076

(SEQ ID NO: 1883)





CEP290-

AUAAGUUACAAUCUGUGAAU (SEQ ID
20
upstream


1077

NO: 1884)





CEP290-

AAGUUACAAUCUGUGAAU (SEQ ID NO:
18
upstream


1078

1885)





CEP290-

AACCAGACAUCUAAGAGAAAA (SEQ ID
21
upstream


1079

NO: 1886)





CEP290-

ACCAGACAUCUAAGAGAAAA (SEQ ID
20
upstream


1080

NO: 1087)





CEP290-
+
AAGCCUCUAUUUCUGAUGAGGAAG
24
upstream


1081

(SEQ ID NO: 1888)





CEP290-
+
AGCCUCUAUUUCUGAUGAGGAAG (SEQ
23
upstream


1082

ID NO: 1889)





CEP290-
+
AUGAGGAAGAUGAACAAAUC (SEQ ID
20
upstream


1083

NO: 733)





CEP290-
+
AUUUACUGAAUGUGUCUCU (SEQ ID
19
upstream


1084

NO: 1891)





CEP290-
+
ACAGGGGUAAGAGAAAGGG (SEQ ID
19
upstream


1085

NO: 1892)





CEP290-
+
CUACUGUUGGCUACAUCCAUUCCA
24
upstream


1086

(SEQ ID NO: 1893)





CEP290-
+
CUGUUGGCUACAUCCAUUCCA (SEQ ID
21
upstream


1087

NO: 1894)





CEP290-
+
CCACAAGAUGUCUCUUGCC (SEQ ID
19
upstream


1088

NO: 1895)





CEP290-
+
CACAAGAUGUCUCUUGCC (SEQ ID NO:
18
upstream


1089

1896)





CEP290-

CCUUUGUAGUUAUCUUACAGCCAC
24
upstream


1090

(SEQ ID NO: 1897)





CEP290-

CUUUGUAGUUAUCUUACAGCCAC (SEQ
23
upstream


1091

ID NO: 1898)





CEP290-
+
CUCUAUGAGCCAGCAAAAGCUU (SEQ
22
upstream


1092

ID NO: 1899)





CEP290-
+
CUAUGAGCCAGCAAAAGCUU (SEQ ID
20
upstream


1093

NO: 748)





CEP290-
+
CAGAGUGCAUCCAUGGUCCAGG (SEQ
22
upstream


1094

ID NO: 1901)





CEP290-

CUGAAAUAUUAAGGGCUCUUC (SEQ ID
21
upstream


1095

NO: 1902)





CEP290-

CUCUAUACCUUUUACUGAGGA (SEQ ID
21
upstream


1096

NO: 1903)





CEP290-

CUAUACCUUUUACUGAGGA (SEQ ID
19
upstream


1097

NO: 1904)





CEP290-

CACUUGAACUCUAUACCUUUUACU
24
upstream


1098

(SEQ ID NO: 1905)





CEP290-

CUUGAACUCUAUACCUUUUACU (SEQ
22
upstream


1099

ID NO: 1906)





CEP290-

CCAACAGUAGCUGAAAUAUU (SEQ ID
20
upstream


1100

NO: 1907)





CEP290-

CAACAGUAGCUGAAAUAUU (SEQ ID
19
upstream


1101

NO: 1908)





CEP290-
+
CAUCCAUUCCAAGGAACAAAAGCC
24
upstream


1102

(SEQ ID NO: 1909)





CEP290-
+
CCAUUCCAAGGAACAAAAGCC (SEQ ID
21
upstream


1103

NO: 1910)





CEP290-
+
CAUUCCAAGGAACAAAAGCC (SEQ ID
20
upstream


1104

NO: 1131)





CEP290-

CCCUUUCUCUUACCCCUGUACC (SEQ
22
upstream


1105

ID NO: 1912)





CEP290-

CCUUUCUCUUACCCCUGUACC (SEQ ID
21
upstream


1106

NO: 1913)





CEP290-

CUUUCUCUUACCCCUGUACC (SEQ ID
20
upstream


1107

NO: 1914)





CEP290-
+
CUUUCUAAUGCUGGAGAGGA (SEQ ID
20
upstream


1108

NO: 869)





CEP290-
+
CUAAUGCUGGAGAGGAUAGGACA
23
upstream


1109

(SEQ ID NO: 1916)





CEP290-

CAUAAGUUACAAUCUGUGAAU (SEQ ID
21
upstream


1110

NO: 1917)





CEP290-

CCAGACAUCUAAGAGAAAA (SEQ ID
19
upstream


1111

NO: 1918)





CEP290-

CAGACAUCUAAGAGAAAA (SEQ ID NO:
18
upstream


1112

1919)





CEP290-
+
CCUCUAUUUCUGAUGAGGAAG (SEQ ID
21
upstream


1113

NO: 1920)





CEP290-
+
CUCUAUUUCUGAUGAGGAAG (SEQ ID
20
upstream


1114

NO: 866)





CEP290-
+
CUAUUUCUGAUGAGGAAG (SEQ ID NO:
18
upstream


1115

1922)





CEP290-
+
CUGAUGAGGAAGAUGAACAAAUC
23
upstream


1116

(SEQ ID NO: 1923)





CEP290-
+
CAUUUACUGAAUGUGUCUCU (SEQ ID
20
upstream


1117

NO: 856)





CEP290-
+
CAGGGGUAAGAGAAAGGG (SEQ ID NO:
18
upstream


1118

1925)





CEP290-
+
GUUGGCUACAUCCAUUCCA (SEQ ID
19
upstream


1119

NO: 1926)





CEP290-

GUAGUUAUCUUACAGCCAC (SEQ ID
19
upstream


1120

NO: 1927)





CEP290-
+
GUCUCUAUGAGCCAGCAAAAGCUU
24
upstream


1121

(SEQ ID NO: 1928)





CEP290-
+
GAGUGCAUCCAUGGUCCAGG (SEQ ID
20
upstream


1122

NO: 1929)





CEP290-
+
GUGCAUCCAUGGUCCAGG (SEQ ID NO:
18
upstream


1123

1930)





CEP290-

GCUGAAAUAUUAAGGGCUCUUC (SEQ
22
upstream


1124

ID NO: 1931)





CEP290-

GAAAUAUUAAGGGCUCUUC (SEQ ID
19
upstream


1125

NO: 1932)





CEP290-

GAACUCUAUACCUUUUACUGAGGA
24
upstream


1126

(SEQ ID NO: 1933)





CEP290-

GAACUCUAUACCUUUUACU (SEQ ID
19
upstream


1127

NO: 1934)





CEP290-
+
GUAGGAAUCCUGAAAGCUACU (SEQ ID
21
upstream


1128

NO: 1935)





CEP290-
+
GGAAUCCUGAAAGCUACU (SEQ ID NO:
18
upstream


1129

1936)





CEP290-

GUAGCCAACAGUAGCUGAAAUAUU
24
upstream


1130

(SEQ ID NO: 1937)





CEP290-

GCCAACAGUAGCUGAAAUAUU (SEQ ID
21
upstream


1131

NO: 1938)





CEP290-
+
GGACUUUCUAAUGCUGGAGAGGA
23
upstream


1132

(SEQ ID NO: 1939)





CEP290-
+
GACUUUCUAAUGCUGGAGAGGA (SEQ
22
upstream


1133

ID NO: 1940)





CEP290-
+
GCUGGAGAGGAUAGGACA (SEQ ID NO:
18
upstream


1134

1941)





CEP290-
+
GCCUCUAUUUCUGAUGAGGAAG (SEQ
22
upstream


1135

ID NO: 1942)





CEP290-
+
GAUGAGGAAGAUGAACAAAUC (SEQ ID
21
upstream


1136

NO: 1943)





CEP290-
+
GAGGAAGAUGAACAAAUC (SEQ ID NO:
18
upstream


1137

1944)





CEP290-
+
GGGUACAGGGGUAAGAGAAAGGG
23
upstream


1138

(SEQ ID NO: 1945)





CEP290-
+
GGUACAGGGGUAAGAGAAAGGG (SEQ
22
upstream


1139

ID NO: 1946)





CEP290-
+
GUACAGGGGUAAGAGAAAGGG (SEQ
21
upstream


1140

ID NO: 1947)





CEP290-
+
GUGUGUGUGUGUGUGUGUUAUGU
23
upstream


1141

(SEQ ID NO: 1948)





CEP290-
+
GUGUGUGUGUGUGUGUUAUGU (SEQ
21
upstream


1142

ID NO: 1949)





CEP290-
+
GUGUGUGUGUGUGUUAUGU (SEQ ID
19
upstream


1143

NO: 1950)





CEP290-
+
UACUGUUGGCUACAUCCAUUCCA (SEQ
23
upstream


1144

ID NO: 1951)





CEP290-
+
UGUUGGCUACAUCCAUUCCA (SEQ ID
20
upstream


1145

NO: 1952)





CEP290-
+
UUGGCUACAUCCAUUCCA (SEQ ID NO:
18
upstream


1146

1953)





CEP290-
+
UUAUCCACAAGAUGUCUCUUGCC (SEQ
23
upstream


1147

ID NO: 1954)





CEP290-
+
UAUCCACAAGAUGUCUCUUGCC (SEQ
22
upstream


1148

ID NO: 1955)





CEP290-
+
UCCACAAGAUGUCUCUUGCC (SEQ ID
20
upstream


1149

NO: 885)





CEP290-

UUUGUAGUUAUCUUACAGCCAC (SEQ
22
upstream


1150

ID NO: 1957)





CEP290-

UUGUAGUUAUCUUACAGCCAC (SEQ ID
21
upstream


1151

NO: 1958)





CEP290-

UGUAGUUAUCUUACAGCCAC (SEQ ID
20
upstream


1152

NO: 1959)





CEP290-

UAGUUAUCUUACAGCCAC (SEQ ID NO:
18
upstream


1153

1960)





CEP290-
+
UCUCUAUGAGCCAGCAAAAGCUU (SEQ
23
upstream


1154

ID NO: 1961)





CEP290-
+
UCUAUGAGCCAGCAAAAGCUU (SEQ ID
21
upstream


1155

NO: 1962)





CEP290-
+
UAUGAGCCAGCAAAAGCUU (SEQ ID
19
upstream


1156

NO: 1963)





CEP290-
+
UACAGAGUGCAUCCAUGGUCCAGG
24
upstream


1157

(SEQ ID NO: 1964)





CEP290-

UAGCUGAAAUAUUAAGGGCUCUUC
24
upstream


1158

(SEQ ID NO: 1965)





CEP290-

UGAAAUAUUAAGGGCUCUUC (SEQ ID
20
upstream


1159

NO: 1966)





CEP290-

UCUAUACCUUUUACUGAGGA (SEQ ID
20
upstream


1160

NO: 889)





CEP290-

UAUACCUUUUACUGAGGA (SEQ ID NO:
18
upstream


1161

1968)





CEP290-

UUGAACUCUAUACCUUUUACU (SEQ ID
21
upstream


1162

NO: 1969)





CEP290-

UGAACUCUAUACCUUUUACU (SEQ ID
20
upstream


1163

NO: 1970)





CEP290-
+
UUAGUAGGAAUCCUGAAAGCUACU
24
upstream


1164

(SEQ ID NO: 1971)





CEP290-
+
UAGUAGGAAUCCUGAAAGCUACU (SEQ
23
upstream


1165

ID NO: 1972)





CEP290-
+
UAGGAAUCCUGAAAGCUACU (SEQ ID
20
upstream


1166

NO: 760)





CEP290-

UAGCCAACAGUAGCUGAAAUAUU (SEQ
23
upstream


1167

ID NO: 1974)





CEP290-
+
UCCAUUCCAAGGAACAAAAGCC (SEQ
22
upstream


1168

ID NO: 1975)





CEP290-
+
UUCCAAGGAACAAAAGCC (SEQ ID NO:
18
upstream


1169

1976)





CEP290-

UCCCUUUCUCUUACCCCUGUACC (SEQ
23
upstream


1170

ID NO: 1977)





CEP290-

UUUCUCUUACCCCUGUACC (SEQ ID
19
upstream


1171

NO: 1978)





CEP290-

UUCUCUUACCCCUGUACC (SEQ ID NO:
18
upstream


1172

1979)





CEP290-
+
UUUCUAAUGCUGGAGAGGA (SEQ ID
19
upstream


1173

NO: 1980)





CEP290-
+
UUCUAAUGCUGGAGAGGA (SEQ ID NO:
18
upstream


1174

1981)





CEP290-
+
UCUAAUGCUGGAGAGGAUAGGACA
24
upstream


1175

(SEQ ID NO: 1982)





CEP290-
+
UAAUGCUGGAGAGGAUAGGACA (SEQ
22
upstream


1176

ID NO: 1983)





CEP290-
+
UGCUGGAGAGGAUAGGACA (SEQ ID
19
upstream


1177

NO: 1984)





CEP290-

UAUCAUAAGUUACAAUCUGUGAAU
24
upstream


1178

(SEQ ID NO: 1985)





CEP290-

UCAUAAGUUACAAUCUGUGAAU (SEQ
22
upstream


1179

ID NO: 1986)





CEP290-

UAAGUUACAAUCUGUGAAU (SEQ ID
19
upstream


1180

NO: 1987)





CEP290-

UUUAACCAGACAUCUAAGAGAAAA
24
upstream


1181

(SEQ ID NO: 1988)





CEP290-

UUAACCAGACAUCUAAGAGAAAA (SEQ
23
upstream


1182

ID NO: 1989)





CEP290-

UAACCAGACAUCUAAGAGAAAA (SEQ
22
upstream


1183

ID NO: 1990)





CEP290-
+
UCUAUUUCUGAUGAGGAAG (SEQ ID
19
upstream


1184

NO: 1991)





CEP290-
+
UCUGAUGAGGAAGAUGAACAAAUC
24
upstream


1185

(SEQ ID NO: 1992)





CEP290-
+
UGAUGAGGAAGAUGAACAAAUC (SEQ
22
upstream


1186

ID NO: 1993)





CEP290-
+
UGAGGAAGAUGAACAAAUC (SEQ ID
19
upstream


1187

NO: 1994)





CEP290-
+
UUUUCAUUUACUGAAUGUGUCUCU
24
upstream


1188

(SEQ ID NO: 1995)





CEP290-
+
UUUCAUUUACUGAAUGUGUCUCU (SEQ
23
upstream


1189

ID NO: 1996)





CEP290-
+
UUCAUUUACUGAAUGUGUCUCU (SEQ
22
upstream


1190

ID NO: 1997)





CEP290-
+
UCAUUUACUGAAUGUGUCUCU (SEQ ID
21
upstream


1191

NO: 1998)





CEP290-
+
UUUACUGAAUGUGUCUCU (SEQ ID NO:
18
upstream


1192

1999)





CEP290-
+
UGGGUACAGGGGUAAGAGAAAGGG
24
upstream


1193

(SEQ ID NO: 2000)





CEP290-
+
UACAGGGGUAAGAGAAAGGG (SEQ ID
20
upstream


1194

NO: 2001)





CEP290-
+
UGUGUGUGUGUGUGUGUGUUAUGU
24
upstream


1195

(SEQ ID NO: 2002)





CEP290-
+
UGUGUGUGUGUGUGUGUUAUGU (SEQ
22
upstream


1196

ID NO: 2003)





CEP290-
+
UGUGUGUGUGUGUGUUAUGU (SEQ ID
20
upstream


1197

NO: 1185)





CEP290-
+
UGUGUGUGUGUGUUAUGU (SEQ ID NO:
18
upstream


1198

2005)





CEP290-
+
AUUUACAGAGUGCAUCCAUGGUCC
24
upstream


1199

(SEQ ID NO: 2006)





CEP290-
+
ACAGAGUGCAUCCAUGGUCC (SEQ ID
20
upstream


1200

NO: 1085)





CEP290-
+
AGAGUGCAUCCAUGGUCC (SEQ ID NO:
18
upstream


1201

2008)





CEP290-

ACUUGAACUCUAUACCUUUUA (SEQ ID
21
upstream


1202

NO: 2009)





CEP290-
+
AGCUAAAUCAUGCAAGUGACCU (SEQ
22
upstream


1203

ID NO: 2010)





CEP290-
+
AAAUCAUGCAAGUGACCU (SEQ ID NO:
18
upstream


1204

2011)





CEP290-
+
AUCCAUAAGCCUCUAUUUCUGAUG
24
upstream


1205

(SEQ ID NO: 2012)





CEP290-
+
AUAAGCCUCUAUUUCUGAUG (SEQ ID
20
upstream


1206

NO: 723)





CEP290-
+
AAGCCUCUAUUUCUGAUG (SEQ ID NO:
18
upstream


1207

2014)





CEP290-
+
AGAAUAGUUUGUUCUGGGUA (SEQ ID
20
upstream


1208

NO: 2015)





CEP290-
+
AAUAGUUUGUUCUGGGUA (SEQ ID NO:
18
upstream


1209

2016)





CEP290-
+
AGGAGAAUGAUCUAGAUAAUCAUU
24
upstream


1210

(SEQ ID NO: 2017)





CEP290-
+
AGAAUGAUCUAGAUAAUCAUU (SEQ ID
21
upstream


1211

NO: 2018)





CEP290-
+
AAUGAUCUAGAUAAUCAUU (SEQ ID
19
upstream


1212

NO: 2019)





CEP290-
+
AUGAUCUAGAUAAUCAUU (SEQ ID NO:
18
upstream


1213

2020)





CEP290-
+
AAUGCUGGAGAGGAUAGGA (SEQ ID
19
upstream


1214

NO: 2021)





CEP290-
+
AUGCUGGAGAGGAUAGGA (SEQ ID NO:
18
upstream


1215

2022)





CEP290-
+
AAAAUCCAUAAGCCUCUAUUUCUG
24
upstream


1216

(SEQ ID NO: 2023)





CEP290-
+
AAAUCCAUAAGCCUCUAUUUCUG (SEQ
23
upstream


1217

ID NO: 2024)





CEP290-
+
AAUCCAUAAGCCUCUAUUUCUG (SEQ
22
upstream


1218

ID NO: 2025)





CEP290-
+
AUCCAUAAGCCUCUAUUUCUG (SEQ ID
21
upstream


1219

NO: 2026)





CEP290-

AAACAGGUAGAAUAUUGUAAUCA
23
upstream


1220

(SEQ ID NO: 2027)





CEP290-

AACAGGUAGAAUAUUGUAAUCA (SEQ
22
upstream


1221

ID NO: 2028)





CEP290-

ACAGGUAGAAUAUUGUAAUCA (SEQ ID
21
upstream


1222

NO: 2029)





CEP290-

AGGUAGAAUAUUGUAAUCA (SEQ ID
19
upstream


1223

NO: 2030)





CEP290-
+
AAGGAACAAAAGCCAGGGACCA (SEQ
22
upstream


1224

ID NO: 2031)





CEP290-
+
AGGAACAAAAGCCAGGGACCA (SEQ ID
21
upstream


1225

NO: 2032)





CEP290-
+
AACAAAAGCCAGGGACCA (SEQ ID NO:
18
upstream


1226

2033)





CEP290-

AGGUAGAAUAUUGUAAUCAAAGGA
24
upstream


1227

(SEQ ID NO: 2034)





CEP290-

AGAAUAUUGUAAUCAAAGGA (SEQ ID
20
upstream


1228

NO: 1089)





CEP290-

AAUAUUGUAAUCAAAGGA (SEQ ID NO:
18
upstream


1229

2036)





CEP290-

AGUCAUGUUUAUCAAUAUUAUU (SEQ
22
upstream


1230

ID NO: 2037)





CEP290-

AUGUUUAUCAAUAUUAUU (SEQ ID NO:
18
upstream


1231

2038)





CEP290-

AACCAGACAUCUAAGAGAAA (SEQ ID
20
upstream


1232

NO: 2039)





CEP290-

ACCAGACAUCUAAGAGAAA (SEQ ID
19
upstream


1233

NO: 2040)





CEP290-

AUUCUUAUCUAAGAUCCUUUCA (SEQ
22
upstream


1234

ID NO: 2041)





CEP290-

AAACAGGUAGAAUAUUGUAAUCAA
24
upstream


1235

(SEQ ID NO: 2042)





CEP290-

AACAGGUAGAAUAUUGUAAUCAA
23
upstream


1236

(SEQ ID NO: 2043)





CEP290-

ACAGGUAGAAUAUUGUAAUCAA (SEQ
22
upstream


1237

ID NO: 2044)





CEP290-

AGGUAGAAUAUUGUAAUCAA (SEQ ID
20
upstream


1238

NO: 1101)





CEP290-
+
AUGAGGAAGAUGAACAAAU (SEQ ID
19
upstream


1239

NO: 2046)





CEP290-
+
AGAGGAUAGGACAGAGGAC (SEQ ID
19
upstream


1240

NO: 2047)





CEP290-
+
CAGAGUGCAUCCAUGGUCC (SEQ ID
19
upstream


1241

NO: 2048)





CEP290-
+
CUUGCCUAGGACUUUCUAAUGCUG
24
upstream


1242

(SEQ ID NO: 2049)





CEP290-
+
CCUAGGACUUUCUAAUGCUG (SEQ ID
20
upstream


1243

NO: 858)





CEP290-
+
CUAGGACUUUCUAAUGCUG (SEQ ID
19
upstream


1244

NO: 2051)





CEP290-

CCACUUGAACUCUAUACCUUUUA (SEQ
23
upstream


1245

ID NO: 2052)





CEP290-

CACUUGAACUCUAUACCUUUUA (SEQ
22
upstream


1246

ID NO: 2053)





CEP290-

CUUGAACUCUAUACCUUUUA (SEQ ID
20
upstream


1247

NO: 2054)





CEP290-
+
CAGCUAAAUCAUGCAAGUGACCU (SEQ
23
upstream


1248

ID NO: 2055)





CEP290-
+
CUAAAUCAUGCAAGUGACCU (SEQ ID
20
upstream


1249

NO: 2056)





CEP290-
+
CUCUUGCCUAGGACUUUCUAAUG (SEQ
23
upstream


1250

ID NO: 2057)





CEP290-
+
CUUGCCUAGGACUUUCUAAUG (SEQ ID
21
upstream


1251

NO: 2058)





CEP290-
+
CCAUAAGCCUCUAUUUCUGAUG (SEQ
22
upstream


1252

ID NO: 2059)





CEP290-
+
CAUAAGCCUCUAUUUCUGAUG (SEQ ID
21
upstream


1253

NO: 2060)





CEP290-
+
CUAAUGCUGGAGAGGAUAGGA (SEQ ID
21
upstream


1254

NO: 2061)





CEP290-
+
CCAUAAGCCUCUAUUUCUG (SEQ ID
19
upstream


1255

NO: 2062)





CEP290-
+
CAUAAGCCUCUAUUUCUG (SEQ ID NO:
18
upstream


1256

2063)





CEP290-

CAGGUAGAAUAUUGUAAUCA (SEQ ID
20
upstream


1257

NO: 2064)





CEP290-

CUUUCUGCUGCUUUUGCCAAA (SEQ ID
21
upstream


1258

NO: 2065)





CEP290-
+
CCAAGGAACAAAAGCCAGGGACCA
24
upstream


1259

(SEQ ID NO: 2066)





CEP290-
+
CAAGGAACAAAAGCCAGGGACCA (SEQ
23
upstream


1260

ID NO: 2067)





CEP290-
+
CUCUUAGAUGUCUGGUUAA (SEQ ID
19
upstream


1261

NO: 2068)





CEP290-

CAUGUUUAUCAAUAUUAUU (SEQ ID
19
upstream


1262

NO: 2069)





CEP290-

CCAGACAUCUAAGAGAAA (SEQ ID NO:
18
upstream


1263

2070)





CEP290-

CUUAUCUAAGAUCCUUUCA (SEQ ID
19
upstream


1264

NO: 2071)





CEP290-

CAGGUAGAAUAUUGUAAUCAA (SEQ ID
21
upstream


1265

NO: 2072)





CEP290-
+
CUGAUGAGGAAGAUGAACAAAU (SEQ
22
upstream


1266

ID NO: 2073)





CEP290-
+
CUGGAGAGGAUAGGACAGAGGAC
23
upstream


1267

(SEQ ID NO: 2074)





CEP290-

CAUCUUCCUCAUCAGAAA (SEQ ID NO:
18
upstream


1268

2075)





CEP290-
+
GCCUAGGACUUUCUAAUGCUG (SEQ ID
21
upstream


1269

NO: 2076)





CEP290-

GCCACUUGAACUCUAUACCUUUUA
24
upstream


1270

(SEQ ID NO: 2077)





CEP290-
+
GCUAAAUCAUGCAAGUGACCU (SEQ ID
21
upstream


1271

NO: 2078)





CEP290-
+
GCCUAGGACUUUCUAAUG (SEQ ID NO:
18
upstream


1272

2079)





CEP290-
+
GGGAGAAUAGUUUGUUCUGGGUA
23
upstream


1273

(SEQ ID NO: 2080)





CEP290-
+
GGAGAAUAGUUUGUUCUGGGUA (SEQ
22
upstream


1274

ID NO: 2081)





CEP290-
+
GAGAAUAGUUUGUUCUGGGUA (SEQ
21
upstream


1275

ID NO: 2082)





CEP290-
+
GAAUAGUUUGUUCUGGGUA (SEQ ID
19
upstream


1276

NO: 2083)





CEP290-
+
GGAGAAUGAUCUAGAUAAUCAUU
23
upstream


1277

(SEQ ID NO: 2084)





CEP290-
+
GAGAAUGAUCUAGAUAAUCAUU (SEQ
22
upstream


1278

ID NO: 2085)





CEP290-
+
GAAUGAUCUAGAUAAUCAUU (SEQ ID
20
upstream


1279

NO: 2086)





CEP290-

GAAACAGGUAGAAUAUUGUAAUCA
24
upstream


1280

(SEQ ID NO: 2087)





CEP290-

GGUAGAAUAUUGUAAUCA (SEQ ID NO:
18
upstream


1281

2088)





CEP290-

GCUUUCUGCUGCUUUUGCCAAA (SEQ
22
upstream


1282

ID NO: 2089)





CEP290-
+
GGAACAAAAGCCAGGGACCA (SEQ ID
20
upstream


1283

NO: 484)





CEP290-
+
GAACAAAAGCCAGGGACCA (SEQ ID
19
upstream


1284

NO: 2090)





CEP290-

GGUAGAAUAUUGUAAUCAAAGGA
23
upstream


1285

(SEQ ID NO: 2091)





CEP290-

GUAGAAUAUUGUAAUCAAAGGA (SEQ
22
upstream


1286

ID NO: 2092)





CEP290-

GAAUAUUGUAAUCAAAGGA (SEQ ID
19
upstream


1287

NO: 2093)





CEP290-

GAGUCAUGUUUAUCAAUAUUAUU
23
upstream


1288

(SEQ ID NO: 2094)





CEP290-

GUCAUGUUUAUCAAUAUUAUU (SEQ ID
21
upstream


1289

NO: 2095)





CEP290-

GGUAGAAUAUUGUAAUCAA (SEQ ID
19
upstream


1290

NO: 2096)





CEP290-

GUAGAAUAUUGUAAUCAA (SEQ ID NO:
18
upstream


1291

2097)





CEP290-
+
GAUGAGGAAGAUGAACAAAU (SEQ ID
20
upstream


1292

NO: 773)





CEP290-
+
GCUGGAGAGGAUAGGACAGAGGAC
24
upstream


1293

(SEQ ID NO: 2099)





CEP290-
+
GGAGAGGAUAGGACAGAGGAC (SEQ ID
21
upstream


1294

NO: 2100)





CEP290-
+
GAGAGGAUAGGACAGAGGAC (SEQ ID
20
upstream


1295

NO: 772)





CEP290-
+
GAGGAUAGGACAGAGGAC (SEQ ID NO:
18
upstream


1296

2102)





CEP290-

GUUCAUCUUCCUCAUCAGAAA (SEQ ID
21
upstream


1297

NO: 2103)





CEP290-
+
UUUACAGAGUGCAUCCAUGGUCC (SEQ
23
upstream


1298

ID NO: 2104)





CEP290-
+
UUACAGAGUGCAUCCAUGGUCC (SEQ
22
upstream


1299

ID NO: 2105)





CEP290-
+
UACAGAGUGCAUCCAUGGUCC (SEQ ID
21
upstream


1300

NO: 2106)





CEP290-
+
UUGCCUAGGACUUUCUAAUGCUG (SEQ
23
upstream


1301

ID NO: 2107)





CEP290-
+
UGCCUAGGACUUUCUAAUGCUG (SEQ
22
upstream


1302

ID NO: 2108)





CEP290-
+
UAGGACUUUCUAAUGCUG (SEQ ID NO:
18
upstream


1303

2109)





CEP290-

UUGAACUCUAUACCUUUUA (SEQ ID
19
upstream


1304

NO: 2110)





CEP290-

UGAACUCUAUACCUUUUA (SEQ ID NO:
18
upstream


1305

2111)





CEP290-
+
UCAGCUAAAUCAUGCAAGUGACCU
24
upstream


1306

(SEQ ID NO: 2112)





CEP290-
+
UAAAUCAUGCAAGUGACCU (SEQ ID
19
upstream


1307

NO: 2113)





CEP290-
+
UCUCUUGCCUAGGACUUUCUAAUG
24
upstream


1308

(SEQ ID NO: 2114)





CEP290-
+
UCUUGCCUAGGACUUUCUAAUG (SEQ
22
upstream


1309

ID NO: 2115)





CEP290-
+
UUGCCUAGGACUUUCUAAUG (SEQ ID
20
upstream


1310

NO: 906)





CEP290-
+
UGCCUAGGACUUUCUAAUG (SEQ ID
19
upstream


1311

NO: 2117)





CEP290-
+
UCCAUAAGCCUCUAUUUCUGAUG (SEQ
23
upstream


1312

ID NO: 2118)





CEP290-
+
UAAGCCUCUAUUUCUGAUG (SEQ ID
19
upstream


1313

NO: 2119)





CEP290-
+
UGGGAGAAUAGUUUGUUCUGGGUA
24
upstream


1314

(SEQ ID NO: 2120)





CEP290-
+
UUUCUAAUGCUGGAGAGGAUAGGA
24
upstream


1315

(SEQ ID NO: 2121)





CEP290-
+
UUCUAAUGCUGGAGAGGAUAGGA
23
upstream


1316

(SEQ ID NO: 2122)





CEP290-
+
UCUAAUGCUGGAGAGGAUAGGA (SEQ
22
upstream


1317

ID NO: 2123)





CEP290-
+
UAAUGCUGGAGAGGAUAGGA (SEQ ID
20
upstream


1318

NO: 873)





CEP290-
+
UCCAUAAGCCUCUAUUUCUG (SEQ ID
20
upstream


1319

NO: 886)





CEP290-

UUGCUUUCUGCUGCUUUUGCCAAA
24
upstream


1320

(SEQ ID NO: 2126)





CEP290-

UGCUUUCUGCUGCUUUUGCCAAA (SEQ
23
upstream


1321

ID NO: 2127)





CEP290-

UUUCUGCUGCUUUUGCCAAA (SEQ ID
20
upstream


1322

NO: 907)





CEP290-

UUCUGCUGCUUUUGCCAAA (SEQ ID
19
upstream


1323

NO: 2129)





CEP290-

UCUGCUGCUUUUGCCAAA (SEQ ID NO:
18
upstream


1324

2130)





CEP290-

UAGAAUAUUGUAAUCAAAGGA (SEQ
21
upstream


1325

ID NO: 2131)





CEP290-
+
UUUUUCUCUUAGAUGUCUGGUUAA
24
upstream


1326

(SEQ ID NO: 2132)





CEP290-
+
UUUUCUCUUAGAUGUCUGGUUAA
23
upstream


1327

(SEQ ID NO: 2133)





CEP290-
+
UUUCUCUUAGAUGUCUGGUUAA (SEQ
22
upstream


1328

ID NO: 2134)





CEP290-
+
UUCUCUUAGAUGUCUGGUUAA (SEQ ID
21
upstream


1329

NO: 2135)





CEP290-
+
UCUCUUAGAUGUCUGGUUAA (SEQ ID
20
upstream


1330

NO: 2136)





CEP290-
+
UCUUAGAUGUCUGGUUAA (SEQ ID NO:
18
upstream


1331

2137)





CEP290-

UGAGUCAUGUUUAUCAAUAUUAUU
24
upstream


1332

(SEQ ID NO: 2138)





CEP290-

UCAUGUUUAUCAAUAUUAUU (SEQ ID
20
upstream


1333

NO: 884)





CEP290-

UUUUAACCAGACAUCUAAGAGAAA
24
upstream


1334

(SEQ ID NO: 2140)





CEP290-

UUUAACCAGACAUCUAAGAGAAA (SEQ
23
upstream


1335

ID NO: 2141)





CEP290-

UUAACCAGACAUCUAAGAGAAA (SEQ
22
upstream


1336

ID NO: 2142)





CEP290-

UAACCAGACAUCUAAGAGAAA (SEQ ID
21
upstream


1337

NO: 2143)





CEP290-

UUAUUCUUAUCUAAGAUCCUUUCA
24
upstream


1338

(SEQ ID NO: 2144)





CEP290-

UAUUCUUAUCUAAGAUCCUUUCA (SEQ
23
upstream


1339

ID NO: 2145)





CEP290-

UUCUUAUCUAAGAUCCUUUCA (SEQ ID
21
upstream


1340

NO: 2146)





CEP290-

UCUUAUCUAAGAUCCUUUCA (SEQ ID
20
upstream


1341

NO: 892)





CEP290-

UUAUCUAAGAUCCUUUCA (SEQ ID NO:
18
upstream


1342

2148)





CEP290-
+
UUCUGAUGAGGAAGAUGAACAAAU
24
upstream


1343

(SEQ ID NO: 2149)





CEP290-
+
UCUGAUGAGGAAGAUGAACAAAU
23
upstream


1344

(SEQ ID NO: 2150)





CEP290-
+
UGAUGAGGAAGAUGAACAAAU (SEQ
21
upstream


1345

ID NO: 2151)





CEP290-
+
UGAGGAAGAUGAACAAAU (SEQ ID NO:
18
upstream


1346

2152)





CEP290-
+
UGGAGAGGAUAGGACAGAGGAC (SEQ
22
upstream


1347

ID NO: 2153)





CEP290-

UUUGUUCAUCUUCCUCAUCAGAAA
24
upstream


1348

(SEQ ID NO: 2154)





CEP290-

UUGUUCAUCUUCCUCAUCAGAAA (SEQ
23
upstream


1349

ID NO: 2155)





CEP290-

UGUUCAUCUUCCUCAUCAGAAA (SEQ
22
upstream


1350

ID NO: 2156)





CEP290-

UUCAUCUUCCUCAUCAGAAA (SEQ ID
20
upstream


1351

NO: 905)





CEP290-

UCAUCUUCCUCAUCAGAAA (SEQ ID
19
upstream


1352

NO: 2158)





CEP290-

ACUUACCUCAUGUCAUCUAGAGC (SEQ
23
downstream


1353

ID NO: 2159)





CEP290-

ACCUCAUGUCAUCUAGAGC (SEQ ID
19
downstream


1354

NO: 2160)





CEP290-
+
ACAGUUUUUAAGGCGGGGAGUCAC
24
downstream


1355

(SEQ ID NO: 2161)





CEP290-
+
AGUUUUUAAGGCGGGGAGUCAC (SEQ
22
downstream


1356

ID NO: 2162)





CEP290-

ACAGAGUUCAAGCUAAUAC (SEQ ID
19
downstream


1357

NO: 2163)





CEP290-
+
AUUAGCUUGAACUCUGUGCCAAAC
24
downstream


1358

(SEQ ID NO: 2164)





CEP290-
+
AGCUUGAACUCUGUGCCAAAC (SEQ ID
21
downstream


1359

NO: 2165)





CEP290-

AUGUGGUGUCAAAUAUGGUGCU (SEQ
22
downstream


1360

ID NO: 2166)





CEP290-

AUGUGGUGUCAAAUAUGGUGCUU
23
downstream


1361

(SEQ ID NO: 2167)





CEP290-
+
AGAUGACAUGAGGUAAGU (SEQ ID NO:
18
downstream


1362

2168)





CEP290-

AAUACAUGAGAGUGAUUAGUGG (SEQ
22
downstream


1363

ID NO: 2169)





CEP290-

AUACAUGAGAGUGAUUAGUGG (SEQ
21
downstream


1364

ID NO: 2170)





CEP290-

ACAUGAGAGUGAUUAGUGG (SEQ ID
19
downstream


1365

NO: 2171)





CEP290-16
+
AAGACACUGCCAAUAGGGAUAGGU
24
downstream




(SEQ ID NO: 1042)





CEP290-
+
AGACACUGCCAAUAGGGAUAGGU (SEQ
23
downstream


1366

ID NO: 1043)





CEP290-
+
ACACUGCCAAUAGGGAUAGGU (SEQ ID
21
downstream


1367

NO: 1044)





CEP290-510
+
ACUGCCAAUAGGGAUAGGU (SEQ ID
19
downstream




NO: 1045)





CEP290-

AAAGGUUCAUGAGACUAGAGGUC
23
downstream


1368

(SEQ ID NO: 2176)





CEP290-

AAGGUUCAUGAGACUAGAGGUC (SEQ
22
downstream


1369

ID NO: 2177)





CEP290-

AGGUUCAUGAGACUAGAGGUC (SEQ ID
21
downstream


1370

NO: 2178)





CEP290-
+
AAACAGGAGAUACUCAACACA (SEQ ID
21
downstream


1371

NO: 2179)





CEP290-
+
AACAGGAGAUACUCAACACA (SEQ ID
20
downstream


1372

NO: 810)





CEP290-
+
ACAGGAGAUACUCAACACA (SEQ ID
19
downstream


1373

NO: 2181)





CEP290-
+
AGCACGUACAAAAGAACAUACAU (SEQ
23
downstream


1374

ID NO: 2182)





CEP290-
+
ACGUACAAAAGAACAUACAU (SEQ ID
20
downstream


1375

NO: 817)





CEP290-
+
AGUAAGGAGGAUGUAAGAC (SEQ ID
19
downstream


1376

NO: 2184)





CEP290-
+
AGCUUUUGACAGUUUUUAAGG (SEQ ID
21
downstream


1377

NO: 2185)





CEP290-

ACGUGCUCUUUUCUAUAUAU (SEQ ID
20
downstream


1378

NO: 622)





CEP290-
+
AAAUUCACUGAGCAAAACAACUGG
24
downstream


1379

(SEQ ID NO: 2186)





CEP290-
+
AAUUCACUGAGCAAAACAACUGG (SEQ
23
downstream


1380

ID NO: 2187)





CEP290-
+
AUUCACUGAGCAAAACAACUGG (SEQ
22
downstream


1381

ID NO: 2188)





CEP290-
+
ACUGAGCAAAACAACUGG (SEQ ID NO:
18
downstream


1382

2189)





CEP290-
+
AACAAGUUUUGAAACAGGAA (SEQ ID
20
downstream


1383

NO: 809)





CEP290-
+
ACAAGUUUUGAAACAGGAA (SEQ ID
19
downstream


1384

NO: 2191)





CEP290-
+
AAUGCCUGAACAAGUUUUGAAA (SEQ
22
downstream


1385

ID NO: 2192)





CEP290-
+
AUGCCUGAACAAGUUUUGAAA (SEQ ID
21
downstream


1386

NO: 2193)





CEP290-
+
AUUCACUGAGCAAAACAACUGGAA
24
downstream


1387

(SEQ ID NO: 2194)





CEP290-
+
ACUGAGCAAAACAACUGGAA (SEQ ID
20
downstream


1388

NO: 819)





CEP290-
+
AAAAAGGUAAUGCCUGAACAAGUU
24
downstream


1389

(SEQ ID NO: 2196)





CEP290-
+
AAAAGGUAAUGCCUGAACAAGUU
23
downstream


1390

(SEQ ID NO: 2197)





CEP290-
+
AAAGGUAAUGCCUGAACAAGUU (SEQ
22
downstream


1391

ID NO: 2198)





CEP290-
+
AAGGUAAUGCCUGAACAAGUU (SEQ ID
21
downstream


1392

NO: 2199)





CEP290-
+
AGGUAAUGCCUGAACAAGUU (SEQ ID
20
downstream


1393

NO: 828)





CEP290-

ACGUGCUCUUUUCUAUAUA (SEQ ID
19
downstream


1394

NO: 2201)





CEP290-
+
AUUAUCUAUUCCAUUCUUCACAC (SEQ
23
downstream


1395

ID NO: 2202)





CEP290-
+
AUCUAUUCCAUUCUUCACAC (SEQ ID
20
downstream


1396

NO: 2203)





CEP290-
+
AAGAGAGAAAUGGUUCCCUAUAUA
24
downstream


1397

(SEQ ID NO: 2204)





CEP290-
+
AGAGAGAAAUGGUUCCCUAUAUA
23
downstream


1398

(SEQ ID NO: 2205)





CEP290-
+
AGAGAAAUGGUUCCCUAUAUA (SEQ ID
21
downstream


1399

NO: 2206)





CEP290-
+
AGAAAUGGUUCCCUAUAUA (SEQ ID
19
downstream


1400

NO: 2207)





CEP290-

AGGAAAUUAUUGUUGCUUU (SEQ ID
19
downstream


1401

NO: 2208)





CEP290-
+
ACUGAGCAAAACAACUGGAAGA (SEQ
22
downstream


1402

ID NO: 2209)





CEP290-
+
AGCAAAACAACUGGAAGA (SEQ ID NO:
18
downstream


1403

2210)





CEP290-
+
AUACAUAAGAAAGAACACUGUGGU
24
downstream


1404

(SEQ ID NO: 2211)





CEP290-
+
ACAUAAGAAAGAACACUGUGGU (SEQ
22
downstream


1405

ID NO: 2212)





CEP290-
+
AUAAGAAAGAACACUGUGGU (SEQ ID
20
downstream


1406

NO: 829)





CEP290-
+
AAGAAAGAACACUGUGGU (SEQ ID NO:
18
downstream


1407

2214)





CEP290-

AAGAAUGGAAUAGAUAAU (SEQ ID NO:
18
downstream


1408

2215)





CEP290-
+
AAGGAGGAUGUAAGACUGGAGA (SEQ
22
downstream


1409

ID NO: 2216)





CEP290-
+
AGGAGGAUGUAAGACUGGAGA (SEQ
21
downstream


1410

ID NO: 2217)





CEP290-
+
AGGAUGUAAGACUGGAGA (SEQ ID NO:
18
downstream


1411

2218)





CEP290-

AAAAACUUGAAAUUUGAUAGUAG
23
downstream


1412

(SEQ ID NO: 2219)





CEP290-

AAAACUUGAAAUUUGAUAGUAG (SEQ
22
downstream


1413

ID NO: 2220)





CEP290-

AAACUUGAAAUUUGAUAGUAG (SEQ
21
downstream


1414

ID NO: 2221)





CEP290-

AACUUGAAAUUUGAUAGUAG (SEQ ID
20
downstream


1415

NO: 2222)





CEP290-

ACUUGAAAUUUGAUAGUAG (SEQ ID
19
downstream


1416

NO: 2223)





CEP290-

ACAUAUCUGUCUUCCUUA (SEQ ID NO:
18
downstream


1417

2224)





CEP290-
+
AUUAAAAAAAGUAUGCUU (SEQ ID NO:
18
downstream


1418

2225)





CEP290-
+
AUAUCAAAAGACUUAUAUUCCAUU
24
downstream


1419

(SEQ ID NO: 2226)





CEP290-
+
AUCAAAAGACUUAUAUUCCAUU (SEQ
22
downstream


1420

ID NO: 2227)





CEP290-
+
AAAAGACUUAUAUUCCAUU (SEQ ID
19
downstream


1421

NO: 2228)





CEP290-
+
AAAGACUUAUAUUCCAUU (SEQ ID NO:
18
downstream


1422

2229)





CEP290-

AAAAUCAGAUUUCAUGUGUGAAGA
24
downstream


1423

(SEQ ID NO: 2230)





CEP290-

AAAUCAGAUUUCAUGUGUGAAGA
23
downstream


1424

(SEQ ID NO: 2231)





CEP290-

AAUCAGAUUUCAUGUGUGAAGA (SEQ
22
downstream


1425

ID NO: 2232)





CEP290-

AUCAGAUUUCAUGUGUGAAGA (SEQ ID
21
downstream


1426

NO: 2233)





CEP290-

AGAUUUCAUGUGUGAAGA (SEQ ID NO:
18
downstream


1427

2234)





CEP290-

AAUGGAAUAUAAGUCUUUUGAUAU
24
downstream


1428

(SEQ ID NO: 2235)





CEP290-

AUGGAAUAUAAGUCUUUUGAUAU
23
downstream


1429

(SEQ ID NO: 2236)





CEP290-

AAUAUAAGUCUUUUGAUAU (SEQ ID
19
downstream


1430

NO: 2237)





CEP290-

AUAUAAGUCUUUUGAUAU (SEQ ID NO:
18
downstream


1431

2238)





CEP290-

AAGAAUGGAAUAGAUAAUA (SEQ ID
19
downstream


1432

NO: 2239)





CEP290-

AGAAUGGAAUAGAUAAUA (SEQ ID NO:
18
downstream


1433

2240)





CEP290-

AAAACUGGAUGGGUAAUAAAGCAA
24
downstream


1434

(SEQ ID NO: 2241)





CEP290-

AAACUGGAUGGGUAAUAAAGCAA
23
downstream


1435

(SEQ ID NO: 2242)





CEP290-

AACUGGAUGGGUAAUAAAGCAA (SEQ
22
downstream


1436

ID NO: 2243)





CEP290-

ACUGGAUGGGUAAUAAAGCAA (SEQ ID
21
downstream


1437

NO: 2244)





CEP290-
+
AUAGAAAUUCACUGAGCAAAACAA
24
downstream


1438

(SEQ ID NO: 2245)





CEP290-
+
AGAAAUUCACUGAGCAAAACAA (SEQ
22
downstream


1439

ID NO: 2246)





CEP290-
+
AAAUUCACUGAGCAAAACAA (SEQ ID
20
downstream


1440

NO: 808)





CEP290-
+
AAUUCACUGAGCAAAACAA (SEQ ID
19
downstream


1441

NO: 2248)





CEP290-
+
AUUCACUGAGCAAAACAA (SEQ ID NO:
18
downstream


1442

2249)





CEP290-
+
AGGAUGUAAGACUGGAGAUAGAGA
24
downstream


1443

(SEQ ID NO: 2250)





CEP290-
+
AUGUAAGACUGGAGAUAGAGA (SEQ
21
downstream


1444

ID NO: 2251)





CEP290-

AAAUUUGAUAGUAGAAGAAAA (SEQ
21
downstream


1445

ID NO: 2252)





CEP290-

AAUUUGAUAGUAGAAGAAAA (SEQ ID
20
downstream


1446

NO: 2253)





CEP290-

AUUUGAUAGUAGAAGAAAA (SEQ ID
19
downstream


1447

NO: 2254)





CEP290-
+
AAAAUAAAACUAAGACACUGCCAA
24
downstream


1448

(SEQ ID NO: 1036)





CEP290-
+
AAAUAAAACUAAGACACUGCCAA (SEQ
23
downstream


1449

ID NO: 1037)





CEP290-
+
AAUAAAACUAAGACACUGCCAA (SEQ
22
downstream


1450

ID NO: 1038)





CEP290-
+
AUAAAACUAAGACACUGCCAA (SEQ ID
21
downstream


1451

NO: 1039)





CEP290-
+
AAAACUAAGACACUGCCAA (SEQ ID
19
downstream


1452

NO: 1040)





CEP290-
+
AAACUAAGACACUGCCAA (SEQ ID NO:
18
downstream


1453

1041)





CEP290-

AAUAAAGCAAAAGAAAAAC (SEQ ID
19
downstream


1454

NO: 2261)





CEP290-

AUAAAGCAAAAGAAAAAC (SEQ ID NO:
18
downstream


1455

2262)





CEP290-

AUUCUUUUUUUGUUGUUUUUUUUU
24
downstream


1456

(SEQ ID NO: 2263)





CEP290-
+
ACUCCAGCCUGGGCAACACA (SEQ ID
20
downstream


1457

NO: 2264)





CEP290-

CUUACCUCAUGUCAUCUAGAGC (SEQ
22
downstream


1458

ID NO: 2265)





CEP290-

CCUCAUGUCAUCUAGAGC (SEQ ID NO:
18
downstream


1459

2266)





CEP290-
+
CAGUUUUUAAGGCGGGGAGUCAC (SEQ
23
downstream


1460

ID NO: 2267)





CEP290-

CACAGAGUUCAAGCUAAUAC (SEQ ID
20
downstream


1461

NO: 845)





CEP290-

CAGAGUUCAAGCUAAUAC (SEQ ID NO:
18
downstream


1462

2269)





CEP290-
+
CUUGAACUCUGUGCCAAAC (SEQ ID
19
downstream


1463

NO: 2270)





CEP290-

CAUGUGGUGUCAAAUAUGGUGCU
23
downstream


1464

(SEQ ID NO: 2271)





CEP290-

CAUGUGGUGUCAAAUAUGGUGCUU
24
downstream


1465

(SEQ ID NO: 2272)





CEP290-
+
CUCUAGAUGACAUGAGGUAAGU (SEQ
22
downstream


1466

ID NO: 2273)





CEP290-
+
CUAGAUGACAUGAGGUAAGU (SEQ ID
20
downstream


1467

NO: 671)





CEP290-

CUAAUACAUGAGAGUGAUUAGUGG
24
downstream


1468

(SEQ ID NO: 2275)





CEP290-

CAUGAGAGUGAUUAGUGG (SEQ ID NO:
18
downstream


1469

2276)





CEP290-509
+
CACUGCCAAUAGGGAUAGGU (SEQ ID
20
downstream




NO: 613)





CEP290-511
+
CUGCCAAUAGGGAUAGGU (SEQ ID NO:
18
downstream




1046)





CEP290-
+
CCAAACAGGAGAUACUCAACACA (SEQ
23
downstream


1470

ID NO: 2278)





CEP290-
+
CAAACAGGAGAUACUCAACACA (SEQ
22
downstream


1471

ID NO: 2279)





CEP290-
+
CAGGAGAUACUCAACACA (SEQ ID NO:
18
downstream


1472

2280)





CEP290-
+
CACGUACAAAAGAACAUACAU (SEQ ID
21
downstream


1473

NO: 2281)





CEP290-
+
CGUACAAAAGAACAUACAU (SEQ ID
19
downstream


1474

NO: 2282)





CEP290-
+
CAGUAAGGAGGAUGUAAGAC (SEQ ID
20
downstream


1475

NO: 676)





CEP290-
+
CUUUUGACAGUUUUUAAGG (SEQ ID
19
downstream


1476

NO: 2284)





CEP290-

CGUGCUCUUUUCUAUAUAU (SEQ ID
19
downstream


1477

NO: 2285)





CEP290-
+
CACUGAGCAAAACAACUGG (SEQ ID
19
downstream


1478

NO: 2286)





CEP290-
+
CCUGAACAAGUUUUGAAACAGGAA
24
downstream


1479

(SEQ ID NO: 2287)





CEP290-
+
CUGAACAAGUUUUGAAACAGGAA
23
downstream


1480

(SEQ ID NO: 2288)





CEP290-
+
CAAGUUUUGAAACAGGAA (SEQ ID NO:
18
downstream


1481

2289)





CEP290-
+
CCUGAACAAGUUUUGAAA (SEQ ID NO:
18
downstream


1482

2290)





CEP290-
+
CACUGAGCAAAACAACUGGAA (SEQ ID
21
downstream


1483

NO: 2291)





CEP290-
+
CUGAGCAAAACAACUGGAA (SEQ ID
19
downstream


1484

NO: 2292)





CEP290-

CGUGCUCUUUUCUAUAUA (SEQ ID NO:
18
downstream


1485

2293)





CEP290-
+
CUAUUCCAUUCUUCACAC (SEQ ID NO:
18
downstream


1486

2294)





CEP290-

CUUAGGAAAUUAUUGUUGCUUU (SEQ
22
downstream


1487

ID NO: 2295)





CEP290-

CUUUUUGAGAGGUAAAGGUUC (SEQ ID
21
downstream


1488

NO: 2296)





CEP290-
+
CACUGAGCAAAACAACUGGAAGA (SEQ
23
downstream


1489

ID NO: 2297)





CEP290-
+
CUGAGCAAAACAACUGGAAGA (SEQ ID
21
downstream


1490

NO: 2298)





CEP290-
+
CAUAAGAAAGAACACUGUGGU (SEQ ID
21
downstream


1491

NO: 2299)





CEP290-

CUUGAAAUUUGAUAGUAG (SEQ ID NO:
18
downstream


1492

2300)





CEP290-
+
CCAUUAAAAAAAGUAUGCUU (SEQ ID
20
downstream


1493

NO: 857)





CEP290-
+
CAUUAAAAAAAGUAUGCUU (SEQ ID
19
downstream


1494

NO: 2302)





CEP290-
+
CAAAAGACUUAUAUUCCAUU (SEQ ID
20
downstream


1495

NO: 842)





CEP290-

CAGAUUUCAUGUGUGAAGA (SEQ ID
19
downstream


1496

NO: 2304)





CEP290-

CUGGAUGGGUAAUAAAGCAA (SEQ ID
20
downstream


1497

NO: 2305)





CEP290-

CUUAAGCAUACUUUUUUUUUA (SEQ ID
19
downstream


1498

NO: 2306)





CEP290-

CUUUUUUUGUUGUUUUUUUUU (SEQ
21
downstream


1499

ID NO: 2307)





CEP290-
+
CUGCACUCCAGCCUGGGCAACACA
24
downstream


1500

(SEQ ID NO: 2308)





CEP290-
+
CACUCCAGCCUGGGCAACACA (SEQ ID
21
downstream


1501

NO: 2309)





CEP290-
+
CUCCAGCCUGGGCAACACA (SEQ ID
19
downstream


1502

NO: 2310)





CEP290-
+
GUUUUUAAGGCGGGGAGUCAC (SEQ ID
21
downstream


1503

NO: 2311)





CEP290-230

GGCACAGAGUUCAAGCUAAUAC (SEQ
22
downstream




ID NO: 2312)





CEP290-

GCACAGAGUUCAAGCUAAUAC (SEQ ID
21
downstream


1504

NO: 2313)





CEP290-
+
GCUUGAACUCUGUGCCAAAC (SEQ ID
20
downstream


1505

NO: 461)





CEP290-139

GCAUGUGGUGUCAAAUAUGGUGCU
24
downstream




(SEQ ID NO: 2314)





CEP290-

GUGGUGUCAAAUAUGGUGCU (SEQ ID
20
downstream


1506

NO: 782)





CEP290-

GGUGUCAAAUAUGGUGCU (SEQ ID NO:
18
downstream


1507

2316)





CEP290-

GUGGUGUCAAAUAUGGUGCUU (SEQ ID
21
downstream


1508

NO: 2317)





CEP290-

GGUGUCAAAUAUGGUGCUU (SEQ ID
19
downstream


1509

NO: 2318)





CEP290-

GUGUCAAAUAUGGUGCUU (SEQ ID NO:
18
downstream


1510

2319)





CEP290-
+
GCUCUAGAUGACAUGAGGUAAGU
23
downstream


1511

(SEQ ID NO: 2320)





CEP290-11
+
GACACUGCCAAUAGGGAUAGGU (SEQ
22
downstream




ID NO: 1047)





CEP290-

GGUUCAUGAGACUAGAGGUC (SEQ ID
20
downstream


1512

NO: 2322)





CEP290-

GUUCAUGAGACUAGAGGUC (SEQ ID
19
downstream


1513

NO: 2323)





CEP290-
+
GCCAAACAGGAGAUACUCAACACA
24
downstream


1514

(SEQ ID NO: 2324)





CEP290-
+
GAGCACGUACAAAAGAACAUACAU
24
downstream


1515

(SEQ ID NO: 2325)





CEP290-
+
GCACGUACAAAAGAACAUACAU (SEQ
22
downstream


1516

ID NO: 2326)





CEP290-
+
GUACAAAAGAACAUACAU (SEQ ID NO:
18
downstream


1517

2327)





CEP290-
+
GUGGCAGUAAGGAGGAUGUAAGAC
24
downstream


1518

(SEQ ID NO: 2328)





CEP290-
+
GGCAGUAAGGAGGAUGUAAGAC (SEQ
22
downstream


1519

ID NO: 2329)





CEP290-
+
GCAGUAAGGAGGAUGUAAGAC (SEQ ID
21
downstream


1520

NO: 2330)





CEP290-
+
GUAAGGAGGAUGUAAGAC (SEQ ID NO:
18
downstream


1521

2331)





CEP290-
+
GGUAGCUUUUGACAGUUUUUAAGG
24
downstream


1522

(SEQ ID NO: 2332)





CEP290-
+
GUAGCUUUUGACAGUUUUUAAGG
23
downstream


1523

(SEQ ID NO: 2333)





CEP290-
+
GCUUUUGACAGUUUUUAAGG (SEQ ID
20
downstream


1524

NO: 482)





CEP290-

GUACGUGCUCUUUUCUAUAUAU (SEQ
22
downstream


1525

ID NO: 2334)





CEP290-

GUGCUCUUUUCUAUAUAU (SEQ ID NO:
18
downstream


1526

2335)





CEP290-
+
GAACAAGUUUUGAAACAGGAA (SEQ ID
21
downstream


1527

NO: 2336)





CEP290-
+
GUAAUGCCUGAACAAGUUUUGAAA
24
downstream


1528

(SEQ ID NO: 2337)





CEP290-
+
GCCUGAACAAGUUUUGAAA (SEQ ID
19
downstream


1529

NO: 2338)





CEP290-
+
GGUAAUGCCUGAACAAGUU (SEQ ID
19
downstream


1530

NO: 2339)





CEP290-
+
GUAAUGCCUGAACAAGUU (SEQ ID NO:
18
downstream


1531

2340)





CEP290-

GUACGUGCUCUUUUCUAUAUA (SEQ ID
21
downstream


1532

NO: 2341)





CEP290-
+
GAGAGAAAUGGUUCCCUAUAUA (SEQ
22
downstream


1533

ID NO: 2342)





CEP290-
+
GAGAAAUGGUUCCCUAUAUA (SEQ ID
20
downstream


1534

NO: 771)





CEP290-
+
GAAAUGGUUCCCUAUAUA (SEQ ID NO:
18
downstream


1535

2344)





CEP290-

GCUUAGGAAAUUAUUGUUGCUUU
23
downstream


1536

(SEQ ID NO: 2345)





CEP290-

GGAAAUUAUUGUUGCUUU (SEQ ID NO:
18
downstream


1537

2346)





CEP290-

GCUUUUUGAGAGGUAAAGGUUC (SEQ
22
downstream


1538

ID NO: 2347)





CEP290-
+
GAGCAAAACAACUGGAAGA (SEQ ID
19
downstream


1539

NO: 2348)





CEP290-

GUGUGAAGAAUGGAAUAGAUAAU
23
downstream


1540

(SEQ ID NO: 2349)





CEP290-

GUGAAGAAUGGAAUAGAUAAU (SEQ
21
downstream


1541

ID NO: 2350)





CEP290-

GAAGAAUGGAAUAGAUAAU (SEQ ID
19
downstream


1542

NO: 2351)





CEP290-
+
GUAAGGAGGAUGUAAGACUGGAGA
24
downstream


1543

(SEQ ID NO: 2352)





CEP290-
+
GGAGGAUGUAAGACUGGAGA (SEQ ID
20
downstream


1544

NO: 779)





CEP290-
+
GAGGAUGUAAGACUGGAGA (SEQ ID
19
downstream


1545

NO: 2354)





CEP290-

GAAAAACUUGAAAUUUGAUAGUAG
24
downstream


1546

(SEQ ID NO: 2355)





CEP290-

GUGUUUACAUAUCUGUCUUCCUUA
24
downstream


1547

(SEQ ID NO: 2356)





CEP290-

GUUUACAUAUCUGUCUUCCUUA (SEQ
22
downstream


1548

ID NO: 2357)





CEP290-
+
GUUCCAUUAAAAAAAGUAUGCUU
23
downstream


1549

(SEQ ID NO: 2358)





CEP290-

GGAAUAUAAGUCUUUUGAUAU (SEQ
21
downstream


1550

ID NO: 2359)





CEP290-

GAAUAUAAGUCUUUUGAUAU (SEQ ID
20
downstream


1551

NO: 770)





CEP290-

GUGUGAAGAAUGGAAUAGAUAAUA
24
downstream


1552

(SEQ ID NO: 2361)





CEP290-

GUGAAGAAUGGAAUAGAUAAUA (SEQ
22
downstream


1553

ID NO: 2362)





CEP290-

GAAGAAUGGAAUAGAUAAUA (SEQ ID
20
downstream


1554

NO: 467)





CEP290-

GGAUGGGUAAUAAAGCAA (SEQ ID NO:
18
downstream


1555

2363)





CEP290-
+
GAAAUUCACUGAGCAAAACAA (SEQ ID
21
downstream


1556

NO: 2364)





CEP290-
+
GGAUGUAAGACUGGAGAUAGAGA
23
downstream


1557

(SEQ ID NO: 2365)





CEP290-
+
GAUGUAAGACUGGAGAUAGAGA (SEQ
22
downstream


1558

ID NO: 2366)





CEP290-
+
GUAAGACUGGAGAUAGAGA (SEQ ID
19
downstream


1559

NO: 2367)





CEP290-

GAAAUUUGAUAGUAGAAGAAAA (SEQ
22
downstream


1560

ID NO: 2368)





CEP290-

GGGUAAUAAAGCAAAAGAAAAAC
23
downstream


1561

(SEQ ID NO: 2369)





CEP290-

GGUAAUAAAGCAAAAGAAAAAC (SEQ
22
downstream


1562

ID NO: 2370)





CEP290-

GUAAUAAAGCAAAAGAAAAAC (SEQ ID
21
downstream


1563

NO: 2371)





CEP290-
+
GCACUCCAGCCUGGGCAACACA (SEQ
22
downstream


1564

ID NO: 2372)





CEP290-

UACUUACCUCAUGUCAUCUAGAGC
24
downstream


1565

(SEQ ID NO: 2373)





CEP290-

UUACCUCAUGUCAUCUAGAGC (SEQ ID
21
downstream


1566

NO: 2374)





CEP290-

UACCUCAUGUCAUCUAGAGC (SEQ ID
20
downstream


1567

NO: 876)





CEP290-
+
UUUUUAAGGCGGGGAGUCAC (SEQ ID
20
downstream


1568

NO: 909)





CEP290-
+
UUUUAAGGCGGGGAGUCAC (SEQ ID
19
downstream


1569

NO: 2377)





CEP290-
+
UUUAAGGCGGGGAGUCAC (SEQ ID NO:
18
downstream


1570

2378)





CEP290-

UUGGCACAGAGUUCAAGCUAAUAC
24
downstream


1571

(SEQ ID NO: 2379)





CEP290-

UGGCACAGAGUUCAAGCUAAUAC (SEQ
23
downstream


1572

ID NO: 2380)





CEP290-
+
UUAGCUUGAACUCUGUGCCAAAC (SEQ
23
downstream


1573

ID NO: 2381)





CEP290-
+
UAGCUUGAACUCUGUGCCAAAC (SEQ
22
downstream


1574

ID NO: 2382)





CEP290-
+
UUGAACUCUGUGCCAAAC (SEQ ID NO:
18
downstream


1575

2383)





CEP290-

UGUGGUGUCAAAUAUGGUGCU (SEQ ID
21
downstream


1576

NO: 2384)





CEP290-

UGGUGUCAAAUAUGGUGCU (SEQ ID
19
downstream


1577

NO: 2385)





CEP290-

UGUGGUGUCAAAUAUGGUGCUU (SEQ
22
downstream


1578

ID NO: 2386)





CEP290-

UGGUGUCAAAUAUGGUGCUU (SEQ ID
20
downstream


1579

NO: 625)





CEP290-
+
UGCUCUAGAUGACAUGAGGUAAGU
24
downstream


1580

(SEQ ID NO: 2388)





CEP290-
+
UCUAGAUGACAUGAGGUAAGU (SEQ ID
21
downstream


1581

NO: 2389)





CEP290-
+
UAGAUGACAUGAGGUAAGU (SEQ ID
19
downstream


1582

NO: 2390)





CEP290-

UAAUACAUGAGAGUGAUUAGUGG
23
downstream


1583

(SEQ ID NO: 2391)





CEP290-

UACAUGAGAGUGAUUAGUGG (SEQ ID
20
downstream


1584

NO: 628)





CEP290-

UAAAGGUUCAUGAGACUAGAGGUC
24
downstream


1585

(SEQ ID NO: 2392)





CEP290-

UUCAUGAGACUAGAGGUC (SEQ ID NO:
18
downstream


1586

2393)





CEP290-
+
UGGCAGUAAGGAGGAUGUAAGAC
23
downstream


1587

(SEQ ID NO: 2394)





CEP290-
+
UAGCUUUUGACAGUUUUUAAGG (SEQ
22
downstream


1588

ID NO: 2395)





CEP290-
+
UUUUGACAGUUUUUAAGG (SEQ ID NO:
18
downstream


1589

2396)





CEP290-

UUGUACGUGCUCUUUUCUAUAUAU
24
downstream


1590

(SEQ ID NO: 2397)





CEP290-

UGUACGUGCUCUUUUCUAUAUAU (SEQ
23
downstream


1591

ID NO: 2398)





CEP290-

UACGUGCUCUUUUCUAUAUAU (SEQ ID
21
downstream


1592

NO: 2399)





CEP290-
+
UUCACUGAGCAAAACAACUGG (SEQ ID
21
downstream


1593

NO: 2400)





CEP290-
+
UCACUGAGCAAAACAACUGG (SEQ ID
20
downstream


1594

NO: 883)





CEP290-
+
UGAACAAGUUUUGAAACAGGAA (SEQ
22
downstream


1595

ID NO: 2402)





CEP290-
+
UAAUGCCUGAACAAGUUUUGAAA
23
downstream


1596

(SEQ ID NO: 2403)





CEP290-
+
UGCCUGAACAAGUUUUGAAA (SEQ ID
20
downstream


1597

NO: 897)





CEP290-
+
UUCACUGAGCAAAACAACUGGAA (SEQ
23
downstream


1598

ID NO: 2405)





CEP290-
+
UCACUGAGCAAAACAACUGGAA (SEQ
22
downstream


1599

ID NO: 2406)





CEP290-
+
UGAGCAAAACAACUGGAA (SEQ ID NO:
18
downstream


1600

2407)





CEP290-

UUUGUACGUGCUCUUUUCUAUAUA
24
downstream


1601

(SEQ ID NO: 2408)





CEP290-

UUGUACGUGCUCUUUUCUAUAUA (SEQ
23
downstream


1602

ID NO: 2409)





CEP290-

UGUACGUGCUCUUUUCUAUAUA (SEQ
22
downstream


1603

ID NO: 2410)





CEP290-

UACGUGCUCUUUUCUAUAUA (SEQ ID
20
downstream


1604

NO: 877)





CEP290-
+
UAUUAUCUAUUCCAUUCUUCACAC
24
downstream


1605

(SEQ ID NO: 2412)





CEP290-
+
UUAUCUAUUCCAUUCUUCACAC (SEQ
22
downstream


1606

ID NO: 2413)





CEP290-
+
UAUCUAUUCCAUUCUUCACAC (SEQ ID
21
downstream


1607

NO: 2414)





CEP290-
+
UCUAUUCCAUUCUUCACAC (SEQ ID
19
downstream


1608

NO: 2415)





CEP290-

UGCUUAGGAAAUUAUUGUUGCUUU
24
downstream


1609

(SEQ ID NO: 2416)





CEP290-

UUAGGAAAUUAUUGUUGCUUU (SEQ
21
downstream


1610

ID NO: 2417)





CEP290-

UAGGAAAUUAUUGUUGCUUU (SEQ ID
20
downstream


1611

NO: 2418)





CEP290-

UUGCUUUUUGAGAGGUAAAGGUUC
24
downstream


1612

(SEQ ID NO: 2419)





CEP290-

UGCUUUUUGAGAGGUAAAGGUUC
23
downstream


1613

(SEQ ID NO: 2420)





CEP290-

UUUUUGAGAGGUAAAGGUUC (SEQ ID
20
downstream


1614

NO: 2421)





CEP290-

UUUUGAGAGGUAAAGGUUC (SEQ ID
19
downstream


1615

NO: 2422)





CEP290-

UUUGAGAGGUAAAGGUUC (SEQ ID NO:
18
downstream


1616

2423)





CEP290-
+
UCACUGAGCAAAACAACUGGAAGA
24
downstream


1617

(SEQ ID NO: 2424)





CEP290-
+
UGAGCAAAACAACUGGAAGA (SEQ ID
20
downstream


1618

NO: 894)





CEP290-
+
UACAUAAGAAAGAACACUGUGGU
23
downstream


1619

(SEQ ID NO: 2426)





CEP290-
+
UAAGAAAGAACACUGUGGU (SEQ ID
19
downstream


1620

NO: 2427)





CEP290-

UGUGUGAAGAAUGGAAUAGAUAAU
24
downstream


1621

(SEQ ID NO: 2428)





CEP290-

UGUGAAGAAUGGAAUAGAUAAU (SEQ
22
downstream


1622

ID NO: 2429)





CEP290-

UGAAGAAUGGAAUAGAUAAU (SEQ ID
20
downstream


1623

NO: 2430)





CEP290-
+
UAAGGAGGAUGUAAGACUGGAGA
23
downstream


1624

(SEQ ID NO: 2431)





CEP290-

UGUUUACAUAUCUGUCUUCCUUA (SEQ
23
downstream


1625

ID NO: 2432)





CEP290-

UUUACAUAUCUGUCUUCCUUA (SEQ ID
21
downstream


1626

NO: 2433)





CEP290-

UUACAUAUCUGUCUUCCUUA (SEQ ID
20
downstream


1627

NO: 901)





CEP290-

UACAUAUCUGUCUUCCUUA (SEQ ID
19
downstream


1628

NO: 2435)





CEP290-
+
UGUUCCAUUAAAAAAAGUAUGCUU
24
downstream


1629

(SEQ ID NO: 2436)





CEP290-
+
UUCCAUUAAAAAAAGUAUGCUU (SEQ
22
downstream


1630

ID NO: 2437)





CEP290-
+
UCCAUUAAAAAAAGUAUGCUU (SEQ ID
21
downstream


1631

NO: 2438)





CEP290-
+
UAUCAAAAGACUUAUAUUCCAUU (SEQ
23
downstream


1632

ID NO: 2439)





CEP290-
+
UCAAAAGACUUAUAUUCCAUU (SEQ ID
21
downstream


1633

NO: 2440)





CEP290-

UCAGAUUUCAUGUGUGAAGA (SEQ ID
20
downstream


1634

NO: 2441)





CEP290-

UGGAAUAUAAGUCUUUUGAUAU (SEQ
22
downstream


1635

ID NO: 2442)





CEP290-

UGUGAAGAAUGGAAUAGAUAAUA
23
downstream


1636

(SEQ ID NO: 2443)





CEP290-

UGAAGAAUGGAAUAGAUAAUA (SEQ
21
downstream


1637

ID NO: 2444)





CEP290-

UGGAUGGGUAAUAAAGCAA (SEQ ID
19
downstream


1638

NO: 2445)





CEP290-
+
UAGAAAUUCACUGAGCAAAACAA (SEQ
23
downstream


1639

ID NO: 2446)





CEP290-
+
UGUAAGACUGGAGAUAGAGA (SEQ ID
20
downstream


1640

NO: 898)





CEP290-
+
UAAGACUGGAGAUAGAGA (SEQ ID NO:
18
downstream


1641

2448)





CEP290-

UUGAAAUUUGAUAGUAGAAGAAAA
24
downstream


1642

(SEQ ID NO: 2449)





CEP290-

UGAAAUUUGAUAGUAGAAGAAAA
23
downstream


1643

(SEQ ID NO: 2450)





CEP290-

UUUGAUAGUAGAAGAAAA (SEQ ID NO:
18
downstream


1644

2451)





CEP290-
+
UAAAACUAAGACACUGCCAA (SEQ ID
20
downstream


1645

NO: 871)





CEP290-

UUUUUCUUAAGCAUACUUUUUUUA
24
downstream


1646

(SEQ ID NO: 2453)





CEP290-

UUUUCUUAAGCAUACUUUUUUUA
23
downstream


1647

(SEQ ID NO: 2454)





CEP290-

UUUCUUAAGCAUACUUUUUUUA (SEQ
22
downstream


1648

ID NO: 2455)





CEP290-

UUCUUAAGCAUACUUUUUUUA (SEQ ID
21
downstream


1649

NO: 2456)





CEP290-

UCUUAAGCAUACUUUUUUUA (SEQ ID
20
downstream


1650

NO: 891)





CEP290-

UUAAGCAUACUUUUUUUA (SEQ ID NO:
18
downstream


1651

2458)





CEP290-

UGGGUAAUAAAGCAAAAGAAAAAC
24
downstream


1652

(SEQ ID NO: 2459)





CEP290-

UAAUAAAGCAAAAGAAAAAC (SEQ ID
20
downstream


1653

NO: 2460)





CEP290-

UUCUUUUUUUGUUGUUUUUUUUU
23
downstream


1654

(SEQ ID NO: 2461)





CEP290-

UCUUUUUUUGUUGUUUUUUUUU (SEQ
22
downstream


1655

ID NO: 2462)





CEP290-

UUUUUUUGUUGUUUUUUUUU (SEQ ID
20
downstream


1656

NO: 2463)





CEP290-

UUUUUUGUUGUUUUUUUUU (SEQ ID
19
downstream


1657

NO: 2464)





CEP290-

UUUUUGUUGUUUUUUUUU (SEQ ID NO:
18
downstream


1658

2465)





CEP290-
+
UGCACUCCAGCCUGGGCAACACA (SEQ
23
downstream


1659

ID NO: 2466)





CEP290-
+
UCCAGCCUGGGCAACACA (SEQ ID NO:
18
downstream


1660

2467)





CEP290-
+
AUUUUCGUGACCUCUAGUCUC (SEQ ID
21
downstream


1661

NO: 2468)





CEP290-
+
ACUAAUCACUCUCAUGUAUUAGC (SEQ
23
downstream


1662

ID NO: 2469)





CEP290-
+
AAUCACUCUCAUGUAUUAGC (SEQ ID
20
downstream


1663

NO: 814)





CEP290-
+
AUCACUCUCAUGUAUUAGC (SEQ ID
19
downstream


1664

NO: 2471)





CEP290-
+
AGAUGACAUGAGGUAAGUA (SEQ ID
19
downstream


1665

NO: 2472)





CEP290-

ACCUCAUGUCAUCUAGAGCAAGAG
24
downstream


1666

(SEQ ID NO: 2473)





CEP290-

AUGUCAUCUAGAGCAAGAG (SEQ ID
19
downstream


1667

NO: 2474)





CEP290-

AAUACAUGAGAGUGAUUAGUGGUG
24
downstream


1668

(SEQ ID NO: 2475)





CEP290-

AUACAUGAGAGUGAUUAGUGGUG
23
downstream


1669

(SEQ ID NO: 2476)





CEP290-

ACAUGAGAGUGAUUAGUGGUG (SEQ
21
downstream


1670

ID NO: 2477)





CEP290-

AUGAGAGUGAUUAGUGGUG (SEQ ID
19
downstream


1671

NO: 2478)





CEP290-

ACGUGCUCUUUUCUAUAUAUA (SEQ ID
21
downstream


1672

NO: 2479)





CEP290-
+
ACAAAACCUAUGUAUAAGAUG (SEQ ID
21
downstream


1673

NO: 2480)





CEP290-
+
AAAACCUAUGUAUAAGAUG (SEQ ID
19
downstream


1674

NO: 2481)





CEP290-
+
AAACCUAUGUAUAAGAUG (SEQ ID NO:
18
downstream


1675

2482)





CEP290-
+
AUAUAUAGAAAAGAGCACGUACAA
24
downstream


1676

(SEQ ID NO: 2483)





CEP290-
+
AUAUAGAAAAGAGCACGUACAA (SEQ
22
downstream


1677

ID NO: 2484)





CEP290-
+
AUAGAAAAGAGCACGUACAA (SEQ ID
20
downstream


1678

NO: 832)





CEP290-
+
AGAAAAGAGCACGUACAA (SEQ ID NO:
18
downstream


1679

2486)





CEP290-
+
AGAAAUGGUUCCCUAUAUAUAGAA
24
downstream


1680

(SEQ ID NO: 2487)





CEP290-
+
AAAUGGUUCCCUAUAUAUAGAA (SEQ
22
downstream


1681

ID NO: 2488)





CEP290-
+
AAUGGUUCCCUAUAUAUAGAA (SEQ ID
21
downstream


1682

NO: 2489)





CEP290-
+
AUGGUUCCCUAUAUAUAGAA (SEQ ID
20
downstream


1683

NO: 839)





CEP290-

AUGGAAUAUAAGUCUUUUGAUAUA
24
downstream


1684

(SEQ ID NO: 2491)





CEP290-

AAUAUAAGUCUUUUGAUAUA (SEQ ID
20
downstream


1685

NO: 687)





CEP290-

AUAUAAGUCUUUUGAUAUA (SEQ ID
19
downstream


1686

NO: 2493)





CEP290-
+
ACGUACAAAAGAACAUACAUAAGA
24
downstream


1687

(SEQ ID NO: 2494)





CEP290-
+
ACAAAAGAACAUACAUAAGA (SEQ ID
20
downstream


1688

NO: 816)





CEP290-
+
AAAAGAACAUACAUAAGA (SEQ ID NO:
18
downstream


1689

2496)





CEP290-
+
AAGAAAAAAAAGGUAAUGC (SEQ ID
19
downstream


1690

NO: 2497)





CEP290-
+
AGAAAAAAAAGGUAAUGC (SEQ ID NO:
18
downstream


1691

2498)





CEP290-
+
AAACAGGAAUAGAAAUUCA (SEQ ID
19
downstream


1692

NO: 2499)





CEP290-
+
AACAGGAAUAGAAAUUCA (SEQ ID NO:
18
downstream


1693

2500)





CEP290-
+
AAGAUCACUCCACUGCACUCCAGC
24
downstream


1694

(SEQ ID NO: 2501)





CEP290-
+
AGAUCACUCCACUGCACUCCAGC (SEQ
23
downstream


1695

ID NO: 2502)





CEP290-
+
AUCACUCCACUGCACUCCAGC (SEQ ID
21
downstream


1696

NO: 2503)





CEP290-
+
ACUCCACUGCACUCCAGC (SEQ ID NO:
18
downstream


1697

2504)





CEP290-

CCCCUACUUACCUCAUGUCAUC (SEQ
22
downstream


1698

ID NO: 2505)





CEP290-

CCCUACUUACCUCAUGUCAUC (SEQ ID
21
downstream


1699

NO: 2506)





CEP290-

CCUACUUACCUCAUGUCAUC (SEQ ID
20
downstream


1700

NO: 747)





CEP290-

CUACUUACCUCAUGUCAUC (SEQ ID
19
downstream


1701

NO: 2508)





CEP290-
+
CUGAUUUUCGUGACCUCUAGUCUC
24
downstream


1702

(SEQ ID NO: 2509)





CEP290-
+
CACUAAUCACUCUCAUGUAUUAGC
24
downstream


1703

(SEQ ID NO: 2510)





CEP290-
+
CUAAUCACUCUCAUGUAUUAGC (SEQ
22
downstream


1704

ID NO: 2511)





CEP290-
+
CUCUAGAUGACAUGAGGUAAGUA
23
downstream


1705

(SEQ ID NO: 2512)





CEP290-
+
CUAGAUGACAUGAGGUAAGUA (SEQ ID
21
downstream


1706

NO: 2513)





CEP290-

CCUCAUGUCAUCUAGAGCAAGAG (SEQ
23
downstream


1707

ID NO: 2514)





CEP290-

CUCAUGUCAUCUAGAGCAAGAG (SEQ
22
downstream


1708

ID NO: 2515)





CEP290-

CAUGUCACUAGAGCAAGAG (SEQ ID
20
downstream


1709

NO: 855)





CEP290-

CAUGAGAGUGAUUAGUGGUG (SEQ ID
20
downstream


1710

NO: 854)





CEP290-

CGUGCUCUUUUCUAUAUAUA (SEQ ID
20
downstream


1711

NO: 624)





CEP290-
+
CAAAACCUAUGUAUAAGAUG (SEQ ID
20
downstream


1712

NO: 841)





CEP290-
+
CGUACAAAAGAACAUACAUAAGA (SEQ
23
downstream


1713

ID NO: 2520)





CEP290-
+
CAAAAGAACAUACAUAAGA (SEQ ID
19
downstream


1714

NO: 2521)





CEP290-
+
CUUAAGAAAAAAAAGGUAAUGC (SEQ
22
downstream


1715

ID NO: 2522)





CEP290-

CUUAAGCAUACUUUUUUUAA (SEQ ID
20
downstream


1716

NO: 690)





CEP290-
+
CACUCCACUGCACUCCAGC (SEQ ID
19
downstream


1717

NO: 2524)





CEP290-132

GUCCCCUACUUACCUCAUGUCAUC
24
downstream




(SEQ ID NO: 2525)





CEP290-
+
GAUUUUCGUGACCUCUAGUCUC (SEQ
22
downstream


1718

ID NO: 2526)





CEP290-
+
GCUCUAGAUGACAUGAGGUAAGUA
24
downstream


1719

(SEQ ID NO: 2527)





CEP290-
+
GAUGACAUGAGGUAAGUA (SEQ ID NO:
18
downstream


1720

2528)





CEP290-

GUACGUGCUCUUUUCUAUAUAUA (SEQ
23
downstream


1721

ID NO: 2529)





CEP290-

GUGCUCUUUUCUAUAUAUA (SEQ ID
19
downstream


1722

NO: 2530)





CEP290-
+
GUACAAAACCUAUGUAUAAGAUG
23
downstream


1723

(SEQ ID NO: 2531)





CEP290-
+
GAAAUGGUUCCCUAUAUAUAGAA
23
downstream


1724

(SEQ ID NO: 2532)





CEP290-
+
GGUUCCCUAUAUAUAGAA (SEQ ID NO:
18
downstream


1725

2533)





CEP290-

GGAAUAUAAGUCUUUUGAUAUA (SEQ
22
downstream


1726

ID NO: 2534)





CEP290-

GAAUAUAAGUCUUUUGAUAUA (SEQ
21
downstream


1727

ID NO: 2535)





CEP290-
+
GUACAAAAGAACAUACAUAAGA (SEQ
22
downstream


1728

ID NO: 2536)





CEP290-
+
GCUUAAGAAAAAAAAGGUAAUGC
23
downstream


1729

(SEQ ID NO: 2537)





CEP290-
+
GAAACAGGAAUAGAAAUUCA (SEQ ID
20
downstream


1730

NO: 769)





CEP290-
+
GAUCACUCCACUGCACUCCAGC (SEQ
22
downstream


1731

ID NO: 2539)





CEP290-

UCCCCUACUUACCUCAUGUCAUC (SEQ
23
downstream


1732

ID NO: 2540)





CEP290-

UACUUACCUCAUGUCAUC (SEQ ID NO:
18
downstream


1733

2541)





CEP290-
+
UGAUUUUCGUGACCUCUAGUCUC (SEQ
23
downstream


1734

ID NO: 2542)





CEP290-
+
UUUUCGUGACCUCUAGUCUC (SEQ ID
20
downstream


1735

NO: 2543)





CEP290-
+
UUUCGUGACCUCUAGUCUC (SEQ ID
19
downstream


1736

NO: 2544)





CEP290-
+
UUCGUGACCUCUAGUCUC (SEQ ID NO:
18
downstream


1737

2545)





CEP290-
+
UAAUCACUCUCAUGUAUUAGC (SEQ ID
21
downstream


1738

NO: 2546)





CEP290-
+
UCACUCUCAUGUAUUAGC (SEQ ID NO:
18
downstream


1739

2547)





CEP290-
+
UCUAGAUGACAUGAGGUAAGUA (SEQ
22
downstream


1740

ID NO: 2548)





CEP290-
+
UAGAUGACAUGAGGUAAGUA (SEQ ID
20
downstream


1741

NO: 680)





CEP290-

UCAUGUCAUCUAGAGCAAGAG (SEQ ID
21
downstream


1742

NO: 2550)





CEP290-

UGUCAUCUAGAGCAAGAG (SEQ ID NO:
18
downstream


1743

2551)





CEP290-

UACAUGAGAGUGAUUAGUGGUG (SEQ
22
downstream


1744

ID NO: 2552)





CEP290-

UGAGAGUGAUUAGUGGUG (SEQ ID NO:
18
downstream


1745

2553)





CEP290-

UGUACGUGCUCUUUUCUAUAUAUA
24
downstream


1746

(SEQ ID NO: 2554)





CEP290-

UACGUGCUCUUUUCUAUAUAUA (SEQ
22
downstream


1747

ID NO: 2555)





CEP290-

UGCUCUUUUCUAUAUAUA (SEQ ID NO:
18
downstream


1748

2556)





CEP290-
+
UGUACAAAACCUAUGUAUAAGAUG
24
downstream


1749

(SEQ ID NO: 2557)





CEP290-
+
UACAAAACCUAUGUAUAAGAUG (SEQ
22
downstream


1750

ID NO: 2558)





CEP290-
+
UAUAUAGAAAAGAGCACGUACAA
23
downstream


1751

(SEQ ID NO: 2559)





CEP290-
+
UAUAGAAAAGAGCACGUACAA (SEQ ID
21
downstream


1752

NO: 2560)





CEP290-
+
UAGAAAAGAGCACGUACAA (SEQ ID
19
downstream


1753

NO: 2561)





CEP290-
+
UGGUUCCCUAUAUAUAGAA (SEQ ID
19
downstream


1754

NO: 2562)





CEP290-

UGGAAUAUAAGUCUUUUGAUAUA
23
downstream


1755

(SEQ ID NO: 2563)





CEP290-

UAUAAGUCUUUUGAUAUA (SEQ ID NO:
18
downstream


1756

2564)





CEP290-
+
UACAAAAGAACAUACAUAAGA (SEQ ID
21
downstream


1757

NO: 2565)





CEP290-
+
UGCUUAAGAAAAAAAAGGUAAUGC
24
downstream


1758

(SEQ ID NO: 2566)





CEP290-
+
UUAAGAAAAAAAAGGUAAUGC (SEQ
21
downstream


1759

ID NO: 2567)





CEP290-
+
UAAGAAAAAAAAGGUAAUGC (SEQ ID
20
downstream


1760

NO: 872)





CEP290-
+
UUUUGAAACAGGAAUAGAAAUUCA
24
downstream


1761

(SEQ ID NO: 2569)





CEP290-
+
UUUGAAACAGGAAUAGAAAUUCA
23
downstream


1762

(SEQ ID NO: 2570)





CEP290-
+
UUGAAACAGGAAUAGAAAUUCA (SEQ
22
downstream


1763

ID NO: 2571)





CEP290-
+
UGAAACAGGAAUAGAAAUUCA (SEQ ID
21
downstream


1764

NO: 2572)





CEP290-

UUUUCUUAAGCAUACUUUUUUUAA
24
downstream


1765

(SEQ ID NO: 2573)





CEP290-

UUUCUUAAGCAUACUUUUUUUAA
23
downstream


1766

(SEQ ID NO: 2574)





CEP290-

UUCUUAAGCAUACUUUUUUUAA (SEQ
22
downstream


1767

ID NO: 2575)





CEP290-

UCUUAAGCAUACUUUUUUUAA (SEQ ID
21
downstream


1768

NO: 2576)





CEP290-

UUAAGCAUACUUUUUUUAA (SEQ ID
19
downstream


1769

NO: 2577)





CEP290-

UAAGCAUACUUUUUUUAA (SEQ ID NO:
18
downstream


1770

2578)





CEP290-
+
UCACUCCACUGCACUCCAGC (SEQ ID
20
downstream


1771

NO: 2579)





CEP290-
+
AGUUUUUAAGGCGGGGAGUCACA
23
downstream


1772

(SEQ ID NO: 2580)





CEP290-

AAACUGUCAAAAGCUACCGGUUAC
24
downstream


1773

(SEQ ID NO: 2581)





CEP290-

AACUGUCAAAAGCUACCGGUUAC (SEQ
23
downstream


1774

ID NO: 2582)





CEP290-252

ACUGUCAAAAGCUACCGGUUAC (SEQ
22
downstream




ID NO: 2583)





CEP290-
+
AGUUCAUCUCUUGCUCUAGAUGAC
24
downstream


1775

(SEQ ID NO: 2584)





CEP290-
+
AUCUCUUGCUCUAGAUGAC (SEQ ID
19
downstream


1776

NO: 2585)





CEP290-

ACGAAAAUCAGAUUUCAUGU (SEQ ID
20
downstream


1777

NO: 2586)





CEP290-

AAUACAUGAGAGUGAUUAGUG (SEQ
21
downstream


1778

ID NO: 2587)





CEP290-

AUACAUGAGAGUGAUUAGUG (SEQ ID
20
downstream


1779

NO: 831)





CEP290-

ACAUGAGAGUGAUUAGUG (SEQ ID NO:
18
downstream


1780

2589)





CEP290-
+
AUUAGCUUGAACUCUGUGCCAAA (SEQ
23
downstream


1781

ID NO: 2590)





CEP290-
+
AGCUUGAACUCUGUGCCAAA (SEQ ID
20
downstream


1782

NO: 824)





CEP290-

AUGUAGAUUGAGGUAGAAUCAAG
23
downstream


1783

(SEQ ID NO: 2592)





CEP290-

AGAUUGAGGUAGAAUCAAG (SEQ ID
19
downstream


1784

NO: 2593)





CEP290-
+
AUAAGAUGCAGAACUAGUGUAGA
23
downstream


1785

(SEQ ID NO: 2594)





CEP290-
+
AAGAUGCAGAACUAGUGUAGA (SEQ ID
21
downstream


1786

NO: 2595)





CEP290-
+
AGAUGCAGAACUAGUGUAGA (SEQ ID
20
downstream


1787

NO: 821)





CEP290-
+
AUGCAGAACUAGUGUAGA (SEQ ID NO:
18
downstream


1788

2597)





CEP290-

AUAGAUGUAGAUUGAGGUAGAAUC
24
downstream


1789

(SEQ ID NO: 2598)





CEP290-

AGAUGUAGAUUGAGGUAGAAUC (SEQ
22
downstream


1790

ID NO: 2599)





CEP290-

AUGUAGAUUGAGGUAGAAUC (SEQ ID
20
downstream


1791

NO: 2600)





CEP290-
+
AGAAUGAUCAUUCUUGUGGCAGUA
24
downstream


1792

(SEQ ID NO: 2601)





CEP290-
+
AAUGAUCAUUCUUGUGGCAGUA (SEQ
22
downstream


1793

ID NO: 2602)





CEP290-
+
AUGAUCAUUCUUGUGGCAGUA (SEQ ID
21
downstream


1794

NO: 2603)





CEP290-
+
AUCAUUCUUGUGGCAGUA (SEQ ID NO:
18
downstream


1795

2604)





CEP290-
+
AGAAUGAUCAUUCUUGUGGCAGU
23
downstream


1796

(SEQ ID NO: 2605)





CEP290-
+
AAUGAUCAUUCUUGUGGCAGU (SEQ ID
21
downstream


1797

NO: 2606)





CEP290-
+
AUGAUCAUUCUUGUGGCAGU (SEQ ID
20
downstream


1798

NO: 837)





CEP290-

AGAGGUAAAGGUUCAUGAGAC (SEQ ID
21
downstream


1799

NO: 2608)





CEP290-

AGGUAAAGGUUCAUGAGAC (SEQ ID
19
downstream


1800

NO: 2609)





CEP290-
+
AGCUUUUGACAGUUUUUAAG (SEQ ID
20
downstream


1801

NO: 825)





CEP290-
+
AGCUUUUGACAGUUUUUAAGGC (SEQ
22
downstream


1802

ID NO: 2611)





CEP290-
+
AGAAAUUCACUGAGCAAAACAAC (SEQ
23
downstream


1803

ID NO: 2612)





CEP290-
+
AAAUUCACUGAGCAAAACAAC (SEQ ID
21
downstream


1804

NO: 2613)





CEP290-
+
AAUUCACUGAGCAAAACAAC (SEQ ID
20
downstream


1805

NO: 678)





CEP290-
+
AUUCACUGAGCAAAACAAC (SEQ ID
19
downstream


1806

NO: 2615)





CEP290-
+
AGUAAGGAGGAUGUAAGA (SEQ ID NO:
18
downstream


1807

2616)





CEP290-
+
AUCAAAAGACUUAUAUUCCAUUA (SEQ
23
downstream


1808

ID NO: 2617)





CEP290-
+
AAAAGACUUAUAUUCCAUUA (SEQ ID
20
downstream


1809

NO: 685)





CEP290-
+
AAAGACUUAUAUUCCAUUA (SEQ ID
19
downstream


1810

NO: 2619)





CEP290-
+
AAGACUUAUAUUCCAUUA (SEQ ID NO:
18
downstream


1811

2620)





CEP290-

AGGAAAUUAUUGUUGCUUUUU (SEQ
21
downstream


1812

ID NO: 2621)





CEP290-

AAAUUAUUGUUGCUUUUU (SEQ ID NO:
18
downstream


1813

2622)





CEP290-

AAAGAAAAACUUGAAAUUUGAUAG
24
downstream


1814

(SEQ ID NO: 2623)





CEP290-

AAGAAAAACUUGAAAUUUGAUAG
23
downstream


1815

(SEQ ID NO: 2624)





CEP290-

AGAAAAACUUGAAAUUUGAUAG (SEQ
22
downstream


1816

ID NO: 2625)





CEP290-

AAAAACUUGAAAUUUGAUAG (SEQ ID
20
downstream


1817

NO: 2626)





CEP290-

AAAACUUGAAAUUUGAUAG (SEQ ID
19
downstream


1818

NO: 2627)





CEP290-

AAACUUGAAAUUUGAUAG (SEQ ID NO:
18
downstream


1819

2628)





CEP290-

AAGAAAAAAGAAAUAGAUGUAGA
23
downstream


1820

(SEQ ID NO: 2629)





CEP290-

AGAAAAAAGAAAUAGAUGUAGA (SEQ
22
downstream


1821

ID NO: 2630)





CEP290-

AAAAAAGAAAUAGAUGUAGA (SEQ ID
20
downstream


1822

NO: 2631)





CEP290-

AAAAAGAAAUAGAUGUAGA (SEQ ID
19
downstream


1823

NO: 2632)





CEP290-

AAAAGAAAUAGAUGUAGA (SEQ ID NO:
18
downstream


1824

2633)





CEP290-

AGAGUCUCACUGUGUUGCCCAGG (SEQ
23
downstream


1825

ID NO: 2634)





CEP290-

AGUCUCACUGUGUUGCCCAGG (SEQ ID
21
downstream


1826

NO: 2635)





CEP290-
+
CAGUUUUUAAGGCGGGGAGUCACA
24
downstream


1827

(SEQ ID NO: 2636)





CEP290-

CUGUCAAAAGCUACCGGUUAC (SEQ ID
21
downstream


1828

NO: 2637)





CEP290-
+
CAUCUCUUGCUCUAGAUGAC (SEQ ID
20
downstream


1829

NO: 853)





CEP290-

CACGAAAAUCAGAUUUCAUGU (SEQ ID
21
downstream


1830

NO: 2639)





CEP290-

CGAAAAUCAGAUUUCAUGU (SEQ ID
19
downstream


1831

NO: 2640)





CEP290-

CUAAUACAUGAGAGUGAUUAGUG
23
downstream


1832

(SEQ ID NO: 2641)





CEP290-
+
CUUGAACUCUGUGCCAAA (SEQ ID NO:
18
downstream


1833

2642)





CEP290-
+
CUCUAGAUGACAUGAGGUAAG (SEQ ID
21
downstream


1834

NO: 2643)





CEP290-
+
CUAGAUGACAUGAGGUAAG (SEQ ID
19
downstream


1835

NO: 2644)





CEP290-
+
CGGUAGCUUUUGACAGUUUUUAAG
24
downstream


1836

(SEQ ID NO: 2645)





CEP290-
+
CUUUUGACAGUUUUUAAG (SEQ ID NO:
18
downstream


1837

2646)





CEP290-
+
CUUUUGACAGUUUUUAAGGC (SEQ ID
20
downstream


1838

NO: 684)





CEP290-
+
CAGUAAGGAGGAUGUAAGA (SEQ ID
19
downstream


1839

NO: 2648)





CEP290-
+
CAAAAGACUUAUAUUCCAUUA (SEQ ID
21
downstream


1840

NO: 2649)





CEP290-

CUUAGGAAAUUAUUGUUGCUUUUU
24
downstream


1841

(SEQ ID NO: 2650)





CEP290-

CUGUGUUGCCCAGGCUGGAGUGCA
24
downstream


1842

(SEQ ID NO: 2651)





CEP290-

CAGAGUCUCACUGUGUUGCCCAGG
24
downstream


1843

(SEQ ID NO: 2652)





CEP290-

CUCACUGUGUUGCCCAGG (SEQ ID NO:
18
downstream


1844

2653)





CEP290-
+
GUUUUUAAGGCGGGGAGUCACA (SEQ
22
downstream


1845

ID NO: 2654)





CEP290-

GUCAAAAGCUACCGGUUAC (SEQ ID
19
downstream


1846

NO: 2655)





CEP290-
+
GUUCAUCUCUUGCUCUAGAUGAC (SEQ
23
downstream


1847

ID NO: 2656)





CEP290-

GGUCACGAAAAUCAGAUUUCAUGU
24
downstream


1848

(SEQ ID NO: 2657)





CEP290-

GUCACGAAAAUCAGAUUUCAUGU (SEQ
23
downstream


1849

ID NO: 2658)





CEP290-

GAAAAUCAGAUUUCAUGU (SEQ ID NO:
18
downstream


1850

2659)





CEP290-

GCUAAUACAUGAGAGUGAUUAGUG
24
downstream


1851

(SEQ ID NO: 2660)





CEP290-
+
GCUUGAACUCUGUGCCAAA (SEQ ID
19
downstream


1852

NO: 2661)





CEP290-
+
GCUCUAGAUGACAUGAGGUAAG (SEQ
22
downstream


1853

ID NO: 2662)





CEP290-

GAUGUAGAUUGAGGUAGAAUCAAG
24
downstream


1854

(SEQ ID NO: 2663)





CEP290-

GUAGAUUGAGGUAGAAUCAAG (SEQ
21
downstream


1855

ID NO: 2664)





CEP290-

GAUUGAGGUAGAAUCAAG (SEQ ID NO:
18
downstream


1856

2665)





CEP290-
+
GAUGCAGAACUAGUGUAGA (SEQ ID
19
downstream


1857

NO: 2666)





CEP290-

GAUGUAGAUUGAGGUAGAAUC (SEQ
21
downstream


1858

ID NO: 2667)





CEP290-

GUAGAUUGAGGUAGAAUC (SEQ ID NO:
18
downstream


1859

2668)





CEP290-
+
GAAUGAUCAUUCUUGUGGCAGUA
23
downstream


1860

(SEQ ID NO: 2669)





CEP290-
+
GAUCAUUCUUGUGGCAGUA (SEQ ID
19
downstream


1861

NO: 2670)





CEP290-
+
GAAUGAUCAUUCUUGUGGCAGU (SEQ
22
downstream


1862

ID NO: 2671)





CEP290-
+
GAUCAUUCUUGUGGCAGU (SEQ ID NO:
18
downstream


1863

2672)





CEP290-

GAGAGGUAAAGGUUCAUGAGAC (SEQ
22
downstream


1864

ID NO: 2673)





CEP290-

GAGGUAAAGGUUCAUGAGAC (SEQ ID
20
downstream


1865

NO: 2674)





CEP290-

GGUAAAGGUUCAUGAGAC (SEQ ID NO:
18
downstream


1866

2675)





CEP290-
+
GGUAGCUUUUGACAGUUUUUAAG
23
downstream


1867

(SEQ ID NO: 2676)





CEP290-
+
GUAGCUUUUGACAGUUUUUAAG (SEQ
22
downstream


1868

ID NO: 2677)





CEP290-
+
GCUUUUGACAGUUUUUAAG (SEQ ID
19
downstream


1869

NO: 2678)





CEP290-
+
GUAGCUUUUGACAGUUUUUAAGGC
24
downstream


1870

(SEQ ID NO: 2679)





CEP290-
+
GCUUUUGACAGUUUUUAAGGC (SEQ ID
21
downstream


1871

NO: 2680)





CEP290-
+
GAAAUUCACUGAGCAAAACAAC (SEQ
22
downstream


1872

ID NO: 2681)





CEP290-
+
GUGGCAGUAAGGAGGAUGUAAGA
23
downstream


1873

(SEQ ID NO: 2682)





CEP290-
+
GGCAGUAAGGAGGAUGUAAGA (SEQ
21
downstream


1874

ID NO: 2683)





CEP290-
+
GCAGUAAGGAGGAUGUAAGA (SEQ ID
20
downstream


1875

NO: 775)





CEP290-

GGAAAUUAUUGUUGCUUUUU (SEQ ID
20
downstream


1876

NO: 2685)





CEP290-

GAAAUUAUUGUUGCUUUUU (SEQ ID
19
downstream


1877

NO: 2686)





CEP290-

GAAAAACUUGAAAUUUGAUAG (SEQ
21
downstream


1878

ID NO: 2687)





CEP290-

GAAGAAAAAAGAAAUAGAUGUAGA
24
downstream


1879

(SEQ ID NO: 2688)





CEP290-

GAAAAAAGAAAUAGAUGUAGA (SEQ
21
downstream


1880

ID NO: 2689)





CEP290-

GUGUUGCCCAGGCUGGAGUGCA (SEQ
22
downstream


1881

ID NO: 2690)





CEP290-

GUUGCCCAGGCUGGAGUGCA (SEQ ID
20
downstream


1882

NO: 2691)





CEP290-

GAGUCUCACUGUGUUGCCCAGG (SEQ
22
downstream


1883

ID NO: 2692)





CEP290-

GUCUCACUGUGUUGCCCAGG (SEQ ID
20
downstream


1884

NO: 2693)





CEP290-
+
UUUUUAAGGCGGGGAGUCACA (SEQ ID
21
downstream


1885

NO: 2694)





CEP290-
+
UUUUAAGGCGGGGAGUCACA (SEQ ID
20
downstream


1886

NO: 672)





CEP290-
+
UUUAAGGCGGGGAGUCACA (SEQ ID
19
downstream


1887

NO: 2696)





CEP290-
+
UUAAGGCGGGGAGUCACA (SEQ ID NO:
18
downstream


1888

2697)





CEP290-

UGUCAAAAGCUACCGGUUAC (SEQ ID
20
downstream


1889

NO: 757)





CEP290-

UCAAAAGCUACCGGUUAC (SEQ ID NO:
18
downstream


1890

2699)





CEP290-
+
UUCAUCUCUUGCUCUAGAUGAC (SEQ
22
downstream


1891

ID NO: 2700)





CEP290-
+
UCAUCUCUUGCUCUAGAUGAC (SEQ ID
21
downstream


1892

NO: 2701)





CEP290-
+
UCUCUUGCUCUAGAUGAC (SEQ ID NO:
18
downstream


1893

2702)





CEP290-

UCACGAAAAUCAGAUUUCAUGU (SEQ
22
downstream


1894

ID NO: 2703)





CEP290-

UAAUACAUGAGAGUGAUUAGUG (SEQ
22
downstream


1895

ID NO: 2704)





CEP290-

UACAUGAGAGUGAUUAGUG (SEQ ID
19
downstream


1896

NO: 2705)





CEP290-
+
UAUUAGCUUGAACUCUGUGCCAAA
24
downstream


1897

(SEQ ID NO: 2706)





CEP290-
+
UUAGCUUGAACUCUGUGCCAAA (SEQ
22
downstream


1898

ID NO: 2707)





CEP290-
+
UAGCUUGAACUCUGUGCCAAA (SEQ ID
21
downstream


1899

NO: 2708)





CEP290-
+
UUGCUCUAGAUGACAUGAGGUAAG
24
downstream


1900

(SEQ ID NO: 2709)





CEP290-
+
UGCUCUAGAUGACAUGAGGUAAG
23
downstream


1901

(SEQ ID NO: 2710)





CEP290-
+
UCUAGAUGACAUGAGGUAAG (SEQ ID
20
downstream


1902

NO: 888)





CEP290-
+
UAGAUGACAUGAGGUAAG (SEQ ID NO:
18
downstream


1903

2712)





CEP290-

UGUAGAUUGAGGUAGAAUCAAG (SEQ
22
downstream


1904

ID NO: 2713)





CEP290-

UAGAUUGAGGUAGAAUCAAG (SEQ ID
20
downstream


1905

NO: 2714)





CEP290-
+
UAUAAGAUGCAGAACUAGUGUAGA
24
downstream


1906

(SEQ ID NO: 2715)





CEP290-
+
UAAGAUGCAGAACUAGUGUAGA (SEQ
22
downstream


1907

ID NO: 2716)





CEP290-

UAGAUGUAGAUUGAGGUAGAAUC
23
downstream


1908

(SEQ ID NO: 2717)





CEP290-

UGUAGAUUGAGGUAGAAUC (SEQ ID
19
downstream


1909

NO: 2718)





CEP290-
+
UGAUCAUUCUUGUGGCAGUA (SEQ ID
20
downstream


1910

NO: 688)





CEP290-
+
UAGAAUGAUCAUUCUUGUGGCAGU
24
downstream


1911

(SEQ ID NO: 2720)





CEP290-
+
UGAUCAUUCUUGUGGCAGU (SEQ ID
19
downstream


1912

NO: 2721)





CEP290-

UUGAGAGGUAAAGGUUCAUGAGAC
24
downstream


1913

(SEQ ID NO: 2722)





CEP290-

UGAGAGGUAAAGGUUCAUGAGAC
23
downstream


1914

(SEQ ID NO: 2723)





CEP290-
+
UAGCUUUUGACAGUUUUUAAG (SEQ ID
21
downstream


1915

NO: 2724)





CEP290-
+
UAGCUUUUGACAGUUUUUAAGGC
23
downstream


1916

(SEQ ID NO: 2725)





CEP290-
+
UUUUGACAGUUUUUAAGGC (SEQ ID
19
downstream


1917

NO: 2726)





CEP290-
+
UUUGACAGUUUUUAAGGC (SEQ ID NO:
18
downstream


1918

2727)





CEP290-
+
UAGAAAUUCACUGAGCAAAACAAC
24
downstream


1919

(SEQ ID NO: 2728)





CEP290-
+
UUCACUGAGCAAAACAAC (SEQ ID NO:
18
downstream


1920

2729)





CEP290-
+
UGUGGCAGUAAGGAGGAUGUAAGA
24
downstream


1921

(SEQ ID NO: 2730)





CEP290-
+
UGGCAGUAAGGAGGAUGUAAGA (SEQ
22
downstream


1922

ID NO: 2731)





CEP290-
+
UAUCAAAAGACUUAUAUUCCAUUA
24
downstream


1923

(SEQ ID NO: 2732)





CEP290-
+
UCAAAAGACUUAUAUUCCAUUA (SEQ
22
downstream


1924

ID NO: 2733)





CEP290-

UUAGGAAAUUAUUGUUGCUUUUU
23
downstream


1925

(SEQ ID NO: 2734)





CEP290-

UAGGAAAUUAUUGUUGCUUUUU (SEQ
22
downstream


1926

ID NO: 2735)





CEP290-

UGUGUUGCCCAGGCUGGAGUGCA (SEQ
23
downstream


1927

ID NO: 2736)





CEP290-

UGUUGCCCAGGCUGGAGUGCA (SEQ ID
21
downstream


1928

NO: 2737)





CEP290-

UUGCCCAGGCUGGAGUGCA (SEQ ID
19
downstream


1929

NO: 2738)





CEP290-

UGCCCAGGCUGGAGUGCA (SEQ ID NO:
18
downstream


1930

2739)





CEP290-

UCUCACUGUGUUGCCCAGG (SEQ ID
19
downstream


1931

NO: 2740)





CEP290-13
+
AUGAGAUACUCACAAUUACAAC (SEQ
22
upstream




ID NO: 1049)





CEP290-18
+
GUAUGAGAUACUCACAAUUACAAC
24
upstream




(SEQ ID NO: 1051)





CEP290-14
+
UAUGAGAUACUCACAAUUACAAC (SEQ
23
upstream




ID NO: 1053)





CEP290-19
+
GGUAUGAGAUAUUCACAAUUACAA
24
upstream




(SEQ ID NO: 1057)









Table 10A provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the first tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, have good orthogonality, and start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 10A








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-1932
+
GGCAAAAGCAGCAGAAAGCA
20
upstream




(SEQ ID NO: 591)





CEP290-1933

GUGGCUGAAUGACUUCU
17
upstream




(SEQ ID NO: 592)





CEP290-1934

GUUGUUCUGAGUAGCUU
17
upstream




(SEQ ID NO: 590)





CEP290-1935

GACUAGAGGUCACGAAA
17
downstream




(SEQ ID NO: 593)





CEP290-1936

GAGUUCAAGCUAAUACAUGA
20
downstream




(SEQ ID NO: 589)









Table 10B provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene selected according to the second tier parameters. The targeting domains are within 1000 bp upstream of an Alu repeat, within 40 bp upstream of mutation, or 1000 bp downstream of the mutation, have good orthogonality, and do not start with G. It is contemplated herein that the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).













TABLE 10B








Target
Position



DNA

Site
relative to


gRNA Name
Strand
Targeting Domain
Length
mutation



















CEP290-1937
+
AAAAGCAGCAGAAAGCA
17
upstream




(SEQ ID NO: 1012)





CEP290-1938

AACGUUGUUCUGAGUAGCUU
20
upstream




(SEQ ID NO: 1014)





CEP290-1939

AAUAGAGGCUUAUGGAU
17
upstream




(SEQ ID NO: 1007)





CEP290-1940
+
ACUUAAUGAGUGCUUCCCUC
20
upstream




(SEQ ID NO: 2748)





CEP290-1941

AGAAAUAGAGGCUUAUGGAU
20
upstream




(SEQ ID NO: 1016)





CEP290-1942
+
AGCAGAAAGCAAACUGA
17
upstream




(SEQ ID NO: 1011)





CEP290-1943
+
AGCAGCAGAAAGCAAACUGA
20
upstream




(SEQ ID NO: 1018)





CEP290-1944
+
AGGGUCUGGUCCAUAUU
17
upstream




(SEQ ID NO: 2752)





CEP290-1945

AUAGUGGCUGAAUGACUUCU
20
upstream




(SEQ ID NO: 2753)





CEP290-1946
+
AUGUCUGGUUAAAAGAG
17
upstream




(SEQ ID NO: 2754)





CEP290-1947
+
CAAAGGGUCUGGUCCAUAUU
20
upstream




(SEQ ID NO: 2755)





CEP290-1948

CAUCAGAAAUAGAGGCU
17
upstream




(SEQ ID NO: 1009)





CEP290-1949

CCUCAUCAGAAAUAGAGGCU
20
upstream




(SEQ ID NO: 1017)





CEP290-1950

CUGAGGACAGAACAAGC
17
upstream




(SEQ ID NO: 1008)





CEP290-1951

CUGCUGCUUUUGCCAAAGAG
20
upstream




(SEQ ID NO: 725)





CEP290-1952

CUGCUUUUGCCAAAGAG
17
upstream




(SEQ ID NO: 711)





CEP290-1953
+
UAAUGAGUGCUUCCCUC
17
upstream




(SEQ ID NO: 2761)





CEP290-1954
+
UAGAUGUCUGGUUAAAAGAG
20
upstream




(SEQ ID NO: 2762)





CEP290-1955

UCAUUCUCCUUAGGUCACUU
20
upstream




(SEQ ID NO: 2763)





CEP290-1956

UUACUGAGGACAGAACAAGC
20
upstream




(SEQ ID NO: 1013)





CEP290-1957

UUCUCCUUAGGUCACUU
17
upstream




(SEQ ID NO: 2765)





CEP290-1958

AAGAAAAAAGAAAUAGA
17
downstream




(SEQ ID NO: 2766)





CEP290-1959

AGAUUGAGGUAGAAUCAAGA
20
downstream




(SEQ ID NO: 2767)





CEP290-1960
+
AGUCACAUGGGAGUCACAGG
20
downstream




(SEQ ID NO: 1006)





CEP290-1961
+
CAAAAAAAGAAUCCUCU
17
downstream




(SEQ ID NO: 2769)





CEP290-1962
+
CAACAAAAAAAGAAUCCUCU
20
downstream




(SEQ ID NO: 2770)





CEP290-1963
+
CACAUGGGAGUCACAGG
17
downstream




(SEQ ID NO: 1005)





CEP290-1964
+
CAUUCUUCACACAUGAA
17
downstream




(SEQ ID NO: 2772)





CEP290-1965

UAGAAGAAAAAAGAAAUAGA
20
downstream




(SEQ ID NO: 2773)





CEP290-1966

UGAGACUAGAGGUCACGAAA
20
downstream




(SEQ ID NO: 2774)





CEP290-1967

UUCAAGCUAAUACAUGA
17
downstream




(SEQ ID NO: 1004)





CEP290-1968
+
UUCCAUUCUUCACACAUGAA
20
downstream




(SEQ ID NO: 2776)





CEP290-1969

UUGAGGUAGAAUCAAGA
17
downstream




(SEQ ID NO: 2777)









Table 11 provides targeting domains for break-induced deletion of genomic sequence including the mutation at the LCA10 target position in the CEP290 gene by dual targeting (e.g., dual double strand cleavage). Exemplary gRNA pairs to be used with S. aureus Cas9 are shown in Table 11, e.g., CEP290-323 can be combined with CEP290-11, CEP290-323 can be combined with CEP290-64, CEP290-490 can be combined with CEP290-496, CEP290-490 can be combined with CEP290-502, CEP290-490 can be combined with CEP290-504, CEP290-492 can be combined with CEP290-502, or CEP290-492 can be combined with CEP290-504.










TABLE 11





Upstream gRNA (SEQ ID NO)
Downstream gRNA (SEQ ID NO)


















CEP290-323
GTTCTGTCCTCAGTAAAAGGTA
CEP290-11
GACACTGCCAATAGGG



(SEQ ID NO: 389)

ATAGGT



(corresponding RNA sequence in

(SEQ ID NO: 387)



SEQ ID NO: 530)

(corresponding RNA





sequence in SEQ ID NO:





1047)





CEP290-323
GTTCTGTCCTCAGTAAAAGGTA
CEP290-64
GTCAAAAGCTACCGGT



(SEQ ID NO: 389)

TACCTG (SEQ ID NO:





388)





(corresponding RNA





sequence in SEQ ID NO:





558)





CEP290-490
GAATAGTTTGTTCTGGGTAC
CEP290-496
GATGCAGAACTAGTGT



(SEQ ID NO: 390)

AGAC (SEQ ID NO: 392)



(corresponding RNA sequence in

(corresponding RNA



SEQ ID NO: 468)

sequence in SEQ ID NO:





460)





CEP290-490
GAATAGTTTGTTCTGGGTAC
CEP290-502
GTCACATGGGAGTCAC



(SEQ ID NO: 390)

AGGG (SEQ ID NO: 393)





(corresponding RNA





sequence in SEQ ID NO:





586)





CEP290-490
GAATAGTTTGTTCTGGGTAC
CEP290-504
GAGTATCTCCTGTTTGG



(SEQ ID NO: 390)

CA





(SEQ ID NO: 394)





(corresponding RNA





sequence in SEQ ID NO:





568)





CEP290-492
GAGAAAGGGATGGGCACTTA
CEP290-502
GTCACATGGGAGTCAC



(SEQ ID NO: 391)

AGGG



(corresponding RNA sequence in

(SEQ ID NO: 393)



SEQ ID NO: 538)





CEP290-492
GAGAAAGGGATGGGCACTTA
CEP290-504
GAGTATCTCCTGTTTGG



(SEQ ID NO: 391)

CA





(SEQ ID NO: 394)










IV. RNA-Guided Nucleases


RNA-guided nucleases according to the present disclosure include, without limitation, naturally-occurring Class 2 CRISPR nucleases such as Cas9, and Cpf1, as well as other nucleases derived or obtained therefrom. In functional terms, RNA-guided nucleases are defined as those nucleases that: (a) interact with (e.g., complex with) a gRNA; and (b) together with the gRNA, associate with, and optionally cleave or modify, a target region of a DNA that includes (i) a sequence complementary to the targeting domain of the gRNA and, optionally, (ii) an additional sequence referred to as a “protospacer adjacent motif,” or “PAM,” which is described in greater detail below. As the following examples will illustrate, RNA-guided nucleases can be defined, in broad terms, by their PAM specificity and cleavage activity, even though variations may exist between individual RNA-guided nucleases that share the same PAM specificity or cleavage activity. Skilled artisans will appreciate that some aspects of the present disclosure relate to systems, methods and compositions that can be implemented using any suitable RNA-guided nuclease having a certain PAM specificity and/or cleavage activity. For this reason, unless otherwise specified, the term RNA-guided nuclease should be understood as a generic term, and not limited to any particular type (e.g., Cas9 vs. Cpf1), species (e.g., S. pyogenes vs. S. aureus) or variation (e.g., full-length vs. truncated or split; naturally-occurring PAM specificity vs. engineered PAM specificity).


Turning to the PAM sequence, this structure takes its name from its sequential relationship to the “protospacer” sequence that is complementary to gRNA targeting domains (or “spacers”). Together with protospacer sequences, PAM sequences define target regions or sequences for specific RNA-guided nuclease/gRNA combinations.


Various RNA-guided nucleases may require different sequential relationships between PAMs and protospacers. In general, Cas9s recognize PAM sequences that are 5′ of the protospacer as visualized relative to the top or complementary strand.


In addition to recognizing specific sequential orientations of PAMs and protospacers, RNA-guided nucleases generally recognize specific PAM sequences. S. aureus Cas9, for example, recognizes a PAM sequence of NNGRRT, wherein the N sequences are immediately 3′ of the region recognized by the gRNA targeting domain. S. pyogenes Cas9 recognizes NGG PAM sequences. It should also be noted that engineered RNA-guided nucleases can have PAM specificities that differ from the PAM specificities of similar nucleases (such as the naturally occurring variant from which an RNA-guided nuclease is derived, or the naturally occurring variant having the greatest amino acid sequence homology to an engineered RNA-guided nuclease). Modified Cas9s that recognize alternate PAM sequences are described below.


RNA-guided nucleases are also characterized by their DNA cleavage activity: naturally-occurring RNA-guided nucleases typically form DSBs in target nucleic acids, but engineered variants have been produced that generate only SSBs (discussed above; see also Ran 2013, incorporated by reference herein), or that do not cut at all.


Cas9 Molecules


Crystal structures have been determined for S. pyogenes Cas9 (Jinek 2014), and for S. aureus Cas9 in complex with a unimolecular gRNA and a target DNA (Nishimasu 2014; Anders 2014; and Nishimasu 2015).


Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes, S. aureus, and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules Cas9 molecules from the other species can replace them. Such species include: Acidovorax avenae, Actinobacillus pleuropneumoniae, Actinobacillus succinogenes, Actinobacillus suis, Actinomyces sp., Cycliphilus denitrificans, Aminomonas paucivorans, Bacillus cereus, Bacillus smithii, Bacillus thuringiensis, Bacteroides sp., Blastopirellula marina, Bradyrhizobium sp., Brevibacillus laterosporus, Campylobacter coli, Campylobacter jejuni, Campylobacter lari, Candidatus puniceispirillum, Clostridium cellulolyticum, Clostridium perfringens, Corynebacterium accolens, Corynebacterium diphtheria, Corynebacterium matruchotii, Dinoroseobacter shibae, Eubacterium dolichum, Gamma proteobacterium, Gluconacetobacter diazotrophicus, Haemophilus parainfluenzae, Haemophilus sputorum, Helicobacter canadensis, Helicobacter cinaedi, Helicobacter mustelae, Ilyobacter polytropus, Kingella kingae, Lactobacillus crispatus, Listeria ivanovii, Listeria monocytogenes, Listeriaceae bacterium, Methylocystis sp., Methylosinus trichosporium, Mobiluncus mulieris, Neisseria bacilliformis, Neisseria cinerea, Neisseria flavescens, Neisseria lactamica, Neisseria meningitidis, Neisseria sp., Neisseria wadsworthii, Nitrosomonas sp., Parvibaculum lavamentivorans, Pasteurella multocida, Phascolarctobacterium succinatutens, Ralstonia syzygii, Rhodopseudomonas palustris, Rhodovulum sp., Simonsiella muelleri, Sphingomonas sp., Sporolactobacillus vineae, Staphylococcus aureus, Staphylococcus lugdunensis, Streptococcus sp., Subdoligranulum sp., Tistrella mobilis, Treponema sp., or Verminephrobacter eiseniae.


A Cas9 molecule, or Cas9 polypeptide, as that term is used herein, refers to a molecule or polypeptide that can interact with a guide RNA (gRNA) molecule and, in concert with the gRNA molecule, homes or localizes to a site which comprises a target domain and PAM sequence. Cas9 molecule and Cas9 polypeptide, as those terms are used herein, refer to naturally occurring Cas9 molecules and to engineered, altered, or modified Cas9 molecules or Cas9 polypeptides that differ, e.g., by at least one amino acid residue, from a reference sequence, e.g., the most similar naturally occurring Cas9 molecule or a sequence of Table 12.


Cas9 Domains


Crystal structures have been determined for two different naturally occurring bacterial Cas9 molecules (Jinek 2014) and for S. pyogenes Cas9 with a guide RNA (e.g., a synthetic fusion of crRNA and tracrRNA) (Nishimasu 2014; Anders 2014).


A naturally occurring Cas9 molecule comprises two lobes: a recognition (REC) lobe and a nuclease (NUC) lobe; each of which further comprises domains described herein. FIGS. 8A-8B provide a schematic of the organization of important Cas9 domains in the primary structure. The domain nomenclature and the numbering of the amino acid residues encompassed by each domain used throughout this disclosure is as described in Nishimasu 2014. The numbering of the amino acid residues is with reference to Cas9 from S. pyogenes.


The REC lobe comprises the arginine-rich bridge helix (BH), the REC1 domain, and the REC2 domain. The REC lobe does not share structural similarity with other known proteins, indicating that it is a Cas9-specific functional domain. The BH domain is a long a helix and arginine rich region and comprises amino acids 60-93 of the sequence of S. pyogenes Cas9. The REC1 domain is important for recognition of the repeat:anti-repeat duplex, e.g., of a gRNA or a tracrRNA, and is therefore critical for Cas9 activity by recognizing the target sequence. The REC1 domain comprises two REC1 motifs at amino acids 94 to 179 and 308 to 717 of the sequence of S. pyogenes Cas9. These two REC1 domains, though separated by the REC2 domain in the linear primary structure, assemble in the tertiary structure to form the REC1 domain. The REC2 domain, or parts thereof, may also play a role in the recognition of the repeat:anti-repeat duplex. The REC2 domain comprises amino acids 180-307 of the sequence of S. pyogenes Cas9.


The NUC lobe comprises the RuvC domain (also referred to herein as RuvC-like domain), the HNH domain (also referred to herein as HNH-like domain), and the PAM-interacting (PI) domain. The RuvC domain shares structural similarity to retroviral integrase superfamily members and cleaves a single strand, e.g., the non-complementary strand of the target nucleic acid molecule. The RuvC domain is assembled from the three split RuvC motifs (RuvC I, RuvCII, and RuvCIII, which are often commonly referred to in the art as RuvCI domain, or N-terminal RuvC domain, RuvCII domain, and RuvCIII domain) at amino acids 1-59, 718-769, and 909-1098, respectively, of the sequence of S. pyogenes Cas9. Similar to the REC1 domain, the three RuvC motifs are linearly separated by other domains in the primary structure, however in the tertiary structure, the three RuvC motifs assemble and form the RuvC domain. The HNH domain shares structural similarity with HNH endonucleases, and cleaves a single strand, e.g., the complementary strand of the target nucleic acid molecule. The HNH domain lies between the RuvC II-III motifs and comprises amino acids 775-908 of the sequence of S. pyogenes Cas9. The PI domain interacts with the PAM of the target nucleic acid molecule, and comprises amino acids 1099-1368 of the sequence of S. pyogenes Cas9.


RuvC-Like Domain and HNH-Like Domain


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises an HNH-like domain and a RuvC-like domain. In an embodiment, cleavage activity is dependent on a RuvC-like domain and an HNH-like domain. A Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, can comprise one or more of the following domains: a RuvC-like domain and an HNH-like domain. In an embodiment, a Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide and the eaCas9 molecule or eaCas9 polypeptide comprises a RuvC-like domain, e.g., a RuvC-like domain described below, and/or an HNH-like domain, e.g., an HNH-like domain described below.


RuvC-Like Domains


In an embodiment, a RuvC-like domain cleaves, a single strand, e.g., the non-complementary strand of the target nucleic acid molecule. The Cas9 molecule or Cas9 polypeptide can include more than one RuvC-like domain (e.g., one, two, three or more RuvC-like domains). In an embodiment, a RuvC-like domain is at least 5, 6, 7, 8 amino acids in length but not more than 20, 19, 18, 17, 16 or 15 amino acids in length. In an embodiment, the Cas9 molecule or Cas9 polypeptide comprises an N-terminal RuvC-like domain of about 10 to 20 amino acids, e.g., about 15 amino acids in length.


N-Terminal RuvC-Like Domains


Some naturally occurring Cas9 molecules comprise more than one RuvC-like domain with cleavage being dependent on the N-terminal RuvC-like domain. Accordingly, Cas9 molecules or Cas9 polypeptide can comprise an N-terminal RuvC-like domain. Exemplary N-terminal RuvC-like domains are described below.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an N-terminal RuvC-like domain comprising an amino acid sequence of formula I:









(SEQ ID NO: 8)









D-X1-G-X2-X3-X4-X5-G-X6-X7-X8-X9,






wherein,


X1 is selected from I, V, M, L and T (e.g., selected from I, V, and L);


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X4 is selected from S, Y, N and F (e.g., S);


X5 is selected from V, I, L, C, T and F (e.g., selected from V, I and L);


X6 is selected from W, F, V, Y, S and L (e.g., W);


X7 is selected from A, S, C, V and G (e.g., selected from A and S);


X8 is selected from V, I, L, A, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent, designated by Δ (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R, or, e.g., selected from T, V, I, L and Δ).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO: 8, by as many as 1 but no more than 2, 3, 4, or 5 residues.


In embodiment, the N-terminal RuvC-like domain is cleavage competent.


In embodiment, the N-terminal RuvC-like domain is cleavage incompetent.


In an embodiment, a eaCas9 molecule or eaCas9 polypeptide comprises an N-terminal RuvC-like domain comprising an amino acid sequence of formula II:









(SEQ ID NO: 9)









D-X1-G-X2-X3-S-X5-G-X6-X7-X8-X9,,






wherein


X1 is selected from I, V, M, L and T (e.g., selected from I, V, and L);


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X5 is selected from V, I, L, C, T and F (e.g., selected from V, I and L);


X6 is selected from W, F, V, Y, S and L (e.g., W);


X7 is selected from A, S, C, V and G (e.g., selected from A and S);


X8 is selected from V, I, L, Δ, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R or selected from e.g., T, V, I, L and A).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO:9 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain comprises an amino acid sequence of formula III:









(SEQ ID NO: 10)









D-I-G-X2-X3-S-V-G-W-A-X8-X9,






wherein


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X8 is selected from V, I, L, Δ, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R or selected from e.g., T, V, I, L and Δ).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO: 10 by as many as 1 but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain comprises an amino acid sequence of formula III:









(SEQ ID NO: 11)









D-I-G-T-N-S-V-G-W-A-V-X,






wherein


X is a non-polar alkyl amino acid or a hydroxyl amino acid, e.g., X is selected from V, I, L and T (e.g., the eaCas9 molecule can comprise an N-terminal RuvC-like domain shown in FIGS. 2A-2G (is depicted as Y)).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO: 11 by as many as 1 but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of an N-terminal RuvC like domain disclosed herein, e.g., in FIGS. 3A-3B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, or all 3 of the highly conserved residues identified in FIGS. 3A-3B or FIGS. 7A-7B are present.


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of an N-terminal RuvC-like domain disclosed herein, e.g., in FIGS. 4A-4B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, 3 or all 4 of the highly conserved residues identified in FIGS. 4A-4B or FIGS. 7A-7B are present.


Additional RuvC-Like Domains


In addition to the N-terminal RuvC-like domain, the Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, can comprise one or more additional RuvC-like domains. In an embodiment, the Cas9 molecule or Cas9 polypeptide can comprise two additional RuvC-like domains. Preferably, the additional RuvC-like domain is at least 5 amino acids in length and, e.g., less than 15 amino acids in length, e.g., 5 to 10 amino acids in length, e.g., 8 amino acids in length.


An additional RuvC-like domain can comprise an amino acid sequence:


I-X1-X2-E-X3-A-R-E (SEQ ID NO: 12), wherein


X1 is V or H,


X2 is I, L or V (e.g., I or V); and


X3 is M or T.


In an embodiment, the additional RuvC-like domain comprises the amino acid sequence:


I-V-X2-E-M-A-R-E (SEQ ID NO: 13), wherein


X2 is I, L or V (e.g., I or V) (e.g., the eaCas9 molecule or eaCas9 polypeptide can comprise an additional RuvC-like domain shown in FIG. 2A-2G or FIGS. 7A-7B (depicted as B)).


An additional RuvC-like domain can comprise an amino acid sequence:


H-H-A-X1-D-A-X2-X3 (SEQ ID NO: 14), wherein


X1 is H or L;


X2 is R or V; and


X3 is E or V.


In an embodiment, the additional RuvC-like domain comprises the amino acid sequence: H-H-A-H-D-A-Y-L (SEQ ID NO: 15).


In an embodiment, the additional RuvC-like domain differs from a sequence of SEQ ID NOs: 13, 15, 12 or 14 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In some embodiments, the sequence flanking the N-terminal RuvC-like domain is a sequences of formula V:









(SEQ ID NO: 16)









K-X1′-Y-X2′-X3′-X4′-Z-T-D-X9′-Y,.






wherein


X1′ is selected from K and P,


X2′ is selected from V, L, I, and F (e.g., V, I and L);


X3′ is selected from G, A and S (e.g., G),


X4′ is selected from L, I, V and F (e.g., L);


X9′ is selected from D, E, N and Q; and


Z is an N-terminal RuvC-like domain, e.g., as described above.


HNH-Like Domains


In an embodiment, an HNH-like domain cleaves a single stranded complementary domain, e.g., a complementary strand of a double stranded nucleic acid molecule. In an embodiment, an HNH-like domain is at least 15, 20, 25 amino acids in length but not more than 40, 35 or 30 amino acids in length, e.g., 20 to 35 amino acids in length, e.g., 25 to 30 amino acids in length. Exemplary HNH-like domains are described below.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain having an amino acid sequence of formula VI:


X1-X2-X3-H-X4-X5-P-X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-N-X16-X17-X18-X19-X20-X21-X22-X23-N(SEQ ID NO: 17), wherein


X1 is selected from D, E, Q and N (e.g., D and E);


X2 is selected from L, I, R, Q, V, M and K;


X3 is selected from D and E;


X4 is selected from I, V, T, A and L (e.g., A, I and V);


X5 is selected from V, Y, I, L, F and W (e.g., V, I and L);


X6 is selected from Q, H, R, K, Y, I, L, F and W;


X7 is selected from S, A, D, T and K (e.g., S and A);


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G, and S;


X11 is selected from D, S, N, R, L and T (e.g., D);


X12 is selected from D, N and S;


X13 is selected from S, A, T, G and R (e.g., S);


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X16 is selected from K, L, R, M, T and F (e.g., L, R and K);


X17 is selected from V, L, I, A and T;


X18 is selected from L, I, V and A (e.g., L and I);


X19 is selected from T, V, C, E, S and A (e.g., T and V);


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, a HNH-like domain differs from a sequence of SEQ ID NO: 16 by at least one but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the HNH-like domain is cleavage competent.


In an embodiment, the HNH-like domain is cleavage incompetent.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain comprising an amino acid sequence of formula VII:









(SEQ ID NO: 18)







X1-X2-X3-H-X4-X5-P-X6-S-X8-X9-X10-D-D-S-X14-X15-N-





K-V-L-X19-X20-X21-X22-X23-N,






wherein


X1 is selected from D and E;


X2 is selected from L, I, R, Q, V, M and K;


X3 is selected from D and E;


X4 is selected from I, V, T, A and L (e.g., A, I and V);


X5 is selected from V, Y, I, L, F and W (e.g., V, I and L);


X6 is selected from Q, H, R, K, Y, I, L, F and W;


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G, and S;


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X19 is selected from T, V, C, E, S and A (e.g., T and V);


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: 15 by 1, 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain comprising an amino acid sequence of formula VII:









(SEQ ID NO: 19)







X1-V-X3-H-I-V-P-X6-S-X8-X9-X10-D-D-S-X14-X15-N-K-





V-L-T-X20-X21-X22-X23-N,






wherein


X1 is selected from D and E;


X3 is selected from D and E;


X6 is selected from Q, H, R, K, Y, I, L and W;


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G. and S;


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: GG by 1, 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain having an amino acid sequence of formula VIII:









(SEQ ID NO: 20)







D-X2-D-H-I-X5-P-Q-X7-F-X9-X10-D-X12-S-I-D-N-X16-V-





L-X19-X20-S-X22-X23-N,






wherein


X2 is selected from I and V;


X5 is selected from I and V;


X7 is selected from A and S;


X9 is selected from I and L;


X10 is selected from K and T;


X12 is selected from D and N;


X16 is selected from R, K and L; X19 is selected from T and V;


X20 is selected from S and R;


X22 is selected from K, D and A; and


X23 is selected from E, K, G and N (e.g., the eaCas9 molecule or eaCas9 polypeptide can comprise an HNH-like domain as described herein).


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: 19 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises the amino acid sequence of formula IX:









(SEQ ID NO: 21)







L-Y-Y-L-Q-N-G-X1′-D-M-Y-X2′-X3′-X4′-X5′-L-D-I-X6′-





X7′-L-S-X8′-Y-Z-N-R-X9′-K-X10′-D-X11′-V-P,






wherein


X1′ is selected from K and R;


X2′ is selected from V and T;


X3′ is selected from G and D;


X4′ is selected from E, Q and D;


X5′ is selected from E and D;


X6′ is selected from D, N and H;


X7′ is selected from Y, R and N;


X8′ is selected from Q, D and N; X9′ is selected from G and E;


X10′ is selected from S and G;


X11′ is selected from D and N; and


Z is an HNH-like domain, e.g., as described above.


In an embodiment, the eaCas9 molecule or eaCas9 polypeptide comprises an amino acid sequence that differs from a sequence of SEQ ID NO: 21 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, the HNH-like domain differs from a sequence of an HNH-like domain disclosed herein, e.g., in FIGS. 5A-5C or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1 or both of the highly conserved residues identified in FIGS. 5A-5C or FIGS. 7A-7B are present.


In an embodiment, the HNH-like domain differs from a sequence of an HNH-like domain disclosed herein, e.g., in FIGS. 6A-6B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, all 3 of the highly conserved residues identified in FIGS. 6A-6B or FIGS. 7A-7B are present.


Cas9 Activities


Nuclease and Helicase Activities


In an embodiment, the Cas9 molecule or Cas9 polypeptide is capable of cleaving a target nucleic acid molecule. Typically wild type Cas9 molecules cleave both strands of a target nucleic acid molecule. Cas9 molecules and Cas9 polypeptides can be engineered to alter nuclease cleavage (or other properties), e.g., to provide a Cas9 molecule or Cas9 polypeptide which is a nickase, or which lacks the ability to cleave target nucleic acid. A Cas9 molecule or Cas9 polypeptide that is capable of cleaving a target nucleic acid molecule is referred to herein as an eaCas9 molecule or eaCas9 polypeptide.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises one or more of the following activities:


a nickase activity, i.e., the ability to cleave a single strand, e.g., the non-complementary strand or the complementary strand, of a nucleic acid molecule;


a double stranded nuclease activity, i.e., the ability to cleave both strands of a double stranded nucleic acid and create a double stranded break, which in an embodiment is the presence of two nickase activities;


an endonuclease activity;


an exonuclease activity; and


a helicase activity, i.e., the ability to unwind the helical structure of a double stranded nucleic acid.


In an embodiment, an enzymatically active or eaCas9 molecule or eaCas9 polypeptide cleaves both strands and results in a double stranded break. In an embodiment, an eaCas9 molecule cleaves only one strand, e.g., the strand to which the gRNA hybridizes to, or the strand complementary to the strand the gRNA hybridizes with. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an HNH-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an HNH-like domain and cleavage activity associated with an N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an active, or cleavage competent, HNH-like domain and an inactive, or cleavage incompetent, N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an inactive, or cleavage incompetent, HNH-like domain and an active, or cleavage competent, N-terminal RuvC-like domain.


Some Cas9 molecules or Cas9 polypeptides have the ability to interact with a gRNA molecule, and in conjunction with the gRNA molecule localize to a core target domain, but are incapable of cleaving the target nucleic acid, or incapable of cleaving at efficient rates. Cas9 molecules having no, or no substantial, cleavage activity are referred to herein as an eiCas9 molecule or eiCas9 polypeptide. For example, an eiCas9 molecule or eiCas9 polypeptide can lack cleavage activity or have substantially less, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule or eiCas9 polypeptide, as measured by an assay described herein.


Targeting and PAMs


RNA guided nucleases, such as Cas9 molecules or Cas9 polypeptides, generally, interact with a guide RNA (gRNA) molecule and, in concert with the gRNA molecule, localize to a site which comprises a target domain and a PAM sequence.


In an embodiment, the ability of an eaCas9 molecule or eaCas9 polypeptide to interact with and cleave a target nucleic acid is PAM sequence dependent. A PAM sequence is a sequence in the target nucleic acid. In an embodiment, cleavage of the target nucleic acid occurs upstream from the PAM sequence. EaCas9 molecules from different bacterial species can recognize different sequence motifs (e.g., PAM sequences). In an embodiment, an eaCas9 molecule of S. pyogenes recognizes the sequence motif NGG, NAG, NGA and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. See, e.g., Mali 2013. In an embodiment, an eaCas9 molecule of S. thermophilus recognizes the sequence motif NGGNG and NNAGAAW (W=A or T) and directs cleavage of a core target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from these sequences. See, e.g., Horvath 2010 and Deveau 2008. In an embodiment, an eaCas9 molecule of S. mutans recognizes the sequence motif NGG and/or NAAR (R=A or G) and directs cleavage of a core target nucleic acid sequence 1 to 10, e.g., 3 to 5 base pairs, upstream from this sequence. See, e.g., Deveau 2008. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRR (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRN (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRT (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRV (R=A or G, V=A, G or C) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of Neisseria meningitidis recognizes the sequence motif NNNNGATT or NNNGCTT and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. See, e.g., Hou 2013. The ability of a Cas9 molecule to recognize a PAM sequence can be determined, e.g., using a transformation assay described in Jinek 2012. In the aforementioned embodiments, N can be any nucleotide residue, e.g., any of A, G, C or T.


As is discussed herein, Cas9 molecules can be engineered to alter the PAM specificity of the Cas9 molecule.


Exemplary naturally occurring Cas9 molecules are described in Chylinski 2013. Such Cas9 molecules include Cas9 molecules of a cluster 1 bacterial family, cluster 2 bacterial family, cluster 3 bacterial family, cluster 4 bacterial family, cluster 5 bacterial family, cluster 6 bacterial family, a cluster 7 bacterial family, a cluster 8 bacterial family, a cluster 9 bacterial family, a cluster 10 bacterial family, a cluster 11 bacterial family, a cluster 12 bacterial family, a cluster 13 bacterial family, a cluster 14 bacterial family, a cluster 15 bacterial family, a cluster 16 bacterial family, a cluster 17 bacterial family, a cluster 18 bacterial family, a cluster 19 bacterial family, a cluster 20 bacterial family, a cluster 21 bacterial family, a cluster 22 bacterial family, a cluster 23 bacterial family, a cluster 24 bacterial family, a cluster 25 bacterial family, a cluster 26 bacterial family, a cluster 27 bacterial family, a cluster 28 bacterial family, a cluster 29 bacterial family, a cluster 30 bacterial family, a cluster 31 bacterial family, a cluster 32 bacterial family, a cluster 33 bacterial family, a cluster 34 bacterial family, a cluster 35 bacterial family, a cluster 36 bacterial family, a cluster 37 bacterial family, a cluster 38 bacterial family, a cluster 39 bacterial family, a cluster 40 bacterial family, a cluster 41 bacterial family, a cluster 42 bacterial family, a cluster 43 bacterial family, a cluster 44 bacterial family, a cluster 45 bacterial family, a cluster 46 bacterial family, a cluster 47 bacterial family, a cluster 48 bacterial family, a cluster 49 bacterial family, a cluster 50 bacterial family, a cluster 51 bacterial family, a cluster 52 bacterial family, a cluster 53 bacterial family, a cluster 54 bacterial family, a cluster 55 bacterial family, a cluster 56 bacterial family, a cluster 57 bacterial family, a cluster 58 bacterial family, a cluster 59 bacterial family, a cluster 60 bacterial family, a cluster 61 bacterial family, a cluster 62 bacterial family, a cluster 63 bacterial family, a cluster 64 bacterial family, a cluster 65 bacterial family, a cluster 66 bacterial family, a cluster 67 bacterial family, a cluster 68 bacterial family, a cluster 69 bacterial family, a cluster 70 bacterial family, a cluster 71 bacterial family, a cluster 72 bacterial family, a cluster 73 bacterial family, a cluster 74 bacterial family, a cluster 75 bacterial family, a cluster 76 bacterial family, a cluster 77 bacterial family, or a cluster 78 bacterial family.


Exemplary naturally occurring Cas9 molecules include a Cas9 molecule of a cluster 1 bacterial family. Examples include a Cas9 molecule of: S. pyogenes (e.g., strain SF370, MGAS10270, MGAS10750, MGAS2096, MGAS315, MGAS5005, MGAS6180, MGAS9429, NZ131 and SSI-1), S. thermophilus (e.g., strain LMD-9), S. pseudoporcinus (e.g., strain SPIN 20026), S. mutans (e.g., strain UA159, NN2025), S. macacae (e.g., strain NCTC11558), S. gallolyticus (e.g., strain UCN34, ATCC BAA-2069), S. equines (e.g., strain ATCC 9812, MGCS 124), S. dysdalactiae (e.g., strain GGS 124), S. bovis (e.g., strain ATCC 700338), S. anginosus (e.g., strain F0211), S. agalactiae (e.g., strain NEM316, A909), Listeria monocytogenes (e.g., strain F6854), Listeria innocua (L. innocua, e.g., strain Clip11262), Enterococcus italicus (e.g., strain DSM 15952), or Enterococcus faecium (e.g., strain 1,231,408). Another exemplary Cas9 molecule is a Cas9 molecule of Neisseria meningitidis (Hou 2013).


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence:


having 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with;


differs at no more than, 2, 5, 10, 15, 20, 30, or 40% of the amino acid residues when compared with;


differs by at least 1, 2, 5, 10 or 20 amino acids but by no more than 100, 80, 70, 60, 50, 40 or 30 amino acids from; or


is identical to any Cas9 molecule sequence described herein, or a naturally occurring Cas9 molecule sequence, e.g., a Cas9 molecule from a species listed herein or described in Chylinski 2013; Hou 2013; SEQ ID NOs: 1-4. In an embodiment, the Cas9 molecule or Cas9 polypeptide comprises one or more of the following activities: a nickase activity; a double stranded cleavage activity (e.g., an endonuclease and/or exonuclease activity); a helicase activity; or the ability, together with a gRNA molecule, to home to a target nucleic acid.


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises the amino acid sequence of the consensus sequence of FIGS. 2A-2G, wherein “*” indicates any amino acid found in the corresponding position in the amino acid sequence of a Cas9 molecule of S. pyogenes, S. thermophilus, S. mutans and L. innocua, and “-” indicates any amino acid. In an embodiment, a Cas9 molecule or Cas9 polypeptide differs from the sequence of the consensus sequence disclosed in FIGS. 2A-2G by at least 1, but no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid residues. In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises the amino acid sequence of SEQ ID NO: 7 of FIGS. 7A-7B, wherein “*” indicates any amino acid found in the corresponding position in the amino acid sequence of a Cas9 molecule of S. pyogenes, or N. meningitidis, “-” indicates any amino acid, and “-” indicates any amino acid or absent. In an embodiment, a Cas9 molecule or Cas9 polypeptide differs from the sequence of SEQ ID NOs: 6 or 7 disclosed in FIGS. 7A-7B by at least 1, but no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid residues.


A comparison of the sequence of a number of Cas9 molecules indicate that certain regions are conserved. These are identified below as:


region 1 (residues 1 to 180, or in the case of region 1′ residues 120 to 180) region 2 (residues 360 to 480);


region 3 (residues 660 to 720);


region 4 (residues 817 to 900); and


region 5 (residues 900 to 960);


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises regions 1-5, together with sufficient additional Cas9 molecule sequence to provide a biologically active molecule, e.g., a Cas9 molecule having at least one activity described herein. In an embodiment, each of regions 1-6, independently, have, 50%, 60%, 70%, or 80% homology with the corresponding residues of a Cas9 molecule or Cas9 polypeptide described herein, e.g., a sequence from FIGS. 2A-2G or from FIGS. 7A-7B.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 1:


having 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 1-180 (the numbering is according to the motif sequence in FIGS. 2A-2G; 52% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes;


differs by at least 1, 2, 5, 10 or 20 amino acids but by no more than 90, 80, 70, 60, 50, 40 or 30 amino acids from amino acids 1-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 1-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 1′:


having 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 120-180 (55% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 120-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 120-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 2:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 360-480 (52% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 360-480 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 360-480 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 3:


having 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 660-720 (56% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 660-720 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 660-720 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 4:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 817-900 (55% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 817-900 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 817-900 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 5:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 900-960 (60% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 900-960 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 900-960 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


Modifications of RNA-Guided Nucleases


The RNA-guided nucleases described above have activities and properties that are useful in a variety of applications, but the skilled artisan will appreciate that RNA-guided nucleases may also be modified in certain instances, to alter cleavage activity, PAM specificity, or other structural or functional features.


Turning first to modifications that alter cleavage activity, mutations that reduce or eliminate the activity of domains within the NUC lobe have been described above. As discussed in more detail below, exemplary mutations that may be made in the RuvC domains, in the Cas9 HNH domain, or in the Cpf1 Nuc domain are described in Ran and Yamano, as well as in Cotta-Ramusino. In general, mutations that reduce or eliminate activity in one of the two nuclease domains result in RNA-guided nucleases with nickase activity, but it should be noted that the type of nickase activity varies depending on which domain is inactivated. As one example, inactivation of a RuvC domain of a Cas9 will result in a nickase that cleaves the complementary strand, while inactivation of a Cas9 HNH domain results in a nickase that cleaves the non-complementary strand.


Modifications of PAM specificity relative to naturally occurring Cas9 reference molecules has been described for both S. pyogenes (Kleinstiver 2015a) and S. aureus (Kleinstiver 2015b). Modifications that improve the targeting fidelity of Cas9 have also been described (Kleinstiver 2016). Each of these references is incorporated by reference herein.


RNA-guided nucleases have been split into two or more parts (see, e.g., Zetsche 2015; Fine 2015; both incorporated by reference).


RNA-guided nucleases are, in some cases, size-optimized or truncated, for example via one or more deletions that reduce the size of the nuclease while still retaining gRNA association, target and PAM recognition, and cleavage activities. In certain embodiments, RNA guided nucleases are bound, covalently or non-covalently, to another polypeptide, nucleotide, or other structure, optionally by means of a linker. RNA-guided nucleases also optionally include a tag, such as a nuclear localization signal to facilitate movement of RNA-guided nuclease protein into the nucleus.


Engineered or Altered Cas9 Molecules and Cas9 Polypeptides


Cas9 molecules and Cas9 polypeptides described herein, e.g., naturally occurring Cas9 molecules, can possess any of a number of properties, including: nickase activity, nuclease activity (e.g., endonuclease and/or exonuclease activity); helicase activity; the ability to associate functionally with a gRNA molecule; and the ability to target (or localize to) a site on a nucleic acid (e.g., PAM recognition and specificity). In an embodiment, a Cas9 molecule or Cas9 polypeptide can include all or a subset of these properties. In typical embodiments, a Cas9 molecule or Cas9 polypeptide has the ability to interact with a gRNA molecule and, in concert with the gRNA molecule, localize to a site in a nucleic acid. Other activities, e.g., PAM specificity, cleavage activity, or helicase activity can vary more widely in Cas9 molecules and Cas9 polypeptides.


Cas9 molecules include engineered Cas9 molecules and engineered Cas9 polypeptides (engineered, as used in this context, means merely that the Cas9 molecule or Cas9 polypeptide differs from a reference sequences, and implies no process or origin limitation). An engineered Cas9 molecule or Cas9 polypeptide can comprise altered enzymatic properties, e.g., altered nuclease activity, (as compared with a naturally occurring or other reference Cas9 molecule) or altered helicase activity. As discussed herein, an engineered Cas9 molecule or Cas9 polypeptide can have nickase activity (as opposed to double strand nuclease activity). In an embodiment an engineered Cas9 molecule or Cas9 polypeptide can have an alteration that alters its size, e.g., a deletion of amino acid sequence that reduces its size, e.g., without significant effect on one or more, or any Cas9 activity. In an embodiment, an engineered Cas9 molecule or Cas9 polypeptide can comprise an alteration that affects PAM recognition. E.g., an engineered Cas9 molecule can be altered to recognize a PAM sequence other than that recognized by the endogenous wild-type PI domain. In an embodiment, a Cas9 molecule or Cas9 polypeptide can differ in sequence from a naturally occurring Cas9 molecule but not have significant alteration in one or more Cas9 activities.


Cas9 molecules or Cas9 polypeptides with desired properties can be made in a number of ways, e.g., by alteration of a parental, e.g., naturally occurring, Cas9 molecules or Cas9 polypeptides, to provide an altered Cas9 molecule or Cas9 polypeptide having a desired property. For example, one or more mutations or differences relative to a parental Cas9 molecule, e.g., a naturally occurring or engineered Cas9 molecule, can be introduced. Such mutations and differences comprise: substitutions (e.g., conservative substitutions or substitutions of non-essential amino acids); insertions; or deletions. In an embodiment, a Cas9 molecule or Cas9 polypeptide can comprises one or more mutations or differences, e.g., at least 1, 2, 3, 4, 5, 10, 15, 20, 30, 40 or 50 mutations, but less than 200, 100, or 80 mutations relative to a reference, e.g., a parental, Cas9 molecule.


In an embodiment, a mutation or mutations do not have a substantial effect on a Cas9 activity, e.g. a Cas9 activity described herein. In an embodiment, a mutation or mutations have a substantial effect on a Cas9 activity, e.g. a Cas9 activity described herein.


Non-Cleaving and Modified-Cleavage Cas9 Molecules and Cas9 Polypeptides


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises a cleavage property that differs from naturally occurring Cas9 molecules, e.g., that differs from the naturally occurring Cas9 molecule having the closest homology. For example, a Cas9 molecule or Cas9 polypeptide can differ from naturally occurring Cas9 molecules, e.g., a Cas9 molecule of S. pyogenes, as follows: its ability to modulate, e.g., decreased or increased, cleavage of a double stranded nucleic acid (endonuclease and/or exonuclease activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S. pyogenes); its ability to modulate, e.g., decreased or increased, cleavage of a single strand of a nucleic acid, e.g., a non-complementary strand of a nucleic acid molecule or a complementary strand of a nucleic acid molecule (nickase activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S. pyogenes); or the ability to cleave a nucleic acid molecule, e.g., a double stranded or single stranded nucleic acid molecule, can be eliminated.


Modified Cleavage eaCas9 Molecules and eaCas9 Polypeptides


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises one or more of the following activities: cleavage activity associated with an N-terminal RuvC-like domain; cleavage activity associated with an HNH-like domain; cleavage activity associated with an HNH-like domain and cleavage activity associated with an N-terminal RuvC-like domain.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an active, or cleavage competent, HNH-like domain (e.g., an HNH-like domain described herein, e.g., SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, or SEQ ID NO: 21) and an inactive, or cleavage incompetent, N-terminal RuvC-like domain. An exemplary inactive, or cleavage incompetent N-terminal RuvC-like domain can have a mutation of an aspartic acid in an N-terminal RuvC-like domain, e.g., an aspartic acid at position 9 of the consensus sequence disclosed in FIGS. 2A-2G or an aspartic acid at position 10 of SEQ ID NO: 7, e.g., can be substituted with an alanine. In an embodiment, the eaCas9 molecule or eaCas9 polypeptide differs from wild type in the N-terminal RuvC-like domain and does not cleave the target nucleic acid, or cleaves with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can by a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an inactive, or cleavage incompetent, HNH domain and an active, or cleavage competent, N-terminal RuvC-like domain (e.g., an N-terminal RuvC-like domain described herein, e.g., SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, or SEQ ID NO: 16). Exemplary inactive, or cleavage incompetent HNH-like domains can have a mutation at one or more of: a histidine in an HNH-like domain, e.g., a histidine shown at position 856 of FIGS. 2A-2G, e.g., can be substituted with an alanine; and one or more asparagines in an HNH-like domain, e.g., an asparagine shown at position 870 of FIGS. 2A-2G and/or at position 879 of FIGS. 2A-2G, e.g., can be substituted with an alanine. In an embodiment, the eaCas9 differs from wild type in the HNH-like domain and does not cleave the target nucleic acid, or cleaves with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can by a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology.


Alterations in the Ability to Cleave One or Both Strands of a Target Nucleic Acid


In an embodiment, exemplary Cas9 activities comprise one or more of PAM specificity, cleavage activity, and helicase activity. A mutation(s) can be present, e.g., in one or more RuvC-like domain, e.g., an N-terminal RuvC-like domain; an HNH-like domain; a region outside the RuvC-like domains and the HNH-like domain. In some embodiments, a mutation(s) is present in a RuvC-like domain, e.g., an N-terminal RuvC-like domain. In some embodiments, a mutation(s) is present in an HNH-like domain. In some embodiments, mutations are present in both a RuvC-like domain, e.g., an N-terminal RuvC-like domain, and an HNH-like domain.


Exemplary mutations that may be made in the RuvC domain or HNH domain with reference to the S. pyogenes sequence include: D10A, E762A, H840A, N854A, N863A and/or D986A.


In an embodiment, a Cas9 molecule or Cas9 polypeptide is an eiCas9 molecule or eiCas9 polypeptide comprising one or more differences in a RuvC domain and/or in an HNH domain as compared to a reference Cas9 molecule, and the eiCas9 molecule or eiCas9 polypeptide does not cleave a nucleic acid, or cleaves with significantly less efficiency than does wildtype, e.g., when compared with wild type in a cleavage assay, e.g., as described herein, cuts with less than 50, 25, 10, or 1% of a reference Cas9 molecule, as measured by an assay described herein.


Whether or not a particular sequence, e.g., a substitution, may affect one or more activity, such as targeting activity, cleavage activity, etc., can be evaluated or predicted, e.g., by evaluating whether the mutation is conservative or by the method described in Section V. In an embodiment, a “non-essential” amino acid residue, as used in the context of a Cas9 molecule, is a residue that can be altered from the wild-type sequence of a Cas9 molecule, e.g., a naturally occurring Cas9 molecule, e.g., an eaCas9 molecule, without abolishing or more preferably, without substantially altering a Cas9 activity (e.g., cleavage activity), whereas changing an “essential” amino acid residue results in a substantial loss of activity (e.g., cleavage activity).


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises a cleavage property that differs from naturally occurring Cas9 molecules, e.g., that differs from the naturally occurring Cas9 molecule having the closest homology. For example, a Cas9 molecule or Cas9 polypeptide can differ from naturally occurring Cas9 molecules, e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni as follows: its ability to modulate, e.g., decreased or increased, cleavage of a double stranded break (endonuclease and/or exonuclease activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni); its ability to modulate, e.g., decreased or increased, cleavage of a single strand of a nucleic acid, e.g., a non-complimentary strand of a nucleic acid molecule or a complementary strand of a nucleic acid molecule (nickase activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni); or the ability to cleave a nucleic acid molecule, e.g., a double stranded or single stranded nucleic acid molecule, can be eliminated.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising one or more of the following activities: cleavage activity associated with a RuvC domain; cleavage activity associated with an HNH domain; cleavage activity associated with an HNH domain and cleavage activity associated with a RuvC domain.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eiCas9 molecule or eiCas9 polypeptide which does not cleave a nucleic acid molecule (either double stranded or single stranded nucleic acid molecules) or cleaves a nucleic acid molecule with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can be a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, S. thermophilus, S. aureus, C. jejuni or N. meningitidis. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology. In an embodiment, the eiCas9 molecule or eiCas9 polypeptide lacks substantial cleavage activity associated with a RuvC domain and cleavage activity associated with an HNH domain.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. pyogenes shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. pyogenes (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIG. 2A-2G or SEQ ID NO: 7.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. pyogenes Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. pyogenes Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. thermophilus shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. thermophilus (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. thermophilus Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. thermophilus Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. mutans shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. mutans (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. mutans Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. mutans Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of L. innocula shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of L. innocula (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an L. innocula Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an L. innocula Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule, can be a fusion, e.g., of two of more different Cas9 molecules or Cas9 polypeptides, e.g., of two or more naturally occurring Cas9 molecules of different species. For example, a fragment of a naturally occurring Cas9 molecule of one species can be fused to a fragment of a Cas9 molecule of a second species. As an example, a fragment of Cas9 molecule of S. pyogenes comprising an N-terminal RuvC-like domain can be fused to a fragment of Cas9 molecule of a species other than S. pyogenes (e.g., S. thermophilus) comprising an HNH-like domain.


Cas9 Molecules and Cas9 Polypeptides with Altered PAM Recognition or No PAM Recognition


Naturally occurring Cas9 molecules can recognize specific PAM sequences, for example, the PAM recognition sequences described above for S. pyogenes, S. thermophilus, S. mutans, S. aureus and N. meningitidis.


In an embodiment, a Cas9 molecule or Cas9 polypeptide has the same PAM specificities as a naturally occurring Cas9 molecule. In other embodiments, a Cas9 molecule or Cas9 polypeptide has a PAM specificity not associated with a naturally occurring Cas9 molecule, or a PAM specificity not associated with the naturally occurring Cas9 molecule to which it has the closest sequence homology. For example, a naturally occurring Cas9 molecule can be altered, e.g., to alter PAM recognition, e.g., to alter the PAM sequence that the Cas9 molecule recognizes to decrease off target sites and/or improve specificity; or eliminate a PAM recognition requirement. In an embodiment, a Cas9 molecule or Cas9 polypeptide can be altered, e.g., to increase length of PAM recognition sequence and/or improve Cas9 specificity to high level of identity, e.g., to decrease off target sites and increase specificity. In an embodiment, the length of the PAM recognition sequence is at least 4, 5, 6, 7, 8, 9, 10 or 15 amino acids in length. Cas9 molecules or Cas9 polypeptides that recognize different PAM sequences and/or have reduced off-target activity can be generated using directed evolution. Exemplary methods and systems that can be used for directed evolution of Cas9 molecules are described, e.g., in Esvelt 2011. Candidate Cas9 molecules can be evaluated, e.g., by methods described in Section V.


Alterations of the PI domain, which mediates PAM recognition, are discussed below.


Synthetic Cas9 Molecules and Cas9 Polypeptides with Altered PI Domains


Current genome-editing methods are limited in the diversity of target sequences that can be targeted by the PAM sequence that is recognized by the Cas9 molecule utilized. A synthetic Cas9 molecule (or Syn-Cas9 molecule), or synthetic Cas9 polypeptide (or Syn-Cas9 polypeptide), as that term is used herein, refers to a Cas9 molecule or Cas9 polypeptide that comprises a Cas9 core domain from one bacterial species and a functional altered PI domain, i.e., a PI domain other than that naturally associated with the Cas9 core domain, e.g., from a different bacterial species.


In an embodiment, the altered PI domain recognizes a PAM sequence that is different from the PAM sequence recognized by the naturally-occurring Cas9 from which the Cas9 core domain is derived. In an embodiment, the altered PI domain recognizes the same PAM sequence recognized by the naturally-occurring Cas9 from which the Cas9 core domain is derived, but with different affinity or specificity. A Syn-Cas9 molecule or Syn-Cas9 polypeptide can be, respectively, a Syn-eaCas9 molecule or Syn-eaCas9 polypeptide or a Syn-eiCas9 molecule Syn-eiCas9 polypeptide.


An exemplary Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises:


a) a Cas9 core domain, e.g., a Cas9 core domain from Table 12 or 13, e.g., a S. aureus, S. pyogenes, or C. jejuni Cas9 core domain; and


b) an altered PI domain from a species X Cas9 sequence selected from Tables 15 and 16.


In an embodiment, the RKR motif (the PAM binding motif) of said altered PI domain comprises: differences at 1, 2, or 3 amino acid residues; a difference in amino acid sequence at the first, second, or third position; differences in amino acid sequence at the first and second positions, the first and third positions, or the second and third positions; as compared with the sequence of the RKR motif of the native or endogenous PI domain associated with the Cas9 core domain.


In an embodiment, the Cas9 core domain comprises the Cas9 core domain from a species X Cas9 from Table 12 and said altered PI domain comprises a PI domain from a species Y Cas9 from Table 12.


In an embodiment, the RKR motif of the species X Cas9 is other than the RKR motif of the species Y Cas9.


In an embodiment, the RKR motif of the altered PI domain is selected from XXY, XNG, and XNQ.


In an embodiment, the altered PI domain has at least 60, 70, 80, 90, 95, or 100% homology with the amino acid sequence of a naturally occurring PI domain of said species Y from Table 12.


In an embodiment, the altered PI domain differs by no more than 50, 40, 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residue from the amino acid sequence of a naturally occurring PI domain of said second species from Table 12.


In an embodiment, the Cas9 core domain comprises a S. aureus core domain and altered PI domain comprises: an A. denitrificans PI domain; a C. jejuni PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 16.


In an embodiment, the Cas9 core domain comprises a S. pyogenes core domain and the altered PI domain comprises: an A. denitrificans PI domain; a C. jejuni PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 16.


In an embodiment, the Cas9 core domain comprises a C. jejuni core domain and the altered PI domain comprises: an A. denitrificans PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 16.


In an embodiment, the Cas9 molecule or Cas9 polypeptide further comprises a linker disposed between said Cas9 core domain and said altered PI domain.


In an embodiment, the linker comprises: a linker described elsewhere herein disposed between the Cas9 core domain and the heterologous PI domain. Suitable linkers are further described in Section VI.


Exemplary altered PI domains for use in Syn-Cas9 molecules are described in Tables 15 and 16. The sequences for the 83 Cas9 orthologs referenced in Tables 15 and 16 are provided in Table 12. Table 14 provides the Cas9 orthologs with known PAM sequences and the corresponding RKR motif.


In an embodiment, a Syn-Cas9 molecule or Syn-Cas9 polypeptide may also be size-optimized, e.g., the Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises one or more deletions, and optionally one or more linkers disposed between the amino acid residues flanking the deletions. In an embodiment, a Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises a REC deletion.


Size-Optimized Cas9 Molecules and Cas9 Polypeptides


Engineered Cas9 molecules and engineered Cas9 polypeptides described herein include a Cas9 molecule or Cas9 polypeptide comprising a deletion that reduces the size of the molecule while still retaining desired Cas9 properties, e.g., essentially native conformation, Cas9 nuclease activity, and/or target nucleic acid molecule recognition. Provided herein are Cas9 molecules or Cas9 polypeptides comprising one or more deletions and optionally one or more linkers, wherein a linker is disposed between the amino acid residues that flank the deletion. Methods for identifying suitable deletions in a reference Cas9 molecule, methods for generating Cas9 molecules with a deletion and a linker, and methods for using such Cas9 molecules will be apparent to one of ordinary skill in the art upon review of this document.


A Cas9 molecule, e.g., a S. aureus, S. pyogenes, or C. jejuni, Cas9 molecule, having a deletion is smaller, e.g., has reduced number of amino acids, than the corresponding naturally-occurring Cas9 molecule. The smaller size of the Cas9 molecules allows increased flexibility for delivery methods, and thereby increases utility for genome-editing. A Cas9 molecule or Cas9 polypeptide can comprise one or more deletions that do not substantially affect or decrease the activity of the resultant Cas9 molecules or Cas9 polypeptides described herein. Activities that are retained in the Cas9 molecules or Cas9 polypeptides comprising a deletion as described herein include one or more of the following:


a nickase activity, i.e., the ability to cleave a single strand, e.g., the non-complementary strand or the complementary strand, of a nucleic acid molecule; a double stranded nuclease activity, i.e., the ability to cleave both strands of a double stranded nucleic acid and create a double stranded break, which in an embodiment is the presence of two nickase activities;


an endonuclease activity;


an exonuclease activity;


a helicase activity, i.e., the ability to unwind the helical structure of a double stranded nucleic acid;


and recognition activity of a nucleic acid molecule, e.g., a target nucleic acid or a gRNA.


Activity of the Cas9 molecules or Cas9 polypeptides described herein can be assessed using the activity assays described herein or in the art.


Identifying Regions Suitable for Deletion


Suitable regions of Cas9 molecules for deletion can be identified by a variety of methods. Naturally-occurring orthologous Cas9 molecules from various bacterial species, e.g., any one of those listed in Table 12, can be modeled onto the crystal structure of S. pyogenes Cas9 (Nishimasu 2014) to examine the level of conservation across the selected Cas9 orthologs with respect to the three-dimensional conformation of the protein. Less conserved or unconserved regions that are spatially located distant from regions involved in Cas9 activity, e.g., interface with the target nucleic acid molecule and/or gRNA, represent regions or domains are candidates for deletion without substantially affecting or decreasing Cas9 activity.


REC-Optimized Cas9 Molecules and Cas9 Polypeptides


A REC-optimized Cas9 molecule, or a REC-optimized Cas9 polypeptide, as that term is used herein, refers to a Cas9 molecule or Cas9 polypeptide that comprises a deletion in one or both of the REC2 domain and the RE1CT domain (collectively a REC deletion), wherein the deletion comprises at least 10% of the amino acid residues in the cognate domain. A REC-optimized Cas9 molecule or Cas9 polypeptide can be an eaCas9 molecule or eaCas9 polypeptide, or an eiCas9 molecule or eiCas9 polypeptide. An exemplary REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises:


a) a deletion selected from:

    • i) a REC2 deletion;
    • ii) a REC1CT deletion; or
    • iii) a REC1SUB deletion.


Optionally, a linker is disposed between the amino acid residues that flank the deletion. In an embodiment, a Cas9 molecule or Cas9 polypeptide includes only one deletion, or only two deletions. A Cas9 molecule or Cas9 polypeptide can comprise a REC2 deletion and a REC1CT deletion. A Cas9 molecule or Cas9 polypeptide can comprise a REC2 deletion and a REC1SUB deletion.


Generally, the deletion will contain at least 10% of the amino acids in the cognate domain, e.g., a REC2 deletion will include at least 10% of the amino acids in the REC2 domain.


A deletion can comprise: at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the amino acid residues of its cognate domain; all of the amino acid residues of its cognate domain; an amino acid residue outside its cognate domain; a plurality of amino acid residues outside its cognate domain; the amino acid residue immediately N terminal to its cognate domain; the amino acid residue immediately C terminal to its cognate domain; the amino acid residue immediately N terminal to its cognate and the amino acid residue immediately C terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues N terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues C terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues N terminal to its cognate domain and a plurality of e.g., up to 5, 10, 15, or 20, amino acid residues C terminal to its cognate domain.


In an embodiment, a deletion does not extend beyond: its cognate domain; the N terminal amino acid residue of its cognate domain; the C terminal amino acid residue of its cognate domain.


A REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide can include a linker disposed between the amino acid residues that flank the deletion. Suitable linkers for use between the amino acid resides that flank a REC deletion in a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide is disclosed in Section VI.


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associated linker, has at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100% homology with the amino acid sequence of a naturally occurring Cas 9, e.g., a Cas9 molecule described in Table 12, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associated linker, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25, amino acid residues from the amino acid sequence of a naturally occurring Cas 9, e.g., a Cas9 molecule described in Table 12, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associate linker, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25% of the, amino acid residues from the amino acid sequence of a naturally occurring Cas 9, e.g., a Cas9 molecule described in Table 12, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman 1981, by the homology alignment algorithm of Needleman & Wunsch 1970, by the search for similarity method of Pearson & Lipman 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Brent et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (2003)).


Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul 1977 and Altschul 1990), respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.


The percent identity between two amino acid sequences can also be determined using the algorithm of Myers 1988, which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman & Wunsch 1970 algorithm, which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


Sequence information for exemplary REC deletions are provided for 83 naturally-occurring Cas9 orthologs in Table 12. The amino acid sequences of exemplary Cas9 molecules from different bacterial species are shown below.









TABLE 12







Amino Acid Sequence of Cas9 Orthologs











REC2
REC1CT
Recsub


















Amino
start
stop

start
stop

start
stop



Species/
acid
(AA
(AA
# AA
(AA
(AA
# AA
(AA
(AA
# AA


Composite ID
sequence
pos)
pos)
deleted
pos)
pos)
deleted
pos)
pos)
deleted





















Staphylococcus

SEQ ID
126
166
41
296
352
57
296
352
57



aureus

NO: 26











tr|J7RUA5|J7RUA5_STAAU













Streptococcus

SEQ ID
176
314
139
511
592
82
511
592
82



pyogenes

NO: 2











sp|Q99ZW2|CAS9_STRP1













Campylobacter

SEQ ID
137
181
45
316
360
45
316
360
45



jejuni

NO: 306











NCTC 11168












gi|218563121|ref|












YP_002344900.1













Bacteroides

SEQ ID
148
339
192
524
617
84
524
617
84



fragilis

NO: 307











NCTC 9343












gi|60683389|ref|












YP_213533.1|













Bifidobacterium

SEQ ID
173
335
163
516
607
87
516
607
87



bifidum S17

NO: 308











gi|310286728|ref|












YP_003937986.













Veillonella

SEQ ID
185
339
155
574
663
79
574
663
79



atypica

NO: 309











ACS-134-V-Col7a












gi|303229466|ref|












ZP_07316256.1













Lactobacillus

SEQ ID
169
320
152
559
645
78
559
645
78



rhamnosus GG

NO: 310











gi|258509199|ref|












YP_003171950.1













Filifactor alocis

SEQ ID
166
314
149
508
592
76
508
592
76


ATCC 35896
NO: 311











gi|374307738|ref|












YP_005054169.1













Oenococcus

SEQ ID
169
317
149
555
639
80
555
639
80



kitaharae

NO: 312











DSM 17330












gi|366983953|gb|












EHN59352.1|













Fructobacillus

SEQ ID
168
314
147
488
571
76
488
571
76



fructosus

NO: 313











KCTC 3544












gi|339625081|ref|












ZP_08660870.1













Catenibacterium

SEQ ID
173
318
146
511
594
78
511
594
78



mitsuokai

NO: 314











DSM 15897












gi|224543312|ref|












ZP_03683851.1













Finegoldia

SEQ ID
168
313
146
452
534
77
452
534
77



magna

NO: 315











ATCC 29328












gi|169823755|ref|












YP_001691366.1













Coriobacterium

SEQ ID
175
318
144
511
592
82
511
592
82



glomerans PW2

NO: 316











gi|328956315|ref|












YP_004373648.1













Eubacterium

SEQ ID
169
310
142
552
633
76
552
633
76



yurii

NO: 317











ATCC 43715












gi|306821691|ref|












ZP_07455288.1













Peptoniphilus

SEQ ID
171
311
141
535
615
76
535
615
76



duerdenii

NO: 318











ATCC BAA-1640












gi|304438954|ref|












ZP_07398877.1













Acidaminococcus

SEQ ID
167
306
140
511
591
75
511
591
75


sp. D21
NO: 319











gi|227824983|ref|












ZP_03989815.1













Lactobacillus

SEQ ID
171
310
140
542
621
85
542
621
85



farciminis

NO: 320











KCTC 3681












gi|336394882|ref|












ZP_08576281.1













Streptococcus

SEQ ID
185
324
140
411
490
85
411
490
85



sanguinis SK49

NO: 321











gi|422884106|ref|












ZP_16930555.1













Coprococcus

SEQ ID
172
310
139
556
634
76
556
634
76



catus GD-7

NO: 322











gi|291520705|emb|












CBK78998.1|













Streptococcus

SEQ ID
176
314
139
392
470
84
392
470
84



mutans UA159

NO: 1











gi|24379809|ref|












NP_721764.1|













Streptococcus

SEQ ID
176
314
139
523
600
82
523
600
82



pyogenes

NO: 2











M1 GAS












gi|13622193|gb|












AAK33936.1|













Streptococcus

SEQ ID
176
314
139
481
558
81
481
558
81



thermophilus

NO: 3











LMD-9












gi|116628213|ref|












YP_820832.1|













Fusobacterium

SEQ ID
171
308
138
537
614
76
537
614
76



nucleatum

NO: 326











ATCC 49256












gi|34762592|ref|












ZP_00143587.1|













Planococcus

SEQ ID
162
299
138
538
614
94
538
614
94



antarcticus

NO: 327











DSM 14505












gi|389815359|ref|












ZP_10206685.1













Treponema

SEQ ID
169
305
137
524
600
81
524
600
81



denticola

NO: 328











ATCC 35405












gi|42525843|ref|












NP_970941.1|













Solobacterium

SEQ ID
179
314
136
544
619
77
544
619
77



moorei F0204

NO: 329











gi|320528778|ref|












ZP_08029929.1













Staphylococcus

SEQ ID
164
299
136
531
606
92
531
606
92



pseudintermedius

NO: 330











ED99












gi|323463801|gb|












ADX75954.1|













Flavobacterium

SEQ ID
162
286
125
538
613
63
538
613
63



branchiophilum

NO: 331











FL-15












gi|347536497|ref|












YP_004843922.1













Ignavibacterium

SEQ ID
223
329
107
357
432
90
357
432
90



album

NO: 332











JCM 16511












gi|385811609|ref|












YP_005848005.1













Bergeyella

SEQ ID
165
261
97
529
604
56
529
604
56



zoohelcum

NO: 333











ATCC 43767












gi|423317190|ref|












ZP_17295095.1













Nitrobacter

SEQ ID
169
253
85
536
611
48
536
611
48



hamburgensis

NO: 334











X14












gi|92109262|ref|












YP_571550.1|













Odoribacter

SEQ ID
164
242
79
535
610
63
535
610
63



laneus

NO: 335











YIT 12061












gi|374384763|ref|












ZP_09642280.1













Legionella

SEQ ID
164
239
76
402
476
67
402
476
67



pneumophila

NO: 336











str. Paris












gi|54296138|ref|












YP_122507.1|













Bacteroides

SEQ ID
198
269
72
530
604
83
530
604
83


sp. 20_3
NO: 337











gi|301311869|ref|












ZP_07217791.1













Akkermansia

SEQ ID
136
202
67
348
418
62
348
418
62



muciniphila

NO: 338











ATCC BAA-835












gi|187736489|ref|












YP_001878601.













Prevotella

SEQ ID
184
250
67
357
425
78
357
425
78


sp. C561
NO: 339











gi|345885718|ref|












ZP_08837074.1













Wolinella

SEQ ID
157
218
36
401
468
60
401
468
60



succinogenes

NO: 340











DSM 1740












gi|34557932|ref|












NP_907747.1|













Alicyclobacillus

SEQ ID
142
196
55
416
482
61
416
482
61



hesperidum

NO: 341











URH17-3-68












gi|403744858|ref|












ZP_10953934.1













Caenispirillum

SEQ ID
161
214
54
330
393
68
330
393
68



salinarum AK4

NO: 342











gi|427429481|ref|












ZP_18919511.1













Eubacterium

SEQ ID
133
185
53
322
384
60
322
384
60



rectale

NO: 343











ATCC 33656












gi|238924075|ref|












YP_002937591.1













Mycoplasma

SEQ ID
187
239
53
319
381
80
319
381
80



synoviae 53

NO: 344











gi|71894592|ref|












YP_278700.1|













Porphyromonas

SEQ ID
150
202
53
309
371
60
309
371
60


sp. oral taxon 279
NO: 345











str. F0450












gi|402847315|ref|












ZP_10895610.1













Streptococcus

SEQ ID
127
178
139
424
486
81
424
486
81



thermophilus

NO: 346











LMD-9












gi|116627542|ref|












YP_820161.1|













Roseburia

SEQ ID
154
204
51
318
380
69
318
380
69



inulinivorans

NO: 347











DSM 16841












gi|225377804|ref|












ZP_03755025.1













Methylosinus

SEQ ID
144
193
50
426
488
64
426
488
64



trichosporium

NO: 348











OB3b












gi|296446027|ref|












ZP_06887976.1













Ruminococcus

SEQ ID
139
187
49
351
412
55
351
412
55



albus 8

NO: 349











gi|325677756|ref|












ZP_08157403.1













Bifidobacterium

SEQ ID
183
230
48
370
431
44
370
431
44



longum DJO10A

NO: 350











gi|189440764|ref|












YP_001955845.













Enterococcus

SEQ ID
123
170
48
327
387
60
327
387
60



faecalis TX0012

NO: 351











gi|315149830|gb|












EFT93846.1|













Mycoplasma

SEQ ID
179
226
48
314
374
79
314
374
79



mobile 163K

NO: 352











gi|47458868|ref|












YP_015730.1|













Actinomyces

SEQ ID
147
193
47
358
418
40
358
418
40



coleocanis

NO: 353











DSM 15436












gi|227494853|ref|












ZP_03925169.1













Dinoroseobacter

SEQ ID
138
184
47
338
398
48
338
398
48



shibae DFL 12

NO: 354











gi|159042956|ref|












YP_001531750.1













Actinomyces sp.

SEQ ID
183
228
46
349
409
40
349
409
40


oral taxon 180
NO: 355











str. F0310












gi|315605738|ref|












ZP_07880770.1













Alcanivorax

SEQ ID
139
183
45
344
404
61
344
404
61


sp. W11-5
NO: 356











gi|407803669|ref|












ZP_11150502.1













Aminomonas

SEQ ID
134
178
45
341
401
63
341
401
63



paucivorans

NO: 357











DSM 12260












gi|312879015|ref|












ZP_07738815.1













Mycoplasma

SEQ ID
139
183
45
319
379
76
319
379
76



canis PG 14

NO: 358











gi|384393286|gb|












EIE39736.1|













Lactobacillus

SEQ ID
141
184
44
328
387
61
328
387
61



coryniformis

NO: 359











KCTC 3535












gi|336393381|ref|












ZP_08574780.1













Elusimicrobium

SEQ ID
177
219
43
322
381
47
322
381
47



minutum Pei191

NO: 360











gi|187250660|ref|












YP_001875142.1













Neisseria

SEQ ID
147
189
43
360
419
61
360
419
61



meningitidis

NO: 25











Z2491












gi|218767588|ref|












YP_002342100.1













Pasteurella

SEQ ID
139
181
43
319
378
61
319
378
61



multocida

NO: 362











str. Pm70












gi|15602992|ref|












NP_246064.1|













Rhodovulum

SEQ ID
141
183
43
319
378
48
319
378
48


sp. PH10
NO: 363











gi|402849997|ref|












ZP_10898214.1













Eubacterium

SEQ ID
131
172
42
303
361
59
303
361
59



dolichum

NO: 364











DSM 3991












gi|160915782|ref|












ZP_02077990.1













Nitratifractor

SEQ ID
143
184
42
347
404
61
347
404
61



salsuginis

NO: 365











DSM 16511












gi|319957206|ref|












YP_004168469.1













Rhodospirillum

SEQ ID
139
180
42
314
371
55
314
371
55



rubrum

NO: 366











ATCC 11170












gi|83591793|ref|












YP_425545.1|













Clostridium

SEQ ID
137
176
40
320
376
61
320
376
61



cellulolyticum

NO: 367











H10












gi|220930482|ref|












YP_002507391.1













Helicobacter

SEQ ID
148
187
40
298
354
48
298
354
48



mustelae 12198

NO: 368











gi|291276265|ref|












YP_003516037.1













Ilyobacter

SEQ ID
134
173
40
462
517
63
462
517
63



polytropus

NO: 369











DSM 2926












gi|310780384|ref|












YP_003968716.1













Sphaerochaeta

SEQ ID
163
202
40
335
389
45
335
389
45



globus str. Buddy

NO: 370











gi|325972003|ref|












YP_004248194.1













Staphylococcus

SEQ ID
128
167
40
337
391
57
337
391
57



lugdunensis

NO: 371











M23590












gi|315659848|ref|












ZP_07912707.1













Treponema

SEQ ID
144
183
40
328
382
63
328
382
63


sp. JC4
NO: 372











gi|384109266|ref|












ZP_10010146.1












uncultured delta
SEQ ID
154
193
40
313
365
55
313
365
55


proteobacterium
NO: 373











HF0070 07E19












gi|297182908|gb|












ADI19058.1|













Alicycliphilus

SEQ ID
140
178
39
317
366
48
317
366
48



denitrificans

NO: 374











K601












gi|330822845|ref|












YP_004386148.1













Azospirillum

SEQ ID
205
243
39
342
389
46
342
389
46


sp. B510
NO: 375











gi|288957741|ref|












YP_003448082.1













Bradyrhizobium

SEQ ID
143
181
39
323
370
48
323
370
48


sp. BTAi1
NO: 376











gi|148255343|ref|












YP_001239928.1













Parvibaculum

SEQ ID
138
176
39
327
374
58
327
374
58



lavamentivorans

NO: 377











DS-1












gi|154250555|ref|












YP_001411379.1













Prevotella

SEQ ID
170
208
39
328
375
61
328
375
61



timonensis

NO: 378











CRIS 5C-B1












gi|282880052|ref|












ZP_06288774.1













Bacillus smithii

SEQ ID
134
171
38
401
448
63
401
448
63


7 3 47FAA
NO: 379











gi|365156657|ref|












ZP_09352959.1













Candidatus

SEQ ID
135
172
38
344
391
53
344
391
53



Puniceispirillum

NO: 380












marinum













IMCC1322












gi|294086111|ref|












YP_003552871.1













Barnesiella

SEQ ID
140
176
37
371
417
60
371
417
60



intestinihominis

NO: 381











YIT 11860












gi|404487228|ref|












ZP_11022414.1













Ralstonia syzygii

SEQ ID
140
176
37
395
440
50
395
440
50


R24
NO: 382











gi|344171927|em












b|CCA84553.1|













Wolinella

SEQ ID
145
180
36
348
392
60
348
392
60



succinogenes

NO: 383











DSM 1740












gi|34557790|ref|












NP_907605.1|













Mycoplasma

SEQ ID
144
177
34
373
416
71
373
416
71



gallisepticum

NO: 384











str. F












gi|284931710|gb|












ADC31648.1













Acidothermus

SEQ ID
150
182
33
341
380
58
341
380
58



cellulolyticus

NO: 385











11B












gi|117929158|ref|












YP_873709.1|













Mycoplasma

SEQ ID
156
184
29
381
420
62
381
420
62



ovipneumoniae

NO: 386











SC01












gi|363542550|ref|












ZP_09312133.1
















TABLE 13







Amino Acid Sequence of Cas9 Core Domains










Cas9 Start
Cas9 Stop



(AA pos)
(AA pos)












Start and Stop





numbers refer to




the sequence



Strain Name
in Table 11
















Staphylococcus

1
772




aureus





Streptococcus

1
1099




pyogenes





Campulobacter jejuni

1
741

















TABLE 14







Identified PAM sequences and


corresponding RKR motifs.











RKR



PAM sequence
motif


Strain Name
(NA)
(AA)






Streptococcus pyogenes

NGG
RKR






Streptococcus mutans

NGG
RKR






Streptococcus thermophilus A

NGGNG
RYR






Treponema denticola

NAAAAN
VAK






Streptococcus thermophilus B

NNAAAAW
IYK






Campylobacter jejuni

NNNNACA
NLK






Pasteurella multocida

GNNNCNNA
KDG






Neisseria meningitidis

NNNNGATT or
IGK






Staphylococcus aureus

NNGRRV
NDK



(R = A or G;



V = A. G or C)



NNGRRT



(R = A or G)










PI domains are provided in Tables 15 and 16.









TABLE 15







Altered PI Domains











PI Start
PI Stop




(AA pos)
(AA pos)











Start and Stop





numbers refer to the



sequences in Table
Length of
RKR motif


Strain Name
11
PI (AA)
(AA)















Alicycliphilus

837
1029
193
--Y



denitrificans K601




Campylobacter jejuni

741
984
244
-NG


NCTC 11168



Helicobacter mustelae

771
1024
254
-NQ


12198
















TABLE 16







Other Altered PI Domains











PI Start
PI Stop




(AA pos)
(AA pos)












Start and Stop





numbers refer to the





sequences in Table
Length of
RKR motif


Strain Name
11
PI (AA)
(AA)















Akkermansia muciniphila ATCC

871
1101
231
ALK


BAA-835







Ralstonia syzygii R24

821
1062
242
APY


Cand. Puniceispirillum marinum
815
1035
221
AYK


IMCC1322







Fructobacillus fructosus KCTC 3544

1074
1323
250
DGN



Eubacterium yurii ATCC 43715

1107
1391
285
DGY



Eubacterium dolichum DSM 3991

779
1096
318
DKK



Dinoroseobacter shibae DFL 12

851
1079
229
DPI



Clostridium cellulolyticum H10

767
1021
255
EGK



Pasteurella multocida str. Pm70

815
1056
242
ENN



Mycoplasma canis PG 14

907
1233
327
EPK



Porphyromonas sp. oral taxon 279 str.

935
1197
263
EPT


F0450







Filifactor alocis ATCC 35896

1094
1365
272
EVD



Aminomonas paucivorans DSM

801
1052
252
EVY


12260







Wolinella succinogenes DSM 1740

1034
1409
376
EYK



Oenococcus kitaharae DSM 17330

1119
1389
271
GAL


CoriobacteriumglomeransPW2
1126
1384
259
GDR



Peptoniphilus duerdenii ATCC BAA-

1091
1364
274
GDS


1640







Bifidobacterium bifidum S17

1138
1420
283
GGL



Alicyclobacillus hesperidum URH17-

876
1146
271
GGR


3-68







Roseburia inulinivorans DSM 16841

895
1152
258
GGT



Actinomyces coleocanis DSM 15436

843
1105
263
GKK



Odoribacter laneus YIT 12061

1103
1498
396
GKV



Coprococcus catus GD-7

1063
1338
276
GNQ



Enterococcus faecalis TX0012

829
1150
322
GRK



Bacillus smithii 7 3 47FAA

809
1088
280
GSK



Legionella pneumophila str. Paris

1021
1372
352
GTM



Bacteroides fragilis NCTC 9343

1140
1436
297
IPV



Mycoplasma ovipneumoniae SC01

923
1265
343
IRI



Actinomyces sp. oral taxon 180 str.

895
1181
287
KEK


F0310







Treponema sp. JC4

832
1062
231
KIS



Fusobacteriumnucleatum

1073
1374
302
KKV


ATCC49256







Lactobacillus farciminis KCTC 3681

1101
1356
256
KKV



Nitratifractor salsuginis DSM 16511

840
1132
293
KMR



Lactobacillus coryniformis KCTC

850
1119
270
KNK


3535







Mycoplasma mobile 163K

916
1236
321
KNY



Flavobacterium branchiophilum FL-

1182
1473
292
KQK


15







Prevotella timonensis CRIS 5C-B1

957
1218
262
KQQ



Methylosinus trichosporium OB3b

830
1082
253
KRP



Prevotella sp. C561

1099
1424
326
KRY



Mycoplasma gallisepticum str. F

911
1269
359
KTA



Lactobacillus rhamnosus GG

1077
1363
287
KYG



Wolinella succinogenes DSM 1740

811
1059
249
LPN



Streptococcus thermophilus LMD-9

1099
1388
290
MLA



Treponema denticola ATCC 35405

1092
1395
304
NDS



Bergeyella zoohelcum ATCC 43767

1098
1415
318
NEK



Veillonella atypica ACS-134-V-

1107
1398
292
NGF


Col7a







Neisseria meningitidis Z2491

835
1082
248
NHN



Ignavibacterium album JCM 16511

1296
1688
393
NKK



Ruminococcus albus 8

853
1156
304
NNF



Streptococcus thermophilus LMD-9

811
1121
311
NNK



Barnesiella intestinihominis YIT

871
1153
283
NPV


11860







Azospirillum sp. B510

911
1168
258
PFH



Rhodospirillum rubrum ATCC 11170

863
1173
311
PRG



Planococcus antarcticus DSM 14505

1087
1333
247
PYY



Staphylococcus pseudintermedius

1073
1334
262
QIV


ED99







Alcanivorax sp. W11-5

843
1113
271
RIE



Bradyrhizobium sp. BTAi1

811
1064
254
RIY



Streptococcus pyogenes M1 GAS

1099
1368
270
RKR



Streptococcus mutans UA159

1078
1345
268
RKR



Streptococcus Pyogenes

1099
1368
270
RKR


Bacteroides sp. 20 3
1147
1517
371
RNI



S. aureus

772
1053
282
RNK



Solobacterium moorei F0204

1062
1327
266
RSG



Finegoldia magna ATCC 29328

1081
1348
268
RTE


uncultured delta proteobacterium
770
1011
242
SGG


HF0070 07E19







Acidaminococcus sp. D21

1064
1358
295
SIG



Eubacterium rectale ATCC 33656

824
1114
291
SKK



Caenispirillum salinarum AK4

1048
1442
395
SLV



Acidothermus cellulolyticus 11B

830
1138
309
SPS



Catenibacterium mitsuokai DSM

1068
1329
262
SPT


15897







Parvibaculum lavamentivorans DS-1

827
1037
211
TGN



Staphylococcus lugdunensis M23590

772
1054
283
TKK



Streptococcus sanguinis SK49

1123
1421
299
TRM



Elusimicrobium minutum Pei191

910
1195
286
TTG



Nitrobacter hamburgensis X14

914
1166
253
VAY



Mycoplasma synoviae 53

991
1314
324
VGF



Sphaerochaeta globus str. Buddy

877
1179
303
VKG



Ilyobacter polytropus DSM 2926

837
1092
256
VNG



Rhodovulum sp. PH10

821
1059
239
VPY



Bifidobacterium longum DJO10A

904
1187
284
VRK










Nucleic Acids Encoding Cas9 Molecules


Nucleic acids encoding the Cas9 molecules or Cas9 polypeptides, e.g., an eaCas9 molecule or eaCas9 polypeptide, are provided herein.


Exemplary nucleic acids encoding Cas9 molecules or Cas9 polypeptides are described in Cong 2013; Wang 2013; Mali 2013; and Jinek 2012. Another exemplary nucleic acid encoding a Cas9 molecule or Cas9 polypeptide is shown in black in FIG. 8.


In an embodiment, a nucleic acid encoding a Cas9 molecule or Cas9 polypeptide can be a synthetic nucleic acid sequence. For example, the synthetic nucleic acid molecule can be chemically modified, e.g., as described in Section VIII. In an embodiment, the Cas9 mRNA has one or more (e.g., all of the following properties: it is capped, polyadenylated, substituted with 5-methylcytidine and/or pseudouridine.


In addition, or alternatively, the synthetic nucleic acid sequence can be codon optimized, e.g., at least one non-common codon or less-common codon has been replaced by a common codon. For example, the synthetic nucleic acid can direct the synthesis of an optimized messenger mRNA, e.g., optimized for expression in a mammalian expression system, e.g., described herein.


In addition, or alternatively, a nucleic acid encoding a Cas9 molecule or Cas9 polypeptide may comprise a nuclear localization sequence (NLS). Nuclear localization sequences are known in the art.


An exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. pyogenes is set forth in SEQ ID NO: 22. The corresponding amino acid sequence is set forth in SEQ ID NO: 2.


An exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of N. meningitidis is set forth in SEQ ID NO: 24. The corresponding amino acid sequence is set forth in SEQ ID NO: 25.


An amino acid sequence of a S. aureus Cas9 molecule is set forth in SEQ ID NO: 26. An exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. aureus is set forth in SEQ ID NO: 39.


If any of the above Cas9 sequences are fused with a peptide or polypeptide at the C-terminus, it is understood that the stop codon will be removed.


Other Cas Molecules and Cas Polypeptides


Various types of Cas molecules or Cas polypeptides can be used to practice the inventions disclosed herein. In some embodiments, Cas molecules of Type II Cas systems are used. In other embodiments, Cas molecules of other Cas systems are used. For example, Type I or Type III Cas molecules may be used. Exemplary Cas molecules (and Cas systems) are described, e.g., in Haft 2005 and Makarova 2011, the contents of both references are incorporated herein by reference in their entirety. Exemplary Cas molecules (and Cas systems) are also shown in Table 17.









TABLE 17







Cas Systems















Structure of
Families (and




System

encoded
superfamily)



Gene
type or
Name from
protein (PDB
of encoded



name
subtype
Haft 2005§
accessions)
protein#**
Representatives





cas1
Type I
cas1
3GOD, 3LFX
COG1518
SERP2463,



Type II

and 2YZS

SPy1047 and ygbT



Type III






cas2
Type I
cas2
2IVY, 2I8E
COG1343 and
SERP2462,



Type II

and 3EXC
COG3512
SPy1048, SPy1723



Type III



(N-terminal







domain) and ygbF


cas3′
Type I‡‡
cas3
NA
COG1203
APE1232 and







ygcB


cas3″
Subtype
NA
NA
COG2254
APE1231 and



I-A



BH0336



Subtype







I-B






cas4
Subtype
cas4 and
NA
COG1468
APE1239 and



I-A
csa1


BH0340



Subtype







I-B







Subtype







I-C







Subtype







I-D







Subtype







II-B






cas5
Subtype
cas5a,
3KG4
COG1688
APE1234,



I-A
cas5d,

(RAMP)
BH0337, devS and



Subtype
cas5e,


ygcI



I-B
cas5h,






Subtype
cas5p, cas5t






I-C
and cmx5






Subtype







I-E






cas6
Subtype
cas6 and
3I4H
COG1583 and
PF1131 and



I-A
cmx6

COG5551
slr7014



Subtype


(RAMP)




I-B







Subtype







I-D







Subtype







III-A







Subtype







III-B






cas6e
Subtype
cse3
1WJ9
(RAMP)
ygcH



I-E






cas6f
Subtype
csy4
2XLJ
(RAMP)
y1727



I-F






cas7
Subtype
csa2, csd2,
NA
COG1857 and
devR and ygcJ



I-A
cse4, csh2,

COG3649




Subtype
csp1 and

(RAMP)




I-B
cst2






Subtype







I-C







Subtype







I-E






cas8a1
Subtype
cmx1, cst1,
NA
BH0338-like
LA3191§§ and



I-A‡‡
csx8, csx13


PG2018§§




and CXXC-







CXXC





cas8a2
Subtype
csa4 and
NA
PH0918
AF0070, AF1873,



I-A‡‡
csx9


MJ0385, PF0637,







PH0918 and







SSO1401


cas8b
Subtype
csh1 and
NA
BH0338-like
MTH1090 and



I-B‡‡
TM1802


TM1802


cas8c
Subtype
csd1 and
NA
BH0338-like
BH0338



I-C‡‡
csp2





cas9
Type II‡‡
csn1 and
NA
COG3513
FTN_0757 and




csx12


SPy1046


cas10
Type III‡‡
cmr2, csm1
NA
COG1353
MTH326,




and csx11


Rv2823c§§ and







TM1794§§


cas10d
Subtype
csc3
NA
COG1353
slr7011



I-D‡‡






csy1
Subtype
csy1
NA
y1724-like
y1724



I-F‡‡






csy2
Subtype
csy2
NA
(RAMP)
y1725



I-F






csy3
Subtype
csy3
NA
(RAMP)
y1726



I-F






cse1
Subtype
cse1
NA
YgcL-like
ygcL



I-E‡‡






cse2
Subtype
cse2
2ZCA
YgcK-like
ygcK



I-E






csc1
Subtype
csc1
NA
alr1563-like
alr1563



I-D


(RAMP)



csc2
Subtype
csc1 and
NA
COG1337
slr7012



I-D
csc2

(RAMP)



csa5
Subtype
csa5
NA
AF1870
AF1870, MJ0380,



I-A



PF0643 and







SSO1398


csn2
Subtype
csn2
NA
SPy1049-like
SPy1049



II-A






csm2
Subtype
csm2
NA
COG1421
MTH1081 and



III-A‡‡



SERP2460


csm3
Subtype
csc2 and
NA
COG1337
MTH1080 and



III-A
csm3

(RAMP)
SERP2459


csm4
Subtype
csm4
NA
COG1567
MTH1079 and



III-A


(RAMP)
SERP2458


csm5
Subtype
csm5
NA
COG1332
MTH1078 and



III-A


(RAMP)
SERP2457


csm6
Subtype
APE2256
2WTE
COG1517
APE2256 and



III-A
and csm6


SSO1445


cmr1
Subtype
cmr1
NA
COG1367
PF1130



III-B


(RAMP)



cmr3
Subtype
cmr3
NA
COG1769
PF1128



III-B


(RAMP)



cmr4
Subtype
cmr4
NA
COG1336
PF1126



III-B


(RAMP)



cmr5
Subtype
cmr5
2ZOP and
COG3337
MTH324 and



III-B‡‡

2OEB

PF1125


cmr6
Subtype
cmr6
NA
COG1604
PF1124



III-B


(RAMP)



csb1
Subtype
GSU0053
NA
(RAMP)
Balac_1306 and



I-U



GSU0053


csb2
Subtype
NA
NA
(RAMP)
Balac_1305 and



I-U§§



GSU0054


csb3
Subtype
NA
NA
(RAMP)
Balac_1303§§



I-U






csx17
Subtype
NA
NA
NA
Btus_2683



I-U






csx14
Subtype
NA
NA
NA
GSU0052



I-U






csx10
Subtype
csx10
NA
(RAMP)
Caur_2274



I-U






csx16
Subtype
VVA1548
NA
NA
VVA1548



III-U






csaX
Subtype
csaX
NA
NA
SSO1438



III-U






csx3
Subtype
csx3
NA
NA
AF1864



III-U






csx1
Subtype
csa3, csx1,
1XMX and
COG1517 and
MJ1666, NE0113,



III-U
csx2,
2I71
COG4006
PF1127 and




DXTHG,


TM1812




NE0113 and







TIGR02710





csx15
Unknown
NA
NA
TTE2665
TTE2665


csf1
Type U
csf1
NA
NA
AFE_1038


csf2
Type U
csf2
NA
(RAMP)
AFE_1039


csf3
Type U
csf3
NA
(RAMP)
AFE_1040


csf4
Type U
csf4
NA
NA
AFE_1037










V. Functional Analysis of Candidate Molecules


Candidate Cas9 molecules, candidate gRNA molecules, candidate Cas9 molecule/gRNA molecule complexes, can be evaluated by art-known methods or as described herein. For example, exemplary methods for evaluating the endonuclease activity of Cas9 molecule are described, e.g., in Jinek 2012.


Binding and Cleavage Assay: Testing the Endonuclease Activity of Cas9 Molecule


The ability of a Cas9 molecule/gRNA molecule complex to bind to and cleave a target nucleic acid can be evaluated in a plasmid cleavage assay. In this assay, synthetic or in vitro-transcribed gRNA molecule is pre-annealed prior to the reaction by heating to 95° C. and slowly cooling down to room temperature. Native or restriction digest-linearized plasmid DNA (300 ng (˜8 nM)) is incubated for 60 min at 37° C. with purified Cas9 protein molecule (50-500 nM) and gRNA (50-500 nM, 1:1) in a Cas9 plasmid cleavage buffer (20 mM HEPES pH 7.5, 150 mM KCl, 0.5 mM DTT, 0.1 mM EDTA) with or without 10 mM MgCl2. The reactions are stopped with 5×DNA loading buffer (30% glycerol, 1.2% SDS, 250 mM EDTA), resolved by a 0.8 or 1% agarose gel electrophoresis and visualized by ethidium bromide staining. The resulting cleavage products indicate whether the Cas9 molecule cleaves both DNA strands, or only one of the two strands. For example, linear DNA products indicate the cleavage of both DNA strands. Nicked open circular products indicate that only one of the two strands is cleaved.


Alternatively, the ability of a Cas9 molecule/gRNA molecule complex to bind to and cleave a target nucleic acid can be evaluated in an oligonucleotide DNA cleavage assay. In this assay, DNA oligonucleotides (10 pmol) are radiolabeled by incubating with 5 units T4 polynucleotide kinase and ˜3-6 pmol (˜20/10 mCi) [γ-32P]-ATP in 1× T4 polynucleotide kinase reaction buffer at 37° C. for 30 min, in a 50 μL reaction. After heat inactivation (65° C. for 20 min), reactions are purified through a column to remove unincorporated label. Duplex substrates (100 nM) are generated by annealing labeled oligonucleotides with equimolar amounts of unlabeled complementary oligonucleotide at 95° C. for 3 min, followed by slow cooling to room temperature. For cleavage assays, gRNA molecules are annealed by heating to 95° C. for 30 s, followed by slow cooling to room temperature. Cas9 (500 nM final concentration) is pre-incubated with the annealed gRNA molecules (500 nM) in cleavage assay buffer (20 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT, 5% glycerol) in a total volume of 9 μl. Reactions are initiated by the addition of 1 μl target DNA (10 nM) and incubated for 1 h at 37° C. Reactions are quenched by the addition of 20 μl of loading dye (5 mM EDTA, 0.025% SDS, 5% glycerol in formamide) and heated to 95° C. for 5 min. Cleavage products are resolved on 12% denaturing polyacrylamide gels containing 7 M urea and visualized by phosphorimaging. The resulting cleavage products indicate that whether the complementary strand, the non-complementary strand, or both, are cleaved.


One or both of these assays can be used to evaluate the suitability of a candidate gRNA molecule or candidate Cas9 molecule.


Binding Assay: Testing the Binding of Cas9 Molecule to Target DNA


Exemplary methods for evaluating the binding of Cas9 molecule to target DNA are described, e.g., in Jinek 2012.


For example, in an electrophoretic mobility shift assay, target DNA duplexes are formed by mixing of each strand (10 nmol) in deionized water, heating to 95° C. for 3 min and slow cooling to room temperature. All DNAs are purified on 8% native gels containing 1× TBE. DNA bands are visualized by UV shadowing, excised, and eluted by soaking gel pieces in DEPC-treated H2O. Eluted DNA is ethanol precipitated and dissolved in DEPC-treated H2O. DNA samples are 5′ end labeled with [γ-32P]-ATP using T4 polynucleotide kinase for 30 min at 37° C. Polynucleotide kinase is heat denatured at 65° C. for 20 min, and unincorporated radiolabel is removed using a column. Binding assays are performed in buffer containing 20 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT and 10% glycerol in a total volume of 10 μl. Cas9 protein molecule is programmed with equimolar amounts of pre-annealed gRNA molecule and titrated from 100 pM to 1 μM. Radiolabeled DNA is added to a final concentration of 20 pM. Samples are incubated for 1 h at 37° C. and resolved at 4° C. on an 8% native polyacrylamide gel containing 1× TBE and 5 mM MgCl2. Gels are dried and DNA visualized by phosphorimaging.


Differential Scanning Flourimetry (DSF)


The thermostability of Cas9-gRNA ribonucleoprotein (RNP) complexes can be measured via DSF. This technique measures the thermostability of a protein, which can increase under favorable conditions such as the addition of a binding RNA molecule, e.g., a gRNA.


The assay is performed using two different protocols, one to test the best stoichiometric ratio of gRNA:Cas9 protein and another to determine the best solution conditions for RNP formation.


To determine the best solution to form RNP complexes, a 2 uM solution of Cas9 in water+10× SYPRO Orange® (Life Technologies cat #S-6650) and dispensed into a 384 well plate. An equimolar amount of gRNA diluted in solutions with varied pH and salt is then added. After incubating at room temperature for 10′ and brief centrifugation to remove any bubbles, a Bio-Rad CFX384™ Real-Time System C1000 Touch™ Thermal Cycler with the Bio-Rad CFX Manager software is used to run a gradient from 20° C. to 90° C. with a 1° increase in temperature every 10 seconds.


The second assay consists of mixing various concentrations of gRNA with 2 uM Cas9 in optimal buffer from assay 1 above and incubating at RT for 10′ in a 384 well plate. An equal volume of optimal buffer+10× SYPRO Orange® (Life Technologies cat #S-6650) is added and the plate sealed with Microseal® B adhesive (MSB-1001). Following brief centrifugation to remove any bubbles, a Bio-Rad CFX384™ Real-Time System C1000 Touch™ Thermal Cycler with the Bio-Rad CFX Manager software is used to run a gradient from 20° C. to 90° C. with a 1° increase in temperature every 10 seconds.


VI. Genome Editing Approaches


While not wishing to be bound by theory, altering the LCA10 target position may be achieved using one of the approaches discussed herein.


NHEJ Approaches for Gene Targeting


As described herein, nuclease-induced non-homologous end-joining (NHEJ) can be used to introduce indels at a target position. Nuclease-induced NHEJ can also be used to remove (e.g., delete) genomic sequence including the mutation at a target position in a gene of interest.


While not wishing to be bound by theory, it is believed that, in an embodiment, the genomic alterations associated with the methods described herein rely on nuclease-induced NHEJ and the error-prone nature of the NHEJ repair pathway. NHEJ repairs a double-strand break in the DNA by joining together the two ends; however, generally, the original sequence is restored only if two compatible ends, exactly as they were formed by the double-strand break, are perfectly ligated. The DNA ends of the double-strand break are frequently the subject of enzymatic processing, resulting in the addition or removal of nucleotides, at one or both strands, prior to rejoining of the ends. This results in the presence of insertion and/or deletion (indel) mutations in the DNA sequence at the site of the NHEJ repair.


The indel mutations generated by NHEJ are unpredictable in nature; however, at a given break site certain indel sequences are favored and are over represented in the population, likely due to small regions of microhomology. The lengths of deletions can vary widely; most commonly in the 1-50 bp range, but they can easily reach greater than 100-200 bp. Insertions tend to be shorter and often include short duplications of the sequence immediately surrounding the break site. However, it is possible to obtain large insertions, and in these cases, the inserted sequence has often been traced to other regions of the genome or to plasmid DNA present in the cells.


Because NHEJ is a mutagenic process, it can also be used to delete small sequence motifs as long as the generation of a specific final sequence is not required. If a double-strand break is targeted near to a short target sequence, the deletion mutations caused by the NHEJ repair often span, and therefore remove, the unwanted nucleotides. For the deletion of larger DNA segments, introducing two double-strand breaks, one on each side of the sequence, can result in NHEJ between the ends with removal of the entire intervening sequence. Both of these approaches can be used to delete specific DNA sequences; however, the error-prone nature of NHEJ may still produce indel mutations at the site of deletion.


Both double strand cleaving eaCas9 molecules and single strand, or nickase, eaCas9 molecules can be used in the methods and compositions described herein to generate break-induced indels.


Double Strand Break


In an embodiment, double strand cleavage is effected by a Cas9 molecule having cleavage activity associated with an HNH-like domain and cleavage activity associated with a RuvC-like domain, e.g., an N-terminal RuvC-like domain, e.g., a wild type Cas9. Such embodiments require only a single gRNA.


Single Strand Break


In other embodiments, two single strand breaks are effected by a Cas9 molecule having nickase activity, e.g., cleavage activity associated with an HNH-like domain or cleavage activity associated with an N-terminal RuvC-like domain. Such embodiments require two gRNAs, one for placement of each single strand break. In an embodiment, the Cas9 molecule having nickase activity cleaves the strand to which the gRNA hybridizes, but not the strand that is complementary to the strand to which the gRNA hybridizes. In an embodiment, the Cas9 molecule having nickase activity does not cleave the strand to which the gRNA hybridizes, but rather cleaves the strand that is complementary to the strand to which the gRNA hybridizes.


In an embodiment, the nickase has HNH activity, e.g., a Cas9 molecule having the RuvC activity inactivated, e.g., a Cas9 molecule having a mutation at D10, e.g., the D10A mutation. D10A inactivates RuvC therefore the Cas9 nickase has (only) HNH activity and will cut on the strand to which the gRNA hybridizes (the complementary strand, which does not have the NGG PAM on it). In other embodiments, a Cas9 molecule having an H840, e.g., an H840A, mutation can be used as a nickase. H840A inactivates HNH therefore the Cas9 nickase has (only) RuvC activity and cuts on the non-complementary strand (the strand that has the NGG PAM and whose sequence is identical to the gRNA). In other embodiments, a Cas9 molecule having an H863, e.g., an H863A, mutation can be used as a nickase. H863A inactivates HNH therefore the Cas9 nickase has (only) RuvC activity and cuts on the non-complementary strand (the strand that has the NGG PAM and whose sequence is identical to the gRNA).


In an embodiment, in which a nickase and two gRNAs are used to position two single strand breaks, one nick is on the + strand and one nick is on the − strand of the target nucleic acid. The PAMs can be outwardly facing. The gRNAs can be selected such that the gRNAs are separated by, from 0-50, 0-100, or 0-200 nucleotides. In an embodiment, there is no overlap between the target sequences that are complementary to the targeting domains of the two gRNAs. In an embodiment, the gRNAs do not overlap and are separated by as much as 50, 100, or 200 nucleotides. In an embodiment, the use of two gRNAs can increase specificity, e.g., by decreasing off-target binding (Ran 2013).


Placement of Double Strand or Single Strand Breaks Relative to the Target Position


In an embodiment, in which a gRNA and Cas9 nuclease generate a double strand break for the purpose of inducing break-induced indels, a gRNA, e.g., a unimolecular (or chimeric) or modular gRNA molecule, is configured to position one double-strand break in close proximity to a nucleotide of the target position. In an embodiment, the cleavage site is between 0-40 bp away from the target position (e.g., less than 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position).


In an embodiment, in which two gRNAs complexing with a Cas9 nickase induce two single strand breaks for the purpose of introducing break-induced indels, two gRNAs, e.g., independently, unimolecular (or chimeric) or modular gRNA, are configured to position two single-strand breaks to provide for NHEJ-mediated alteration of a nucleotide of the target position. In an embodiment, the gRNAs are configured to position cuts at the same position, or within a few nucleotides of one another, on different strands, essentially mimicking a double strand break. In an embodiment, the two nicks are between 0-40 bp away from the target position (e.g., less than 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position) respectively, and the two single strand breaks are within 25-55 bp of each other (e.g., between 25 to 50, 25 to 45, 25 to 40, 25 to 35, 25 to 30, 50 to 55, 45 to 55, 40 to 55, 35 to 55, 30 to 55, 30 to 50, 35 to 50, 40 to 50, 45 to 50, 35 to 45, or 40 to 45 bp) and no more than 100 bp away from each other (e.g., no more than 90, 80, 70, 60, 50, 40, 30, 20 or 10 bp). In an embodiment, the gRNAs are configured to place a single strand break on either side of the target position. In an embodiment, the gRNAs are configured to place a single strand break on the same side (either 5′ or 3′) of the target position.


Regardless of whether a break is a double strand or a single strand break, the gRNA should be configured to avoid unwanted target chromosome elements, such as repeated elements, e.g., an Alu repeat, in the target domain. In addition, a break, whether a double strand or a single strand break, should be sufficiently distant from any sequence that should not be altered. For example, cleavage sites positioned within introns should be sufficiently distant from any intron/exon border, or naturally occurring splice signal, to avoid alteration of the exonic sequence or unwanted splicing events.


Single-Strand Annealing


Single strand annealing (SSA) is another DNA repair process that repairs a double-strand break between two repeat sequences present in a target nucleic acid. Repeat sequences utilized by the SSA pathway are generally greater than 30 nucleotides in length. Resection at the break ends occurs to reveal repeat sequences on both strands of the target nucleic acid. After resection, single strand overhangs containing the repeat sequences are coated with RPA protein to prevent the repeats sequences from inappropriate annealing, e.g., to themselves. RAD52 binds to and each of the repeat sequences on the overhangs and aligns the sequences to enable the annealing of the complementary repeat sequences. After annealing, the single-strand flaps of the overhangs are cleaved. New DNA synthesis fills in any gaps, and ligation restores the DNA duplex. As a result of the processing, the DNA sequence between the two repeats is deleted. The length of the deletion can depend on many factors including the location of the two repeats utilized, and the pathway or processivity of the resection.


In contrast to HDR pathways, SSA does not require a template nucleic acid to alter or correct a target nucleic acid sequence. Instead, the complementary repeat sequence is utilized.


Other DNA Repair Pathways


SSBR (Single Strand Break Repair)


Single-stranded breaks (SSB) in the genome are repaired by the SSBR pathway, which is a distinct mechanism from the DSB repair mechanisms discussed above. The SSBR pathway has four major stages: SSB detection, DNA end processing, DNA gap filling, and DNA ligation. A more detailed explanation is given in Caldecott, Nature Reviews Genetics 9, 619-631 (August 2008), and a summary is given here.


In the first stage, when a SSB forms, PARP1 and/or PARP2 recognize the break and recruit repair machinery. The binding and activity of PARP1 at DNA breaks is transient and it seems to accelerate SSBr by promoting the focal accumulation or stability of SSBr protein complexes at the lesion. Arguably the most important of these SSBr proteins is XRCC1, which functions as a molecular scaffold that interacts with, stabilizes, and stimulates multiple enzymatic components of the SSBr process including the protein responsible for cleaning the DNA 3′ and 5′ ends. For instance, XRCC1 interacts with several proteins (DNA polymerase beta, PNK, and three nucleases, APE1, APTX, and APLF) that promote end processing. APE1 has endonuclease activity. APLF exhibits endonuclease and 3′ to 5′ exonuclease activities. APTX has endonuclease and 3′ to 5′ exonuclease activity.


This end processing is an important stage of SSBR since the 3′- and/or 5′-termini of most, if not all, SSBs are ‘damaged’. End processing generally involves restoring a damaged 3′-end to a hydroxylated state and and/or a damaged 5′ end to a phosphate moiety, so that the ends become ligation-competent. Enzymes that can process damaged 3′ termini include PNKP, APE1, and TDP1. Enzymes that can process damaged 5′ termini include PNKP, DNA polymerase beta, and APTX. LIG3 (DNA ligase III) can also participate in end processing. Once the ends are cleaned, gap filling can occur.


At the DNA gap filling stage, the proteins typically present are PARP1, DNA polymerase beta, XRCC1, FEN1 (flap endonuclease 1), DNA polymerase delta/epsilon, PCNA, and LIG1. There are two ways of gap filling, the short patch repair and the long patch repair. Short patch repair involves the insertion of a single nucleotide that is missing. At some SSBs, “gap filling” might continue displacing two or more nucleotides (displacement of up to 12 bases have been reported). FEN1 is an endonuclease that removes the displaced 5′-residues. Multiple DNA polymerases, including Pol β, are involved in the repair of SSBs, with the choice of DNA polymerase influenced by the source and type of SSB.


In the fourth stage, a DNA ligase such as LIG1 (Ligase I) or LIG3 (Ligase III) catalyzes joining of the ends. Short patch repair uses Ligase III and long patch repair uses Ligase I.


Sometimes, SSBR is replication-coupled. This pathway can involve one or more of CtIP, MRN, ERCC1, and FEN1. Additional factors that may promote SSBR include: aPARP, PARP1, PARP2, PARG, XRCC1, DNA polymerase b, DNA polymerase d, DNA polymerase e, PCNA, LIG1, PNK, PNKP, APE1, APTX, APLF, TDP1, LIG3, FEN1, CtIP, MRN, and ERCC1.


MMR (Mismatch Repair)


Cells contain three excision repair pathways: MMR, BER, and NER. The excision repair pathways have a common feature in that they typically recognize a lesion on one strand of the DNA, then exo/endonucleases remove the lesion and leave a 1-30 nucleotide gap that is sub-sequentially filled in by DNA polymerase and finally sealed with ligase. A more complete picture is given in Li 2008, and a summary is provided here.


Mismatch repair (MMR) operates on mispaired DNA bases.


The MSH2/6 or MSH2/3 complexes both have ATPases activity that plays an important role in mismatch recognition and the initiation of repair. MSH2/6 preferentially recognizes base-base mismatches and identifies mispairs of 1 or 2 nucleotides, while MSH2/3 preferentially recognizes larger ID mispairs.


hMLH1 heterodimerizes with hPMS2 to form hMutLα which possesses an ATPase activity and is important for multiple steps of MMR. It possesses a PCNA/replication factor C (RFC)-dependent endonuclease activity which plays an important role in 3′ nick-directed MMR involving EXO1 (EXO1 is a participant in both HR and MMR). It regulates termination of mismatch-provoked excision. Ligase I is the relevant ligase for this pathway. Additional factors that may promote MMR include: EXO1, MSH2, MSH3, MSH6, MLH1, PMS2, MLH3, DNA Pol d, RPA, HMGB1, RFC, and DNA ligase I.


Base Excision Repair (BER)


The base excision repair (BER) pathway is active throughout the cell cycle; it is responsible primarily for removing small, non-helix-distorting base lesions from the genome. In contrast, the related Nucleotide Excision Repair pathway (discussed in the next section) repairs bulky helix-distorting lesions. A more detailed explanation is given in Caldecott, Nature Reviews Genetics 9, 619-631 (August 2008), and a summary is given here.


Upon DNA base damage, base excision repair (BER) is initiated and the process can be simplified into five major steps: (a) removal of the damaged DNA base; (b) incision of the subsequent a basic site; (c) clean-up of the DNA ends; (d) insertion of the correct nucleotide into the repair gap; and (e) ligation of the remaining nick in the DNA backbone. These last steps are similar to the SSBR.


In the first step, a damage-specific DNA glycosylase excises the damaged base through cleavage of the N-glycosidic bond linking the base to the sugar phosphate backbone. Then AP endonuclease-1 (APE1) or bifunctional DNA glycosylases with an associated lyase activity incised the phosphodiester backbone to create a DNA single strand break (SSB). The third step of BER involves cleaning-up of the DNA ends. The fourth step in BER is conducted by Pol β that adds a new complementary nucleotide into the repair gap and in the final step XRCC1/Ligase III seals the remaining nick in the DNA backbone. This completes the short-patch BER pathway in which the majority (˜80%) of damaged DNA bases are repaired. However, if the 5′-ends in step 3 are resistant to end processing activity, following one nucleotide insertion by Pol β there is then a polymerase switch to the replicative DNA polymerases, Pol δ/ε, which then add ˜2-8 more nucleotides into the DNA repair gap. This creates a 5′-flap structure, which is recognized and excised by flap endonuclease-1 (FEN-1) in association with the processivity factor proliferating cell nuclear antigen (PCNA). DNA ligase I then seals the remaining nick in the DNA backbone and completes long-patch BER. Additional factors that may promote the BER pathway include: DNA glycosylase, APE1, Polb, Pold, Pole, XRCC1, Ligase III, FEN-1, PCNA, RECQL4, WRN, MYH, PNKP, and APTX.


Nucleotide Excision Repair (NER)


Nucleotide excision repair (NER) is an important excision mechanism that removes bulky helix-distorting lesions from DNA. Additional details about NER are given in Marteijn 2014, and a summary is given here. NER a broad pathway encompassing two smaller pathways: global genomic NER (GG-NER) and transcription coupled repair NER (TC-NER). GG-NER and TC-NER use different factors for recognizing DNA damage. However, they utilize the same machinery for lesion incision, repair, and ligation.


Once damage is recognized, the cell removes a short single-stranded DNA segment that contains the lesion. Endonucleases XPF/ERCC1 and XPG (encoded by ERCC5) remove the lesion by cutting the damaged strand on either side of the lesion, resulting in a single-strand gap of 22-30 nucleotides. Next, the cell performs DNA gap filling synthesis and ligation. Involved in this process are: PCNA, RFC, DNA Pol δ, DNA Pol ε or DNA Pol κ, and DNA ligase I or XRCC1/Ligase III. Replicating cells tend to use DNA pol c and DNA ligase I, while non-replicating cells tend to use DNA Pol δ, DNA Pol κ, and the XRCC1/Ligase III complex to perform the ligation step.


NER can involve the following factors: XPA-G, POLH, XPF, ERCC1, XPA-G, and LIG1. Transcription-coupled NER (TC-NER) can involve the following factors: CSA, CSB, XPB, XPD, XPG, ERCC1, and TTDA. Additional factors that may promote the NER repair pathway include XPA-G, POLH, XPF, ERCC1, XPA-G, LIG1, CSA, CSB, XPA, XPB, XPC, XPD, XPF, XPG, TTDA, UVSSA, USP7, CETN2, RAD23B, UV-DDB, CAK subcomplex, RPA, and PCNA.


Interstrand Crosslink (ICL)


A dedicated pathway called the ICL repair pathway repairs interstrand crosslinks. Interstrand crosslinks, or covalent crosslinks between bases in different DNA strand, can occur during replication or transcription. ICL repair involves the coordination of multiple repair processes, in particular, nucleolytic activity, translesion synthesis (TLS), and HDR. Nucleases are recruited to excise the ICL on either side of the crosslinked bases, while TLS and HDR are coordinated to repair the cut strands. ICL repair can involve the following factors: endonucleases, e.g., XPF and RAD51C, endonucleases such as RAD51, translesion polymerases, e.g., DNA polymerase zeta and Rev1), and the Fanconi anemia (FA) proteins, e.g., FancJ.


Other Pathways


Several other DNA repair pathways exist in mammals.


Translesion synthesis (TLS) is a pathway for repairing a single stranded break left after a defective replication event and involves translesion polymerases, e.g., DNA pol□ and Rev1.


Error-free postreplication repair (PRR) is another pathway for repairing a single stranded break left after a defective replication event.


Examples of gRNAs in Genome Editing Methods


gRNA molecules as described herein can be used with Cas9 molecules that cleave both or a single strand to alter the sequence of a target nucleic acid, e.g., of a target position or target genetic signature. gRNA molecules useful in these method are described below.


In an embodiment, the gRNA, e.g., a chimeric gRNA, molecule is configured such that it comprises one or more of the following properties;


a) it can position, e.g., when targeting a Cas9 molecule that makes double strand breaks, a double strand break (i) within 50, 100, 150 or 200 nucleotides of a target position, or (ii) sufficiently close that the target position is within the region of end resection;


b) it has a targeting domain of at least 17 nucleotides, e.g., a targeting domain of (i) 17, (ii) 18, or (iii) 20 nucleotides; and


c)


(i) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail and proximal domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;


(ii) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;


(iii) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain, e.g., at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides therefrom;


iv) the tail domain is at least 10, 15, 20, 25, 30, 35 or 40 nucleotides in length, e.g., it comprises at least 10, 15, 20, 25, 30, 35 or 40 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain; or, or a sequence that differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides therefrom; or


(v) the tail domain comprises 15, 20, 25, 30, 35, 40 nucleotides or all of the corresponding portions of a naturally occurring tail domain, e.g., a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain.


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(i); and b(i).


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(i); and b(ii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(i); and b(iii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(ii); and b(i).


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(ii); and b(ii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: a(ii); and b(iii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(i); and c(i).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(i); and c(ii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(ii); and c(i).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(ii); and c(ii).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(iii); and c(i).


In an embodiment, the gRNA molecule is configured such that it comprises properties: b(iii); and c(ii).


In an embodiment, the gRNA is used with a Cas9 nickase molecule having HNH activity, e.g., a Cas9 molecule having the RuvC activity inactivated, e.g., a Cas9 molecule having a mutation at D10, e.g., the D10A mutation.


In an embodiment, the gRNA is used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H840, e.g., a H840A.


In an embodiment, the gRNA is used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H863, e.g., a H863A.


In an embodiment, a pair of gRNA molecules, e.g., a pair of chimeric gRNA molecules, comprising a first and a second gRNA molecule, is configured such that they comprises one or more of the following properties:


a) the first and second gRNA molecules position, e.g., when targeting a Cas9 molecule that makes single strand or double strand breaks:

    • (i) as positioned by a first and second gRNA molecule described herein; or
    • (ii) sufficiently close that the target position is altered when the break is repaired;


b) one or both, independently, has a targeting domain of at least 17 nucleotides, e.g., a targeting domain of (i) 17, (ii) 18, or (iii) 20 nucleotides; and


c) one or both, independently, has a the tail domain is (i) at least 10, 15, 20, 25, 30, 35 or 40 nucleotides in length or (ii) the tail domain comprises, 15, 20, 25, 30, 35, 40, or all of the corresponding portions of a naturally occurring tail domain, e.g., a naturally occurring S. pyogenes, S. aureus, or S. thermophilus tail domain.


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(i); and b(i).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(i); and b(ii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(i); and b(iii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(ii); and b(i).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(ii); and b(ii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: a(ii); and b(iii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(i); and c(i).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(i); and c(ii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(ii); and c(i).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(ii); and c(ii).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(iii); and c(i).


In an embodiment, one or both of the gRNA molecules is configured such that it comprises properties: b(iii); and c(ii).


In an embodiment the gRNA is used with a Cas9 nickase molecule having HNH activity, e.g., a Cas9 molecule having the RuvC activity inactivated, e.g., a Cas9 molecule having a mutation at D10, e.g., the D10A mutation.


In an embodiment, the gRNA is used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H840, e.g., a H840A.


In an embodiment the gRNA is used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H863, e.g., a H863A.


Targets: Cells


Cas9 molecules and gRNA molecules, e.g., a Cas9 molecule/gRNA molecule complex, can be used to manipulate a cell, e.g., to edit a target nucleic acid, in a wide variety of cells.


In some embodiments, a cell is manipulated by altering one or more target genes, e.g., as described herein. In some embodiments, the expression of one or more target genes (e.g., one or more target genes described herein) is modulated, e.g., in vivo.


In an embodiment, the target cell is a retinal cell, e.g., a cell of the retinal pigment epithelium cell or a photoreceptor cell. In another embodiment, the target cell is a horizontal cell, a bipolar cell, an amacrine cell, or a ganglion cell. In an embodiment, the target cell is a cone photoreceptor cell or cone cell, a rod photoreceptor cell or rod cell, or a macular cone photoreceptor cell. In an exemplary embodiment, cone photoreceptors in the macula are targeted, i.e., cone photoreceptors in the macula are the target cells.


In an embodiment, the target cell is removed from the subject, the gene altered ex vivo, and the cell returned to the subject. In an embodiment, a photoreceptor cell is removed from the subject, the gene altered ex vivo, and the photoreceptor cell returned to the subject. In an embodiment, a cone photoreceptor cell is removed from the subject, the gene altered ex vivo, and the cone photoreceptor cell returned to the subject.


In an embodiment, the cells are induced pluripotent stem cells (iPS) cells or cells derived from iPS cells, e.g., iPS cells from the subject, modified to alter the gene and differentiated into retinal progenitor cells or retinal cells, e.g., retinal photoreceptors, and injected into the eye of the subject, e.g., subretinally, e.g., in the submacular region of the retina.


In an embodiment, the cells are targeted in vivo, e.g., by delivery of the components, e.g., a Cas9 molecule and a gRNA molecule, to the target cells. In an embodiment, the target cells are retinal pigment epithelium, photoreceptor cells, or a combination thereof. In an embodiment, AAV is used to deliver the components, e.g., a Cas9 molecule and a gRNA molecule, e.g., by transducing the target cells.


VII. Delivery, Formulations and Routes of Administration


The components, e.g., a Cas9 molecule and gRNA molecule can be delivered, formulated, or administered in a variety of forms, see, e.g., Table 18. In an embodiment, one Cas9 molecule and two or more (e.g., 2, 3, 4, or more) different gRNA molecules are delivered, e.g., by an AAV vector. In an embodiment, the sequence encoding the Cas9 molecule and the sequence(s) encoding the two or more (e.g., 2, 3, 4, or more) different gRNA molecules are present on the same nucleic acid molecule, e.g., an AAV vector. When a Cas9 or gRNA component is delivered encoded in DNA the DNA will typically include a control region, e.g., comprising a promoter, to effect expression. Useful promoters for Cas9 molecule sequences include CMV, EFS, EF-1α, MSCV, PGK, CAG, hGRK1, hCRX, hNRL, and hRCVRN control promoters. In an embodiment, the promoter is a constitutive promoter. In another embodiment, the promoter is a tissue specific promoter. Exemplary promoter sequences are disclosed in Table 20. Useful promoters for gRNAs include H1, 7SK, and U6 promoters. Promoters with similar or dissimilar strengths can be selected to tune the expression of components. Sequences encoding a Cas9 molecule can comprise a nuclear localization signal (NLS), e.g., an SV40 NLS. In an embodiment, the sequence encoding a Cas9 molecule comprises at least two nuclear localization signals. In an embodiment a promoter for a Cas9 molecule or a gRNA molecule can be, independently, inducible, tissue specific, or cell specific. To detect the expression of a Cas9, an affinity tag can be used. Useful affinity tag sequences include, but are not limited to, 3×Flag tag, single Flag tag, HA tag, Myc tag or HIS tag. Exemplary affinity tag sequences are disclosed in Table 26. To regulate Cas9 expression, e.g., in mammalian cells, polyadenylation signals (poly(A) signals) can be used. Exemplary polyadenylation signals are disclosed in Table 27.


Table 18 provides examples of how the components can be formulated, delivered, or administered.









TABLE 18







Elements









Cas9
gRNA



Molecule(s)
molecule(s)
Comments





DNA
DNA
In this embodiment a Cas9 molecule,




typically an eaCas9 molecule, and a




gRNA are transcribed from DNA. In




this embodiment they are encoded on




separate molecules.








DNA
In this embodiment a Cas9 molecule,



typically an eaCas9 molecule, and a gRNA



are transcribed from DNA, here from a



single molecule.









DNA
RNA
In this embodiment a Cas9 molecule,




typically an eaCas9 molecule, is




transcribed from DNA.


mRNA
RNA
In this embodiment a Cas9 molecule,




typically an eaCas9 molecule, is




transcribed from DNA.


Protein
DNA
In this embodiment a Cas9 molecule,




typically an eaCas9 molecule, is provided




as a protein. A gRNA is transcribed




from DNA.


Protein
RNA
In this embodiment an eaCas9 molecule




is provided as a protein.









Table 19 summarizes various delivery methods for the components of a Cas system, e.g., the Cas9 molecule component and the gRNA molecule component, as described herein.













TABLE 19






Delivery






into Non-
Duration

Type of



Dividing
of
Genome
Molecule


Delivery Vector/Mode
Cells
Expression
Integration
Delivered







Physical (e.g., electroporation,
YES
Transient
NO
Nucleic Acids


particle gun, Calcium



and Proteins


Phosphate transfection)
















Viral
Retrovirus
NO
Stable
YES
RNA



Lentivirus
YES
Stable
YES/NO with
RNA






modifications




Adenovirus
YES
Transient
NO
DNA



Adeno-
YES
Stable
NO
DNA



Associated Virus







(AAV)







Vaccinia Virus
YES
Very
NO
DNA





Transient





Herpes Simplex
YES
Stable
NO
DNA



Virus






Non-Viral
Cationic
YES
Transient
Depends on
Nucleic Acids



Liposomes


what is
and Proteins






delivered




Polymeric
YES
Transient
Depends on
Nucleic Acids



Nanoparticles


what is
and Proteins






delivered



Biological
Attenuated
YES
Transient
NO
Nucleic Acids


Non-Viral
Bacteria






Delivery
Engineered
YES
Transient
NO
Nucleic Acids


Vehicles
Bacteriophages







Mammalian
YES
Transient
NO
Nucleic Acids



Virus-like







Particles







Biological
YES
Transient
NO
Nucleic Acids



liposomes:







Erythrocyte







Ghosts and







Exosomes









Table 20 describes exemplary promoter sequences that can be used in AAV vectors, e.g., for Cas9 expression.









TABLE 20







Cas9 Promoter Sequences











Promoter
Length (bp)
DNA Sequence






CMV
617
SEQ ID NO: 401



EFS
252
SEQ ID NO: 402



Human GRK1
292
SEQ ID NO: 403



(rhodopsin kinase)





Human CRX (cone
113
SEQ ID NO: 404



rod homeobox





transcription factor)





Human NRL (neural
281
SEQ ID NO: 405



retina leucine zipper





transcription factor





enhance upstream of





the human TK





terminal promoter)





Human RCVRN
235
SEQ ID NO: 406



(recoverin)









Table 26 describes exemplary affinity tag sequences that can be used in AAV vectors, e.g., for Cas9 expression.










TABLE 26





Affinity



tag
Amino Acid Sequence







3XFlag tag
DYKDHDGDYKDHDIDYKDDDDK (SEQ ID NO: 426)





Flag tag
DYKDDDDK (SEQ ID NO: 451)


(single)





HA tag
YPYDVPDYA (SEQ ID NO: 452)





Myc tag
EQKLISEEDL (SEQ ID NO: 453)





HIS tag
HEIHHHH (SEQ ID NO: 454)









Table 27 describes exemplary polyadenylation (polyA) sequences that can be used in AAV vectors, e.g., for Cas9 expression.









TABLE 27







Exemplary PolyA Sequences










PolyA
DNA sequence






Mini polyA
SEQ ID NO: 424



bGH polyA
SEQ ID NO: 455



SV40 polyA
SEQ ID NO: 456









Table 25 describes exemplary Inverted Terminal Repeat (ITR) sequences that can be used in AAV vectors.









TABLE 25







Sequences of ITRs from Exemplary AAV Serotypes











AAV





Serotype
Left ITR Sequence
Right ITR Sequence






AAV1
SEQ ID NO: 407
SEQ ID NO: 436



AAV2
SEQ ID NO: 408
SEQ ID NO: 437



AAV3B
SEQ ID NO: 409
SEQ ID NO: 438



AAV4
SEQ ID NO: 410
SEQ ID NO: 439



AAV5
SEQ ID NO: 411
SEQ ID NO: 440



AAV6
SEQ ID NO: 412
SEQ ID NO: 441



AAV7
SEQ ID NO: 413
SEQ ID NO: 442



AAV8
SEQ ID NO: 414
SEQ ID NO: 443



AAV9
SEQ ID NO: 415
SEQ ID NO: 444









Additional exemplary sequences for the recombinant AAV genome components described herein are provided below.


Exemplary left and right ITR sequences are provided in Table 25 (SEQ ID NOs: 407-415 and 436-444).


Exemplary spacer 1 sequence: CAGATCTGAATTCGGTACC (SEQ ID NO: 416).


Exemplary U6 promoter sequence:









(SEQ ID NO: 417)







AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCA





TATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAA





ACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTT





GGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCT





TACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGA





AAGGACGAAACACC






Exemplary gRNA targeting domain sequences are described herein, e.g., in Tables 2A-2D, Tables 3A-3C, Tables 4A-4D, Tables 5A-5D, Tables 6A-6B, Tables 7A-7D, Tables 8A-8D, Tables 9A-9E, Tables 10A-10B, or Table 11.


Exemplary gRNA scaffold domain sequence:









(SEQ ID NO: 418)







GTTTTAGTACTCTGGAAACAGAATCTACTAAAACAAGGCAAAATGCCGTG





TTTATCTCGTCAACTTGTTGGCGAGATTTTTT.






Exemplary spacer 2 domain sequence:









(SEQ ID NO: 419)







GGTACCGCTAGCGCTTAAGTCGCGATGTACGGGCCAGATATACGCGTTG





A.






Exemplary Polymerase II promoter sequences are provided in Table 20.


Exemplary N-ter NLS nucleotide sequence:









(SEQ ID NO: 420)









CCGAAGAAAAAGCGCAAGGTCGAAGCGTCC






Exemplary N-ter NLS amino acid sequence: PKKKRKV (SEQ ID NO: 434)


Exemplary S. aureus Cas9 nucleotide sequence set forth in SEQ ID NO: 39.


Exemplary S. aureus Cas9 amino acid sequence set forth in SEQ ID NO: 26.


Exemplary C-ter NLS sequence: CCCAAGAAGAAGAGGAAAGTC (SEQ ID NO: 422).


Exemplary C-ter NLS amino acid sequence: PKKKRKV (SEQ ID NO: 434)


Exemplary poly(A) signal sequence:









(SEQ ID NO: 424)







TAGCAATAAAGGATCGTTTATTTTCATTGGAAGCGTGTGTTGGTTTTTTG





ATCAGGCGCG.






Exemplary Spacer 3 sequence:









(SEQ ID NO: 425)







TCCAAGCTTCGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCGT





TAACTCTAGATTTAAATGCATGCTGGGGAGAGATCT






Exemplary 3×FLAG nucleotide sequence:









(SEQ ID NO: 423)







GACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAA





GGATGACGATGACAAG.






Exemplary 3×FLAG amino acid sequence:









(SEQ ID NO: 426)









DYKDHDGDYKDHDIDYKDDDDK






Exemplary Spacer 4 sequence: CGACTTAGTTCGATCGAAGG (SEQ ID NO: 427).


Exemplary recombinant AAV genome sequences are provided in FIGS. 19A-24F (SEQ ID NOs: 428-433 and 445-450). Exemplary sequences of the recombinant AAV genome components (e.g., one or more of the components described above) are also shown in FIGS. 19A-24F (SEQ ID NOs: 428-433 and 445-450).


In certain aspects, the present disclosure focuses on AAV vectors encoding CRISPR/Cas9 genome editing systems, and on the use of such vectors to treat CEP290 associated disease. Exemplary AAV vector genomes are schematized in FIGS. 25A through 25C, which illustrate certain fixed and variable elements of these vectors: inverted terminal repeats (ITRs), one or two gRNA sequences and promoter sequences to drive their expression, a Cas9 coding sequence and another promoter to drive its expression. Each of these elements is discussed in detail below.


Turning first to the gRNA pairs utilized in the nucleic acids or AAV vectors of the present disclosure, one of three “left” or “upstream” guides may be used to cut upstream (between exon 26 and the IVS26 mutation), and one of three “right” or “downstream” guides is used to cut downstream (between the IVS26 mutation and exon 27). Targeting domain sequences of these guides (both DNA and RNA sequences) are presented in Table 28, below:









TABLE 28







Upstream (left) and Downstream (right)


gRNA Targeting Domain Sequences










SEQ





ID




NO:
DNA
SEQ ID NO:
RNA










Upstream (left) guides










389
GTTCTGTCCTCAGTAAAAGGTA
530
GUUCUGUCCUCAGUAAAAGGUA





390
GAATAGTTTGTTCTGGGTAC
468
GAAUAGUUUGUUCUGGGUAC





391
GAGAAAGGGATGGGCACTTA
538
GAGAAAGGGAUGGGCACUUA










Downstream (right) guides










388
GTCAAAAGCTACCGGTTACCTG
558
GUCAAAAGCUACCGGUUACCUG





392
GATGCAGAACTAGTGTAGAC
460
GAUGCAGAACUAGUGUAGAC





394
GAGTATCTCCTGTTTGGCA
568
GAGUAUCUCCUGUUUGGCA









The left and right guides can be used in any combination, though certain combinations may be more suitable for certain applications. Table 29 sets forth several upstream+downstream guide pairs used in the embodiments of this disclosure. It should be noted, notwithstanding the use of “left” and “right” as nomenclature for gRNAs, that any guide in a pair, upstream or downstream, may be placed in either one of the gRNA coding sequence positions illustrated in FIG. 25.









TABLE 29





Upstream (Left) + Downstream (Right) Guide Pairs by SEQ ID NO.

















Downstream















388
392
394






Upstream
389
389 + 388
389 + 392
389 + 394




390
390 + 388
390 + 392
390 + 394




391
391 + 388
391 + 392
391 + 394












Downstream















558
460
568






Upstream
530
530 + 558
530 + 460
530 + 568




468
468 + 558
468 + 460
468 + 568




538
538 + 558
538 + 460
538 + 568









In some embodiments, the gRNAs used in the present disclosure are derived from S. aureus gRNAs and can be unimolecular or modular, as described below. An exemplary unimolecular S. aureus gRNA is shown in FIG. 18B, and exemplary DNA and RNA sequences corresponding to unimolecular S. aureus gRNAs are shown below:









DNA:







(SEQ ID NO: 2785)








[N]
16-24
GTTTTAGTACTCTGGAAACAGAATCTACTAAAACAAGGCAAA







ATGCCGTGTTTATCTCGTCAACTTGTTGGCGAGATTTTTT



and





RNA:







(SEQ ID NO: 2779)








[N]
16-24
GUUUUAGUACUCUGGAAACAGAAUCUACUAAAACAAGGCAAA







AUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGA.






DNA:







(SEQ ID NO: 2787)








[N]
16-24
GTTATAGTACTCTGGAAACAGAATCTACTATAACAAGGCAAA







ATGCCGTGTTTATCTCGTCAACTTGTTGGCGAGATTTTTT



and





RNA:







(SEQ ID NO: 2786)








[N]
16-24
GUUAUAGUACUCUGGAAACAGAAUCUACUAUAACAAGGCAAA







AUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGA.







It should be noted that, while the figure depicts a targeting domain of 20 nucleotides, the targeting domain can have any suitable length. gRNAs used in the various embodiments of this disclosure preferably include targeting domains of between 16 and 24 (inclusive) bases in length at their 5′ ends, and optionally include a 3′ U6 termination sequence as illustrated.


The gRNA in FIG. 18B is depicted as unimolecular, but in some instances modular guides can be used. In the exemplary unimolecular gRNA sequences above, a 5′ portion corresponding to a crRNA (underlined) is connected by a GAAA linker to a 3′ portion corresponding to a tracrRNA (double underlined). Skilled artisans will appreciate that two-part modular gRNAs can be used that correspond to the underlined and double underlined sections.


Either one of the gRNAs presented above can be used with any of targeting sequences SEQ ID NOs: 389-391, 388, 392, or 394, and two gRNAs in a pair do not necessarily include the same backbone sequence. Additionally, skilled artisans will appreciate that the exemplary gRNA designs set forth herein can be modified in a variety of ways, which are described below or are known in the art; the incorporation of such modifications is within the scope of this disclosure.


Expression of each of the gRNAs in the AAV vector is driven by a pair of U6 promoters, such as a human U6 promoter. An exemplary U6 promoter sequence, as set forth in Maeder, is SEQ ID NO: 417.


Turning next to Cas9, in some embodiments the Cas9 protein is S. aureus Cas9. In further embodiments of this disclosure an S. aureus Cas9 sequence is modified to include two nuclear localization sequences (NLSs) at the C- and N-termini of the Cas9 protein, and a mini-polyadenylation signal (or Poly-A sequence). Exemplary S. aureus Cas9 sequences are provided as SEQ ID NO: 39 (i.e., codon-optimized S. aureus Cas9 nucleotide sequence) and SEQ ID NO: 26 (i.e., S. aureus Cas9 protein sequence). These sequences are exemplary in nature, and are not intended to be limiting. The skilled artisan will appreciate that modifications of these sequences may be possible or desirable in certain applications; such modifications are described below, or are known in the art, and are within the scope of this disclosure.


Skilled artisans will also appreciate that polyadenylation signals are widely used and known in the art, and that any suitable polyadenylation signal can be used in the embodiments of this disclosure. One exemplary polyadenylation signal is set forth in SEQ ID NO: 424.


Cas9 expression is driven, in certain vectors of this disclosure, by one of three promoters: cytomegalovirus (CMV) (i.e., SEQ ID NO: 401), elongation factor-1 (EFS) (i.e., SEQ ID NO: 402), or human g-protein receptor coupled kinase-1 (hGRK1) (i.e., SEQ ID NO: 403), which is specifically expressed in retinal photoreceptor cells. Modifications of the sequences of the promoters may be possible or desirable in certain applications, and such modifications are within the scope of this disclosure.


AAV genomes according to the present disclosure generally incorporate inverted terminal repeats (ITRs) derived from the AAV2 serotype. Exemplary left and right ITRs are SEQ ID NO: 408 (AAV2 Left ITR) and SEQ ID NO: 437 (AAV2 Right ITR), respectively. It should be noted, however, that numerous modified versions of the AAV2 ITRs are used in the field, and the ITR sequences shown below are exemplary and are not intended to be limiting. Modifications of these sequences are known in the art, or will be evident to skilled artisans, and are thus included in the scope of this disclosure.


As FIG. 25 illustrates, the gRNA pairs and the Cas9 promoter are variable and can be selected from the lists presented above. For clarity, this disclosure encompasses nucleic acids and/or AAV vectors comprising any combination of these elements, though certain combinations may be preferred for certain applications. Accordingly, in various embodiments of this disclosure, a nucleic acid or AAV vector encodes a CMV promoter for the Cas9, and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 388 (RNA sequences are SEQ ID NOs: 530 and 558, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 392 (RNA sequences are SEQ ID NOs: 530 and 460, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394 (RNA sequences are SEQ ID NOs: 530 and 568, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388 (RNA sequences are SEQ ID NOs: 468 and 558, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 392 (RNA sequences are SEQ ID NOs: 468 and 460, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 394 (RNA sequences are SEQ ID NOs: 468 and 568, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388 (RNA sequences are SEQ ID NOs: 538 and 558, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392 (RNA sequences are SEQ ID NOs: 538 and 460, respectively); a CMV promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 394 (RNA sequences are SEQ ID NOs: 538 and 568, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 388 (RNA sequences are SEQ ID NOs: 530 and 558, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 392 (RNA sequences are SEQ ID NOs: 530 and 460, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394 (RNA sequences are SEQ ID NOs: 530 and 568, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388 (RNA sequences are SEQ ID NOs: 468 and 558, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 392 (RNA sequences are SEQ ID NOs: 468 and 460, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 394 (RNA sequences are SEQ ID NOs: 468 and 568, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388 (RNA sequences are SEQ ID NOs: 538 and 558, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392 (RNA sequences are SEQ ID NOs: 538 and 460, respectively); an EFS promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 394 (RNA sequences are SEQ ID NOs: 538 and 568, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 388 (RNA sequences are SEQ ID NOs: 530 and 558, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 392 (RNA sequences are SEQ ID NOs: 530 and 460, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 389 and 394 (RNA sequences are SEQ ID NOs: 530 and 568, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 388 (RNA sequences are SEQ ID NOs: 468 and 558, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 392 (RNA sequences are SEQ ID NOs: 468 and 460, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 390 and 394 (RNA sequences are SEQ ID NOs: 468 and 568, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 388 (RNA sequences are SEQ ID NOs: 538 and 558, respectively); an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 392 (RNA sequences are SEQ ID NOs: 538 and 460, respectively); or an hGRK1 promoter and gRNAs comprising targeting domains according to SEQ ID NOs: 391 and 394 (RNA sequences are SEQ ID NOs: 538 and 568, respectively).


In various embodiments, the nucleic acid or AAV vector encodes the following: left and right AAV2 ITR sequences, a first U6 promoter to drive expression of a first guide RNA having a sequence selected from SEQ ID NOs: 2785 and 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 389-391, a second U6 promoter to drive expression of a second guide RNA comprising a sequence selected from SEQ ID NOs: 2785 and 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 388, 392, and 394, and a CMV promoter to drive expression of an S. aureus Cas9 encoded by SEQ ID NO: 39; or left and right AAV2 ITR sequences, a first U6 promoter to drive expression of a first guide RNA having a sequence selected from SEQ ID NOs: 2785 or 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 389-391, a second U6 promoter to drive expression of a second guide RNA comprising a sequence selected from SEQ ID NOs: 2785 and 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 388, 392, and 394, and an hGRK promoter to drive expression of an S. aureus Cas9 encoded by SEQ ID NO: 39; or left and right AAV2 ITR sequences, a first U6 promoter to drive expression of a first guide RNA having a sequence selected from SEQ ID NOs: 2785 and 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 389-391, a second U6 promoter to drive expression of a second guide RNA comprising a sequence selected from SEQ ID NOs: 2785 or 2787 and/or comprising a targeting domain sequence according to one of SEQ ID NOs: 388, 392, and 394, and an EFS promoter to drive expression of an S. aureus Cas9 encoded by SEQ ID NO: 39.


In some embodiments, the nucleic acid or AAV vector shares at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater sequence identity with one of the nucleic acids or AAV vectors recited above.


It should be noted that these sequences described above are exemplary, and can be modified in ways that do not disrupt the operating principles of elements they encode. Such modifications, some of which are discussed below, are within the scope of this disclosure. Without limiting the foregoing, skilled artisans will appreciate that the DNA, RNA or protein sequences of the elements of this disclosure may be varied in ways that do not interrupt their function, and that a variety of similar sequences that are substantially similar (e.g., greater than 90%, 95%, 96%, 97%, 98% or 99% sequence similarity, or in the case of short sequences such as gRNA targeting domains, sequences that differ by no more than 1, 2 or 3 nucleotides) can be utilized in the various systems, methods and AAV vectors described herein. Such modified sequences are within the scope of this disclosure.


The AAV genomes described above can be packaged into AAV capsids (for example, AAV5 capsids), which capsids can be included in compositions (such as pharmaceutical compositions) and/or administered to subjects. An exemplary pharmaceutical composition comprising an AAV capsid according to this disclosure can include a pharmaceutically acceptable carrier such as balanced saline solution (BSS) and one or more surfactants (e.g., Tween20) and/or a thermosensitive or reverse-thermosensitive polymer (e.g., pluronic). Other pharmaceutical formulation elements known in the art may also be suitable for use in the compositions described here.


Compositions comprising AAV vectors according to this disclosure can be administered to subjects by any suitable means, including without limitation injection, for example, subretinal injection. The concentration of AAV vector within the composition is selected to ensure, among other things, that a sufficient AAV dose is administered to the retina of the subject, taking account of dead volume within the injection apparatus and the relatively limited volume that can be safely administered to the retina. Suitable doses may include, for example, 1×1011 viral genomes (vg)/mL, 2×1011 viral genomes (vg)/mL, 3×1011 viral genomes (vg)/mL, 4×1011 viral genomes (vg)/mL, 5×1011 viral genomes (vg)/mL, 6×1011 viral genomes (vg)/mL, 7×1011 viral genomes (vg)/mL, 8×1011 viral genomes (vg)/mL, 9×1011 viral genomes (vg)/mL, 1×1012 vg/mL, 2×1012 viral genomes (vg)/mL, 3×1012 viral genomes (vg)/mL, 4×1012 viral genomes (vg)/mL, 5×1012 viral genomes (vg)/mL, 6×1012 viral genomes (vg)/mL, 7×1012 viral genomes (vg)/mL, 8×1012 viral genomes (vg)/mL, 9×1012 viral genomes (vg)/mL, 1×1013 vg/mL, 2×1013 viral genomes (vg)/mL, 3×1013 viral genomes (vg)/mL, 4×1013 viral genomes (vg)/mL, 5×1013 viral genomes (vg)/mL, 6×1013 viral genomes (vg)/mL, 7×1013 viral genomes (vg)/mL, 8×1013 viral genomes (vg)/mL, or 9×1013 viral genomes (vg)/mL. Any suitable volume of the composition may be delivered to the subretinal space. In some instances, the volume is selected to form a bleb in the subretinal space, for example 1 microliter, 10 microliters, 50 microliters, 100 microliters, 150 microliters, 200 microliters, 250 microliters, 300 microliters, etc.


Any region of the retina may be targeted, though the fovea (which extends approximately 1 degree out from the center of the eye) may be preferred in certain instances due to its role in central visual acuity and the relatively high concentration of cone photoreceptors there relative to peripheral regions of the retina. Alternatively or additionally, injections may be targeted to parafoveal regions (extending between approximately 2 and 10 degrees off center), which are characterized by the presence of all three types of retinal photoreceptor cells. In addition, injections into the parafoveal region may be made at comparatively acute angles using needle paths that cross the midline of the retina. For instance, injection paths may extend from the nasal aspect of the sclera near the limbus through the vitreal chamber and into the parafoveal retina on the temporal side, from the temporal aspect of the sclera to the parafoveal retina on the nasal side, from a portion of the sclera located superior to the cornea to an inferior parafoveal position, and/or from an inferior portion of the sclera to a superior parafoveal position. The use of relatively small angles of injection relative to the retinal surface may advantageously reduce or limit the potential for spillover of vector from the bleb into the vitreous body and, consequently, reduce the loss of the vector during delivery. In other cases, the macula (inclusive of the fovea) can be targeted, and in other cases, additional retinal regions can be targeted, or can receive spillover doses.


For pre-clinical development purposes, systems, compositions, nucleotides and vectors according to this disclosure can be evaluated ex vivo using a retinal explant system, or in vivo using an animal model such as a mouse, rabbit, pig, nonhuman primate, etc. Retinal explants are optionally maintained on a support matrix, and AAV vectors can be delivered by injection into the space between the photoreceptor layer and the support matrix, to mimic subretinal injection. Tissue for retinal explanation can be obtained from human or animal subjects, for example mouse.


Explants are particularly useful for studying the expression of gRNAs and/or Cas9 following viral transduction, and for studying genome editing over comparatively short intervals. These models also permit higher throughput than may be possible in animal models, and can be predictive of expression and genome editing in animal models and subjects. Small (mouse, rat) and large animal models (such as rabbit, pig, nonhuman primate) can be used for pharmacological and/or toxicological studies and for testing the systems, nucleotides, vectors and compositions of this disclosure under conditions and at volumes that approximate those that will be used in clinic. Because model systems are selected to recapitulate relevant aspects of human anatomy and/or physiology, the data obtained in these systems will generally (though not necessarily) be predictive of the behavior of AAV vectors and compositions according to this disclosure in human and animal subjects.


While the foregoing exemplary embodiments have focused on guide RNAs, nucleic acids and AAV vectors targeted to the CEP290 gene, it will be appreciated by those of skill in the art that the nucleic acids and vectors of this disclosure may be used in the editing of other gene targets and the treatment of other diseases such as hereditary retinopathies that may be treated by editing of genes other than CEP290. FIGS. 25B and 25C illustrate two exemplary AAV vectors that may be used to transduce retinal cells, including without limitation retinal photoreceptor cells such as rod photoreceptors and/or cone photoreceptors, and/or other retinal cell types. The AAV genome of FIG. 25B comprises two guide RNAs according to SEQ ID NOs: 2785 or 2787, and a promoter sequence according to one of SEQ ID NOs: 401-403 driving expression of an S. aureus Cas9 comprising one or two nuclear localization signals and, optionally, a polyadenylation signal. The vector may additionally include ITRs such as AAV2 ITRs, or other sequences that may be selected for the specific application to which the vector will be employed. As is shown in FIG. 25C, other vectors within the scope of this disclosure may include only 1 guide RNA. Thus, in specific embodiments, an AAV genome of this disclosure may encode a CMV promoter for the Cas9 and one guide RNA having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787; a CMV promoter for the Cas9 and two guide RNAs, each having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787; an hGRK promoter for the Cas9 and one guide RNA having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787; an hGRK promoter for the Cas9 and two guide RNAs, each having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787; an EFS promoter for the Cas9 and one guide RNA having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787; an EFS promoter for the Cas9 and two guide RNAs, each having a sequence comprising, or sharing at least 90% sequence identity with, a sequence selected from SEQ ID NOs: 2785 and 2787.


DNA-Based Delivery of a Cas9 Molecule and/or a gRNA Molecule


Nucleic acids encoding Cas9 molecules (e.g., eaCas9 molecules) and/or gRNA molecules, can be administered to subjects or delivered into cells by art-known methods or as described herein. For example, Cas9-encoding and/or gRNA-encoding DNA can be delivered, e.g., by vectors (e.g., viral or non-viral vectors), non-vector based methods (e.g., using naked DNA or DNA complexes), or a combination thereof.


DNA encoding Cas9 molecules (e.g., eaCas9 molecules) and/or gRNA molecules can be conjugated to molecules (e.g., N-acetylgalactosamine) promoting uptake by the target cells (e.g., the target cells described herein). Donor template molecules can be conjugated to molecules (e.g., N-acetylgalactosamine) promoting uptake by the target cells (e.g., the target cells described herein).


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a vector (e.g., viral vector/virus or plasmid).


A vector can comprise a sequence that encodes a Cas9 molecule and/or a gRNA molecule. A vector can also comprise a sequence encoding a signal peptide (e.g., for nuclear localization, nucleolar localization, mitochondrial localization), fused, e.g., to a Cas9 molecule sequence. For example, a vector can comprise a nuclear localization sequence (e.g., from SV40) fused to the sequence encoding the Cas9 molecule.


One or more regulatory/control elements, e.g., a promoter, an enhancer, an intron, a polyadenylation signal, a Kozak consensus sequence, internal ribosome entry sites (IRES), a 2A sequence, and splice acceptor or donor can be included in the vectors. In some embodiments, the promoter is recognized by RNA polymerase II (e.g., a CMV promoter). In other embodiments, the promoter is recognized by RNA polymerase III (e.g., a U6 promoter). In some embodiments, the promoter is a regulated promoter (e.g., inducible promoter). In other embodiments, the promoter is a constitutive promoter. In some embodiments, the promoter is a tissue specific promoter. In some embodiments, the promoter is a viral promoter. In other embodiments, the promoter is a non-viral promoter.


In some embodiments, the vector or delivery vehicle is a viral vector (e.g., for generation of recombinant viruses). In some embodiments, the virus is a DNA virus (e.g., dsDNA or ssDNA virus). In other embodiments, the virus is an RNA virus (e.g., an ssRNA virus). Exemplary viral vectors/viruses include, e.g., retroviruses, lentiviruses, adenovirus, adeno-associated virus (AAV), vaccinia viruses, poxviruses, and herpes simplex viruses.


In some embodiments, the virus infects dividing cells. In other embodiments, the virus infects non-dividing cells. In some embodiments, the virus infects both dividing and non-dividing cells. In some embodiments, the virus can integrate into the host genome. In some embodiments, the virus is engineered to have reduced immunity, e.g., in human. In some embodiments, the virus is replication-competent. In other embodiments, the virus is replication-defective, e.g., having one or more coding regions for the genes necessary for additional rounds of virion replication and/or packaging replaced with other genes or deleted. In some embodiments, the virus causes transient expression of the Cas9 molecule and/or the gRNA molecule. In other embodiments, the virus causes long-lasting, e.g., at least 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, 1 year, 2 years, or permanent expression, of the Cas9 molecule and/or the gRNA molecule. The packaging capacity of the viruses may vary, e.g., from at least about 4 kb to at least about 30 kb, e.g., at least about 5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 30 kb, 35 kb, 40 kb, 45 kb, or 50 kb.


In an embodiment, the viral vector recognizes a specific cell type or tissue. For example, the viral vector can be pseudotyped with a different/alternative viral envelope glycoprotein; engineered with a cell type-specific receptor (e.g., genetic modification(s) of one or more viral envelope glycoproteins to incorporate a targeting ligand such as a peptide ligand, a single chain antibody, or a growth factor); and/or engineered to have a molecular bridge with dual specificities with one end recognizing a viral glycoprotein and the other end recognizing a moiety of the target cell surface (e.g., a ligand-receptor, monoclonal antibody, avidin-biotin and chemical conjugation).


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant retrovirus. In some embodiments, the retrovirus (e.g., Moloney murine leukemia virus) comprises a reverse transcriptase, e.g., that allows integration into the host genome. In some embodiments, the retrovirus is replication-competent. In other embodiments, the retrovirus is replication-defective, e.g., having one of more coding regions for the genes necessary for additional rounds of virion replication and packaging replaced with other genes, or deleted. In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant lentivirus. For example, the lentivirus is replication-defective, e.g., does not comprise one or more genes required for viral replication.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant adenovirus. In some embodiments, the adenovirus is engineered to have reduced immunity in human.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant AAV. In some embodiments, the AAV does not incorporate its genome into that of a host cell, e.g., a target cell as describe herein. In some embodiments, the AAV can incorporate at least part of its genome into that of a host cell, e.g., a target cell as described herein. In some embodiments, the AAV is a self-complementary adeno-associated virus (scAAV), e.g., a scAAV that packages both strands which anneal together to form double stranded DNA. AAV serotypes that may be used in the disclosed methods, include AAV1, AAV2, modified AAV2 (e.g., modifications at Y444F, Y500F, Y730F and/or S662V), AAV3, modified AAV3 (e.g., modifications at Y705F, Y731F and/or T492V), AAV4, AAV5, AAV6, modified AAV6 (e.g., modifications at S663V and/or T492V), AAV8, AAV 8.2, AAV9, AAV rh10, and pseudotyped AAV, such as AAV2/8, AAV2/5 and AAV2/6 can also be used in the disclosed methods. In an embodiment, an AAV capsid that can be used in the methods described herein is a capsid sequence from serotype AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV.rh8, AAV.rh10, AAV.rh32/33, AAV.rh43, AAV.rh64R1, or AAV7m8. Exemplary AAV serotypes and ITR sequences are disclosed in Table 25.


In an embodiment, the Cas9- and/or gRNA-encoding DNA is delivered in a re-engineered AAV capsid, e.g., with 50% or greater, e.g., 60% or greater, 70% or greater, 80% or greater, 90% or greater, or 95% or greater, sequence homology with a capsid sequence from serotypes AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV.rh8, AAV.rh10, AAV.rh32/33, AAV.rh43, or AAV.rh64R1.


In an embodiment, the Cas9- and/or gRNA-encoding DNA is delivered by a chimeric AAV capsid. Exemplary chimeric AAV capsids include, but are not limited to, AAV9i1, AAV2i8, AAV-DJ, AAV2G9, AAV2i8G9, or AAV8G9.


In an embodiment, the AAV is a self-complementary adeno-associated virus (scAAV), e.g., a scAAV that packages both strands which anneal together to form double stranded DNA.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a hybrid virus, e.g., a hybrid of one or more of the viruses described herein. In an embodiment, the hybrid virus is hybrid of an AAV (e.g., of any AAV serotype), with a Bocavirus, B19 virus, porcine AAV, goose AAV, feline AAV, canine AAV, or MVM.


A packaging cell is used to form a virus particle that is capable of infecting a target cell. Such a cell includes a 293 cell, which can package adenovirus, and a ψ2 cell or a PA317 cell, which can package retrovirus. A viral vector used in gene therapy is usually generated by a producer cell line that packages a nucleic acid vector into a viral particle. The vector typically contains the minimal viral sequences required for packaging and subsequent integration into a host or target cell (if applicable), with other viral sequences being replaced by an expression cassette encoding the protein to be expressed, e.g., Cas9. For example, an AAV vector used in gene therapy typically only possesses inverted terminal repeat (ITR) sequences from the AAV genome which are required for packaging and gene expression in the host or target cell. The missing viral functions can be supplied in trans by the packaging cell line and/or plasmid containing E2A, E4, and VA genes from adenovirus, and plasmid encoding Rep and Cap genes from AAV, as described in “Triple Transfection Protocol.” Henceforth, the viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. In embodiment, the viral DNA is packaged in a producer cell line, which contains E1A and/or E1B genes from adenovirus. The cell line is also infected with adenovirus as a helper. The helper virus (e.g., adenovirus or HSV) or helper plasmid promotes replication of the AAV vector and expression of AAV genes from the plasmid with ITRs. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.


In an embodiment, the viral vector has the ability of cell type and/or tissue type recognition. For example, the viral vector can be pseudotyped with a different/alternative viral envelope glycoprotein; engineered with a cell type-specific receptor (e.g., genetic modification of the viral envelope glycoproteins to incorporate targeting ligands such as a peptide ligand, a single chain antibody, a growth factor); and/or engineered to have a molecular bridge with dual specificities with one end recognizing a viral glycoprotein and the other end recognizing a moiety of the target cell surface (e.g., ligand-receptor, monoclonal antibody, avidin-biotin and chemical conjugation).


In an embodiment, the viral vector achieves cell type specific expression. For example, a tissue-specific promoter can be constructed to restrict expression of the transgene (Cas 9 and gRNA) in only the target cell. The specificity of the vector can also be mediated by microRNA-dependent control of transgene expression. In an embodiment, the viral vector has increased efficiency of fusion of the viral vector and a target cell membrane. For example, a fusion protein such as fusion-competent hemagglutin (HA) can be incorporated to increase viral uptake into cells. In an embodiment, the viral vector has the ability of nuclear localization. For example, a virus that requires the breakdown of the cell wall (during cell division) and therefore will not infect a non-diving cell can be altered to incorporate a nuclear localization peptide in the matrix protein of the virus thereby enabling the transduction of non-proliferating cells.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a non-vector based method (e.g., using naked DNA or DNA complexes). For example, the DNA can be delivered, e.g., by organically modified silica or silicate (Ormosil), electroporation, gene gun, sonoporation, magnetofection, lipid-mediated transfection, dendrimers, inorganic nanoparticles, calcium phosphates, or a combination thereof.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a combination of a vector and a non-vector based method. For example, a virosome comprises a liposome combined with an inactivated virus (e.g., HIV or influenza virus), which can result in more efficient gene transfer, e.g., in a respiratory epithelial cell than either a viral or a liposomal method alone.


In an embodiment, the delivery vehicle is a non-viral vector. In an embodiment, the non-viral vector is an inorganic nanoparticle. Exemplary inorganic nanoparticles include, e.g., magnetic nanoparticles (e.g., Fe3MnO2) and silica. The outer surface of the nanoparticle can be conjugated with a positively charged polymer (e.g., polyethylenimine, polylysine, polyserine) which allows for attachment (e.g., conjugation or entrapment) of payload. In an embodiment, the non-viral vector is an organic nanoparticle (e.g., entrapment of the payload inside the nanoparticle). Exemplary organic nanoparticles include, e.g., SNALP liposomes that contain cationic lipids together with neutral helper lipids which are coated with polyethylene glycol (PEG) and protamine and nucleic acid complex coated with lipid coating.


Exemplary lipids for gene transfer are shown below in Table 21.









TABLE 21







Lipids Used for Gene Transfer









Lipid
Abbreviation
Feature





1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine
DOPC
Helper


1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine
DOPE
Helper


Cholesterol

Helper


N-[1-(2,3-Dioleyloxy)prophyl]N,N,N-trimethylammonium
DOTMA
Cationic


chloride




1,2-Dioleoyloxy-3-trimethylammonium-propane
DOTAP
Cationic


Dioctadecylamidoglycylspermine
DOGS
Cationic


N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(dodecyloxy)-1-
GAP-DLRIE
Cationic


propanaminium bromide




Cetyltrimethylammonium bromide
CTAB
Cationic


6-Lauroxyhexyl ornithinate
LHON
Cationic


1-(2,3-Dioleoyloxypropyl)-2,4,6-trimethylpyridinium
2Oc
Cationic


2,3-Dioleyloxy-N-[2(sperminecarboxamido-ethyl]-N,N-dimethyl-
DOSPA
Cationic


1-propanaminium trifluoroacetate




1,2-Dioleyl-3-trimethylammonium-propane
DOPA
Cationic


N-(2-Hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-
MDRIE
Cationic


propanaminium bromide




Dimyristooxypropyl dimethyl hydroxyethyl ammonium bromide
DMRI
Cationic


3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl]cholesterol
DC-Chol
Cationic


Bis-guanidium-tren-cholesterol
BGTC
Cationic


1,3-Diodeoxy-2-(6-carboxy-spermyl)-propylamide
DOSPER
Cationic


Dimethyloctadecylammonium bromide
DDAB
Cationic


Dioctadecylamidoglicylspermidin
DSL
Cationic


rac-[(2,3-Dioctadecyloxypropyl)(2-hydroxyethyl)]-
CLIP-1
Cationic


dimethylammonium chloride




rac-[2(2,3-Dihexadecyloxypropyl-
CLIP-6
Cationic


oxymethyloxy)ethyl]trimethylammonium bromide




Ethyldimyristoylphosphatidylcholine
EDMPC
Cationic


1,2-Distearyloxy-N,N-dimethyl-3-aminopropane
DSDMA
Cationic


1,2-Dimyristoyl-trimethylammonium propane
DMTAP
Cationic


O,O′-Dimyristyl-N-lysyl aspartate
DMKE
Cationic


1,2-Distearoyl-sn-glycero-3-ethylphosphocholine
DSEPC
Cationic


N-Palmitoyl D-erythro-sphingosyl carbamoyl-spermine
CCS
Cationic


N-t-Butyl-N0-tetradecyl-3-tetradecylaminopropionamidine
diC14-amidine
Cationic


Octadecenolyoxy[ethyl-2-heptadecenyl-3 hydroxyethyl]imidazolinium
DOTIM
Cationic


chloride




N1-Cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine
CDAN
Cationic


2-(3-[Bis(3-amino-propyl)-amino]propylamino)-N-
RPR209120
Cationic


ditetradecylcarbamoylme-ethyl-acetamide




1,2-dilinoleyloxy-3-dimethylaminopropane
DLinDMA
Cationic


2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane
DLin-KC2-
Cationic



DMA



dilinoleyl-methyl-4-dimethylaminobutyrate
DLin-MC3-
Cationic



DMA










Exemplary polymers for gene transfer are shown below in Table 22.









TABLE 22







Polymers Used for Gene Transfer










Polymer
Abbreviation






Poly(ethylene)glycol
PEG



Polyethylenimine
PEI



Dithiobis(succinimidylpropionate)
DSP



Dimethyl-3,3′-dithiobispropionimidate
DTBP



Poly(ethylene imine)biscarbamate
PEIC



Poly(L-lysine)
PLL



Histidine modified PLL




Poly(N-vinylpyrrolidone)
PVP



Poly(propylenimine)
PPI



Poly(amidoamine)
PAMAM



Poly(amidoethylenimine)
SS-PAEI



Triethylenetetramine
TETA



Poly(β-aminoester)




Poly(4-hydroxy-L-proline ester)
PHP



Poly(allylamine)




Poly(α-[4-aminobutyl]-L-glycolic acid)
PAGA



Poly(D,L-lactic-co-glycolic acid)
PLGA



Poly(N-ethyl-4-vinylpyridinium bromide)




Poly(phosphazene)s
PPZ



Poly(phosphoester)s
PPE



Poly(phosphoramidate)s
PPA



Poly(N-2-hydroxypropylmethacrylamide)
pHPMA



Poly (2-(dimethylamino)ethyl methacrylate)
pDMAEMA



Poly(2-aminoethyl propylene phosphate)
PPE-EA



Chitosan




Galactosylated chitosan




N-Dodacylated chitosan




Histone




Collagen




Dextran-spermine
D-SPM









In an embodiment, the vehicle has targeting modifications to increase target cell update of nanoparticles and liposomes, e.g., cell specific antigens, monoclonal antibodies, single chain antibodies, aptamers, polymers, sugars, and cell penetrating peptides. In an embodiment, the vehicle uses fusogenic and endosome-destabilizing peptides/polymers. In an embodiment, the vehicle undergoes acid-triggered conformational changes (e.g., to accelerate endosomal escape of the cargo). In an embodiment, a stimuli-cleavable polymer is used, e.g., for release in a cellular compartment. For example, disulfide-based cationic polymers that are cleaved in the reducing cellular environment can be used.


In an embodiment, the delivery vehicle is a biological non-viral delivery vehicle. In an embodiment, the vehicle is an attenuated bacterium (e.g., naturally or artificially engineered to be invasive but attenuated to prevent pathogenesis and expressing the transgene (e.g., Listeria monocytogenes, certain Salmonella strains, Bifidobacterium longum, and modified Escherichia coli), bacteria having nutritional and tissue-specific tropism to target specific tissues, bacteria having modified surface proteins to alter target tissue specificity). In an embodiment, the vehicle is a genetically modified bacteriophage (e.g., engineered phages having large packaging capacity, less immunogenic, containing mammalian plasmid maintenance sequences and having incorporated targeting ligands). In an embodiment, the vehicle is a mammalian virus-like particle. For example, modified viral particles can be generated (e.g., by purification of the “empty” particles followed by ex vivo assembly of the virus with the desired cargo). The vehicle can also be engineered to incorporate targeting ligands to alter target tissue specificity. In an embodiment, the vehicle is a biological liposome. For example, the biological liposome is a phospholipid-based particle derived from human cells (e.g., erythrocyte ghosts, which are red blood cells broken down into spherical structures derived from the subject (e.g., tissue targeting can be achieved by attachment of various tissue or cell-specific ligands), or secretory exosomes—subject (i.e., patient) derived membrane-bound nanovesicle (30-100 nm) of endocytic origin (e.g., can be produced from various cell types and can therefore be taken up by cells without the need of for targeting ligands).


In an embodiment, one or more nucleic acid molecules (e.g., DNA molecules) other than the components of a Cas system, e.g., the Cas9 molecule component and/or the gRNA molecule component described herein, are delivered. In an embodiment, the nucleic acid molecule is delivered at the same time as one or more of the components of the Cas system are delivered. In an embodiment, the nucleic acid molecule is delivered before or after (e.g., less than about 30 minutes, 1 hour, 2 hours, 3 hours, 6 hours, 9 hours, 12 hours, 1 day, 2 days, 3 days, 1 week, 2 weeks, or 4 weeks) one or more of the components of the Cas system are delivered. In an embodiment, the nucleic acid molecule is delivered by a different means than one or more of the components of the Cas system, e.g., the Cas9 molecule component and/or the gRNA molecule component, are delivered. The nucleic acid molecule can be delivered by any of the delivery methods described herein. For example, the nucleic acid molecule can be delivered by a viral vector, e.g., an integration-deficient lentivirus, and the Cas9 molecule component and/or the gRNA molecule component can be delivered by electroporation, e.g., such that the toxicity caused by nucleic acids (e.g., DNAs) can be reduced. In an embodiment, the nucleic acid molecule encodes a therapeutic protein, e.g., a protein described herein. In an embodiment, the nucleic acid molecule encodes an RNA molecule, e.g., an RNA molecule described herein.


Delivery of RNA Encoding a Cas9 Molecule


RNA encoding Cas9 molecules (e.g., eaCas9 molecules) and/or gRNA molecules, can be delivered into cells, e.g., target cells described herein, by art-known methods or as described herein. For example, Cas9-encoding and/or gRNA-encoding RNA can be delivered, e.g., by microinjection, electroporation, lipid-mediated transfection, peptide-mediated delivery, or a combination thereof. Cas9-encoding and/or gRNA-encoding RNA can be conjugated to molecules (e.g., GalNAc) promoting uptake by the target cells (e.g., target cells described herein).


Delivery Cas9 Protein


Cas9 molecules (e.g., eaCas9 molecules) can be delivered into cells by art-known methods or as described herein. For example, Cas9 protein molecules can be delivered, e.g., by microinjection, electroporation, lipid-mediated transfection, peptide-mediated delivery, or a combination thereof. Delivery can be accompanied by DNA encoding a gRNA or by a gRNA. Cas9-encoding and/or gRNA-encoding RNA can be conjugated to molecules (e.g., GalNAc) promoting uptake by the target cells (e.g., target cells described herein).


Route of Administration


Systemic modes of administration include oral and parenteral routes. Parenteral routes include, by way of example, intravenous, intraarterial, intramuscular, intradermal, subcutaneous, intranasal and intraperitoneal routes. Components administered systemically may be modified or formulated to target the components to the eye.


Local modes of administration include, by way of example, intraocular, intraorbital, subconjuctival, intravitreal, subretinal or transscleral routes. In an embodiment, significantly smaller amounts of the components (compared with systemic approaches) may exert an effect when administered locally (for example, intravitreally) compared to when administered systemically (for example, intravenously). Local modes of administration can reduce or eliminate the incidence of potentially toxic side effects that may occur when therapeutically effective amounts of a component are administered systemically.


In an embodiment, components described herein are delivered subretinally, e.g., by subretinal injection. Subretinal injections may be made directly into the macular, e.g., submacular injection.


In an embodiment, components described herein are delivered by intravitreal injection. Intravitreal injection has a relatively low risk of retinal detachment. In an embodiment, nanoparticle or viral, e.g., AAV vector, is delivered intravitreally.


Methods for administration of agents to the eye are known in the medical arts and can be used to administer components described herein. Exemplary methods include intraocular injection (e.g., retrobulbar, subretinal, submacular, intravitreal and intrachoridal), iontophoresis, eye drops, and intraocular implantation (e.g., intravitreal, sub-Tenons and sub-conjunctival).


Administration may be provided as a periodic bolus (for example, subretinally, intravenously or intravitreally) or as continuous infusion from an internal reservoir (for example, from an implant disposed at an intra- or extra-ocular location (see, U.S. Pat. Nos. 5,443,505 and 5,766,242)) or from an external reservoir (for example, from an intravenous bag). Components may be administered locally, for example, by continuous release from a sustained release drug delivery device immobilized to an inner wall of the eye or via targeted transscleral controlled release into the choroid (see, e.g., PCT/US00/00207; PCT/US02/14279; Ambati 2000a; Ambati 2000b. A variety of devices suitable for administering components locally to the inside of the eye are known in the art. See, for example, U.S. Pat. Nos. 6,251,090; 6,299,895; 6,416,777; and 6,413,540; and PCT Appl. No. PCT/US00/28187.


In addition, components may be formulated to permit release over a prolonged period of time. A release system can include a matrix of a biodegradable material or a material which releases the incorporated components by diffusion. The components can be homogeneously or heterogeneously distributed within the release system. A variety of release systems may be useful, however, the choice of the appropriate system will depend upon rate of release required by a particular application. Both non-degradable and degradable release systems can be used. Suitable release systems include polymers and polymeric matrices, non-polymeric matrices, or inorganic and organic excipients and diluents such as, but not limited to, calcium carbonate and sugar (for example, trehalose). Release systems may be natural or synthetic. However, synthetic release systems are preferred because generally they are more reliable, more reproducible and produce more defined release profiles. The release system material can be selected so that components having different molecular weights are released by diffusion through or degradation of the material.


Representative synthetic, biodegradable polymers include, for example: polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactone); poly(anhydrides); polyorthoesters; polycarbonates; and chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof. Representative synthetic, non-degradable polymers include, for example: polyethers such as poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide); vinyl polymers-polyacrylates and polymethacrylates such as methyl, ethyl, other alkyl, hydroxyethyl methacrylate, acrylic and methacrylic acids, and others such as poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate); poly(urethanes); cellulose and its derivatives such as alkyl, hydroxyalkyl, ethers, esters, nitrocellulose, and various cellulose acetates; polysiloxanes; and any chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof.


Poly(lactide-co-glycolide) microsphere can also be used for intraocular injection. Typically the microspheres are composed of a polymer of lactic acid and glycolic acid, which are structured to form hollow spheres. The spheres can be approximately 15-30 microns in diameter and can be loaded with components described herein.


Bi-Modal or Differential Delivery of Components


Separate delivery of the components of a Cas system, e.g., the Cas9 molecule component and the gRNA molecule component, and more particularly, delivery of the components by differing modes, can enhance performance, e.g., by improving tissue specificity and safety.


In an embodiment, the Cas9 molecule and the gRNA molecule are delivered by different modes, or as sometimes referred to herein as differential modes. Different or differential modes, as used herein, refer modes of delivery that confer different pharmacodynamic or pharmacokinetic properties on the subject component molecule, e.g., a Cas9 molecule, gRNA molecule, template nucleic acid, or payload. For example, the modes of delivery can result in different tissue distribution, different half-life, or different temporal distribution, e.g., in a selected compartment, tissue, or organ.


Some modes of delivery, e.g., delivery by a nucleic acid vector that persists in a cell, or in progeny of a cell, e.g., by autonomous replication or insertion into cellular nucleic acid, result in more persistent expression of and presence of a component. Examples include viral, e.g., adeno associated virus or lentivirus, delivery.


By way of example, the components, e.g., a Cas9 molecule and a gRNA molecule, can be delivered by modes that differ in terms of resulting half-life or persistent of the delivered component the body, or in a particular compartment, tissue or organ. In an embodiment, a gRNA molecule can be delivered by such modes. The Cas9 molecule component can be delivered by a mode which results in less persistence or less exposure to the body or a particular compartment or tissue or organ.


More generally, in an embodiment, a first mode of delivery is used to deliver a first component and a second mode of delivery is used to deliver a second component. The first mode of delivery confers a first pharmacodynamic or pharmacokinetic property. The first pharmacodynamic property can be, e.g., distribution, persistence, or exposure, of the component, or of a nucleic acid that encodes the component, in the body, a compartment, tissue or organ. The second mode of delivery confers a second pharmacodynamic or pharmacokinetic property. The second pharmacodynamic property can be, e.g., distribution, persistence, or exposure, of the component, or of a nucleic acid that encodes the component, in the body, a compartment, tissue or organ.


In an embodiment, the first pharmacodynamic or pharmacokinetic property, e.g., distribution, persistence or exposure, is more limited than the second pharmacodynamic or pharmacokinetic property.


In an embodiment, the first mode of delivery is selected to optimize, e.g., minimize, a pharmacodynamic or pharmacokinetic property, e.g., distribution, persistence or exposure.


In an embodiment, the second mode of delivery is selected to optimize, e.g., maximize, a pharmacodynamic or pharmacokinetic property, e.g., distribution, persistence or exposure.


In an embodiment, the first mode of delivery comprises the use of a relatively persistent element, e.g., a nucleic acid, e.g., a plasmid or viral vector, e.g., an AAV or lentivirus. As such vectors are relatively persistent product transcribed from them would be relatively persistent.


In an embodiment, the second mode of delivery comprises a relatively transient element, e.g., an RNA or protein.


In an embodiment, the first component comprises gRNA, and the delivery mode is relatively persistent, e.g., the gRNA is transcribed from a plasmid or viral vector, e.g., an AAV or lentivirus. Transcription of these genes would be of little physiological consequence because the genes do not encode for a protein product, and the gRNAs are incapable of acting in isolation. The second component, a Cas9 molecule, is delivered in a transient manner, for example as mRNA or as protein, ensuring that the full Cas9 molecule/gRNA molecule complex is only present and active for a short period of time.


Furthermore, the components can be delivered in different molecular form or with different delivery vectors that complement one another to enhance safety and tissue specificity.


Use of differential delivery modes can enhance performance, safety and efficacy. E.g., the likelihood of an eventual off-target modification can be reduced. Delivery of immunogenic components, e.g., Cas9 molecules, by less persistent modes can reduce immunogenicity, as peptides from the bacterially-derived Cas enzyme are displayed on the surface of the cell by MHC molecules. A two-part delivery system can alleviate these drawbacks.


Differential delivery modes can be used to deliver components to different, but overlapping target regions. The formation active complex is minimized outside the overlap of the target regions. Thus, in an embodiment, a first component, e.g., a gRNA molecule is delivered by a first delivery mode that results in a first spatial, e.g., tissue, distribution. A second component, e.g., a Cas9 molecule is delivered by a second delivery mode that results in a second spatial, e.g., tissue, distribution. In an embodiment the first mode comprises a first element selected from a liposome, nanoparticle, e.g., polymeric nanoparticle, and a nucleic acid, e.g., viral vector. The second mode comprises a second element selected from the group. In an embodiment, the first mode of delivery comprises a first targeting element, e.g., a cell specific receptor or an antibody, and the second mode of delivery does not include that element. In embodiment, the second mode of delivery comprises a second targeting element, e.g., a second cell specific receptor or second antibody.


When the Cas9 molecule is delivered in a virus delivery vector, a liposome, or polymeric nanoparticle, there is the potential for delivery to and therapeutic activity in multiple tissues, when it may be desirable to only target a single tissue. A two-part delivery system can resolve this challenge and enhance tissue specificity. If the gRNA molecule and the Cas9 molecule are packaged in separated delivery vehicles with distinct but overlapping tissue tropism, the fully functional complex is only be formed in the tissue that is targeted by both vectors.


Ex Vivo Delivery


In some embodiments, components described in Table 18 are introduced into cells which are then introduced into the subject. Methods of introducing the components can include, e.g., any of the delivery methods described in Table 19.


VIII. Modified Nucleosides, Nucleotides, and Nucleic Acids


Modified nucleosides and modified nucleotides can be present in nucleic acids, e.g., particularly gRNA, but also other forms of RNA, e.g., mRNA, RNAi, or siRNA. As described herein, “nucleoside” is defined as a compound containing a five-carbon sugar molecule (a pentose or ribose) or derivative thereof, and an organic base, purine or pyrimidine, or a derivative thereof. As described herein, “nucleotide” is defined as a nucleoside further comprising a phosphate group.


Modified nucleosides and nucleotides can include one or more of:


(i) alteration, e.g., replacement, of one or both of the non-linking phosphate oxygens and/or of one or more of the linking phosphate oxygens in the phosphodiester backbone linkage;


(ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar;


(iii) wholesale replacement of the phosphate moiety with “dephospho” linkers; (iv) modification or replacement of a naturally occurring nucleobase;


(v) replacement or modification of the ribose-phosphate backbone;


(vi) modification of the 3′ end or 5′ end of the oligonucleotide, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety; and


(vii) modification of the sugar.


The modifications listed above can be combined to provide modified nucleosides and nucleotides that can have two, three, four, or more modifications. For example, a modified nucleoside or nucleotide can have a modified sugar and a modified nucleobase. In an embodiment, every base of a gRNA is modified, e.g., all bases have a modified phosphate group, e.g., all are phosphorothioate groups. In an embodiment, all, or substantially all, of the phosphate groups of a unimolecular or modular gRNA molecule are replaced with phosphorothioate groups.


In an embodiment, modified nucleotides, e.g., nucleotides having modifications as described herein, can be incorporated into a nucleic acid, e.g., a “modified nucleic acid.” In some embodiments, the modified nucleic acids comprise one, two, three or more modified nucleotides. In some embodiments, at least 5% (e.g., at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%) of the positions in a modified nucleic acid are a modified nucleotides.


Unmodified nucleic acids can be prone to degradation by, e.g., cellular nucleases. For example, nucleases can hydrolyze nucleic acid phosphodiester bonds. Accordingly, in one aspect the modified nucleic acids described herein can contain one or more modified nucleosides or nucleotides, e.g., to introduce stability toward nucleases.


In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can exhibit a reduced innate immune response when introduced into a population of cells, both in vivo and ex vivo. The term “innate immune response” includes a cellular response to exogenous nucleic acids, including single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death. In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can disrupt binding of a major groove interacting partner with the nucleic acid. In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can exhibit a reduced innate immune response when introduced into a population of cells, both in vivo and ex vivo, and also disrupt binding of a major groove interacting partner with the nucleic acid.


Definitions of Chemical Groups


As used herein, “alkyl” is meant to refer to a saturated hydrocarbon group which is straight-chained or branched. Example alkyl groups include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t-butyl), pentyl (e.g., n-pentyl, isopentyl, neopentyl), and the like. An alkyl group can contain from 1 to about 20, from 2 to about 20, from 1 to about 12, from 1 to about 8, from 1 to about 6, from 1 to about 4, or from 1 to about 3 carbon atoms.


As used herein, “aryl” refers to monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbons such as, for example, phenyl, naphthyl, anthracenyl, phenanthrenyl, indanyl, indenyl, and the like. In some embodiments, aryl groups have from 6 to about 20 carbon atoms.


As used herein, “alkenyl” refers to an aliphatic group containing at least one double bond.


As used herein, “alkynyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl.


As used herein, “arylalkyl” or “aralkyl” refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of “arylalkyl” or “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, 9-fluorenyl, benzhydryl, and trityl groups.


As used herein, “cycloalkyl” refers to a cyclic, bicyclic, tricyclic, or polycyclic non-aromatic hydrocarbon groups having 3 to 12 carbons. Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl.


As used herein, “heterocyclyl” refers to a monovalent radical of a heterocyclic ring system. Representative heterocyclyls include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, and morpholinyl.


As used herein, “heteroaryl” refers to a monovalent radical of a heteroaromatic ring system. Examples of heteroaryl moieties include, but are not limited to, imidazolyl, oxazolyl, thiazolyl, triazolyl, pyrrolyl, furanyl, indolyl, thiophenyl pyrazolyl, pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, indolizinyl, purinyl, naphthyridinyl, quinolyl, and pteridinyl.


Phosphate Backbone Modifications


Phosphate Group


In some embodiments, the phosphate group of a modified nucleotide can be modified by replacing one or more of the oxygens with a different substituent. Further, the modified nucleotide, e.g., modified nucleotide present in a modified nucleic acid, can include the wholesale replacement of an unmodified phosphate moiety with a modified phosphate as described herein. In some embodiments, the modification of the phosphate backbone can include alterations that result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.


Examples of modified phosphate groups include, phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. In some embodiments, one of the non-bridging phosphate oxygen atoms in the phosphate backbone moiety can be replaced by any of the following groups: sulfur (S), selenium (Se), BR3 (wherein R can be, e.g., hydrogen, alkyl, or aryl), C (e.g., an alkyl group, an aryl group, and the like), H, NR2 (wherein R can be, e.g., hydrogen, alkyl, or aryl), or OR (wherein R can be, e.g., alkyl or aryl). The phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non-bridging oxygens with one of the above atoms or groups of atoms can render the phosphorous atom chiral; that is to say that a phosphorous atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorous atom can possess either the “R” configuration (herein Rp) or the “S” configuration (herein Sp).


Phosphorodithioates have both non-bridging oxygens replaced by sulfur. The phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotide diastereomers. In some embodiments, modifications to one or both non-bridging oxygens can also include the replacement of the non-bridging oxygens with a group independently selected from S, Se, B, C, H, N, and OR (R can be, e.g., alkyl or aryl).


The phosphate linker can also be modified by replacement of a bridging oxygen, (i.e., the oxygen that links the phosphate to the nucleoside), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at either linking oxygen or at both of the linking oxygens.


Replacement of the Phosphate Group


The phosphate group can be replaced by non-phosphorus containing connectors. In some embodiments, the charge phosphate group can be replaced by a neutral moiety.


Examples of moieties which can replace the phosphate group can include, without limitation, e.g., methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.


Replacement of the Ribophosphate Backbone


Scaffolds that can mimic nucleic acids can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. In some embodiments, the nucleobases can be tethered by a surrogate backbone. Examples can include, without limitation, the morpholino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates.


Sugar Modifications


The modified nucleosides and modified nucleotides can include one or more modifications to the sugar group. For example, the 2′ hydroxyl group (OH) can be modified or replaced with a number of different “oxy” or “deoxy” substituents. In some embodiments, modifications to the 2′ hydroxyl group can enhance the stability of the nucleic acid since the hydroxyl can no longer be deprotonated to form a 2′-alkoxide ion. The 2′-alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom.


Examples of “oxy”-2′ hydroxyl group modifications can include alkoxy or aryloxy (OR, wherein “R” can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or a sugar); polyethyleneglycols (PEG), O(CH2CH2O)nCH2CH2OR wherein R can be, e.g., H or optionally substituted alkyl, and n can be an integer from 0 to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from 0 to 16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from 1 to 20, from 2 to 4, from 2 to 8, from 2 to 10, from 2 to 16, from 2 to 20, from 4 to 8, from 4 to 10, from 4 to 16, and from 4 to 20). In some embodiments, the “oxy”-2′ hydroxyl group modification can include “locked” nucleic acids (LNA) in which the 2′ hydroxyl can be connected, e.g., by a C1-6 alkylene or C1-6 heteroalkylene bridge, to the 4′ carbon of the same ribose sugar, where exemplary bridges can include methylene, propylene, ether, or amino bridges; O-amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino) and aminoalkoxy, O(CH2)n-amino, (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino). In some embodiments, the “oxy”-2′ hydroxyl group modification can include the methoxyethyl group (MOE), (OCH2CH2OCH3, e.g., a PEG derivative).


“Deoxy” modifications can include hydrogen (i.e. deoxyribose sugars, e.g., at the overhang portions of partially ds RNA); halo (e.g., bromo, chloro, fluoro, or iodo); amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, diheteroarylamino, or amino acid); NH(CH2CH2NH)nCH2CH2-amino (wherein amino can be, e.g., as described herein), —NHC(O)R (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino as described herein.


The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified nucleic acid can include nucleotides containing e.g., arabinose, as the sugar. The nucleotide “monomer” can have an alpha linkage at the 1′ position on the sugar, e.g., alpha-nucleosides. The modified nucleic acids can also include “abasic” sugars, which lack a nucleobase at C-1′. These abasic sugars can also be further modified at one or more of the constituent sugar atoms. The modified nucleic acids can also include one or more sugars that are in the L form, e.g. L-nucleosides.


Generally, RNA includes the sugar group ribose, which is a 5-membered ring having an oxygen. Exemplary modified nucleosides and modified nucleotides can include, without limitation, replacement of the oxygen in ribose (e.g., with sulfur (S), selenium (Se), or alkylene, such as, e.g., methylene or ethylene); addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl); ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane); ring expansion of ribose (e.g., to form a 6- or 7-membered ring having an additional carbon or heteroatom, such as for example, anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino that also has a phosphoramidate backbone). In some embodiments, the modified nucleotides can include multicyclic forms (e.g., tricyclo; and “unlocked” forms, such as glycol nucleic acid (GNA) (e.g., R-GNA or S-GNA, where ribose is replaced by glycol units attached to phosphodiester bonds), threose nucleic acid (TNA, where ribose is replaced with α-L-threofuranosyl-(3′→2′)).


Modifications on the Nucleobase


The modified nucleosides and modified nucleotides described herein, which can be incorporated into a modified nucleic acid, can include a modified nucleobase. Examples of nucleobases include, but are not limited to, adenine (A), guanine (G), cytosine (C), and uracil (U). These nucleobases can be modified or wholly replaced to provide modified nucleosides and modified nucleotides that can be incorporated into modified nucleic acids. The nucleobase of the nucleotide can be independently selected from a purine, a pyrimidine, a purine or pyrimidine analog. In some embodiments, the nucleobase can include, for example, naturally-occurring and synthetic derivatives of a base.


Uracil


In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include without limitation pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s2U), 4-thio-uridine (s4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho5U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridine or 5-bromo-uridine), 3-methyl-uridine (m3U), 5-methoxy-uridine (mo5U), uridine 5-oxyacetic acid (cmo5U), uridine 5-oxyacetic acid methyl ester (mcmo5U), 5-carboxymethyl-uridine (cm5U), 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uridine (chm5U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm5U), 5-methoxycarbonylmethyl-uridine (mcm5U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm5s2U), 5-aminomethyl-2-thio-uridine (nm5s2U), 5-methylaminomethyl-uridine (mnm5U), 5-methylaminomethyl-2-thio-uridine (mnm5s2U), 5-methylaminomethyl-2-seleno-uridine (mnm5se2U), 5-carbamoylmethyl-uridine (ncm5U), 5-carboxymethylaminomethyl-uridine (cmnm5U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U), 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τcm5U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine (τm5s2U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m5U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine (m1ψ), 5-methyl-2-thio-uridine (m5s2U), 1-methyl-4-thio-pseudouridine (m1s4ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m3ψ), 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m5D), 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, 3-(3-amino-3-carboxypropyl)uridine (acp3U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp3ψ), 5-(isopentenylaminomethyl)uridine (nm5U), 5-(isopentenylaminomethyl)-2-thio-uridine (inm5s2U), α-thio-uridine, 2′-O-methyl-uridine (Um), 5,2′-O-dimethyl-uridine (m5Um), 2′-O-methyl-pseudouridine (ψm), 2-thio-2′-O-methyl-uridine (s2Um), 5-methoxycarbonylmethyl-2′-O-methyl-uridine (mcm5Um), 5-carbamoylmethyl-2′-O-methyl-uridine (ncm 5Um), 5-carboxymethylaminomethyl-2′-O-methyl-uridine (cmnm 5Um), 3,2′-O-dimethyl-uridine (m3Um), 5-(isopentenylaminomethyl)-2′-O-methyl-uridine (inm5Um), 1-thio-uridine, deoxythymidine, 2′-F-ara-uridine, T-F-uridine, 2′-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, 5-[3-(1-E-propenylamino)uridine, pyrazolo[3,4-d]pyrimidines, xanthine, and hypoxanthine.


Cytosine


In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include without limitation 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m3C), N4-acetyl-cytidine (act), 5-formyl-cytidine (f5C), N4-methyl-cytidine (m4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C), α-thio-cytidine, 2′-O-methyl-cytidine (Cm), 5,2′-O-dimethyl-cytidine (m5Cm), N4-acetyl-2′-O-methyl-cytidine (ac4Cm), N4,2′-O-dimethyl-cytidine (m4Cm), 5-formyl-2′-O-methyl-cytidine (f 5Cm), N4,N4,2′-O-trimethyl-cytidine (m42Cm), 1-thio-cytidine, 2′-F-ara-cytidine, 2′-F-cytidine, and 2′-OH-ara-cytidine.


Adenine


In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include without limitation 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), 2-methylthio-N6-methyl-adenosine (ms2 m6A), N6-isopentenyl-adenosine (i6A), 2-methylthio-N6-isopentenyl-adenosine (ms2i6A), N6-(cis-hydroxyisopentenyl)adenosine (i6A), 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine (ms2io6A), N6-glycinylcarbamoyl-adenosine (g6A), N6-threonylcarbamoyl-adenosine (t6A), N6-methyl-N6-threonylcarbamoyl-adenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyl-adenosine (ms2g6A), N6,N6-dimethyl-adenosine (m62A), N6-hydroxynorvalylcarbamoyl-adenosine (hn6A), 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenosine (ms2hn6A), N6-acetyl-adenosine (ac6A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2′-O-methyl-adenosine (Am), N6,2′-O-dimethyl-adenosine (m6Am), N6-Methyl-2′-deoxyadenosine, N6,N6,2′-O-trimethyl-adenosine (m62Am), 1,2′-O-dimethyl-adenosine (m1Am), 2′-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2′-F-ara-adenosine, 2′-F-adenosine, 2′-OH-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.


Guanine


In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include without limitation inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o2yW), hydroxywybutosine (OHyW), undermodified hydroxywybutosine (OHyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), archaeosine (G+), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine (m7G), 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (m′G), N2-methyl-guanosine (m2G), N2,N2-dimethyl-guanosine (m22G), N2,7-dimethyl-guanosine (m2,7G), N2, N2,7-dimethyl-guanosine (m2,2,7G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-meth thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-thio-guanosine, 2′-O-methyl-guanosine (Gm), N2-methyl-2′-O-methyl-guanosine (m2Gm), N2,N2-dimethyl-2′-O-methyl-guanosine (m22Gm), 1-methyl-2′-O-methyl-guanosine (m′Gm), N2,7-dimethyl-2′-O-methyl-guanosine (m2,7Gm), 2′-O-methyl-inosine (Im), 1,2′-O-dimethyl-inosine (m′Im), O6-phenyl-2′-deoxyinosine, 2′-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, O6-methyl-guanosine, O6-Methyl-2′-deoxyguanosine, 2′-F-ara-guanosine, and 2′-F-guanosine.


Modified gRNAs


In some embodiments, the modified nucleic acids can be modified gRNAs. In some embodiments, gRNAs can be modified at the 3′ end. In this embodiment, the gRNAs can be modified at the 3′ terminal U ribose. For example, the two terminal hydroxyl groups of the U ribose can be oxidized to aldehyde groups and a concomitant opening of the ribose ring to afford a modified nucleoside as shown below:




embedded image



wherein “U” can be an unmodified or modified uridine.


In another embodiment, the 3′ terminal U can be modified with a 2′3′ cyclic phosphate as shown below:




embedded image



wherein “U” can be an unmodified or modified uridine.


In some embodiments, the gRNA molecules may contain 3′ nucleotides which can be stabilized against degradation, e.g., by incorporating one or more of the modified nucleotides described herein. In this embodiment, e.g., uridines can be replaced with modified uridines, e.g., 5-(2-amino)propyl uridine, and 5-bromo uridine, or with any of the modified uridines described herein; adenosines and guanosines can be replaced with modified adenosines and guanosines, e.g., with modifications at the 8-position, e.g., 8-bromo guanosine, or with any of the modified adenosines or guanosines described herein. In some embodiments, deaza nucleotides, e.g., 7-deaza-adenosine, can be incorporated into the gRNA. In some embodiments, O- and N-alkylated nucleotides, e.g., N6-methyl adenosine, can be incorporated into the gRNA. In some embodiments, sugar-modified ribonucleotides can be incorporated, e.g., wherein the 2′ OH— group is replaced by a group selected from H, —OR, —R (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), halo, —SH, —SR (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, diheteroarylamino, or amino acid); or cyano (—CN). In some embodiments, the phosphate backbone can be modified as described herein, e.g., with a phosphothioate group. In some embodiments, the nucleotides in the overhang region of the gRNA can each independently be a modified or unmodified nucleotide including, but not limited to 2′-sugar modified, such as, 2-F 2′-O-methyl, thymidine (T), 2′-O-methoxyethyl-5-methyluridine (Teo), 2′-O-methoxyethyladenosine (Aeo), 2′-O-methoxyethyl-5-methylcytidine (m5Ceo), and any combinations thereof.


In an embodiment, one or more or all of the nucleotides in single stranded RNA molecule, e.g., a gRNA molecule, are deoxynucleotides.


miRNA Binding Sites


microRNAs (or miRNAs) are naturally occurring cellular 19-25 nucleotide long noncoding RNAs. They bind to nucleic acid molecules having an appropriate miRNA binding site, e.g., in the 3′ UTR of an mRNA, and down-regulate gene expression. While not wishing to be bound by theory, in an embodiment, it is believed that the down regulation is either by reducing nucleic acid molecule stability or by inhibiting translation. An RNA species disclosed herein, e.g., an mRNA encoding Cas9 can comprise an miRNA binding site, e.g., in its 3′UTR. The miRNA binding site can be selected to promote down regulation of expression is a selected cell type. By way of example, the incorporation of a binding site for miR-122, a microRNA abundant in liver, can inhibit the expression of the gene of interest in the liver.


Governing gRNA Molecules and the Use Thereof to Limit the Activity of a Cas9 System


Methods and compositions that use, or include, a nucleic acid, e.g., DNA, that encodes a Cas9 molecule or a gRNA molecule, can, in addition, use or include a “governing gRNA molecule.” The governing gRNA can limit the activity of the other CRISPR/Cas components introduced into a cell or subject. In an embodiment, a gRNA molecule comprises a targeting domain that is complementary to a target domain on a nucleic acid that comprises a sequence that encodes a component of the CRISPR/Cas system that is introduced into a cell or subject. In an embodiment, a governing gRNA molecule comprises a targeting domain that is complementary with a target sequence on: (a) a nucleic acid that encodes a Cas9 molecule; (b) a nucleic acid that encodes a gRNA which comprises a targeting domain that targets the CEP290 gene (a target gene gRNA); or on more than one nucleic acid that encodes a CRISPR/Cas component, e.g., both (a) and (b). The governing gRNA molecule can complex with the Cas9 molecule to inactivate a component of the system. In an embodiment, a Cas9 molecule/governing gRNA molecule complex inactivates a nucleic acid that comprises the sequence encoding the Cas9 molecule. In an embodiment, a Cas9 molecule/governing gRNA molecule complex inactivates the nucleic acid that comprises the sequence encoding a target gene gRNA molecule. In an embodiment, a Cas9 molecule/governing gRNA molecule complex places temporal, level of expression, or other limits, on activity of the Cas9 molecule/target gene gRNA molecule complex. In an embodiment, a Cas9 molecule/governing gRNA molecule complex reduces off-target or other unwanted activity. In an embodiment, a governing gRNA molecule targets the coding sequence, or a control region, e.g., a promoter, for the CRISPR/Cas system component to be negatively regulated. For example, a governing gRNA can target the coding sequence for a Cas9 molecule, or a control region, e.g., a promoter, that regulates the expression of the Cas9 molecule coding sequence, or a sequence disposed between the two. In an embodiment, a governing gRNA molecule targets the coding sequence, or a control region, e.g., a promoter, for a target gene gRNA. In an embodiment, a governing gRNA, e.g., a Cas9-targeting or target gene gRNA-targeting, governing gRNA molecule, or a nucleic acid that encodes it, is introduced separately, e.g., later, than is the Cas9 molecule or a nucleic acid that encodes it. For example, a first vector, e.g., a viral vector, e.g., an AAV vector, can introduce nucleic acid encoding a Cas9 molecule and one or more target gene gRNA molecules, and a second vector, e.g., a viral vector, e.g., an AAV vector, can introduce nucleic acid encoding a governing gRNA molecule, e.g., a Cas9-targeting or target gene gRNA targeting, gRNA molecule. In an embodiment, the second vector can be introduced after the first. In other embodiments, a governing gRNA molecule, e.g., a Cas9-targeting or target gene gRNA targeting, governing gRNA molecule, or a nucleic acid that encodes it, can be introduced together, e.g., at the same time or in the same vector, with the Cas9 molecule or a nucleic acid that encodes it, but, e.g., under transcriptional control elements, e.g., a promoter or an enhancer, that are activated at a later time, e.g., such that after a period of time the transcription of Cas9 is reduced. In an embodiment, the transcriptional control element is activated intrinsically. In an embodiment, the transcriptional element is activated via the introduction of an external trigger.


Typically a nucleic acid sequence encoding a governing gRNA molecule, e.g., a Cas9-targeting gRNA molecule, is under the control of a different control region, e.g., promoter, than is the component it negatively modulates, e.g., a nucleic acid encoding a Cas9 molecule. In an embodiment, “different control region” refers to simply not being under the control of one control region, e.g., promoter, that is functionally coupled to both controlled sequences. In an embodiment, different refers to “different control region” in kind or type of control region. For example, the sequence encoding a governing gRNA molecule, e.g., a Cas9-targeting gRNA molecule, is under the control of a control region, e.g., a promoter, that has a lower level of expression, or is expressed later than the sequence which encodes is the component it negatively modulates, e.g., a nucleic acid encoding a Cas9 molecule.


By way of example, a sequence that encodes a governing gRNA molecule, e.g., a Cas9-targeting governing gRNA molecule, can be under the control of a control region (e.g., a promoter) described herein, e.g., human U6 small nuclear promoter, or human H1 promoter. In an embodiment, a sequence that encodes the component it negatively regulates, e.g., a nucleic acid encoding a Cas9 molecule, can be under the control of a control region (e.g., a promoter) described herein, e.g., CMV, EF-1α, MSCV, PGK, CAG control promoters.


EXAMPLES

The following Examples are merely illustrative and are not intended to limit the scope or content of the invention in any way.


Example 1: Cloning and Initial Screening of gRNAs

The suitability of candidate gRNAs can be evaluated as described in this example. Although described for a chimeric gRNA, the approach can also be used to evaluate modular gRNAs.


Cloning gRNAs into Plasmid Vector


For each gRNA, a pair of overlapping oligonucleotides is designed and obtained. Oligonucleotides are annealed and ligated into a digested vector backbone containing an upstream U6 promoter and the remaining sequence of a long chimeric gRNA. Plasmid is sequence-verified and prepped to generate sufficient amounts of transfection-quality DNA. Alternate promoters may be used to drive in vivo transcription (e.g., H1 promoter) or for in vitro transcription (e.g., T7 promoter).


Cloning gRNAs in Linear dsDNA Molecule (STITCHR)


For each gRNA, a single oligonucleotide is designed and obtained. The U6 promoter and the gRNA scaffold (e.g. including everything except the targeting domain, e.g., including sequences derived from the crRNA and tracrRNA, e.g., including a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain) are separately PCR amplified and purified as dsDNA molecules. The gRNA-specific oligonucleotide is used in a PCR reaction to stitch together the U6 and the gRNA scaffold, linked by the targeting domain specified in the oligonucleotide. Resulting dsDNA molecule (STITCHR product) is purified for transfection. Alternate promoters may be used to drive in vivo transcription (e.g., H1 promoter) or for in vitro transcription (e.g., T7 promoter). Any gRNA scaffold may be used to create gRNAs compatible with Cas9s from any bacterial species.


Initial gRNA Screen


Each gRNA to be tested is transfected, along with a plasmid expressing Cas9 and a small amount of a GFP-expressing plasmid into human cells. In preliminary experiments, these cells can be immortalized human cell lines such as 293T, K562 or U2OS. Alternatively, primary human cells may be used. In this case, cells may be relevant to the eventual therapeutic cell target (for example, photoreceptor cells). The use of primary cells similar to the potential therapeutic target cell population may provide important information on gene targeting rates in the context of endogenous chromatin and gene expression.


Transfection may be performed using lipid transfection (such as Lipofectamine or Fugene) or by electroporation. Following transfection, GFP expression can be determined either by fluorescence microscopy or by flow cytometry to confirm consistent and high levels of transfection. These preliminary transfections can comprise different gRNAs and different targeting approaches (17-mers, 20-mers, nuclease, dual-nickase, etc.) to determine which gRNAs/combinations of gRNAs give the greatest activity.


Efficiency of cleavage with each gRNA may be assessed by measuring NHEJ-induced indel formation at the target locus by a T7E1-type assay or by sequencing. Alternatively, other mismatch-sensitive enzymes, such as Cell/Surveyor nuclease, may also be used.


For the T7E1 assay, PCR amplicons are approximately 500-700 bp with the intended cut site placed asymmetrically in the amplicon. Following amplification, purification and size-verification of PCR products, DNA is denatured and re-hybridized by heating to 95° C. and then slowly cooling. Hybridized PCR products are then digested with T7 Endonuclease I (or other mismatch-sensitive enzyme) which recognizes and cleaves non-perfectly matched DNA. If indels are present in the original template DNA, when the amplicons are denatured and re-annealed, this results in the hybridization of DNA strands harboring different indels and therefore lead to double-stranded DNA that is not perfectly matched. Digestion products may be visualized by gel electrophoresis or by capillary electrophoresis. The fraction of DNA that is cleaved (density of cleavage products divided by the density of cleaved and uncleaved) may be used to estimate a percent NHEJ using the following equation: % NHEJ=(1−(1−fraction cleaved)1/2). The T7E1 assay is sensitive down to about 2-5% NHEJ.


Sequencing may be used instead of, or in addition to, the T7E1 assay. For Sanger sequencing, purified PCR amplicons are cloned into a plasmid backbone, transformed, miniprepped and sequenced with a single primer. For large sequencing numbers, Sanger sequencing may be used for determining the exact nature of indels after determining the NHEJ rate by T7E1.


Sequencing may also be performed using next generation sequencing techniques. When using next generation sequencing, amplicons may be 300-500 bp with the intended cut site placed asymmetrically. Following PCR, next generation sequencing adapters and barcodes (for example Illumina multiplex adapters and indexes) may be added to the ends of the amplicon, e.g., for use in high throughput sequencing (for example on an Illumina MiSeq). This method allows for detection of very low NHEJ rates.


Example 2: Assessment of Gene Targeting by NHEJ

The gRNAs that induce the greatest levels of NHEJ in initial tests can be selected for further evaluation of gene targeting efficiency. For example, cells may be derived from disease subjects, relevant cell lines, and/or animal models and, therefore, harbor the relevant mutation.


Following transfection (usually 2-3 days post-transfection) genomic DNA may be isolated from a bulk population of transfected cells and PCR may be used to amplify the target region. Following PCR, gene targeting efficiency to generate the desired mutations (either knockout of a target gene or removal of a target sequence motif) may be determined by sequencing. For Sanger sequencing, PCR amplicons may be 500-700 bp long. For next generation sequencing, PCR amplicons may be 300-500 bp long. If the goal is to knockout gene function, sequencing may be used to assess what percent of alleles have undergone NHEJ-induced indels that result in a frameshift or large deletion or insertion that would be expected to destroy gene function. If the goal is to remove a specific sequence motif, sequencing may be used to assess what percent of alleles have undergone NHEJ-induced deletions that span this sequence.


Example 3: Assessment of Activity of Individual gRNAs Targeting CEP290

Guide RNA were identified using a custom guide RNA design software based on the public tool cas-offinder (Bae 2014). Each gRNA to be tested was generated as a STITCHR product and co-transfected with a plasmid expressing either S. aureus Cas9 (pAF003) or S. pyogenes Cas9 (pJDS246) into either HEK293 cells or primary fibroblasts derived from and LCA10 patient harboring homozygous IVS26 c.2991+1655A to G mutations (hereafter referred to as IVS26 fibroblasts). The pAF003 plasmid encodes the S. aureus Cas9, with N-terminal and C-terminal nuclear localization signals (NLS) and a C-terminal triple flag tag, driven by a CMV promoter. The pJDS246 plasmid encodes the S. pyogenes Cas9, with a C-terminal nuclear localization signal (NLS) and a C-terminal triple flag tag, driven by a CMV promoter. gRNA and Cas9-encoding DNA was introduced into cells by either Mirus TransIT-293 transfection reagent (for 293 cells) or by Amaxa nucleofection (for IVS26 fibroblasts). Nucleofection was optimized for transfection of IVS26 fibroblasts using solution P2 and various pulse codes and assaying for highest levels of gene editing and cell viability. Transfection efficiency in both cell types was assessed by transfecting with GFP and assaying expression by fluorescent microscopy. Three to seven days post-transfection, genomic DNA was isolated from bulk populations of transfected cells and the region of the CEP290 locus surrounding the target site was PCR amplified. PCR amplicons were then cloned into a plasmid backbone using the Zero-Blunt TOPO cloning kit (Life Technologies) and transformed into chemically competent Top10 cells. Bacterial colonies were then cultured and plasmid DNA was isolated and sequenced. Sequencing of PCR products allowed for the detection and quantification of targeted insertion and deletion (indel) events at the target site. FIGS. 11A and 11B show the rates of indels induced by various gRNAs at the CEP290 locus. FIG. 11A shows gene editing (% indels) as assessed by sequencing for S. pyogenes and S. aureus gRNAs when co-expressed with Cas9 in patient-derived IVS26 primary fibroblasts. FIG. 11B shows gene editing (% indels) as assessed by sequencing for S. aureus gRNAs when co-expressed with Cas9 in HEK293 cells.


Example 4: Detection of gRNA Pair-Induced Deletions by PCR

To assess the ability of a pair of gRNAs to induce a genomic deletion (in which the sequence between the two cut sites is removed), PCR was performed across the predicted deletion. Pairs of gRNAs (encoded as STITCHR products) were co-transfected with pAF003 into IVS26 fibroblasts. Genomic DNA was isolated from transfected cells and PCR was performed to amplify a segment of the CEP290 locus spanning the two predicted cut sites. PCR was run on a QIAxcel capillary electrophoresis machine. The predicted amplicon on a wildtype allele is 1816 bps. Assuming that cleavage occurs within the gRNA target region, amplicon sizes for alleles having undergone the deletion event were calculated and the presence of this smaller band indicates that the desired genomic deletion event has occurred (Table 23).














TABLE 23










Deletion





Deletion
Amplicon with
amplicon



Left gRNA
Right gRNA
Size
deletion
detected?




















1
CEP290-367
CEP290-16
590
1226
no


2
CEP290-367
CEP290-203
688
1128
no


3
CEP290-367
CEP290-132
815
1001
no


4
CEP290-367
CEP290-139
1265
551
no


5
CEP290-312
CEP290-11
790
1026
yes


6
CEP290-312
CEP290-252
973
843
no


7
CEP290-312
CEP290-64
976
840
yes


8
CEP290-312
CEP290-230
1409
407
yes


9
CEP290-12
CEP290-11
19
1797
no


10
CEP290-12
CEP290-252
202
1614
no


11
CEP290-12
CEP290-64
205
1611
no


12
CEP290-12
CEP290-230
638
1178
no


13
CEP290-17
CEP290-16
19
1797
no


14
CEP290-17
CEP290-203
117
1699
no


15
CEP290-17
CEP290-132
244
1572
no


16
CEP290-17
CEP290-139
693
1123
no


17
CEP290-374
CEP290-16
799
1017
no


18
CEP290-374
CEP290-203
897
919
no


19
CEP290-374
CEP290-132
1024
792
no


20
CEP290-374
CEP290-139
1473
343
no


21
CEP290-368
CEP290-16
854
962
no


22
CEP290-368
CEP290-203
952
864
no


23
CEP290-368
CEP290-132
1079
737
no


24
CEP290-368
CEP290-139
1528
288
no


25
CEP290-323
CEP290-11
990
826
yes


26
CEP290-323
CEP290-252
1173
643
no


27
CEP290-323
CEP290-64
1176
640
yes


28
CEP290-323
CEP290-230
1609
207
yes










29
Cas9 only
wt amplicon =
no




1816



30
GFP only
wt amplicon =
no




1816



31
no DNA PCR neg ctrl









Example 5: Gene Expression Analysis of CEP290

Targeted deletion of a region containing the IVS26 splice mutation is predicted to correct the splicing defect and restore expression of the normal wild-type CEP290 allele. To quantify expression of the wild-type and mutant (containing additional cryptic splice mutation) alleles, TaqMan assays were designed. Multiple assays were tested for each RNA species and a single wt and single mutant assay were selected. The assay for the wild-type allele contains a forward primer that anneals in exon 26, a reverse primer that anneals in exon 27 and a TaqMan probe that spans the exon26-exon-27 junction. The assay for the mutant allele contains a forward primer that anneals in exon 26, a reverse primer that anneals in the cryptic exon and a TaqMan probe that spans the exon26-cryptic exon junction. A TaqMan assay designed to beta-actin was used as a control. Total RNA was isolated from IVS26 cells transfected with pairs of gRNAs and Cas9-expressing plasmid by either Trizol RNA purification (Ambion), Agencourt RNAdvance (Beckman Coulter) or direct cells-to-Ct lysis (Life Technologies). Reverse transcription to generate cDNA was performed and cDNA was used as a template for qRT-PCR using selected taqman assays on a BioRad real time PCR machine. Relative gene expression was calculated by ΔΔCt, relative to beta-actin control and GFP-only sample. Increases in expression of wt allele and decreases in expression of mutant allele relative to GFP-only control indicate corrected splicing due to gene targeting. FIGS. 12A-12B show initial qRT-PCR data for pairs of gRNAs that had shown activity as either individual gRNAs (measured as described in Example 3) or as pairs (measured as described in Example 4). Pairs of gRNAs that showed the desired gene expression changes were repeated in replicate experiments and the cumulative qRT-PCR data is shown in FIG. 13 (error bars represent standard error of the mean calculated from 2 to 6 biological replicates per sample).


Example 6: Quantification of Genomic Deletions by ddPCR

Droplet digital PCR (ddPCR) is a method for performing digital PCR in which a single PCR reaction is fractionated into 20,000 droplets in a water-oil emulsion and PCR amplification occurs separately in individual droplets. PCR conditions are optimized for a concentration of DNA template such that each droplet contains either one or no template molecules. Assays were designed to perform amplification using BioRad EvaGreen Supermix PCR system with all amplicons ranging in size from 250-350 bp. Control assays were designed to amplify segments of the CEP290 gene at least 5 kb away from the IVS26 c.2991+1655A to G mutation. Assays to detect targeted genomic deletion were designed such that amplification of an allele that has undergone deletion will yield a PCR product in the size range of 250-350 bp and amplification will not occur on a wild-type allele due to the increased distance between forward and reverse primers. PCR conditions were optimized on genomic DNA isolated from 293 cells that had been transfected with pairs of gRNAs and Cas9-expressing plasmid. Deletion assays were verified to generate no positive signal on genomic DNA isolated from unmodified IVS26 fibroblasts. Assays were further tested and optimized on genomic DNA isolated from IVS26 fibroblasts that had been transfected with pairs of gRNAs and Cas9-encoding plasmid. Of the three assays tested for each of two deletions (CEP290-323 and CEP290-11; and CEP290-323 and CEP290-64) and the 4 control assays tested, a single assay was selected for each deletion and a control based on quality data and replicability in the ddPCR assay. FIG. 14 shows deletion rates on three biological replicates calculated by taking the number of positive droplets for the deletion assay and dividing by the number of positive droplets for the control assay.


Example 7: Cloning AAV Expression Vectors

Cloning saCas9 into an AAV Expression Vector


The pAF003 plasmid encodes the CMV-driven S. aureus Cas9 (saCas9), with N-terminal and C-terminal nuclear localization signals (NLS) and a C-terminal triple flag tag, followed by a bovine growth hormone poly(A) tail (bGH polyA). BGH polyA tail was substituted with a 60-bp minimal polyA tail to obtain pAF003-minimal-pA. The CMV-driven NLS-saCas9-NLS-3×Flag with the minimal polyA tail was amplified with PCR and subcloned into pTR-UF11 plasmid (ATCC #MBA-331) with KpnI and SphI sites to obtain the pSS3 (pTR-CMV-saCas9-minimal-pA) vector. The CMV promoter sequence can be substituted with EFS promoter (pSS10 vector), or tissue-specific promoters (Table 20, e.g. photo-receptor-specific promoters, e.g. Human GRK1, CRX, NRL, RCVRN promoters, etc.) using SpeI and NotI sites.


Constructing the All-In-One AAV Expression Vector with One gRNA Sequence


For each individual gRNA sequence, a STITCHR product with a U6 promoter, gRNA, and the gRNA scaffold was obtained by PCR with an oligonucleotide encoding the gRNA sequence. The STITCHR product with one dsDNA molecule of U6-driven gRNA and scaffold was subcloned into pSS3 or pSS10 vectors using KpnI sites flanking the STITCHR product and downstream of the left Inverted Terminal Repeat (ITR) in the AAV vectors. The orientation of the U6-gRNA-scaffold insertion into pSS3 or pSS10 was determined by Sanger sequencing. Alternate promoters may be used to drive gRNA expression (e.g. H1 promoter, 7SK promoter). Any gRNA scaffold sequences compatible with Cas variants from other bacterial species could be incorporated into STITCHR products and the AAV expression vector therein.


Cloning Two gRNA into an AAV Expression Vector


For each pair of gRNA sequences, two ssDNA oligonucleotides were designed and obtained as the STITCHR primers, i.e. the left STITCHR primer and the right STITCHR primer. Two STITCHR PCR reactions (i.e. the left STITCHR PCR and the right STITCHR PCR) amplified the U6 promoter and the gRNA scaffold with the corresponding STITCHR primer separately. The pSS3 or pSS10 backbone was linearized with KpnI restriction digest. Two dsDNA STITCHR products were purified and subcloned into pSS3 or pSS10 backbone with Gibson Assembly. Due to the unique overlapping sequences upstream and downstream of the STITCHR products, the assembly is unidirectional. The sequences of the constructs were confirmed by Sanger Sequencing. Table 24 lists the names and compositions of AAV expression vectors constructed, including the names of gRNAs targeting human CEP290, the promoter to drive Cas9 expression, and the length of the AAV vector including the Inverted Terminal Repeats (ITRs) from wild type AAV2 genome. Alternative promoters (e.g., H1 promoter or 7SK promoter) or gRNA scaffold sequences compatible with any Cas variants could be adapted into this cloning strategy to obtain the corresponding All-in-One AAV expression vectors with two gRNA sequences.









TABLE 24







Components of AAV expression vectors














Promoter of
Length


Name
Left gRNA
Right gRNA
saCas9
including ITRs














pSS10
NA
NA
EFS
4100


pSS11
CEP290-64
CEP290-323
EFS
4853


pSS15
CEP290-64
NA
EFS
4491


pSS17
CEP290-323
NA
EFS
4491


pSS30
CEP290-323
CEP290-64
EFS
4862


pSS31
CEP290-323
CEP290-11
EFS
4862


pSS32
CEP290-490
CEP290-502
EFS
4858


pSS33
CEP290-490
CEP290-496
EFS
4858


pSS34
CEP290-490
CEP290-504
EFS
4857


pSS35
CEP290-492
CEP290-502
EFS
4858


pSS36
CEP290-492
CEP290-504
EFS
4857


pSS3
NA
NA
CMV
4454


pSS8
CEP290-64
CEP290-323
CMV
5207


pSS47
CEP290-323
CEP290-64
CMV
5216


pSS48
CEP290-323
CEP290-11
CMV
5216


pSS49
CEP290-490
CEP290-502
CMV
5212


pSS50
CEP290-490
CEP290-496
CMV
5212


pSS51
CEP290-490
CEP290-504
CMV
5211


pSS52
CEP290-492
CEP290-502
CMV
5212


pSS53
CEP290-492
CEP290-504
CMV
5211


pSS23
NA
NA
hGRK1
4140


pSS24
NA
NA
hCRX
3961


pSS25
NA
NA
hNRL
4129


pSS26
NA
NA
hRCVRN
4083









Example 8: Assessment of the Functions of All-In-One AAV Expression Vectors

Each individual AAV expression vectors were transfected into 293T cells with TransIT-293 (Mirus, Inc.) to test their function before being packaged into AAV viral vectors. 293T cells were transfected with the same amount of plasmid and harvested at the same time points. SaCas9 protein expression was assessed by western blotting with primary antibody probing for the triple Flag tag at the C-terminus of saCas9, while loading control was demonstrated by αTubulin expression. Deletion events at IVS26 mutation could be determined by PCR amplification followed by Sanger sequencing or ddPCR. The results are shown in FIG. 15.


Example 9: Production, Purification and Titering of Recombinant AAV2 Vectors

Prior to packaging into AAV viral vectors, all AAV expression vector (plasmids) underwent primer walk with Sanger sequencing and function analysis. In recombinant AAV (rAAV), two ITRs flanking the transgene cassettes are the only cis-acting elements from the wild-type AAV. They are critical for packaging intact rAAVs and genome-release for rAAV vectors during transduction. All AAV expression vectors were restriction digested with SmaI or XmaI to ensure the presence of two intact ITRs.


rAAV2 vectors were produced with “Triple Transfection Protocol”: (1) pSS vectors with ITRs and transgene cassettes; (2) pHelper plasmid with E2A, E4, VA genes from Adenovirus; (3) pAAV-RC2 plasmid with Rep and Cap genes from AAV2. These three plasmids were mixed at a mass ratio of 3:6:5 and transfected into HEK293 with polymer or lipid-based transfection reagent (e.g. PEI, PEI max, Lipofectamine, TransIT-293, etc.). 60-72 hours post-transfection, HEK293 cells were harvested and sonicated to release viral vectors. Cell lysates underwent CsCl ultracentrifuge to purify and concentrate the viral vectors. Additional purification procedures were performed to obtain higher purity for biophysical assays, including another round of CsCl ultracentrifuge, or sucrose gradient ultracentrifuge, or affinity chromatography. Viral vectors were dialyzed with 1×DPBS twice before being aliquoted for storage in −80° C. Viral preps can be tittered with Dot-Blot protocol or/and quantitative PCR with probes annealing to sequences on the transgenes. PCR primer sequences are: AACATGCTACGCAGAGAGGGAGTGG (SEQ ID NO: 399) (ITR-Titer-fwd) and CATGAGACAAGGAACCCCTAGTGATGGAG (SEQ ID NO: 400) (ITR-Titer-rev). Reference AAV preps were obtained from the Vector Core at University of North Carolina-Chapel Hill as standards. To confirm the presence of three non-structural viral proteins composing the AAV capsid, viral preps were denatured and probed with anti-AAV VP1/VP2/VP3 monoclonal antibody B1 (American Research Products, Inc. Cat #03-65158) on western blots. The results are shown in FIG. 16.


Example 10: rAAV-Mediated CEP290 Modification In Vitro

293T were transduced with rAAV2 vectors expressing saCas9 with or without gRNA sequences to demonstrate the deletion events near the IVS26 splicing mutant. 293T cells were transduced with rAAV2 viral vectors at an MOI of 1,000 viral genome (vg)/cell or 10,000 vg/cell and harvested at three to seven days post transduction. Western blotting with the primary antibody for Flag (anti-Flag, M2, Sigma-Aldrich) showed that the presence of U6-gRNA-scaffold does not interfere with saCas9 expression. Genomic DNA from 293T was isolated with the Agencourt DNAdvance Kit (Beckman Coulter). Regions including the deletions were PCR amplified from genomic DNA isolated, and analyzed on the QIAxcel capillary electrophoresis machine. Amplicons smaller than the full-length predicted PCR products represent the deletion events in 293T cells. The PCR results are shown in FIG. 17. To further understand the nature of these deletion events, PCR products were cloned into Zero-Blunt TOPO Cloning Kit (Life Technologies) and transformed into chemically competent Top10 cells. Bacterial colonies were then cultured and sequenced using Sanger sequencing. Sequence results were aligned with the wt CEP290 locus for analysis.


Example 11: AAV Transduction of Genome Editing Systems in Mouse Retinal Explants

To assess the ability of the AAV vectors described above to transduce CRISPR/Cas9 genome editing systems into retinal cells in situ, an ex vivo explant system was developed. FIG. 27A shows a representative image of an explanted mouse retina on a support matrix, with the tissue indicated by the gray arrow. Explants were harvested at 7- or 10-day time points, and histological, DNA, RNA and/or protein samples were produced. FIG. 27B shows a representative fluorescence micrograph from a retinal explant treated with an AAV vector carrying a GFP reporter, demonstrating successful transduction of an AAV payload in cells in multiple layers of the retina.


mRNA samples taken from retinal explants further demonstrate that genome editing systems according to the present disclosure are effectively transduced by these AAV vectors: FIG. 28A and FIG. 28B show expression of Cas9 mRNA and gRNA, respectively, normalized to the expression of GAPDH. As expected, untreated samples did not express Cas9 or gRNA, and gRNA was not detected in samples that were not transduced with gRNA coding sequences. Cas9 expression was observed in three AAV constructs in which Cas9 expression was driven by hGRK1, CMV or EFS promoters. The observation of Cas9 mRNA and gRNA in samples transduced with vectors in which Cas9 expression is driven by the retinal photoreceptor cell specific hGRK1 promoter indicates that these vectors can transduce genome editing systems in photoreceptor cells in situ.


DNA samples from retinal explants treated with AAV vectors were sequenced, and indel species were identified. The AAV vectors used in the mouse explant system included guides with targeting domains specific to the mouse CEP290 gene but targeted to the same region of intron 26 as the human guides presented above; aside from the specific guide sequences used, the AAV vectors used were the same as those described above. Table 30 shows a wild type (WT) mouse sequence, with left and right guide sequences italicized, and three representative indels of +1, −4 and −246 aligned with the WT sequence. In the table, three periods ( . . . ) represent an abbreviation of the sequence read for ease of presentation, while dashes (-) represent alignment gaps and underlined nucleotides represent insertions. Insofar as DNA sequencing of explants treated with AAV vectors utilizing the photoreceptor specific hGRK1 promoter revealed indel formation, these data demonstrate genome editing of a CEP290 target site in retinal photoreceptors.









TABLE 30





Representative Indels in Mouse Retinal Explants
















WT
CCCTCAAACACATGTCTCACGCAGCTTAGACATTCT...CAGAACTCGGTCAG-CATGCTACAGATAGCTTATCT



        (SEQ ID NO: 2788)                       (SEQ ID NO: 2789)





+1
CCCTCAAACACATGTCTCACGCAGCTTAGACATTCT...CAGAACTCGGTCAGGCATGCTACAGATAGCTTATCT



        (SEQ ID NO: 2788)                       (SEQ ID NO: 2790)





−4
CCCTCAAACACATGTCTCACGCAGCTTAGACATTCT...CAGAACTCGG-----CATGCTACAGATAGCTTATCT



        (SEQ ID NO: 2788)                       (SEQ ID NO: 2791)





−246
CCCTCAAAG---------------------------...---------------CATGCTACAGATAGCTTATCT



        (SEQ ID NO: 2792)                       (SEQ ID NO: 2793)










FIG. 29 summarizes the estimated frequencies of particular editing events in individual mouse explants transduced with AAV vectors according to the present disclosure. In samples transduced with AAV vectors in which Cas9 expression was driven by the hGRK1 promoter, deletions of sequences between gRNAs (guide sites) were consistently observed, as were indels at one of the two guide sites. Indels at one of the two guide sites were also observed in explants transduced with CMV and EFS vectors.


Taken together, these results demonstrate the transduction of CRISPR/Cas9 genome editing systems into cells, including photoreceptor cells, in the intact mouse retina and the editing (including deletion) of a CEP290 target site in retinal photoreceptors in situ.


Example 12: AAV Transduction of Genome Editing Systems in Primate Retina In Vivo

To assess the ability of the AAV vectors described above to transduce CRISPR/Cas9 genome editing systems into retinal cells in vivo, a primate subretinal injection procedure was developed. Cynomolgus macaques received a bilateral subretinal injections of an AAV5 vector encoding S. aureus Cas9 operably linked to an EFS, CMV or hGRK promoter sequence, and gRNAs C1 and C2, targeted to an intronic region of the cynomolgus CEP290 gene and comprising targeting sequences as set forth in SEQ ID NOs: 2794 and 2796 respectively (see Table 31). AAV injections were given at dosages of 4×1010 (low) or 4×1011 (high) viral genomes (vg). Experimental conditions are summarized in Table 32.









TABLE 31







Cynomolgus gRNA Targeting Domain Sequences










Targeting Domain
Targeting Domain


Guide
Sequence (DNA)
Sequence (RNA)





C1
GGCCGGCTAATTTAGTAGAGA
GGCCGGCUAAUUUAGUAGAGA



(SEQ ID NO: 2794)
(SEQ ID NO: 2795)





C2
GTTATGAAGAATAATACAAA
GUUAUGAAGAAUAAUACAAA



(SEQ ID NO: 2796)
(SEQ ID NO: 2797)
















TABLE 32







Cynomolgus Treatment Conditions











Group
Vector
Dose (vg/eye)






CMV-low
CEPgRNAs-dCMV-Cas9
4 × 1010



CMV-
CEPgRNAs-dCMV-Cas9
4 × 1011



high





EFS-low
CEPgRNAs-EFS-Cas9
4 × 1010



EFS-high
CEPgRNAs-EFS-Cas9
4 × 1011



GRK-low
CEPgRNAs-GRK1-Cas9
4 × 1010



GRK-high
CEPgRNAs-GRK1-Cas9
4 × 1011



Vehicle
GRK1-GFP/Vehicle
4 × 1011









6 or 8 mm retinal tissue punches were obtained from AAV-treated and Vehicle-treated retinas at 6 and 13 weeks post injection, and genomic DNA was harvested. Sequencing was performed by using a proprietary methodology (Uni-Directional Targeted Sequencing, or UDiTaS) described in commonly assigned, U.S. Provisional Patent Application No. 62/443,212, which is incorporated by reference herein in its entirety. Data from two UDiTaS sequencing reactions with individual upstream or downstream primers was combined by assuming complete overlap of indels at the two different gRNA cut sites and by averaging the rates of inversions and deletions observed in the two sequencing reactions.


Histological analysis demonstrated successful transduction of primate photoreceptor cells using genome editing systems as disclosed herein. FIG. 27C depicts Cas9 antibody staining in a vehicle-control tissue punch from a primate retina, while FIG. 27D shows Cas9 expression in a punch from a primate retina treated with an AAV5 vector encoding S. aureus Cas9 operably linked to an hGRK promoter sequence. The figures show that the outer nuclear layer (ONL) in the AAV5 vector-treated punch contains Cas9 protein, while the ONL from the vehicle control punch does not. This demonstrates successful transduction of cells in this layer. No detectable Cas9 expression was detected in cells outside the ONL. Because the hGRK promoter is photoreceptor specific, these data indicate that the systems and methods of this disclosure result in Cas9 expression among retinal photoreceptor cells in primates.



FIG. 30 shows the frequency with which specific edits (indels, insertions, deletions and inversions, were observed in each condition. In both the CMV-high and GRK-high conditions, the frequency of editing events approached or exceeded 40% of reads at the 13-week timepoints. Frequencies of specific edits observed in each experimental condition at each timepoint are listed in Table 33, below. 13 weeks timepoints for the EFS-high condition were not obtained.









TABLE 33







Editing Frequencies Observed in Cynomolgus


Treatment Conditions at 6 and 13 Weeks













Total
Inver-
Dele-





editing
sions
tions
Insertions
Indels

















EFS-low
6
week
2.4%
0.6%
0.4%
0.3%
1.1%



13
week
3.8%
1.2%
0.6%
0.0%
2.0%


EFS-high
6
week
10.2%
1.4%
1.3%
2.3%
5.3%



13
week







CMV-low
6
week
1.1%
0.5%
0.0%
0.1%
0.5%



13
week
13.4%
3.7%
2.1%
0.9%
6.6%


CMV-high
6
week
8.0%
0.7%
0.7%
2.1%
4.4%



13
week
44.5%
5.1%
3.7%
11.2%
24.5%


GRK-low
6
week
5.0%
0.9%
0.7%
0.7%
2.7%



13
week
1.6%
0.0%
0.0%
0.3%
1.3%


GRK-high
6
week
16.6%
2.5%
2.5%
3.5%
8.1%



13
week
38.0%
7.0%
8.5%
5.9%
16.7%









It should be noted that the hGRK1 promoter is photoreceptor specific, and that the genome editing system encoded by the AAV5 vector would only be functional in photoreceptor cells. It is reasonable to conclude, therefore, that the percentages of reads obtained from tissue punches, which include other retinal cell types, are lower than the percentages that would be observed in photoreceptor cells alone. Together, these data demonstrate transduction of a CRISPR/Cas9 system into a primate retina by subretinal injection of AAV, in vivo, and the generation of targeted alterations in a CEP290 gene sequence in primate photoreceptor cells in vivo.


Example 13: Correction of IVS26 Splicing Defect by Inversions and Deletions

To verify that deletions and inversions of the intronic region including the IVS26 mutation correct the splicing defect observed in CEP290 associated disease, a reporter assay was developed utilizing four reporter constructs having the general design depicted in FIG. 31A:


pAD26_SplitGFP+WildType_CEP290_Kan (SEQ ID NO: 2798);


pAD27_SplitGFP+Mutant_CEP290_Kan (SEQ ID NO: 2799);


pAD28_SplitGFP+Mutant_CEP290_Inverted_Kan (SEQ ID NO: 2800); and


pAD29_SplitGFP+DeletionCEP290_Kan (SEQ ID NO: 2801). These constructs were transfected into U2OS cells at the concentrations shown in FIG. 31B, and GFP and mCherry expression was quantitated for each condition across three bioreplicates. Each of the four reporter constructs included a sequence encoding a split-green-fluorescent protein (GFP) reporter gene incorporating a 2217 bp human CEP 290 intron sequence corresponding to (a) wild type (WT), (b) the IVS26 mutation, (c) a deletion of the intronic sequence between two human CEP290 target sites, including the IVS26 mutation and the cryptic exon observed in mRNAs from subjects with CEP290 associated disease, as would result from the use of a genome editing system according to the present disclosure, or (d) an inversion of the intronic sequence between the two human CEP290 target sites, including the IVS26 mutation and the cryptic exon as would result from the use of a genome editing system of this disclosure. The construct is designed such that correct splicing is necessary for GFP expression. Thus, the presence of the cryptic splice acceptor site in the IVS26 condition, but not the WT condition, will result in disrupted GFP transcripts encoding non-functional GFP proteins; modifications at CEP290 target sites that result in the removal or alteration of the IVS26 mutation would rescue the expression of functional GFP protein. As shown in FIG. 31B, functional GFP protein is expressed at a high baseline level in cells treated with the WT construct, expression is reduced in the IVS26 condition, and is returned to the WT baseline level in the deletion and inversion conditions. These data indicate that the aberrant mRNA splicing caused by the IVS26 mutation is rescued by either deletion or inversion of the intronic sequence comprising that mutation.


Example 14: AAV5 Transduction of Genome Editing Systems in Human Retinal Explants

To further establish that the genome editing systems of the present disclosure supported targeted gene editing in human retinal cells, e.g., fully mature human photoreceptors in situ, an ex vivo human retina explant system was developed. Purified AAV5 vectors were selected that encoded S. aureus Cas9 operably linked to an hGRK1 or CMV promoter sequence and first and second gRNAs comprising targeting sequences according to SEQ ID NOs: 389 and 388, respectively, and backbone sequences according to SEQ ID NO: 2787. As discussed above, these guides are targeted to the intronic region of the CEP290 gene on opposite sides of the IVS26 A>G mutation (Table 28). Human cadaver donor eyes were obtained within approximately 5 hours post-mortem and 3 mm punches were immobilized on a culture substrate as described above. Retinal explants were treated with AAV vectors at either a low dose of 1×1011 vg or a high dose of 5×1011 vg. Experimental conditions are summarized in Table 34.









TABLE 34







Human Treatment Conditions











Group
Vector
Dose (vg/punch)






CMV-low
CEPgRNAs-dCMV-Cas9
1 × 1011



CMV-
CEPgRNAs-dCMV-Cas9
5 × 1011



high





GRK-low
CEPgRNAs-GRK1-Cas9
1 × 1011



GRK-high
CEPgRNAs-GRK1-Cas9
5 × 1011



Vehicle
GRK1-GFP/Vehicle
5 × 1011









DNA samples from human retinal explants treated with AAV vectors were sequenced at either 14 or 28 days post-transduction, and inversions and deletions were identified. FIG. 32 summarizes the productive editing observed in human retinal explants 14 and 28 days after transduction with the various AAV vectors. Productive editing was defined as total edits (equal to the sum of the rates of inversions and deletions) capable of correcting the LCA10-associated splice mutation in the CEP290 gene (FIG. 32). The most productive editing was observed at 16.4% at the 28 day time point for the GRK-high condition. These data demonstrate transduction of a CRISPR/Cas9 system into a human retina by subretinal injection of AAV and the generation of targeted alterations in a CEP290 gene sequence in human photoreceptor cells in situ.


Example 15: AAV5 Transduction of Genome Editing Systems in Live Transgenic IVS26 Knock-In Mice

To further establish that the genome editing systems of the present disclosure supported targeted gene editing of the human CEP290 target position in mature photoreceptors in vivo, an IVS26 12 KI mouse model was employed. In this model, the human CEP290 exon 26, intron 26 with the IVS26 mutation (13 c.2991+1655A>G) and exon 27 have been inserted into the murine CEP290 gene via homologous recombination. AAV5 vectors encoding (i) S. aureus Cas9 operably linked to the photoreceptor-specific hGRK1 promoter sequence, and (ii) first and second gRNAs comprising targeting sequences according to SEQ ID NOs: 389 and 388, respectively, and having gRNA backbone sequences according to SEQ ID NO: 2787 were used as described in Example 14. The vectors were administered subretinally (toward the temporal side of the retina near the optic nerve) in both eyes of each animal at doses of 1×1011 vg/mL, 1×1012 vg/mL or 1×1013 vg/mL; a vehicle group (containing BSS with 0.014% Tween20) was also used in the study as a control. Subretinal injections were conducted in anesthetized mice in accordance with NIH animal care guidelines. For each injection, a blunt-ended needle (33-gauge, 0.5 in; Hamilton company) on a 5 ml Hamilton syringe was inserted through the scleral incision, posterior to the lens, and was advanced centrally toward the temporal retina until resistance was felt. Care was taken to avoid the damaging the lens as the cannula was advanced. A volume of 1 microliter of AAV formulation or vehicle control containing 0.2 mg/mL of fluorescein was injected into the subretinal space, forming a bleb; fluorescein was used to visualize the bleb and to confirm successful injection. Animals were euthanized at 6- and 12-week timepoints, and retinal genomic DNA and RNA were isolated for determining the gene editing efficiency (by UDiTaS) and Cas9/gRNA levels (by RT_PCR), respectively.


Experimental conditions are summarized in Table 35, along with rates of insertion and deletion from individual retinas as measured by UDiTaS.









TABLE 35







Inversion and Deletion Rates in IVS26 KI Mouse Retinas









Dose










1 × 1012 vg
1 × 1013 vg









Timepoint












6 weeks
12 weeks
6 weeks
12 weeks
















Inversions
4.68%
3.91%
2.06%
1.88%



Deletions
6.29%
5.27%
7.79%
4.13%









These data provide further demonstrate the successful transduction of retinal photoreceptor cells and alteration of the LCA10 target position using the vectors and genome editing systems of the present disclosure.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


REFERENCES



  • 1. Altschul et al. Nucleic Acids Res 25(17):3389-3402 (1977)

  • 2. Altschul et al. J Mol Biol 215(3):403-410 (1990)

  • 3. Ambati et al. Invest Ophthalmol Vis Sci 41(5):1181-1185 (2000a)

  • 4. Ambati et al. Invest Ophthalmol Vis Sci 41(5):1186-1191 (2000b)

  • 5. Anders et al. Nature 513(7519):569-573 (2014)

  • 6. Baal et al. Am J Hum Genet 81(1):170-179 (2007)

  • 7. Bae et al. Bioinformatics 30(10):1473-1475 (2014)

  • 8. Bainbridge et al. N Engl J Med 358(21):2231-2239 (2008)

  • 9. Briner et al. Mol Cell 56(2):333-339 (2014)

  • 10. Chylinski et al. RNA Biol 10(5):726-737 (2013)

  • 11. Cideciyan et al. Proc Natl Acad Sci USA 105(39):15112-15117 (2008)

  • 12. Cong et al. Science 339(6121):819-823 (2013)

  • 13. Coppieters et al. Hum Mutat 31(10):E1709-E1766 (2010)

  • 14. Cornish-Bowden Nucleic Acids Res 13(9):3021-3030 (1985)

  • 15. Davis & Maizels Proc Natl Acad Sci USA 111(10):E924-E932 (2014)

  • 16. den Hollander et al. Am J Hum Genet 79(3):556-561 (2006)

  • 17. den Hollander et al. Prog Retin Eye Res 27(4):391-419 (2008)

  • 18. Deveau et al. J Bacteriol 190(4):1390-1400 (2008)

  • 19. den Hollander et al. J Clin Invest 120(9):3042-3053 (2010)

  • 20. Estrada-Cuzcano et al., Invest Ophthalmol Vis Sci. 52(2): 834-9, 2011

  • 21. Esvelt et al. Nature 472(7344):499-503 (2011)

  • 22. Fine et al. Sci Rep 5:10777 (2015)

  • 23. Frit et al. DNA Repair (Amst.) 17:81-97 (2014)

  • 24. Fu et al. Nat Biotechnol 32(3):279-284 (2014)

  • 25. Haft et al. PLoS Comput Biol 1(6):e60 (2005)

  • 26. Hauswirth et al. N Engl J Med 358(21):2240-2248 (2008)

  • 27. Heigwer et al. Nat Methods 11(2):122-123 (2014)

  • 28. Helou et al. J Med Genet 44(10):657-663 (2007)

  • 29. Horvath et al. Science 327(5962):167-170 (2010)

  • 30. Hou et al. Proc Natl Acad Sci USA 110(39):15644-15649 (2013)

  • 31. Hsu et al. Nat Biotechnol 31(9):827-832 (2013)

  • 32. Iyama & Wilson DNA Repair (Amst.) 12(8):620-636 (2013)

  • 33. Jiang et al. Nat Biotechnol 31(3):233-239 (2013)

  • 34. Jinek et al. Science 337(6096):816-821 (2012)

  • 35. Jinek et al. Science 343(6176):1247997 (2014)

  • 36. Karvelis et al. RNA Biol 10(5):841-851 (2013)

  • 37. Kleinstiver et al. Nature 523(7561):481-485 (2015a)

  • 38. Kleinstiver et al. Nat Biotechnol 33(12):1293-1298 (2015b)

  • 39. Kleinstiver et al. Nature 529(7587):490-495 (2016)

  • 40. Koenekoop et al. Clin Exp Ophthalmol 35(5):473-485 (2007)

  • 41. Komor et al. Nature 533(7603):420-424 (2016)

  • 42. Leber Archiv für Ophthalmologie (in German) 15(3):1-25 (1869)

  • 43. Li Cell Res 18(1):85-98 (2008)

  • 44. Littink et al. Invest Ophthalmol Vis Sci 51(7):3646-3652 (2010)

  • 45. Maguire et al. N Engl J Med 358(21):2240-2248 (2008)

  • 46. Maguire et al. Lancet 374(9701):1597-1605 (2009)

  • 47. Makarova et al. Nat Rev Microbiol 9(6):467-477 (2011)

  • 48. Mali et al. Science 339(6121):823-826 (2013)

  • 49. Marteijn et al. Nat Rev Mol Cell Biol 15(7):465-481 (2014)

  • 50. Myers & Miller Comput Appl Biosci 4(1):11-17 (1988)

  • 51. Needleman & Wunsch J Mol Biol 48(3):443-453 (1970)

  • 52. Nishimasu et al. Cell 156(5):935-949 (2014)

  • 53. Nishimasu et al. Cell 162(5):1113-1126 (2015)

  • 54. Pearson & Lipman Proc Natl Acad Sci USA 85(8):2444-2448 (1988)

  • 55. Perrault et al. Hum Mutat 28(4):416 (2007)

  • 56. Ran et al. Cell 154(6):1380-1389 (2013)

  • 57. Smith & Waterman Adv Appl Math 2(4):482-489 (1981)

  • 58. Sternberg et al. Nature 507(7490):62-67 (2014)

  • 59. Stone Am J Ophthalmol 144(6):791-811 (2007)

  • 60. Tsai et al. Nat Biotechnol 34(5):483 (2016)

  • 61. Valente et al. Nat Genet 38(6):623-625 (2006)

  • 62. Wang et al. Cell 153(4):910-918 (2013)

  • 63. Xiao et al. Bioinformatics 30(8):1180-1182 (2014)

  • 64. Zetsche et al. Nat Biotechnol 33(2):139-142 (2015)


Claims
  • 1. A method of treating LCA10 in a subject in need thereof comprising administering to an eye of the subject: an adeno-associated virus 5 (AAV5) vector capable of delivery to a non-dividing cell comprising in the same vector: (i) a nucleotide sequence encoding a first gRNA molecule comprising a first targeting domain complementary with a first target domain from a CEP290 gene;(ii) a nucleotide sequence encoding a second gRNA molecule comprising a second targeting domain complementary with a second target domain from the CEP290 gene; and(iii) a nucleotide sequence encoding a Cas9 molecule;wherein the AAV5 vector is administered to the subject at a dose selected from the group of AAV5 vector concentrations consisting of 6×1011 viral genomes (vg)/mL, 1×1012 vg/mL, and 3×1012 vg/mL andwherein the administration results in NHEJ-mediated alteration of a LCA10 target position in the CEP290 gene in one or more cells of the subject, thereby treating the subject.
  • 2. The method of claim 1, wherein the first gRNA molecule is configured to form a first complex with the Cas9 molecule, and the second gRNA molecule is configured to form a second complex with the Cas9 molecule, and the first complex is configured to form a first DNA double strand break between the 5′ end of the Alu repeat at c.2991+1162 to c.2991.1638 of intron 26 of the CEP290 gene and 500 nucleotides upstream of the 5′ end of the Alu repeat, and the second complex is configured to form a second DNA double strand break between the LCA10 target position and 500 nucleotides downstream of the LCA10 target position.
  • 3. The method of claim 1, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64), SEQ ID NO:2321 (CEP290-11), SEQ ID NO:2312 (CEP290-230), SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 4. The method of claim 3, wherein the AAV5 vector is administered to a retina of the eye of the subject.
  • 5. The method of claim 3, wherein the Cas9 molecule is an S. aureus Cas9 molecule.
  • 6. The method of claim 5, wherein the S. aureus Cas9 molecule comprises an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 26.
  • 7. The method of claim 6, wherein in the first gRNA comprises a sequence having at least 90% sequence identity to a sequence selected from SEQ ID NOs: 2785 and 2787.
  • 8. The method of claim 7, wherein the AAV5 vector encodes left and right ITRs having at least 90% sequence identity to SEQ ID NOs: 408 and 437.
  • 9. The method of claim 8, wherein the AAV5 vector comprises a U6 promoter sequence having at least 90% sequence identity to SEQ ID NO: 417 and being operably coupled to a sequence encoding the first gRNA.
  • 10. The method of claim 9, wherein the AAV5 vector comprises a promoter sequence selected from the group consisting of: a CMV promoter sequence having at least 90% sequence identity to SEQ ID NO: 401,an EFS promoter sequence having at least 90% sequence identity to SEQ ID NO: 402, oran hGRK promoter sequence having at least 90% sequence identity to SEQ ID NO: 403.
  • 11. The method of claim 10, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64) and SEQ ID NO:2321 (CEP290-11).
  • 12. The method of claim 10, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:468 (CEP290-490) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 13. The method of claim 10, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:586 (CEP290-502) and SEQ ID NO:568 (CEP290-504).
  • 14. The method of claim 10, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 15. The method of claim 10, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 16. The method of claim 10, wherein the first targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 17. The method of claim 16, wherein the dose is 6×1011 vg/mL.
  • 18. The method of claim 16, wherein the dose is 1×1012 vg/mL.
  • 19. The method of claim 16, wherein the dose is 3×1012 vg/mL.
  • 20. A method of treating LCA10 in a subject in need thereof comprising administering to an eye of the subject an adeno-associated virus 5 (AAV5) recombinant viral particle capable of delivery to a non-dividing cell comprising: (i) a nucleotide sequence encoding a first gRNA molecule comprising a first targeting domain complementary with a first target domain from a CEP290 gene;(ii) a nucleotide sequence encoding a second gRNA molecule comprising a second targeting domain complementary with a second target domain from the CEP290 gene; and(iii) a nucleotide sequence encoding a Cas9 molecule;wherein the AAV5 recombinant viral particle is administered to the subject at a dose selected from the group of AAV5 recombinant viral particle concentrations consisting of 6×1011 viral genomes (vg)/mL, 1×1012 vg/mL, and 3×1012 vg/mL andwherein the administration results in NHEJ-mediated alteration of a LCA10 target position in the CEP290 gene in one or more cells of the subject, thereby treating the subject.
  • 21. The method of claim 20, wherein the first gRNA molecule is configured to form a first complex with the Cas9 molecule, and the second gRNA molecule is configured to form a second complex with the Cas9 molecule, and the first complex is configured to form a first DNA double strand break between the 5′ end of the Alu repeat at c.2991+1162 to c.2991.1638 of intron 26 of the CEP290 gene and 500 nucleotides upstream of the 5′ end of the Alu repeat, and the second complex is configured to form a second DNA double strand break between the LCA10 target position and 500 nucleotides downstream of the LCA10 target position.
  • 22. The method of claim 20, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64), SEQ ID NO:2321 (CEP290-11), SEQ ID NO:2312 (CEP290-230), SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 23. The method of claim 22, wherein the AAV5 recombinant viral particle is administered to a retina of the eye of the subject.
  • 24. The method of claim 22, wherein the Cas9 molecule is an S. aureus Cas9 molecule.
  • 25. The method of claim 24, wherein the S. aureus Cas9 molecule comprises an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 26.
  • 26. The method of claim 25, wherein in the first gRNA comprises a sequence having at least 90% sequence identity to a sequence selected from SEQ ID NOs: 2785 and 2787.
  • 27. The method of claim 26, wherein the AAV5 recombinant viral particle encodes left and right ITRs having at least 90% sequence identity to SEQ ID NOs: 408 and 437.
  • 28. The method of claim 27, wherein the AAV5 recombinant viral particle comprises a U6 promoter sequence having at least 90% sequence identity to SEQ ID NO: 417 and being operably coupled to a sequence encoding the first gRNA.
  • 29. The method of claim 28, wherein the AAV5 recombinant viral particle comprises a promoter sequence selected from the group consisting of: a CMV promoter sequence having at least 90% sequence identity to SEQ ID NO: 401,an EFS promoter sequence having at least 90% sequence identity to SEQ ID NO: 402, oran hGRK promoter sequence having at least 90% sequence identity to SEQ ID NO: 403.
  • 30. The method of claim 29, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64) and SEQ ID NO:2321 (CEP290-11).
  • 31. The method of claim 29, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:468 (CEP290-490) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 32. The method of claim 29, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:586 (CEP290-502) and SEQ ID NO:568 (CEP290-504).
  • 33. The method of claim 29, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 34. The method of claim 29, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 35. The method of claim 29, wherein the first targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 36. The method of claim 35, wherein the dose is 6×1011 vg/mL.
  • 37. The method of claim 35, wherein the dose is 1×1012 vg/mL.
  • 38. The method of claim 35, wherein the dose is 3×1012 vg/mL.
  • 39. A method of treating LCA10 in a subject in need thereof comprising administering to the eye of the subject: an adeno-associated virus 5 (AAV5) vector capable of delivery to a non-dividing cell comprising: (i) a nucleotide sequence encoding a first gRNA molecule comprising a first targeting domain complementary with a first target domain from a CEP290 gene; and(ii) a nucleotide sequence encoding a second gRNA molecule comprising a second targeting domain complementary with a second target domain from the CEP290 gene; anda Cas9 molecule;wherein the AAV5 vector is administered to the subject at a dose selected from the group of AAV5 vector concentrations consisting of 6×1011 viral genomes (vg)/mL, 1×1012 vg/mL, and 3×1012 vg/mL andwherein the administration results in NHEJ-mediated alteration of a LCA10 target position in the CEP290 gene in one or more cells of the subject, thereby treating the subject.
  • 40. The method of claim 39, wherein the first gRNA molecule is configured to form a first complex with the Cas9 molecule, and the second gRNA molecule is configured to form a second complex with the Cas9 molecule, and the first complex is configured to form a first DNA double strand break between the 5′ end of the Alu repeat at c.2991+1162 to c.2991.1638 of intron 26 of the CEP290 gene and 500 nucleotides upstream of the 5′ end of the Alu repeat, and the second complex is configured to form a second DNA double strand break between the LCA10 target position and 500 nucleotides downstream of the LCA10 target position.
  • 41. The method of claim 39, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64), SEQ ID NO:2321 (CEP290-11), SEQ ID NO:2312 (CEP290-230), SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 42. The method of claim 39, wherein the AAV5 vector is administered to a retina of the eye of the subject.
  • 43. The method of claim 41, wherein the Cas9 molecule is an S. aureus Cas9 molecule.
  • 44. The method of claim 43, wherein the S. aureus Cas9 molecule comprises an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 26.
  • 45. The method of claim 44, wherein in the first gRNA comprises a sequence having at least 90% sequence identity to a sequence selected from SEQ ID NOs: 2785 and 2787.
  • 46. The method of claim 45, wherein the AAV5 vector encodes left and right ITRs having at least 90% sequence identity to SEQ ID NOs: 408 and 437.
  • 47. The method of claim 46, wherein the AAV5 vector comprises a U6 promoter sequence having at least 90% sequence identity to SEQ ID NO: 417 and being operably coupled to a sequence encoding the first gRNA.
  • 48. The method of claim 47, wherein the AAV5 vector comprises a promoter sequence selected from the group consisting of: a CMV promoter sequence having at least 90% sequence identity to SEQ ID NO: 401,an EFS promoter sequence having at least 90% sequence identity to SEQ ID NO: 402, oran hGRK promoter sequence having at least 90% sequence identity to SEQ ID NO: 403.
  • 49. The method of claim 48, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:558 (CEP290-64) and SEQ ID NO:2321 (CEP290-11).
  • 50. The method of claim 48, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:468 (CEP290-490) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:460 (CEP290-496), SEQ ID NO:586 (CEP290-502), and SEQ ID NO:568 (CEP290-504).
  • 51. The method of claim 48, wherein the first targeting domain comprises a nucleotide sequence consisting of SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:586 (CEP290-502) and SEQ ID NO:568 (CEP290-504).
  • 52. The method of claim 48, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 53. The method of claim 48, wherein the first targeting domain comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:530 (CEP290-323), SEQ ID NO:555 (CEP290-485), SEQ ID NO:468 (CEP290-490), and SEQ ID NO:538 (CEP290-492) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 54. The method of claim 48, wherein the first targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:530 (CEP290-323) and the second targeting domain comprises the nucleotide sequence consisting of SEQ ID NO:558 (CEP290-64).
  • 55. The method of claim 54, wherein the dose is 6×1011 vg/mL.
  • 56. The method of claim 54, wherein the dose is 1×1012 vg/mL.
  • 57. The method of claim 54, wherein the dose is 3×1012 vg/mL.
  • 58. A method of treating LCA10 in a subject in need thereof comprising administering to the eye of the subject: an adeno-associated virus 5 (AAV5) vector capable of delivery to a non-dividing cell comprising: (i) a nucleotide sequence encoding a first gRNA molecule comprising a first targeting domain comprising SEQ ID NO:530 (CEP290-323);(ii) a nucleotide sequence encoding a second gRNA molecule comprising a second targeting domain comprising SEQ ID NO:558 (CEP290-64); and(iii) a nucleotide sequence encoding a Cas9 molecule;wherein the AAV5 vector is administered to the subject at a dose selected from the group of AAV5 vector concentrations consisting of 6×1011 viral genomes (vg)/mL, 1×1012 vg/mL, and 3×1012 vg/mL andwherein the administration results in NHEJ-mediated alteration of a LCA10 target position in the CEP290 gene in one or more cells of the subject, thereby treating the subject.
  • 59. The method of claim 58, wherein the first gRNA molecule is configured to form a first complex with the Cas9 molecule, and the second gRNA molecule is configured to form a second complex with the Cas9 molecule, and the first complex is configured to form a first DNA double strand break between the 5′ end of the Alu repeat at c.2991+1162 to c.2991.1638 of intron 26 of the CEP290 gene and 500 nucleotides upstream of the 5′ end of the Alu repeat, and the second complex is configured to form a second DNA double strand break between the LCA10 target position and 500 nucleotides downstream of the LCA10 target position.
  • 60. The method of claim 58, wherein the AAV5 recombinant viral particle is administered to a retina of the eye of the subject.
  • 61. The method of claim 58, wherein the Cas9 molecule is an S. aureus Cas9 molecule.
  • 62. The method of claim 61, wherein the S. aureus Cas9 molecule comprises an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 26.
  • 63. The method of claim 62, wherein in the first gRNA comprises a sequence having at least 90% sequence identity to a sequence selected from SEQ ID NOs: 2785 and 2787.
  • 64. The method of claim 63, wherein the AAV5 vector encodes left and right ITRs having at least 90% sequence identity to SEQ ID NOs: 408 and 437.
  • 65. The method of claim 64, wherein the AAV5 vector comprises a U6 promoter sequence having at least 90% sequence identity to SEQ ID NO: 417 and being operably coupled to a sequence encoding the first gRNA.
  • 66. The method of claim 65, wherein the AAV5 vector comprises a promoter sequence selected from the group consisting of: a CMV promoter sequence having at least 90% sequence identity to SEQ ID NO: 401,an EFS promoter sequence having at least 90% sequence identity to SEQ ID NO: 402, oran hGRK promoter sequence having at least 90% sequence identity to SEQ ID NO: 403.
  • 67. The method of claim 66, wherein the dose is 6×1011 vg/mL.
  • 68. The method of claim 66, wherein the dose is 1×1012 vg/mL.
  • 69. The method of claim 66, wherein the dose is 3×1012 vg/mL.
  • 70. The method of claim 17, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 71. The method of claim 18, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 72. The method of claim 19, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 73. The method of claim 36, wherein the AAV5 recombinant viral particle is volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 74. The method of claim 37, wherein the AAV5 recombinant viral particle is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 75. The method of claim 38, wherein the AAV5 recombinant viral particle is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 76. The method of claim 55, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 77. The method of claim 56, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 78. The method of claim 57, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 79. The method of claim 67, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 80. The method of claim 68, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 81. The method of claim 69, wherein the AAV5 vector is administered in a volume selected from the group consisting of at least 10 microliters, at least 50 microliters, at least 100 microliters, at least 150 microliters, at least 200 microliters, at least 250 microliters, and at least 300 microliters.
  • 82. The method of claim 70, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 83. The method of claim 70, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 84. The method of claim 70, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 85. The method of claim 71, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 86. The method of claim 71, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 87. The method of claim 71, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 88. The method of claim 72, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 89. The method of claim 72, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 90. The method of claim 72, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 91. The method of claim 73, wherein the AAV5 recombinant viral particle is administered in a volume of at least 100 microliters.
  • 92. The method of claim 73, wherein the AAV5 recombinant viral particle is administered in a volume of at least 200 microliters.
  • 93. The method of claim 73, wherein the AAV5 recombinant viral particle is administered in a volume of at least 300 microliters.
  • 94. The method of claim 74, wherein the AAV5 recombinant viral particle is administered in a volume of at least 100 microliters.
  • 95. The method of claim 74, wherein the AAV5 recombinant viral particle is administered in a volume of at least 200 microliters.
  • 96. The method of claim 74, wherein the AAV5 recombinant viral particle is administered in a volume of at least 300 microliters.
  • 97. The method of claim 75, wherein the AAV5 recombinant viral particle is administered in a volume of at least 100 microliters.
  • 98. The method of claim 75, wherein the AAV5 recombinant viral particle is administered in a volume of at least 200 microliters.
  • 99. The method of claim 75, wherein the AAV5 recombinant viral particle is administered in a volume of at least 300 microliters.
  • 100. The method of claim 76, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 101. The method of claim 76, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 102. The method of claim 76, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 103. The method of claim 77, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 104. The method of claim 77, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 105. The method of claim 77, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 106. The method of claim 78, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 107. The method of claim 78, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 108. The method of claim 78, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 109. The method of claim 79, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 110. The method of claim 79, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 111. The method of claim 79, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 112. The method of claim 80, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 113. The method of claim 80, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 114. The method of claim 80, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
  • 115. The method of claim 81, wherein the AAV5 vector is administered in a volume of at least 100 microliters.
  • 116. The method of claim 81, wherein the AAV5 vector is administered in a volume of at least 200 microliters.
  • 117. The method of claim 81, wherein the AAV5 vector is administered in a volume of at least 300 microliters.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 14/644,181, filed Mar. 10, 2015, and issued as U.S. Pat. No. 9,938,521, issued on Apr. 10, 2018, and claims the benefit of U.S. Provisional Appl. No. 61/950,733, filed Mar. 10, 2014; U.S. Provisional Appl. No. 62/036,576, filed Aug. 12, 2014; U.S. Provisional Appl. No. 62/370,202, filed Aug. 2, 2016; U.S. Provisional Appl. No. 62/400,526, filed Sep. 27, 2016; U.S. Provisional Appl. No. 62/443,568, filed Jan. 6, 2017; U.S. Provisional Appl. No. 62/503,800, filed May 9, 2017; and U.S. Provisional Appl. No. 62/535,193, filed Jul. 20, 2017; the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (62)
Number Name Date Kind
5443505 Wong et al. Aug 1995 A
5766242 Wong et al. Jun 1998 A
5869624 Hasel Feb 1999 A
6251090 Avery et al. Jun 2001 B1
6299895 Hammang et al. Oct 2001 B1
6413540 Yaacobi Jul 2002 B1
6416777 Yaacobi Jul 2002 B1
6586240 Singer et al. Jul 2003 B1
7985581 Pachuk Jul 2011 B2
8697359 Zhang Apr 2014 B1
8771945 Zhang Jul 2014 B1
8795965 Zhang Aug 2014 B2
8865406 Zhang Oct 2014 B2
8871445 Cong et al. Oct 2014 B2
8889356 Zhang Nov 2014 B2
8889394 Chalasani et al. Nov 2014 B2
8889418 Zhang et al. Nov 2014 B2
8895308 Zhang et al. Nov 2014 B1
8906616 Zhang et al. Dec 2014 B2
8932814 Cong et al. Jan 2015 B2
8945839 Zhang Feb 2015 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9163259 Choi Oct 2015 B2
9322037 Liu et al. Apr 2016 B2
9499847 Porter et al. Nov 2016 B2
9938521 Maeder Apr 2018 B2
10253312 Maeder et al. Apr 2019 B2
11028388 Maeder et al. Jun 2021 B2
20030186238 Allawi et al. Oct 2003 A1
20070020627 Barbas Jan 2007 A1
20100055793 Chandrasegaran et al. Mar 2010 A1
20100055798 Battersby Mar 2010 A1
20100076057 Sontheimer et al. Mar 2010 A1
20110059502 Chalasani Mar 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110223638 Wiedenheft et al. Sep 2011 A1
20110236894 Rao et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120270273 Zhang et al. Oct 2012 A1
20130130248 Haurwitz et al. May 2013 A1
20130253040 Miller et al. Sep 2013 A1
20140068797 Doudna et al. Mar 2014 A1
20140163169 Kitagawa et al. Jun 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140242699 Zhang Aug 2014 A1
20140309177 Perez-Pinera et al. Oct 2014 A1
20140315985 May et al. Oct 2014 A1
20140335620 Zhang et al. Nov 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140356958 Mali et al. Dec 2014 A1
20150056705 Conway et al. Feb 2015 A1
20150232833 Mali et al. Aug 2015 A1
20150252358 Maeder Sep 2015 A1
20150259704 Church et al. Sep 2015 A1
20160281111 Cotta-Ramusino et al. Sep 2016 A1
20160324987 Wang et al. Nov 2016 A1
20160340661 Cong et al. Nov 2016 A1
20170058298 Kennedy et al. Mar 2017 A1
20180291370 Gersbach et al. Oct 2018 A1
Foreign Referenced Citations (86)
Number Date Country
20010048693 Jun 2001 KR
2000040089 Jul 2000 WO
2001028474 Apr 2001 WO
2002089767 Nov 2002 WO
2003072788 Sep 2003 WO
2008108989 Sep 2008 WO
2009121536 Oct 2009 WO
2010054108 May 2010 WO
2011012724 Feb 2011 WO
2011143124 Nov 2011 WO
2011146121 Nov 2011 WO
2012145601 Oct 2012 WO
2012164565 Dec 2012 WO
2012168435 Dec 2012 WO
2013012674 Jan 2013 WO
2013066438 May 2013 WO
2013082519 Jun 2013 WO
2013098244 Jul 2013 WO
2013126794 Aug 2013 WO
2013141680 Sep 2013 WO
2013142578 Sep 2013 WO
2013163628 Oct 2013 WO
2013176772 Nov 2013 WO
WO-2013176772 Nov 2013 WO
2013181228 Dec 2013 WO
2014018423 Jan 2014 WO
2014022702 Feb 2014 WO
2014036219 Mar 2014 WO
2014059255 Apr 2014 WO
2014065596 May 2014 WO
2014089290 Jun 2014 WO
2014093479 Jun 2014 WO
2014093595 Jun 2014 WO
2014093622 Jun 2014 WO
2014093635 Jun 2014 WO
2014093655 Jun 2014 WO
2014093661 Jun 2014 WO
2014093694 Jun 2014 WO
2014093709 Jun 2014 WO
2014093712 Jun 2014 WO
2014093718 Jun 2014 WO
2014099744 Jun 2014 WO
2014099750 Jun 2014 WO
2014124284 Aug 2014 WO
2014144288 Sep 2014 WO
2014144592 Sep 2014 WO
2014144761 Sep 2014 WO
2014152432 Sep 2014 WO
2014186585 Nov 2014 WO
2014197568 Dec 2014 WO
2014197748 Dec 2014 WO
2014204578 Dec 2014 WO
2014204725 Dec 2014 WO
2014204726 Dec 2014 WO
2015006290 Jan 2015 WO
2015006294 Jan 2015 WO
2015006498 Jan 2015 WO
2015013583 Jan 2015 WO
2015020522 Feb 2015 WO
2015021353 Feb 2015 WO
2015027134 Feb 2015 WO
2015035136 Mar 2015 WO
2015035139 Mar 2015 WO
2015035162 Mar 2015 WO
2015048577 Apr 2015 WO
2015048680 Apr 2015 WO
2015070083 May 2015 WO
2015071474 May 2015 WO
2015077290 May 2015 WO
2015077318 May 2015 WO
2015089406 Jun 2015 WO
2015089462 Jun 2015 WO
2015099850 Jul 2015 WO
2015138510 Sep 2015 WO
2015188056 Dec 2015 WO
2015195621 Dec 2015 WO
2016022363 Feb 2016 WO
2016073990 May 2016 WO
2016182959 Nov 2016 WO
2016186772 Nov 2016 WO
2016205749 Dec 2016 WO
2017035416 Mar 2017 WO
2017184768 Oct 2017 WO
2018009562 Jan 2018 WO
2018026976 Feb 2018 WO
2018126176 Jul 2018 WO
Non-Patent Literature Citations (334)
Entry
Kim, et al. (Online Oct. 2012) “Gene Therapy for Ocular Diseases”, Genetic Diseases of the Eye, 2nd Ed., Editor Elias I. Traboulsi, MD., Published by Oxford University Press, Oxford, England, DOI: 10.1093/med/9780195326147.001.0001, 20 pages as printed. (Year: 2012).
O'Reilly, et al. (2007) “RNA Interference-Mediated Suppression and Replacement of Human Rhodopsin In Vivo”, The American Journal of Human Genetics, 81: 127-35. (Year: 2007).
Peng, et al. (2015) “Potential pitfalls of CRISPR/Cas9-mediated genome editing”, The FEBS Journal, 283: 1218-31. (Year: 2015).
Jocelyn Kaiser (May 3, 2016) “The gene editor CRISPR won't fully fix sick people any time soon.  Here's why.”, Science, CRISPR, DOI: 10.1126/science.aaf5689, 5 pages long, found at http://www.sciencemag.org/news/2016/05/gene-editor-crispr-won-t-fully-fix-sick-people-anytime-soon-here-s-why, 12 pages. (Year: 2.
Maeder, et al. (2016) “Therapeutic Correction of an LCA-Causing Splice Defect in the CEP290 Gene By CRISPR/Cas-Mediated Gene Editing”, Molecular Therapy, 24(Suppl. 1): pp. S51-S52 (Abstract 124). (Year: 2016).
https://ghr.nlm.nih.gov/condition/senior-loken-syndrome, no Authors listed,“Senior-Loken syndrome”, Genetics Home Reference: Your Guide to Understanding Genetic Conditions, Published by NIH U.S. National Library of Medicine, Bethesda, MD, 5 pages as printed Jan. 22, 2019 (Year: 2019).
Singh, et al. (2018) “Genes and genetics in eye diseases: a genomic medicine approach for investigating hereditary and inflammatory ocular disorders”, International Journal of Opthamology, 11(1): 117-134.
Weleber RG, Francis PJ, Trzupek KM, et al. Leber Congenital Amaurosis. Jul. 7, 2004 [Updated May 2, 2013]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1298/, 32 pages.
Sobrevals, et al. (2012) “AAV vectors transduce hepatocytes in vivoas efficiently in cirrhotic as in healthy rat livers”, Gene Therapy, 19: 411-17. (Year: 2012).
Li, et al. (2009) “Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye”, Molecular Vision, 15: 267-75. (Year: 2009).
Vandenberghe, et al. (2011) “Dosage Thresholds for AAV2 and AAV8 Photoreceptor Gene Therapy in Monkey”, Science Translational Medicine, 3(88): article 88ra54, 9 pages long. (Year: 2011).
Lopes, et al. (2013) “Retinal gene therapy with large MYO7A cDNA using adeno-associated virus”, Gene Therapy, 20: 824-33. (Year: 2013).
Nishimasu, et al. (2015) “Crystal Structure of Staphylococcus aureus Cas9”, Cell, 162: 1113-26. (Year: 2015).
Boye, S. E., et al., “The Human Rhodopsin Kinase Promoter in an AAV5 Vector Confers Rod- and Cone-Specific Expression in the Primate Retina,” Human Gene Therapy 23(10):1101-1115 (2012).
Maeder, M. L., et al., “Therapeutic Correction of an LCA-Causing Splice Defect in the CEP290 Gene by CRISPR/Cas-Mediated Gene Editing,” Presented at the American Society of Gene and cell Therapy Annual Meeting, May 4-7, 2016 in Washington, DC, XP055418197, retrieved from: http://www.editasmedicine.com/data/documents/ASGCT.
Maeder, M. L., et al., “Therapeutic Correction of an LCA-Causing Splice Defect in the CEP290 Gene by CRISPR/Cas-Mediated Genome Editing,” Mol. Ther. 23(Suppl. 1):S273-S274 (2015).
European Patent Office, International Search Report and Written Opinion dated Oct. 26, 2017 for PCT/US2017/045191.
Joung, J., et al., “Genome-Scale CRISPR-Cas9 Knockout and Transcriptional Activation Screening,” Nat. Protoc. 12(4):828-863 (2017).
Koike-Yusa, H., et al., “Genome-Wide Recessive Genetic Screening in Mammalian Cells with a Lentiviral CRISPR-Guide RNA Library,” Nat. Biotechnol. 32(3):267-273 (2014).
Shalem, O., et al., “Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells,” Science 343:84 (2014).
U.S. Appl. No. 61/613,373, filed Mar. 20, 2012, Siksnys et al.
U.S. Appl. No. 61/625,420, filed Apr. 17, 2012, Siksnys et al.
U.S. Appl. No. 61/652,086, filed May 25, 2012, Jinek et al.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/735,876, filed Dec. 11, 2012, Wiedenheft.
U.S. Appl. No. 61/736,527, filed Dec. 12, 2012, Zhang et al.
U.S. Appl. No. 61/738,355, filed Dec. 17, 2012, Church et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/779,169, filed Mar. 13, 2013, Mali et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/799,531, filed Mar. 15, 2013, Wiedenheft.
U.S. Appl. No. 61/950,733, filed Mar. 10, 2014, Maeder et al.
U.S. Appl. No. 62/036,576, filed Aug. 12, 2014, Maeder et al.
U.S. Appl. No. 62/443,212.
Al-Attar, S., et al., “Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) The Hallmark of an Ingenious Antiviral Defense Mechanism in Prokaryotes,” Biol. Chem. 392:277-289 (2011).
Altschul, S. F., et al., “Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs,” Nucleic Acids Res. 25(17):3389-3402 (1997).
Altschul, S. F., et al., “Basic Local Alignment Search Tool,” J. Mol. Biol. 215(3):403-410 (1990).
Ambati, J., et al., “Diffusion of High Molecular Weight Compounds Through Sclera,” Invest. Ophthalmol. Vis. Sci. 41(5):1181-1185 (2000).
Ambati, J., et al., “Transscleral Delivery of Bioactive Protein to the Choroid and Retina,” Invest. Ophthalmol. Vis. Sci. 41(5):1186-1191 (2000).
Anders, C., et al., “Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease,” Nature 513(7519):569-573 (2014).
Andreas, S., et al., “Enhanced Efficiency Through Nuclear Localization Signal Fusion on Phage PhiC31-Integrase: Activity Comparison with Cre and FLPe Recombinase in Mammalian Cells,” Nucleic Acids Res. 30(11):2299-2306 (2002).
Anonymous, Third Party Observation for EP13818570.7, Oct. 1, 2014, 15 pages.
Anonymous, Third Party Observation for EP13824232.6, Sep. 8, 2014, 48 pages.
Anonymous, Third Party Observation for EP13824232.6, Sep. 22, 2014, 19 pages.
Anonymous, Third Party Observation for EP13824232.6, Oct. 22, 2014, 7 pages.
Baala, L., et al., “Pleiotropic Effects of CEP290 (NPHP6) Mutations Extend to Meckel Syndrome,” Am. J. Hum. Genet. 81(1):170-179 (2007).
Bae, S., et al., “Cas-OFFinder: A Fast and Versatile Algorithm that Searches for Potential Off-Target Sites of Cas9 RNA-Guided Endonucleases,” Bioinformatics 30(10):1473-1475 (2014).
Bainbridge, J.W., et al., “Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis,” N. Engl. J. Med. 358(21):2231-2239 (2008).
Baker, M., “Gene Editing at CRISPR Speed,” Nat. Biotechnol. 32(4):309-312 (2014).
Barker, C. S., et al., “Increased DNA Microarray Hybridization Specificity Using sscDNA Targets,” BMC Genomics 6:57 (2005).
Baron-Benhamou, J., et al., “Using the LambdaN Peptide to Tether Proteins to RNAs,” Methods Mol. Biol. 257:135-153 (2004).
Barrangou, R., “RNA-Mediated Programmable DNA Cleavage,” Nat. Biotechnol. 30(9):836-838 (2012).
Barretina, J., et al., “The Cancer Cell Line Encyclopedia Enables Predictive Modeling of Anticancer Drug Sensitivity,” Nature 483(7391):603-607 (2012).
Bassett, A. R., et al., “CRISPR/Cas9 and Genome Editing in Drosophila,” J. Genet. Genom. 41:7-19 (2014).
Beerli, R. R., et al., “Toward Controlling Gene Expresion at Will: Specific Regulation of the erbB-2/HER-2 Promoter by Using Polydactyl Zinc Finger Proteins Constructed from Modular Building Blocks,” Proc. Natl. Acad. Sci. 95:14628-14633 (1998).
Bhaya, D., et al., “CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation,” Annu. Rev. Genet. 45:273-297 (2011).
Bikard, D., et al., “Programmable Repression and Activation of Bacterial Gene Expression Using an Engineered CRISPR-Cas System,” Nucl. Acids Res. 41(15):7429-7437 (2013).
Bitinaite, J., et al., “FokI Dimerization is Required for DNA Cleavage,” Proc. Natl. Acad. Sci. 95:10570-10575 (1998).
Boch, J., et al., “Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors,” Science 326(5959):1509-1512 (2009).
Boch, J., et al., “Xanthomonas AvrBs3 Family-Type III Effectors: Discovery and Function,” Annu. Rev. Phytopathol. 48:419-436 (2010).
Bothmer, A., et al., “Characterization of the Interplay Between DNA Repair and CRISPR/Cas9-Induced DNA Lesions at an Endogenous Locus,” Nat. Commun. 8:13905 (2017).
Briner, A.E., et al., “Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality,” Mol. Cell 56(2):333-339 (2014).
Broad Institute, Communication Forwarding Declaration of Feng Zhang for U.S. Appl. No. 14/256,912, filed Nov. 24, 2014, 5 pages.
Broad Institute, Information Disclosure Statement submitted for U.S. Appl. No. 14/256,912, citing Electronic Mail from T. Kowalski which references Briner et al., Nov. 3, 2014, 8 pages.
Broad Institute, Request for Oral Examination for EP13818570.7, Oct. 27, 2014, 3 pages.
Broad Institute, Response to EP Examination Report for EP13824232.6, dated Dec. 31, 2014, 44 pages.
Broad Institute, Response to Third Party Observations and Request for Oral Hearing for EP13824232.6, Oct. 27, 2014, 9 pages.
Broad Institute, Response to Third Party Observations, with redlined and clean amended claims, for EP13818570.7, Oct. 16, 2014, 30 pages.
Broad Institute, Response to Third Party Observations, with redlined and clean amended claims, for EP13824232.6, Oct. 2, 2014, 16 pages.
Brummelkamp, T. R., et al., “A System for Stable Expression of Short Interfering RNAs in Mammalian Cells,” Science 296(5567):550-553 (2002).
Burnight, E.R., et al., “CEP290 Gene Transfer Rescues Leber Congenital Amaurosis Cellular Phenotype,” Gene Ther. 21:662-672 (2014).
Caldecott, K.W., “Single-Strand Break Repairand Genetic Disease,” Nat. Rev. Genet. 9(8):619-631 (2008).
Canver, M. C., “Evaluation of the Clinical Success of Ex Vivo and In Vivo Gene Therapy,” Journal of Young Investitgators, http://www.hyi.org/issue/evaluation-of-the-clinical-success-of-ex-vivo-and-in-vivo-gene-therapy/, 9 pages (2009).
Carroll, D., “A CRISPR Approach to Gene Targeting,” Mol. Ther. 20(9):1658-1660 (2012).
Cathomen, T., et al., “Zinc-Finger Nucleases: The Next Generation Emerges,” Mol. Ther. 16:1200-1207 (2008).
Cermak, T., et al., “Efficient Design and Assembly of Custom TALEN and Other TAL Effector-Based Constructs for DNA Targeting,” Nucl. Acids Res. 39(12):e82 (2011).
Chen, X., et al., “Fusion Protein Linkers: Property, Design and Functionality,” Adv. Drug Deliv. Rev. 65(10):1357-1369 (2013).
Chen, F., et al., “Targeted Activation of Diverse CRISPR-Cas Systems for Mammalian Genome Editing Via Proximal CRISPR Targeting,” Nat. Commun. 8:14958 (2017).
Cho, S. W., et al., Supplementary Information: Targeted Genome Engineering in Human Cells With the Cas9 RNA-Guided Endonuclease, Nature Biotechnology (Mar. 2013) vol. 31, No. 3, 11 pages.
Cho, S. W., et al., “Targeted Genome Engineering in Human Cells with the Cas9 RNA-Guided Endonuclease,” Nat. Biotechnol. 31(3):230-232 (2013).
Christian, M., et al., “Targeting DNA Double-Strand Breaks With TAL Effector Nucleases,” Genetics 186:757-761 (2010).
Christian, M., et al., “Targeting DNA Double-Strand Breaks With TAL Effector Nucleases,” Genetics Supporting Information, 1SI-8SI (2010).
Chylinski, K., et al., “The TrackRNA and Cas9 Families of Type II CRISPR-Cas Immunity Systems,” RNA Biol. 10(5):726-737 (2013).
Cideciyan, A.V., et al., “Human Gene Therapy for RPE65 Isomerase Deficiency Activates the Retinoid Cycle of Vision but with Slow Rod Kinetics,” Proc. Natl. Acad. Sci. U.S.A. 105(39):15112-15117 (2008).
Cong, L., et al., “Multiplex Genome Engineering Using CRISPR/Cas Systems,” Science 339(6121):819-823 (2013).
Cong, L. et al., “Supplementary Material: Multiplex Genome Engineering Using CRISPR-Cas Systems,” Science Express (Jul. 5, 2012).
Cong, L. et al., “Supplementary Material: Multiplex Genome Engineering Using CRISPR-Cas Systems,” Science Express (Jan. 3, 2013).
Coppieters, F., et al., “Genetic Screening of LCA in Belgium: Predominance of CEP290 and Identification of Potential Modifier Alleles in AHI1 of CEP290-Related Phenotypes,” Hum. Mutat. 31(10):E1709-1766 (2010).
Cornish-Bowden, A., “Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences: Recommendations 1984,” Nucleic Acids Res. 13(9):3021-3030 (1985).
Cradick, T. J., et al., “CRISPR/Cas9 Systems Targeting Beta-Globin and CCR5 Genes Have Substantial Off-Target Activity,” Nucleic Acids Res. 41(20):9584-9592 (2013).
Datsenko, K. A., et al., “Molecular Memory of Prior Infections Activates the CRISPR/Cas Adaptive Bacterial Immunity System,” Nat. Commun. 3:945 (2012).
Davis, L., et al., “Homology-Directed Repair of DNA Nicks Via Pathways Distinct from Canonical Double-Strand Break Repair,” PNAS 111(10):E924-932 (2014).
Deltcheva, E., et al., CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III, Nature 471:602-607 (2011).
Deltcheva, E., et al., Supplementary Figures: CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Downloaded from www.nature.com/nature, p. 1-35, 2011.
Den Hollander, A.I., et al., “Mutations in the CEP290 (NPH6) Gene are a Frequent Cause of Leber Congenital Amaurosis,” Am. J. Hum. Genet. 79(3):556-561 (2006).
Den Hollander, A.I., et al., “Leber Congenital Amaurosis: Genes, Proteins and Disease Mechanisms,” Prog. Retin. Eye Res. 27(4):391-419 (2008).
Den Hollander, A.I., et al., “Lighting a Candle in the Dark: Advances in Genetics and Gene Therapy of Recessive Retinal Dystrophies,” J. Clin. Invest. 120(9):3042-3053 (2010).
Deveau, H., et al., “Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus,” J. Bacteriol. 190(4):1390-1400 (2008).
Dicarlo, J. E., et al., “Genome Engineering in Saccharomyces cerevisiae Using CRISPR-Cas Systems,” Nucl. Acids Res. 41(7):4336-43 (2013).
Dingwall, C., et al., “A Polypeptide Domain That Specifies Migration of Nucleoplasmin Into the Nucleus,” Cell 30:449-458 (1982).
Dreszer, T. R., et al., “The UCSC Genome Browser Database: Extensions and Updates 2011,” Nucl. Acids Res. 40:D918-D923 (2012).
Estrada-Cuzcano, A., et al., “IQCB1 Mutations in Patients with Leber Congenital Amaurosis,” Invest. Opthalmol. Vis. Sci. 52(2):834-839 (2011).
Esvelt, K.M., et al., “A System for the Continuous Directed Evolution of Biomolecules,” Nature 472(7344):499-503 (2011).
Esvelt, K. M., et al., “Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing,” Nat. Methods 10(11):1116-1121 (2013).
Fine, E.J., et al., “Trans-Spliced Cas9 Allows Cleavage of HBB and CCR5 Genes in Human Cells Using Compact Expression Cassettes,” Sci. Rep. 5:10777 (2015).
Fonfara, I., et al., “Phylogeny of Cas9 Determines Functional Exchangeability of Dual-RNA and Cas9 Among Orthologous Type II CRISPR-Cas Systems,” Nucl. Acids Res.42(4):2577-2590 (2014).
Friedland, A.E., et al., “Characterization of Staphylococcus aureus Cas9: A Smaller Cas9 for All-in-One Adeno-Associated Virus Delivery and Paired Nickase Applications,” Genome Biol. 16:257 (2015).
Frit, P., et al., “Alternative End-Joining Pathway(s): Bricolage at DNA Breaks,” DNA Repair (Amst) 17:81-97 (2014).
Fu, Y., et al., “High-Frequency Off-Target Mutagenesis Induced by CRISPR-Cas Nucleases in Human Cells,” Nat. Biotechnol. 31:822-826 (2013).
Fu, Y., et al., “Improving CRISPR-Cas Nuclease Specificity Using Truncated Guide RNAs,” Nat. Biotechnol. 32(3):279-284 (2014).
Gabriel, R., et al., “An Unbiased Genome-Wide Analysis of Zinc-Finger Nuclease Specificity,” Nat. Biotechnol. 29:816-823 (2011).
Garanto, A., et al., “Unexpected CEP290 mRNA Splicing in a Humanized Knock-In Mouse Model for Leber Congenital Amaurosis,” PLoS One 8(11):e79369 (2013).
Garneau, J. E., et al., “The CRISPR-Cas Bacterial Immune Systems Cleaves Bacteriophage and Plasmid DNA,” Nature 468:67-71 (2010).
Gasiunas, G., et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria,” Proc. Natl. Acad. Sci. 109(39):E2579-E2586 (2012).
Gilbert, L. A., et al., “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes,” Cell 154(2):442-451 (2013).
Goldfarb, D. S., et al., “Synthetic Peptides as Nuclear Localization Signals,” Nature 322:641-644 (1986).
Gratz, S. J., et al., “Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease,” Genetics 194(4):1029-1035 (2013).
Guilinger, J. P., et al., “Fusion of Catalytically Inactive Cas9 to FokI Nuclease Improves the Specificity of Genome Modification,” Nat Biotechnol. 32(6):577-583 (2014).
Gustafsson, C., et al., “Codon Bias and Heterologous Protein Expression,” Trends Biotechnol. 22(7):346-353 (2004).
Haft, D. H., et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes,” PLoS Comput. Biol. 1(6):e60 (2005).
Hale, C. R., et al., “Essential Features and Rational Design of CRISPR RNAs That Function With the Cas RAMP Module Complex to Cleave RNAs,” Mol. Cell 45(3):292-302 (2012).
Hatoum-Aslan, A., et al. “Mature Clustered Regularly Interspaced, Short Palindromic Repeats RNA 5,9,14 (crRNA) Length is Measured by a Ruler Mechanism Anchored at the Precursor Processing Site,” Proc. Natl. Acad. Sci. 108(52):21218-21222 (2011).
Heigwer, F., et al., “E-CRISP: Fast CRISPR Target Site Identification,” Nat. Methods 11(2):122-123 (2014).
Helou, J., et al., “Mutation Analysis of NPHP6/CEP290 in Patients with Joubert Syndrome and Senior-Loken Syndrome,” J. Med. Genet. 44(10):657-663 (2007).
Hinz, J. M., et al., “Nucleosomes Selectively Inhibit Cas9 Off-Target Activity at a Site Located at the Nucleosome Edge,” J. Biol. Chem. 291(48):24851-24856 (2016).
Hockemeyer, D., et al., “Efficient Targeting of Expressed and Silent Genes in Human ESCs and iPSCs Using Zinc-Finger Nucleases,” Nat. Biotechnol. 27(9):851-857 (2009).
Hockemeyer, D., et al., “Genetic Engineering of Human luripotent Cells Using TALE Nucleases,” Nat. Biotechnol. 29:731-734 (2011).
Holt, N, et al., “Zinc Finger Nuclease-Mediated CCR5 Konockout Hematopoietic Stem Cell Transplantation Controls HIV-1 In Vivo,” Nat. Biotechnol. 28(8):839-847 (2010).
Horvath, P., et al., “CRISPR/Cas, The Immune System of Bacteria and Archaea,” Science 327(5962):167-170 (2010).
Horvath, P., et al., “RNA-Guided Genome Editing A La Carte,” Cell Res. 23:733-734 (2013).
Hou, Z., et al., “Efficient Genome Engineering in Human Pluripotent Stem Cells Using Cas9 from Neisseria Meningitidis,” Proc. Natl. Acad. Sci. U.S.A. 110(39):15644-15649 (2013).
Hsu, P.D., et al., “DNA Targeting Specificity of RNA-Guided Cas9 Nucleases,” Nat. Biotechnol. 31(9):827-832 (2013).
Hwang, W. Y., et al., “Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System,” PLoS One 8(7):e68708 (2013).
Hwang, W. Y., et al., “Efficient Genome Editing in Zebrafish Using a CRISPR-Cas System,” Nat. Biotechnol. 31(3):227-229 (2013).
Iyama, T., et al., “DNA Repair Mechanisms in Dividing and Non-Dividing Cells,” DNA Repair (Amst.) 12(8):620-636 (2013).
Iyer, L. M., et al., “Prediction of Novel Families of Enzymes Involved in Oxidative and Other Complex Modifications of Bases in Nucleic Acids,” Cell Cycle 8(11):1698-1710 (2009).
Jiang, W., et al., “RNA-Guided Editing of Bacterial Genomes Using CRISPR-Cas Systems,” Nat. Biotechnol. 31(3):233-239 (2013).
Jinek, M., et al., “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science 337(6096):816-821 (2012).
Jinek, M., et al., “Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation,” Science 343(6176):1247997 (2014).
Jinek, M., et al., “RNA-Programmed Genome Editing in Human Cells,” eLife 2:e00471 (2013).
Kaiser, J., “The Gene Editor CRISPR Won't Fully Fix Sick People Anytime Soon. Here's Why,” (May 3, 2016), Biol., Technol, CRISPR, DOI: 10.1126/science.aaf5689, 5 pages.
Karolchik, D., et al., “The UCSC Table Browser Data Retrieval Tool,” Nucleic Acids Research 32:D493-496 (2004).
Kent, W. J., et al., “The Human Genome Browserat UCSC,” Genome Research 12:996-1006 (2002).
Keryer-Bibens, C., et al., “Tethering of Proteins to RNAs by Bacteriophage Proteins,” Biol. Cell, 100:125-138 (2008).
Khalil, A. S., et al., “Synthetic Biology: Applications Come of Age,” Nat. Rev. Genet. 11(5):367-379 (2010).
Kim, Y.G., et al., “Hybrid Restriction Enzymes: Zinc Finger Fusions to Fok I Cleavage Domain,” Proc. Natl. Acad. Sci. USA 93:1156-1160 (1996).
King, N. M.P., et al., “En Route to Ethical Recommendations for Gene Transfer Clinical Trials,” Mol. Ther. 16(3):432-438 (2008).
Kleinstiver, B.P., et al., “Broadening the Targeting Range of Staphylococcus aureus CRISPR-Cas9 by Modifying PAM Recognition,” Nat. Biotechnol. 33(12):1293-1298 (2015).
Kleinstiver, B.P., et al., “Engineered CRISPR-Cas9 Nucleases with Altered PAM Specificities,” Nature 523(7561):481-485 (2015).
Kleinstiver, B.P., et al., “High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide Off-Target Effects,” Nature 529(7587):490-495 (2016).
Koenekoop, R.K., et al., “Genetic Testing for Retinal Dystrophies and Dysfunctions: Benefits, Dilemmas and Solutions,” Clin. Exp. Ophthalmol. 35(5):473-485 (2007).
Komor, A.C., et al., “Programmable Editing of a Target Base in Genomic DNA Without Double-Stranded DNA Cleavage,” Nature 533(7603):420-424 (2016).
Kosuri, S., et al., “A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips,” Nat. Biotechnol. 28(12):1295-1299 (2010).
Lambowitz, A. M., et al., “Group II Introns: Mobile Ribozymes that Invade DNA,” Cold Spring Harb. Perspect. Biol. 3:a003616 (2011).
Langmead, B., et al., “Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome,” Genome Biology 10(3):R25 (2009).
Leber, T., “On Retinitis Pigmentosa and Congenital Amaurosis,” Archiv fur Ophthalmologie 15(3):1-25 (1869).
Lee, J.H., et al., “A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells,” PLoS Genetics 5(11):e1000718 (2009).
Lee, J., et al., “Non-Endocytic Delivery of Functional Engineered Nanoparticles into the Cytoplasm of Live Cells Using a Novel, High-Throughput Microfluidic Device,” Nano Lett. 12(12):6322-6327 (2012).
Li, G.M., “Mechanisms and Functions of DNA Mismatch Repair,” Cell Res. 18(1):85-98 (2008).
Li, T., et al., “TAL Nucleases (TALNs): Hybrid Proteins Composed of TAL Effectors and FokI DNA-Cleavage Domain,” Nucl. Acids Res.39(1): 359-372 (2011).
Li, H., et al., “In Vivo Genome Editing Restores Hemostasis in a Mouse Model of Hemophilia,” Nature 475(7355):217-221 (2011).
Li, T., et al., “Modularly Assembled Designer TAL Effector Nucleases for Targeted Gene Knockout and Gene Replacement in Eukaryotes,” Nucl. Acids Res. 39(14):6315-6325 (2011).
Littink, K.W., et al., “A Novel Nonsense Mutation in CEP290 Induces Exon Skipping and Leads to a Relatively Mild Retinal Phenotype,” Invest. Ophthalmol. Vis. Sci. 51(7):3646-3652 (2010).
Lombardo, A., et al., “Gene Editing in Human Stem Cells Using Xinc Finger Nucleases and Integrase-Defective Lentiviral Vector Delivery,” Nat. Biotechnol. 25(11):1298-1306 (2007).
Lorenz, R., et al., “ViennaRNA Package 2.0,” Algorithms for Molecular Biology 6:26 (2011).
Maeder, M. L., et al., “CRISPR RNA-Guided Activation of Endogenous Human Genes,” Nat. Methods 10:977-979 (2013).
Maeder, M. L., et al., “Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification,” Mol. Cell 31(2):294-301 (2008).
Maeder, M. L., et al., “Therapeutic Correction of an LCA-Causing Splice Defect in the CEP290 Gene by CRISPR/Cas-Mediated Gene Editing,” Mol. Ther. 24(Suppl. 1):S51-S52, Abstract 124 (2016).
Maguire, A.M., et al., “Safety and Efficacy of Gene Transfer for Leber's Congenital Amaurosis,” N. Engl. J. Med. 358(21):2240-2248 (2008).
Maguire, A.M., et al., “Age-Dependent Effects of RPE65 Gene Therapy for Leber's Congenital Amaurosis: A Phase 1 Dose-Escalation Trial,” Lancet 374(9701):1597-1605 (2009).
Makarova, K. S., et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action,” Biol. Direct. 1:7 (2006).
Makarova, K. S., et al., “Unification of Cas Protein Families and a Simple Scenario for the Origin and Evolution of CRISPR-Cas Systems,” Biol. Direct 6:38 (2011).
Makarova, K.S., et al., “Evolution and Classification of the CRISPR-Cas Systems,” Nat. Rev. Microbiol. 9(6):467-477 (2011).
Mali, P., et al., “CAS9 Transcriptional Activators for Target Specificity Screening and Paired Nickases for Cooperative Genome Engineering,” Nat. Biotechnol. 31:833-838 (2013).
Mali, P., et al., “Cas9 as a Versatile Tool for Engineering Biology,” Nat. Methods 10(10):957-963 (2013).
Mali, P., et al., “RNA-Guided Human Genome Engineering Via Cas9,” Science 339(6121):823-826 (2013).
Marteijn, J.A., et al., “Understanding Nucleotide Excision Repairand Its Role in Cancer and Ageing,” Nat. Rev. Mol. Cell Biol. 15(7):465-481 (2014).
Mathews, D. H., et al., “Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure,” J. Mol. Biol. 288:911-940 (1999).
Miller, J. C., et al., “An Improved Zinc-Finger Nuclease Architecture for Highly Specific Genome Editing,” Nat. Biotechnol. 25:778-785 (2007).
Miller, J. C., et al., “A TALE Nuclease Architecture for Efficient Genome Editing,” Nat. Biotechnol. 29(2):143-150 (2011).
Miyagishim M., et al., “U6 Promoter-Driven siRNAs with Four Uridine 3′ Overhangs Efficiently Suppress Targeted Gene Expression in Mammalian Cells,” Nat. Biotechnol. 20(5):497-500 (2002).
Moscou, M. J., et al., “A Simple Cipher Governs DNA Recognition by TAL Effectors,” Science 326(5959):1501 (2009).
Myers, E. W., et al., “Optimal Alignments in Linear Space,” Comput. Appl. Biosci. 4(1):11-17 (1988).
Nakamura, Y., et al., “Codon Usage Tabulated From International DNA Sequence Databases: Status for the Year 2000,” Nucl. Acids Res. 28(1):292 (2000).
Needleman, S. B., et al., “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins,” J. Mol. Biol. 48(3):443-453 (1970).
Nishimasu, H., et al., “Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA,” Cell 156(5):935-949 (2014).
Nishimasu, H., et al., “Crystal Structure of Staphylococcus aureus Cas9,” Cell 162:1113-1126 (2015).
Pattanayak, V., et al., “High-Throughput Profiling of Off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity,” Nat. Biotechnol. 31:839-843 (2013).
Pattanayak, V., et al., “Revealing Off-Target Cleavage Specificities of Zinc-Finger Nucleases by In Vitro Selection,” Nat. Methods 8:765-770 (2011).
Patterson, S. S., et al., “Codon Optimization of Bacterial Luciferase (lux) for Expression in Mammalian Cells,” J. Ind. Microbio. Biotechnology 32:115-123 (2005).
Pearson, W. R., et al., “Improved Tools for Biological Sequence Comparison,” Proc. Natl. Acad. Sci. U.S.A. 85(8):2444-2448 (1988).
Perez, E. E., et al., “Establishment of HIV-1 Resistance in CD4+ T Cells by Genome Editing Using Zinc-Finger Nucleases,” Nat. Biotechnol. 26:808-816 (2008).
Perrault, I., et al., “Spectrum of NPHP6/CEP290 Mutations in Leber Congenital Amaurosis and Delineation of the Associated Phenotype,” Hum. Mutat. 28(4):416 (2007).
Porteus, M. H., et al., “Gene Targeting Using Zinc Finger Nucleases,” Nat. Biotechnol. 23(8):967-973 (2005).
Pougach, K., et al., “Transcription, Processing and Function of CRISPR Cassettes in Escherichia coli,” Mol. Microbiol. 77(6):1367-1379 (2010).
Pride, D. T., et al., “Analysis of Streptococcal CRISPRs from Human Saliva Reveals Substantial Sequence Diversity Within and Between Subjects Over Time,” Genome Res. 21:126-136 (2011).
Purnick, P. E. M., et al., “The Second Wave of Synthetic Biology: From Modules to Systems,” Nat. Rev. Mol. Cell Biol. 10(6):410-422 (2009).
Qi, L. S., et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression,” Cell 152:1173-1183 (2013).
Qi, L., et al., “RNA Processing Enables Predictable Programming of Gene Expression,” Nat. Biotechnol. 30(10):1002-1007 (2012).
Quinlan, A. R., et al., “BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features,” Bioinformatics 26(6):841-842 (2010).
Ran, F.A., et al., “Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity,” Cell 154(6):1380-1389 (2013).
Ran, F. A., et al., “In Vivo Genome Editing Using Staphylococcus aureus Cas9,” Nature 520(7546):186-191 (2015).
Rand, T. A., et al., “Argonaute2 Cleaves the Anti-Guide Strand of siRNA During RISC Activation,” Cell 123:621-629 (2005).
Rao, R. C., et al., “Cell and Gene Therapy,” Dev. Ophthalmol. 53:167-177 (2014).
Raymond, C. S., et al., “High-Efficiency FLP and PhiC31 Site-Specific Recombination in Mammalian Cells,” PLoS One 2(1):e162 (2007).
Rebar, E. J., et al., “Zinc Finger Phage: Affinity Selection of Fingers with New DNA-Binding Specificities,” Science 263(5147):671-673 (1994).
Rebar, E. J., et al., “Induction of Angiogenesis in a Mouse Model Using Engineered Transcription Factors,” Nat. Med. 8(12):1427-1432 (2008).
Regalado, A., “Who Owns the Biggest Biotech Discovery of the Century?,” MIT Technology Review, Dec. 4, 2 014, http://www.technologyreview.com/featuredstory/532796/who-owns-the-biggest- -biotech-discovery-of-the-century/.
Reyon, D., et al., “FLASH Assembly of TALENs for High-Throughput Genome Editing,” Nat. Biotech. 30:460-465 (2012).
Rho, M., et al. “Diverse CRISPRs Evolving in Human Microbiomes.” PLoS Genetics 8(6):e1002441 (2012).
Richardson, C. D., et al., “Enhancing Homology-Directed Genome Editing by Catalytically Active and Inactive CRISPR-Cas9 Using Asymmetric Donor DNA,” Nat. Biotechnol. 34(3):339-344 (2016).
Sander, J. D., et al., “Zinc Finger Targeter (ZiFiT): An Engineered Zinc Finger/Target Site Design Tool,” Nucleic Acids Res. 35:W599-W605 (2007).
Sander, J. D., et al., “ZiFiT (Zinc Finger Targeter): An Updated Zinc Finger Engineering Tool,” Nucleic Acids Res. 38:W462-468 (2010).
Sander, J. D., et al., “CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes,” Nat. Biotechnol. 32(4):347-355 (2014).
Sanders, R., “Cheap and Easy Technique to Snip DNA Could Revolutionize Gene Therapy”, Berkeley News Online, pp. 1-3 (Jan. 7, 2013).
Sanjana, N. E., et al., “A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering,” Nat. Protoc. 7(1):171-192 (2012).
Sapranauskas, R., et al., “The Streptococcus thermophilus CRISPR-Cas System Provides Immunity in Escherichia coli,” Nucl. Acids Res.39:9275-9282 (2011).
Sather, B. D., et al., “Efficient Modification of CCR5 in Primary Human Hematopoietic Cells Using a Mega TAL Nuclease and AAV Donor Template,” Sci. Trans. Med. 7(307):307ra156 (2015).
Schramm, L., et al., “Recruitment of RNA Polymerase III to Its Target Promoters,” Genes Devel. 16:2593-2620 (2002).
Selleck, W., et al., “Biophysical Characterization and Direct Delivery of S. Pyogenes Cas9 Ribonucleoprotein Complexes,” Editas Medicine, Apr. 27, 2015, retrieved from URLhttp://www.editasmedicine.com/documents/ASGCT_poster_2015_Will.pdf.
Shanks, P., “CRISPR Opportunities . . . For What? And for Whom?,” Biopolitical Times, Dec. 4, 2014, http://www.biopoliticaltimes.org/article.php?id=8235.
Shayakhmetov, D. M., et al., “Analysis of Adenovirus Sequestration in the Liver, Transduction of Hepatic Cells, and Innate Toxicity after Injection of Fiber-Modified Vectors,” J. Virol. 78(10):5368-5381 (2004).
Shen, B., et al., “Generation of Gene-Modified Mice via Cas9/RNA-Mediated Gene Targeting,” Cell Res. 23:720-723 (2013).
Shmakov, S., et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems,” Mol. Cell 60(3):385-397 (2015).
Smith, T. F., et al., “Comparison of Biosequences,” Adv. Appl. Math. 2(4):482-489 (1981).
Smith, C., et al., “Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs,” Mol. Ther. 23(3):570-577 (2015).
Sontheimer, E., “Project 7: Establishing RNA-Directed DNA Targeting in Eukaryotic Cells; Project dates: Nov. 16, 2011 to Dec. 31, 2012,” Physical Sciences—Oncology Center (Feb. 4, 2012).
Sternberg, S.H., et al., “DNA Interrogation by the CRISPR RNA-Guided Endonuclease Cas9,” Nature 507(7490):62-67 (2014).
Stone, E.M., “Leber Congenital Amaurosis—A Model for Efficient Genetic Testing of Heterogeneous Disorders: LXIV Edward Jackson Memorial Lecture,” Am. J. Ophthalmol. 144(6):791-811 (2007).
Sugimoto, N., et al., “Thermodynamic Parameters to Predict Stability of RNA/DNA Hybrid Duplexes,” Biochem. 34:11211-11216 (1995).
Sugimoto, N., et al., “Thermodynamics-Structure Relationship of Single Mismatches in RNA/DNA Duplexes,” Biochem. 39(37):11270-11281 (2000).
Szczepek, M., et al., “Structure-Based Redesign of the Dimerization Interface Reduces the Toxicity of Zinc-Finger Nucleases,” Nat. Biotechnol. 25:786-793 (2007).
Terns, M. P., et al., “CRISPR-based Adaptive Immune Systems,” Curr. Opin. Microbiol. 14:321-327 (2011).
Thurman, R. E., et al., “The Accessible Chromatin Landscape of the Human Genome,” Nature 489(7414):75-82 (2012).
Tolia, N. H., et al., “Slicer and the Argonautes,” Nat. Chem. Biol. 3(1):36-43 (2007).
Tolpin, Thomas W., Third Party Observation for EP13793997.1, Jan. 6, 2015, 50 pages.
Tsai, S. Q., et al., “Dimeric CRISPR RNA-Guided FokI Nucleases for Highly Specific Genome Editing,” Nat. Biotechnol. 32(6):569-576 (2014).
Tsai, S.Q., et al., “Open-Source GuideSeq Software for Analysis of GUIDE-Seq Data,” Nat. Biotechnol. 34(5):483 (2016).
Urnov, F. D., et al., “Highly Efficient Endogenous Human Gene Correction Using Designed Zinc-Finger Nucleases,” Nature 435:646-651 (2005).
Valente, E.M., et al., “Mutations of CEP290, Which Encodes a Centrosomal Protein, Cause Pleiotropic Forms of Joubert Syndrome,” Nat. Genet. 38(6):623-625 (2006).
Van Der Oost, J., “New Tool for Genome Surgery,” Science 336:768-768 (2013).
Van Der Ploeg, J. R., “Analysis of CRISPR in Streptococcus mutans Suggests Frequent Occurrence of Acquired Immunity Against Infection by M102-Like Bacteriophages,” Microbiology 155:1966-1976 (2009).
Wang, H., et al., “One-Step Generation of Mice Carrying Mutations in Multiple Genes By CRISPR/Cas-Mediated Genome Engineering,” Cell 153(4):910-918 (2013).
Wang, J., et al., “Homology-Driven Genome Editing in Hematopoietic Stem and Progenitor Cells Using ZFN mRNA and AAV6 Donors,” Nat. Biotechnol. 33(12):1256-1263 (2015).
Wang, J., et al., “Highly Efficient Homology-Driven Genome Editing in Human T Cells by Combining Zinc-Finger Nuclease mRNA and AAV6 Donor Delivery,” Nucleic Acids Res. 44(3):e30 (2016).
Wang, T., et al., “Genetic Screens in Human Cells Using the CRISPR-Cas9 System,” Science 343(6166):80-84 (2013).
Wiedenheft, B., et al., “RNA-Guided Genetic Silencing Systems in Bacteria and Archaea,” Nature 482:331-338 (2012).
Wu, X., et al., “Genome-Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells,” Nat. Biotechnol. 32(7):670-676 (2014).
Wu, Y., et al., “Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9,” Cell Stem Cell 13(6):659-662 (2013).
Xiao, A., et al., “CasOT: A Genome-Wide Cas9/gRNA Off-Target Searching Tool,” Bioinformatics 30(8):1180-1182 (2014).
Yamano, T., et al., “Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA,” Cell 165(4):949-962 (2016).
Yang, H., et al., “One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering,” Cell 154(6):1370-1390 (2013).
Yang, J., et al., Current Understanding of Usher Syndrome Type II, Front. Biosci. (Landmark Ed.) 17:1165-1183 (2012).
Zetsche, B., et al., “A Split-Cas9 Architecture for Inducible Genome Editing and Transcription Modulation,” Nat. Biotechnol. 33(2):139-142 (2015).
Zetsche, B., et al., “Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System,” Cell 163(3):759-771 (2015).
Zheng, A., et al., “Personalized Therapeutic Strategies for Patients with Retinitis Pigmentosa,” Expert Opin. Biol. Ther. 15(3):391-402 (2015).
Zou, J., et al., “Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells,” Cell Stem Cell 5(1):97-110 (2009).
Zou, J., et al., “Site-Specific Gene Correction of a Point Mutation in Human iPS Cells Derived from an Adult Patient with Sickle Cell Disease,” Blood 118(17):4599-4608 (2011).
7th Annual 2014 Midwest Eye Research Symposium Program, Aug. 8, 2014, retrieved from: http://webeye.ophth.uiowa.edU/eig/MERS_2014.html#Back.
European Patent Office, International Search Report and Written Opinion dated Jun. 24, 2015 for PCT/US2015/019064.
European Patent Office, International Search Report and Written Opinion dated Jul. 1, 2015 for PCT/US2015/019790.
European Patent Office, International Search Report and Written Opinion dated Sep. 28, 2015 for PCT/US2015/022856.
European Patent Office, International Search Report and Written Opinion dated Jul. 31, 2015 for PCT/US2015/022851.
European Patent Office, International Search Report and Written Opinion dated Aug. 10, 2015 for PCT/US2015/023906.
European Patent Office, International Search Report and Written Opinion dated Jun. 12, 2017 for PCT/US2017/024163.
European Patent Office, International Search Report and Written Opinion dated Jul. 28, 2016 for PCT/US2016/029252.
European Patent Office, International Search Report and Written Opinion dated May 29, 2017 for PCT/US2017/022377.
European Patent Office, Examination Report for EP 13824232.6, dated Dec. 16, 2014, 4 pages.
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2013/075317, dated Apr. 15, 2014, 12 pages.
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2013/075326, dated Aug. 22, 2014, 13 pages.
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2014/027335, dated Jul. 16, 2014, 13 pages.
United States Patent and Trademark Office, International Search Report and Written Opinion for PCT/US2014/028630, dated Jul. 24, 2014, 9 pages.
United States Patent and Trademark Office, Invitation to Pay Additional Fees and, Where Applicable, Protest Fee for PCT/US2014/029068, dated Aug. 20, 2014, 3 pages.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 14/319,380, dated Jan. 28, 2015, 47 pages.
United States Patent and Trademark Office, Office Action for U.S. Appl. No. 14/319,530, dated Apr. 1, 2015, 23 pages.
Xu, Q., et al., “Design of 240,000 Orthogonal 25mer DNA Barcode Probes,” Proc. Natl. Acad. Sci.106(7):2289-2294 (2009).
Amrani, N., et al., “NmeCas9 is an Intrinsically High-Fidelity Genome-Editing Platform,” Genome Biol. 19:214 (2018).
Burstein, D., et al., “New CRISPR-Cas Systems from Uncultivated Microbes,” Nature 542(7640):237-241 (2017).
Cassini, A., et al., “A Highly Specific SpCas9 Variant is Identified by In Vivo Screening in Yeast,” Nat. Biotechnol. 36(3):265-271 (2018).
Chen, J. S., et al., “Enhanced Proofreading Governs CRISPR-Cas9 Targeting Accuracy,” Nature 550(7676):407-410 (2017).
Cideciyan, A.V., et al., “Vision 1 Year After Gene Therapy for Leber's Congenital Amaurosis,” N. Engl. J. Med. 361(7):725-727 (2009).
Fu, Y., et al., “Targeted Genome Editing in Human Cells Using CRISPR/Cas Nucleases and Truncated Guide RNAs,” Methods Enzymol. 546:21-45 (2014).
Grieger, J. C., et al., “Production and Characterization of Adeno-Associated Viral Vectors,” Nat. Protoc. 1(3):1412-1428 (2006).
Guo, X., et al., “RNA-Dependent Folding and Stabilization of C5 Protein During Assembly of the E. coli Rnase P Holoenzyme,” J. Mol. Biol. 360:190-203 (2006).
Jain, A., et al., “CRISPR-Cas9-Based Treatment of Myocilin-Associated Glaucoma,” PNAS 114(42):11199-11204 (2017).
Karvelis, T., et al., “crRNA and tracrRNA Guide Cas9-Mediated DNA Interference in Streptococcus thermophilus,” RNA Biol. 10(5):841-851 (2013).
Kim, H.S., et al., “Problems Encountered in Detecting a Targeted Gene by the Polymerase Chain Reaction,” Gene 103:227-233 (1991).
Kim, E., et al., “In Vivo Genome Editing with a Small Cas9 Orthologue Derived from Campylobacter Jejuni,” Nat. Commun. 8:14500 (2017).
Lee, J. K., et al., “Directed evolution of CRISPR-Cas9 to Increase Its Specificity,” Nat. Commun. 9:3048 (2018).
Liang, P., et al., “CRISPR/Cas9-Mediated Gene Editing in Human Tripronuclear Zygotes,” Protein Cell 6(5):363-372 (2015).
Nishimasu, H., et al., “Engineered CRISPR-Cas9 Nuclease with Expanded Targeting Space,” Science 361(6408):1259-1262 (2018).
Pellissier, L. P., et al., “Specific Tools for Targeting and Expression in Muller Glial Cells,” Mol. Ther. Methods Clin. Dev. 1:14009 (2014).
Recht, M. I., et al., “Monitoring Assembly of Ribonucleoprotein Complexes by Isothermal Titration Calorimetry,” Methods in Mol. Biol. 488:117-127 (2008).
Ruan, G.X., et al., “CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10,” Mol. Ther. 25(2):331-341 (2017).
Sharma, R., et al., “In Vivo Genome Editing of the Albumin Locus as a Platform for Protein Replacement Therapy,” Blood 126(15):1777-1784 (2015).
Stone, E.M., et al., “Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease,” Opthalmol. 124(9):1314-1331 (2017).
Strecker, J., et al., “Engineering of CRISPR-Cas12b for Human Genome Editing,” Nat. Commun. 10:212 (2019).
Tang, L., et al., “CRISPR/Cas9-Mediated Gene Editing in Human Zygotes Using Cas9 Protein,” Mol. Genet. Genom. 292(3):525-533 (2017).
Teng, F., et al., “Repurposing CRISPR-Cas12b for Mammalian Genome Engineering,” Cell Discov. 4:63 (2018).
Truong, L. N., et al., “Microhomology-Mediated End Joining and Homologous Recombination Share the Initial End Resection Step to Repair DNA Double-Strand Breaks in Mammalian Cells,” PNAS 110(19):7720-7725 (2013).
Van Overbeek, M., et al., “DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks,” Mol. Cell 63:633-646 (2016).
Wang, J., et al., “xCas9 Expands the Scope of Genome Editing with Reduced Efficiency in Rice,” Plant Biotechnol. J. 17:709-711 (2019).
Yan, W. X., et al., “Functionally Diversse Type V CRISPR-Cas Systems,” Science 363:88-91 (2019).
Maeder, M. L., et al., “Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10,” Nat. Med. 25(2):229-233 (2019).
Paix, A., et al., “Precision Genome Editing Using CRISPR-Cas9 and Linear Repair Templates in C. Elegans,” Methods 121-121:86-93 (2017).
European Patent Office, International Search Report and Written Opinion dated Dec. 12, 2019 for PCT/US2019/040641.
Cramer, M. L., et al., “Induction of T-Cell Infiltration and Programmed Death Ligand 2 Expression by Adeno-Associated Virus in Rhesus Macaque Skeletal Muscle and Modulation by Prednisone,” Hum. Gene Then 28(6):493-509 (2017).
Kumar, S. R.P., et al., “Clinical development of gene therapy: results and Tessons from recent successes,” Mol. Ther. Methods Clin. Dev. 3:16034 (2016).
Xue, K., et al., “Technique of Retinal Gene Therapy: Delivery of Viral Vector Into the Subretinal Space,” Eye 31 (9):1308-1316 (2017).
Yadav, S. P., et al., “The Transcription-Splicing Protein NonO/p54nrb and Three NonO-Interacting Proteins Bind to Distal Enhancer Region and Augment Rhodopsin Expression,” Hum. Mol. Genet. 23(8):2132-2144 (2014).
Zetsche, B., et al., “Multiplex Gene Editing by CRISPR-Cpf1 Through Autonomous Processing of a Single crRNA Array,” Nat. Biotechnol. 35(1):31-34 (2017).
Ding, Q., et al., “Enhanced Efficiency of Human Pluripotent Stem Cell Genme Editing through Replacing TALENs with CRIPSRs,” Cell Stem Cell 12:393-394 (2013).
Heintze, J., et al., “A CRISPR CASe for High-Throughput Silencing,” Front. Genet. 4(193):1-6 (2013).
Mukherjee-Clavin, B., et al., “Current Approaches for Efficient Genetic Editing in Human Pluripotent Stem Cells,” Front. Biol. 8(5):461-467 (2013).
Bothmer, A., et al., “Detection and Modulation of DNA Translocations During Multi-Gene Genome Editing in T Cells,” The CRISPR Journal 3(3):177-187 (2020).
Burnight, E. R., et al., “Using CRIPSR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration,” Mol. Ther. 25(9):1999-2013 (2017).
Cost, G. J., et al., Geneseq Accession No. BBD49192 (2014), 2 pages.
Fu, B. X. H., et al., “Landscape of Target: Guide Homology Effects on Cas9-Mediated Cleavage,” Nucl. Acids Res. 42(22):13778-13787 (2014).
Giannoukos, G., et al., “UDiTaS™, a genome editing detection method for indels and genome rearrangements,” BMC Genomics 19:212 (2018).
Kleinstiver, B. P., et al., “Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing,” Nat. Biotechnol. 37(3):276-282 (2019).
Kosicki, M., et al., “Repair of Double-Strand Breaks Induced by CRISPR-Cas9 Leads to Large Deletions and Complex Rearrangements,” Nat. Biotechnol. 36(8):765-771 (2018).
Krieg, A. M., et al., GeneSeq Accession No. BAY71542 (2013).
Lee, J. H., et al., “Gene Therapy for Visual Loss: Opportunities and Concerns,” Progress in Retinal and Eye Research 68:31-53 (2019).
Palisch, P., et al., “CRISPR-CasΦ from Huge Phages is a Hypercompact Genome Editor,” Science ;369(6501):333-337 (2020).
Reeks, J., et al., “Structure of a Dimeric Crenarchaeal Cas6 Enzyme with an Atypical Active Site for CRISPR RNA Processing,” Biochem. J. 452:223-230 (2013).
Reichel, F. F., et al., “AAV8 Can Induce Innate and Adaptive Immune Response in the Primate Eye,” Mol. Ther. 25(12):2648-1660 (2017).
Strohkendl, I., et al., “Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a,” Mol Cell. 71(5):816-824 (2018).
Swarts, D. C., et al., “Cas9 Versus Cas12a/Cpf1: Structure-Function Comparisons and Implications for Genome Editing,” WIREs RNA 9:e1481 (2018).
Vidigal, J. A., et al.,“Rapid and Efficient One-Step Generation of Paired gRNA CRISPR-Cas9 Libraries,” Nat. Commun. 6:8083 (2015).
Weber, L., et al., “Editing a y-Globin Repressor Binding Site Restores Fetal Hemoglobin Synthesis and Corrects the Sickle Cell Disease Phenotype,” Sci. Adv. 6:eaay9392 (2020).
Wu, W., et al., “Application of CRISPR-Cas9 in Eye Disease,” Exp. Eye Res. 161:116-123 (2017).
European Patent Office, International Search Report and Written Opinion dated Jun. 17, 2020 for PCT/US2020/019766, 18 pages.
Related Publications (1)
Number Date Country
20180155789 A1 Jun 2018 US
Provisional Applications (7)
Number Date Country
62036576 Aug 2014 US
61950733 Mar 2014 US
62535193 Jul 2017 US
62503800 May 2017 US
62443568 Jan 2017 US
62400526 Sep 2016 US
62370202 Aug 2016 US
Continuation in Parts (1)
Number Date Country
Parent 14644181 Mar 2015 US
Child 15667603 US