Uchida et al, Pept. Chem. Volume date 1995, 33rd pp. 229-232, 1996.* |
Bundgaard (Ed) “Design of Prodrugs” (Elsevier Publishing) pp. 1-24, 1983.* |
Chalk et al., “Purification of An Insect Defensin from the Mosquito, Aedes aegypti,” Insect Biochem. Molec. Biol. 24(4):403-410, 1994. |
Chalk et al., “Full Sequence and Characterization of Two Insect Defensins: Immune Peptides from the Mosquito Aedes Aegypti,” Proc. R. Soc. Land. B. 261(1361):217-221, 1995. |
Darveau et al., “β-Lactam Antibiotics Potentiate Magainin 2 Antimicrobial Activity In Vitro and In Vivo,” Antimicrobial Agents & Chemotherapy 35(6):1153-1159, 1991. |
Engström et al., “The Antibacterial Effect of Attacins from the Silk Moth Hyalophora cecropia is Directed Against the Outer Membrane of Escherichia coli,” EMBO J. 3(13):3347-3351, 1984. |
Hancock, “The Role of Fundamental Research and Biotechnology in Finding Solutions to the Global Problem of Antibiotic Resistance,” Clin. Infectious Diseases 24(Supp 1)S148-S150, 1997. |
Piers et al., “Improvement of Outer Membrane-Permeabilizing and Lipopolysaccharide-Binding Activities of an Antimicrobial Cationic Peptide by C-Terminal Modification,” Antimicrobial Agents & Chemotherapy 38(10):2311-2316, 1994. |
Vaara, “The Outer Membrane as the Penetration Barrier Against Mupirocin in Gram-Negative Enteric Bacteria,” J. Antimicrob. Chemother. 29(2):221-222, 1992. |
Vaara, “Agents That Increase the Permeability of the Outer Membrane,” Microbiological Reviews 56(3):395-411, 1992. |
Vaara and Porro, “Group of Peptides That Act Synergistically with Hydrophobic Antibiotics Against Gram-Negative Enteric Bacteria,” Antimicrobial Agents & Chemotherapy 40(8):1801-1805, 1996. |
Vaara and Vaara, “Polycations Sensitive Enteric Bacteria to Antibiotics,” Antimicrobial Agents & Chemotherapy 24(1):107-113, 1983. |
Vaara and Vaara, “Sensitization of Gram-Negative Bacteria to Antibiotics and Complement by a Nontoxic Oligopeptide,” Nature 303:526-528, 1983. |
Vaara and Vaara, “Ability of Cecropin B to Penetrate the Enterobacterial Outer Membrane,” Antimicrobial Agents & Chemotherapy 38(10):2498-2501, 1994. |
Falla et al., “Mode of Action of the Antimicrobial Peptide Indolicidin,” The Journal of Biological Chemistry 271(32): 19298-19303, Aug. 9, 1996. |
Falla and Hancock, “Improved Activity of a Synthetic Indolicidin Analog,” Antimicrobial Agents and Chemotherapy 41(4): 771-775, 1997. |
Ladokhin et al., “CD Spectra of Indolicidin Antimicrobial Peptides Suggest Turns, Not Polyproline Helix,” Biochemistry 38:12313-12319, 1999. |
Lawyer et al., “Antimicrobial Activity of a 13 Amino Acid Tryptophan-Rich Peptide Derived From a Putative Porcine Precursor Protein of a Novel Family of Antibacterial Peptides,” FEBS Letters 390:95-98, 1996. |
Robinson, Jr. et al., “Anti-HIV-1 Activity of Indolicidin, an Antimicrobial Peptide from Neutrophils,” Journal of Leukocyte Biology 63:94-100, 1998. |
Selsted et al., “Indolicidin, a Novel Bactericidal Tridecapeptide Amide from Neutrophils,” The Journal Of Biological Chemistry 267(7):4292-4295, Mar. 5, 1992. |
Selsted et al., “Purification, Characterization, Synthesis and cDNA Cloning of Indolicidin: A Tryptophan-Rich Microbicidal Tridecapeptide from Neutrophils,” Proceedings of the 12th American Peptide Symposium, Jun. 16-21, 1991, Cambridge, MA, pp. 905-907. |
Subbalakshmi and Sitaram, “Mechanism of Antimicrobial Action of Indolicidin,” FEMS Microbiology Letters 160:91-96, 1998. |
Subbalakshmi et al., “Interaction of Indolicidin, a 13-Residue Peptide Rich in Tryptophan and Proline and its Analogues with Model Membranes,” J. Biosci. 23(1):9-13, 1998. |
Subbalakshmi et al., “Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin,” FEBS Letters 395(1): 48-52, 1996. |
Tanchak et al., “Tryptophanins: Isolation and Molecular Characterization of Oat cDNA Clones Encoding Proteins Structurally Related to Puroindoline and Wheat Grain Softness Proteins,” Plant Science 137:173-184, 1998. |
Uchida et al., “Stucture-Activity of Antibacterial Peptide Indolicidin and Analogs,” Peptide Science, pp. 221-224, 1998. |
Van Abel et al., “Synthesis and Characterization of Indolicidin, a Tryptophan-Rich Antimicrobial Peptide from Bovine Neutrophils,” Int. J. Peptide Protein Res. 45:401-409, 1995. |
Wakabayashi et al., “N-Acylated and D Encantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity,” Antimicrobial Agents And Chemotherapy 43(5):1267-1269, May 1999. |