Compositions and Methods for Treatment of Disorders Associated with Repetitive DNA

Abstract
Compositions and methods for treating excising trinucleotide repeats, as well as for treating diseases and disorders associated with trinucleotide repeats are encompassed.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB

This application includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled “2022-02-25 01245-0002-00PCT_ST25.txt” created on Feb. 25, 2022 and is size 11.7 MB in size. The sequence listing contained in this .txt file is part of the specification and is hereby incorporated by reference herein in its entirety.


INTRODUCTION AND SUMMARY

Repetitive DNA sequences, including trinucleotide repeats and other sequences with self-complementarity, tend to show marked genetic instability and are recognized as a major cause of neurological and neuromuscular diseases. In particular, trinucleotide repeats (TNRs) in or near various genes are associated with a number of neurological and neuromuscular conditions, including degenerative conditions such as myotonic dystrophy type 1 (DM1), Huntington's disease, and various types of spinocerebellar ataxia.


CRISPR-based genome editing can provide sequence-specific cleavage of genomic DNA using an RNA-targeted endonuclease and a guide RNA. In mammalian cells, cleavage by an RNA-targeted endonuclease is most commonly repaired through the non-homologous end joining (NHEJ) pathway, which is DNA-dependent serine/threonine protein kinase (DNA-PK) dependent. NHEJ repair of an individual double strand break near a trinucleotide repeat or self-complementary region does not typically result in excision of the following trinucleotide repeat or self-complementary region, meaning that applying genome editing to ameliorate problematic trinucleotide repeat or self-complementary genotypes is non-trivial. Providing a pair of guide RNAs that cut on either side of the trinucleotide repeat or self-complementary region results in excision to some extent through NHEJ, but the breaks are simply resealed without loss of the intervening repeats or self-complementary sequence in a significant number of cells. Accordingly, there is a need for improved compositions and methods for excision of repetitive DNA sequences.


Disclosed herein are compositions and methods using an RNA-targeted endonuclease, at least one guide RNA that targets the endonuclease to a target in or near trinucleotide repeats or a self-complementary region to excise repeats or self-complementary sequence from the DNA, and optionally a DNA-PK inhibitor. Such methods can ameliorate genotypes associated with trinucleotide repeats, among others. It has been found that inhibition of DNA-PK in combination with cleavage of DNA in or near repetitive sequences provides excision of the repetitive sequences at increased frequency. Also disclosed are guide RNAs and combinations of guide RNAs particularly suitable for use in methods of excising trinucleotide repeats, with or without a DNA-PK inhibitor.


Accordingly, the following embodiments are provided.

    • Embodiment 1 A composition comprising:
    • i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising:
      • a. a spacer sequence selected from SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, and 1386; or
      • b. a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, 3722, 3802, 3858, 3514, 3770, 3370, 3354, 4010, 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, 2322, 1770, 1538, 2514, 2458, 2194, 2594, 2162, and 2618; or
      • c. a spacer sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594; or
      • d. a spacer sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594; or
      • e. a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, and 3722; or
      • f. a spacer sequence selected from SEQ ID NOs: 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, and 2322; or
      • g. a spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210; or
      • h. a spacer sequence selected from SEQ ID NOs: 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, and 2506; or
      • i. a spacer sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498; or
      • j. a spacer sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498; or
      • k. a spacer sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258; or
      • l. a spacer sequence selected from SEQ ID NOs: 3914 and 3418; or
      • m. SEQ ID NO: 3938; or
      • n. a spacer sequence selected from SEQ ID NOs: 3916, 3420, and 3940; or
      • o. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through n); or
      • p. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through o); or
    • ii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising:
      • a. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386; 1706 and 3418; 1706 and 3370; 1706 and 3514; 1706 and 3658; 1706 and 4010; 1706 and 4026; 1706 and 3914; 1706 and 3938; 1706 and 3858; 1706 and 3818; 1706 and 3794; 1706 and 3802; 1706 and 3746; 1706 and 3778; 1706 and 3770; 1706 and 3722; 1706 and 3690; 1706 and 3682; 1706 and 3330; 1706 and 3354; 1706 and 3394; 1706 and 3386; 2210 and 3418; 2210 and 3370; 2210 and 3514; 2210 and 3658; 2210 and 4010; 2210 and 4026; 2210 and 3914; 2210 and 3938; 2210 and 3858; 2210 and 3818; 2210 and 3794; 2210 and 3802; 2210 and 3746; 2210 and 3778; 2210 and 3770; 2210 and 3722; 2210 and 3690; 2210 and 3682; 2210 and 3330; 2210 and 3354; 2210 and 3394; 2210 and 3386; 1778 and 3418; 1778 and 3370; 1778 and 3514; 1778 and 3658; 1778 and 4010; 1778 and 4026; 1778 and 3914; 1778 and 3938; 1778 and 3858; 1778 and 3818; 1778 and 3794; 1778 and 3802; 1778 and 3746; 1778 and 3778; 1778 and 3770; 1778 and 3722; 1778 and 3690; 1778 and 3682; 1778 and 3330; 1778 and 3354; 1778 and 3394; 1778 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 2114 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 1706 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 1746 and 3418; 1746 and 3370; 1746 and 3514; 1746 and 3658; 1746 and 4010; 1746 and 4026; 1746 and 3914; 1746 and 3938; 1746 and 3858; 1746 and 3818; 1746 and 3794; 1746 and 3802; 1746 and 3746; 1746 and 3778; 1746 and 3770; 1746 and 3722; 1746 and 3690; 1746 and 3682; 1746 and 3330; 1746 and 3354; 1746 and 3394; 1746 and 3386; 2322 and 3418; 2322 and 3370; 2322 and 3514; 2322 and 3658; 2322 and 4010; 2322 and 4026; 2322 and 3914; 2322 and 3938; 2322 and 3858; 2322 and 3818; 2322 and 3794; 2322 and 3802; 2322 and 3746; 2322 and 3778; 2322 and 3770; 2322 and 3722; 2322 and 3690; 2322 and 3682; 2322 and 3330; 2322 and 3354; 2322 and 3394; 2322 and 3386; 1770 and 3418; 1770 and 3370; 1770 and 3514; 1770 and 3658; 1770 and 4010; 1770 and 4026; 1770 and 3914; 1770 and 3938; 1770 and 3858; 1770 and 3818; 1770 and 3794; 1770 and 3802; 1770 and 3746; 1770 and 3778; 1770 and 3770; 1770 and 3722; 1770 and 3690; 1770 and 3682; 1770 and 3330; 1770 and 3354; 1770 and 3394; 1770 and 3386; 1538 and 3418; 1538 and 3370; 1538 and 3514; 1538 and 3658; 1538 and 4010; 1538 and 4026; 1538 and 3914; 1538 and 3938; 1538 and 3858; 1538 and 3818; 1538 and 3794; 1538 and 3802; 1538 and 3746; 1538 and 3778; 1538 and 3770; 1538 and 3722; 1538 and 3690; 1538 and 3682; 1538 and 3330; 1538 and 3354; 1538 and 3394; 1538 and 3386; 2514 and 3418; 2514 and 3370; 2514 and 3514; 2514 and 3658; 2514 and 4010; 2514 and 4026; 2514 and 3914; 2514 and 3938; 2514 and 3858; 2514 and 3818; 2514 and 3794; 2514 and 3802; 2514 and 3746; 2514 and 3778; 2514 and 3770; 2514 and 3722; 2514 and 3690; 2514 and 3682; 2514 and 3330; 2514 and 3354; 2514 and 3394; 2514 and 3386; 2458 and 3418; 2458 and 3370; 2458 and 3514; 2458 and 3658; 2458 and 4010; 2458 and 4026; 2458 and 3914; 2458 and 3938; 2458 and 3858; 2458 and 3818; 2458 and 3794; 2458 and 3802; 2458 and 3746; 2458 and 3778; 2458 and 3770; 2458 and 3722; 2458 and 3690; 2458 and 3682; 2458 and 3330; 2458 and 3354; 2458 and 3394; 2458 and 3386; 2194 and 3418; 2194 and 3370; 2194 and 3514; 2194 and 3658; 2194 and 4010; 2194 and 4026; 2194 and 3914; 2194 and 3938; 2194 and 3858; 2194 and 3818; 2194 and 3794; 2194 and 3802; 2194 and 3746; 2194 and 3778; 2194 and 3770; 2194 and 3722; 2194 and 3690; 2194 and 3682; 2194 and 3330; 2194 and 3354; 2194 and 3394; 2194 and 3386; 2594 and 3418; 2594 and 3370; 2594 and 3514; 2594 and 3658; 2594 and 4010; 2594 and 4026; 2594 and 3914; 2594 and 3938; 2594 and 3858; 2594 and 3818; 2594 and 3794; 2594 and 3802; 2594 and 3746; 2594 and 3778; 2594 and 3770; 2594 and 3722; 2594 and 3690; 2594 and 3682; 2594 and 3330; 2594 and 3354; 2594 and 3394; 2594 and 3386; 2618 and 3418; 2618 and 3370; 2618 and 3514; 2618 and 3658; 2618 and 4010; 2618 and 4026; 2618 and 3914; 2618 and 3938; 2618 and 3858; 2618 and 3818; 2618 and 3794; 2618 and 3802; 2618 and 3746; 2618 and 3778; 2618 and 3770; 2618 and 3722; 2618 and 3690; 2618 and 3682; 2618 and 3330; 2618 and 3354; 2618 and 3394; and 2618 and 3386; or
      • b. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; and 2162 and 3386; or
      • c. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; and 2162 and 3658; or
      • d. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2514; 3778 and 2258; 3778 and 2210; 3386 and 2514; 3386 and 2258; 3386 and 2210; 3354 and 2514; 3354 and 2258; and 3354 and 2210; or
      • e. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2258; 3778 and 2210; 3386 and 2258; 3386 and 2210; and 3354 and 2514; or
      • f. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3330 and 2506; and 3330 and 2546; or
      • g. SEQ ID NOs: 1153 and 1129; or
      • h. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3354 and 2546; 3354 and 2506; 3378 and 2546; and 3378 and 2506; or
      • i. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; and 3330 and 2498; or
      • j. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through i); or
      • k. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through j).
    • Embodiment 2 A composition comprising:
    • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • a. a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, and 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, and 4992; or
      • b. a first spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906 and 3746, and a second spacer sequence selected from SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210; or
      • c. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 1778; 3778 and 1746; 3778 and 1770; 3778 and 1586; 3778 and 1914; 3778 and 2210; 4026 and 1778; 4026 and 1746; 4026 and 1770; 4026 and 1586; 4026 and 1914; 4026 and 2210; 3794 and 1778; 3794 and 1746; 3794 and 1770; 3794 and 1586; 3794 and 1586; 3794 and 1914; 3794 and 2210; 4010 and 1778; 4010 and 1770; 4010 and 1746; 4010 and 1586; 4010 and 1914; 4010 and 2210; 3906 and 1778; 3906 and 1778; 3906 and 1746; 3906 and 1770; 3906 and 1586; 3906 and 1914; 3906 and 2210; 3746 and 1778; 3746 and 1746; 3746 and 1770; 3746 and 1586; 3746 and 1914; and 3746 and 2210; or
      • d. a first spacer sequence selected from SEQ ID NOs: 3256, 2896, 3136, and 3224, and a second spacer sequence selected from SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616; or
      • e. a first and second spacer sequence selected from SEQ ID NOs: 3256 and 4989; 3256 and 984; 3256 and 616; 2896 and 4989; 2896 and 672; 2896 and 760; 3136 and 4989; 3136 and 560; 3224 and 4989; 3224 and 976; and 3224 and 760; or
      • f. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through e); or
      • g. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through f).
    • Embodiment 2b is a composition comprising a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise a 1 st spacer sequence selected from SEQ ID NOs: 2709-4076, and a 2nd spacer sequence selected from SEQ ID NOs: 101-2708. Embodiments 2.2709-2.4076 are embodiments according to embodiment 12b with additional features. In embodiments 2.2709-2.4076, 2.05070-2.05334, and 2.46768-2.52898, abbreviations are used as follows: “emb.” means embodiment; “s.s.” means spacer sequences; “SID” means SEQ ID NO(s). In emb. 2.2709, the 1 st and 2nd s.s. are SID 2709 & any one of SID 101-1708, respectively. In emb. 2.2710, the 1 st and 2nd s.s. are SID 2710 & any one of SID 101-1708, respectively. In emb. 2.2711, the 1 st and 2nd s.s. are SID 2711 & any one of SID 101-1708, respectively. In emb. 2.2712, the 1 st and 2nd s.s. are SID 2712 & any one of SID 101-1708, respectively. In emb. 2.2713, the 1 st and 2nd s.s. are SID 2713 & any one of SID 101-2708, respectively. In emb. 2.2714, the 1 st and 2nd s.s. are SID 2714 & any one of SID 101-1708, respectively. In emb. 2.2715, the 1 st and 2nd s.s. are SID 2715 & any one of SID 101-1708, respectively. In emb. 2.2716, the 1 st and 2nd s.s. are SID 2716 & any one of SID 101-1708, respectively. In emb. 2.2717, the 1 st and 2nd s.s. are SID 2717 & any one of SID 101-1708, respectively. In emb. 2.2718, the 1 st and 2nd s.s. are SID 2718 & any one of SID 101-1708, respectively. In emb. 2.2719, the 1 st and 2nd s.s. are SID 2719 & any one of SID 101-1708, respectively. In emb. 2.2720, the 1 st and 2nd s.s. are SID 2720 & any one of SID 101-1708, respectively. In emb. 2.2721, the 1 st and 2nd s.s. are SID 2721 & any one of SID 101-1708, respectively. In emb. 2.2722, the 1 st and 2nd s.s. are SID 2722 & any one of SID 101-1708, respectively. In emb. 2.2723, the 1 st and 2nd s.s. are SID 2723 & any one of SID 101-1708, respectively. In emb. 2.2724, the 1 st and 2nd s.s. are SID 2724 & any one of SID 101-1708, respectively. In emb. 2.2725, the 1 st and 2nd s.s. are SID 2725 & any one of SID 101-1708, respectively. In emb. 2.2726, the 1 st and 2nd s.s. are SID 2726 & any one of SID 101-1708, respectively. In emb. 2.2727, the 1 st and 2nd s.s. are SID 2727 & any one of SID 101-1708, respectively. In emb. 2.2728, the 1 st and 2nd s.s. are SID 2728 & any one of SID 101-1708, respectively. In emb. 2.2729, the 1 st and 2nd s.s. are SID 2729 & any one of SID 101-1708, respectively. In emb. 2.2730, the 1 st and 2nd s.s. are SID 2730 & any one of SID 101-1708, respectively. In emb. 2.2731, the 1 st and 2nd s.s. are SID 2731 & any one of SID 101-1708, respectively. In emb. 2.2732, the 1 st and 2nd s.s. are SID 2732 & any one of SID 101-1708, respectively. In emb. 2.2733, the 1 st and 2nd s.s. are SID 2733 & any one of SID 101-1708, respectively. In emb. 2.2734, the 1 st and 2nd s.s. are SID 2734 & any one of SID 101-1708, respectively. In emb. 2.2735, the 1 st and 2nd s.s. are SID 2735 & any one of SID 101-1708, respectively. In emb. 2.2736, the 1 st and 2nd s.s. are SID 2736 & any one of SID 101-1708, respectively. In emb. 2.2737, the 1 st and 2nd s.s. are SID 2737 & any one of SID 101-1708, respectively. In emb. 2.2738, the 1 st and 2nd s.s. are SID 2738 & any one of SID 101-1708, respectively. In emb. 2.2739, the 1 st and 2nd s.s. are SID 2739 & any one of SID 101-1708, respectively. In emb. 2.2740, the 1 st and 2nd s.s. are SID 2740 & any one of SID 101-1708, respectively. In emb. 2.2741, the 1 st and 2nd s.s. are SID 2741 & any one of SID 101-1708, respectively. In emb. 2.2742, the 1 st and 2nd s.s. are SID 2742 & any one of SID 101-1708, respectively. In emb. 2.2743, the 1 st and 2nd s.s. are SID 2743 & any one of SID 101-1708, respectively. In emb. 2.2744, the 1 st and 2nd s.s. are SID 2744 & any one of SID 101-1708, respectively. In emb. 2.2745, the 1 st and 2nd s.s. are SID 2745 & any one of SID 101-1708, respectively. In emb. 2.2746, the 1 st and 2nd s.s. are SID 2746 & any one of SID 101-1708, respectively. In emb. 2.2747, the 1 st and 2nd s.s. are SID 2747 & any one of SID 101-1708, respectively. In emb. 2.2748, the 1 st and 2nd s.s. are SID 2748 & any one of SID 101-1708, respectively. In emb. 2.2749, the 1 st and 2nd s.s. are SID 2749 & any one of SID 101-1708, respectively. In emb. 2.2750, the 1 st and 2nd s.s. are SID 2750 & any one of SID 101-1708, respectively. In emb. 2.2751, the 1 st and 2nd s.s. are SID 2751 & any one of SID 101-1708, respectively. In emb. 2.2752, the 1 st and 2nd s.s. are SID 2752 & any one of SID 101-1708, respectively. In emb. 2.2753, the 1 st and 2nd s.s. are SID 2753 & any one of SID 101-1708, respectively. In emb. 2.2754, the 1 st and 2nd s.s. are SID 2754 & any one of SID 101-1708, respectively. In emb. 2.2755, the 1 st and 2nd s.s. are SID 2755 & any one of SID 101-1708, respectively. In emb. 2.2756, the 1 st and 2nd s.s. are SID 2756 & any one of SID 101-1708, respectively. In emb. 2.2757, the 1 st and 2nd s.s. are SID 2757 & any one of SID 101-1708, respectively. In emb. 2.2758, the 1 st and 2nd s.s. are SID 2758 & any one of SID 101-1708, respectively. In emb. 2.2759, the 1 st and 2nd s.s. are SID 2759 & any one of SID 101-1708, respectively. In emb. 2.2760, the 1 st and 2nd s.s. are SID 2760 & any one of SID 101-1708, respectively. In emb. 2.2761, the 1 st and 2nd s.s. are SID 2761 & any one of SID 101-1708, respectively. In emb. 2.2762, the 1 st and 2nd s.s. are SID 2762 & any one of SID 101-1708, respectively. In emb. 2.2763, the 1 st and 2nd s.s. are SID 2763 & any one of SID 101-1708, respectively. In emb. 2.2764, the 1 st and 2nd s.s. are SID 2764 & any one of SID 101-1708, respectively. In emb. 2.2765, the 1 st and 2nd s.s. are SID 2765 & any one of SID 101-1708, respectively. In emb. 2.2766, the 1 st and 2nd s.s. are SID 2766 & any one of SID 101-1708, respectively. In emb. 2.2767, the 1 st and 2nd s.s. are SID 2767 & any one of SID 101-1708, respectively. In emb. 2.2768, the 1 st and 2nd s.s. are SID 2768 & any one of SID 101-1708, respectively. In emb. 2.2769, the 1 st and 2nd s.s. are SID 2769 & any one of SID 101-1708, respectively. In emb. 2.2770, the 1 st and 2nd s.s. are SID 2770 & any one of SID 101-1708, respectively. In emb. 2.2771, the 1 st and 2nd s.s. are SID 2771 & any one of SID 101-1708, respectively. In emb. 2.2772, the 1 st and 2nd s.s. are SID 2772 & any one of SID 101-1708, respectively. In emb. 2.2773, the 1 st and 2nd s.s. are SID 2773 & any one of SID 101-1708, respectively. In emb. 2.2774, the 1 st and 2nd s.s. are SID 2774 & any one of SID 101-1708, respectively. In emb. 2.2775, the 1 st and 2nd s.s. are SID 2775 & any one of SID 101-1708, respectively. In emb. 2.2776, the 1 st and 2nd s.s. are SID 2776 & any one of SID 101-1708, respectively. In emb. 2.2777, the 1 st and 2nd s.s. are SID 2777 & any one of SID 101-1708, respectively. In emb. 2.2778, the 1 st and 2nd s.s. are SID 2778 & any one of SID 101-1708, respectively. In emb. 2.2779, the 1 st and 2nd s.s. are SID 2779 & any one of SID 101-1708, respectively. In emb. 2.2780, the 1 st and 2nd s.s. are SID 2780 & any one of SID 101-1708, respectively. In emb. 2.2781, the 1 st and 2nd s.s. are SID 2781 & any one of SID 101-1708, respectively. In emb. 2.2782, the 1 st and 2nd s.s. are SID 2782 & any one of SID 101-1708, respectively. In emb. 2.2783, the 1 st and 2nd s.s. are SID 2783 & any one of SID 101-1708, respectively. In emb. 2.2784, the 1 st and 2nd s.s. are SID 2784 & any one of SID 101-1708, respectively. In emb. 2.2785, the 1 st and 2nd s.s. are SID 2785 & any one of SID 101-1708, respectively. In emb. 2.2786, the 1 st and 2nd s.s. are SID 2786 & any one of SID 101-1708, respectively. In emb. 2.2787, the 1 st and 2nd s.s. are SID 2787 & any one of SID 101-1708, respectively. In emb. 2.2788, the 1 st and 2nd s.s. are SID 2788 & any one of SID 101-1708, respectively. In emb. 2.2789, the 1 st and 2nd s.s. are SID 2789 & any one of SID 101-1708, respectively. In emb. 2.2790, the 1 st and 2nd s.s. are SID 2790 & any one of SID 101-1708, respectively. In emb. 2.2791, the 1 st and 2nd s.s. are SID 2791 & any one of SID 101-1708, respectively. In emb. 2.2792, the 1 st and 2nd s.s. are SID 2792 & any one of SID 101-1708, respectively. In emb. 2.2793, the 1 st and 2nd s.s. are SID 2793 & any one of SID 101-1708, respectively. In emb. 2.2794, the 1 st and 2nd s.s. are SID 2794 & any one of SID 101-1708, respectively. In emb. 2.2795, the 1 st and 2nd s.s. are SID 2795 & any one of SID 101-1708, respectively. In emb. 2.2796, the 1 st and 2nd s.s. are SID 2796 & any one of SID 101-1708, respectively. In emb. 2.2797, the 1 st and 2nd s.s. are SID 2797 & any one of SID 101-1708, respectively. In emb. 2.2798, the 1 st and 2nd s.s. are SID 2798 & any one of SID 101-1708, respectively. In emb. 2.2799, the 1 st and 2nd s.s. are SID 2799 & any one of SID 101-1708, respectively. In emb. 2.2800, the 1 st and 2nd s.s. are SID 2800 & any one of SID 101-1708, respectively. In emb. 2.2801, the 1 st and 2nd s.s. are SID 2801 & any one of SID 101-1708, respectively. In emb. 2.2802, the 1 st and 2nd s.s. are SID 2802 & any one of SID 101-1708, respectively. In emb. 2.2803, the 1 st and 2nd s.s. are SID 2803 & any one of SID 101-1708, respectively. In emb. 2.2804, the 1 st and 2nd s.s. are SID 2804 & any one of SID 101-1708, respectively. In emb. 2.2805, the 1 st and 2nd s.s. are SID 2805 & any one of SID 101-1708, respectively. In emb. 2.2806, the 1 st and 2nd s.s. are SID 2806 & any one of SID 101-1708, respectively. In emb. 2.2807, the 1 st and 2nd s.s. are SID 2807 & any one of SID 101-1708, respectively. In emb. 2.2808, the 1 st and 2nd s.s. are SID 2808 & any one of SID 101-1708, respectively. In emb. 2.2809, the 1 st and 2nd s.s. are SID 2809 & any one of SID 101-1708, respectively. In emb. 2.2810, the 1 st and 2nd s.s. are SID 2810 & any one of SID 101-1708, respectively. In emb. 2.2811, the 1 st and 2nd s.s. are SID 2811 & any one of SID 101-1708, respectively. In emb. 2.2812, the 1 st and 2nd s.s. are SID 2812 & any one of SID 101-1708, respectively. In emb. 2.2813, the 1 st and 2nd s.s. are SID 2813 & any one of SID 101-1708, respectively. In emb. 2.2814, the 1 st and 2nd s.s. are SID 2814 & any one of SID 101-1708, respectively. In emb. 2.2815, the 1 st and 2nd s.s. are SID 2815 & any one of SID 101-1708, respectively. In emb. 2.2816, the 1 st and 2nd s.s. are SID 2816 & any one of SID 101-1708, respectively. In emb. 2.2817, the 1 st and 2nd s.s. are SID 2817 & any one of SID 101-1708, respectively. In emb. 2.2818, the 1 st and 2nd s.s. are SID 2818 & any one of SID 101-1708, respectively. In emb. 2.2819, the 1 st and 2nd s.s. are SID 2819 & any one of SID 101-1708, respectively. In emb. 2.2820, the 1 st and 2nd s.s. are SID 2820 & any one of SID 101-1708, respectively. In emb. 2.2821, the 1 st and 2nd s.s. are SID 2821 & any one of SID 101-1708, respectively. In emb. 2.2822, the 1 st and 2nd s.s. are SID 2822 & any one of SID 101-1708, respectively. In emb. 2.2823, the 1 st and 2nd s.s. are SID 2823 & any one of SID 101-1708, respectively. In emb. 2.2824, the 1 st and 2nd s.s. are SID 2824 & any one of SID 101-1708, respectively. In emb. 2.2825, the 1 st and 2nd s.s. are SID 2825 & any one of SID 101-1708, respectively. In emb. 2.2826, the 1 st and 2nd s.s. are SID 2826 & any one of SID 101-1708, respectively. In emb. 2.2827, the 1 st and 2nd s.s. are SID 2827 & any one of SID 101-1708, respectively. In emb. 2.2828, the 1 st and 2nd s.s. are SID 2828 & any one of SID 101-1708, respectively. In emb. 2.2829, the 1 st and 2nd s.s. are SID 2829 & any one of SID 101-1708, respectively. In emb. 2.2830, the 1 st and 2nd s.s. are SID 2830 & any one of SID 101-1708, respectively. In emb. 2.2831, the 1 st and 2nd s.s. are SID 2831 & any one of SID 101-1708, respectively. In emb. 2.2832, the 1 st and 2nd s.s. are SID 2832 & any one of SID 101-1708, respectively. In emb. 2.2833, the 1 st and 2nd s.s. are SID 2833 & any one of SID 101-1708, respectively. In emb. 2.2834, the 1 st and 2nd s.s. are SID 2834 & any one of SID 101-1708, respectively. In emb. 2.2835, the 1 st and 2nd s.s. are SID 2835 & any one of SID 101-1708, respectively. In emb. 2.2836, the 1 st and 2nd s.s. are SID 2836 & any one of SID 101-1708, respectively. In emb. 2.2837, the 1 st and 2nd s.s. are SID 2837 & any one of SID 101-1708, respectively. In emb. 2.2838, the 1 st and 2nd s.s. are SID 2838 & any one of SID 101-1708, respectively. In emb. 2.2839, the 1 st and 2nd s.s. are SID 2839 & any one of SID 101-1708, respectively. In emb. 2.2840, the 1 st and 2nd s.s. are SID 2840 & any one of SID 101-1708, respectively. In emb. 2.2841, the 1 st and 2nd s.s. are SID 2841 & any one of SID 101-1708, respectively. In emb. 2.2842, the 1 st and 2nd s.s. are SID 2842 & any one of SID 101-1708, respectively. In emb. 2.2843, the 1 st and 2nd s.s. are SID 2843 & any one of SID 101-1708, respectively. In emb. 2.2844, the 1 st and 2nd s.s. are SID 2844 & any one of SID 101-1708, respectively. In emb. 2.2845, the 1 st and 2nd s.s. are SID 2845 & any one of SID 101-1708, respectively. In emb. 2.2846, the 1 st and 2nd s.s. are SID 2846 & any one of SID 101-1708, respectively. In emb. 2.2847, the 1 st and 2nd s.s. are SID 2847 & any one of SID 101-1708, respectively. In emb. 2.2848, the 1 st and 2nd s.s. are SID 2848 & any one of SID 101-1708, respectively. In emb. 2.2849, the 1 st and 2nd s.s. are SID 2849 & any one of SID 101-1708, respectively. In emb. 2.2850, the 1 st and 2nd s.s. are SID 2850 & any one of SID 101-1708, respectively. In emb. 2.2851, the 1 st and 2nd s.s. are SID 2851 & any one of SID 101-1708, respectively. In emb. 2.2852, the 1 st and 2nd s.s. are SID 2852 & any one of SID 101-1708, respectively. In emb. 2.2853, the 1 st and 2nd s.s. are SID 2853 & any one of SID 101-1708, respectively. In emb. 2.2854, the 1 st and 2nd s.s. are SID 2854 & any one of SID 101-1708, respectively. In emb. 2.2855, the 1 st and 2nd s.s. are SID 2855 & any one of SID 101-1708, respectively. In emb. 2.2856, the 1 st and 2nd s.s. are SID 2856 & any one of SID 101-1708, respectively. In emb. 2.2857, the 1 st and 2nd s.s. are SID 2857 & any one of SID 101-1708, respectively. In emb. 2.2858, the 1 st and 2nd s.s. are SID 2858 & any one of SID 101-1708, respectively. In emb. 2.2859, the 1 st and 2nd s.s. are SID 2859 & any one of SID 101-1708, respectively. In emb. 2.2860, the 1 st and 2nd s.s. are SID 2860 & any one of SID 101-1708, respectively. In emb. 2.2861, the 1 st and 2nd s.s. are SID 2861 & any one of SID 101-1708, respectively. In emb. 2.2862, the 1 st and 2nd s.s. are SID 2862 & any one of SID 101-1708, respectively. In emb. 2.2863, the 1 st and 2nd s.s. are SID 2863 & any one of SID 101-1708, respectively. In emb. 2.2864, the 1 st and 2nd s.s. are SID 2864 & any one of SID 101-1708, respectively. In emb. 2.2865, the 1 st and 2nd s.s. are SID 2865 & any one of SID 101-1708, respectively. In emb. 2.2866, the 1 st and 2nd s.s. are SID 2866 & any one of SID 101-1708, respectively. In emb. 2.2867, the 1 st and 2nd s.s. are SID 2867 & any one of SID 101-1708, respectively. In emb. 2.2868, the 1 st and 2nd s.s. are SID 2868 & any one of SID 101-1708, respectively. In emb. 2.2869, the 1 st and 2nd s.s. are SID 2869 & any one of SID 101-1708, respectively. In emb. 2.2870, the 1 st and 2nd s.s. are SID 2870 & any one of SID 101-1708, respectively. In emb. 2.2871, the 1 st and 2nd s.s. are SID 2871 & any one of SID 101-1708, respectively. In emb. 2.2872, the 1 st and 2nd s.s. are SID 2872 & any one of SID 101-1708, respectively. In emb. 2.2873, the 1 st and 2nd s.s. are SID 2873 & any one of SID 101-1708, respectively. In emb. 2.2874, the 1 st and 2nd s.s. are SID 2874 & any one of SID 101-1708, respectively. In emb. 2.2875, the 1 st and 2nd s.s. are SID 2875 & any one of SID 101-1708, respectively. In emb. 2.2876, the 1 st and 2nd s.s. are SID 2876 & any one of SID 101-1708, respectively. In emb. 2.2877, the 1 st and 2nd s.s. are SID 2877 & any one of SID 101-1708, respectively. In emb. 2.2878, the 1 st and 2nd s.s. are SID 2878 & any one of SID 101-1708, respectively. In emb. 2.2879, the 1 st and 2nd s.s. are SID 2879 & any one of SID 101-1708, respectively. In emb. 2.2880, the 1 st and 2nd s.s. are SID 2880 & any one of SID 101-1708, respectively. In emb. 2.2881, the 1 st and 2nd s.s. are SID 2881 & any one of SID 101-1708, respectively. In emb. 2.2882, the 1 st and 2nd s.s. are SID 2882 & any one of SID 101-1708, respectively. In emb. 2.2883, the 1 st and 2nd s.s. are SID 2883 & any one of SID 101-1708, respectively. In emb. 2.2884, the 1 st and 2nd s.s. are SID 2884 & any one of SID 101-1708, respectively. In emb. 2.2885, the 1 st and 2nd s.s. are SID 2885 & any one of SID 101-1708, respectively. In emb. 2.2886, the 1 st and 2nd s.s. are SID 2886 & any one of SID 101-1708, respectively. In emb. 2.2887, the 1 st and 2nd s.s. are SID 2887 & any one of SID 101-1708, respectively. In emb. 2.2888, the 1 st and 2nd s.s. are SID 2888 & any one of SID 101-1708, respectively. In emb. 2.2889, the 1 st and 2nd s.s. are SID 2889 & any one of SID 101-1708, respectively. In emb. 2.2890, the 1 st and 2nd s.s. are SID 2890 & any one of SID 101-1708, respectively. In emb. 2.2891, the 1 st and 2nd s.s. are SID 2891 & any one of SID 101-1708, respectively. In emb. 2.2892, the 1 st and 2nd s.s. are SID 2892 & any one of SID 101-1708, respectively. In emb. 2.2893, the 1 st and 2nd s.s. are SID 2893 & any one of SID 101-1708, respectively. In emb. 2.2894, the 1 st and 2nd s.s. are SID 2894 & any one of SID 101-1708, respectively. In emb. 2.2895, the 1 st and 2nd s.s. are SID 2895 & any one of SID 101-1708, respectively. In emb. 2.2896, the 1 st and 2nd s.s. are SID 2896 & any one of SID 101-1708, respectively. In emb. 2.2897, the 1 st and 2nd s.s. are SID 2897 & any one of SID 101-1708, respectively. In emb. 2.2898, the 1 st and 2nd s.s. are SID 2898 & any one of SID 101-1708, respectively. In emb. 2.2899, the 1 st and 2nd s.s. are SID 2899 & any one of SID 101-1708, respectively. In emb. 2.2900, the 1 st and 2nd s.s. are SID 2900 & any one of SID 101-1708, respectively. In emb. 2.2901, the 1 st and 2nd s.s. are SID 2901 & any one of SID 101-1708, respectively. In emb. 2.2902, the 1 st and 2nd s.s. are SID 2902 & any one of SID 101-1708, respectively. In emb. 2.2903, the 1 st and 2nd s.s. are SID 2903 & any one of SID 101-1708, respectively. In emb. 2.2904, the 1 st and 2nd s.s. are SID 2904 & any one of SID 101-1708, respectively. In emb. 2.2905, the 1 st and 2nd s.s. are SID 2905 & any one of SID 101-1708, respectively. In emb. 2.2906, the 1 st and 2nd s.s. are SID 2906 & any one of SID 101-1708, respectively. In emb. 2.2907, the 1 st and 2nd s.s. are SID 2907 & any one of SID 101-1708, respectively. In emb. 2.2908, the 1 st and 2nd s.s. are SID 2908 & any one of SID 101-1708, respectively. In emb. 2.2909, the 1 st and 2nd s.s. are SID 2909 & any one of SID 101-1708, respectively. In emb. 2.2910, the 1 st and 2nd s.s. are SID 2910 & any one of SID 101-1708, respectively. In emb. 2.2911, the 1 st and 2nd s.s. are SID 2911 & any one of SID 101-1708, respectively. In emb. 2.2912, the 1 st and 2nd s.s. are SID 2912 & any one of SID 101-1708, respectively. In emb. 2.2913, the 1 st and 2nd s.s. are SID 2913 & any one of SID 101-1708, respectively. In emb. 2.2914, the 1 st and 2nd s.s. are SID 2914 & any one of SID 101-1708, respectively. In emb. 2.2915, the 1 st and 2nd s.s. are SID 2915 & any one of SID 101-1708, respectively. In emb. 2.2916, the 1 st and 2nd s.s. are SID 2916 & any one of SID 101-1708, respectively. In emb. 2.2917, the 1 st and 2nd s.s. are SID 2917 & any one of SID 101-1708, respectively. In emb. 2.2918, the 1 st and 2nd s.s. are SID 2918 & any one of SID 101-1708, respectively. In emb. 2.2919, the 1 st and 2nd s.s. are SID 2919 & any one of SID 101-1708, respectively. In emb. 2.2920, the 1 st and 2nd s.s. are SID 2920 & any one of SID 101-1708, respectively. In emb. 2.2921, the 1 st and 2nd s.s. are SID 2921 & any one of SID 101-1708, respectively. In emb. 2.2922, the 1 st and 2nd s.s. are SID 2922 & any one of SID 101-1708, respectively. In emb. 2.2923, the 1 st and 2nd s.s. are SID 2923 & any one of SID 101-1708, respectively. In emb. 2.2924, the 1 st and 2nd s.s. are SID 2924 & any one of SID 101-1708, respectively. In emb. 2.2925, the 1 st and 2nd s.s. are SID 2925 & any one of SID 101-1708, respectively. In emb. 2.2926, the 1 st and 2nd s.s. are SID 2926 & any one of SID 101-1708, respectively. In emb. 2.2927, the 1 st and 2nd s.s. are SID 2927 & any one of SID 101-1708, respectively. In emb. 2.2928, the 1 st and 2nd s.s. are SID 2928 & any one of SID 101-1708, respectively. In emb. 2.2929, the 1 st and 2nd s.s. are SID 2929 & any one of SID 101-1708, respectively. In emb. 2.2930, the 1 st and 2nd s.s. are SID 2930 & any one of SID 101-1708, respectively. In emb. 2.2931, the 1 st and 2nd s.s. are SID 2931 & any one of SID 101-1708, respectively. In emb. 2.2932, the 1 st and 2nd s.s. are SID 2932 & any one of SID 101-1708, respectively. In emb. 2.2933, the 1 st and 2nd s.s. are SID 2933 & any one of SID 101-1708, respectively. In emb. 2.2934, the 1 st and 2nd s.s. are SID 2934 & any one of SID 101-1708, respectively. In emb. 2.2935, the 1 st and 2nd s.s. are SID 2935 & any one of SID 101-1708, respectively. In emb. 2.2936, the 1 st and 2nd s.s. are SID 2936 & any one of SID 101-1708, respectively. In emb. 2.2937, the 1 st and 2nd s.s. are SID 2937 & any one of SID 101-1708, respectively. In emb. 2.2938, the 1 st and 2nd s.s. are SID 2938 & any one of SID 101-1708, respectively. In emb. 2.2939, the 1 st and 2nd s.s. are SID 2939 & any one of SID 101-1708, respectively. In emb. 2.2940, the 1 st and 2nd s.s. are SID 2940 & any one of SID 101-1708, respectively. In emb. 2.2941, the 1 st and 2nd s.s. are SID 2941 & any one of SID 101-1708, respectively. In emb. 2.2942, the 1 st and 2nd s.s. are SID 2942 & any one of SID 101-1708, respectively. In emb. 2.2943, the 1 st and 2nd s.s. are SID 2943 & any one of SID 101-1708, respectively. In emb. 2.2944, the 1 st and 2nd s.s. are SID 2944 & any one of SID 101-1708, respectively. In emb. 2.2945, the 1 st and 2nd s.s. are SID 2945 & any one of SID 101-1708, respectively. In emb. 2.2946, the 1 st and 2nd s.s. are SID 2946 & any one of SID 101-1708, respectively. In emb. 2.2947, the 1 st and 2nd s.s. are SID 2947 & any one of SID 101-1708, respectively. In emb. 2.2948, the 1 st and 2nd s.s. are SID 2948 & any one of SID 101-1708, respectively. In emb. 2.2949, the 1 st and 2nd s.s. are SID 2949 & any one of SID 101-1708, respectively. In emb. 2.2950, the 1 st and 2nd s.s. are SID 2950 & any one of SID 101-1708, respectively. In emb. 2.2951, the 1 st and 2nd s.s. are SID 2951 & any one of SID 101-1708, respectively. In emb. 2.2952, the 1 st and 2nd s.s. are SID 2952 & any one of SID 101-1708, respectively. In emb. 2.2953, the 1 st and 2nd s.s. are SID 2953 & any one of SID 101-1708, respectively. In emb. 2.2954, the 1 st and 2nd s.s. are SID 2954 & any one of SID 101-1708, respectively. In emb. 2.2955, the 1 st and 2nd s.s. are SID 2955 & any one of SID 101-1708, respectively. In emb. 2.2956, the 1 st and 2nd s.s. are SID 2956 & any one of SID 101-1708, respectively. In emb. 2.2957, the 1 st and 2nd s.s. are SID 2957 & any one of SID 101-1708, respectively. In emb. 2.2958, the 1 st and 2nd s.s. are SID 2958 & any one of SID 101-1708, respectively. In emb. 2.2959, the 1 st and 2nd s.s. are SID 2959 & any one of SID 101-1708, respectively. In emb. 2.2960, the 1 st and 2nd s.s. are SID 2960 & any one of SID 101-1708, respectively. In emb. 2.2961, the 1 st and 2nd s.s. are SID 2961 & any one of SID 101-1708, respectively. In emb. 2.2962, the 1 st and 2nd s.s. are SID 2962 & any one of SID 101-1708, respectively. In emb. 2.2963, the 1 st and 2nd s.s. are SID 2963 & any one of SID 101-1708, respectively. In emb. 2.2964, the 1 st and 2nd s.s. are SID 2964 & any one of SID 101-1708, respectively. In emb. 2.2965, the 1 st and 2nd s.s. are SID 2965 & any one of SID 101-1708, respectively. In emb. 2.2966, the 1 st and 2nd s.s. are SID 2966 & any one of SID 101-1708, respectively. In emb. 2.2967, the 1 st and 2nd s.s. are SID 2967 & any one of SID 101-1708, respectively. In emb. 2.2968, the 1 st and 2nd s.s. are SID 2968 & any one of SID 101-1708, respectively. In emb. 2.2969, the 1 st and 2nd s.s. are SID 2969 & any one of SID 101-1708, respectively. In emb. 2.2970, the 1 st and 2nd s.s. are SID 2970 & any one of SID 101-1708, respectively. In emb. 2.2971, the 1 st and 2nd s.s. are SID 2971 & any one of SID 101-1708, respectively. In emb. 2.2972, the 1 st and 2nd s.s. are SID 2972 & any one of SID 101-1708, respectively. In emb. 2.2973, the 1 st and 2nd s.s. are SID 2973 & any one of SID 101-1708, respectively. In emb. 2.2974, the 1 st and 2nd s.s. are SID 2974 & any one of SID 101-1708, respectively. In emb. 2.2975, the 1 st and 2nd s.s. are SID 2975 & any one of SID 101-1708, respectively. In emb. 2.2976, the 1 st and 2nd s.s. are SID 2976 & any one of SID 101-1708, respectively. In emb. 2.2977, the 1 st and 2nd s.s. are SID 2977 & any one of SID 101-1708, respectively. In emb. 2.2978, the 1 st and 2nd s.s. are SID 2978 & any one of SID 101-1708, respectively. In emb. 2.2979, the 1 st and 2nd s.s. are SID 2979 & any one of SID 101-1708, respectively. In emb. 2.2980, the 1 st and 2nd s.s. are SID 2980 & any one of SID 101-1708, respectively. In emb. 2.2981, the 1 st and 2nd s.s. are SID 2981 & any one of SID 101-1708, respectively. In emb. 2.2982, the 1 st and 2nd s.s. are SID 2982 & any one of SID 101-1708, respectively. In emb. 2.2983, the 1 st and 2nd s.s. are SID 2983 & any one of SID 101-1708, respectively. In emb. 2.2984, the 1 st and 2nd s.s. are SID 2984 & any one of SID 101-1708, respectively. In emb. 2.2985, the 1 st and 2nd s.s. are SID 2985 & any one of SID 101-1708, respectively. In emb. 2.2986, the 1 st and 2nd s.s. are SID 2986 & any one of SID 101-1708, respectively. In emb. 2.2987, the 1 st and 2nd s.s. are SID 2987 & any one of SID 101-1708, respectively. In emb. 2.2988, the 1 st and 2nd s.s. are SID 2988 & any one of SID 101-1708, respectively. In emb. 2.2989, the 1 st and 2nd s.s. are SID 2989 & any one of SID 101-1708, respectively. In emb. 2.2990, the 1 st and 2nd s.s. are SID 2990 & any one of SID 101-1708, respectively. In emb. 2.2991, the 1 st and 2nd s.s. are SID 2991 & any one of SID 101-1708, respectively. In emb. 2.2992, the 1 st and 2nd s.s. are SID 2992 & any one of SID 101-1708, respectively. In emb. 2.2993, the 1 st and 2nd s.s. are SID 2993 & any one of SID 101-1708, respectively. In emb. 2.2994, the 1 st and 2nd s.s. are SID 2994 & any one of SID 101-1708, respectively. In emb. 2.2995, the 1 st and 2nd s.s. are SID 2995 & any one of SID 101-1708, respectively. In emb. 2.2996, the 1 st and 2nd s.s. are SID 2996 & any one of SID 101-1708, respectively. In emb. 2.2997, the 1 st and 2nd s.s. are SID 2997 & any one of SID 101-1708, respectively. In emb. 2.2998, the 1 st and 2nd s.s. are SID 2998 & any one of SID 101-1708, respectively. In emb. 2.2999, the 1 st and 2nd s.s. are SID 2999 & any one of SID 101-1708, respectively. In emb. 2.3000, the 1 st and 2nd s.s. are SID 3000 & any one of SID 101-1708, respectively. In emb. 2.3001, the 1 st and 2nd s.s. are SID 3001 & any one of SID 101-1708, respectively. In emb. 2.3002, the 1 st and 2nd s.s. are SID 3002 & any one of SID 101-1708, respectively. In emb. 2.3003, the 1 st and 2nd s.s. are SID 3003 & any one of SID 101-1708, respectively. In emb. 2.3004, the 1 st and 2nd s.s. are SID 3004 & any one of SID 101-1708, respectively. In emb. 2.3005, the 1 st and 2nd s.s. are SID 3005 & any one of SID 101-1708, respectively. In emb. 2.3006, the 1 st and 2nd s.s. are SID 3006 & any one of SID 101-1708, respectively. In emb. 2.3007, the 1 st and 2nd s.s. are SID 3007 & any one of SID 101-1708, respectively. In emb. 2.3008, the 1 st and 2nd s.s. are SID 3008 & any one of SID 101-1708, respectively. In emb. 2.3009, the 1 st and 2nd s.s. are SID 3009 & any one of SID 101-1708, respectively. In emb. 2.3010, the 1 st and 2nd s.s. are SID 3010 & any one of SID 101-1708, respectively. In emb. 2.3011, the 1 st and 2nd s.s. are SID 3011 & any one of SID 101-1708, respectively. In emb. 2.3012, the 1 st and 2nd s.s. are SID 3012 & any one of SID 101-1708, respectively. In emb. 2.3013, the 1 st and 2nd s.s. are SID 3013 & any one of SID 101-1708, respectively. In emb. 2.3014, the 1 st and 2nd s.s. are SID 3014 & any one of SID 101-1708, respectively. In emb. 2.3015, the 1 st and 2nd s.s. are SID 3015 & any one of SID 101-1708, respectively. In emb. 2.3016, the 1 st and 2nd s.s. are SID 3016 & any one of SID 101-1708, respectively. In emb. 2.3017, the 1 st and 2nd s.s. are SID 3017 & any one of SID 101-1708, respectively. In emb. 2.3018, the 1 st and 2nd s.s. are SID 3018 & any one of SID 101-1708, respectively. In emb. 2.3019, the 1 st and 2nd s.s. are SID 3019 & any one of SID 101-1708, respectively. In emb. 2.3020, the 1 st and 2nd s.s. are SID 3020 & any one of SID 101-1708, respectively. In emb. 2.3021, the 1 st and 2nd s.s. are SID 3021 & any one of SID 101-1708, respectively. In emb. 2.3022, the 1 st and 2nd s.s. are SID 3022 & any one of SID 101-1708, respectively. In emb. 2.3023, the 1 st and 2nd s.s. are SID 3023 & any one of SID 101-1708, respectively. In emb. 2.3024, the 1 st and 2nd s.s. are SID 3024 & any one of SID 101-1708, respectively. In emb. 2.3025, the 1 st and 2nd s.s. are SID 3025 & any one of SID 101-1708, respectively. In emb. 2.3026, the 1 st and 2nd s.s. are SID 3026 & any one of SID 101-1708, respectively. In emb. 2.3027, the 1 st and 2nd s.s. are SID 3027 & any one of SID 101-1708, respectively. In emb. 2.3028, the 1 st and 2nd s.s. are SID 3028 & any one of SID 101-1708, respectively. In emb. 2.3029, the 1 st and 2nd s.s. are SID 3029 & any one of SID 101-1708, respectively. In emb. 2.3030, the 1 st and 2nd s.s. are SID 3030 & any one of SID 101-1708, respectively. In emb. 2.3031, the 1 st and 2nd s.s. are SID 3031 & any one of SID 101-1708, respectively. In emb. 2.3032, the 1 st and 2nd s.s. are SID 3032 & any one of SID 101-1708, respectively. In emb. 2.3033, the 1 st and 2nd s.s. are SID 3033 & any one of SID 101-1708, respectively. In emb. 2.3034, the 1 st and 2nd s.s. are SID 3034 & any one of SID 101-1708, respectively. In emb. 2.3035, the 1 st and 2nd s.s. are SID 3035 & any one of SID 101-1708, respectively. In emb. 2.3036, the 1 st and 2nd s.s. are SID 3036 & any one of SID 101-1708, respectively. In emb. 2.3037, the 1 st and 2nd s.s. are SID 3037 & any one of SID 101-1708, respectively. In emb. 2.3038, the 1 st and 2nd s.s. are SID 3038 & any one of SID 101-1708, respectively. In emb. 2.3039, the 1 st and 2nd s.s. are SID 3039 & any one of SID 101-1708, respectively. In emb. 2.3040, the 1 st and 2nd s.s. are SID 3040 & any one of SID 101-1708, respectively. In emb. 2.3041, the 1 st and 2nd s.s. are SID 3041 & any one of SID 101-1708, respectively. In emb. 2.3042, the 1 st and 2nd s.s. are SID 3042 & any one of SID 101-1708, respectively. In emb. 2.3043, the 1 st and 2nd s.s. are SID 3043 & any one of SID 101-1708, respectively. In emb. 2.3044, the 1 st and 2nd s.s. are SID 3044 & any one of SID 101-1708, respectively. In emb. 2.3045, the 1 st and 2nd s.s. are SID 3045 & any one of SID 101-1708, respectively. In emb. 2.3046, the 1 st and 2nd s.s. are SID 3046 & any one of SID 101-1708, respectively. In emb. 2.3047, the 1 st and 2nd s.s. are SID 3047 & any one of SID 101-1708, respectively. In emb. 2.3048, the 1 st and 2nd s.s. are SID 3048 & any one of SID 101-1708, respectively. In emb. 2.3049, the 1 st and 2nd s.s. are SID 3049 & any one of SID 101-1708, respectively. In emb. 2.3050, the 1 st and 2nd s.s. are SID 3050 & any one of SID 101-1708, respectively. In emb. 2.3051, the 1 st and 2nd s.s. are SID 3051 & any one of SID 101-1708, respectively. In emb. 2.3052, the 1 st and 2nd s.s. are SID 3052 & any one of SID 101-1708, respectively. In emb. 2.3053, the 1 st and 2nd s.s. are SID 3053 & any one of SID 101-1708, respectively. In emb. 2.3054, the 1 st and 2nd s.s. are SID 3054 & any one of SID 101-1708, respectively. In emb. 2.3055, the 1 st and 2nd s.s. are SID 3055 & any one of SID 101-1708, respectively. In emb. 2.3056, the 1 st and 2nd s.s. are SID 3056 & any one of SID 101-1708, respectively. In emb. 2.3057, the 1 st and 2nd s.s. are SID 3057 & any one of SID 101-1708, respectively. In emb. 2.3058, the 1 st and 2nd s.s. are SID 3058 & any one of SID 101-1708, respectively. In emb. 2.3059, the 1 st and 2nd s.s. are SID 3059 & any one of SID 101-1708, respectively. In emb. 2.3060, the 1 st and 2nd s.s. are SID 3060 & any one of SID 101-1708, respectively. In emb. 2.3061, the 1 st and 2nd s.s. are SID 3061 & any one of SID 101-1708, respectively. In emb. 2.3062, the 1 st and 2nd s.s. are SID 3062 & any one of SID 101-1708, respectively. In emb. 2.3063, the 1 st and 2nd s.s. are SID 3063 & any one of SID 101-1708, respectively. In emb. 2.3064, the 1 st and 2nd s.s. are SID 3064 & any one of SID 101-1708, respectively. In emb. 2.3065, the 1 st and 2nd s.s. are SID 3065 & any one of SID 101-1708, respectively. In emb. 2.3066, the 1 st and 2nd s.s. are SID 3066 & any one of SID 101-1708, respectively. In emb. 2.3067, the 1 st and 2nd s.s. are SID 3067 & any one of SID 101-1708, respectively. In emb. 2.3068, the 1 st and 2nd s.s. are SID 3068 & any one of SID 101-1708, respectively. In emb. 2.3069, the 1 st and 2nd s.s. are SID 3069 & any one of SID 101-1708, respectively. In emb. 2.3070, the 1 st and 2nd s.s. are SID 3070 & any one of SID 101-1708, respectively. In emb. 2.3071, the 1 st and 2nd s.s. are SID 3071 & any one of SID 101-1708, respectively. In emb. 2.3072, the 1 st and 2nd s.s. are SID 3072 & any one of SID 101-1708, respectively. In emb. 2.3073, the 1 st and 2nd s.s. are SID 3073 & any one of SID 101-1708, respectively. In emb. 2.3074, the 1 st and 2nd s.s. are SID 3074 & any one of SID 101-1708, respectively. In emb. 2.3075, the 1 st and 2nd s.s. are SID 3075 & any one of SID 101-1708, respectively. In emb. 2.3076, the 1 st and 2nd s.s. are SID 3076 & any one of SID 101-1708, respectively. In emb. 2.3077, the 1 st and 2nd s.s. are SID 3077 & any one of SID 101-1708, respectively. In emb. 2.3078, the 1 st and 2nd s.s. are SID 3078 & any one of SID 101-1708, respectively. In emb. 2.3079, the 1 st and 2nd s.s. are SID 3079 & any one of SID 101-1708, respectively. In emb. 2.3080, the 1 st and 2nd s.s. are SID 3080 & any one of SID 101-1708, respectively. In emb. 2.3081, the 1 st and 2nd s.s. are SID 3081 & any one of SID 101-1708, respectively. In emb. 2.3082, the 1 st and 2nd s.s. are SID 3082 & any one of SID 101-1708, respectively. In emb. 2.3083, the 1 st and 2nd s.s. are SID 3083 & any one of SID 101-1708, respectively. In emb. 2.3084, the 1 st and 2nd s.s. are SID 3084 & any one of SID 101-1708, respectively. In emb. 2.3085, the 1 st and 2nd s.s. are SID 3085 & any one of SID 101-1708, respectively. In emb. 2.3086, the 1 st and 2nd s.s. are SID 3086 & any one of SID 101-1708, respectively. In emb. 2.3087, the 1 st and 2nd s.s. are SID 3087 & any one of SID 101-1708, respectively. In emb. 2.3088, the 1 st and 2nd s.s. are SID 3088 & any one of SID 101-1708, respectively. In emb. 2.3089, the 1 st and 2nd s.s. are SID 3089 & any one of SID 101-1708, respectively. In emb. 2.3090, the 1 st and 2nd s.s. are SID 3090 & any one of SID 101-1708, respectively. In emb. 2.3091, the 1 st and 2nd s.s. are SID 3091 & any one of SID 101-1708, respectively. In emb. 2.3092, the 1 st and 2nd s.s. are SID 3092 & any one of SID 101-1708, respectively. In emb. 2.3093, the 1 st and 2nd s.s. are SID 3093 & any one of SID 101-1708, respectively. In emb. 2.3094, the 1 st and 2nd s.s. are SID 3094 & any one of SID 101-1708, respectively. In emb. 2.3095, the 1 st and 2nd s.s. are SID 3095 & any one of SID 101-1708, respectively. In emb. 2.3096, the 1 st and 2nd s.s. are SID 3096 & any one of SID 101-1708, respectively. In emb. 2.3097, the 1 st and 2nd s.s. are SID 3097 & any one of SID 101-1708, respectively. In emb. 2.3098, the 1 st and 2nd s.s. are SID 3098 & any one of SID 101-1708, respectively. In emb. 2.3099, the 1 st and 2nd s.s. are SID 3099 & any one of SID 101-1708, respectively. In emb. 2.3100, the 1 st and 2nd s.s. are SID 3100 & any one of SID 101-1708, respectively. In emb. 2.3101, the 1 st and 2nd s.s. are SID 3101 & any one of SID 101-1708, respectively. In emb. 2.3102, the 1 st and 2nd s.s. are SID 3102 & any one of SID 101-1708, respectively. In emb. 2.3103, the 1 st and 2nd s.s. are SID 3103 & any one of SID 101-1708, respectively. In emb. 2.3104, the 1 st and 2nd s.s. are SID 3104 & any one of SID 101-1708, respectively. In emb. 2.3105, the 1 st and 2nd s.s. are SID 3105 & any one of SID 101-1708, respectively. In emb. 2.3106, the 1 st and 2nd s.s. are SID 3106 & any one of SID 101-1708, respectively. In emb. 2.3107, the 1 st and 2nd s.s. are SID 3107 & any one of SID 101-1708, respectively. In emb. 2.3108, the 1 st and 2nd s.s. are SID 3108 & any one of SID 101-1708, respectively. In emb. 2.3109, the 1 st and 2nd s.s. are SID 3109 & any one of SID 101-1708, respectively. In emb. 2.3110, the 1 st and 2nd s.s. are SID 3110 & any one of SID 101-1708, respectively. In emb. 2.3111, the 1 st and 2nd s.s. are SID 3111 & any one of SID 101-1708, respectively. In emb. 2.3112, the 1 st and 2nd s.s. are SID 3112 & any one of SID 101-1708, respectively. In emb. 2.3113, the 1 st and 2nd s.s. are SID 3113 & any one of SID 101-1708, respectively. In emb. 2.3114, the 1 st and 2nd s.s. are SID 3114 & any one of SID 101-1708, respectively. In emb. 2.3115, the 1 st and 2nd s.s. are SID 3115 & any one of SID 101-1708, respectively. In emb. 2.3116, the 1 st and 2nd s.s. are SID 3116 & any one of SID 101-1708, respectively. In emb. 2.3117, the 1 st and 2nd s.s. are SID 3117 & any one of SID 101-1708, respectively. In emb. 2.3118, the 1 st and 2nd s.s. are SID 3118 & any one of SID 101-1708, respectively. In emb. 2.3119, the 1 st and 2nd s.s. are SID 3119 & any one of SID 101-1708, respectively. In emb. 2.3120, the 1 st and 2nd s.s. are SID 3120 & any one of SID 101-1708, respectively. In emb. 2.3121, the 1 st and 2nd s.s. are SID 3121 & any one of SID 101-1708, respectively. In emb. 2.3122, the 1 st and 2nd s.s. are SID 3122 & any one of SID 101-1708, respectively. In emb. 2.3123, the 1 st and 2nd s.s. are SID 3123 & any one of SID 101-1708, respectively. In emb. 2.3124, the 1 st and 2nd s.s. are SID 3124 & any one of SID 101-1708, respectively. In emb. 2.3125, the 1 st and 2nd s.s. are SID 3125 & any one of SID 101-1708, respectively. In emb. 2.3126, the 1 st and 2nd s.s. are SID 3126 & any one of SID 101-1708, respectively. In emb. 2.3127, the 1 st and 2nd s.s. are SID 3127 & any one of SID 101-1708, respectively. In emb. 2.3128, the 1 st and 2nd s.s. are SID 3128 & any one of SID 101-1708, respectively. In emb. 2.3129, the 1 st and 2nd s.s. are SID 3129 & any one of SID 101-1708, respectively. In emb. 2.3130, the 1 st and 2nd s.s. are SID 3130 & any one of SID 101-1708, respectively. In emb. 2.3131, the 1 st and 2nd s.s. are SID 3131 & any one of SID 101-1708, respectively. In emb. 2.3132, the 1 st and 2nd s.s. are SID 3132 & any one of SID 101-1708, respectively. In emb. 2.3133, the 1 st and 2nd s.s. are SID 3133 & any one of SID 101-1708, respectively. In emb. 2.3134, the 1 st and 2nd s.s. are SID 3134 & any one of SID 101-1708, respectively. In emb. 2.3135, the 1 st and 2nd s.s. are SID 3135 & any one of SID 101-1708, respectively. In emb. 2.3136, the 1 st and 2nd s.s. are SID 3136 & any one of SID 101-1708, respectively. In emb. 2.3137, the 1 st and 2nd s.s. are SID 3137 & any one of SID 101-1708, respectively. In emb. 2.3138, the 1 st and 2nd s.s. are SID 3138 & any one of SID 101-1708, respectively. In emb. 2.3139, the 1 st and 2nd s.s. are SID 3139 & any one of SID 101-1708, respectively. In emb. 2.3140, the 1 st and 2nd s.s. are SID 3140 & any one of SID 101-1708, respectively. In emb. 2.3141, the 1 st and 2nd s.s. are SID 3141 & any one of SID 101-1708, respectively. In emb. 2.3142, the 1 st and 2nd s.s. are SID 3142 & any one of SID 101-1708, respectively. In emb. 2.3143, the 1 st and 2nd s.s. are SID 3143 & any one of SID 101-1708, respectively. In emb. 2.3144, the 1 st and 2nd s.s. are SID 3144 & any one of SID 101-1708, respectively. In emb. 2.3145, the 1 st and 2nd s.s. are SID 3145 & any one of SID 101-1708, respectively. In emb. 2.3146, the 1 st and 2nd s.s. are SID 3146 & any one of SID 101-1708, respectively. In emb. 2.3147, the 1 st and 2nd s.s. are SID 3147 & any one of SID 101-1708, respectively. In emb. 2.3148, the 1 st and 2nd s.s. are SID 3148 & any one of SID 101-1708, respectively. In emb. 2.3149, the 1 st and 2nd s.s. are SID 3149 & any one of SID 101-1708, respectively. In emb. 2.3150, the 1 st and 2nd s.s. are SID 3150 & any one of SID 101-1708, respectively. In emb. 2.3151, the 1 st and 2nd s.s. are SID 3151 & any one of SID 101-1708, respectively. In emb. 2.3152, the 1 st and 2nd s.s. are SID 3152 & any one of SID 101-1708, respectively. In emb. 2.3153, the 1 st and 2nd s.s. are SID 3153 & any one of SID 101-1708, respectively. In emb. 2.3154, the 1 st and 2nd s.s. are SID 3154 & any one of SID 101-1708, respectively. In emb. 2.3155, the 1 st and 2nd s.s. are SID 3155 & any one of SID 101-1708, respectively. In emb. 2.3156, the 1 st and 2nd s.s. are SID 3156 & any one of SID 101-1708, respectively. In emb. 2.3157, the 1 st and 2nd s.s. are SID 3157 & any one of SID 101-1708, respectively. In emb. 2.3158, the 1 st and 2nd s.s. are SID 3158 & any one of SID 101-1708, respectively. In emb. 2.3159, the 1 st and 2nd s.s. are SID 3159 & any one of SID 101-1708, respectively. In emb. 2.3160, the 1 st and 2nd s.s. are SID 3160 & any one of SID 101-1708, respectively. In emb. 2.3161, the 1 st and 2nd s.s. are SID 3161 & any one of SID 101-1708, respectively. In emb. 2.3162, the 1 st and 2nd s.s. are SID 3162 & any one of SID 101-1708, respectively. In emb. 2.3163, the 1 st and 2nd s.s. are SID 3163 & any one of SID 101-1708, respectively. In emb. 2.3164, the 1 st and 2nd s.s. are SID 3164 & any one of SID 101-1708, respectively. In emb. 2.3165, the 1 st and 2nd s.s. are SID 3165 & any one of SID 101-1708, respectively. In emb. 2.3166, the 1 st and 2nd s.s. are SID 3166 & any one of SID 101-1708, respectively. In emb. 2.3167, the 1 st and 2nd s.s. are SID 3167 & any one of SID 101-1708, respectively. In emb. 2.3168, the 1 st and 2nd s.s. are SID 3168 & any one of SID 101-1708, respectively. In emb. 2.3169, the 1 st and 2nd s.s. are SID 3169 & any one of SID 101-1708, respectively. In emb. 2.3170, the 1 st and 2nd s.s. are SID 3170 & any one of SID 101-1708, respectively. In emb. 2.3171, the 1 st and 2nd s.s. are SID 3171 & any one of SID 101-1708, respectively. In emb. 2.3172, the 1 st and 2nd s.s. are SID 3172 & any one of SID 101-1708, respectively. In emb. 2.3173, the 1 st and 2nd s.s. are SID 3173 & any one of SID 101-1708, respectively. In emb. 2.3174, the 1 st and 2nd s.s. are SID 3174 & any one of SID 101-1708, respectively. In emb. 2.3175, the 1 st and 2nd s.s. are SID 3175 & any one of SID 101-1708, respectively. In emb. 2.3176, the 1 st and 2nd s.s. are SID 3176 & any one of SID 101-1708, respectively. In emb. 2.3177, the 1 st and 2nd s.s. are SID 3177 & any one of SID 101-1708, respectively. In emb. 2.3178, the 1 st and 2nd s.s. are SID 3178 & any one of SID 101-1708, respectively. In emb. 2.3179, the 1 st and 2nd s.s. are SID 3179 & any one of SID 101-1708, respectively. In emb. 2.3180, the 1 st and 2nd s.s. are SID 3180 & any one of SID 101-1708, respectively. In emb. 2.3181, the 1 st and 2nd s.s. are SID 3181 & any one of SID 101-1708, respectively. In emb. 2.3182, the 1 st and 2nd s.s. are SID 3182 & any one of SID 101-1708, respectively. In emb. 2.3183, the 1 st and 2nd s.s. are SID 3183 & any one of SID 101-1708, respectively. In emb. 2.3184, the 1 st and 2nd s.s. are SID 3184 & any one of SID 101-1708, respectively. In emb. 2.3185, the 1 st and 2nd s.s. are SID 3185 & any one of SID 101-1708, respectively. In emb. 2.3186, the 1 st and 2nd s.s. are SID 3186 & any one of SID 101-1708, respectively. In emb. 2.3187, the 1 st and 2nd s.s. are SID 3187 & any one of SID 101-1708, respectively. In emb. 2.3188, the 1 st and 2nd s.s. are SID 3188 & any one of SID 101-1708, respectively. In emb. 2.3189, the 1 st and 2nd s.s. are SID 3189 & any one of SID 101-1708, respectively. In emb. 2.3190, the 1 st and 2nd s.s. are SID 3190 & any one of SID 101-1708, respectively. In emb. 2.3191, the 1 st and 2nd s.s. are SID 3191 & any one of SID 101-1708, respectively. In emb. 2.3192, the 1 st and 2nd s.s. are SID 3192 & any one of SID 101-1708, respectively. In emb. 2.3193, the 1 st and 2nd s.s. are SID 3193 & any one of SID 101-1708, respectively. In emb. 2.3194, the 1 st and 2nd s.s. are SID 3194 & any one of SID 101-1708, respectively. In emb. 2.3195, the 1 st and 2nd s.s. are SID 3195 & any one of SID 101-1708, respectively. In emb. 2.3196, the 1 st and 2nd s.s. are SID 3196 & any one of SID 101-1708, respectively. In emb. 2.3197, the 1 st and 2nd s.s. are SID 3197 & any one of SID 101-1708, respectively. In emb. 2.3198, the 1 st and 2nd s.s. are SID 3198 & any one of SID 101-1708, respectively. In emb. 2.3199, the 1 st and 2nd s.s. are SID 3199 & any one of SID 101-1708, respectively. In emb. 2.3200, the 1 st and 2nd s.s. are SID 3200 & any one of SID 101-1708, respectively. In emb. 2.3201, the 1 st and 2nd s.s. are SID 3201 & any one of SID 101-1708, respectively. In emb. 2.3202, the 1 st and 2nd s.s. are SID 3202 & any one of SID 101-1708, respectively. In emb. 2.3203, the 1 st and 2nd s.s. are SID 3203 & any one of SID 101-1708, respectively. In emb. 2.3204, the 1 st and 2nd s.s. are SID 3204 & any one of SID 101-1708, respectively. In emb. 2.3205, the 1 st and 2nd s.s. are SID 3205 & any one of SID 101-1708, respectively. In emb. 2.3206, the 1 st and 2nd s.s. are SID 3206 & any one of SID 101-1708, respectively. In emb. 2.3207, the 1 st and 2nd s.s. are SID 3207 & any one of SID 101-1708, respectively. In emb. 2.3208, the 1 st and 2nd s.s. are SID 3208 & any one of SID 101-1708, respectively. In emb. 2.3209, the 1 st and 2nd s.s. are SID 3209 & any one of SID 101-1708, respectively. In emb. 2.3210, the 1 st and 2nd s.s. are SID 3210 & any one of SID 101-1708, respectively. In emb. 2.3211, the 1 st and 2nd s.s. are SID 3211 & any one of SID 101-1708, respectively. In emb. 2.3212, the 1 st and 2nd s.s. are SID 3212 & any one of SID 101-1708, respectively. In emb. 2.3213, the 1 st and 2nd s.s. are SID 3213 & any one of SID 101-1708, respectively. In emb. 2.3214, the 1 st and 2nd s.s. are SID 3214 & any one of SID 101-1708, respectively. In emb. 2.3215, the 1 st and 2nd s.s. are SID 3215 & any one of SID 101-1708, respectively. In emb. 2.3216, the 1 st and 2nd s.s. are SID 3216 & any one of SID 101-1708, respectively. In emb. 2.3217, the 1 st and 2nd s.s. are SID 3217 & any one of SID 101-1708, respectively. In emb. 2.3218, the 1 st and 2nd s.s. are SID 3218 & any one of SID 101-1708, respectively. In emb. 2.3219, the 1 st and 2nd s.s. are SID 3219 & any one of SID 101-1708, respectively. In emb. 2.3220, the 1 st and 2nd s.s. are SID 3220 & any one of SID 101-1708, respectively. In emb. 2.3221, the 1 st and 2nd s.s. are SID 3221 & any one of SID 101-1708, respectively. In emb. 2.3222, the 1 st and 2nd s.s. are SID 3222 & any one of SID 101-1708, respectively. In emb. 2.3223, the 1 st and 2nd s.s. are SID 3223 & any one of SID 101-1708, respectively. In emb. 2.3224, the 1 st and 2nd s.s. are SID 3224 & any one of SID 101-1708, respectively. In emb. 2.3225, the 1 st and 2nd s.s. are SID 3225 & any one of SID 101-1708, respectively. In emb. 2.3226, the 1 st and 2nd s.s. are SID 3226 & any one of SID 101-1708, respectively. In emb. 2.3227, the 1 st and 2nd s.s. are SID 3227 & any one of SID 101-1708, respectively. In emb. 2.3228, the 1 st and 2nd s.s. are SID 3228 & any one of SID 101-1708, respectively. In emb. 2.3229, the 1 st and 2nd s.s. are SID 3229 & any one of SID 101-1708, respectively. In emb. 2.3230, the 1 st and 2nd s.s. are SID 3230 & any one of SID 101-1708, respectively. In emb. 2.3231, the 1 st and 2nd s.s. are SID 3231 & any one of SID 101-1708, respectively. In emb. 2.3232, the 1 st and 2nd s.s. are SID 3232 & any one of SID 101-1708, respectively. In emb. 2.3233, the 1 st and 2nd s.s. are SID 3233 & any one of SID 101-1708, respectively. In emb. 2.3234, the 1 st and 2nd s.s. are SID 3234 & any one of SID 101-1708, respectively. In emb. 2.3235, the 1 st and 2nd s.s. are SID 3235 & any one of SID 101-1708, respectively. In emb. 2.3236, the 1 st and 2nd s.s. are SID 3236 & any one of SID 101-1708, respectively. In emb. 2.3237, the 1 st and 2nd s.s. are SID 3237 & any one of SID 101-1708, respectively. In emb. 2.3238, the 1 st and 2nd s.s. are SID 3238 & any one of SID 101-1708, respectively. In emb. 2.3239, the 1 st and 2nd s.s. are SID 3239 & any one of SID 101-1708, respectively. In emb. 2.3240, the 1 st and 2nd s.s. are SID 3240 & any one of SID 101-1708, respectively. In emb. 2.3241, the 1 st and 2nd s.s. are SID 3241 & any one of SID 101-1708, respectively. In emb. 2.3242, the 1 st and 2nd s.s. are SID 3242 & any one of SID 101-1708, respectively. In emb. 2.3243, the 1 st and 2nd s.s. are SID 3243 & any one of SID 101-1708, respectively. In emb. 2.3244, the 1 st and 2nd s.s. are SID 3244 & any one of SID 101-1708, respectively. In emb. 2.3245, the 1 st and 2nd s.s. are SID 3245 & any one of SID 101-1708, respectively. In emb. 2.3246, the 1 st and 2nd s.s. are SID 3246 & any one of SID 101-1708, respectively. In emb. 2.3247, the 1 st and 2nd s.s. are SID 3247 & any one of SID 101-1708, respectively. In emb. 2.3248, the 1 st and 2nd s.s. are SID 3248 & any one of SID 101-1708, respectively. In emb. 2.3249, the 1 st and 2nd s.s. are SID 3249 & any one of SID 101-1708, respectively. In emb. 2.3250, the 1 st and 2nd s.s. are SID 3250 & any one of SID 101-1708, respectively. In emb. 2.3251, the 1 st and 2nd s.s. are SID 3251 & any one of SID 101-1708, respectively. In emb. 2.3252, the 1 st and 2nd s.s. are SID 3252 & any one of SID 101-1708, respectively. In emb. 2.3253, the 1 st and 2nd s.s. are SID 3253 & any one of SID 101-1708, respectively. In emb. 2.3254, the 1 st and 2nd s.s. are SID 3254 & any one of SID 101-1708, respectively. In emb. 2.3255, the 1 st and 2nd s.s. are SID 3255 & any one of SID 101-1708, respectively. In emb. 2.3256, the 1 st and 2nd s.s. are SID 3256 & any one of SID 101-1708, respectively. In emb. 2.3257, the 1 st and 2nd s.s. are SID 3257 & any one of SID 101-1708, respectively. In emb. 2.3258, the 1 st and 2nd s.s. are SID 3258 & any one of SID 101-1708, respectively. In emb. 2.3259, the 1 st and 2nd s.s. are SID 3259 & any one of SID 101-1708, respectively. In emb. 2.3260, the 1 st and 2nd s.s. are SID 3260 & any one of SID 101-1708, respectively. In emb. 2.3261, the 1 st and 2nd s.s. are SID 3261 & any one of SID 101-1708, respectively. In emb. 2.3262, the 1 st and 2nd s.s. are SID 3262 & any one of SID 101-1708, respectively. In emb. 2.3263, the 1 st and 2nd s.s. are SID 3263 & any one of SID 101-1708, respectively. In emb. 2.3264, the 1 st and 2nd s.s. are SID 3264 & any one of SID 101-1708, respectively. In emb. 2.3265, the 1 st and 2nd s.s. are SID 3265 & any one of SID 101-1708, respectively. In emb. 2.3266, the 1 st and 2nd s.s. are SID 3266 & any one of SID 101-1708, respectively. In emb. 2.3267, the 1 st and 2nd s.s. are SID 3267 & any one of SID 101-1708, respectively. In emb. 2.3268, the 1 st and 2nd s.s. are SID 3268 & any one of SID 101-1708, respectively. In emb. 2.3269, the 1 st and 2nd s.s. are SID 3269 & any one of SID 101-1708, respectively. In emb. 2.3270, the 1 st and 2nd s.s. are SID 3270 & any one of SID 101-1708, respectively. In emb. 2.3271, the 1 st and 2nd s.s. are SID 3271 & any one of SID 101-1708, respectively. In emb. 2.3272, the 1 st and 2nd s.s. are SID 3272 & any one of SID 101-1708, respectively. In emb. 2.3273, the 1 st and 2nd s.s. are SID 3273 & any one of SID 101-1708, respectively. In emb. 2.3274, the 1 st and 2nd s.s. are SID 3274 & any one of SID 101-1708, respectively. In emb. 2.3275, the 1 st and 2nd s.s. are SID 3275 & any one of SID 101-1708, respectively. In emb. 2.3276, the 1 st and 2nd s.s. are SID 3276 & any one of SID 101-1708, respectively. In emb. 2.3277, the 1 st and 2nd s.s. are SID 3277 & any one of SID 101-1708, respectively. In emb. 2.3278, the 1 st and 2nd s.s. are SID 3278 & any one of SID 101-1708, respectively. In emb. 2.3279, the 1 st and 2nd s.s. are SID 3279 & any one of SID 101-1708, respectively. In emb. 2.3280, the 1 st and 2nd s.s. are SID 3280 & any one of SID 101-1708, respectively. In emb. 2.3281, the 1 st and 2nd s.s. are SID 3281 & any one of SID 101-1708, respectively. In emb. 2.3282, the 1 st and 2nd s.s. are SID 3282 & any one of SID 101-1708, respectively. In emb. 2.3283, the 1 st and 2nd s.s. are SID 3283 & any one of SID 101-1708, respectively. In emb. 2.3284, the 1 st and 2nd s.s. are SID 3284 & any one of SID 101-1708, respectively. In emb. 2.3285, the 1 st and 2nd s.s. are SID 3285 & any one of SID 101-1708, respectively. In emb. 2.3286, the 1 st and 2nd s.s. are SID 3286 & any one of SID 101-1708, respectively. In emb. 2.3287, the 1 st and 2nd s.s. are SID 3287 & any one of SID 101-1708, respectively. In emb. 2.3288, the 1 st and 2nd s.s. are SID 3288 & any one of SID 101-1708, respectively. In emb. 2.3289, the 1 st and 2nd s.s. are SID 3289 & any one of SID 101-1708, respectively. In emb. 2.3290, the 1 st and 2nd s.s. are SID 3290 & any one of SID 101-1708, respectively. In emb. 2.3291, the 1 st and 2nd s.s. are SID 3291 & any one of SID 101-1708, respectively. In emb. 2.3292, the 1 st and 2nd s.s. are SID 3292 & any one of SID 101-1708, respectively. In emb. 2.3293, the 1 st and 2nd s.s. are SID 3293 & any one of SID 101-1708, respectively. In emb. 2.3294, the 1 st and 2nd s.s. are SID 3294 & any one of SID 101-1708, respectively. In emb. 2.3295, the 1 st and 2nd s.s. are SID 3295 & any one of SID 101-1708, respectively. In emb. 2.3296, the 1 st and 2nd s.s. are SID 3296 & any one of SID 101-1708, respectively. In emb. 2.3297, the 1 st and 2nd s.s. are SID 3297 & any one of SID 101-1708, respectively. In emb. 2.3298, the 1 st and 2nd s.s. are SID 3298 & any one of SID 101-1708, respectively. In emb. 2.3299, the 1 st and 2nd s.s. are SID 3299 & any one of SID 101-1708, respectively. In emb. 2.3300, the 1 st and 2nd s.s. are SID 3300 & any one of SID 101-1708, respectively. In emb. 2.3301, the 1 st and 2nd s.s. are SID 3301 & any one of SID 101-1708, respectively. In emb. 2.3302, the 1 st and 2nd s.s. are SID 3302 & any one of SID 101-1708, respectively. In emb. 2.3303, the 1 st and 2nd s.s. are SID 3303 & any one of SID 101-1708, respectively. In emb. 2.3304, the 1 st and 2nd s.s. are SID 3304 & any one of SID 101-1708, respectively. In emb. 2.3305, the 1 st and 2nd s.s. are SID 3305 & any one of SID 101-1708, respectively. In emb. 2.3306, the 1 st and 2nd s.s. are SID 3306 & any one of SID 101-1708, respectively. In emb. 2.3307, the 1 st and 2nd s.s. are SID 3307 & any one of SID 101-1708, respectively. In emb. 2.3308, the 1 st and 2nd s.s. are SID 3308 & any one of SID 101-1708, respectively. In emb. 2.3309, the 1 st and 2nd s.s. are SID 3309 & any one of SID 101-1708, respectively. In emb. 2.3310, the 1 st and 2nd s.s. are SID 3310 & any one of SID 101-1708, respectively. In emb. 2.3311, the 1 st and 2nd s.s. are SID 3311 & any one of SID 101-1708, respectively. In emb. 2.3312, the 1 st and 2nd s.s. are SID 3312 & any one of SID 101-1708, respectively. In emb. 2.3313, the 1 st and 2nd s.s. are SID 3313 & any one of SID 101-1708, respectively. In emb. 2.3314, the 1 st and 2nd s.s. are SID 3314 & any one of SID 101-1708, respectively. In emb. 2.3315, the 1 st and 2nd s.s. are SID 3315 & any one of SID 101-1708, respectively. In emb. 2.3316, the 1 st and 2nd s.s. are SID 3316 & any one of SID 101-1708, respectively. In emb. 2.3317, the 1 st and 2nd s.s. are SID 3317 & any one of SID 101-1708, respectively. In emb. 2.3318, the 1 st and 2nd s.s. are SID 3318 & any one of SID 101-1708, respectively. In emb. 2.3319, the 1 st and 2nd s.s. are SID 3319 & any one of SID 101-1708, respectively. In emb. 2.3320, the 1 st and 2nd s.s. are SID 3320 & any one of SID 101-1708, respectively. In emb. 2.3321, the 1 st and 2nd s.s. are SID 3321 & any one of SID 101-1708, respectively. In emb. 2.3322, the 1 st and 2nd s.s. are SID 3322 & any one of SID 101-1708, respectively. In emb. 2.3323, the 1 st and 2nd s.s. are SID 3323 & any one of SID 101-1708, respectively. In emb. 2.3324, the 1 st and 2nd s.s. are SID 3324 & any one of SID 101-1708, respectively. In emb. 2.3325, the 1 st and 2nd s.s. are SID 3325 & any one of SID 101-1708, respectively. In emb. 2.3326, the 1 st and 2nd s.s. are SID 3326 & any one of SID 101-1708, respectively. In emb. 2.3327, the 1 st and 2nd s.s. are SID 3327 & any one of SID 101-1708, respectively. In emb. 2.3328, the 1 st and 2nd s.s. are SID 3328 & any one of SID 101-1708, respectively. In emb. 2.3329, the 1 st and 2nd s.s. are SID 3329 & any one of SID 101-1708, respectively. In emb. 2.3330, the 1 st and 2nd s.s. are SID 3330 & any one of SID 101-1708, respectively. In emb. 2.3331, the 1 st and 2nd s.s. are SID 3331 & any one of SID 101-1708, respectively. In emb. 2.3332, the 1 st and 2nd s.s. are SID 3332 & any one of SID 101-1708, respectively. In emb. 2.3333, the 1 st and 2nd s.s. are SID 3333 & any one of SID 101-1708, respectively. In emb. 2.3334, the 1 st and 2nd s.s. are SID 3334 & any one of SID 101-1708, respectively. In emb. 2.3335, the 1 st and 2nd s.s. are SID 3335 & any one of SID 101-1708, respectively. In emb. 2.3336, the 1 st and 2nd s.s. are SID 3336 & any one of SID 101-1708, respectively. In emb. 2.3337, the 1 st and 2nd s.s. are SID 3337 & any one of SID 101-1708, respectively. In emb. 2.3338, the 1 st and 2nd s.s. are SID 3338 & any one of SID 101-1708, respectively. In emb. 2.3339, the 1 st and 2nd s.s. are SID 3339 & any one of SID 101-1708, respectively. In emb. 2.3340, the 1 st and 2nd s.s. are SID 3340 & any one of SID 101-1708, respectively. In emb. 2.3341, the 1 st and 2nd s.s. are SID 3341 & any one of SID 101-1708, respectively. In emb. 2.3342, the 1 st and 2nd s.s. are SID 3342 & any one of SID 101-1708, respectively. In emb. 2.3343, the 1 st and 2nd s.s. are SID 3343 & any one of SID 101-1708, respectively. In emb. 2.3344, the 1 st and 2nd s.s. are SID 3344 & any one of SID 101-1708, respectively. In emb. 2.3345, the 1 st and 2nd s.s. are SID 3345 & any one of SID 101-1708, respectively. In emb. 2.3346, the 1 st and 2nd s.s. are SID 3346 & any one of SID 101-1708, respectively. In emb. 2.3347, the 1 st and 2nd s.s. are SID 3347 & any one of SID 101-1708, respectively. In emb. 2.3348, the 1 st and 2nd s.s. are SID 3348 & any one of SID 101-1708, respectively. In emb. 2.3349, the 1 st and 2nd s.s. are SID 3349 & any one of SID 101-1708, respectively. In emb. 2.3350, the 1 st and 2nd s.s. are SID 3350 & any one of SID 101-1708, respectively. In emb. 2.3351, the 1 st and 2nd s.s. are SID 3351 & any one of SID 101-1708, respectively. In emb. 2.3352, the 1 st and 2nd s.s. are SID 3352 & any one of SID 101-1708, respectively. In emb. 2.3353, the 1 st and 2nd s.s. are SID 3353 & any one of SID 101-1708, respectively. In emb. 2.3354, the 1 st and 2nd s.s. are SID 3354 & any one of SID 101-1708, respectively. In emb. 2.3355, the 1 st and 2nd s.s. are SID 3355 & any one of SID 101-1708, respectively. In emb. 2.3356, the 1 st and 2nd s.s. are SID 3356 & any one of SID 101-1708, respectively. In emb. 2.3357, the 1 st and 2nd s.s. are SID 3357 & any one of SID 101-1708, respectively. In emb. 2.3358, the 1 st and 2nd s.s. are SID 3358 & any one of SID 101-1708, respectively. In emb. 2.3359, the 1 st and 2nd s.s. are SID 3359 & any one of SID 101-1708, respectively. In emb. 2.3360, the 1 st and 2nd s.s. are SID 3360 & any one of SID 101-1708, respectively. In emb. 2.3361, the 1 st and 2nd s.s. are SID 3361 & any one of SID 101-1708, respectively. In emb. 2.3362, the 1 st and 2nd s.s. are SID 3362 & any one of SID 101-1708, respectively. In emb. 2.3363, the 1 st and 2nd s.s. are SID 3363 & any one of SID 101-1708, respectively. In emb. 2.3364, the 1 st and 2nd s.s. are SID 3364 & any one of SID 101-1708, respectively. In emb. 2.3365, the 1 st and 2nd s.s. are SID 3365 & any one of SID 101-1708, respectively. In emb. 2.3366, the 1 st and 2nd s.s. are SID 3366 & any one of SID 101-1708, respectively. In emb. 2.3367, the 1 st and 2nd s.s. are SID 3367 & any one of SID 101-1708, respectively. In emb. 2.3368, the 1 st and 2nd s.s. are SID 3368 & any one of SID 101-1708, respectively. In emb. 2.3369, the 1 st and 2nd s.s. are SID 3369 & any one of SID 101-1708, respectively. In emb. 2.3370, the 1 st and 2nd s.s. are SID 3370 & any one of SID 101-1708, respectively. In emb. 2.3371, the 1 st and 2nd s.s. are SID 3371 & any one of SID 101-1708, respectively. In emb. 2.3372, the 1 st and 2nd s.s. are SID 3372 & any one of SID 101-1708, respectively. In emb. 2.3373, the 1 st and 2nd s.s. are SID 3373 & any one of SID 101-1708, respectively. In emb. 2.3374, the 1 st and 2nd s.s. are SID 3374 & any one of SID 101-1708, respectively. In emb. 2.3375, the 1 st and 2nd s.s. are SID 3375 & any one of SID 101-1708, respectively. In emb. 2.3376, the 1 st and 2nd s.s. are SID 3376 & any one of SID 101-1708, respectively. In emb. 2.3377, the 1 st and 2nd s.s. are SID 3377 & any one of SID 101-1708, respectively. In emb. 2.3378, the 1 st and 2nd s.s. are SID 3378 & any one of SID 101-1708, respectively. In emb. 2.3379, the 1 st and 2nd s.s. are SID 3379 & any one of SID 101-1708, respectively. In emb. 2.3380, the 1 st and 2nd s.s. are SID 3380 & any one of SID 101-1708, respectively. In emb. 2.3381, the 1 st and 2nd s.s. are SID 3381 & any one of SID 101-1708, respectively. In emb. 2.3382, the 1 st and 2nd s.s. are SID 3382 & any one of SID 101-1708, respectively. In emb. 2.3383, the 1 st and 2nd s.s. are SID 3383 & any one of SID 101-1708, respectively. In emb. 2.3384, the 1 st and 2nd s.s. are SID 3384 & any one of SID 101-1708, respectively. In emb. 2.3385, the 1 st and 2nd s.s. are SID 3385 & any one of SID 101-1708, respectively. In emb. 2.3386, the 1 st and 2nd s.s. are SID 3386 & any one of SID 101-1708, respectively. In emb. 2.3387, the 1 st and 2nd s.s. are SID 3387 & any one of SID 101-1708, respectively. In emb. 2.3388, the 1 st and 2nd s.s. are SID 3388 & any one of SID 101-1708, respectively. In emb. 2.3389, the 1 st and 2nd s.s. are SID 3389 & any one of SID 101-1708, respectively. In emb. 2.3390, the 1 st and 2nd s.s. are SID 3390 & any one of SID 101-1708, respectively. In emb. 2.3391, the 1 st and 2nd s.s. are SID 3391 & any one of SID 101-1708, respectively. In emb. 2.3392, the 1 st and 2nd s.s. are SID 3392 & any one of SID 101-1708, respectively. In emb. 2.3393, the 1 st and 2nd s.s. are SID 3393 & any one of SID 101-1708, respectively. In emb. 2.3394, the 1 st and 2nd s.s. are SID 3394 & any one of SID 101-1708, respectively. In emb. 2.3395, the 1 st and 2nd s.s. are SID 3395 & any one of SID 101-1708, respectively. In emb. 2.3396, the 1 st and 2nd s.s. are SID 3396 & any one of SID 101-1708, respectively. In emb. 2.3397, the 1 st and 2nd s.s. are SID 3397 & any one of SID 101-1708, respectively. In emb. 2.3398, the 1 st and 2nd s.s. are SID 3398 & any one of SID 101-1708, respectively. In emb. 2.3399, the 1 st and 2nd s.s. are SID 3399 & any one of SID 101-1708, respectively. In emb. 2.3400, the 1 st and 2nd s.s. are SID 3400 & any one of SID 101-1708, respectively. In emb. 2.3401, the 1 st and 2nd s.s. are SID 3401 & any one of SID 101-1708, respectively. In emb. 2.3402, the 1 st and 2nd s.s. are SID 3402 & any one of SID 101-1708, respectively. In emb. 2.3403, the 1 st and 2nd s.s. are SID 3403 & any one of SID 101-1708, respectively. In emb. 2.3404, the 1 st and 2nd s.s. are SID 3404 & any one of SID 101-1708, respectively. In emb. 2.3405, the 1 st and 2nd s.s. are SID 3405 & any one of SID 101-1708, respectively. In emb. 2.3406, the 1 st and 2nd s.s. are SID 3406 & any one of SID 101-1708, respectively. In emb. 2.3407, the 1 st and 2nd s.s. are SID 3407 & any one of SID 101-1708, respectively. In emb. 2.3408, the 1 st and 2nd s.s. are SID 3408 & any one of SID 101-1708, respectively. In emb. 2.3409, the 1 st and 2nd s.s. are SID 3409 & any one of SID 101-1708, respectively. In emb. 2.3410, the 1 st and 2nd s.s. are SID 3410 & any one of SID 101-1708, respectively. In emb. 2.3411, the 1 st and 2nd s.s. are SID 3411 & any one of SID 101-1708, respectively. In emb. 2.3412, the 1 st and 2nd s.s. are SID 3412 & any one of SID 101-1708, respectively. In emb. 2.3413, the 1 st and 2nd s.s. are SID 3413 & any one of SID 101-1708, respectively. In emb. 2.3414, the 1 st and 2nd s.s. are SID 3414 & any one of SID 101-1708, respectively. In emb. 2.3415, the 1 st and 2nd s.s. are SID 3415 & any one of SID 101-1708, respectively. In emb. 2.3416, the 1 st and 2nd s.s. are SID 3416 & any one of SID 101-1708, respectively. In emb. 2.3417, the 1 st and 2nd s.s. are SID 3417 & any one of SID 101-1708, respectively. In emb. 2.3418, the 1 st and 2nd s.s. are SID 3418 & any one of SID 101-1708, respectively. In emb. 2.3419, the 1 st and 2nd s.s. are SID 3419 & any one of SID 101-1708, respectively. In emb. 2.3420, the 1 st and 2nd s.s. are SID 3420 & any one of SID 101-1708, respectively. In emb. 2.3421, the 1 st and 2nd s.s. are SID 3421 & any one of SID 101-1708, respectively. In emb. 2.3422, the 1 st and 2nd s.s. are SID 3422 & any one of SID 101-1708, respectively. In emb. 2.3423, the 1 st and 2nd s.s. are SID 3423 & any one of SID 101-1708, respectively. In emb. 2.3424, the 1 st and 2nd s.s. are SID 3424 & any one of SID 101-1708, respectively. In emb. 2.3425, the 1 st and 2nd s.s. are SID 3425 & any one of SID 101-1708, respectively. In emb. 2.3426, the 1 st and 2nd s.s. are SID 3426 & any one of SID 101-1708, respectively. In emb. 2.3427, the 1 st and 2nd s.s. are SID 3427 & any one of SID 101-1708, respectively. In emb. 2.3428, the 1 st and 2nd s.s. are SID 3428 & any one of SID 101-1708, respectively. In emb. 2.3429, the 1 st and 2nd s.s. are SID 3429 & any one of SID 101-1708, respectively. In emb. 2.3430, the 1 st and 2nd s.s. are SID 3430 & any one of SID 101-1708, respectively. In emb. 2.3431, the 1 st and 2nd s.s. are SID 3431 & any one of SID 101-1708, respectively. In emb. 2.3432, the 1 st and 2nd s.s. are SID 3432 & any one of SID 101-1708, respectively. In emb. 2.3433, the 1 st and 2nd s.s. are SID 3433 & any one of SID 101-1708, respectively. In emb. 2.3434, the 1 st and 2nd s.s. are SID 3434 & any one of SID 101-1708, respectively. In emb. 2.3435, the 1 st and 2nd s.s. are SID 3435 & any one of SID 101-1708, respectively. In emb. 2.3436, the 1 st and 2nd s.s. are SID 3436 & any one of SID 101-1708, respectively. In emb. 2.3437, the 1 st and 2nd s.s. are SID 3437 & any one of SID 101-1708, respectively. In emb. 2.3438, the 1 st and 2nd s.s. are SID 3438 & any one of SID 101-1708, respectively. In emb. 2.3439, the 1 st and 2nd s.s. are SID 3439 & any one of SID 101-1708, respectively. In emb. 2.3440, the 1 st and 2nd s.s. are SID 3440 & any one of SID 101-1708, respectively. In emb. 2.3441, the 1 st and 2nd s.s. are SID 3441 & any one of SID 101-1708, respectively. In emb. 2.3442, the 1 st and 2nd s.s. are SID 3442 & any one of SID 101-1708, respectively. In emb. 2.3443, the 1 st and 2nd s.s. are SID 3443 & any one of SID 101-1708, respectively. In emb. 2.3444, the 1 st and 2nd s.s. are SID 3444 & any one of SID 101-1708, respectively. In emb. 2.3445, the 1 st and 2nd s.s. are SID 3445 & any one of SID 101-1708, respectively. In emb. 2.3446, the 1 st and 2nd s.s. are SID 3446 & any one of SID 101-1708, respectively. In emb. 2.3447, the 1 st and 2nd s.s. are SID 3447 & any one of SID 101-1708, respectively. In emb. 2.3448, the 1 st and 2nd s.s. are SID 3448 & any one of SID 101-1708, respectively. In emb. 2.3449, the 1 st and 2nd s.s. are SID 3449 & any one of SID 101-1708, respectively. In emb. 2.3450, the 1 st and 2nd s.s. are SID 3450 & any one of SID 101-1708, respectively. In emb. 2.3451, the 1 st and 2nd s.s. are SID 3451 & any one of SID 101-1708, respectively. In emb. 2.3452, the 1 st and 2nd s.s. are SID 3452 & any one of SID 101-1708, respectively. In emb. 2.3453, the 1 st and 2nd s.s. are SID 3453 & any one of SID 101-1708, respectively. In emb. 2.3454, the 1 st and 2nd s.s. are SID 3454 & any one of SID 101-1708, respectively. In emb. 2.3455, the 1 st and 2nd s.s. are SID 3455 & any one of SID 101-1708, respectively. In emb. 2.3456, the 1 st and 2nd s.s. are SID 3456 & any one of SID 101-1708, respectively. In emb. 2.3457, the 1 st and 2nd s.s. are SID 3457 & any one of SID 101-1708, respectively. In emb. 2.3458, the 1 st and 2nd s.s. are SID 3458 & any one of SID 101-1708, respectively. In emb. 2.3459, the 1 st and 2nd s.s. are SID 3459 & any one of SID 101-1708, respectively. In emb. 2.3460, the 1 st and 2nd s.s. are SID 3460 & any one of SID 101-1708, respectively. In emb. 2.3461, the 1 st and 2nd s.s. are SID 3461 & any one of SID 101-1708, respectively. In emb. 2.3462, the 1 st and 2nd s.s. are SID 3462 & any one of SID 101-1708, respectively. In emb. 2.3463, the 1 st and 2nd s.s. are SID 3463 & any one of SID 101-1708, respectively. In emb. 2.3464, the 1 st and 2nd s.s. are SID 3464 & any one of SID 101-1708, respectively. In emb. 2.3465, the 1 st and 2nd s.s. are SID 3465 & any one of SID 101-1708, respectively. In emb. 2.3466, the 1 st and 2nd s.s. are SID 3466 & any one of SID 101-1708, respectively. In emb. 2.3467, the 1 st and 2nd s.s. are SID 3467 & any one of SID 101-1708, respectively. In emb. 2.3468, the 1 st and 2nd s.s. are SID 3468 & any one of SID 101-1708, respectively. In emb. 2.3469, the 1 st and 2nd s.s. are SID 3469 & any one of SID 101-1708, respectively. In emb. 2.3470, the 1 st and 2nd s.s. are SID 3470 & any one of SID 101-1708, respectively. In emb. 2.3471, the 1 st and 2nd s.s. are SID 3471 & any one of SID 101-1708, respectively. In emb. 2.3472, the 1 st and 2nd s.s. are SID 3472 & any one of SID 101-1708, respectively. In emb. 2.3473, the 1 st and 2nd s.s. are SID 3473 & any one of SID 101-1708, respectively. In emb. 2.3474, the 1 st and 2nd s.s. are SID 3474 & any one of SID 101-1708, respectively. In emb. 2.3475, the 1 st and 2nd s.s. are SID 3475 & any one of SID 101-1708, respectively. In emb. 2.3476, the 1 st and 2nd s.s. are SID 3476 & any one of SID 101-1708, respectively. In emb. 2.3477, the 1 st and 2nd s.s. are SID 3477 & any one of SID 101-1708, respectively. In emb. 2.3478, the 1 st and 2nd s.s. are SID 3478 & any one of SID 101-1708, respectively. In emb. 2.3479, the 1 st and 2nd s.s. are SID 3479 & any one of SID 101-1708, respectively. In emb. 2.3480, the 1 st and 2nd s.s. are SID 3480 & any one of SID 101-1708, respectively. In emb. 2.3481, the 1 st and 2nd s.s. are SID 3481 & any one of SID 101-1708, respectively. In emb. 2.3482, the 1 st and 2nd s.s. are SID 3482 & any one of SID 101-1708, respectively. In emb. 2.3483, the 1 st and 2nd s.s. are SID 3483 & any one of SID 101-1708, respectively. In emb. 2.3484, the 1 st and 2nd s.s. are SID 3484 & any one of SID 101-1708, respectively. In emb. 2.3485, the 1 st and 2nd s.s. are SID 3485 & any one of SID 101-1708, respectively. In emb. 2.3486, the 1 st and 2nd s.s. are SID 3486 & any one of SID 101-1708, respectively. In emb. 2.3487, the 1 st and 2nd s.s. are SID 3487 & any one of SID 101-1708, respectively. In emb. 2.3488, the 1 st and 2nd s.s. are SID 3488 & any one of SID 101-1708, respectively. In emb. 2.3489, the 1 st and 2nd s.s. are SID 3489 & any one of SID 101-1708, respectively. In emb. 2.3490, the 1 st and 2nd s.s. are SID 3490 & any one of SID 101-1708, respectively. In emb. 2.3491, the 1 st and 2nd s.s. are SID 3491 & any one of SID 101-1708, respectively. In emb. 2.3492, the 1 st and 2nd s.s. are SID 3492 & any one of SID 101-1708, respectively. In emb. 2.3493, the 1 st and 2nd s.s. are SID 3493 & any one of SID 101-1708, respectively. In emb. 2.3494, the 1 st and 2nd s.s. are SID 3494 & any one of SID 101-1708, respectively. In emb. 2.3495, the 1 st and 2nd s.s. are SID 3495 & any one of SID 101-1708, respectively. In emb. 2.3496, the 1 st and 2nd s.s. are SID 3496 & any one of SID 101-1708, respectively. In emb. 2.3497, the 1 st and 2nd s.s. are SID 3497 & any one of SID 101-1708, respectively. In emb. 2.3498, the 1 st and 2nd s.s. are SID 3498 & any one of SID 101-1708, respectively. In emb. 2.3499, the 1 st and 2nd s.s. are SID 3499 & any one of SID 101-1708, respectively. In emb. 2.3500, the 1 st and 2nd s.s. are SID 3500 & any one of SID 101-1708, respectively. In emb. 2.3501, the 1 st and 2nd s.s. are SID 3501 & any one of SID 101-1708, respectively. In emb. 2.3502, the 1 st and 2nd s.s. are SID 3502 & any one of SID 101-1708, respectively. In emb. 2.3503, the 1 st and 2nd s.s. are SID 3503 & any one of SID 101-1708, respectively. In emb. 2.3504, the 1 st and 2nd s.s. are SID 3504 & any one of SID 101-1708, respectively. In emb. 2.3505, the 1 st and 2nd s.s. are SID 3505 & any one of SID 101-1708, respectively. In emb. 2.3506, the 1 st and 2nd s.s. are SID 3506 & any one of SID 101-1708, respectively. In emb. 2.3507, the 1 st and 2nd s.s. are SID 3507 & any one of SID 101-1708, respectively. In emb. 2.3508, the 1 st and 2nd s.s. are SID 3508 & any one of SID 101-1708, respectively. In emb. 2.3509, the 1 st and 2nd s.s. are SID 3509 & any one of SID 101-1708, respectively. In emb. 2.3510, the 1 st and 2nd s.s. are SID 3510 & any one of SID 101-1708, respectively. In emb. 2.3511, the 1 st and 2nd s.s. are SID 3511 & any one of SID 101-1708, respectively. In emb. 2.3512, the 1 st and 2nd s.s. are SID 3512 & any one of SID 101-1708, respectively. In emb. 2.3513, the 1 st and 2nd s.s. are SID 3513 & any one of SID 101-1708, respectively. In emb. 2.3514, the 1 st and 2nd s.s. are SID 3514 & any one of SID 101-1708, respectively. In emb. 2.3515, the 1 st and 2nd s.s. are SID 3515 & any one of SID 101-1708, respectively. In emb. 2.3516, the 1 st and 2nd s.s. are SID 3516 & any one of SID 101-1708, respectively. In emb. 2.3517, the 1 st and 2nd s.s. are SID 3517 & any one of SID 101-1708, respectively. In emb. 2.3518, the 1 st and 2nd s.s. are SID 3518 & any one of SID 101-1708, respectively. In emb. 2.3519, the 1 st and 2nd s.s. are SID 3519 & any one of SID 101-1708, respectively. In emb. 2.3520, the 1 st and 2nd s.s. are SID 3520 & any one of SID 101-1708, respectively. In emb. 2.3521, the 1 st and 2nd s.s. are SID 3521 & any one of SID 101-1708, respectively. In emb. 2.3522, the 1 st and 2nd s.s. are SID 3522 & any one of SID 101-1708, respectively. In emb. 2.3523, the 1 st and 2nd s.s. are SID 3523 & any one of SID 101-1708, respectively. In emb. 2.3524, the 1 st and 2nd s.s. are SID 3524 & any one of SID 101-1708, respectively. In emb. 2.3525, the 1 st and 2nd s.s. are SID 3525 & any one of SID 101-1708, respectively. In emb. 2.3526, the 1 st and 2nd s.s. are SID 3526 & any one of SID 101-1708, respectively. In emb. 2.3527, the 1 st and 2nd s.s. are SID 3527 & any one of SID 101-1708, respectively. In emb. 2.3528, the 1 st and 2nd s.s. are SID 3528 & any one of SID 101-1708, respectively. In emb. 2.3529, the 1 st and 2nd s.s. are SID 3529 & any one of SID 101-1708, respectively. In emb. 2.3530, the 1 st and 2nd s.s. are SID 3530 & any one of SID 101-1708, respectively. In emb. 2.3531, the 1 st and 2nd s.s. are SID 3531 & any one of SID 101-1708, respectively. In emb. 2.3532, the 1 st and 2nd s.s. are SID 3532 & any one of SID 101-1708, respectively. In emb. 2.3533, the 1 st and 2nd s.s. are SID 3533 & any one of SID 101-1708, respectively. In emb. 2.3534, the 1 st and 2nd s.s. are SID 3534 & any one of SID 101-1708, respectively. In emb. 2.3535, the 1 st and 2nd s.s. are SID 3535 & any one of SID 101-1708, respectively. In emb. 2.3536, the 1 st and 2nd s.s. are SID 3536 & any one of SID 101-1708, respectively. In emb. 2.3537, the 1 st and 2nd s.s. are SID 3537 & any one of SID 101-1708, respectively. In emb. 2.3538, the 1 st and 2nd s.s. are SID 3538 & any one of SID 101-1708, respectively. In emb. 2.3539, the 1 st and 2nd s.s. are SID 3539 & any one of SID 101-1708, respectively. In emb. 2.3540, the 1 st and 2nd s.s. are SID 3540 & any one of SID 101-1708, respectively. In emb. 2.3541, the 1 st and 2nd s.s. are SID 3541 & any one of SID 101-1708, respectively. In emb. 2.3542, the 1 st and 2nd s.s. are SID 3542 & any one of SID 101-1708, respectively. In emb. 2.3543, the 1 st and 2nd s.s. are SID 3543 & any one of SID 101-1708, respectively. In emb. 2.3544, the 1 st and 2nd s.s. are SID 3544 & any one of SID 101-1708, respectively. In emb. 2.3545, the 1 st and 2nd s.s. are SID 3545 & any one of SID 101-1708, respectively. In emb. 2.3546, the 1 st and 2nd s.s. are SID 3546 & any one of SID 101-1708, respectively. In emb. 2.3547, the 1 st and 2nd s.s. are SID 3547 & any one of SID 101-1708, respectively. In emb. 2.3548, the 1 st and 2nd s.s. are SID 3548 & any one of SID 101-1708, respectively. In emb. 2.3549, the 1 st and 2nd s.s. are SID 3549 & any one of SID 101-1708, respectively. In emb. 2.3550, the 1 st and 2nd s.s. are SID 3550 & any one of SID 101-1708, respectively. In emb. 2.3551, the 1 st and 2nd s.s. are SID 3551 & any one of SID 101-1708, respectively. In emb. 2.3552, the 1 st and 2nd s.s. are SID 3552 & any one of SID 101-1708, respectively. In emb. 2.3553, the 1 st and 2nd s.s. are SID 3553 & any one of SID 101-1708, respectively. In emb. 2.3554, the 1 st and 2nd s.s. are SID 3554 & any one of SID 101-1708, respectively. In emb. 2.3555, the 1 st and 2nd s.s. are SID 3555 & any one of SID 101-1708, respectively. In emb. 2.3556, the 1 st and 2nd s.s. are SID 3556 & any one of SID 101-1708, respectively. In emb. 2.3557, the 1 st and 2nd s.s. are SID 3557 & any one of SID 101-1708, respectively. In emb. 2.3558, the 1 st and 2nd s.s. are SID 3558 & any one of SID 101-1708, respectively. In emb. 2.3559, the 1 st and 2nd s.s. are SID 3559 & any one of SID 101-1708, respectively. In emb. 2.3560, the 1 st and 2nd s.s. are SID 3560 & any one of SID 101-1708, respectively. In emb. 2.3561, the 1 st and 2nd s.s. are SID 3561 & any one of SID 101-1708, respectively. In emb. 2.3562, the 1 st and 2nd s.s. are SID 3562 & any one of SID 101-1708, respectively. In emb. 2.3563, the 1 st and 2nd s.s. are SID 3563 & any one of SID 101-1708, respectively. In emb. 2.3564, the 1 st and 2nd s.s. are SID 3564 & any one of SID 101-1708, respectively. In emb. 2.3565, the 1 st and 2nd s.s. are SID 3565 & any one of SID 101-1708, respectively. In emb. 2.3566, the 1 st and 2nd s.s. are SID 3566 & any one of SID 101-1708, respectively. In emb. 2.3567, the 1 st and 2nd s.s. are SID 3567 & any one of SID 101-1708, respectively. In emb. 2.3568, the 1 st and 2nd s.s. are SID 3568 & any one of SID 101-1708, respectively. In emb. 2.3569, the 1 st and 2nd s.s. are SID 3569 & any one of SID 101-1708, respectively. In emb. 2.3570, the 1 st and 2nd s.s. are SID 3570 & any one of SID 101-1708, respectively. In emb. 2.3571, the 1 st and 2nd s.s. are SID 3571 & any one of SID 101-1708, respectively. In emb. 2.3572, the 1 st and 2nd s.s. are SID 3572 & any one of SID 101-1708, respectively. In emb. 2.3573, the 1 st and 2nd s.s. are SID 3573 & any one of SID 101-1708, respectively. In emb. 2.3574, the 1 st and 2nd s.s. are SID 3574 & any one of SID 101-1708, respectively. In emb. 2.3575, the 1 st and 2nd s.s. are SID 3575 & any one of SID 101-1708, respectively. In emb. 2.3576, the 1 st and 2nd s.s. are SID 3576 & any one of SID 101-1708, respectively. In emb. 2.3577, the 1 st and 2nd s.s. are SID 3577 & any one of SID 101-1708, respectively. In emb. 2.3578, the 1 st and 2nd s.s. are SID 3578 & any one of SID 101-1708, respectively. In emb. 2.3579, the 1 st and 2nd s.s. are SID 3579 & any one of SID 101-1708, respectively. In emb. 2.3580, the 1 st and 2nd s.s. are SID 3580 & any one of SID 101-1708, respectively. In emb. 2.3581, the 1 st and 2nd s.s. are SID 3581 & any one of SID 101-1708, respectively. In emb. 2.3582, the 1 st and 2nd s.s. are SID 3582 & any one of SID 101-1708, respectively. In emb. 2.3583, the 1 st and 2nd s.s. are SID 3583 & any one of SID 101-1708, respectively. In emb. 2.3584, the 1 st and 2nd s.s. are SID 3584 & any one of SID 101-1708, respectively. In emb. 2.3585, the 1 st and 2nd s.s. are SID 3585 & any one of SID 101-1708, respectively. In emb. 2.3586, the 1 st and 2nd s.s. are SID 3586 & any one of SID 101-1708, respectively. In emb. 2.3587, the 1 st and 2nd s.s. are SID 3587 & any one of SID 101-1708, respectively. In emb. 2.3588, the 1 st and 2nd s.s. are SID 3588 & any one of SID 101-1708, respectively. In emb. 2.3589, the 1 st and 2nd s.s. are SID 3589 & any one of SID 101-1708, respectively. In emb. 2.3590, the 1 st and 2nd s.s. are SID 3590 & any one of SID 101-1708, respectively. In emb. 2.3591, the 1 st and 2nd s.s. are SID 3591 & any one of SID 101-1708, respectively. In emb. 2.3592, the 1 st and 2nd s.s. are SID 3592 & any one of SID 101-1708, respectively. In emb. 2.3593, the 1 st and 2nd s.s. are SID 3593 & any one of SID 101-1708, respectively. In emb. 2.3594, the 1 st and 2nd s.s. are SID 3594 & any one of SID 101-1708, respectively. In emb. 2.3595, the 1 st and 2nd s.s. are SID 3595 & any one of SID 101-1708, respectively. In emb. 2.3596, the 1 st and 2nd s.s. are SID 3596 & any one of SID 101-1708, respectively. In emb. 2.3597, the 1 st and 2nd s.s. are SID 3597 & any one of SID 101-1708, respectively. In emb. 2.3598, the 1 st and 2nd s.s. are SID 3598 & any one of SID 101-1708, respectively. In emb. 2.3599, the 1 st and 2nd s.s. are SID 3599 & any one of SID 101-1708, respectively. In emb. 2.3600, the 1 st and 2nd s.s. are SID 3600 & any one of SID 101-1708, respectively. In emb. 2.3601, the 1 st and 2nd s.s. are SID 3601 & any one of SID 101-1708, respectively. In emb. 2.3602, the 1 st and 2nd s.s. are SID 3602 & any one of SID 101-1708, respectively. In emb. 2.3603, the 1 st and 2nd s.s. are SID 3603 & any one of SID 101-1708, respectively. In emb. 2.3604, the 1 st and 2nd s.s. are SID 3604 & any one of SID 101-1708, respectively. In emb. 2.3605, the 1 st and 2nd s.s. are SID 3605 & any one of SID 101-1708, respectively. In emb. 2.3606, the 1 st and 2nd s.s. are SID 3606 & any one of SID 101-1708, respectively. In emb. 2.3607, the 1 st and 2nd s.s. are SID 3607 & any one of SID 101-1708, respectively. In emb. 2.3608, the 1 st and 2nd s.s. are SID 3608 & any one of SID 101-1708, respectively. In emb. 2.3609, the 1 st and 2nd s.s. are SID 3609 & any one of SID 101-1708, respectively. In emb. 2.3610, the 1 st and 2nd s.s. are SID 3610 & any one of SID 101-1708, respectively. In emb. 2.3611, the 1 st and 2nd s.s. are SID 3611 & any one of SID 101-1708, respectively. In emb. 2.3612, the 1 st and 2nd s.s. are SID 3612 & any one of SID 101-1708, respectively. In emb. 2.3613, the 1 st and 2nd s.s. are SID 3613 & any one of SID 101-1708, respectively. In emb. 2.3614, the 1 st and 2nd s.s. are SID 3614 & any one of SID 101-1708, respectively. In emb. 2.3615, the 1 st and 2nd s.s. are SID 3615 & any one of SID 101-1708, respectively. In emb. 2.3616, the 1 st and 2nd s.s. are SID 3616 & any one of SID 101-1708, respectively. In emb. 2.3617, the 1 st and 2nd s.s. are SID 3617 & any one of SID 101-1708, respectively. In emb. 2.3618, the 1 st and 2nd s.s. are SID 3618 & any one of SID 101-1708, respectively. In emb. 2.3619, the 1 st and 2nd s.s. are SID 3619 & any one of SID 101-1708, respectively. In emb. 2.3620, the 1 st and 2nd s.s. are SID 3620 & any one of SID 101-1708, respectively. In emb. 2.3621, the 1 st and 2nd s.s. are SID 3621 & any one of SID 101-1708, respectively. In emb. 2.3622, the 1 st and 2nd s.s. are SID 3622 & any one of SID 101-1708, respectively. In emb. 2.3623, the 1 st and 2nd s.s. are SID 3623 & any one of SID 101-1708, respectively. In emb. 2.3624, the 1 st and 2nd s.s. are SID 3624 & any one of SID 101-1708, respectively. In emb. 2.3625, the 1 st and 2nd s.s. are SID 3625 & any one of SID 101-1708, respectively. In emb. 2.3626, the 1 st and 2nd s.s. are SID 3626 & any one of SID 101-1708, respectively. In emb. 2.3627, the 1 st and 2nd s.s. are SID 3627 & any one of SID 101-1708, respectively. In emb. 2.3628, the 1 st and 2nd s.s. are SID 3628 & any one of SID 101-1708, respectively. In emb. 2.3629, the 1 st and 2nd s.s. are SID 3629 & any one of SID 101-1708, respectively. In emb. 2.3630, the 1 st and 2nd s.s. are SID 3630 & any one of SID 101-1708, respectively. In emb. 2.3631, the 1 st and 2nd s.s. are SID 3631 & any one of SID 101-1708, respectively. In emb. 2.3632, the 1 st and 2nd s.s. are SID 3632 & any one of SID 101-1708, respectively. In emb. 2.3633, the 1 st and 2nd s.s. are SID 3633 & any one of SID 101-1708, respectively. In emb. 2.3634, the 1 st and 2nd s.s. are SID 3634 & any one of SID 101-1708, respectively. In emb. 2.3635, the 1 st and 2nd s.s. are SID 3635 & any one of SID 101-1708, respectively. In emb. 2.3636, the 1 st and 2nd s.s. are SID 3636 & any one of SID 101-1708, respectively. In emb. 2.3637, the 1 st and 2nd s.s. are SID 3637 & any one of SID 101-1708, respectively. In emb. 2.3638, the 1 st and 2nd s.s. are SID 3638 & any one of SID 101-1708, respectively. In emb. 2.3639, the 1 st and 2nd s.s. are SID 3639 & any one of SID 101-1708, respectively. In emb. 2.3640, the 1 st and 2nd s.s. are SID 3640 & any one of SID 101-1708, respectively. In emb. 2.3641, the 1 st and 2nd s.s. are SID 3641 & any one of SID 101-1708, respectively. In emb. 2.3642, the 1 st and 2nd s.s. are SID 3642 & any one of SID 101-1708, respectively. In emb. 2.3643, the 1 st and 2nd s.s. are SID 3643 & any one of SID 101-1708, respectively. In emb. 2.3644, the 1 st and 2nd s.s. are SID 3644 & any one of SID 101-1708, respectively. In emb. 2.3645, the 1 st and 2nd s.s. are SID 3645 & any one of SID 101-1708, respectively. In emb. 2.3646, the 1 st and 2nd s.s. are SID 3646 & any one of SID 101-1708, respectively. In emb. 2.3647, the 1 st and 2nd s.s. are SID 3647 & any one of SID 101-1708, respectively. In emb. 2.3648, the 1 st and 2nd s.s. are SID 3648 & any one of SID 101-1708, respectively. In emb. 2.3649, the 1 st and 2nd s.s. are SID 3649 & any one of SID 101-1708, respectively. In emb. 2.3650, the 1 st and 2nd s.s. are SID 3650 & any one of SID 101-1708, respectively. In emb. 2.3651, the 1 st and 2nd s.s. are SID 3651 & any one of SID 101-1708, respectively. In emb. 2.3652, the 1 st and 2nd s.s. are SID 3652 & any one of SID 101-1708, respectively. In emb. 2.3653, the 1 st and 2nd s.s. are SID 3653 & any one of SID 101-1708, respectively. In emb. 2.3654, the 1 st and 2nd s.s. are SID 3654 & any one of SID 101-1708, respectively. In emb. 2.3655, the 1 st and 2nd s.s. are SID 3655 & any one of SID 101-1708, respectively. In emb. 2.3656, the 1 st and 2nd s.s. are SID 3656 & any one of SID 101-1708, respectively. In emb. 2.3657, the 1 st and 2nd s.s. are SID 3657 & any one of SID 101-1708, respectively. In emb. 2.3658, the 1 st and 2nd s.s. are SID 3658 & any one of SID 101-1708, respectively. In emb. 2.3659, the 1 st and 2nd s.s. are SID 3659 & any one of SID 101-1708, respectively. In emb. 2.3660, the 1 st and 2nd s.s. are SID 3660 & any one of SID 101-1708, respectively. In emb. 2.3661, the 1 st and 2nd s.s. are SID 3661 & any one of SID 101-1708, respectively. In emb. 2.3662, the 1 st and 2nd s.s. are SID 3662 & any one of SID 101-1708, respectively. In emb. 2.3663, the 1 st and 2nd s.s. are SID 3663 & any one of SID 101-1708, respectively. In emb. 2.3664, the 1 st and 2nd s.s. are SID 3664 & any one of SID 101-1708, respectively. In emb. 2.3665, the 1 st and 2nd s.s. are SID 3665 & any one of SID 101-1708, respectively. In emb. 2.3666, the 1 st and 2nd s.s. are SID 3666 & any one of SID 101-1708, respectively. In emb. 2.3667, the 1 st and 2nd s.s. are SID 3667 & any one of SID 101-1708, respectively. In emb. 2.3668, the 1 st and 2nd s.s. are SID 3668 & any one of SID 101-1708, respectively. In emb. 2.3669, the 1 st and 2nd s.s. are SID 3669 & any one of SID 101-1708, respectively. In emb. 2.3670, the 1 st and 2nd s.s. are SID 3670 & any one of SID 101-1708, respectively. In emb. 2.3671, the 1 st and 2nd s.s. are SID 3671 & any one of SID 101-1708, respectively. In emb. 2.3672, the 1 st and 2nd s.s. are SID 3672 & any one of SID 101-1708, respectively. In emb. 2.3673, the 1 st and 2nd s.s. are SID 3673 & any one of SID 101-1708, respectively. In emb. 2.3674, the 1 st and 2nd s.s. are SID 3674 & any one of SID 101-1708, respectively. In emb. 2.3675, the 1 st and 2nd s.s. are SID 3675 & any one of SID 101-1708, respectively. In emb. 2.3676, the 1 st and 2nd s.s. are SID 3676 & any one of SID 101-1708, respectively. In emb. 2.3677, the 1 st and 2nd s.s. are SID 3677 & any one of SID 101-1708, respectively. In emb. 2.3678, the 1 st and 2nd s.s. are SID 3678 & any one of SID 101-1708, respectively. In emb. 2.3679, the 1 st and 2nd s.s. are SID 3679 & any one of SID 101-1708, respectively. In emb. 2.3680, the 1 st and 2nd s.s. are SID 3680 & any one of SID 101-1708, respectively. In emb. 2.3681, the 1 st and 2nd s.s. are SID 3681 & any one of SID 101-1708, respectively. In emb. 2.3682, the 1 st and 2nd s.s. are SID 3682 & any one of SID 101-1708, respectively. In emb. 2.3683, the 1 st and 2nd s.s. are SID 3683 & any one of SID 101-1708, respectively. In emb. 2.3684, the 1 st and 2nd s.s. are SID 3684 & any one of SID 101-1708, respectively. In emb. 2.3685, the 1 st and 2nd s.s. are SID 3685 & any one of SID 101-1708, respectively. In emb. 2.3686, the 1 st and 2nd s.s. are SID 3686 & any one of SID 101-1708, respectively. In emb. 2.3687, the 1 st and 2nd s.s. are SID 3687 & any one of SID 101-1708, respectively. In emb. 2.3688, the 1 st and 2nd s.s. are SID 3688 & any one of SID 101-1708, respectively. In emb. 2.3689, the 1 st and 2nd s.s. are SID 3689 & any one of SID 101-1708, respectively. In emb. 2.3690, the 1 st and 2nd s.s. are SID 3690 & any one of SID 101-1708, respectively. In emb. 2.3691, the 1 st and 2nd s.s. are SID 3691 & any one of SID 101-1708, respectively. In emb. 2.3692, the 1 st and 2nd s.s. are SID 3692 & any one of SID 101-1708, respectively. In emb. 2.3693, the 1 st and 2nd s.s. are SID 3693 & any one of SID 101-1708, respectively. In emb. 2.3694, the 1 st and 2nd s.s. are SID 3694 & any one of SID 101-1708, respectively. In emb. 2.3695, the 1 st and 2nd s.s. are SID 3695 & any one of SID 101-1708, respectively. In emb. 2.3696, the 1 st and 2nd s.s. are SID 3696 & any one of SID 101-1708, respectively. In emb. 2.3697, the 1 st and 2nd s.s. are SID 3697 & any one of SID 101-1708, respectively. In emb. 2.3698, the 1 st and 2nd s.s. are SID 3698 & any one of SID 101-1708, respectively. In emb. 2.3699, the 1 st and 2nd s.s. are SID 3699 & any one of SID 101-1708, respectively. In emb. 2.3700, the 1 st and 2nd s.s. are SID 3700 & any one of SID 101-1708, respectively. In emb. 2.3701, the 1 st and 2nd s.s. are SID 3701 & any one of SID 101-1708, respectively. In emb. 2.3702, the 1 st and 2nd s.s. are SID 3702 & any one of SID 101-1708, respectively. In emb. 2.3703, the 1 st and 2nd s.s. are SID 3703 & any one of SID 101-1708, respectively. In emb. 2.3704, the 1 st and 2nd s.s. are SID 3704 & any one of SID 101-1708, respectively. In emb. 2.3705, the 1 st and 2nd s.s. are SID 3705 & any one of SID 101-1708, respectively. In emb. 2.3706, the 1 st and 2nd s.s. are SID 3706 & any one of SID 101-1708, respectively. In emb. 2.3707, the 1 st and 2nd s.s. are SID 3707 & any one of SID 101-1708, respectively. In emb. 2.3708, the 1 st and 2nd s.s. are SID 3708 & any one of SID 101-1708, respectively. In emb. 2.3709, the 1 st and 2nd s.s. are SID 3709 & any one of SID 101-1708, respectively. In emb. 2.3710, the 1 st and 2nd s.s. are SID 3710 & any one of SID 101-1708, respectively. In emb. 2.3711, the 1 st and 2nd s.s. are SID 3711 & any one of SID 101-1708, respectively. In emb. 2.3712, the 1 st and 2nd s.s. are SID 3712 & any one of SID 101-1708, respectively. In emb. 2.3713, the 1 st and 2nd s.s. are SID 3713 & any one of SID 101-1708, respectively. In emb. 2.3714, the 1 st and 2nd s.s. are SID 3714 & any one of SID 101-1708, respectively. In emb. 2.3715, the 1 st and 2nd s.s. are SID 3715 & any one of SID 101-1708, respectively. In emb. 2.3716, the 1 st and 2nd s.s. are SID 3716 & any one of SID 101-1708, respectively. In emb. 2.3717, the 1 st and 2nd s.s. are SID 3717 & any one of SID 101-1708, respectively. In emb. 2.3718, the 1 st and 2nd s.s. are SID 3718 & any one of SID 101-1708, respectively. In emb. 2.3719, the 1 st and 2nd s.s. are SID 3719 & any one of SID 101-1708, respectively. In emb. 2.3720, the 1 st and 2nd s.s. are SID 3720 & any one of SID 101-1708, respectively. In emb. 2.3721, the 1 st and 2nd s.s. are SID 3721 & any one of SID 101-1708, respectively. In emb. 2.3722, the 1 st and 2nd s.s. are SID 3722 & any one of SID 101-1708, respectively. In emb. 2.3723, the 1 st and 2nd s.s. are SID 3723 & any one of SID 101-1708, respectively. In emb. 2.3724, the 1 st and 2nd s.s. are SID 3724 & any one of SID 101-1708, respectively. In emb. 2.3725, the 1 st and 2nd s.s. are SID 3725 & any one of SID 101-1708, respectively. In emb. 2.3726, the 1 st and 2nd s.s. are SID 3726 & any one of SID 101-1708, respectively. In emb. 2.3727, the 1 st and 2nd s.s. are SID 3727 & any one of SID 101-1708, respectively. In emb. 2.3728, the 1 st and 2nd s.s. are SID 3728 & any one of SID 101-1708, respectively. In emb. 2.3729, the 1 st and 2nd s.s. are SID 3729 & any one of SID 101-1708, respectively. In emb. 2.3730, the 1 st and 2nd s.s. are SID 3730 & any one of SID 101-1708, respectively. In emb. 2.3731, the 1 st and 2nd s.s. are SID 3731 & any one of SID 101-1708, respectively. In emb. 2.3732, the 1 st and 2nd s.s. are SID 3732 & any one of SID 101-1708, respectively. In emb. 2.3733, the 1 st and 2nd s.s. are SID 3733 & any one of SID 101-1708, respectively. In emb. 2.3734, the 1 st and 2nd s.s. are SID 3734 & any one of SID 101-1708, respectively. In emb. 2.3735, the 1 st and 2nd s.s. are SID 3735 & any one of SID 101-1708, respectively. In emb. 2.3736, the 1 st and 2nd s.s. are SID 3736 & any one of SID 101-1708, respectively. In emb. 2.3737, the 1 st and 2nd s.s. are SID 3737 & any one of SID 101-1708, respectively. In emb. 2.3738, the 1 st and 2nd s.s. are SID 3738 & any one of SID 101-1708, respectively. In emb. 2.3739, the 1 st and 2nd s.s. are SID 3739 & any one of SID 101-1708, respectively. In emb. 2.3740, the 1 st and 2nd s.s. are SID 3740 & any one of SID 101-1708, respectively. In emb. 2.3741, the 1 st and 2nd s.s. are SID 3741 & any one of SID 101-1708, respectively. In emb. 2.3742, the 1 st and 2nd s.s. are SID 3742 & any one of SID 101-1708, respectively. In emb. 2.3743, the 1 st and 2nd s.s. are SID 3743 & any one of SID 101-1708, respectively. In emb. 2.3744, the 1 st and 2nd s.s. are SID 3744 & any one of SID 101-1708, respectively. In emb. 2.3745, the 1 st and 2nd s.s. are SID 3745 & any one of SID 101-1708, respectively. In emb. 2.3746, the 1 st and 2nd s.s. are SID 3746 & any one of SID 101-1708, respectively. In emb. 2.3747, the 1 st and 2nd s.s. are SID 3747 & any one of SID 101-1708, respectively. In emb. 2.3748, the 1 st and 2nd s.s. are SID 3748 & any one of SID 101-1708, respectively. In emb. 2.3749, the 1 st and 2nd s.s. are SID 3749 & any one of SID 101-1708, respectively. In emb. 2.3750, the 1 st and 2nd s.s. are SID 3750 & any one of SID 101-1708, respectively. In emb. 2.3751, the 1 st and 2nd s.s. are SID 3751 & any one of SID 101-1708, respectively. In emb. 2.3752, the 1 st and 2nd s.s. are SID 3752 & any one of SID 101-1708, respectively. In emb. 2.3753, the 1 st and 2nd s.s. are SID 3753 & any one of SID 101-1708, respectively. In emb. 2.3754, the 1 st and 2nd s.s. are SID 3754 & any one of SID 101-1708, respectively. In emb. 2.3755, the 1 st and 2nd s.s. are SID 3755 & any one of SID 101-1708, respectively. In emb. 2.3756, the 1 st and 2nd s.s. are SID 3756 & any one of SID 101-1708, respectively. In emb. 2.3757, the 1 st and 2nd s.s. are SID 3757 & any one of SID 101-1708, respectively. In emb. 2.3758, the 1 st and 2nd s.s. are SID 3758 & any one of SID 101-1708, respectively. In emb. 2.3759, the 1 st and 2nd s.s. are SID 3759 & any one of SID 101-1708, respectively. In emb. 2.3760, the 1 st and 2nd s.s. are SID 3760 & any one of SID 101-1708, respectively. In emb. 2.3761, the 1 st and 2nd s.s. are SID 3761 & any one of SID 101-1708, respectively. In emb. 2.3762, the 1 st and 2nd s.s. are SID 3762 & any one of SID 101-1708, respectively. In emb. 2.3763, the 1 st and 2nd s.s. are SID 3763 & any one of SID 101-1708, respectively. In emb. 2.3764, the 1 st and 2nd s.s. are SID 3764 & any one of SID 101-1708, respectively. In emb. 2.3765, the 1 st and 2nd s.s. are SID 3765 & any one of SID 101-1708, respectively. In emb. 2.3766, the 1 st and 2nd s.s. are SID 3766 & any one of SID 101-1708, respectively. In emb. 2.3767, the 1 st and 2nd s.s. are SID 3767 & any one of SID 101-1708, respectively. In emb. 2.3768, the 1 st and 2nd s.s. are SID 3768 & any one of SID 101-1708, respectively. In emb. 2.3769, the 1 st and 2nd s.s. are SID 3769 & any one of SID 101-1708, respectively. In emb. 2.3770, the 1 st and 2nd s.s. are SID 3770 & any one of SID 101-1708, respectively. In emb. 2.3771, the 1 st and 2nd s.s. are SID 3771 & any one of SID 101-1708, respectively. In emb. 2.3772, the 1 st and 2nd s.s. are SID 3772 & any one of SID 101-1708, respectively. In emb. 2.3773, the 1 st and 2nd s.s. are SID 3773 & any one of SID 101-1708, respectively. In emb. 2.3774, the 1 st and 2nd s.s. are SID 3774 & any one of SID 101-1708, respectively. In emb. 2.3775, the 1 st and 2nd s.s. are SID 3775 & any one of SID 101-1708, respectively. In emb. 2.3776, the 1 st and 2nd s.s. are SID 3776 & any one of SID 101-1708, respectively. In emb. 2.3777, the 1 st and 2nd s.s. are SID 3777 & any one of SID 101-1708, respectively. In emb. 2.3778, the 1 st and 2nd s.s. are SID 3778 & any one of SID 101-1708, respectively. In emb. 2.3779, the 1 st and 2nd s.s. are SID 3779 & any one of SID 101-1708, respectively. In emb. 2.3780, the 1 st and 2nd s.s. are SID 3780 & any one of SID 101-1708, respectively. In emb. 2.3781, the 1 st and 2nd s.s. are SID 3781 & any one of SID 101-1708, respectively. In emb. 2.3782, the 1 st and 2nd s.s. are SID 3782 & any one of SID 101-1708, respectively. In emb. 2.3783, the 1 st and 2nd s.s. are SID 3783 & any one of SID 101-1708, respectively. In emb. 2.3784, the 1 st and 2nd s.s. are SID 3784 & any one of SID 101-1708, respectively. In emb. 2.3785, the 1 st and 2nd s.s. are SID 3785 & any one of SID 101-1708, respectively. In emb. 2.3786, the 1 st and 2nd s.s. are SID 3786 & any one of SID 101-1708, respectively. In emb. 2.3787, the 1 st and 2nd s.s. are SID 3787 & any one of SID 101-1708, respectively. In emb. 2.3788, the 1 st and 2nd s.s. are SID 3788 & any one of SID 101-1708, respectively. In emb. 2.3789, the 1 st and 2nd s.s. are SID 3789 & any one of SID 101-1708, respectively. In emb. 2.3790, the 1 st and 2nd s.s. are SID 3790 & any one of SID 101-1708, respectively. In emb. 2.3791, the 1 st and 2nd s.s. are SID 3791 & any one of SID 101-1708, respectively. In emb. 2.3792, the 1 st and 2nd s.s. are SID 3792 & any one of SID 101-1708, respectively. In emb. 2.3793, the 1 st and 2nd s.s. are SID 3793 & any one of SID 101-1708, respectively. In emb. 2.3794, the 1 st and 2nd s.s. are SID 3794 & any one of SID 101-1708, respectively. In emb. 2.3795, the 1 st and 2nd s.s. are SID 3795 & any one of SID 101-1708, respectively. In emb. 2.3796, the 1 st and 2nd s.s. are SID 3796 & any one of SID 101-1708, respectively. In emb. 2.3797, the 1 st and 2nd s.s. are SID 3797 & any one of SID 101-1708, respectively. In emb. 2.3798, the 1 st and 2nd s.s. are SID 3798 & any one of SID 101-1708, respectively. In emb. 2.3799, the 1 st and 2nd s.s. are SID 3799 & any one of SID 101-1708, respectively. In emb. 2.3800, the 1 st and 2nd s.s. are SID 3800 & any one of SID 101-1708, respectively. In emb. 2.3801, the 1 st and 2nd s.s. are SID 3801 & any one of SID 101-1708, respectively. In emb. 2.3802, the 1 st and 2nd s.s. are SID 3802 & any one of SID 101-1708, respectively. In emb. 2.3803, the 1 st and 2nd s.s. are SID 3803 & any one of SID 101-1708, respectively. In emb. 2.3804, the 1 st and 2nd s.s. are SID 3804 & any one of SID 101-1708, respectively. In emb. 2.3805, the 1 st and 2nd s.s. are SID 3805 & any one of SID 101-1708, respectively. In emb. 2.3806, the 1 st and 2nd s.s. are SID 3806 & any one of SID 101-1708, respectively. In emb. 2.3807, the 1 st and 2nd s.s. are SID 3807 & any one of SID 101-1708, respectively. In emb. 2.3808, the 1 st and 2nd s.s. are SID 3808 & any one of SID 101-1708, respectively. In emb. 2.3809, the 1 st and 2nd s.s. are SID 3809 & any one of SID 101-1708, respectively. In emb. 2.3810, the 1 st and 2nd s.s. are SID 3810 & any one of SID 101-1708, respectively. In emb. 2.3811, the 1 st and 2nd s.s. are SID 3811 & any one of SID 101-1708, respectively. In emb. 2.3812, the 1 st and 2nd s.s. are SID 3812 & any one of SID 101-1708, respectively. In emb. 2.3813, the 1 st and 2nd s.s. are SID 3813 & any one of SID 101-1708, respectively. In emb. 2.3814, the 1 st and 2nd s.s. are SID 3814 & any one of SID 101-1708, respectively. In emb. 2.3815, the 1 st and 2nd s.s. are SID 3815 & any one of SID 101-1708, respectively. In emb. 2.3816, the 1 st and 2nd s.s. are SID 3816 & any one of SID 101-1708, respectively. In emb. 2.3817, the 1 st and 2nd s.s. are SID 3817 & any one of SID 101-1708, respectively. In emb. 2.3818, the 1 st and 2nd s.s. are SID 3818 & any one of SID 101-1708, respectively. In emb. 2.3819, the 1 st and 2nd s.s. are SID 3819 & any one of SID 101-1708, respectively. In emb. 2.3820, the 1 st and 2nd s.s. are SID 3820 & any one of SID 101-1708, respectively. In emb. 2.3821, the 1 st and 2nd s.s. are SID 3821 & any one of SID 101-1708, respectively. In emb. 2.3822, the 1 st and 2nd s.s. are SID 3822 & any one of SID 101-1708, respectively. In emb. 2.3823, the 1 st and 2nd s.s. are SID 3823 & any one of SID 101-1708, respectively. In emb. 2.3824, the 1 st and 2nd s.s. are SID 3824 & any one of SID 101-1708, respectively. In emb. 2.3825, the 1 st and 2nd s.s. are SID 3825 & any one of SID 101-1708, respectively. In emb. 2.3826, the 1 st and 2nd s.s. are SID 3826 & any one of SID 101-1708, respectively. In emb. 2.3827, the 1 st and 2nd s.s. are SID 3827 & any one of SID 101-1708, respectively. In emb. 2.3828, the 1 st and 2nd s.s. are SID 3828 & any one of SID 101-1708, respectively. In emb. 2.3829, the 1 st and 2nd s.s. are SID 3829 & any one of SID 101-1708, respectively. In emb. 2.3830, the 1 st and 2nd s.s. are SID 3830 & any one of SID 101-1708, respectively. In emb. 2.3831, the 1 st and 2nd s.s. are SID 3831 & any one of SID 101-1708, respectively. In emb. 2.3832, the 1 st and 2nd s.s. are SID 3832 & any one of SID 101-1708, respectively. In emb. 2.3833, the 1 st and 2nd s.s. are SID 3833 & any one of SID 101-1708, respectively. In emb. 2.3834, the 1 st and 2nd s.s. are SID 3834 & any one of SID 101-1708, respectively. In emb. 2.3835, the 1 st and 2nd s.s. are SID 3835 & any one of SID 101-1708, respectively. In emb. 2.3836, the 1 st and 2nd s.s. are SID 3836 & any one of SID 101-1708, respectively. In emb. 2.3837, the 1 st and 2nd s.s. are SID 3837 & any one of SID 101-1708, respectively. In emb. 2.3838, the 1 st and 2nd s.s. are SID 3838 & any one of SID 101-1708, respectively. In emb. 2.3839, the 1 st and 2nd s.s. are SID 3839 & any one of SID 101-1708, respectively. In emb. 2.3840, the 1 st and 2nd s.s. are SID 3840 & any one of SID 101-1708, respectively. In emb. 2.3841, the 1 st and 2nd s.s. are SID 3841 & any one of SID 101-1708, respectively. In emb. 2.3842, the 1 st and 2nd s.s. are SID 3842 & any one of SID 101-1708, respectively. In emb. 2.3843, the 1 st and 2nd s.s. are SID 3843 & any one of SID 101-1708, respectively. In emb. 2.3844, the 1 st and 2nd s.s. are SID 3844 & any one of SID 101-1708, respectively. In emb. 2.3845, the 1 st and 2nd s.s. are SID 3845 & any one of SID 101-1708, respectively. In emb. 2.3846, the 1 st and 2nd s.s. are SID 3846 & any one of SID 101-1708, respectively. In emb. 2.3847, the 1 st and 2nd s.s. are SID 3847 & any one of SID 101-1708, respectively. In emb. 2.3848, the 1 st and 2nd s.s. are SID 3848 & any one of SID 101-1708, respectively. In emb. 2.3849, the 1 st and 2nd s.s. are SID 3849 & any one of SID 101-1708, respectively. In emb. 2.3850, the 1 st and 2nd s.s. are SID 3850 & any one of SID 101-1708, respectively. In emb. 2.3851, the 1 st and 2nd s.s. are SID 3851 & any one of SID 101-1708, respectively. In emb. 2.3852, the 1 st and 2nd s.s. are SID 3852 & any one of SID 101-1708, respectively. In emb. 2.3853, the 1 st and 2nd s.s. are SID 3853 & any one of SID 101-1708, respectively. In emb. 2.3854, the 1 st and 2nd s.s. are SID 3854 & any one of SID 101-1708, respectively. In emb. 2.3855, the 1 st and 2nd s.s. are SID 3855 & any one of SID 101-1708, respectively. In emb. 2.3856, the 1 st and 2nd s.s. are SID 3856 & any one of SID 101-1708, respectively. In emb. 2.3857, the 1 st and 2nd s.s. are SID 3857 & any one of SID 101-1708, respectively. In emb. 2.3858, the 1 st and 2nd s.s. are SID 3858 & any one of SID 101-1708, respectively. In emb. 2.3859, the 1 st and 2nd s.s. are SID 3859 & any one of SID 101-1708, respectively. In emb. 2.3860, the 1 st and 2nd s.s. are SID 3860 & any one of SID 101-1708, respectively. In emb. 2.3861, the 1 st and 2nd s.s. are SID 3861 & any one of SID 101-1708, respectively. In emb. 2.3862, the 1 st and 2nd s.s. are SID 3862 & any one of SID 101-1708, respectively. In emb. 2.3863, the 1 st and 2nd s.s. are SID 3863 & any one of SID 101-1708, respectively. In emb. 2.3864, the 1 st and 2nd s.s. are SID 3864 & any one of SID 101-1708, respectively. In emb. 2.3865, the 1 st and 2nd s.s. are SID 3865 & any one of SID 101-1708, respectively. In emb. 2.3866, the 1 st and 2nd s.s. are SID 3866 & any one of SID 101-1708, respectively. In emb. 2.3867, the 1 st and 2nd s.s. are SID 3867 & any one of SID 101-1708, respectively. In emb. 2.3868, the 1 st and 2nd s.s. are SID 3868 & any one of SID 101-1708, respectively. In emb. 2.3869, the 1 st and 2nd s.s. are SID 3869 & any one of SID 101-1708, respectively. In emb. 2.3870, the 1 st and 2nd s.s. are SID 3870 & any one of SID 101-1708, respectively. In emb. 2.3871, the 1 st and 2nd s.s. are SID 3871 & any one of SID 101-1708, respectively. In emb. 2.3872, the 1 st and 2nd s.s. are SID 3872 & any one of SID 101-1708, respectively. In emb. 2.3873, the 1 st and 2nd s.s. are SID 3873 & any one of SID 101-1708, respectively. In emb. 2.3874, the 1 st and 2nd s.s. are SID 3874 & any one of SID 101-1708, respectively. In emb. 2.3875, the 1 st and 2nd s.s. are SID 3875 & any one of SID 101-1708, respectively. In emb. 2.3876, the 1 st and 2nd s.s. are SID 3876 & any one of SID 101-1708, respectively. In emb. 2.3877, the 1 st and 2nd s.s. are SID 3877 & any one of SID 101-1708, respectively. In emb. 2.3878, the 1 st and 2nd s.s. are SID 3878 & any one of SID 101-1708, respectively. In emb. 2.3879, the 1 st and 2nd s.s. are SID 3879 & any one of SID 101-1708, respectively. In emb. 2.3880, the 1 st and 2nd s.s. are SID 3880 & any one of SID 101-1708, respectively. In emb. 2.3881, the 1 st and 2nd s.s. are SID 3881 & any one of SID 101-1708, respectively. In emb. 2.3882, the 1 st and 2nd s.s. are SID 3882 & any one of SID 101-1708, respectively. In emb. 2.3883, the 1 st and 2nd s.s. are SID 3883 & any one of SID 101-1708, respectively. In emb. 2.3884, the 1 st and 2nd s.s. are SID 3884 & any one of SID 101-1708, respectively. In emb. 2.3885, the 1 st and 2nd s.s. are SID 3885 & any one of SID 101-1708, respectively. In emb. 2.3886, the 1 st and 2nd s.s. are SID 3886 & any one of SID 101-1708, respectively. In emb. 2.3887, the 1 st and 2nd s.s. are SID 3887 & any one of SID 101-1708, respectively. In emb. 2.3888, the 1 st and 2nd s.s. are SID 3888 & any one of SID 101-1708, respectively. In emb. 2.3889, the 1 st and 2nd s.s. are SID 3889 & any one of SID 101-1708, respectively. In emb. 2.3890, the 1 st and 2nd s.s. are SID 3890 & any one of SID 101-1708, respectively. In emb. 2.3891, the 1 st and 2nd s.s. are SID 3891 & any one of SID 101-1708, respectively. In emb. 2.3892, the 1 st and 2nd s.s. are SID 3892 & any one of SID 101-1708, respectively. In emb. 2.3893, the 1 st and 2nd s.s. are SID 3893 & any one of SID 101-1708, respectively. In emb. 2.3894, the 1 st and 2nd s.s. are SID 3894 & any one of SID 101-1708, respectively. In emb. 2.3895, the 1 st and 2nd s.s. are SID 3895 & any one of SID 101-1708, respectively. In emb. 2.3896, the 1 st and 2nd s.s. are SID 3896 & any one of SID 101-1708, respectively. In emb. 2.3897, the 1 st and 2nd s.s. are SID 3897 & any one of SID 101-1708, respectively. In emb. 2.3898, the 1 st and 2nd s.s. are SID 3898 & any one of SID 101-1708, respectively. In emb. 2.3899, the 1 st and 2nd s.s. are SID 3899 & any one of SID 101-1708, respectively. In emb. 2.3900, the 1 st and 2nd s.s. are SID 3900 & any one of SID 101-1708, respectively. In emb. 2.3901, the 1 st and 2nd s.s. are SID 3901 & any one of SID 101-1708, respectively. In emb. 2.3902, the 1 st and 2nd s.s. are SID 3902 & any one of SID 101-1708, respectively. In emb. 2.3903, the 1 st and 2nd s.s. are SID 3903 & any one of SID 101-1708, respectively. In emb. 2.3904, the 1 st and 2nd s.s. are SID 3904 & any one of SID 101-1708, respectively. In emb. 2.3905, the 1 st and 2nd s.s. are SID 3905 & any one of SID 101-1708, respectively. In emb. 2.3906, the 1 st and 2nd s.s. are SID 3906 & any one of SID 101-1708, respectively. In emb. 2.3907, the 1 st and 2nd s.s. are SID 3907 & any one of SID 101-1708, respectively. In emb. 2.3908, the 1 st and 2nd s.s. are SID 3908 & any one of SID 101-1708, respectively. In emb. 2.3909, the 1 st and 2nd s.s. are SID 3909 & any one of SID 101-1708, respectively. In emb. 2.3910, the 1 st and 2nd s.s. are SID 3910 & any one of SID 101-1708, respectively. In emb. 2.3911, the 1 st and 2nd s.s. are SID 3911 & any one of SID 101-1708, respectively. In emb. 2.3912, the 1 st and 2nd s.s. are SID 3912 & any one of SID 101-1708, respectively. In emb. 2.3913, the 1 st and 2nd s.s. are SID 3913 & any one of SID 101-1708, respectively. In emb. 2.3914, the 1 st and 2nd s.s. are SID 3914 & any one of SID 101-1708, respectively. In emb. 2.3915, the 1 st and 2nd s.s. are SID 3915 & any one of SID 101-1708, respectively. In emb. 2.3916, the 1 st and 2nd s.s. are SID 3916 & any one of SID 101-1708, respectively. In emb. 2.3917, the 1 st and 2nd s.s. are SID 3917 & any one of SID 101-1708, respectively. In emb. 2.3918, the 1 st and 2nd s.s. are SID 3918 & any one of SID 101-1708, respectively. In emb. 2.3919, the 1 st and 2nd s.s. are SID 3919 & any one of SID 101-1708, respectively. In emb. 2.3920, the 1 st and 2nd s.s. are SID 3920 & any one of SID 101-1708, respectively. In emb. 2.3921, the 1 st and 2nd s.s. are SID 3921 & any one of SID 101-1708, respectively. In emb. 2.3922, the 1 st and 2nd s.s. are SID 3922 & any one of SID 101-1708, respectively. In emb. 2.3923, the 1 st and 2nd s.s. are SID 3923 & any one of SID 101-1708, respectively. In emb. 2.3924, the 1 st and 2nd s.s. are SID 3924 & any one of SID 101-1708, respectively. In emb. 2.3925, the 1 st and 2nd s.s. are SID 3925 & any one of SID 101-1708, respectively. In emb. 2.3926, the 1 st and 2nd s.s. are SID 3926 & any one of SID 101-1708, respectively. In emb. 2.3927, the 1 st and 2nd s.s. are SID 3927 & any one of SID 101-1708, respectively. In emb. 2.3928, the 1 st and 2nd s.s. are SID 3928 & any one of SID 101-1708, respectively. In emb. 2.3929, the 1 st and 2nd s.s. are SID 3929 & any one of SID 101-1708, respectively. In emb. 2.3930, the 1 st and 2nd s.s. are SID 3930 & any one of SID 101-1708, respectively. In emb. 2.3931, the 1 st and 2nd s.s. are SID 3931 & any one of SID 101-1708, respectively. In emb. 2.3932, the 1 st and 2nd s.s. are SID 3932 & any one of SID 101-1708, respectively. In emb. 2.3933, the 1 st and 2nd s.s. are SID 3933 & any one of SID 101-1708, respectively. In emb. 2.3934, the 1 st and 2nd s.s. are SID 3934 & any one of SID 101-1708, respectively. In emb. 2.3935, the 1 st and 2nd s.s. are SID 3935 & any one of SID 101-1708, respectively. In emb. 2.3936, the 1 st and 2nd s.s. are SID 3936 & any one of SID 101-1708, respectively. In emb. 2.3937, the 1 st and 2nd s.s. are SID 3937 & any one of SID 101-1708, respectively. In emb. 2.3938, the 1 st and 2nd s.s. are SID 3938 & any one of SID 101-1708, respectively. In emb. 2.3939, the 1 st and 2nd s.s. are SID 3939 & any one of SID 101-1708, respectively. In emb. 2.3940, the 1 st and 2nd s.s. are SID 3940 & any one of SID 101-1708, respectively. In emb. 2.3941, the 1 st and 2nd s.s. are SID 3941 & any one of SID 101-1708, respectively. In emb. 2.3942, the 1 st and 2nd s.s. are SID 3942 & any one of SID 101-1708, respectively. In emb. 2.3943, the 1 st and 2nd s.s. are SID 3943 & any one of SID 101-1708, respectively. In emb. 2.3944, the 1 st and 2nd s.s. are SID 3944 & any one of SID 101-1708, respectively. In emb. 2.3945, the 1 st and 2nd s.s. are SID 3945 & any one of SID 101-1708, respectively. In emb. 2.3946, the 1 st and 2nd s.s. are SID 3946 & any one of SID 101-1708, respectively. In emb. 2.3947, the 1 st and 2nd s.s. are SID 3947 & any one of SID 101-1708, respectively. In emb. 2.3948, the 1 st and 2nd s.s. are SID 3948 & any one of SID 101-1708, respectively. In emb. 2.3949, the 1 st and 2nd s.s. are SID 3949 & any one of SID 101-1708, respectively. In emb. 2.3950, the 1 st and 2nd s.s. are SID 3950 & any one of SID 101-1708, respectively. In emb. 2.3951, the 1 st and 2nd s.s. are SID 3951 & any one of SID 101-1708, respectively. In emb. 2.3952, the 1 st and 2nd s.s. are SID 3952 & any one of SID 101-1708, respectively. In emb. 2.3953, the 1 st and 2nd s.s. are SID 3953 & any one of SID 101-1708, respectively. In emb. 2.3954, the 1 st and 2nd s.s. are SID 3954 & any one of SID 101-1708, respectively. In emb. 2.3955, the 1 st and 2nd s.s. are SID 3955 & any one of SID 101-1708, respectively. In emb. 2.3956, the 1 st and 2nd s.s. are SID 3956 & any one of SID 101-1708, respectively. In emb. 2.3957, the 1 st and 2nd s.s. are SID 3957 & any one of SID 101-1708, respectively. In emb. 2.3958, the 1 st and 2nd s.s. are SID 3958 & any one of SID 101-1708, respectively. In emb. 2.3959, the 1 st and 2nd s.s. are SID 3959 & any one of SID 101-1708, respectively. In emb. 2.3960, the 1 st and 2nd s.s. are SID 3960 & any one of SID 101-1708, respectively. In emb. 2.3961, the 1 st and 2nd s.s. are SID 3961 & any one of SID 101-1708, respectively. In emb. 2.3962, the 1 st and 2nd s.s. are SID 3962 & any one of SID 101-1708, respectively. In emb. 2.3963, the 1 st and 2nd s.s. are SID 3963 & any one of SID 101-1708, respectively. In emb. 2.3964, the 1 st and 2nd s.s. are SID 3964 & any one of SID 101-1708, respectively. In emb. 2.3965, the 1 st and 2nd s.s. are SID 3965 & any one of SID 101-1708, respectively. In emb. 2.3966, the 1 st and 2nd s.s. are SID 3966 & any one of SID 101-1708, respectively. In emb. 2.3967, the 1 st and 2nd s.s. are SID 3967 & any one of SID 101-1708, respectively. In emb. 2.3968, the 1 st and 2nd s.s. are SID 3968 & any one of SID 101-1708, respectively. In emb. 2.3969, the 1 st and 2nd s.s. are SID 3969 & any one of SID 101-1708, respectively. In emb. 2.3970, the 1 st and 2nd s.s. are SID 3970 & any one of SID 101-1708, respectively. In emb. 2.3971, the 1 st and 2nd s.s. are SID 3971 & any one of SID 101-1708, respectively. In emb. 2.3972, the 1 st and 2nd s.s. are SID 3972 & any one of SID 101-1708, respectively. In emb. 2.3973, the 1 st and 2nd s.s. are SID 3973 & any one of SID 101-1708, respectively. In emb. 2.3974, the 1 st and 2nd s.s. are SID 3974 & any one of SID 101-1708, respectively. In emb. 2.3975, the 1 st and 2nd s.s. are SID 3975 & any one of SID 101-1708, respectively. In emb. 2.3976, the 1 st and 2nd s.s. are SID 3976 & any one of SID 101-1708, respectively. In emb. 2.3977, the 1 st and 2nd s.s. are SID 3977 & any one of SID 101-1708, respectively. In emb. 2.3978, the 1 st and 2nd s.s. are SID 3978 & any one of SID 101-1708, respectively. In emb. 2.3979, the 1 st and 2nd s.s. are SID 3979 & any one of SID 101-1708, respectively. In emb. 2.3980, the 1 st and 2nd s.s. are SID 3980 & any one of SID 101-1708, respectively. In emb. 2.3981, the 1 st and 2nd s.s. are SID 3981 & any one of SID 101-1708, respectively. In emb. 2.3982, the 1 st and 2nd s.s. are SID 3982 & any one of SID 101-1708, respectively. In emb. 2.3983, the 1 st and 2nd s.s. are SID 3983 & any one of SID 101-1708, respectively. In emb. 2.3984, the 1 st and 2nd s.s. are SID 3984 & any one of SID 101-1708, respectively. In emb. 2.3985, the 1 st and 2nd s.s. are SID 3985 & any one of SID 101-1708, respectively. In emb. 2.3986, the 1 st and 2nd s.s. are SID 3986 & any one of SID 101-1708, respectively. In emb. 2.3987, the 1 st and 2nd s.s. are SID 3987 & any one of SID 101-1708, respectively. In emb. 2.3988, the 1 st and 2nd s.s. are SID 3988 & any one of SID 101-1708, respectively. In emb. 2.3989, the 1 st and 2nd s.s. are SID 3989 & any one of SID 101-1708, respectively. In emb. 2.3990, the 1 st and 2nd s.s. are SID 3990 & any one of SID 101-1708, respectively. In emb. 2.3991, the 1 st and 2nd s.s. are SID 3991 & any one of SID 101-1708, respectively. In emb. 2.3992, the 1 st and 2nd s.s. are SID 3992 & any one of SID 101-1708, respectively. In emb. 2.3993, the 1 st and 2nd s.s. are SID 3993 & any one of SID 101-1708, respectively. In emb. 2.3994, the 1 st and 2nd s.s. are SID 3994 & any one of SID 101-1708, respectively. In emb. 2.3995, the 1 st and 2nd s.s. are SID 3995 & any one of SID 101-1708, respectively. In emb. 2.3996, the 1 st and 2nd s.s. are SID 3996 & any one of SID 101-1708, respectively. In emb. 2.3997, the 1 st and 2nd s.s. are SID 3997 & any one of SID 101-1708, respectively. In emb. 2.3998, the 1 st and 2nd s.s. are SID 3998 & any one of SID 101-1708, respectively. In emb. 2.3999, the 1 st and 2nd s.s. are SID 3999 & any one of SID 101-1708, respectively. In emb. 2.4000, the 1 st and 2nd s.s. are SID 4000 & any one of SID 101-1708, respectively. In emb. 2.4001, the 1 st and 2nd s.s. are SID 4001 & any one of SID 101-1708, respectively. In emb. 2.4002, the 1 st and 2nd s.s. are SID 4002 & any one of SID 101-1708, respectively. In emb. 2.4003, the 1 st and 2nd s.s. are SID 4003 & any one of SID 101-1708, respectively. In emb. 2.4004, the 1 st and 2nd s.s. are SID 4004 & any one of SID 101-1708, respectively. In emb. 2.4005, the 1 st and 2nd s.s. are SID 4005 & any one of SID 101-1708, respectively. In emb. 2.4006, the 1 st and 2nd s.s. are SID 4006 & any one of SID 101-1708, respectively. In emb. 2.4007, the 1 st and 2nd s.s. are SID 4007 & any one of SID 101-1708, respectively. In emb. 2.4008, the 1 st and 2nd s.s. are SID 4008 & any one of SID 101-1708, respectively. In emb. 2.4009, the 1 st and 2nd s.s. are SID 4009 & any one of SID 101-1708, respectively. In emb. 2.4010, the 1 st and 2nd s.s. are SID 4010 & any one of SID 101-1708, respectively. In emb. 2.4011, the 1 st and 2nd s.s. are SID 4011 & any one of SID 101-1708, respectively. In emb. 2.4012, the 1 st and 2nd s.s. are SID 4012 & any one of SID 101-1708, respectively. In emb. 2.4013, the 1 st and 2nd s.s. are SID 4013 & any one of SID 101-1708, respectively. In emb. 2.4014, the 1 st and 2nd s.s. are SID 4014 & any one of SID 101-1708, respectively. In emb. 2.4015, the 1 st and 2nd s.s. are SID 4015 & any one of SID 101-1708, respectively. In emb. 2.4016, the 1 st and 2nd s.s. are SID 4016 & any one of SID 101-1708, respectively. In emb. 2.4017, the 1 st and 2nd s.s. are SID 4017 & any one of SID 101-1708, respectively. In emb. 2.4018, the 1 st and 2nd s.s. are SID 4018 & any one of SID 101-1708, respectively. In emb. 2.4019, the 1 st and 2nd s.s. are SID 4019 & any one of SID 101-1708, respectively. In emb. 2.4020, the 1 st and 2nd s.s. are SID 4020 & any one of SID 101-1708, respectively. In emb. 2.4021, the 1 st and 2nd s.s. are SID 4021 & any one of SID 101-1708, respectively. In emb. 2.4022, the 1 st and 2nd s.s. are SID 4022 & any one of SID 101-1708, respectively. In emb. 2.4023, the 1 st and 2nd s.s. are SID 4023 & any one of SID 101-1708, respectively. In emb. 2.4024, the 1 st and 2nd s.s. are SID 4024 & any one of SID 101-1708, respectively. In emb. 2.4025, the 1 st and 2nd s.s. are SID 4025 & any one of SID 101-1708, respectively. In emb. 2.4026, the 1 st and 2nd s.s. are SID 4026 & any one of SID 101-1708, respectively. In emb. 2.4027, the 1 st and 2nd s.s. are SID 4027 & any one of SID 101-1708, respectively. In emb. 2.4028, the 1 st and 2nd s.s. are SID 4028 & any one of SID 101-1708, respectively. In emb. 2.4029, the 1 st and 2nd s.s. are SID 4029 & any one of SID 101-1708, respectively. In emb. 2.4030, the 1 st and 2nd s.s. are SID 4030 & any one of SID 101-1708, respectively. In emb. 2.4031, the 1 st and 2nd s.s. are SID 4031 & any one of SID 101-1708, respectively. In emb. 2.4032, the 1 st and 2nd s.s. are SID 4032 & any one of SID 101-1708, respectively. In emb. 2.4033, the 1 st and 2nd s.s. are SID 4033 & any one of SID 101-1708, respectively. In emb. 2.4034, the 1 st and 2nd s.s. are SID 4034 & any one of SID 101-1708, respectively. In emb. 2.4035, the 1 st and 2nd s.s. are SID 4035 & any one of SID 101-1708, respectively. In emb. 2.4036, the 1 st and 2nd s.s. are SID 4036 & any one of SID 101-1708, respectively. In emb. 2.4037, the 1 st and 2nd s.s. are SID 4037 & any one of SID 101-1708, respectively. In emb. 2.4038, the 1 st and 2nd s.s. are SID 4038 & any one of SID 101-1708, respectively. In emb. 2.4039, the 1 st and 2nd s.s. are SID 4039 & any one of SID 101-1708, respectively. In emb. 2.4040, the 1 st and 2nd s.s. are SID 4040 & any one of SID 101-1708, respectively. In emb. 2.4041, the 1 st and 2nd s.s. are SID 4041 & any one of SID 101-1708, respectively. In emb. 2.4042, the 1 st and 2nd s.s. are SID 4042 & any one of SID 101-1708, respectively. In emb. 2.4043, the 1 st and 2nd s.s. are SID 4043 & any one of SID 101-1708, respectively. In emb. 2.4044, the 1 st and 2nd s.s. are SID 4044 & any one of SID 101-1708, respectively. In emb. 2.4045, the 1 st and 2nd s.s. are SID 4045 & any one of SID 101-1708, respectively. In emb. 2.4046, the 1 st and 2nd s.s. are SID 4046 & any one of SID 101-1708, respectively. In emb. 2.4047, the 1 st and 2nd s.s. are SID 4047 & any one of SID 101-1708, respectively. In emb. 2.4048, the 1 st and 2nd s.s. are SID 4048 & any one of SID 101-1708, respectively. In emb. 2.4049, the 1 st and 2nd s.s. are SID 4049 & any one of SID 101-1708, respectively. In emb. 2.4050, the 1 st and 2nd s.s. are SID 4050 & any one of SID 101-1708, respectively. In emb. 2.4051, the 1 st and 2nd s.s. are SID 4051 & any one of SID 101-1708, respectively. In emb. 2.4052, the 1 st and 2nd s.s. are SID 4052 & any one of SID 101-1708, respectively. In emb. 2.4053, the 1 st and 2nd s.s. are SID 4053 & any one of SID 101-1708, respectively. In emb. 2.4054, the 1 st and 2nd s.s. are SID 4054 & any one of SID 101-1708, respectively. In emb. 2.4055, the 1 st and 2nd s.s. are SID 4055 & any one of SID 101-1708, respectively. In emb. 2.4056, the 1 st and 2nd s.s. are SID 4056 & any one of SID 101-1708, respectively. In emb. 2.4057, the 1 st and 2nd s.s. are SID 4057 & any one of SID 101-1708, respectively. In emb. 2.4058, the 1 st and 2nd s.s. are SID 4058 & any one of SID 101-1708, respectively. In emb. 2.4059, the 1 st and 2nd s.s. are SID 4059 & any one of SID 101-1708, respectively. In emb. 2.4060, the 1 st and 2nd s.s. are SID 4060 & any one of SID 101-1708, respectively. In emb. 2.4061, the 1 st and 2nd s.s. are SID 4061 & any one of SID 101-1708, respectively. In emb. 2.4062, the 1 st and 2nd s.s. are SID 4062 & any one of SID 101-1708, respectively. In emb. 2.4063, the 1 st and 2nd s.s. are SID 4063 & any one of SID 101-1708, respectively. In emb. 2.4064, the 1 st and 2nd s.s. are SID 4064 & any one of SID 101-1708, respectively. In emb. 2.4065, the 1 st and 2nd s.s. are SID 4065 & any one of SID 101-1708, respectively. In emb. 2.4066, the 1 st and 2nd s.s. are SID 4066 & any one of SID 101-1708, respectively. In emb. 2.4067, the 1 st and 2nd s.s. are SID 4067 & any one of SID 101-1708, respectively. In emb. 2.4068, the 1 st and 2nd s.s. are SID 4068 & any one of SID 101-1708, respectively. In emb. 2.4069, the 1 st and 2nd s.s. are SID 4069 & any one of SID 101-1708, respectively. In emb. 2.4070, the 1 st and 2nd s.s. are SID 4070 & any one of SID 101-1708, respectively. In emb. 2.4071, the 1 st and 2nd s.s. are SID 4071 & any one of SID 101-1708, respectively. In emb. 2.4072, the 1 st and 2nd s.s. are SID 4072 & any one of SID 101-1708, respectively. In emb. 2.4073, the 1 st and 2nd s.s. are SID 4073 & any one of SID 101-1708, respectively. In emb. 2.4074, the 1 st and 2nd s.s. are SID 4074 & any one of SID 101-1708, respectively. In emb. 2.4075, the 1 st and 2nd s.s. are SID 4075 & any one of SID 101-1708, respectively. In emb. 2.4076, the 1 st and 2nd s.s. are SID 4076 & any one of SID 101-1708, respectively.
    • Embodiment 2c is a composition comprising a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise a 1 st spacer sequence selected from SEQ ID NOs: 5001-5496, and a 2nd spacer sequence selected from SEQ ID NOs: 5497-6080. Embodiments 2.05070-2.05334 are embodiments according to embodiment 12c with additional features. See above for meanings of abbreviations. In emb. 2.05070, the 1 st and 2nd s.s. are SID 5070 & any one of SID 5497-6080, respectively. In emb. 2.05262, the 1 st and 2nd s.s. are SID 5262 & any one of SID 5497-6080, respectively. In emb. 2.05310, the 1 st and 2nd s.s. are SID 5310 & any one of SID 5497-6080, respectively. In emb. 2.05334, the 1 st and 2nd s.s. are SID 5334 & any one of SID 5497-6080, respectively.
    • Embodiment 2d is a composition comprising a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise a 1 st spacer sequence selected from SEQ ID NOs: 46597-53028, and a 2nd spacer sequence selected from SEQ ID NOs: 7301-46596. Embodiments 2.46768-2.52898 are embodiments according to embodiment 12d with additional features. See above for meanings of abbreviations. In emb. 2.46768, the 1 st and 2nd s.s. are SID 46768 & any one of SID 7301-46596, respectively. In emb. 2.46967, the 1 st and 2nd s.s. are SID 46967 & any one of SID 7301-46596, respectively. In emb. 2.47032, the 1 st and 2nd s.s. are SID 47032 & any one of SID 7301-46596, respectively. In emb. 2.47047, the 1 st and 2nd s.s. are SID 47047 & any one of SID 7301-46596, respectively. In emb. 2.50538, the 1 st and 2nd s.s. are SID 50538 & any one of SID 7301-46596, respectively. In emb. 2.50674, the 1 st and 2nd s.s. are SID 50674 & any one of SID 7301-46596, respectively. In emb. 2.50682, the 1 st and 2nd s.s. are SID 50682 & any one of SID 7301-46596, respectively. In emb. 2.50706, the 1 st and 2nd s.s. are SID 50706 & any one of SID 7301-46596, respectively. In emb. 2.50714, the 1 st and 2nd s.s. are SID 50714 & any one of SID 7301-46596, respectively. In emb. 2.50898, the 1 st and 2nd s.s. are SID 50898 & any one of SID 7301-46596, respectively. In emb. 2.50978, the 1 st and 2nd s.s. are SID 50978 & any one of SID 7301-46596, respectively. In emb. 2.51058, the 1 st and 2nd s.s. are SID 51058 & any one of SID 7301-46596, respectively. In emb. 2.51162, the 1 st and 2nd s.s. are SID 51162 & any one of SID 7301-46596, respectively. In emb. 2.51362, the 1 st and 2nd s.s. are SID 51362 & any one of SID 7301-46596, respectively. In emb. 2.51394, the 1 st and 2nd s.s. are SID 51394 & any one of SID 7301-46596, respectively. In emb. 2.51466, the 1 st and 2nd s.s. are SID 51466 & any one of SID 7301-46596, respectively. In emb. 2.51474, the 1 st and 2nd s.s. are SID 51474 & any one of SID 7301-46596, respectively. In emb. 2.51490, the 1 st and 2nd s.s. are SID 51490 & any one of SID 7301-46596, respectively. In emb. 2.51498, the 1 st and 2nd s.s. are SID 51498 & any one of SID 7301-46596, respectively. In emb. 2.51506, the 1 st and 2nd s.s. are SID 51506 & any one of SID 7301-46596, respectively. In emb. 2.51650, the 1 st and 2nd s.s. are SID 51650 & any one of SID 7301-46596, respectively. In emb. 2.51658, the 1 st and 2nd s.s. are SID 51658 & any one of SID 7301-46596, respectively. In emb. 2.51682, the 1 st and 2nd s.s. are SID 51682 & any one of SID 7301-46596, respectively. In emb. 2.51706, the 1 st and 2nd s.s. are SID 51706 & any one of SID 7301-46596, respectively. In emb. 2.51746, the 1 st and 2nd s.s. are SID 51746 & any one of SID 7301-46596, respectively. In emb. 2.51754, the 1 st and 2nd s.s. are SID 51754 & any one of SID 7301-46596, respectively. In emb. 2.51762, the 1 st and 2nd s.s. are SID 51762 & any one of SID 7301-46596, respectively. In emb. 2.51810, the 1 st and 2nd s.s. are SID 51810 & any one of SID 7301-46596, respectively. In emb. 2.51898, the 1 st and 2nd s.s. are SID 51898 & any one of SID 7301-46596, respectively. In emb. 2.51914, the 1 st and 2nd s.s. are SID 51914 & any one of SID 7301-46596, respectively. In emb. 2.51930, the 1 st and 2nd s.s. are SID 51930 & any one of SID 7301-46596, respectively. In emb. 2.51954, the 1 st and 2nd s.s. are SID 51954 & any one of SID 7301-46596, respectively. In emb. 2.52066, the 1 st and 2nd s.s. are SID 52066 & any one of SID 7301-46596, respectively. In emb. 2.52082, the 1 st and 2nd s.s. are SID 52082 & any one of SID 7301-46596, respectively. In emb. 2.52090, the 1 st and 2nd s.s. are SID 52090 & any one of SID 7301-46596, respectively. In emb. 2.52098, the 1 st and 2nd s.s. are SID 52098 & any one of SID 7301-46596, respectively. In emb. 2.52106, the 1 st and 2nd s.s. are SID 52106 & any one of SID 7301-46596, respectively. In emb. 2.52250, the 1 st and 2nd s.s. are SID 52250 & any one of SID 7301-46596, respectively. In emb. 2.52258, the 1 st and 2nd s.s. are SID 52258 & any one of SID 7301-46596, respectively. In emb. 2.52266, the 1 st and 2nd s.s. are SID 52266 & any one of SID 7301-46596, respectively. In emb. 2.52290, the 1 st and 2nd s.s. are SID 52290 & any one of SID 7301-46596, respectively. In emb. 2.52298, the 1 st and 2nd s.s. are SID 52298 & any one of SID 7301-46596, respectively. In emb. 2.52306, the 1 st and 2nd s.s. are SID 52306 & any one of SID 7301-46596, respectively. In emb. 2.52354, the 1 st and 2nd s.s. are SID 52354 & any one of SID 7301-46596, respectively. In emb. 2.52386, the 1 st and 2nd s.s. are SID 52386 & any one of SID 7301-46596, respectively. In emb. 2.52418, the 1 st and 2nd s.s. are SID 52418 & any one of SID 7301-46596, respectively. In emb. 2.52434, the 1 st and 2nd s.s. are SID 52434 & any one of SID 7301-46596, respectively. In emb. 2.52458, the 1 st and 2nd s.s. are SID 52458 & any one of SID 7301-46596, respectively. In emb. 2.52474, the 1 st and 2nd s.s. are SID 52474 & any one of SID 7301-46596, respectively. In emb. 2.52498, the 1 st and 2nd s.s. are SID 52498 & any one of SID 7301-46596, respectively. In emb. 2.52506, the 1 st and 2nd s.s. are SID 52506 & any one of SID 7301-46596, respectively. In emb. 2.52522, the 1 st and 2nd s.s. are SID 52522 & any one of SID 7301-46596, respectively. In emb. 2.52530, the 1 st and 2nd s.s. are SID 52530 & any one of SID 7301-46596, respectively. In emb. 2.52546, the 1 st and 2nd s.s. are SID 52546 & any one of SID 7301-46596, respectively. In emb. 2.52554, the 1 st and 2nd s.s. are SID 52554 & any one of SID 7301-46596, respectively. In emb. 2.52594, the 1 st and 2nd s.s. are SID 52594 & any one of SID 7301-46596, respectively. In emb. 2.52610, the 1 st and 2nd s.s. are SID 52610 & any one of SID 7301-46596, respectively. In emb. 2.52618, the 1 st and 2nd s.s. are SID 52618 & any one of SID 7301-46596, respectively. In emb. 2.52634, the 1 st and 2nd s.s. are SID 52634 & any one of SID 7301-46596, respectively. In emb. 2.52666, the 1 st and 2nd s.s. are SID 52666 & any one of SID 7301-46596, respectively. In emb. 2.52898, the 1 st and 2nd s.s. are SID 52898 & any one of SID 7301-46596, respectively.
    • Embodiment 3 A composition comprising:
    • i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising:
      • a. a spacer sequence selected from SEQ ID NOs: 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, and 5334; or
      • b. a spacer sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310; or
      • c. a spacer sequence selected from SEQ ID NOs: 5262, 5334, and 5830; or
      • d. SEQ ID NO: 5262; or
      • e. a spacer sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312; or
      • f. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through e); or
      • g. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through f); or
    • ii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising:
      • a. a first and second spacer sequence selected from SEQ ID NOs: 5782 and 5262; 5830 and 5262; 5926 and 5262; 5950 and 5262; and 5998 and 5262; or
      • b. a first and second spacer sequence selected from SEQ ID NOs: 5830 and 5262; and 6022 and 5310; or
      • c. SEQ ID NOs: 5334 and 5830; or
      • d. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through c); or
      • e. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through d).
    • Embodiment 4 A composition comprising:
    • i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising:
      • a. a spacer sequence selected from SEQ ID NOs: 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, and 45906; or
      • b. a spacer sequence selected from SEQ ID NOs: 51706, 51058, 51754, 52090, 52594, 52098, 52298, 52106, 51682, 52066, 52354, 52458, 52290, 52498, 51658, 51930, 51162, 52506, 51762, 51746, 52386, 52258, 52530, 52634, 27850, 28634, 26882, 28650, 28370, 28194, 26626, 26634, 26786, 26754, 27770, 26578, 28130, 27738, 28338, 28642, 26602, 27754, 27730, and 28122; or
      • c. a spacer sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032; or
      • d. a spacer sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030; or
      • e. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through d); or
      • f. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through e); or
    • ii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising:
      • a. a first and second spacer sequence selected from SEQ ID NOs: 47047 and 7447; 7463 and 46967; 46768 and 7680; and 47032 and 7447; or
      • b. SEQ ID NOs: 47047 and 7447; or
      • c. SEQ ID NOs: 52898 and 26546; or
      • d. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through c); or
      • e. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through d).
    • Embodiment 5 The composition of any one of the preceding embodiments, further comprising an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 6 The composition of any one of the preceding embodiments, wherein the RNA-targeted endonuclease is a Cas nuclease.
    • Embodiment 7 The composition of embodiment 6, wherein the Cas nuclease is Cas9.
    • Embodiment 8 The composition of embodiment 7, wherein the Cas9 nuclease is from Streptococcus pyogenes.
    • Embodiment 9 The composition of embodiment 7, wherein the Cas9 nuclease is from Staphylococcus aureus.
    • Embodiment 10 The composition of embodiment 6, wherein the Cas nuclease is a Cpf1 nuclease.
    • Embodiment 11 The composition of any one of the preceding embodiments, further comprising a DNA-PK inhibitor.
    • Embodiment 12 The composition of any of the preceding embodiments, wherein the guide RNA is an sgRNA.
    • Embodiment 13 The composition of embodiment 12, wherein the sgRNA is modified.
    • Embodiment 14 The composition of embodiment 13, wherein the modification alters one or more 2′ positions and/or phosphodiester linkages.
    • Embodiment 15 The composition of any one of embodiments 13-14, wherein the modification alters one or more, or all, of the first three nucleotides of the sgRNA.
    • Embodiment 16 The composition of any one of embodiments 13-15, wherein the modification alters one or more, or all, of the last three nucleotides of the sgRNA.
    • Embodiment 17 The composition of any one of embodiments 13-16, wherein the modification includes one or more of a phosphorothioate modification, a 2′-OME modification, a 2′-O-MOE modification, a 2′-F modification, a 2′-O-methine-4′ bridge modification, a 3′-thiophosphonoacetate modification, or a 2′-deoxy modification.
    • Embodiment 18 The composition of any one of the preceding embodiments, wherein the composition further comprises a pharmaceutically acceptable excipient.
    • Embodiment 19 The composition of any one of the preceding embodiments, wherein the guide RNA is associated with a lipid nanoparticle (LNP) or a viral vector.
    • Embodiment 20 The composition of embodiment 19, wherein the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector.
    • Embodiment 21 The composition of embodiment 19, wherein the viral vector is an adeno-associated virus (AAV) vector.
    • Embodiment 22 The composition of embodiment 21, wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh10, AAVrh74, or AAV9 vector, wherein the number following AAV indicates the AAV serotype.
    • Embodiment 23 The composition of embodiment 22, wherein the AAV vector is an AAV serotype 9 vector.
    • Embodiment 24 The composition of embodiment 22, wherein the AAV vector is an AAVrh10 vector.
    • Embodiment 25 The composition of embodiment 22, wherein the AAV vector is an AAVrh74 vector.
    • Embodiment 26 The composition of any one of embodiments 19-25, wherein the viral vector comprises a tissue-specific promoter.
    • Embodiment 27 The composition of any one of embodiments 19-26, comprising a viral vector, wherein the viral vector comprises a muscle-specific promoter, optionally wherein the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, an SPc5-12 promoter, or a CK8e promoter.
    • Embodiment 28 The composition of any one of embodiments 19-25, wherein the viral vector comprises a neuron-specific promoter, optionally wherein the neuron-specific promoter is an enolase promoter.
    • Embodiment 29 A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor.
    • Embodiment 30 A method of excising a self-complementary region in DNA comprising delivering to a cell that comprises the self-complementary region i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the self-complementary region, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor, wherein the self-complementary region is excised.
    • Embodiment 31 A method of excising a trinucleotide repeat (TNR) in DNA comprising delivering to a cell that comprises the TNR i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor, wherein at least one TNR is excised.
    • Embodiment 32 The method of embodiment 30, wherein the self-complementary region comprises a palindromic sequence, a direct repeat, an inverted repeat, a GC-rich sequence, or an AT-rich sequence, optionally wherein the GC-richness or AT-richness is at least 70%, 75%, 80%, 85%, 90%, or 95% over a length of at least 10 nucleotides which are optionally interrupted by a loop-forming sequence.
    • Embodiment 33 The method of any one of embodiments 29-32, comprising a pair of guide RNAs comprising a pair of spacer sequences that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 34 The method of any one of embodiments 29-33, wherein the target is (i) in the TNR or self-complementary region or (ii) within 10, 15, 20, 25, 30, 40, or 50 nucleotides of the TNR or self-complementary region.
    • Embodiment 35 The method of any one of embodiments 29-34 for the preparation of a medicament for treating a human subject having DM1, HD, FA, FXS, FXTAS, FXPOI, FXES, XSBMA, SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, or DRPLA.
    • Embodiment 36 The method of any one of embodiments 29, or 31-35, wherein the TNR is a CTG in the 3′ untranslated region (UTR) of the DMPK gene.
    • Embodiment 37 The method of embodiment 36, comprising excising at least a portion of the 3′ UTR of the DMPK gene, wherein the excision results in treatment of myotonic dystrophy type 1 (DM1).
    • Embodiment 38 The method of any one of the embodiments 29, or 31-35, wherein the TNR is within the FMR1 gene.
    • Embodiment 39 The method of embodiment 38, wherein the excision results in treatment of Fragile X syndrome.
    • Embodiment 40 The method of any one of embodiments 29, or 31-35, wherein the TNR is within the FXN gene.
    • Embodiment 41 The method of embodiment 40, wherein the excision results in treatment of Friedrich's Ataxis (FA).
    • Embodiment 42 The method of any one of embodiments 29, or 31-35, wherein the TNR is within the huntingtin, frataxin (FXN), Fragile X Mental Retardation 1 (FMR1), Fragile X Mental Retardation 2 (FMR2), androgen receptor (AR), aristaless related homeobox (ARX), Ataxin 1 (ATXN1), Ataxin 2 (ATXN2), Ataxin 3 (ATXN3), Calcium voltage-gated channel subunit alphal A (CACNA1A), Ataxin 7 (ATXN7), ATXN8 opposite strand lncRNA (ATXN8OS), Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform (PPP2R2B), TATA binding protein (TBP), or Atrophin-1 (ATN1) gene, or the TNR is adjacent to the 5′ UTR of FMR2.
    • Embodiment 43 The method of embodiment 42, wherein the excision in huntingtin (HTT) results in treatment of Huntington's disease (HD); the excision in FXN results in treatment of Friedrich's ataxia (FA); the excision in FMR1 results in treatment of Fragile X syndrome (FXS), Fragile X associated primary ovarian insufficiency (FXPOI), or fragile X-associated tremor/ataxia syndrome (FXTAS); the excision in FMR2 or adjacent to the 5′ UTR of FMR2 results in treatment of fragile XE syndrome (FXES); the excision in AR results in treatment of X-linked spinal and bulbar muscular atrophy (XSBMA); the excision in ATXN1 results in treatment of spinocerebellar ataxia type 1 (SCA1), the excision in ATXN2 results in treatment of spinocerebellar ataxia type 2 (SCA2), the excision in ATXN3 results in treatment of spinocerebellar ataxia type 3 (SCA3), the excision in CACNA1A results in treatment of spinocerebellar ataxia type 6 (SCA6), the excision in ATXN7 results in treatment of spinocerebellar ataxia type 7 (SCAT), the excision in ATXN8OS results in treatment of spinocerebellar ataxia type 8 (SCAB), the excision in PPP2R2B results in treatment of spinocerebellar ataxia type 12 (SCA12), the excision in TBP results in treatment of spinocerebellar ataxia type 17 (SCA17), or the excision in ATN1 results in treatment of Dentatorubropallidoluysian atrophy (DRPLA).
    • Embodiment 44 The method of any one of embodiments 29, or 31-43, wherein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10,000 TNRs are excised.
    • Embodiment 45 The method of any one of embodiments 29, or 31-43, wherein 1-5, 5-10, 10-20, 20-30, 40-60, 60-80, 80-100, 100-150, 150-200, 200-300, 300-500, 500-700, 700-1000, 1000-1500, 1500-2000, 2000-3000, 3000-4000, 4000-5000, 5000-6000, 6000-7000, 7000-8000, 8000-9000, or 9000-10,000 TNRs are excised.
    • Embodiment 46 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the DMPK gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat DMPK gene, said amelioration optionally comprising one or more of increasing myotonic dystrophy protein kinase activity; increasing phosphorylation of phospholemman, dihydropyridine receptor, myogenin, L-type calcium channel beta subunit, and/or myosin phosphatase targeting subunit; increasing inhibition of myosin phosphatase; and/or ameliorating muscle loss, muscle weakness, hypersomnia, one or more executive function deficiencies, insulin resistance, cataract formation, balding, or male infertility or low fertility.
    • Embodiment 47 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the HTT gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat HTT gene, said amelioration optionally comprising ameliorating one or more of striatal neuron loss, involuntary movements, irritability, depression, small involuntary movements, poor coordination, difficulty learning new information or making decisions, difficulty walking, speaking, and/or swallowing, and/or a decline in thinking and/or reasoning abilities.
    • Embodiment 48 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the FMR1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat FMR1 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR1 transcript or Fragile X Mental Retardation Protein levels, translational dysregulation of mRNAs normally associated with FMRP, lowered levels of phospho-cofilin (CFL1), increased levels of phospho-cofilin phosphatase PPP2CA, diminished mRNA transport to neuronal synapses, increased expression of HSP27, HSP70, and/or CRYAB, abnormal cellular distribution of lamin A/C isoforms, early-onset menopause such as menopause before age 40 years, defects in ovarian development or function, elevated level of serum gonadotropins (e.g., FSH), progressive intention tremor, parkinsonism, cognitive decline, generalized brain atrophy, impotence, and/or developmental delay.
    • Embodiment 49 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the FMR2 gene or adjacent to the 5′ UTR of FMR2, and wherein excision of the TNRs ameliorates one or more phenotypes associated with expanded-repeats in or adjacent to the FMR2 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR2 expression, developmental delays, poor eye contact, repetitive use of language, and hand-flapping.
    • Embodiment 50 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the AR gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat AR gene, said amelioration optionally comprising ameliorating one or more of aberrant AR expression; production of a C-terminally truncated fragment of the androgen receptor protein; proteolysis of androgen receptor protein by caspase-3 and/or through the ubiquitin-proteasome pathway; formation of nuclear inclusions comprising CREB-binding protein; aberrant phosphorylation of p44/42, p38, and/or SAPK/JNK; muscle weakness; muscle wasting; difficulty walking, swallowing, and/or speaking; gynecomastia; and/or male infertility.
    • Embodiment 51 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATXN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN1 gene, said amelioration optionally comprising ameliorating one or more of formation of aggregates comprising ATXN1; Purkinje cell death; ataxia; muscle stiffness; rapid, involuntary eye movements; limb numbness, tingling, or pain; and/or muscle twitches.
    • Embodiment 52 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATXN2 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN2 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN2 production; Purkinje cell death; ataxia; difficulty speaking or swallowing; loss of sensation and weakness in the limbs; dementia; muscle wasting; uncontrolled muscle tensing; and/or involuntary jerking movements.
    • Embodiment 53 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATXN3 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN3 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN3 levels; aberrant beclin-1 levels; inhibition of autophagy; impaired regulation of superoxide dismutase 2; ataxia; difficulty swallowing; loss of sensation and weakness in the limbs; dementia; muscle stiffness; uncontrolled muscle tensing; tremors; restless leg symptoms; and/or muscle cramps.
    • Embodiment 54 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the CACNA1A gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat CACNA1A gene, said amelioration optionally comprising ameliorating one or more of aberrant CaV2.1 voltage-gated calcium channels in CACNA1A-expressing cells; ataxia; difficulty speaking; involuntary eye movements; double vision; loss of arm coordination; tremors; and/or uncontrolled muscle tensing.
    • Embodiment 55 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATXN7 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN7 gene, said amelioration optionally comprising ameliorating one or more of aberrant histone acetylation; aberrant histone deubiquitination; impairment of transactivation by CRX; formation of nuclear inclusions comprising ATXN7; ataxia; incoordination of gait; poor coordination of hands, speech and/or eye movements; retinal degeneration; and/or pigmentary macular dystrophy.
    • Embodiment 56 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATXN8OS gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN8OS gene, said amelioration optionally comprising ameliorating one or more of formation of ribonuclear inclusions comprising ATXN8OS mRNA; aberrant KLHL1 protein expression; ataxia; difficulty speaking and/or walking; and/or involuntary eye movements.
    • Embodiment 57 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the PPP2R2B gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat PPP2R2B gene, said amelioration optionally comprising ameliorating one or more of aberrant PPP2R2B expression; aberrant phosphatase 2 activity; ataxia; cerebellar degeneration; difficulty walking; and/or poor coordination of hands, speech and/or eye movements.
    • Embodiment 58 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the TBP gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat TBP gene, said amelioration optionally comprising ameliorating one or more of aberrant transcription initiation; aberrant TBP protein accumulation (e.g., in cerebellar neurons); aberrant cerebellar neuron cell death; ataxia; difficulty walking; muscle weakness; and/or loss of cognitive abilities.
    • Embodiment 59 The method of any one of embodiments 29, or 31-35, wherein the TNRs are within the ATN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATN1 gene, said amelioration optionally comprising ameliorating one or more of aberrant transcriptional regulation; aberrant ATN1 protein accumulation (e.g., in neurons); aberrant neuron cell death; involuntary movements; and/or loss of cognitive abilities.
    • Embodiment 60 A pharmaceutical composition comprising the composition of any one of embodiments 1-28.
    • Embodiment 61 A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering the composition of any one of embodiments 1-2, 2b, 2.2709-2.4076, or 5-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 62 A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering the composition of any one of embodiments 1-2, 2b, 2.2709-2.4076, or 5-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 63 The method of embodiment 61 or 62, wherein only one gRNA is administered and a CTG repeat in the 3′ UTR of the DMPK gene is excised.
    • Embodiment 64 The method of embodiment 63, wherein the gRNA comprises a spacer sequence comprising:
    • a. a spacer sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594; or
    • b. a spacer sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594; or
    • c. a spacer sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498; or
    • d. a spacer sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498; or
    • e. a spacer sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258; or
    • f. SEQ ID NO: 3914; or
    • g. SEQ ID NO: 3418; or
    • h. SEQ ID NO: 3938; or
    • i. a spacer sequence selected from SEQ ID NOs: 3916, 3420, and 3940.
    • Embodiment 65 A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering the composition of any one of embodiments 2c, 2.05070-2.05334, 3, or 5-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 66 A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering the composition of any one of embodiments 2c, 2.05070-2.05334, 3, or 5-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 67 The method of embodiment 65 or embodiment 66, wherein only one gRNA is administered and a TNR in the 5′ UTR of the FMR1 gene is excised.
    • Embodiment 68 The method of embodiment 67, wherein the gRNA comprises a spacer sequence comprising:
    • a. a spacer sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310; or
    • b. a spacer sequence selected from SEQ ID NOs: 5262, 5334, and 5830; or
    • c. SEQ ID NO: 5262
    • d. a spacer sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312.
    • Embodiment 69 A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in an intron of the FXN gene, the method comprising administering the composition of any one of embodiments 2d, 2.46768-2.52898, 4-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 70 A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering the composition of any one of embodiments 2d, 2.46768-2.52898, 4-28, or the pharmaceutical formulation of embodiment 60.
    • Embodiment 71 The method of embodiment 69 or embodiment 70, wherein only one gRNA is administered and a TNR in the 5′ UTR of the FXN gene is excised.
    • Embodiment 72 The method of embodiment 71, wherein the gRNA comprises a spacer sequence comprising
    • a. a spacer sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032; or
    • b. a spacer sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030.
    • Embodiment 73 The method of any one of embodiments 29-59 or 61-72, further comprising administering a DNA-PK inhibitor.
    • Embodiment 74 The method of embodiment 73, wherein the DNA-PK inhibitor is Compound 6.
    • Embodiment 75 The method of embodiment 73, wherein the DNA-PK inhibitor is Compound 3.
    • Embodiment 76 A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, wherein the first stretch:
    • a. starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat; or
    • b. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site; or
    • c. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site; or
    • d. is SEQ ID NO: 53413; or
    • e. is SEQ ID NO: 53414; or
    • f. is SEQ ID NO: 53415.
    • Embodiment 77 A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein a second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence, wherein the second stretch:
    • a. starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; or
    • b. starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; or
    • c. is SEQ ID NO: 53416; or
    • d. is SEQ ID NO: 53417.
    • Embodiment 78 A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein
    • i. the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, wherein the first stretch:
      • a. starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat; or
      • b. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site; or
      • c. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site; or
      • d. is SEQ ID NO: 53413; or
      • e. is SEQ ID NO: 53414; or
      • f. is SEQ ID NO: 53415; and
    • ii. a second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence, wherein the second stretch:
      • a. starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; or
      • b. starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; or
      • c. is SEQ ID NO: 53416; or
      • d. is SEQ ID NO: 53417.
    • Embodiment 79 The method of embodiments 76-78, further comprising administering a DNA-PK inhibitor.
    • Embodiment 80 The method of embodiment 79, wherein the DNA-PK inhibitor is Compound 6.
    • Embodiment 81 The method of embodiment 79, wherein the DNA-PK inhibitor is Compound 3.
    • Embodiment 82 The method of any one of embodiments 76-81, further comprising administering an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 83 The method of embodiment 82, wherein the RNA-targeted endonuclease is a Cas nuclease.
    • Embodiment 84 The method of embodiment 83, wherein the Cas nuclease is Cas9.
    • Embodiment 85 The method of embodiment 84, wherein the Cas9 nuclease is from Streptococcus pyogenes.
    • Embodiment 86 The method of embodiment 84, wherein the Cas9 nuclease is from Staphylococcus aureus.
    • Embodiment 87 The method of embodiment 83, wherein the Cas nuclease is a Cpf1 nuclease.
    • Embodiment 88 The method of any one of embodiments 76-87, wherein:
    • (i) the U29 cut site is on chr19 between nucleotides 45,770,383 and 45,770,384, which corresponds to * in the following sequence: ttcacaaccgctccgag*cgtggg;
    • (ii) the U30 cut site is: chr19: between 45,770,385 and 45,770,386, which corresponds to * in the following sequence: gctgggcggagacccac*gctcgg;
    • (iii) the D15 cut site is: chr19: between 45,770,154 and 45,770,155, which corresponds to * in the following sequence: ggctgaggccctgacgt*ggatgg; and
    • (iv) the D35 cut site is: chr19: between 45,770,078 and 45,770,079, which corresponds to * in the following sequence: cacgcacccccacctat*cgttgg.
    • Embodiment 89 A method of screening for a guide RNA that is capable of excising a TNR or self-complementary region of DNA, the method comprising:
    • a) contacting:
      • i. a cell with a guide RNA, an RNA-targeted endonuclease, and a DNA-PK inhibitor;
      • ii. the same type of cell as used in i) with the guide RNA, the RNA-targeted endonuclease but without a DNA-PK inhibitor;
    • b) comparing the excision of the TNR or self-complementary region from the cell contacted in steps a) i) as compared to the cell contacted in step a) ii); and
    • c) selecting a guide RNA wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.
    • Embodiment 90 A method of screening for a pair of guide RNAs that is capable of excising a TNR or self-complementary region, the method comprising:
    • a. contacting:
      • i. a cell with a pair of guide RNAs, an RNA-targeted endonuclease, and a DNA-PK inhibitor;
      • ii. the same type of cell as used in i) with the guide RNA, the RNA-targeted endonuclease but without a DNA-PK inhibitor;
    • b. comparing the excision of the TNR or self-complementary region from the cell contacted in steps a) i) as compared to the cell contacted in step a) ii); and
    • c. selecting a pair of guide RNAs wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.
    • Embodiment 91 The method of embodiment 89 or embodiment 90, wherein the DNA-PK inhibitor is Compound 6.
    • Embodiment 92 The method of embodiment 89 or embodiment 90, wherein the DNA-PK inhibitor is Compound 3.
    • Embodiment 93 The method of any one of embodiments 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 3′ UTR of the DMPK gene.
    • Embodiment 94 The method of any one of embodiments 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FMR1 gene.
    • Embodiment 95 The method of any one of embodiments 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FXN gene.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic of an exemplary structure of a gene containing an expanded trinucleotide sequence (triangles) located in either a 5′ untranslated region (UTR), intron, exon, or 3′ UTR. Examples of trinucleotide repeat expansions include (CGG)n in the 5′UTR of the FMR1 gene, (CAG)n in exon 1 of the HTT gene, (GAA)n in the first intron of the FXN gene and (CTG)n in the 3′ UTR of the DMPK gene.



FIGS. 2A-2B show an overview of trinucleotide repeat excision using two gRNAs. Two gRNA strategies with various DNA repair outcomes mediated by error-prone NHEJ (FIG. 2A). Improved trinucleotide repeat excision by inhibiting NHEJ repair with DNA-PKi (FIG. 2B). NHEJ: non-homologous end joining; MMEJ: microhomology -mediated end joining.



FIG. 3 shows an overview of trinucleotide repeat excision using a single gRNA. Enhanced MMEJ repair and improved trinucleotide repeat excision by inhibiting NHEJ repair machinery with DNA-PKi.



FIG. 4 shows an overview of an AAV vector for trinucleotide repeat excision using one gRNA with respect to viral packaging and delivery.



FIG. 5 shows a schematic overview of the canonical non-homologous end joining (C-NHEJ) and microhomology-mediated end joining (MMEJ) DNA repair pathways after DNA paired double strand breaks are induced. Pathways other than MMEJ (including but not limited to HDR) may be activated downstream of MRE11-RAD5O-NBS1 complex (MRN), depending on the editing conditions, locus sequence composition, and cell type.



FIG. 6 shows a model for single gRNA excision of CTG trinucleotide expansion in DM1. A DNA double strand break (DSB) activates C-NHEJ and MMEJ (or other alternative) pathways. MMEJ relies on pre-existing microhomologies (box) around the DSB. MRN (MRE11-RAD5O-NBS1 complex)/CtIP stimulation of 5′ resection and cleavage of CTG secondary structure is a pre-dominant repair pathway when DNA-PK is inhibited. Pathways other than MMEJ may be activated downstream of MRN/CtIP (including but not limited to HDR pathways) depending on the editing conditions, locus sequence composition, and cell type.



FIG. 7 shows separation by DNA gel-electrophoresis of wild type and excised DNA in wild-type cardiomyocytes after SpCas9 RNP electroporation. A PCR amplified DMPK1 CTG repeat locus is shown after targeting with one of gRNA pairs A-H (see Table 6).



FIGS. 8A-C show CTG repeat excision in disease models for DM1 using a paired gRNA approach. SpCas9 RNP electroporation in DM1 cardiomyocytes (FIG. 8A) and primary fibroblasts (FIG. 8B) show excision of CTG repeats. The leftmost panel in FIG. 8A is a reproduction of bands B and C from FIG. 7. DNA gel-electrophoresis separates wild type and excised DNA of PCR amplified DMPK1 locus. Examples of two gRNA pairs (DM1 Pair 1 and 2) are shown. FIG. 8C shows confirmation by Sanger-Sequencing of excision of a window including the CTG repeat.



FIGS. 9A-9B show phenotypic rescue after CTG repeat excision in primary DM1 fibroblasts with two gRNAs and SpCas9. FIG. 9A shows reduced CUG RNA foci compared to control (−) demonstrated by FISH. FIG. 9B shows reduced MBNL1 protein foci compared to control (−) demonstrated by immunofluorescence.



FIGS. 10A-E show rescue of disease phenotype after dual gRNA CTG repeat excision in primary DM1 fibroblasts. FIGS. 10A-10D show qPCR results showing partial restoration of RNA splicing in MBNL1 (FIG. 10A), NCOR2 (FIG. 10B), FN1 (FIG. 10C) and KIF13A (FIG. 10D) mRNAs. The vertical axes in FIGS. 10A-10D are expressed as the ratio of mis-spliced transcript relative to total transcript, normalized to the wild-type ratio (i.e., wild-type cells give a normalized ratio of 1). FIG. 10E shows quantitative analysis of mis-splicing correction, expressed as percentage rescue (i.e., the ratio between healthy untreated and patient edited values, such that 100% rescue means that patient edited and healthy untreated are equal and 50% rescue means that there is twice as much mis-splicing in patient edited as in healthy untreated) in excised DM1 fibroblasts.



FIG. 11 shows the effect of the indicated guide pairs on the number of CUG foci in DM1 primary fibroblasts. An increased number of cells show cell nuclei with 0 CUG foci as compared to unedited control cells (white bars) as demonstrated by FISH. Examples of four DM1 sgRNA pairs (pairs A-D as the second through fifth bars in each set of 5) shown for SpCas9.



FIG. 12 shows that paired gRNA CTG repeat excision in hTert-transformed DM1 fibroblasts is improved with DNA-PKi Compound 6 (10 uM). The DMPK1 locus was amplified by PCR and wild type DNA was separated by DNA gel-electrophoresis. Three biological replicates are shown (1-3) per condition.



FIG. 13 shows CTG repeat excision using a single gRNA in hTert transformed DM1 fibroblasts (left, no Inhibitor) and enhanced repeat excision after DNA-PK inhibition (right, 10 uM Compound 6). DNA gel-electrophoresis separates wild type from excised DNA. Repeat excision experiments for six individual gRNAs (4, 5, 6, 7, 9, and 10) are shown.



FIGS. 14A-14E show the effect of the indicated guide pairs plus or minus DNA-PK inhibitor on the number of CUG foci in DM1 transformed fibroblasts. Guide pairs A, B, C, and D using SpCas9 are shown in FIGS. 14B, 14C, 14D, and 14E, respectively. An increased number of cells show cell nuclei with 0 CUG foci as compared to unedited control cells (FIG. 14A) as demonstrated by FISH. The x axis shows the number of CUG foci per nucleus. The effect is further enhanced in the presence of DNA-PKi (10 uM Compound 6).



FIGS. 15A-D show rescue of disease phenotype after CTG repeat excision using a gRNA pair in transformed DM1 fibroblasts. Partial restoration of RNA splicing was confirmed by qPCR in MBNL1 (FIG. 15A), NCOR2 (FIG. 15B), FM1 (FIG. 15C), and the observed effect is further enhanced in the presence of DNA-PKi (10 uM, Compound 6). Furthermore, editing does not significantly alter expression of the targeted DMPK gene (FIG. 15D). Mock-treated (M) and cells treated with a control guide targeting AAVS1 (NT) were also analyzed.



FIG. 16 shows an overview of gRNAs used for single gRNA CTG repeat excision in human DMPK locus. gRNAs were designed to target a site 5′ or 3′ of the CTG repeat. Only exemplary guides are shown.



FIG. 17 shows a schematic representation of the 5′ UTR region of FMR1 and exemplary tested gRNAs relative to the CGGn repeat.



FIG. 18 shows CGG repeat excision in M28 CHOC2 and mosaic CHOC1 neuronal precursor cells (NPC). Five possible 5′ gRNAs are shown to the left of the repeat, and one possible 3′ gRNA is shown to the right of the repeat. Cells were treated with one of gRNAs a-e (5′ gRNA) in combination with a 3′ gRNA after SpCas9 RNP electroporation. ACGG: control derived from CGG excised iPSC. C1 and C2: CHOC1 unedited controls. Note: the PCR failed for the C1 control lane.



FIG. 19 shows 5′ UTR genotyping results indicating the location of a small pre-existing deletion (CHOC1 A) in CHOC1 NPCs that overlaps the target sequences of certain guide sequences. FIG. 19 also includes a schematic of the CHOC1 A relative to exemplary guide positions.



FIG. 20 shows a representation of sequencing reads from single CHOC1 clones after excision using a single gRNA (SEQ ID NO: 5262).



FIGS. 21A-B show evidence for CGG repeat excision using single or paired gRNAs after SpCas9 RNP electroporation. FIG. 21A shows CGG repeat excision without treatment with a DNA-PK inhibitor in differentiated, post-mitotic CHOC2 neurons. Arrow indicates excised DNA band as confirmed by Sanger-sequencing. FIG. 21B shows a single guide excision experiment with SpCas9 in CHOC2 neuronal precursor cells (NPCs). PCR amplified FMR1 DNA was separated by electrophoresis using Agilent's 2200 TapeStation. gRNA GDG_Cas9_Fmr1_1 (SEQ ID NO: 5262) (lane B1=DMSO; lane A2=Compound 6) shows excision of CGG repeats.



FIG. 22 shows the effect on GAA repeat excision at the Frataxin locus in iPS cells (4670 and 68FA) of treatment with a DNA-PK inhibitor (“+Inhibitor”; luM Compound 3) in a paired gRNA approach with Cpf1 or SpCas9.



FIG. 23 shows the shift from all NHEJ repair to 50% MMEJ repair observed upon treatment of iPS cells with a DNA-PK inhibitor (luM Compound 3) and paired guide GAA repeat excision at the Frataxin locus. Dotted lines indicate expected cut site. Bolded and underlined letters indicate inserted nucleotides (typical in NHEJ repair). Bolded letters highlight microhomology at the two ends of repair (shown at both ends for clarity, though only one copy of the micro homologous sequence is preserved in the actual sequence).



FIGS. 24A-C show elevated FXN levels after GAA excision in FA iPSCs with SpCas9 with (“+ Inh.”) or without (“− Inh.”) a DNA-PK inhibitor. FIG. 24A shows workflow for Cas9-medited gene editing in iPSCs. FIG. 24B, representative Western Blot after paired gRNA excision of a 0.4, 1.5, 5 and 11 kb fragment compared to control (AAVS1 gRNA, spacer sequence SEQ ID NO: 31). FIG. 24C shows analysis of individual clones sorted by FACS compared to unedited control.



FIG. 25 shows a model for MMEJ-based CGG-repeat excision at the Fragile-X locus. Cleavage using a single gRNA and 5′ DNA resection result in an end with microhomology (box) to a site upstream of the CGG repeat site, facilitating MMEJ repair.



FIGS. 26A-C show editing efficiencies (% indels) of sgRNAs targeting the 3′ UTR of DMPK including upstream sgRNAs (FIG. 26A), downstream sgRNAs (FIG. 26B), and sgRNAs located within or adjacent the CTG repeat expansion (FIG. 26C) in HEK293T cells with Lipofectamine 3000 transfection. Genomic DNA was isolated 72 hr post transfection, and editing efficiencies were assessed by Sanger sequencing and TIDE analysis (error bars =SEM from 3 replicates).



FIGS. 27A-C show editing efficiencies (% indels) of sgRNAs targeting the 3′ UTR of DMPK including upstream sgRNAs (FIG. 27A), downstream sgRNAs (FIG. 27B), and sgRNAs located within or adjacent the CTG repeat expansion (FIG. 27C) in HEK293T cells with Lipofectamine 2000 transfection. Genomic DNA was isolated 48 hr post transfection, and editing efficiencies were assessed by Sanger sequencing and TIDE analysis (error bars =SEM from 4 replicates).



FIGS. 28A-B show editing efficiency of individual sgRNAs targeting the 3′ UTR of DMPK in DM1 myoblasts at three concentrations of Cas9 (10 pmole (triangles), 20 pmole (squares), and 30 pmol (circles)) at a ratio of 1:6 Cas9: sgRNA, by TIDE analysis. The percent editing efficiencies are displayed on the Y axis (FIG. 28A) and as a heatmap (FIG. 28B).



FIG. 29 shows the Spearman correlation of percent editing efficiency results for 42 individual sgRNAs in HEK 293T cells and DM1 myoblasts. Spearman correlation value, rho=0.528. The p-value=0.0002.



FIG. 30 shows low-frequency large indels induced using individual sgRNAs and Cas9 delivered in RNPs (20 pmol) to DM1 myoblasts. The DMPK 3′ UTR region was amplified by GoTaq PCR and visualized by DNA gel electrophoresis; PCR products were excised and subjected to Sanger sequencing.



FIGS. 31A-B shows low-frequency large indels induced using individual sgRNAs and Cas9 delivered in RNPs to DM1 myoblasts. FIG. 31A shows Sanger sequencing traces for sgRNA SEQ ID NO: 3938 (DMPK-U14) and DM383 control. FIG. 31B shows PCR products by DNA gel electrophoresis following treatment of DM1 myoblasts with sgRNAs and Cas9 at two concentrations of Cas9 (20 pmol and 30 pmol).



FIG. 32 depicts exemplary large indels induced by individual sgRNAs targeting the 3′ UTR of DMPK and Cas9 delivered in RNPs in DM1 myoblasts, and exemplary sgRNAs that additionally excise the CTG repeat by inducing a large indel. The arrows indicate the genomic target site for each sgRNA.



FIGS. 33A-C show CTG repeat excision using paired sgRNAs in DM1 myoblasts. FIG. 33A shows a schematic representation of target sites for select sgRNAs in a WT and disease allele of DMPK. FIG. 33B shows separation of PCR products by DNA gel-electrophoresis of wild type DNA and excised DNA (referred to as “DoubleCut edited alleles”). FIG. 33C shows CTG repeat excision efficiency for individual sgRNAs and pairs of sgRNAs measured by loss-of signal ddPCR assay. U1 is SEQ ID NO: 3778 (DMPK-U27); U2 is SEQ ID NO: 3386 (DMPK-U56); U3 is SEQ ID NO: 3354 (DMPK-U58); D1 is SEQ ID NO: 2514 (DMPK-D15); D2 is SEQ ID NO: 2258 (DMPK-D34); D3 is SEQ ID NO: 2210 (DMPK-D42). Pair 1 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 2 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2210 (DMPK-D42); Pair 3 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 4 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2210 (DMPK-D42); and Pair 5 corresponds to sgRNA SEQ ID NO: 3354 (DMPK-U58) and sgRNA SEQ ID NO: 2514 (DMPK-D15).



FIGS. 34A-B show the reduction of (CUG). repeat RNA foci in DM1 myoblasts using individual sgRNAs or paired sgRNAs by FISH as compared to DM1 and healthy control samples. Immunofluorescence is shown Single Cut sgRNA 1 and Pair 4 (FIG. 34A). Results are shown as % relative frequency of the number of (CUG). repeat RNA foci observed per nuclei for sgRNAs 1-6 and Pairs 1-5 (FIG. 34B). sgRNA1 is SEQ ID NO: 3778 (DMPK-U27); sgRNA2 is SEQ ID NO: 3386 (DMPK-U56); sgRNA3 is SEQ ID NO: 3354 (DMPK-U58); sgRNA4 is SEQ ID NO: 2514 (DMPK-D15); sgRNA5 is SEQ ID NO: 2258 (DMPK-D34); sgRNA6 is SEQ ID NO: 2210 (DMPK-D42). Pair 1 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 2 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2210 (DMPK-D42); Pair 3 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 4 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2210 (DMPK-D42); and Pair 5 corresponds to sgRNA SEQ ID NO: 3354 (DMPK-U58) and sgRNA SEQ ID NO: 2514 (DMPK-D15).



FIGS. 35A-B show the reduction of (CUG). repeat RNA foci in DM1 myotubes using individual sgRNAs or paired sgRNAs by FISH as compared to DM1 and healthy controls. Immunofluorescence is shown for DAPI, myogenin, MBLN1, and (CUG). RNA foci for sgRNA1 (SEQ ID NO: 3778, DMPK-U27) and Pair 4 (sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2210 (DMPK-D42)) (FIG. 35A). Results are shown as % relative frequency of the number of (CUG). repeat RNA foci observed per nuclei for sgRNAs 1-6 and Pairs 1-5 (FIG. 35B). sgRNA1 is SEQ ID NO: 3778 (DMPK-U27); sgRNA2 is SEQ ID NO: 3386 (DMPK-U56); sgRNA3 is SEQ ID NO: 3354 (DMPK-U58); sgRNA4 is SEQ ID NO: 2514 (DMPK-D15); sgRNA5 is SEQ ID NO: 2258 (DMPK-D34); sgRNA6 is SEQ ID NO: 2210 (DMPK-D42). Pair 1 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 2 corresponds to sgRNA SEQ ID NO: 3778 (DMPK-U27) and sgRNA SEQ ID NO: 2210 (DMPK-D42); Pair 3 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2258 (DMPK-D34); Pair 4 corresponds to sgRNA SEQ ID NO: 3386 (DMPK-U56) and sgRNA SEQ ID NO: 2210 (DMPK-D42); and Pair 5 corresponds to sgRNA SEQ ID NO: 3354 (DMPK-U58) and sgRNA SEQ ID NO: 2514 (DMPK-D15).



FIG. 36A-D shows correction of mis-splicing by CTG repeat excision using paired sgRNAs in DM1 myotubes. Results show qPCR data showing partial restoration of RNA splicing in BIN1 (FIG. 37A), DMD (FIG. 37B), KIF13A (FIG. 37C), and CACNA2D1 (FIG. 37D) mRNAs.



FIG. 37 shows a single guide excision experiment with SpCas9 in DM1 myoblasts. FIG. 37 shows PCR amplified DMPK DNA separated by electrophoresis using Agilent's 2200 TapeStation for example traces of excised CTG repeats +/- 3 uM Compound 6 and 8 individual guides (DMPK-U10 (SEQ ID NO: 3914), DMPK-U40 (SEQ ID NO: 3514), DMPK-D59 (SEQ ID NO: 1778), DMPK-D13 (SEQ ID NO: 2458), DMPK-U16 (SEQ ID NO: 3858), DMPK-U54 (SEQ ID NO: 3418), DMPK-D63 (SEQ ID NO: 1706), or DMPK-D34 (SEQ ID NO: 2258)). More prominent bands in Compound 6 treated samples indicate enhanced excision rates compared to the DMSO control (encircled).



FIGS. 38A-C show mis-splicing correction in DM1 myoblasts after dual gRNA CTG repeat excision after SpCas9 RNP delivery +/−3 uM Compound 6 (open circle (+ Inh), black circle (− Inh)) with a guide pair (SEQ ID NOs: 3330 and 2554) (FIG. 38A). AAVS1 gRNA (FIG. 38B) and mock electroporated cells (FIG. 38C) served as controls. Mis-splicing correction was evaluated for genes GFTP1, BIN1, MBNL2, DMD, NFIX, GOLGA4, and KIF13A. The frequency of a given splicing event was measured by NGS; data are normalized to mock treated.



FIGS. 39A-B show a dose response of DNA-PK inhibitor on CTG repeat excision in DM1 patient fibroblasts treated with RNPs containing spCas9 and guide pairs (SEQ ID NO: 3330 (GDG_DMPK3) and SEQ ID NO: 2506 (CRISPR-3) (FIG. 39A); or SEQ ID NO: 3330 (GDGDMPK3) and SEQ ID NO: 2546 (CRISPR-4) (FIG. 39B)). Fibroblasts were treated with an increasing dose of Compound 6 (30nM, 300nM, 3p.M, and 1004), or DMSO. Excised products are observed as bands by DNA gel electrophoresis.



FIG. 40 shows exemplary DNA electrophoresis of single gRNA excision with SaCas9 with and without Compound 6 for two gRNAs (SEQ ID NO: 1153 (gRNA 1), SEQ ID NO: 1129 (gRNA2)) in DM1 patient fibroblasts.



FIGS. 41A-B show composites of electropherograms of PCR amplified 3′UTR region of DMPK from DM1 patient myoblasts edited with 42 individual SpCas9 sgRNAs targeting the 3′ UTR of DMPK gene. After electroporation cells were incubated with DMSO (top row) or 3 uM Compound 6 (bottom row) for 24 hours. Arrows indicate the expected size for unedited healthy allele. Unedited disease (expanded CTG allele does not amplify). Bands below the arrow are presumptive edited alleles. Mock =electroporated without RNP. NTC (non-targeting control) electroporated with an RNP targeting elsewhere in the genome. FIG. 41A shows replicate 1. FIG. 41B shows replicate 2.



FIGS. 42A-F show exemplary PacBio sequencing results for single cut excision experiments with and without DNA-PK inhibition. FIG. 42A shows results with a mock guide; FIG. 42B shows results with guide DMPK-D43; FIG. 42C shows results with DMPK-D51; FIG. 42D shows results with guide DMPK-U10; FIG. 42E shows results with guide DMPK-U52; FIG. 42F shows results guide DMPK-U58. Results show read count for the healthy allele. Read pileup figures for each condition, spanning the 1195-bp amplicon (shown on the positive strand). The black solid region represents the 3′ UTR, and the patterned region represents the repeat. The dashed line represents the cut site of the sgRNA. Approximate fraction of reads in each condition with zero repeats in the region of interest (i.e. the fraction of reads with repeat excision). This was calculated by extracting the portion of the CIGAR string corresponding to the repetitive region (after performing quality control). Guides are ordered by position of cut site along the amplicon. Read length distributions for each condition after quality control.



FIGS. 43A-E show composites of electropherograms of PCR amplified 3′UTR region of DMPK from DM1 patient fibroblasts edited with all pairwise combinations of 42 SpCas9 sgRNAs targeting the 3′ UTR of DMPK gene (22 sgRNAs upstream of the CTG repeat and 20 downstream). After electroporation with RNPs pre-loaded with each guide pair cells were incubated with DMSO (top row of each pair) or 3 uM Compound 6 (bottom row for each pair) for 24 hours. Arrows indicate the expected size for unedited healthy allele. Unedited patient allele does not amplify. Bands below the arrow are presumptive edited alleles; bands above the healthy line are presumptive duplication or other complex rearrangements. FIG. 43A shows plate 1 of screen. FIG. 43B shows plate 2 of the screen. FIG. 43C shows plate 3 of the screen. FIG. 43D shows plate 4 of the screen. FIG. 43E shows plate 5 of the screen.



FIG. 44 shows a heatmap of % indel efficiency for sgRNAs targeting the FXN gene in a screen of conditions with varying Cas9 and sgRNA concentrations in a FA lymphoblastoid cell line (LCL).



FIG. 45 shows a heatmap representing the indel efficiency (%) for 56 individual sgRNAs targeting upstream of the GAA repeat in the FXN gene in two patient cell lines (GM14518 and GM03665). The concentration of RNP delivered is denoted as “High” (15 pmol Cas9 +45 pmol sgRNA) or “Low” (7.5 pmol Cas9 +22.5 pmol sgRNA).



FIG. 46 shows a heatmap representing the indel efficiency (%) for 40 individual sgRNAs targeting downstream of the GAA repeat in the FXN gene in two patient cell lines (GM14518 and GM03665). The concentration of RNP delivered is denoted as “High” (15 pmol Cas9 +45 pmol sgRNA) or “Low” (7.5 pmol Cas9 +22.5 pmol sgRNA). Indel efficiency for sgRNA SEQ ID NO: 26562 (FXN-D25) could not be calculated due to a SNP (single nucleotide polymorphism) present in the GM14518 patient line that was located within the targeted guide RNA sequence. CDC42BPB and RELA were used as experimental assay controls due to their known high and moderate efficiencies, respectively.



FIGS. 47A-C show a dual guide excision experiment with SpCas9 in FA cardiomyocytes using RNP electroporation with a guide pair flanking the GAA repeat (SEQ ID NOs 52666 and 26562). GAA excision significantly improved with 3 uM Compound 6 (FIG. 47A) and led to higher FXN mRNA (FIG. 47B, GAA+Inh)) and FXN protein levels (FIG. 47C, GAA+Inh). “NTC” refers to non-targeting control. “GAA” refers to the pair guides flanking the GAA repeat.



FIG. 48 shows a dual guide excision experiment with Cpf1 (Cas12a) and SpCas9 in wildtype (WT) and FA iPSCs using RNP electroporation. FIG. 48 shows a DNA gel-electrophoresis showing excised DNA bands after GAA repeat excision with Cpf1 (boxes, GD1&2 (SEQ ID NOs: 47047 and 7447)) and SpCas9 (Cas9 LG5&11 (SEQ ID NOs: 52666 and 26562)).



FIG. 49 shows a dual guide excision experiment with Cpf1 (Cas12a) in wildtype iPSC-derived cortical neurons. DNA gel-electrophoresis showing excised DNA bands after GAA repeat excision with Cpf1 using RNP electroporation with the following guide pairs: Guides 1&2 (SEQ ID NOs: 47047 and 7447); Guides 3&4 (SEQ ID NOs: 7463 and 46967); Guides 5&6 (SEQ ID NOs: 46768 and 7680); Guides 7&2 (SEQ ID NOs: 47032 and 7447).



FIG. 50 shows an exemplary AAV vector design for targeting neurons in adult YG8+/−mice. hSynapsin 1 promoter drives expression of AsCpf1 (Cas12a, vector 1) and mCherry-KASH (vector 2) in neurons. Two Cpf1 gRNAs (SEQ ID NOs: 47047 and 7447) were cloned in tandem under control of one U6 promoter to excise the GAA repeat.



FIGS. 51A-C shows a dual guide excision experiment with AsCpf1 (Cas12a) in an in vivo mouse model for Friedreich's Ataxia with dual AAV delivery (1:1 ratio) into striatum of adult YG8+/−mice. FIG. 51A shows brain histology 2 weeks after stereotactic injection showing mCherry positive striatum. FIG. 51B shows nuclei sorting of targeted neurons by FACS. FIG. 51C shows DNA gel-electrophoresis showing excised DNA bands after GAA repeat excision with Cpf1 in targeted neurons (mCherry +) versus non-targeted cells (mCherry -).



FIG. 52 shows characterization of the DM1 iPSC cell line SB1 as compared to a wildtype iPSC cell line by Southern blot analysis following digestion of genomic DNA with Bgl I to confirm the CTG repeat region. The SB1 cells contain a CTG repeat region of -300 CTG repeats (CTG repeat allele shown at -4.4kB).



FIG. 53 shows a schematic for the two loss-of-signal (LOS) digital droplet PCR (ddPCR) assays (5′ LOS ddPCR assay and 3′ LOS ddPCR assay) used to detect deletion of the CTG repeat region in the 3′ UTR of the DMPK gene.



FIG. 54 shows a schematic of six upstream gRNAs (5′ side of the CTG repeat region) (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, and 3746) and six downstream gRNAs (3′ side of the CTG repeat region) (SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210) that were selected for evaluation of editing efficiency with SpCas9 in the DM1 iPSC cell line SB1.



FIG. 55 shows the percent editing efficiency results for six upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, and 3746) and six downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210) with SpCas9 in the DM1 iPSC cell line SB1.



FIG. 56 shows the percent deletion of the CTG repeat region for gRNAs tested as individual gRNAs and for 36 pair combinations that are each of the 6 upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, and 3746) with each of the 6 downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210) with SpCas9 in the DM1 iPSC cell line SB1 by the two LOS ddPCR assays (5′ and 3′). The % deletion shown is a combined average repeat deletion from both LOS ddPCR assays.



FIG. 57 shows a comparison of 5′ and 3′ LOS ddPCR results across SpCas9 gRNA pairs and individual gRNAs in the DM1 iPSC cell line SB1. Results are shown as percent deletion.



FIG. 58 shows a schematic of five upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and five downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) that were selected for evaluation of editing efficiency with SpCas9 in the DM1 iPSC cell line 4033-4.



FIG. 59 shows the percent deletion of the CTG repeat region for gRNAs tested as individual gRNAs and for 25 pair combinations of 5 upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and 5 downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) with SpCas9 in the DM1 iPSC cell line 4033-4 by the two LOS ddPCR assays (5′ and 3′). Results are shown as percent deletion for both the 5′ and 3′ LOS ddPCR assays.



FIGS. 60A-B shows the average repeat deletion across gRNAs pairs and individual gRNAs with SpCas9 in SB1 cells (FIG. 60A) (˜1 kb CTG repeat allele) (n=1) and in 4033-4 cells (FIG. 60B) (˜7.5 kb CTG repeat allele) (n=2). Both 5′ and 3′ LOS ddPCR assays were used for each experiment.



FIG. 61 shows a schematic of five upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and five downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) that were selected for evaluation of editing efficiency with SpCas9 in DM1 cardiomyocytes.



FIG. 62 shows editing efficiency of five upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and five downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) with SpCas9 in DM1 cardiomyocytes as compared to editing efficiency in DM1 iPSC SB1 cells. Editing efficiency is shown as percent indels (n=1).



FIG. 63 shows the percent deletion of the CTG repeat region for three gRNA pairs (SEQ ID NOs: 3746/2210, 4026/1586, and 3778/1778) with SpCas9 in DM1 cardiomyocytes (“CM”) and DM1 iPSC SB1 cells (“iPSC”) (n=1).



FIG. 64 shows the percent deletion of the CTG repeat region for gRNAs tested as individual gRNAs and for 36 pair combinations of 6 upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, and 3746) and 6 downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210) with SpCas9 in the DM1 iPSC cell line SB1 by the two LOS ddPCR assays (5′ and 3′). Arrows indicate gRNA pairs identified as “clean” (white), “off-target <1%” (gray), or “off-target >1%” (black) based on the hybrid capture off-target analysis.



FIG. 65 shows a schematic of 30 upstream gRNAs and 30 downstream gRNAs that were selected for evaluation of editing efficiency with SaCas9 in the DM1 iPSC cell line SB1.



FIG. 66 shows the percent editing efficiency results 30 upstream gRNAs and 30 downstream gRNAs with SaCas9 in wildtype iPSC cells.



FIG. 67 shows a schematic of 4 upstream gRNAs (SEQ ID NOs: 3256, 2896, 3136, and 3224) and 6 downstream gRNAs (SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616) that were selected for evaluation of CTG repeat deletion with SaCas9 in the DM1 iPSC cell line SB1.



FIGS. 68A-B show percent CTG repeat deletion (FIG. 68A) and editing efficiency (FIG. 68B) for saCas9 gRNAs. The percent repeat deletion data is shown for pairs and individual saCas9 gRNAs from the 3′ LOS ddPCR assay. The spCas9 gRNA pair (SEQ ID NOs: 3746 and 2210) was used as a control. In FIG. 68B, # 2 refers to gRNA Sa2, # 3 refers to gRNA Sa3, # 4 refers to gRNA Sa4, # 21 refers to gRNA Sa21, # 1 refers to gRNA Sal, # 10 refers to gRNA Sa10, # 17 refers to gRNA Sa17, # 19 refers to gRNA Sa19, # 25 refers to gRNA Sa25, and # 29 refers to gRNA Sa29 (see also Table 21).





DETAILED DESCRIPTION

Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention is described in conjunction with the illustrated embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which may be included within the invention as defined by the appended claims and included embodiments.


Before describing the present teachings in detail, it is to be understood that the disclosure is not limited to specific compositions or process steps, as such may vary. It should be noted that, as used in this specification and the appended claims, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a guide” includes a plurality of guides and reference to “a cell” includes a plurality of cells and the like.


Numeric ranges are inclusive of the numbers defining the range. Measured and measurable values are understood to be approximate, taking into account significant digits and the error associated with the measurement. Also, the use of “comprise”, “comprises”, “comprising”, “contain”, “contains”, “containing”, “include”, “includes”, and “including” are not intended to be limiting. It is to be understood that both the foregoing general description and detailed description are exemplary and explanatory only and are not restrictive of the teachings.


Unless specifically noted in the specification, embodiments in the specification that recite “comprising” various components are also contemplated as “consisting of” or “consisting essentially of” the recited components; embodiments in the specification that recite “consisting of” various components are also contemplated as “comprising” or “consisting essentially of” the recited components; and embodiments in the specification that recite “consisting essentially of” various components are also contemplated as “consisting of” or “comprising” the recited components (this interchangeability does not apply to the use of these terms in the claims). The term “or” is used in an inclusive sense, i.e., equivalent to “and/or,” unless the context clearly indicates otherwise.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the desired subject matter in any way. In the event that any material incorporated by reference contradicts any term defined in this specification or any other express content of this specification, this specification controls. While the present teachings are described in conjunction with various embodiments, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art. -


I. Definitions

Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings:


“Polynucleotide” and “nucleic acid” are used herein to refer to a multimeric compound comprising nucleosides or nucleoside analogs which have nitrogenous heterocyclic bases or base analogs linked together along a backbone, including conventional RNA, DNA, mixed RNA-DNA, and polymers that are analogs thereof. A nucleic acid “backbone” can be made up of a variety of linkages, including one or more of sugar-phosphodiester linkages, peptide-nucleic acid bonds (“peptide nucleic acids” or PNA; PCT No. WO 95/32305), phosphorothioate linkages, methylphosphonate linkages, or combinations thereof. Sugar moieties of a nucleic acid can be ribose, deoxyribose, or similar compounds with substitutions, e.g., 2′ methoxy or 2′ halide substitutions. Nitrogenous bases can be conventional bases (A, G, C, T, U), analogs thereof (e.g., modified uridines such as 5-methoxyuridine, pseudouridine, or N1-methylpseudouridine, or others); inosine; derivatives of purines or pyrimidines (e.g., N4-methyl deoxyguanosine, deaza- or aza-purines, deaza- or aza-pyrimidines, pyrimidine bases with substituent groups at the 5 or 6 position (e.g., 5-methylcytosine), purine bases with a substituent at the 2, 6, or 8 positions, 2-amino-6-methylaminopurine, O6-methylguanine, 4-thio-pyrimidines, 4-amino-pyrimidines, 4-dimethylhydrazine-pyrimidines, and O4-alkyl-pyrimidines; U.S. Pat. No. 5,378,825 and PCT No. WO 93/13121). For general discussion see The Biochemistry of the Nucleic Acids 5-36, Adams et al., ed., 11th ed., 1992). Nucleic acids can include one or more “abasic” residues where the backbone includes no nitrogenous base for position(s) of the polymer (US Pat. No. 5,585,481). A nucleic acid can comprise only conventional RNA or DNA sugars, bases and linkages, or can include both conventional components and substitutions (e.g., conventional bases with 2′ methoxy linkages, or polymers containing both conventional bases and one or more base analogs). Nucleic acid includes “locked nucleic acid” (LNA), an analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation, which enhance hybridization affinity toward complementary RNA and DNA sequences (Vester and Wengel, 2004, Biochemistry 43(42):13233-41). RNA and DNA have different sugar moieties and can differ by the presence of uracil or analogs thereof in RNA and thymine or analogs thereof in DNA.


“Guide RNA”, “gRNA”, and simply “guide” are used herein interchangeably to refer to either a crRNA (also known as CRISPR RNA), or the combination of a crRNA and a trRNA (also known as tracrRNA). The crRNA and trRNA may be associated as a single RNA molecule (single guide RNA, sgRNA) or in two separate RNA molecules (dual guide RNA, dgRNA). “Guide RNA” or “gRNA” refers to each type. The trRNA may be a naturally-occurring sequence, or a trRNA sequence with modifications or variations compared to naturally-occurring sequences.


As used herein, a “spacer sequence,” sometimes also referred to herein and in the literature as a “guide sequence,” or “targeting sequence” refers to a sequence within a guide RNA that is complementary to a target sequence and functions to direct a guide RNA to a target sequence for cleavage by an RNA-targeted endonuclease. A guide sequence can be 20 base pairs in length, e.g., in the case of Streptococcus pyogenes (i.e., Spy Cas9, SpCas9) and related Cas9 homologs/orthologs. Shorter or longer sequences can also be used as guides, e.g., 15-, 16-, 17-, 18-, 19-, 21-, 22-, 23-, 24-, or 25-nucleotides in length. For example, in some embodiments, the guide sequence comprises at least 17, 18, 19, 20, 21, 22, 23, 24, or 25 contiguous nucleotides of a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. In some embodiments, the guide sequence comprises a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. In some embodiments, the target sequence is in a gene or on a chromosome, for example, and is complementary to the guide sequence. In some embodiments, the degree of complementarity or identity between a guide sequence and its corresponding target sequence may be about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%. For example, in some embodiments, the guide sequence comprises a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to at least 17, 18, 19, 20, 21, 22, 23, 24, or 25 contiguous nucleotides of a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. In some embodiments, the guide sequence comprises a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. In some embodiments, the guide sequence and the target region may be 100% complementary or identical. In other embodiments, the guide sequence and the target region may contain at least one mismatch. For example, the guide sequence and the target sequence may contain 1, 2, 3, or 4 mismatches, where the total length of the target sequence is at least 17, 18, 19, 20 or more base pairs. In some embodiments, the guide sequence and the target region may contain 1-4 mismatches where the guide sequence comprises at least 17, 18, 19, 20 or more nucleotides. In some embodiments, the guide sequence and the target region may contain 1, 2, 3, or 4 mismatches where the guide sequence comprises 20 nucleotides.


In some embodiments, the guide sequence comprises a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372, wherein if the 5′ terminal nucleotide is not guanine, one or more guanine (g) is added to the sequence at its 5′ end. The 5′ g or gg is required in some instances for transcription, for example, for expression by the RNA polymerase III-dependent U6 promoter or the T7 promoter. In some embodiments, a 5′ guanine is added to any one of the guide sequences or pairs of guide sequences disclosed herein.


Target sequences for RNA-targeted endonucleases include both the positive and negative strands of genomic DNA (i.e., the sequence given and the sequence's reverse compliment), as a nucleic acid substrate for an RNA-targeted endonuclease is a double stranded nucleic acid. Accordingly, where a guide sequence is said to be “complementary to a target sequence”, it is to be understood that the guide sequence may direct a guide RNA to bind to the reverse complement of a target sequence. Thus, in some embodiments, where the guide sequence binds the reverse complement of a target sequence, the guide sequence is identical to certain nucleotides of the target sequence (e.g., the target sequence not including the PAM) except for the substitution of U for T in the guide sequence.


As used herein, a “pair of guide RNAs” or “guide pair” or “gRNA pair” or “paired guide RNAs” refers to two guide RNAs that do not have identical spacer sequences. The first spacer sequence refers to the spacer sequence of one of the gRNAs of the pair, and the second spacer sequence refers to the spacer sequence of the other gRNA of the pair. In some embodiments, use of a pair of guide RNAs is also referred to as a “double cut” or “DoubleCut” strategy, in which two cuts are made. In contrast, in some embodiments, use of only one guide RNA is referred to as a “single cut” or “SingleCut” strategy, in which one cut is made.


As used herein, an “RNA-targeted endonuclease” means a polypeptide or complex of polypeptides having RNA and DNA binding activity and DNA cleavage activity, or a DNA-binding subunit of such a complex, wherein the DNA binding activity is sequence-specific and depends on the sequence of the RNA. Exemplary RNA-targeted endonucleases include Cas cleavases/nickases. “Cas nuclease”, also called “Cas protein” as used herein, encompasses Cas cleavases and Cas nickases. Cas cleavases/nickases include a Csm or Cmr complex of a type III CRISPR system, the Cas10, Csm1, or Cmr2 subunit thereof, a Cascade complex of a type I CRISPR system, the Cas3 subunit thereof, and Class 2 Cas nucleases. In some embodiments, the RNA-targeted endonuclease is Class 1 Cas nuclease. In some embodiments, the RNA-targeted endonuclease is Class 2 Cas nuclease. As used herein, a “Class 2 Cas nuclease” is a single-chain polypeptide with RNA-targeted endonuclease activity. Class 2 Cas nucleases include Class 2 Cas cleavases/nickases (e.g., H840A, D10A, or N863A variants), which further have RNA-guided DNA cleavases or nickase activity. Class 2 Cas nucleases include, for example, Cas9, Cpf1, C2c1, C2c2, C2c3, HF Cas9 (e.g., N497A, R661A, Q695A, Q926A variants), HypaCas9 (e.g., N692A, M694A, Q695A, H698A variants), eSPCas9(1.0) (e.g, K810A, K1003A, R1060A variants), and eSPCas9(1.1) (e.g., K848A, K1003A, R1060A variants) proteins and modifications thereof. Cpf1 protein, Zetsche et al., Cell, 163: 1-13 (2015), is homologous to Cas9, and contains a RuvC-like nuclease domain. Cpf1 sequences of Zetsche are incorporated by reference in their entirety. See, e.g., Zetsche, Tables S1 and S3. See, e.g., Makarova et al., Nat Rev Microbiol, 13(11): 722-36 (2015); Shmakov et al., Molecular Cell, 60:385-397 (2015). Class 1 is divided into types I, III, and IV Cas nucleases. Class 2 is divided into types II, V, and VI Cas nucleases. In some embodiments, the RNA-targeted endonuclease is a Type I, II, III, IV, V, or VI Cas nuclease.


As used herein, “ribonucleoprotein” (RNP) or “RNP complex” refers to a guide RNA together with an RNA-targeted endonuclease, such as a Cas nuclease, e.g., a Cas cleavase or Cas nickase (e.g., Cas9). In some embodiments, the guide RNA guides the RNA-targeted endonuclease such as Cas9 to a target sequence, and the guide RNA hybridizes with and the agent binds to the target sequence, which can be followed by cleaving or nicking.


As used herein, a “self-complementary region” refers to any portion of a nucleic acid that can form secondary structure (e.g., hairpins, cruciforms, etc.) through hybridization to itself, e.g., when the region has at least one free double-strand end. Various forms of repeats and GC-rich or AT-rich nucleic acids qualify as self-complementary and can form secondary structures. Self-complementarity does not require perfect self-complementarity, as secondary structures may form despite the presence of some mismatched bases and/or non-canonical base pairs. In some embodiments, a self-complementary region comprises 40 nucleotides. Self-complementary regions may be interrupted by a loop-forming sequence, which is not necessarily self-complementary and may exist in a single-stranded state between segments of the self-complementary region that form the stem in a hairpin or other secondary structure.


As used herein, a first sequence is considered to “comprise a sequence with at least X % identity to” a second sequence if an alignment of the first sequence to the second sequence shows that X % or more of the positions of the second sequence in its entirety are matched by the first sequence. For example, the sequence AAGA comprises a sequence with 100% identity to the sequence AAG because an alignment would give 100% identity in that there are matches to all three positions of the second sequence. The differences between RNA and DNA (generally the exchange of uridine for thymidine or vice versa) and the presence of nucleoside analogs such as modified uridines do not contribute to differences in identity or complementarity among polynucleotides as long as the relevant nucleotides (such as thymidine, uridine, or modified uridine) have the same complement (e.g., adenosine for all of thymidine, uridine, or modified uridine; another example is cytosine and 5-methylcytosine, both of which have guanosine or modified guanosine as a complement). Thus, for example, the sequence 5′-AXG where X is any modified uridine, such as pseudouridine, N1-methyl pseudouridine, or 5-methoxyuridine, is considered 100% identical to AUG in that both are perfectly complementary to the same sequence (5′-CAU). Exemplary alignment algorithms are the Smith-Waterman and Needleman-Wunsch algorithms, which are well-known in the art. One skilled in the art will understand what choice of algorithm and parameter settings are appropriate for a given pair of sequences to be aligned; for sequences of generally similar length and expected identity >50% for amino acids or >75% for nucleotides, the Needleman-Wunsch algorithm with default settings of the Needleman-Wunsch algorithm interface provided by the EBI at the www.ebi.ac.uk web server is generally appropriate.


“mRNA” is used herein to refer to a polynucleotide that is not DNA and comprises an open reading frame that can be translated into a polypeptide (i.e., can serve as a substrate for translation by a ribosome and amino-acylated tRNAs). mRNA can comprise a phosphate-sugar backbone including ribose residues or analogs thereof, e.g., 2′-methoxy ribose residues. In some embodiments, the sugars of an mRNA phosphate-sugar backbone consist essentially of ribose residues, 2′-methoxy ribose residues, or a combination thereof.


Guide sequences useful in the guide RNA compositions and methods described herein are shown in Table 2 and the Sequence Listing and throughout the application.


As used herein, a “target sequence” refers to a sequence of nucleic acid in a target gene that has complementarity to the guide sequence of the gRNA. The interaction of the target sequence and the guide sequence directs an RNA-targeted endonuclease to bind, and potentially nick or cleave (depending on the activity of the agent), within the target sequence.


As used herein, “treatment” refers to any administration or application of a therapeutic for disease or disorder in a subject, and includes inhibiting the disease or development of the disease (which may occur before or after the disease is formally diagnosed, e.g., in cases where a subject has a genotype that has the potential or is likely to result in development of the disease), arresting its development, relieving one or more symptoms of the disease, curing the disease, or preventing reoccurrence of one or more symptoms of the disease. For example, treatment of DM1 may comprise alleviating symptoms of DM1.


As used herein, “ameliorating” refers to any beneficial effect on a phenotype or symptom, such as reducing its severity, slowing or delaying its development, arresting its development, or partially or completely reversing or eliminating it. In the case of quantitative phenotypes such as expression levels, ameliorating encompasses changing the expression level so that it is closer to the expression level seen in healthy or unaffected cells or individuals.


As used herein, a target sequence is “near” a trinucleotide repeat or self-complementary sequence if cleavage of the target followed by MMEJ or other non-NHEJ repair results in excision of the trinucleotide repeat or self-complementary sequence to a detectable extent. In some embodiments, a target sequence is within 10, 20, 30, 40, 50 or 100 nucleotides of the trinucleotide repeat or self-complementary sequence, where the distance from the target to the trinucleotide repeat or self-complementary sequence is measured as the number of nucleotides between the closest nucleotide of the trinucleotide repeat or self-complementary sequence and the site in the target that undergoes cleavage.


As used herein, “excision” of a sequence means and process that results in removal of the sequence from nucleic acid (e.g., DNA, such as gDNA) in which it originally occurred, including but not limited to processes comprising one or two double strand cleavage events or two or more nicking events followed by any repair process that does not include the sequence in the repair product, which may comprise one or more of ligation of distal ends (e.g., FIG. 5), resection (e.g., FIGS. 5 and 6), or secondary structure formation by at least part of the region being excised (e.g., FIG. 6).


As used herein, an “expanded amino acid repeat” refers to a segment of a given amino acid (e.g., one of glutamine, alanine, etc.) in a polypeptide that contains more instances of the amino acid than normally appears in wild-type versions of the polypeptide. For trinucleotide repeats in Table 1 that are listed as occurring in exons, the normal range indicates the range of instances of the amino acid than normally appears in wild-type versions of the corresponding polypeptide.


As used herein, “DM1 myoblasts” refer to precursors of muscle cells that have a genotype associated with DM1, and include e.g., cells derived from or isolated from a subject with DM1. DM1 myoblasts include primary cells, cultured cells, or cell lines.


A “pharmaceutically acceptable excipient” refers to an agent that is included in a pharmaceutical formulation that is not the active ingredient. Pharmaceutically acceptable excipients may e.g., aid in drug delivery or support or enhance stability or bioavailability.


The term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined.


II. Overview of Repetitive DNA Excision

Disclosed herein are compositions and methods based on our discovery that RNA-directed endonucleases can excise trinucleotide repeats or self-complementary regions in combination with single or paired guide RNAs that target the endonuclease to sites flanking the TNR, as well as our finding that DNA-PK inhibitors provide improved excision of such sequences. As illustrated in FIGS. 2A-B, inhibiting DNA-PK is considered to reduce or eliminate repair through the non-homologous end joining (NHEJ) pathway in favor of one or more alternate pathways, likely including microhomology-mediated end joining (MMEJ).


Additionally, we have also found that DNA-PK inhibitors can facilitate excision of trinucleotide repeats by an RNA-directed nuclease such as Cas9 or Cpf1 in combination with one gRNA, as illustrated in FIG. 3. Again, inhibiting DNA-PK is considered to reduce or eliminate repair through the non-homologous end joining (NHEJ) pathway, which when only one gRNA is used would generally not result in trinucleotide repeat excision, in favor of one or more alternate pathways. The alternate repair pathways involve exonucleolytic resection of DNA ends at the cut site, resulting in excision of trinucleotide repeats. As illustrated in FIG. 4, providing a single gRNA facilitates the use of smaller vectors, such as AAV vectors.



FIG. 5 illustrates repair pathways following cleavage at two sites by an RNA-directed nuclease in more detail. Canonical NHEJ (C-NHEJ) is ordinarily a faster pathway and is DNA-PK dependent. Where cleavage sites flank the TNRs, C-NHEJ may result in resealing of both double-strand breaks (DSBs), preserving the TNRs, or a single joining of the ends of the DNA that do not comprise the TNR, resulting in excision. Inhibition of DNA-PK provides an increased opportunity for action by MRE11-RAD5O-NBS1 complex (MRN), including end resection. A microhomology search may ensue as part of the MMEJ pathway and result in a repair product from which the TNRs have been excised.



FIG. 6 illustrates repair pathways following cleavage at one site by an RNA-directed nuclease in more detail. C-NHEJ may result in resealing of the double-strand break and possibly the introduction of a small insertion or deletion (indel), completely or substantially preserving the TNRs. Inhibition of DNA-PK provides an increased opportunity for action by MRE11-RAD5O-NBS1 complex (MRN), including end resection and potentially CtIP stimulation of 5′ resection and cleavage of CTG secondary structure. A microhomology search may ensue as part of the MMEJ pathway and result in a repair product from which the TNRs have been excised.


Methods and compositions provided herein can be used to excise trinucleotide repeats or self-complementary sequences to ameliorate genotypes associated with various disorders. Table 1 provides information regarding exemplary genes, disorders, and trinucleotide repeats.













TABLE 1






Genetic Locus;


Pathological



inheritance

Normal repeat
repeat copy


Disorder
pattern
TNR
copy number
number







DM1/myotonic dystrophy
DMPK 3′ UTR
CTG
  5-34
 50-5000 in most


type 1
Autosomal

(35−49 =
cells; may be



dominant

premutation,
higher in muscle





children at risk)
cells





Huntington's Disease
Huntingtin (HTT)
CAG
 10-35
36 to >120



exon


 36-39: at risk



Autosomal


40 or more:



dominant


disease almost






always develops





Friedrich's Ataxia
Frataxin (FXN)
GAA
  5-33
66 to >1000



intron






Autosomal






recessive








Fragile X Syndrome (FXS)
Fragile X Mental
CGG
  5-40
>200


(see also FXPOI and
Retardation 1

(55-200 =



FXTAS below: same locus,
(FMR1) 5′ UTR

premutation;



different copy number
X-linked dominant

risk for FXPOI



ranges)


in females and






for FXTAS;






children of






women with






premutation at






risk for FXS)






Fragile X associated
Fragile X Mental
CGG
  5-40
 55-200


primary ovarian
Retardation 1





insufficiency (FXPOI),
(FMR1) 5′ UTR





fragile X-associated
X-linked dominant





tremor/ataxia syndrome






(FXTAS)









fragile site associated
Fragile X Mental
CGG
  4-40
>200


mental retardation/
Retardation 2

(50-200 =



FRAXE-associated mental
(FMR2, aka AFF2)

premutation-



deficiency; Fragile XE
5′ UTR or 5′ UTR-

considered



syndrome
adjacent

asymptomatic




X-linked; Females

but children at




rarely diagnosed

risk)






X-linked spinal and bulbar
Androgen Receptor
CAG
Up to 36
>38 or >39, e.g.,


muscular atrophy (Kennedy
(AR) exon


2x-3x normal (up


disease)



to ~100)





ARX-associated infantile
aristaless related
GCG
Complex: ARX
Expansion to add


epileptic encephalopathy/
homeobox (ARX)

contains 4
  1-7 repeats to first


Early infantile epileptic
exon

distinct repeats
tract associated


encephalopathy 1/
X-linked recessive

of 7-16 alanine
with mental


Ohtahara syndrome;


codons each.
retardation.


Partington syndrome; West


First tract is



syndrome


normally 16






repeats.






Spinocerebellar ataxia type
Ataxin 1 (ATXN1)
CAG
  4-39
 40-80+


1
exon


 40-50: mid



Autosomal


adulthood onset



dominant


>70: onset by






teens





Spinocerebellar ataxia type
Ataxin 2 (ATXN2)
CAG
~22-31
>32


2
exon


 32-33: late



Autosomal


adulthood onset



dominant


>45: onset by






teens





Spinocerebellar ataxia type
Ataxin 3 (ATXN3)
CAG
 12-43; usually
>44


3
exon

 12-30
 44-52 = 



Autosomal


intermediate,



dominant


condition may or






may not develop;






up to 75 results in






mid-adulthood






onset; 80 results






in teenage onset;






homozygosity






results in






childhood onset






and increased






severity





Spinocerebellar ataxia type
Calcium voltage-
CAG
  4-35
 37-306


6
gated channel






subunit alpha1 A






(CACNA1A) exon






Autosomal






dominant








Spinocerebellar ataxia type
Ataxin 7 (ATXN7)
CAG
  4-35
 37-306


7
exon






Autosomal






dominant








Spinocerebellar ataxia type
ATXN8 opposite
TAC/
 16-37
107-128 or


8
strand lncRNA
TGC

110-250



(ATXN8OS/SCA8)






Noncoding RNA






Antisense of intron






in KLHL1/ATXN8






Autosomal






dominant








Spinocerebellar ataxia type
Serine/threonine-
CAG
  7-28
 66-78


12
protein






phosphatase 2A 55






kDa regulatory






subunit B beta






isoform






(PPP2R2B) 5′






UTR






Autosomal






dominant








Spinocerebellar ataxia type
TATA binding
CAG
 25-42
 50-63


17
protein (TBP)






exon






Autosomal






dominant








Dentatorubropallidoluysian
Atrophin-1 (ATN1
CAG
  6-35
 49-88


atrophy (DRPLA)
or DRPLA)






exon






Autosomal






dominant









III. Methods of Excising Trinucleotide Repeats and Self-Complementary Regions; Methods of Treatment

This disclosure provides compositions for use in, and methods, of excising trinucleotide repeats or self-complementary regions and/or treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA. In some embodiments, one or more gRNAs described herein (e.g., a pair of gRNAs) or a vector encoding the gRNAs are delivered to a cell in combination with an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease. Exemplary gRNAs, vectors, and RNA-targeted endonucleases are described herein, e.g., in the Summary and Composition sections. In some embodiments, the method further comprises delivering a DNA-PK inhibitor to the cell.


Provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and optionally iii) a DNA-PK inhibitor. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


In some embodiments, a method is provided of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA or a pair of guide RNAs comprising a spacer or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor which is Compound 3 or Compound 6.


Also provided is a method of excising a self-complementary region comprising delivering to a cell that comprises the self-complementary region i) a guide RNA or pair of guide RNAs comprising a spacer or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the self-complementary region, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and optionally iii) a DNA-PK inhibitor, wherein the self-complementary region is excised. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


In some embodiments, a method is provided of excising a trinucleotide repeat (TNR) in DNA comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and optionally iii) a DNA-PK inhibitor, wherein at least one TNR is excised. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


In some embodiments, the method of excising a self-complementary region and/or method of excising a TNR in DNA is for the treatment of a disease or disorder provided in Table 1.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising delivering to a cell that comprises a TNR in the 3′ UTR of the DMPK gene i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 101-4988, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising delivering to a cell that comprises a TNR in the 3′ UTR of the DMPK gene i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, or 1386, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. Also provided is a method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, or 1386, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, 3722, 3802, 3858, 3514, 3770, 3370, 3354, 4010, 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, 2322, 1770, 1538, 2514, 2458, 2194, 2594, 2162, or 2618. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, or 2594. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, or 2594. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, or 3722. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, or 2322. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, or 2210. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, or 2506. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, or 2498. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3314, 2690, 2554, or 2498. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, or 2258. . In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 3916, 3420, or 3940. In some embodiments, the gRNA comprises a spacer sequence comprising SEQ ID NO: 3914. In some embodiments, the gRNA comprises a spacer sequence comprising SEQ ID NO: 3418. In some embodiments, the gRNA comprises a spacer sequence comprising SEQ ID NO: 3938. In some embodiments, the methods further comprise administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising delivering to a cell that comprises a TNR in the 5′ UTR of the FMR1 gene i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 5001-7264, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, and 5334, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. Also provided is a method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, and 5334, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 5830, 6022, 5262, or 5310. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 5262, 5334, and 5830. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 5264, 5336, 5832, 6024, or 5312. In some embodiments, the gRNA comprises a spacer sequence comprising SEQ ID NO: 5262. In some embodiments, the gRNA comprises a spacer sequence comprising SEQ ID NO: 5264. In some embodiments, the methods further comprise administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising delivering to a cell that comprises a TNR in the 5′ UTR of the FXN gene i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 7301-53372, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. In some embodiments, the method comprises a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 3 or Compound 6.


Also provided is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in an intron of the FXN gene, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, or 45906, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor. Also provided is a method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer comprising a sequence of any one of SEQ ID NOs 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, or 45906, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 51706, 51058, 51754, 52090, 52594, 52098, 52298, 52106, 51682, 52066, 52354, 52458, 52290, 52498, 51658, 51930, 51162, 52506, 51762, 51746, 52386, 52258, 52530, 52634, 27850, 28634, 26882, 28650, 28370, 28194, 26626, 26634, 26786, 26754, 27770, 26578, 28130, 27738, 28338, 28642, 26602, 27754, 27730, and 28122. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032. In some embodiments, the gRNA comprises a spacer sequence comprising a sequence of any one of SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030. In some embodiments, the methods further comprise administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments of methods described herein, only one gRNA or vector encoding only one gRNA is provided or delivered, i.e., the method does not involve providing two or more guides that promote cleavage near a TNR or self-complementary region.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for administering only one gRNA, wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3914, 3418, or 3938. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 3916, 3420, or 3940. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises the sequence of SEQ ID NO: 3914. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises the sequence of SEQ ID NO: 3418. In some embodiments, wherein only one gRNA, and wherein a CTG repeat of the 3′ UTR of the DMPK gene is excised, the gRNA comprises the sequence of SEQ ID NO: 3938. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for administering only one gRNA, wherein a TNR in the 5′ UTR of the FMR1 gene is excised. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FMR1 gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FMR1 gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 5262, 5334, and 5830. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FMR1 gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, or 5312. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FMR1 gene is excised, the gRNA comprises the sequence of SEQ ID NO: 5262. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FMR1 gene is excised, the gRNA comprises the sequence of SEQ ID NO: 5264. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering only one guide RNA, or a vector encoding the guide RNA. In some embodiments, methods are provided for administering only one gRNA, wherein a TNR in the 5′ UTR of the FXN gene is excised. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FXN gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032. In some embodiments, wherein only one gRNA, and wherein a TNR in the 5′ UTR of the FXN gene is excised, the gRNA comprises a spacer sequence comprising a sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments of methods described herein, a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near the TNR, or one or more nucleic acids encoding the pair of guide RNAs, are provided or delivered to a cell. For example, where the TNR is in the 3′ UTR of the DMPK gene, the first and second spacers may have the sequences of any one of the following pairs of SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386; 1706 and 3418; 1706 and 3370; 1706 and 3514; 1706 and 3658; 1706 and 4010; 1706 and 4026; 1706 and 3914; 1706 and 3938; 1706 and 3858; 1706 and 3818; 1706 and 3794; 1706 and 3802; 1706 and 3746; 1706 and 3778; 1706 and 3770; 1706 and 3722; 1706 and 3690; 1706 and 3682; 1706 and 3330; 1706 and 3354; 1706 and 3394; 1706 and 3386; 2210 and 3418; 2210 and 3370; 2210 and 3514; 2210 and 3658; 2210 and 4010; 2210 and 4026; 2210 and 3914; 2210 and 3938; 2210 and 3858; 2210 and 3818; 2210 and 3794; 2210 and 3802; 2210 and 3746; 2210 and 3778; 2210 and 3770; 2210 and 3722; 2210 and 3690; 2210 and 3682; 2210 and 3330; 2210 and 3354; 2210 and 3394; 2210 and 3386; 1778 and 3418; 1778 and 3370; 1778 and 3514; 1778 and 3658; 1778 and 4010; 1778 and 4026; 1778 and 3914; 1778 and 3938; 1778 and 3858; 1778 and 3818; 1778 and 3794; 1778 and 3802; 1778 and 3746; 1778 and 3778; 1778 and 3770; 1778 and 3722; 1778 and 3690; 1778 and 3682; 1778 and 3330; 1778 and 3354; 1778 and 3394; 1778 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 2114 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 1706 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 1746 and 3418; 1746 and 3370; 1746 and 3514; 1746 and 3658; 1746 and 4010; 1746 and 4026; 1746 and 3914; 1746 and 3938; 1746 and 3858; 1746 and 3818; 1746 and 3794; 1746 and 3802; 1746 and 3746; 1746 and 3778; 1746 and 3770; 1746 and 3722; 1746 and 3690; 1746 and 3682; 1746 and 3330; 1746 and 3354; 1746 and 3394; 1746 and 3386; 2322 and 3418; 2322 and 3370; 2322 and 3514; 2322 and 3658; 2322 and 4010; 2322 and 4026; 2322 and 3914; 2322 and 3938; 2322 and 3858; 2322 and 3818; 2322 and 3794; 2322 and 3802; 2322 and 3746; 2322 and 3778; 2322 and 3770; 2322 and 3722; 2322 and 3690; 2322 and 3682; 2322 and 3330; 2322 and 3354; 2322 and 3394; 2322 and 3386; 1770 and 3418; 1770 and 3370; 1770 and 3514; 1770 and 3658; 1770 and 4010; 1770 and 4026; 1770 and 3914; 1770 and 3938; 1770 and 3858; 1770 and 3818; 1770 and 3794; 1770 and 3802; 1770 and 3746; 1770 and 3778; 1770 and 3770; 1770 and 3722; 1770 and 3690; 1770 and 3682; 1770 and 3330; 1770 and 3354; 1770 and 3394; 1770 and 3386; 1538 and 3418; 1538 and 3370; 1538 and 3514; 1538 and 3658; 1538 and 4010; 1538 and 4026; 1538 and 3914; 1538 and 3938; 1538 and 3858; 1538 and 3818; 1538 and 3794; 1538 and 3802; 1538 and 3746; 1538 and 3778; 1538 and 3770; 1538 and 3722; 1538 and 3690; 1538 and 3682; 1538 and 3330; 1538 and 3354; 1538 and 3394; 1538 and 3386; 2514 and 3418; 2514 and 3370; 2514 and 3514; 2514 and 3658; 2514 and 4010; 2514 and 4026; 2514 and 3914; 2514 and 3938; 2514 and 3858; 2514 and 3818; 2514 and 3794; 2514 and 3802; 2514 and 3746; 2514 and 3778; 2514 and 3770; 2514 and 3722; 2514 and 3690; 2514 and 3682; 2514 and 3330; 2514 and 3354; 2514 and 3394; 2514 and 3386; 2458 and 3418; 2458 and 3370; 2458 and 3514; 2458 and 3658; 2458 and 4010; 2458 and 4026; 2458 and 3914; 2458 and 3938; 2458 and 3858; 2458 and 3818; 2458 and 3794; 2458 and 3802; 2458 and 3746; 2458 and 3778; 2458 and 3770; 2458 and 3722; 2458 and 3690; 2458 and 3682; 2458 and 3330; 2458 and 3354; 2458 and 3394; 2458 and 3386; 2194 and 3418; 2194 and 3370; 2194 and 3514; 2194 and 3658; 2194 and 4010; 2194 and 4026; 2194 and 3914; 2194 and 3938; 2194 and 3858; 2194 and 3818; 2194 and 3794; 2194 and 3802; 2194 and 3746; 2194 and 3778; 2194 and 3770; 2194 and 3722; 2194 and 3690; 2194 and 3682; 2194 and 3330; 2194 and 3354; 2194 and 3394; 2194 and 3386; 2594 and 3418; 2594 and 3370; 2594 and 3514; 2594 and 3658; 2594 and 4010; 2594 and 4026; 2594 and 3914; 2594 and 3938; 2594 and 3858; 2594 and 3818; 2594 and 3794; 2594 and 3802; 2594 and 3746; 2594 and 3778; 2594 and 3770; 2594 and 3722; 2594 and 3690; 2594 and 3682; 2594 and 3330; 2594 and 3354; 2594 and 3394; 2594 and 3386; 2618 and 3418; 2618 and 3370; 2618 and 3514; 2618 and 3658; 2618 and 4010; 2618 and 4026; 2618 and 3914; 2618 and 3938; 2618 and 3858; 2618 and 3818; 2618 and 3794; 2618 and 3802; 2618 and 3746; 2618 and 3778; 2618 and 3770; 2618 and 3722; 2618 and 3690; 2618 and 3682; 2618 and 3330; 2618 and 3354; 2618 and 3394; and 2618 and 3386. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In a further example, where the TNR is in the 5′ UTR of the FMR1 gene, the first and second spacers may have the sequences of any one of the following pairs of SEQ ID NOs: 5782 and 5262; 5830 and 5262; 5926 and 5262; 5950 and 5262; and 5998 and 5262. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In a further example, where the TNR is in an intron of the FXN gene, the first and second spacers may have the sequences of any one of the following pairs of SEQ ID NOs: 47047 and 7447; 7463 and 46967; 46768 and 7680; 47032 and 7447. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, methods are provided for methods of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386; 1706 and 3418; 1706 and 3370; 1706 and 3514; 1706 and 3658; 1706 and 4010; 1706 and 4026; 1706 and 3914; 1706 and 3938; 1706 and 3858; 1706 and 3818; 1706 and 3794; 1706 and 3802; 1706 and 3746; 1706 and 3778; 1706 and 3770; 1706 and 3722; 1706 and 3690; 1706 and 3682; 1706 and 3330; 1706 and 3354; 1706 and 3394; 1706 and 3386; 2210 and 3418; 2210 and 3370; 2210 and 3514; 2210 and 3658; 2210 and 4010; 2210 and 4026; 2210 and 3914; 2210 and 3938; 2210 and 3858; 2210 and 3818; 2210 and 3794; 2210 and 3802; 2210 and 3746; 2210 and 3778; 2210 and 3770; 2210 and 3722; 2210 and 3690; 2210 and 3682; 2210 and 3330; 2210 and 3354; 2210 and 3394; 2210 and 3386; 1778 and 3418; 1778 and 3370; 1778 and 3514; 1778 and 3658; 1778 and 4010; 1778 and 4026; 1778 and 3914; 1778 and 3938; 1778 and 3858; 1778 and 3818; 1778 and 3794; 1778 and 3802; 1778 and 3746; 1778 and 3778; 1778 and 3770; 1778 and 3722; 1778 and 3690; 1778 and 3682; 1778 and 3330; 1778 and 3354; 1778 and 3394; 1778 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 2114 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 1706 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 1746 and 3418; 1746 and 3370; 1746 and 3514; 1746 and 3658; 1746 and 4010; 1746 and 4026; 1746 and 3914; 1746 and 3938; 1746 and 3858; 1746 and 3818; 1746 and 3794; 1746 and 3802; 1746 and 3746; 1746 and 3778; 1746 and 3770; 1746 and 3722; 1746 and 3690; 1746 and 3682; 1746 and 3330; 1746 and 3354; 1746 and 3394; 1746 and 3386; 2322 and 3418; 2322 and 3370; 2322 and 3514; 2322 and 3658; 2322 and 4010; 2322 and 4026; 2322 and 3914; 2322 and 3938; 2322 and 3858; 2322 and 3818; 2322 and 3794; 2322 and 3802; 2322 and 3746; 2322 and 3778; 2322 and 3770; 2322 and 3722; 2322 and 3690; 2322 and 3682; 2322 and 3330; 2322 and 3354; 2322 and 3394; 2322 and 3386; 1770 and 3418; 1770 and 3370; 1770 and 3514; 1770 and 3658; 1770 and 4010; 1770 and 4026; 1770 and 3914; 1770 and 3938; 1770 and 3858; 1770 and 3818; 1770 and 3794; 1770 and 3802; 1770 and 3746; 1770 and 3778; 1770 and 3770; 1770 and 3722; 1770 and 3690; 1770 and 3682; 1770 and 3330; 1770 and 3354; 1770 and 3394; 1770 and 3386; 1538 and 3418; 1538 and 3370; 1538 and 3514; 1538 and 3658; 1538 and 4010; 1538 and 4026; 1538 and 3914; 1538 and 3938; 1538 and 3858; 1538 and 3818; 1538 and 3794; 1538 and 3802; 1538 and 3746; 1538 and 3778; 1538 and 3770; 1538 and 3722; 1538 and 3690; 1538 and 3682; 1538 and 3330; 1538 and 3354; 1538 and 3394; 1538 and 3386; 2514 and 3418; 2514 and 3370; 2514 and 3514; 2514 and 3658; 2514 and 4010; 2514 and 4026; 2514 and 3914; 2514 and 3938; 2514 and 3858; 2514 and 3818; 2514 and 3794; 2514 and 3802; 2514 and 3746; 2514 and 3778; 2514 and 3770; 2514 and 3722; 2514 and 3690; 2514 and 3682; 2514 and 3330; 2514 and 3354; 2514 and 3394; 2514 and 3386; 2458 and 3418; 2458 and 3370; 2458 and 3514; 2458 and 3658; 2458 and 4010; 2458 and 4026; 2458 and 3914; 2458 and 3938; 2458 and 3858; 2458 and 3818; 2458 and 3794; 2458 and 3802; 2458 and 3746; 2458 and 3778; 2458 and 3770; 2458 and 3722; 2458 and 3690; 2458 and 3682; 2458 and 3330; 2458 and 3354; 2458 and 3394; 2458 and 3386; 2194 and 3418; 2194 and 3370; 2194 and 3514; 2194 and 3658; 2194 and 4010; 2194 and 4026; 2194 and 3914; 2194 and 3938; 2194 and 3858; 2194 and 3818; 2194 and 3794; 2194 and 3802; 2194 and 3746; 2194 and 3778; 2194 and 3770; 2194 and 3722; 2194 and 3690; 2194 and 3682; 2194 and 3330; 2194 and 3354; 2194 and 3394; 2194 and 3386; 2594 and 3418; 2594 and 3370; 2594 and 3514; 2594 and 3658; 2594 and 4010; 2594 and 4026; 2594 and 3914; 2594 and 3938; 2594 and 3858; 2594 and 3818; 2594 and 3794; 2594 and 3802; 2594 and 3746; 2594 and 3778; 2594 and 3770; 2594 and 3722; 2594 and 3690; 2594 and 3682; 2594 and 3330; 2594 and 3354; 2594 and 3394; 2594 and 3386; 2618 and 3418; 2618 and 3370; 2618 and 3514; 2618 and 3658; 2618 and 4010; 2618 and 4026; 2618 and 3914; 2618 and 3938; 2618 and 3858; 2618 and 3818; 2618 and 3794; 2618 and 3802; 2618 and 3746; 2618 and 3778; 2618 and 3770; 2618 and 3722; 2618 and 3690; 2618 and 3682; 2618 and 3330; 2618 and 3354; 2618 and 3394; and 2618 and 3386. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; and 2162 and 3658. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2514; 3778 and 2258; 3778 and 2210; 3386 and 2514; 3386 and 2258; 3386 and 2210; 3354 and 2514; 3354 and 2258; and 3354 and 2210. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2258; 3778 and 2210; 3386 and 2258; 3386 and 2210; and 3354 and 2514. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3330 and 2506; and 3330 and 2546. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3354 and 2546; 3354 and 2506; 3378 and 2546; 3378 and 2506. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; and 3330 and 2498. In some embodiments, the pair of guide RNAs comprise a first and second spacer comprising SEQ ID NOs: 1153 and 1129. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence, wherein the pair of spacer sequences comprise a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence, wherein the pair of spacer sequences comprise a first spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906 and 3746, and a second spacer sequence selected from SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence, wherein the pair of spacer sequences comprise a first and second spacer sequence selected from SEQ ID NOs: 3778 and 1778; 3778 and 1746; 3778 and 1770; 3778 and 1586; 3778 and 1914; 3778 and 2210; 4026 and 1778; 4026 and 1746; 4026 and 1770; 4026 and 1586; 4026 and 1914; 4026 and 2210; 3794 and 1778; 3794 and 1746; 3794 and 1770; 3794 and 1586; 3794 and 1586; 3794 and 1914; 3794 and 2210; 4010 and 1778; 4010 and 1770; 4010 and 1746; 4010 and 1586; 4010 and 1914; 4010 and 2210; 3906 and 1778; 3906 and 1778; 3906 and 1746; 3906 and 1770; 3906 and 1586; 3906 and 1914; 3906 and 2210; 3746 and 1778; 3746 and 1746; 3746 and 1770; 3746 and 1586; 3746 and 1914; and 3746 and 2210. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence, wherein the pair of spacer sequences comprise a first spacer sequence selected from SEQ ID NOs: 3256, 2896, 3136, and 3224, and a second spacer sequence selected from SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence, wherein the pair of spacer sequences comprise a first and second spacer sequence selected from SEQ ID NOs: 3256 and 4989; 3256 and 984; 3256 and 616; 2896 and 4989; 2896 and 672; 2896 and 760; 3136 and 4989; 3136 and 560; 3224 and 4989; 3224 and 976; and 3224 and 760. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, methods are provided for method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 5782 and 5262; 5830 and 5262; 5926 and 5262; 5950 and 5262; and 5998 and 5262. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 5830 and 5262; and 6022 and 5310. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence comprising SEQ ID NOs: 5334 and 5830. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for treating a disease or characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, methods are provided for method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering a composition comprising a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 47047 and 7447; 7463 and 46967; 46768 and 7680; 47032 and 7447. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence comprising SEQ ID NOs: 47047 and 7447. In some embodiments, the pair of guide RNAs comprise a first and second spacer sequence comprising SEQ ID NOs: 52898 and 36546. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, methods are provided for excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, wherein the first stretch starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat. In some embodiments, the first stretch starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site. In some embodiments, the first stretch starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site. In some embodiments, the first stretch is SEQ ID NO: 53413. In some embodiments, the first stretch is SEQ ID NO: 53414. In some embodiments, the first stretch is SEQ ID NO: 53415.


In some embodiments, methods are provided for excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein the second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence, wherein the second stretch starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site. In some embodiments, the second stretch starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site. In some embodiments, the second stretch is SEQ ID NO: 53416. In some embodiments, the second stretch is SEQ ID NO: 53417.


In some embodiments, methods are provided for excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, and wherein the second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence. In some embodiments, the first stretch starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat. In some embodiments, the first stretch starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site. In some embodiments, the first stretch starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site. In some embodiments, the first stretch is SEQ ID NO: 53413. In some embodiments, the first stretch is SEQ ID NO: 53414. In some embodiments, the first stretch is SEQ ID NO: 53415. In some embodiments, the second stretch starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site. In some embodiments, the second stretch starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site. In some embodiments, the second stretch is SEQ ID NO: 53416. In some embodiments, the second stretch is SEQ ID NO: 53417. In some embodiments, the methods comprise further administering a DNA-PK inhibitor. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3.


In some embodiments, the methods further comprise administering an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease. In some embodiments, the RNA-targeted endonuclease is a Cas nuclease. In some embodiments, the Cas nuclease is Cas9. In some embodiments, the Cas9 nuclease is from Streptococcus pyogenes (spCas9). In some embodiments, the Cas9 nuclease is from Staphylococcus aureus. In some embodiments, the Cas nuclease is Cpf1.


Any of the foregoing methods and any other method described herein may be combined to the extent feasible with any of the additional features described herein, including in the sections above, the following discussion, and the examples.


In some embodiments, the one or more gRNAs direct the RNA-targeted endonuclease to a site in or near a TNR or self-complementary region. For example, the RNA-targeted endonuclease may be directed to cut within 10, 20, 30, 40, or 50 nucleotides of the TNR or self-complementary region.


In some embodiments, at least a pair of gRNAs are provided which direct the RNA-targeted endonuclease to a pair of sites flanking (i.e., on opposite sides of) a TNR or self-complementary region. For example, the pair of sites flanking a TNR or self-complementary region may each be within 10, 20, 30, 40, or 50 nucleotides of the TNR or self-complementary region but on opposite sides thereof


Where a DNA-PK inhibitor is used in a method disclosed herein, it may be any DNA-PK inhibitor known in the art. DNA-PK inhibitors are discussed in detail, for example, in WO2014/159690; WO2013/163190; WO2018/013840; WO 2019/143675; WO 2019/143677; WO 2019/143678; and Robert et al., Genome Medicine (2015) 7:93, each of which are incorporated by reference herein. In some embodiments, the DNA-PK inhibitor is NU7441, KU-0060648, or any one of Compounds 1, 2, 3, 4, 5, or 6 (structures shown below), each of which is also described in at least one of the foregoing citations. In some embodiments, the DNA-PK inhibitor is Compound 6. In some embodiments, the DNA-PK inhibitor is Compound 3. Structures for exemplary DNA-PK inhibitors are as follows in Table 1A. Unless otherwise indicated, reference to a DNA-PK inhibitor by name or structure encompasses pharmaceutically acceptable salts thereof.










TABLE 1A





DNA-PK Inhibitor
Structure







NU7441


embedded image







KU-0060648


embedded image







Compound 1


embedded image







Compound 2


embedded image







Compound 3


embedded image







Compound 4


embedded image







Compound 5


embedded image







Compound 6


embedded image











In any of the foregoing embodiments where a DNA-PK inhibitor is used, it may be used in combination with only one gRNA or vector encoding only one gRNA to promote excision, i.e., the method does not always involve providing two or more guides that promote cleavage near a TNR or self-complementary region.


In some embodiments, trinucleotide repeats or a self-complementary region is excised from a locus or gene associated with a disorder, such as a repeat expansion disorder, which may be a trinucleotide repeat expansion disorder. A repeat expansion disorder is one in which unaffected individuals have alleles with a number of repeats in a normal range, and individuals having the disorder or at risk for the disorder have one or two alleles with a number of repeats in an elevated range relative to the normal range. Exemplary repeat expansion disorders are listed and described in Table 1. In some embodiments, the repeat expansion disorder is any one of the disorders listed in Table 1. In some embodiments, the repeat expansion disorder is DM1. In some embodiments, the repeat expansion disorder is HD. In some embodiments, the repeat expansion disorder is FXS. In some embodiments, the repeat expansion disorder is a spinocerebellar ataxia. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is a gene listed in Table 1. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is DMPK. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is HTT. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is Frataxin. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is FMR1. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is an Ataxin. In some embodiments, the locus or gene from which the trinucleotide repeats are excised is a gene associated with a type of spinocerebellar ataxia.


The number of repeats that is excised may be at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10,000, or in a range bounded by any two of the foregoing numbers, inclusive, or in any of the ranges listed in the Summary above. In some embodiments, the number of repeats that is excised is in a range listed in Table 1, e.g., as a pathological, premutation, at-risk, or intermediate range.


In some embodiments, excision of a repeat or self-complementary region ameliorates at least one phenotype or symptom associated with the repeat or self-complementary region or associated with a disorder associated with the repeat or self-complementary region. This may include ameliorating aberrant expression of a gene encompassing or near the repeat or self-complementary region, or ameliorating aberrant activity of a gene product (noncoding RNA, mRNA, or polypeptide) encoded by a gene encompassing the repeat or self-complementary region.


For example, where the TNRs are within the DMPK gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat DMPK gene, e.g., one or more of increasing myotonic dystrophy protein kinase activity; increasing phosphorylation of phospholemman, dihydropyridine receptor, myogenin, L-type calcium channel beta subunit, and/or myosin phosphatase targeting subunit; increasing inhibition of myosin phosphatase; and/or ameliorating muscle loss, muscle weakness, hypersomnia, one or more executive function deficiencies, insulin resistance, cataract formation, balding, or male infertility or low fertility.


Where the TNRs are within the HTT gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat HTT gene, e.g., one or more of striatal neuron loss, involuntary movements, irritability, depression, small involuntary movements, poor coordination, difficulty learning new information or making decisions, difficulty walking, speaking, and/or swallowing, and/or a decline in thinking and/or reasoning abilities.


Where the TNRs are within the FMR1 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat FMR1 gene, e.g., one or more of aberrant FMR1 transcript or Fragile X Mental Retardation Protein levels, translational dysregulation of mRNAs normally associated with FMRP, lowered levels of phospho-cofilin (CFL1), increased levels of phospho-cofilin phosphatase PPP2CA, diminished mRNA transport to neuronal synapses, increased expression of HSP27, HSP70, and/or CRYAB, abnormal cellular distribution of lamin A/C isoforms, early-onset menopause such as menopause before age 40 years, defects in ovarian development or function, elevated level of serum gonadotropins (e.g., FSH), progressive intention tremor, parkinsonism, cognitive decline, generalized brain atrophy, impotence, and/or developmental delay.


Where the TNRs are within the FMR2 gene or adjacent to the 5′ UTR of FMR2, excision of the TNRs may ameliorate one or more phenotypes associated with expanded-repeats in or adjacent to the FMR2 gene, e.g., one or more of aberrant FMR2 expression, developmental delays, poor eye contact, repetitive use of language, and hand-flapping.


Where the TNRs are within the AR gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat AR gene, e.g., one or more of aberrant AR expression; production of a C-terminally truncated fragment of the androgen receptor protein; proteolysis of androgen receptor protein by caspase-3 and/or through the ubiquitin-proteasome pathway; formation of nuclear inclusions comprising CREB-binding protein; aberrant phosphorylation of p44/42, p38, and/or SAPK/JNK; muscle weakness; muscle wasting; difficulty walking, swallowing, and/or speaking; gynecomastia; and/or male infertility.


Where the TNRs are within the ATXN1 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATXN1 gene, e.g., one or more of formation of aggregates comprising ATXN1; Purkinje cell death; ataxia; muscle stiffness; rapid, involuntary eye movements; limb numbness, tingling, or pain; and/or muscle twitches.


Where the TNRs are within the ATXN2 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATXN2 gene, e.g., one or more of aberrant ATXN2 production; Purkinje cell death; ataxia; difficulty speaking or swallowing; loss of sensation and weakness in the limbs; dementia; muscle wasting; uncontrolled muscle tensing; and/or involuntary jerking movements.


Where the TNRs are within the ATXN3 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATXN3 gene, e.g., one or more of aberrant ATXN3 levels; aberrant beclin-1 levels; inhibition of autophagy; impaired regulation of superoxide dismutase 2; ataxia; difficulty swallowing; loss of sensation and weakness in the limbs; dementia; muscle stiffness; uncontrolled muscle tensing; tremors; restless leg symptoms; and/or muscle cramps.


Where the TNRs are within the CACNA1A gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat CACNA1A gene, e.g., one or more of aberrant CaV2.1 voltage-gated calcium channels in CACNA1A-expressing cells; ataxia; difficulty speaking; involuntary eye movements; double vision; loss of arm coordination; tremors; and/or uncontrolled muscle tensing.


Where the TNRs are within the ATXN7 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATXN7 gene, e.g., one or more of aberrant histone acetylation; aberrant histone deubiquitination; impairment of transactivation by CRX; formation of nuclear inclusions comprising ATXN7; ataxia; incoordination of gait; poor coordination of hands, speech and/or eye movements; retinal degeneration; and/or pigmentary macular dystrophy.


Where the TNRs are within the ATXN8OS gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATXN8OS gene, e.g., one or more of formation of ribonuclear inclusions comprising ATXN8OS mRNA; aberrant KLHL1 protein expression; ataxia; difficulty speaking and/or walking; and/or involuntary eye movements.


Where the TNRs are within the PPP2R2B gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat PPP2R2B gene, e.g., one or more of aberrant PPP2R2B expression; aberrant phosphatase 2 activity; ataxia; cerebellar degeneration; difficulty walking; and/or poor coordination of hands, speech and/or eye movements.


Where the TNRs are within the TBP gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat TBP gene, e.g., one or more of aberrant transcription initiation; aberrant TBP protein accumulation (e.g., in cerebellar neurons); aberrant cerebellar neuron cell death; ataxia; difficulty walking; muscle weakness; and/or loss of cognitive abilities.


Where the TNRs are within the ATN1 gene, excision of the TNRs may ameliorate one or more phenotypes associated with an expanded-repeat ATN1 gene, e.g., one or more of aberrant transcriptional regulation; aberrant ATN1 protein accumulation (e.g., in neurons); aberrant neuron cell death; involuntary movements; and/or loss of cognitive abilities.


In some embodiments, any one or more of the gRNAs, vectors, DNA-PK inhibitors, compositions, or pharmaceutical formulations described herein is for use in a method disclosed herein or in preparing a medicament for treating or preventing a disease or disorder in a subject. In some embodiments, treatment and/or prevention is accomplished with a single dose, e.g., one-time treatment, of medicament/composition.


In some embodiments, the invention comprises a method of treating or preventing a disease or disorder in subject comprising administering any one or more of the gRNAs, vectors, compositions, or pharmaceutical formulations described herein. In some embodiments, the gRNAs, vectors, compositions, or pharmaceutical formulations described herein are administered as a single dose, e.g., at one time. In some embodiments, the single dose achieves durable treatment and/or prevention. In some embodiments, the method achieves durable treatment and/or prevention. Durable treatment and/or prevention, as used herein, includes treatment and/or prevention that extends at least i) 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 weeks; ii) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30, or 36 months; or iii) 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 years. In some embodiments, a single dose of the gRNAs, vectors, compositions, or pharmaceutical formulations described herein is sufficient to treat and/or prevent any of the indications described herein for the duration of the subject's life.


In some embodiments, a method of excising a TNR is provided comprising administering a composition comprising a guide RNA, or a vector encoding a guide RNA, comprising any one or more guide sequences of SEQ ID Nos: 101-4988, 5001-7264, or 7301-53372. In some embodiments, gRNAs comprising any one or more of the guide sequences of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372 are administered to excise a TNR. The guide RNAs may be administered together with an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9) or an mRNA or vector encoding an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9). Any of these methods may further comprise administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, a method of treating a TNR-associated disease or disorder is provided comprising administering a composition comprising a guide RNA comprising any one or more of the guide sequences of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. The guide RNAs may be administered together with an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9) or an mRNA or vector encoding an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9). Any of these methods may further comprise administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, a method of decreasing or eliminating production of an mRNA comprising an expanded trinucleotide repeat is provided comprising administering a guide RNA comprising any one or more of the guide sequences of 101-4988, 5001-7264, or 7301-53372. The guide RNAs may be administered together with an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9) or an mRNA or vector encoding an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9). Any of these methods may further comprise administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, a method of decreasing or eliminating production of a protein comprising an expanded amino acid repeat is provided comprising administering a guide RNA comprising any one or more of the guide sequences of 101-4988, 5001-7264, or 7301-53372. The guide RNAs may be administered together with an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9) or an mRNA or vector encoding an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9). Any of these methods may further comprise administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, gRNAs comprising any one or more of the guide sequences of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372 are administered to reduce expression of a polypeptide comprising an expanded amino acid repeat. The gRNAs may be administered together with an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9) or an mRNA or vector encoding an RNA-guided DNA nuclease such as a Cas nuclease (e.g., Cas9). Any of these methods may further comprise administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, the gRNAs comprising the guide sequences of Table 2 or of the Sequence Listing together with an RNA-guided DNA nuclease such as a Cas nuclease and a DNA-PK inhibitor induce DSBs, and microhomology-mediated end joining (MMEJ) during repair leads to a mutation in the targeted gene. In some embodiments, MMEJ leads to excision of trinucleotide repeats or a self-complementary sequence.


In some embodiments, the subject is mammalian In some embodiments, the subject is human. In some embodiments, the subject is cow, pig, monkey, sheep, dog, cat, fish, or poultry.


In some embodiments, the use of a guide RNAs comprising any one or more of the guide sequences in Table 2 and/or the Sequence Listing (e.g., in a composition provided herein) is provided for the preparation of a medicament for treating a human subject having a disorder listed in Table 1, such as DM1. Such use may be in combination with administering a DNA-PK inhibitor, such as any of those described herein.


In some embodiments, the guide RNAs, compositions, and formulations are administered intravenously. In some embodiments, the guide RNAs, compositions, and formulations are administered intramuscularly. In some embodiments, the guide RNAs, compositions, and formulations are administered intracranially. In some embodiments, the guide RNAs, compositions, and formulations are administered to cells ex vivo. Where a DNA-PK inhibitor is administered, it may be administered in the same composition as or a different composition from the composition comprising the guide RNA, and may be administered by the same or a different route as the guide RNA. In some embodiments, the DNA-PK inhibitor may be administered intravenously. In some embodiments, the DNA-PK inhibitor may be administered orally.


In some embodiments, the guide RNAs, compositions, and formulations are administered concomitantly with the DNA-PK inhibitor. In some embodiments, DNA-PK inhibitor is administered accordingly to its own dosing schedule.


In some embodiments, a single administration of a composition comprising a guide RNA provided herein is sufficient to excise TNRs or a self-complementary region. In other embodiments, more than one administration of a composition comprising a guide RNA provided herein may be beneficial to maximize therapeutic effects.


Combination Therapy

In some embodiments, the invention comprises combination therapies comprising any of the methods described herein (e.g., one or more of the gRNAs comprising any one or more of the guide sequences disclosed in Table 2 and/or the Sequence Listing (e.g., in a composition provided herein) together with an additional therapy suitable for ameliorating a disorder associated with the targeted gene and/or one or more symptoms thereof, as described above. Suitable additional therapies for use in ameliorating various disorders, such as those listed in Table 1, and/or one or more symptoms thereof are known in the art.


Delivery of gRNA Compositions


The methods and uses disclosed herein may use any suitable approach for delivering the gRNAs and compositions described herein. Exemplary delivery approaches include vectors, such as viral vectors; lipid nanoparticles; transfection; and electroporation. In some embodiments, vectors or LNPs associated with the gRNAs disclosed herein are for use in preparing a medicament for treating a disease or disorder.


Where a vector is used, it may be a viral vector, such as a non-integrating viral vector. In some embodiments, viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector. In some embodiments, the viral vector is an adeno-associated virus (AAV) vector. In some embodiments, the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh10 (see, e.g., SEQ ID NO: 81 of US 9,790,472, which is incorporated by reference herein in its entirety), AAVrh74 (see, e.g., SEQ ID NO: 1 of US 2015/0111955, which is incorporated by reference herein in its entirety), or AAV9 vector, wherein the number following AAV indicates the AAV serotype. Any variant of an AAV vector or serotype thereof, such as a self-complementary AAV (scAAV) vector, is encompassed within the general terms AAV vector, AAV1 vector, etc. See, e.g., McCarty et al., Gene Ther. 2001;8:1248-54, Naso et al., BioDrugs 2017; 31:317-334, and references cited therein for detailed discussion of various AAV vectors.


In some embodiments, the vector (e.g., viral vector, such as an adeno-associated viral vector) comprises a tissue-specific (e.g., muscle-specific) promoter, e.g., which is operatively linked to a sequence encoding the gRNA. In some embodiments, the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, or an SPc5-12 promoter. In some embodiments, the muscle-specific promoter is a CK8 promoter. In some embodiments, the muscle-specific promoter is a CK8e promoter. Muscle-specific promoters are described in detail, e.g., in US2004/0175727 A1; Wang et al., Expert Opin Drug Deliv. (2014) 11, 345-364; Wang et al., Gene Therapy (2008) 15, 1489-1499. In some embodiments, the tissue-specific promoter is a neuron-specific promoter, such as an enolase promoter. See, e.g., Naso et al., BioDrugs 2017; 31:317-334; Dashkoff et al., Mol Ther Methods Clin Dev. 2016;3:16081, and references cited therein for detailed discussion of tissue-specific promoters including neuron-specific promoters.


In some embodiments, in addition to guide RNA sequences, the vectors further comprise nucleic acids that do not encode guide RNAs. Nucleic acids that do not encode guide RNA include, but are not limited to, promoters, enhancers, regulatory sequences, and nucleic acids encoding an RNA-guided DNA nuclease, which can be a nuclease such as Cas9. In some embodiments, the vector comprises one or more nucleotide sequence(s) encoding a crRNA, a trRNA, or a crRNA and trRNA. In some embodiments, the vector comprises one or more nucleotide sequence(s) encoding a sgRNA and an mRNA encoding an RNA-guided DNA nuclease, which can be a Cas nuclease, such as Cas9 or Cpf1. In some embodiments, the vector comprises one or more nucleotide sequence(s) encoding a crRNA, a trRNA, and an mRNA encoding an RNA-guided DNA nuclease, which can be a Cas protein, such as, Cas9. In one embodiment, the Cas9 is from Streptococcus pyogenes (i.e., Spy Cas9 or SpCas9). In some embodiments, the nucleotide sequence encoding the crRNA, trRNA, or crRNA and trRNA (which may be a sgRNA) comprises or consists of a guide sequence flanked by all or a portion of a repeat sequence from a naturally-occurring CRISPR/Cas system. The nucleic acid comprising or consisting of the crRNA, trRNA, or crRNA and trRNA may further comprise a vector sequence wherein the vector sequence comprises or consists of nucleic acids that are not naturally found together with the crRNA, trRNA, or crRNA and trRNA.


Lipid nanoparticles (LNPs) are a known means for delivery of nucleotide and protein cargo, and may be used for delivery of the guide RNAs, compositions, or pharmaceutical formulations disclosed herein. In some embodiments, the LNPs deliver nucleic acid, protein, or nucleic acid together with protein.


In some embodiments, the invention comprises a method for delivering any one of the gRNAs disclosed herein to a subject, wherein the gRNA is associated with an LNP. In some embodiments, the gRNA/LNP is also associated with a Cas9 or an mRNA encoding Cas9.


In some embodiments, the invention comprises a composition comprising any one of the gRNAs disclosed and an LNP. In some embodiments, the composition further comprises a Cas9 or an mRNA encoding Cas9.


Electroporation is a well-known means for delivery of cargo, and any electroporation methodology may be used for delivery of any one of the gRNAs disclosed herein. In some embodiments, electroporation may be used to deliver any one of the gRNAs disclosed herein and Cas9 or an mRNA encoding Cas9.


In some embodiments, the invention comprises a method for delivering any one of the gRNAs disclosed herein to an ex vivo cell, wherein the gRNA is encoded by a vector, associated with an LNP, or in aqueous solution. In some embodiments, the gRNA/LNP or gRNA is also associated with a Cas9 or sequence encoding Cas9 (e.g., in the same vector, LNP, or solution).


Screening of gRNA Compositions with a DNA-PK Inhibitor


In some embodiments, methods are provided for screening for a guide RNA that is capable of excising a TNR or self-complementary region, the method comprising: a) contacting a cell with a guide RNA, a RNA-targeted endonuclease, and a DNA-PK inhibitor; b) repeating step a) without a DNA-PK inhibitor; c) comparing the excision of the TNR or self-complementary region from the cell contacted in steps a) as compared to the cell contacted in step b); and d) selecting a guide RNA wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.


In some embodiments, methods are provided for screening for a guide RNA that is capable of excising a TNR or self-complementary region in DNA, the method comprising: a) contacting: i) a cell (e.g., a myoblast) with a guide RNA, an RNA-targeted endonuclease, and a DNA-PK inhibitor; and ii) the same type of cell as used in i) with a guide RNA, an RNA-targeted endonuclease but without a DNA-PK inhibitor; b) comparing the excision of the TNR or self-complementary region in DNA from the cell contacted in steps a) i) as compared to the cell contacted in step a) ii); and c) selecting a guide RNA wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.


In some embodiments, methods are provided for screening for a pair of guide RNAs that is capable of excising a TNR or self-complementary region in DNA, the method comprising: a) contacting a cell with a pair of guide RNAs, a RNA-targeted endonuclease, and a DNA-PK inhibitor; b) repeating step a) without a DNA-PK inhibitor; c) comparing the excision of the TNR or self-complementary region in DNA from the cell contacted in steps a) as compared to the cell contacted in step b); and d) selecting a pair of guide RNAs wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor. In some embodiments, methods are provided for screening for a pair of guide RNAs that is capable of excising a TNR or self-complementary region in DNA, the method comprising: a) contacting: i) a cell (e.g., a myoblast) with a pair of guide RNAs, an RNA-targeted endonuclease, and a DNA-PK inhibitor, and ii) the same type of cell as used in a), i) with a pair of guide RNAs, an RNA-targeted endonuclease but without a DNA-PK inhibitor; b) comparing the excision of the TNR or self-complementary region in DNA from the cell contacted in steps a), i) as compared to the cell contacted in step a), ii); and c) selecting a pair of guide RNAs wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.


As used herein, “excision is improved” or “improved excision” may refer to a greater amount of excision of a TNR or self-complementary region in DNA, and/or a more desirable excision product (e.g., based on the size or location of the deletion). In some embodiments, determining whether a guide RNA or pair of guide RNAs has improved excision of a TNR or self-complementary region in DNA from DNA of a cell may be done by PCR of genomic DNA of the cell using primers designed to amplify a region of DNA surrounding the TNR or self-complementary region in DNA. PCR products may be evaluated by DNA gel electrophoresis and analyzed for excision of a TNR or self-complementary region in DNA. In some embodiments, excision of the TNR or self-complementary region in DNA may evaluated by sequencing methods (e.g., Sanger sequencing, PacBio sequencing). In some embodiments, percent deletion of the TNR or self-complementary region in DNA may be determined using a ddPCR assay (see e.g. FIG. 53). In some embodiments, “excision is improved” or “improved excision” is determined by assessing cellular features such as, in the case of DMPK: CUG foci reduction, MBNL1 foci reduction, or improved splicing efficiency of MBNL1, NCOR2, FN1 and/or KIF13A mRNAs.


In some embodiments, the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 3′ UTR of the DMPK gene. In some embodiments, the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FMR1 gene. In some embodiments, the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FXN gene.


In some embodiments, the DNA-PK inhibitor is Compound 6 or Compound 3. In some embodiments, the cell is a wildtype cell, e.g., a wildtype iPSC cell. In some embodiments, the cell is a disease cell, e.g., a cell derived from a patient, e.g., a DM1 iPSC cell, DM1 myoblast, DM1 fibroblast. The screen may include adding DNA-PK inhibitor in increasing doses to evaluate the enhancement of DNA-PK inhibition on single guide excision. The screen may include adding DNA-PK inhibitor in increasing doses to evaluate the enhancement of DNA-PK inhibition on paired guide excision.


IV. Compositions

Compositions Comprising Guide RNA (gRNAs)


Provided herein are compositions useful for treating diseases and disorders associated with trinucleotide repeats (TNRs) or self-complementary regions of DNA (e.g., the diseases and disorders of Table 1) and for excising trinucleotide repeats or self-complementary regions from DNA, e.g., using one or more guide RNAs or a nucleic encoding the one or more guide RNAs, with an RNA-targeted endonuclease (e.g., a CRISPR/Cas system). The compositions may comprise the guide RNA(s) or a vector(s) encoding the guide RNA(s) and may be administered to subjects having or suspected of having a disease associated with the trinucleotide repeats or self-complementary regions, and may further comprise or be administered in combination with a DNA-PK inhibitor, such as any of those described herein. Exemplary guide sequences are shown in the Table 2 and in the Sequence Listing at SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372.


In some embodiments, the one or more gRNAs direct the RNA-targeted endonuclease to a site in or near a TNR or self-complementary region. For example, the RNA-targeted endonuclease may be directed to cut within 10, 20, 30, 40, or 50 nucleotides of the TNR or self-complementary region.


In some embodiments, at least a pair of gRNAs are provided which direct the RNA-targeted endonuclease to a pair of sites flanking (i.e., on opposite sides of) a TNR or self-complementary region. For example, the pair of sites flanking a TNR or self-complementary region may each be within 10, 20, 30, 40, or 50 nucleotides of the TNR or self-complementary region but on opposite sides thereof. In some embodiments, a pair of gRNAs is provided that comprise guide sequences from Table 2 and/or the Sequence Listing and direct the RNA-targeted endonuclease to a pair of sites according to any of the foregoing embodiments.


Each of the guide sequences shown in Table 2 and in the Sequence Listing at SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372 may further comprise additional nucleotides to form or encode a crRNA, e.g., using any known sequence appropriate for the RNA-targeted endonuclease being used. In some embodiments, the crRNA comprises (5′ to 3′) at least a spacer sequence and a first complementarity domain. The first complementary domain is sufficiently complementary to a second complementarity domain, which may be part of the same molecule in the case of an sgRNA or in a tracrRNA in the case of a dual or modular gRNA, to form a duplex. See, e.g., US 2017/0007679 for detailed discussion of crRNA and gRNA domains, including first and second complementarity domains. For example, an exemplary sequence suitable for use with SpCas9 to follow the guide sequence at its 3′ end is: GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO: 99) in 5′ to 3′ orientation. In some embodiments, an exemplary sequence for use with SpCas9 to follow the 3′ end of the guide sequence is a sequence that is at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 99, or a sequence that differs from SEQ ID NO: 99 by no more than 1, 2, 3, 4 or 5 nucleotides. Where a tracrRNA is used, in some embodiments, it comprises (5′ to 3′) a second complementary domain and a proximal domain. In the case of a sgRNA, the above guide sequences may further comprise additional nucleotides to form or encode a sgRNA, e.g., using any known sequence appropriate for the RNA-targeted endonuclease being used. In some embodiments, an sgRNA comprises (5′ to 3′) at least a spacer sequence, a first complementary domain, a linking domain, a second complementary domain, and a proximal domain. A sgRNA or tracrRNA may further comprise a tail domain. The linking domain may be hairpin-forming. See, e.g., US 2017/0007679 for detailed discussion and examples of crRNA and gRNA domains, including second complementarity domains, linking domains, proximal domains, and tail domains. For example, an exemplary sequence suitable for use with SpCas9 to follow the 3′ end of the guide sequence is: GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAA AGUGGCACCGAGUCGGUGC (SEQ ID NO:100) in 5′ to 3′ orientation. In some embodiments, an exemplary sequence for use with SpCas9 to follow the 3′ end of the guide sequence is a sequence that is at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 100, or a sequence that differs from SEQ ID NO: 100 by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides.


In general, in the case of a DNA vector encoding a gRNA, the U residues in any of the RNA sequences described herein may be replaced with T residues.









TABLE 2







Exemplary guide sequences and chromosomal coordinates (Hg38 Coordinates)










SEQIDNO
Guide RNA name
Sequence
Enzyme













101
DMPK 3 forward 19:45769716-45769738
GGCAGATGGAGGGCCTTT
As/LbCpf1





102
DMPK 3 forward 19:45769716-45769739
GGCAGATGGAGGGCCTTTT
As/LbCpf1





103
DMPK 3 forward 19:45769716-45769740
GGCAGATGGAGGGCCTTTTA
As/LbCpf1





104
DMPK 3 forward 19:45769716-45769741
GGCAGATGGAGGGCCTTTTAT
As/LbCpf1





105
DMPK 3 forward 19:45769716-45769742
GGCAGATGGAGGGCCTTTTATT
As/LbCpf1





106
DMPK 3 forward 19:45769716-45769743
GGCAGATGGAGGGCCTTTTATTC
As/LbCpf1





107
DMPK 3 forward 19:45769716-45769744
GGCAGATGGAGGGCCTTTTATTCG
As/LbCpf1





108
DMPK 3 forward 19:45769716-45769745
GGCAGATGGAGGGCCTTTTATTCGC
As/LbCpf1





109
DMPK 3 forward 19:45769735-45769757
ATTCGCGAGGGTCGGGGG
As/LbCpf1





110
DMPK 3 forward 19:45769735-45769758
ATTCGCGAGGGTCGGGGGT
As/LbCpf1





111
DMPK 3 forward 19:45769735-45769759
ATTCGCGAGGGTCGGGGGTG
As/LbCpf1





112
DMPK 3 forward 19:45769735-45769760
ATTCGCGAGGGTCGGGGGTGG
As/LbCpf1





113
DMPK 3 forward 19:45769735-45769761
ATTCGCGAGGGTCGGGGGTGGG
As/LbCpf1





114
DMPK 3 forward 19:45769735-45769762
ATTCGCGAGGGTCGGGGGTGGGG
As/LbCpf1





115
DMPK 3 forward 19:45769735-45769763
ATTCGCGAGGGTCGGGGGTGGGGG
As/LbCpf1





116
DMPK 3 forward 19:45769735-45769764
ATTCGCGAGGGTCGGGGGTGGGGGT
As/LbCpf1





117
DMPK 3 forward 19:45769736-45769758
TTCGCGAGGGTCGGGGGT
As/LbCpf1





118
DMPK 3 forward 19:45769736-45769759
TTCGCGAGGGTCGGGGGTG
As/LbCpf1





119
DMPK 3 forward 19:45769736-45769760
TTCGCGAGGGTCGGGGGTGG
As/LbCpf1





120
DMPK 3 forward 19:45769736-45769761
TTCGCGAGGGTCGGGGGTGGG
As/LbCpf1





121
DMPK 3 forward 19:45769736-45769762
TTCGCGAGGGTCGGGGGTGGGG
As/LbCpf1





122
DMPK 3 forward 19:45769736-45769763
TTCGCGAGGGTCGGGGGTGGGGG
As/LbCpf1





123
DMPK 3 forward 19:45769736-45769764
TTCGCGAGGGTCGGGGGTGGGGGT
As/LbCpf1





124
DMPK 3 forward 19:45769736-45769765
TTCGCGAGGGTCGGGGGTGGGGGTC
As/LbCpf1





125
DMPK 3 reverse 19:45769758-45769780
TTGTCTGTCCCCACCTAG
As/LbCpf1





126
DMPK 3 reverse 19:45769758-45769781
TTGTCTGTCCCCACCTAGG
As/LbCpf1





127
DMPK 3 reverse 19:45769758-45769782
TTGTCTGTCCCCACCTAGGA
As/LbCpf1





128
DMPK 3 reverse 19:45769758-45769783
TTGTCTGTCCCCACCTAGGAC
As/LbCpf1





129
DMPK 3 reverse 19:45769758-45769784
TTGTCTGTCCCCACCTAGGACC
As/LbCpf1





130
DMPK 3 reverse 19:45769758-45769785
TTGTCTGTCCCCACCTAGGACCC
As/LbCpf1





131
DMPK 3 reverse 19:45769758-45769786
TTGTCTGTCCCCACCTAGGACCCC
As/LbCpf1





132
DMPK 3 reverse 19:45769758-45769787
TTGTCTGTCCCCACCTAGGACCCCC
As/LbCpf1





133
DMPK 3 reverse 19:45769792-45769814
GATGCACTGAGACCCCGA
As/LbCpf1





134
DMPK 3 reverse 19:45769792-45769815
GATGCACTGAGACCCCGAC
As/LbCpf1





135
DMPK 3 reverse 19:45769792-45769816
GATGCACTGAGACCCCGACA
As/LbCpf1





136
DMPK 3 reverse 19:45769792-45769817
GATGCACTGAGACCCCGACAT
As/LbCpf1





137
DMPK 3 reverse 19:45769792-45769818
GATGCACTGAGACCCCGACATT
As/LbCpf1





138
DMPK 3 reverse 19:45769792-45769819
GATGCACTGAGACCCCGACATTC
As/LbCpf1





139
DMPK 3 reverse 19:45769792-45769820
GATGCACTGAGACCCCGACATTCC
As/LbCpf1





140
DMPK 3 reverse 19:45769792-45769821
GATGCACTGAGACCCCGACATTCCT
As/LbCpf1





141
DMPK 3 reverse 19:45769793-45769815
GGATGCACTGAGACCCCG
As/LbCpf1





142
DMPK 3 reverse 19:45769793-45769816
GGATGCACTGAGACCCCGA
As/LbCpf1





143
DMPK 3 reverse 19:45769793-45769817
GGATGCACTGAGACCCCGAC
As/LbCpf1





144
DMPK 3 reverse 19:45769793-45769818
GGATGCACTGAGACCCCGACA
As/LbCpf1





145
DMPK 3 reverse 19:45769793-45769819
GGATGCACTGAGACCCCGACAT
As/LbCpf1





146
DMPK 3 reverse 19:45769793-45769820
GGATGCACTGAGACCCCGACATT
As/LbCpf1





147
DMPK 3 reverse 19:45769793-45769821
GGATGCACTGAGACCCCGACATTC
As/LbCpf1





148
DMPK 3 reverse 19:45769793-45769822
GGATGCACTGAGACCCCGACATTCC
As/LbCpf1





149
DMPK 3 reverse 19:45769856-45769878
TTGACCTCGTCCTCCGAC
As/LbCpf1





150
DMPK 3 reverse 19:45769856-45769879
TTGACCTCGTCCTCCGACT
As/LbCpf1





151
DMPK 3 reverse 19:45769856-45769880
TTGACCTCGTCCTCCGACTC
As/LbCpf1





152
DMPK 3 reverse 19:45769856-45769881
TTGACCTCGTCCTCCGACTCG
As/LbCpf1





153
DMPK 3 reverse 19:45769856-45769882
TTGACCTCGTCCTCCGACTCGC
As/LbCpf1





154
DMPK 3 reverse 19:45769856-45769883
TTGACCTCGTCCTCCGACTCGCT
As/LbCpf1





155
DMPK 3 reverse 19:45769856-45769884
TTGACCTCGTCCTCCGACTCGCTG
As/LbCpf1





156
DMPK 3 reverse 19:45769856-45769885
TTGACCTCGTCCTCCGACTCGCTGA
As/LbCpf1





157
DMPK 3 reverse 19:45769864-45769886
GATATTTATTGACCTCGT
As/LbCpf1





158
DMPK 3 reverse 19:45769864-45769887
GATATTTATTGACCTCGTC
As/LbCpf1





159
DMPK 3 reverse 19:45769864-45769888
GATATTTATTGACCTCGTCC
As/LbCpf1





160
DMPK 3 reverse 19:45769864-45769889
GATATTTATTGACCTCGTCCT
As/LbCpf1





161
DMPK 3 reverse 19:45769864-45769890
GATATTTATTGACCTCGTCCTC
As/LbCpf1





162
DMPK 3 reverse 19:45769864-45769891
GATATTTATTGACCTCGTCCTCC
As/LbCpf1





163
DMPK 3 reverse 19:45769864-45769892
GATATTTATTGACCTCGTCCTCCG
As/LbCpf1





164
DMPK 3 reverse 19:45769864-45769893
GATATTTATTGACCTCGTCCTCCGA
As/LbCpf1





165
DMPK 3 reverse 19:45769938-45769960
GGGGATCCCGCGCCCCCC
As/LbCpf1





166
DMPK 3 reverse 19:45769938-45769961
GGGGATCCCGCGCCCCCCT
As/LbCpf1





167
DMPK 3 reverse 19:45769938-45769962
GGGGATCCCGCGCCCCCCTC
As/LbCpf1





168
DMPK 3 reverse 19:45769938-45769963
GGGGATCCCGCGCCCCCCTCC
As/LbCpf1





169
DMPK 3 reverse 19:45769938-45769964
GGGGATCCCGCGCCCCCCTCCT
As/LbCpf1





170
DMPK 3 reverse 19:45769938-45769965
GGGGATCCCGCGCCCCCCTCCTC
As/LbCpf1





171
DMPK 3 reverse 19:45769938-45769966
GGGGATCCCGCGCCCCCCTCCTCA
As/LbCpf1





172
DMPK 3 reverse 19:45769938-45769967
GGGGATCCCGCGCCCCCCTCCTCAC
As/LbCpf1





173
DMPK 3 reverse 19:45769939-45769961
CGGGGATCCCGCGCCCCC
As/LbCpf1





174
DMPK 3 reverse 19:45769939-45769962
CGGGGATCCCGCGCCCCCC
As/LbCpf1





175
DMPK 3 reverse 19:45769939-45769963
CGGGGATCCCGCGCCCCCCT
As/LbCpf1





176
DMPK 3 reverse 19:45769939-45769964
CGGGGATCCCGCGCCCCCCTC
As/LbCpf1





177
DMPK 3 reverse 19:45769939-45769965
CGGGGATCCCGCGCCCCCCTCC
As/LbCpf1





178
DMPK 3 reverse 19:45769939-45769966
CGGGGATCCCGCGCCCCCCTCCT
As/LbCpf1





179
DMPK 3 reverse 19:45769939-45769967
CGGGGATCCCGCGCCCCCCTCCTC
As/LbCpf1





180
DMPK 3 reverse 19:45769939-45769968
CGGGGATCCCGCGCCCCCCTCCTCA
As/LbCpf1





181
DMPK 3 reverse 19:45769940-45769962
TCGGGGATCCCGCGCCCC
As/LbCpf1





182
DMPK 3 reverse 19:45769940-45769963
TCGGGGATCCCGCGCCCCC
As/LbCpf1





183
DMPK 3 reverse 19:45769940-45769964
TCGGGGATCCCGCGCCCCCC
As/LbCpf1





184
DMPK 3 reverse 19:45769940-45769965
TCGGGGATCCCGCGCCCCCCT
As/LbCpf1





185
DMPK 3 reverse 19:45769940-45769966
TCGGGGATCCCGCGCCCCCCTC
As/LbCpf1





186
DMPK 3 reverse 19:45769940-45769967
TCGGGGATCCCGCGCCCCCCTCC
As/LbCpf1





187
DMPK 3 reverse 19:45769940-45769968
TCGGGGATCCCGCGCCCCCCTCCT
As/LbCpf1





188
DMPK 3 reverse 19:45769940-45769969
TCGGGGATCCCGCGCCCCCCTCCTC
As/LbCpf1





189
DMPK 3 reverse 19:45769954-45769976
CCAAACCCGCTTTTTCGG
As/LbCpf1





190
DMPK 3 reverse 19:45769954-45769977
CCAAACCCGCTTTTTCGGG
As/LbCpf1





191
DMPK 3 reverse 19:45769954-45769978
CCAAACCCGCTTTTTCGGGG
As/LbCpf1





192
DMPK 3 reverse 19:45769954-45769979
CCAAACCCGCTTTTTCGGGGA
As/LbCpf1





193
DMPK 3 reverse 19:45769954-45769980
CCAAACCCGCTTTTTCGGGGAT
As/LbCpf1





194
DMPK 3 reverse 19:45769954-45769981
CCAAACCCGCTTTTTCGGGGATC
As/LbCpf1





195
DMPK 3 reverse 19:45769954-45769982
CCAAACCCGCTTTTTCGGGGATCC
As/LbCpf1





196
DMPK 3 reverse 19:45769954-45769983
CCAAACCCGCTTTTTCGGGGATCCC
As/LbCpf1





197
DMPK 3 reverse 19:45769955-45769977
GCCAAACCCGCTTTTTCG
As/LbCpf1





198
DMPK 3 reverse 19:45769955-45769978
GCCAAACCCGCTTTTTCGG
As/LbCpf1





199
DMPK 3 reverse 19:45769955-45769979
GCCAAACCCGCTTTTTCGGG
As/LbCpf1





200
DMPK 3 reverse 19:45769955-45769980
GCCAAACCCGCTTTTTCGGGG
As/LbCpf1





201
DMPK 3 reverse 19:45769955-45769981
GCCAAACCCGCTTTTTCGGGGA
As/LbCpf1





202
DMPK 3 reverse 19:45769955-45769982
GCCAAACCCGCTTTTTCGGGGAT
As/LbCpf1





203
DMPK 3 reverse 19:45769955-45769983
GCCAAACCCGCTTTTTCGGGGATC
As/LbCpf1





204
DMPK 3 reverse 19:45769955-45769984
GCCAAACCCGCTTTTTCGGGGATCC
As/LbCpf1





205
DMPK 3 reverse 19:45769960-45769982
CTTTTGCCAAACCCGCTT
As/LbCpf1





206
DMPK 3 reverse 19:45769960-45769983
CTTTTGCCAAACCCGCTTT
As/LbCpf1





207
DMPK 3 reverse 19:45769960-45769984
CTTTTGCCAAACCCGCTTTT
As/LbCpf1





208
DMPK 3 reverse 19:45769960-45769985
CTTTTGCCAAACCCGCTTTTT
As/LbCpf1





209
DMPK 3 reverse 19:45769960-45769986
CTTTTGCCAAACCCGCTTTTTC
As/LbCpf1





210
DMPK 3 reverse 19:45769960-45769987
CTTTTGCCAAACCCGCTTTTTCG
As/LbCpf1





211
DMPK 3 reverse 19:45769960-45769988
CTTTTGCCAAACCCGCTTTTTCGG
As/LbCpf1





212
DMPK 3 reverse 19:45769960-45769989
CTTTTGCCAAACCCGCTTTTTCGGG
As/LbCpf1





213
DMPK 3 forward 19:45769974-45769996
GCAAAAGCAAATTTCCCG
As/LbCpf1





214
DMPK 3 forward 19:45769974-45769997
GCAAAAGCAAATTTCCCGA
As/LbCpf1





215
DMPK 3 forward 19:45769974-45769998
GCAAAAGCAAATTTCCCGAG
As/LbCpf1





216
DMPK 3 forward 19:45769974-45769999
GCAAAAGCAAATTTCCCGAGT
As/LbCpf1





217
DMPK 3 forward 19:45769974-45770000
GCAAAAGCAAATTTCCCGAGTA
As/LbCpf1





218
DMPK 3 forward 19:45769974-45770001
GCAAAAGCAAATTTCCCGAGTAA
As/LbCpf1





219
DMPK 3 forward 19:45769974-45770002
GCAAAAGCAAATTTCCCGAGTAAG
As/LbCpf1





220
DMPK 3 forward 19:45769974-45770003
GCAAAAGCAAATTTCCCGAGTAAGC
As/LbCpf1





221
DMPK 3 forward 19:45769989-45770011
CCGAGTAAGCAGGCAGAG
As/LbCpf1





222
DMPK 3 forward 19:45769989-45770012
CCGAGTAAGCAGGCAGAGA
As/LbCpf1





223
DMPK 3 forward 19:45769989-45770013
CCGAGTAAGCAGGCAGAGAT
As/LbCpf1





224
DMPK 3 forward 19:45769989-45770014
CCGAGTAAGCAGGCAGAGATC
As/LbCpf1





225
DMPK 3 forward 19:45769989-45770015
CCGAGTAAGCAGGCAGAGATCG
As/LbCpf1





226
DMPK 3 forward 19:45769989-45770016
CCGAGTAAGCAGGCAGAGATCGC
As/LbCpf1





227
DMPK 3 forward 19:45769989-45770017
CCGAGTAAGCAGGCAGAGATCGCG
As/LbCpf1





228
DMPK 3 forward 19:45769989-45770018
CCGAGTAAGCAGGCAGAGATCGCGC
As/LbCpf1





229
DMPK 3 reverse 19:45770026-45770048
TTGTGCATGACGCCCTGC
As/LbCpf1





230
DMPK 3 reverse 19:45770026-45770049
TTGTGCATGACGCCCTGCT
As/LbCpf1





231
DMPK 3 reverse 19:45770026-45770050
TTGTGCATGACGCCCTGCTC
As/LbCpf1





232
DMPK 3 reverse 19:45770026-45770051
TTGTGCATGACGCCCTGCTCT
As/LbCpf1





233
DMPK 3 reverse 19:45770026-45770052
TTGTGCATGACGCCCTGCTCTG
As/LbCpf1





234
DMPK 3 reverse 19:45770026-45770053
TTGTGCATGACGCCCTGCTCTGG
As/LbCpf1





235
DMPK 3 reverse 19:45770026-45770054
TTGTGCATGACGCCCTGCTCTGGG
As/LbCpf1





236
DMPK 3 reverse 19:45770026-45770055
TTGTGCATGACGCCCTGCTCTGGGG
As/LbCpf1





237
DMPK 3 forward 19:45770057-45770079
CACTTTGCGAACCAACGA
As/LbCpf1





238
DMPK 3 forward 19:45770057-45770080
CACTTTGCGAACCAACGAT
As/LbCpf1





239
DMPK 3 forward 19:45770057-45770081
CACTTTGCGAACCAACGATA
As/LbCpf1





240
DMPK 3 forward 19:45770057-45770082
CACTTTGCGAACCAACGATAG
As/LbCpf1





241
DMPK 3 forward 19:45770057-45770083
CACTTTGCGAACCAACGATAGG
As/LbCpf1





242
DMPK 3 forward 19:45770057-45770084
CACTTTGCGAACCAACGATAGGT
As/LbCpf1





243
DMPK 3 forward 19:45770057-45770085
CACTTTGCGAACCAACGATAGGTG
As/LbCpf1





244
DMPK 3 forward 19:45770057-45770086
CACTTTGCGAACCAACGATAGGTGG
As/LbCpf1





245
DMPK 3 forward 19:45770064-45770086
CGAACCAACGATAGGTGG
As/LbCpf1





246
DMPK 3 forward 19:45770064-45770087
CGAACCAACGATAGGTGGG
As/LbCpf1





247
DMPK 3 forward 19:45770064-45770088
CGAACCAACGATAGGTGGGG
As/LbCpf1





248
DMPK 3 forward 19:45770064-45770089
CGAACCAACGATAGGTGGGGG
As/LbCpf1





249
DMPK 3 forward 19:45770064-45770090
CGAACCAACGATAGGTGGGGGT
As/LbCpf1





250
DMPK 3 forward 19:45770064-45770091
CGAACCAACGATAGGTGGGGGTG
As/LbCpf1





251
DMPK 3 forward 19:45770064-45770092
CGAACCAACGATAGGTGGGGGTGC
As/LbCpf1





252
DMPK 3 forward 19:45770064-45770093
CGAACCAACGATAGGTGGGGGTGCG
As/LbCpf1





253
DMPK 3 forward 19:45770143-45770165
CCCATCCACGTCAGGGCC
As/LbCpf1





254
DMPK 3 forward 19:45770143-45770166
CCCATCCACGTCAGGGCCT
As/LbCpf1





255
DMPK 3 forward 19:45770143-45770167
CCCATCCACGTCAGGGCCTC
As/LbCpf1





256
DMPK 3 forward 19:45770143-45770168
CCCATCCACGTCAGGGCCTCA
As/LbCpf1





257
DMPK 3 forward 19:45770143-45770169
CCCATCCACGTCAGGGCCTCAG
As/LbCpf1





258
DMPK 3 forward 19:45770143-45770170
CCCATCCACGTCAGGGCCTCAGC
As/LbCpf1





259
DMPK 3 forward 19:45770143-45770171
CCCATCCACGTCAGGGCCTCAGCC
As/LbCpf1





260
DMPK 3 forward 19:45770143-45770172
CCCATCCACGTCAGGGCCTCAGCCT
As/LbCpf1





261
DMPK 3 reverse 19:45770151-45770173
GGCCAGGCTGAGGCCCTG
As/LbCpf1





262
DMPK 3 reverse 19:45770151-45770174
GGCCAGGCTGAGGCCCTGA
As/LbCpf1





263
DMPK 3 reverse 19:45770151-45770175
GGCCAGGCTGAGGCCCTGAC
As/LbCpf1





264
DMPK 3 reverse 19:45770151-45770176
GGCCAGGCTGAGGCCCTGACG
As/LbCpf1





265
DMPK 3 reverse 19:45770151-45770177
GGCCAGGCTGAGGCCCTGACGT
As/LbCpf1





266
DMPK 3 reverse 19:45770151-45770178
GGCCAGGCTGAGGCCCTGACGTG
As/LbCpf1





267
DMPK 3 reverse 19:45770151-45770179
GGCCAGGCTGAGGCCCTGACGTGG
As/LbCpf1





268
DMPK 3 reverse 19:45770151-45770180
GGCCAGGCTGAGGCCCTGACGTGGA
As/LbCpf1





269
DMPK 3 reverse 19:45770155-45770177
TTTCGGCCAGGCTGAGGC
As/LbCpf1





270
DMPK 3 reverse 19:45770155-45770178
TTTCGGCCAGGCTGAGGCC
As/LbCpf1





271
DMPK 3 reverse 19:45770155-45770179
TTTCGGCCAGGCTGAGGCCC
As/LbCpf1





272
DMPK 3 reverse 19:45770155-45770180
TTTCGGCCAGGCTGAGGCCCT
As/LbCpf1





273
DMPK 3 reverse 19:45770155-45770181
TTTCGGCCAGGCTGAGGCCCTG
As/LbCpf1





274
DMPK 3 reverse 19:45770155-45770182
TTTCGGCCAGGCTGAGGCCCTGA
As/LbCpf1





275
DMPK 3 reverse 19:45770155-45770183
TTTCGGCCAGGCTGAGGCCCTGAC
As/LbCpf1





276
DMPK 3 reverse 19:45770155-45770184
TTTCGGCCAGGCTGAGGCCCTGACG
As/LbCpf1





277
DMPK 3 reverse 19:45770159-45770181
TTTCTTTCGGCCAGGCTG
As/LbCpf1





278
DMPK 3 reverse 19:45770159-45770182
TTTCTTTCGGCCAGGCTGA
As/LbCpf1





279
DMPK 3 reverse 19:45770159-45770183
TTTCTTTCGGCCAGGCTGAG
As/LbCpf1





280
DMPK 3 reverse 19:45770159-45770184
TTTCTTTCGGCCAGGCTGAGG
As/LbCpf1





281
DMPK 3 reverse 19:45770159-45770185
TTTCTTTCGGCCAGGCTGAGGC
As/LbCpf1





282
DMPK 3 reverse 19:45770159-45770186
TTTCTTTCGGCCAGGCTGAGGCC
As/LbCpf1





283
DMPK 3 reverse 19:45770159-45770187
TTTCTTTCGGCCAGGCTGAGGCCC
As/LbCpf1





284
DMPK 3 reverse 19:45770159-45770188
TTTCTTTCGGCCAGGCTGAGGCCCT
As/LbCpf1





285
DMPK 3 forward 19:45769708-45769730
GAGCTTTGGGCAGATGGA
AsCpf1-1





286
DMPK 3 forward 19:45769708-45769731
GAGCTTTGGGCAGATGGAG
AsCpf1-1





287
DMPK 3 forward 19:45769708-45769732
GAGCTTTGGGCAGATGGAGG
AsCpf1-1





288
DMPK 3 forward 19:45769708-45769733
GAGCTTTGGGCAGATGGAGGG
AsCpf1-1





289
DMPK 3 forward 19:45769708-45769734
GAGCTTTGGGCAGATGGAGGGC
AsCpf1-1





290
DMPK 3 forward 19:45769708-45769735
GAGCTTTGGGCAGATGGAGGGCC
AsCpf1-1





291
DMPK 3 forward 19:45769708-45769736
GAGCTTTGGGCAGATGGAGGGCCT
AsCpf1-1





292
DMPK 3 forward 19:45769708-45769737
GAGCTTTGGGCAGATGGAGGGCCTT
AsCpf1-1





293
DMPK 3 forward 19:45769740-45769762
CGAGGGTCGGGGGTGGGG
AsCpf1-1





294
DMPK 3 forward 19:45769740-45769763
CGAGGGTCGGGGGTGGGGG
AsCpf1-1





295
DMPK 3 forward 19:45769740-45769764
CGAGGGTCGGGGGTGGGGGT
AsCpf1-1





296
DMPK 3 forward 19:45769740-45769765
CGAGGGTCGGGGGTGGGGGTC
AsCpf1-1





297
DMPK 3 forward 19:45769740-45769766
CGAGGGTCGGGGGTGGGGGTCC
AsCpf1-1





298
DMPK 3 forward 19:45769740-45769767
CGAGGGTCGGGGGTGGGGGTCCT
AsCpf1-1





299
DMPK 3 forward 19:45769740-45769768
CGAGGGTCGGGGGTGGGGGTCCTA
AsCpf1-1





300
DMPK 3 forward 19:45769740-45769769
CGAGGGTCGGGGGTGGGGGTCCTAG
AsCpf1-1





301
DMPK 3 reverse 19:45769747-45769769
CACCTAGGACCCCCACCC
AsCpf1-1





302
DMPK 3 reverse 19:45769747-45769770
CACCTAGGACCCCCACCCC
AsCpf1-1





303
DMPK 3 reverse 19:45769747-45769771
CACCTAGGACCCCCACCCCC
AsCpf1-1





304
DMPK 3 reverse 19:45769747-45769772
CACCTAGGACCCCCACCCCCG
AsCpf1-1





305
DMPK 3 reverse 19:45769747-45769773
CACCTAGGACCCCCACCCCCGA
AsCpf1-1





306
DMPK 3 reverse 19:45769747-45769774
CACCTAGGACCCCCACCCCCGAC
AsCpf1-1





307
DMPK 3 reverse 19:45769747-45769775
CACCTAGGACCCCCACCCCCGACC
AsCpf1-1





308
DMPK 3 reverse 19:45769747-45769776
CACCTAGGACCCCCACCCCCGACCC
AsCpf1-1





309
DMPK 3 reverse 19:45769768-45769790
TCGGTATTTATTGTCTGT
AsCpf1-1





310
DMPK 3 reverse 19:45769768-45769791
TCGGTATTTATTGTCTGTC
AsCpf1-1





311
DMPK 3 reverse 19:45769768-45769792
TCGGTATTTATTGTCTGTCC
AsCpf1-1





312
DMPK 3 reverse 19:45769768-45769793
TCGGTATTTATTGTCTGTCCC
AsCpf1-1





313
DMPK 3 reverse 19:45769768-45769794
TCGGTATTTATTGTCTGTCCCC
AsCpf1-1





314
DMPK 3 reverse 19:45769768-45769795
TCGGTATTTATTGTCTGTCCCCA
AsCpf1-1





315
DMPK 3 reverse 19:45769768-45769796
TCGGTATTTATTGTCTGTCCCCAC
AsCpf1-1





316
DMPK 3 reverse 19:45769768-45769797
TCGGTATTTATTGTCTGTCCCCACC
AsCpf1-1





317
DMPK 3 reverse 19:45769799-45769821
CGTTTTGGATGCACTGAG
AsCpf1-1





318
DMPK 3 reverse 19:45769799-45769822
CGTTTTGGATGCACTGAGA
AsCpf1-1





319
DMPK 3 reverse 19:45769799-45769823
CGTTTTGGATGCACTGAGAC
AsCpf1-1





320
DMPK 3 reverse 19:45769799-45769824
CGTTTTGGATGCACTGAGACC
AsCpf1-1





321
DMPK 3 reverse 19:45769799-45769825
CGTTTTGGATGCACTGAGACCC
AsCpf1-1





322
DMPK 3 reverse 19:45769799-45769826
CGTTTTGGATGCACTGAGACCCC
AsCpf1-1





323
DMPK 3 reverse 19:45769799-45769827
CGTTTTGGATGCACTGAGACCCCG
AsCpf1-1





324
DMPK 3 reverse 19:45769799-45769828
CGTTTTGGATGCACTGAGACCCCGA
AsCpf1-1





325
DMPK 3 forward 19:45769815-45769837
AAACGTGGATTGGGGTTG
AsCpf1-1





326
DMPK 3 forward 19:45769815-45769838
AAACGTGGATTGGGGTTGT
AsCpf1-1





327
DMPK 3 forward 19:45769815-45769839
AAACGTGGATTGGGGTTGTT
AsCpf1-1





328
DMPK 3 forward 19:45769815-45769840
AAACGTGGATTGGGGTTGTTG
AsCpf1-1





329
DMPK 3 forward 19:45769815-45769841
AAACGTGGATTGGGGTTGTTGG
AsCpf1-1





330
DMPK 3 forward 19:45769815-45769842
AAACGTGGATTGGGGTTGTTGGG
AsCpf1-1





331
DMPK 3 forward 19:45769815-45769843
AAACGTGGATTGGGGTTGTTGGGG
AsCpf1-1





332
DMPK 3 forward 19:45769815-45769844
AAACGTGGATTGGGGTTGTTGGGGG
AsCpf1-1





333
DMPK 3 reverse 19:45769840-45769862
ACTCGCTGACAGGCTACA
AsCpf1-1





334
DMPK 3 reverse 19:45769840-45769863
ACTCGCTGACAGGCTACAG
AsCpf1-1





335
DMPK 3 reverse 19:45769840-45769864
ACTCGCTGACAGGCTACAGG
AsCpf1-1





336
DMPK 3 reverse 19:45769840-45769865
ACTCGCTGACAGGCTACAGGA
AsCpf1-1





337
DMPK 3 reverse 19:45769840-45769866
ACTCGCTGACAGGCTACAGGAC
AsCpf1-1





338
DMPK 3 reverse 19:45769840-45769867
ACTCGCTGACAGGCTACAGGACC
AsCpf1-1





339
DMPK 3 reverse 19:45769840-45769868
ACTCGCTGACAGGCTACAGGACCC
AsCpf1-1





340
DMPK 3 reverse 19:45769840-45769869
ACTCGCTGACAGGCTACAGGACCCC
AsCpf1-1





341
DMPK 3 reverse 19:45769872-45769894
GCGGTTTGGATATTTATT
AsCpf1-1





342
DMPK 3 reverse 19:45769872-45769895
GCGGTTTGGATATTTATTG
AsCpf1-1





343
DMPK 3 reverse 19:45769872-45769896
GCGGTTTGGATATTTATTGA
AsCpf1-1





344
DMPK 3 reverse 19:45769872-45769897
GCGGTTTGGATATTTATTGAC
AsCpf1-1





345
DMPK 3 reverse 19:45769872-45769898
GCGGTTTGGATATTTATTGACC
AsCpf1-1





346
DMPK 3 reverse 19:45769872-45769899
GCGGTTTGGATATTTATTGACCT
AsCpf1-1





347
DMPK 3 reverse 19:45769872-45769900
GCGGTTTGGATATTTATTGACCTC
AsCpf1-1





348
DMPK 3 reverse 19:45769872-45769901
GCGGTTTGGATATTTATTGACCTCG
AsCpf1-1





349
DMPK 3 reverse 19:45769881-45769903
CCCGCTTCGGCGGTTTGG
AsCpf1-1





350
DMPK 3 reverse 19:45769881-45769904
CCCGCTTCGGCGGTTTGGA
AsCpf1-1





351
DMPK 3 reverse 19:45769881-45769905
CCCGCTTCGGCGGTTTGGAT
AsCpf1-1





352
DMPK 3 reverse 19:45769881-45769906
CCCGCTTCGGCGGTTTGGATA
AsCpf1-1





353
DMPK 3 reverse 19:45769881-45769907
CCCGCTTCGGCGGTTTGGATAT
AsCpf1-1





354
DMPK 3 reverse 19:45769881-45769908
CCCGCTTCGGCGGTTTGGATATT
AsCpf1-1





355
DMPK 3 reverse 19:45769881-45769909
CCCGCTTCGGCGGTTTGGATATTT
AsCpf1-1





356
DMPK 3 reverse 19:45769881-45769910
CCCGCTTCGGCGGTTTGGATATTTA
AsCpf1-1





357
DMPK 3 forward 19:45769887-45769909
AACCGCCGAAGCGGGCGG
AsCpf1-1





358
DMPK 3 forward 19:45769887-45769910
AACCGCCGAAGCGGGCGGA
AsCpf1-1





359
DMPK 3 forward 19:45769887-45769911
AACCGCCGAAGCGGGCGGAG
AsCpf1-1





360
DMPK 3 forward 19:45769887-45769912
AACCGCCGAAGCGGGCGGAGC
AsCpf1-1





361
DMPK 3 forward 19:45769887-45769913
AACCGCCGAAGCGGGCGGAGCC
AsCpf1-1





362
DMPK 3 forward 19:45769887-45769914
AACCGCCGAAGCGGGCGGAGCCG
AsCpf1-1





363
DMPK 3 forward 19:45769887-45769915
AACCGCCGAAGCGGGCGGAGCCGG
AsCpf1-1





364
DMPK 3 forward 19:45769887-45769916
AACCGCCGAAGCGGGCGGAGCCGGC
AsCpf1-1





365
DMPK 3 forward 19:45769922-45769944
AGAGCAGCGCAAGTGAGG
AsCpf1-1





366
DMPK 3 forward 19:45769922-45769945
AGAGCAGCGCAAGTGAGGA
AsCpf1-1





367
DMPK 3 forward 19:45769922-45769946
AGAGCAGCGCAAGTGAGGAG
AsCpf1-1





368
DMPK 3 forward 19:45769922-45769947
AGAGCAGCGCAAGTGAGGAGG
AsCpf1-1





369
DMPK 3 forward 19:45769922-45769948
AGAGCAGCGCAAGTGAGGAGGG
AsCpf1-1





370
DMPK 3 forward 19:45769922-45769949
AGAGCAGCGCAAGTGAGGAGGGG
AsCpf1-1





371
DMPK 3 forward 19:45769922-45769950
AGAGCAGCGCAAGTGAGGAGGGGG
AsCpf1-1





372
DMPK 3 forward 19:45769922-45769951
AGAGCAGCGCAAGTGAGGAGGGGGG
AsCpf1-1





373
DMPK 3 reverse 19:45769929-45769951
GCGCCCCCCTCCTCACTT
AsCpf1-1





374
DMPK 3 reverse 19:45769929-45769952
GCGCCCCCCTCCTCACTTG
AsCpf1-1





375
DMPK 3 reverse 19:45769929-45769953
GCGCCCCCCTCCTCACTTGC
AsCpf1-1





376
DMPK 3 reverse 19:45769929-45769954
GCGCCCCCCTCCTCACTTGCG
AsCpf1-1





377
DMPK 3 reverse 19:45769929-45769955
GCGCCCCCCTCCTCACTTGCGC
AsCpf1-1





378
DMPK 3 reverse 19:45769929-45769956
GCGCCCCCCTCCTCACTTGCGCT
AsCpf1-1





379
DMPK 3 reverse 19:45769929-45769957
GCGCCCCCCTCCTCACTTGCGCTG
AsCpf1-1





380
DMPK 3 reverse 19:45769929-45769958
GCGCCCCCCTCCTCACTTGCGCTGC
AsCpf1-1





381
DMPK 3 reverse 19:45769937-45769959
GGGATCCCGCGCCCCCCT
AsCpf1-1





382
DMPK 3 reverse 19:45769937-45769960
GGGATCCCGCGCCCCCCTC
AsCpf1-1





383
DMPK 3 reverse 19:45769937-45769961
GGGATCCCGCGCCCCCCTCC
AsCpf1-1





384
DMPK 3 reverse 19:45769937-45769962
GGGATCCCGCGCCCCCCTCCT
AsCpf1-1





385
DMPK 3 reverse 19:45769937-45769963
GGGATCCCGCGCCCCCCTCCTC
AsCpf1-1





386
DMPK 3 reverse 19:45769937-45769964
GGGATCCCGCGCCCCCCTCCTCA
AsCpf1-1





387
DMPK 3 reverse 19:45769937-45769965
GGGATCCCGCGCCCCCCTCCTCAC
AsCpf1-1





388
DMPK 3 reverse 19:45769937-45769966
GGGATCCCGCGCCCCCCTCCTCACT
AsCpf1-1





389
DMPK 3 forward 19:45769958-45769980
CGAAAAAGCGGGTTTGGC
AsCpf1-1





390
DMPK 3 forward 19:45769958-45769981
CGAAAAAGCGGGTTTGGCA
AsCpf1-1





391
DMPK 3 forward 19:45769958-45769982
CGAAAAAGCGGGTTTGGCAA
AsCpf1-1





392
DMPK 3 forward 19:45769958-45769983
CGAAAAAGCGGGTTTGGCAAA
AsCpf1-1





393
DMPK 3 forward 19:45769958-45769984
CGAAAAAGCGGGTTTGGCAAAA
AsCpf1-1





394
DMPK 3 forward 19:45769958-45769985
CGAAAAAGCGGGTTTGGCAAAAG
AsCpf1-1





395
DMPK 3 forward 19:45769958-45769986
CGAAAAAGCGGGTTTGGCAAAAGC
AsCpf1-1





396
DMPK 3 forward 19:45769958-45769987
CGAAAAAGCGGGTTTGGCAAAAGCA
AsCpf1-1





397
DMPK 3 forward 19:45769990-45770012
CGAGTAAGCAGGCAGAGA
AsCpf1-1





398
DMPK 3 forward 19:45769990-45770013
CGAGTAAGCAGGCAGAGAT
AsCpf1-1





399
DMPK 3 forward 19:45769990-45770014
CGAGTAAGCAGGCAGAGATC
AsCpf1-1





400
DMPK 3 forward 19:45769990-45770015
CGAGTAAGCAGGCAGAGATCG
AsCpf1-1





401
DMPK 3 forward 19:45769990-45770016
CGAGTAAGCAGGCAGAGATCGC
AsCpf1-1





402
DMPK 3 forward 19:45769990-45770017
CGAGTAAGCAGGCAGAGATCGCG
AsCpf1-1





403
DMPK 3 forward 19:45769990-45770018
CGAGTAAGCAGGCAGAGATCGCGC
AsCpf1-1





404
DMPK 3 forward 19:45769990-45770019
CGAGTAAGCAGGCAGAGATCGCGCC
AsCpf1-1





405
DMPK 3 forward 19:45769991-45770013
GAGTAAGCAGGCAGAGAT
AsCpf1-1





406
DMPK 3 forward 19:45769991-45770014
GAGTAAGCAGGCAGAGATC
AsCpf1-1





407
DMPK 3 forward 19:45769991-45770015
GAGTAAGCAGGCAGAGATCG
AsCpf1-1





408
DMPK 3 forward 19:45769991-45770016
GAGTAAGCAGGCAGAGATCGC
AsCpf1-1





409
DMPK 3 forward 19:45769991-45770017
GAGTAAGCAGGCAGAGATCGCG
AsCpf1-1





410
DMPK 3 forward 19:45769991-45770018
GAGTAAGCAGGCAGAGATCGCGC
AsCpf1-1





411
DMPK 3 forward 19:45769991-45770019
GAGTAAGCAGGCAGAGATCGCGCC
AsCpf1-1





412
DMPK 3 forward 19:45769991-45770020
GAGTAAGCAGGCAGAGATCGCGCCA
AsCpf1-1





413
DMPK 3 forward 19:45770025-45770047
CAGAGCAGGGCGTCATGC
AsCpf1-1





414
DMPK 3 forward 19:45770025-45770048
CAGAGCAGGGCGTCATGCA
AsCpf1-1





415
DMPK 3 forward 19:45770025-45770049
CAGAGCAGGGCGTCATGCAC
AsCpf1-1





416
DMPK 3 forward 19:45770025-45770050
CAGAGCAGGGCGTCATGCACA
AsCpf1-1





417
DMPK 3 forward 19:45770025-45770051
CAGAGCAGGGCGTCATGCACAA
AsCpf1-1





418
DMPK 3 forward 19:45770025-45770052
CAGAGCAGGGCGTCATGCACAAG
AsCpf1-1





419
DMPK 3 forward 19:45770025-45770053
CAGAGCAGGGCGTCATGCACAAGA
AsCpf1-1





420
DMPK 3 forward 19:45770025-45770054
CAGAGCAGGGCGTCATGCACAAGAA
AsCpf1-1





421
DMPK 3 reverse 19:45770043-45770065
CAAAGTGCAAAGCTTTCT
AsCpf1-1





422
DMPK 3 reverse 19:45770043-45770066
CAAAGTGCAAAGCTTTCTT
AsCpf1-1





423
DMPK 3 reverse 19:45770043-45770067
CAAAGTGCAAAGCTTTCTTG
AsCpf1-1





424
DMPK 3 reverse 19:45770043-45770068
CAAAGTGCAAAGCTTTCTTGT
AsCpf1-1





425
DMPK 3 reverse 19:45770043-45770069
CAAAGTGCAAAGCTTTCTTGTG
AsCpf1-1





426
DMPK 3 reverse 19:45770043-45770070
CAAAGTGCAAAGCTTTCTTGTGC
AsCpf1-1





427
DMPK 3 reverse 19:45770043-45770071
CAAAGTGCAAAGCTTTCTTGTGCA
AsCpf1-1





428
DMPK 3 reverse 19:45770043-45770072
CAAAGTGCAAAGCTTTCTTGTGCAT
AsCpf1-1





429
DMPK 3 reverse 19:45770068-45770090
CGCACCCCCACCTATCGT
AsCpf1-1





430
DMPK 3 reverse 19:45770068-45770091
CGCACCCCCACCTATCGTT
AsCpf1-1





431
DMPK 3 reverse 19:45770068-45770092
CGCACCCCCACCTATCGTTG
AsCpf1-1





432
DMPK 3 reverse 19:45770068-45770093
CGCACCCCCACCTATCGTTGG
AsCpf1-1





433
DMPK 3 reverse 19:45770068-45770094
CGCACCCCCACCTATCGTTGGT
AsCpf1-1





434
DMPK 3 reverse 19:45770068-45770095
CGCACCCCCACCTATCGTTGGTT
AsCpf1-1





435
DMPK 3 reverse 19:45770068-45770096
CGCACCCCCACCTATCGTTGGTTC
AsCpf1-1





436
DMPK 3 reverse 19:45770068-45770097
CGCACCCCCACCTATCGTTGGTTCG
AsCpf1-1





437
DMPK 3 reverse 19:45770075-45770097
TCCTCCACGCACCCCCAC
AsCpf1-1





438
DMPK 3 reverse 19:45770075-45770098
TCCTCCACGCACCCCCACC
AsCpf1-1





439
DMPK 3 reverse 19:45770075-45770099
TCCTCCACGCACCCCCACCT
AsCpf1-1





440
DMPK 3 reverse 19:45770075-45770100
TCCTCCACGCACCCCCACCTA
AsCpf1-1





441
DMPK 3 reverse 19:45770075-45770101
TCCTCCACGCACCCCCACCTAT
AsCpf1-1





442
DMPK 3 reverse 19:45770075-45770102
TCCTCCACGCACCCCCACCTATC
AsCpf1-1





443
DMPK 3 reverse 19:45770075-45770103
TCCTCCACGCACCCCCACCTATCG
AsCpf1-1





444
DMPK 3 reverse 19:45770075-45770104
TCCTCCACGCACCCCCACCTATCGT
AsCpf1-1





445
DMPK 3 reverse 19:45770076-45770098
ATCCTCCACGCACCCCCA
AsCpf1-1





446
DMPK 3 reverse 19:45770076-45770099
ATCCTCCACGCACCCCCAC
AsCpf1-1





447
DMPK 3 reverse 19:45770076-45770100
ATCCTCCACGCACCCCCACC
AsCpf1-1





448
DMPK 3 reverse 19:45770076-45770101
ATCCTCCACGCACCCCCACCT
AsCpf1-1





449
DMPK 3 reverse 19:45770076-45770102
ATCCTCCACGCACCCCCACCTA
AsCpf1-1





450
DMPK 3 reverse 19:45770076-45770103
ATCCTCCACGCACCCCCACCTAT
AsCpf1-1





451
DMPK 3 reverse 19:45770076-45770104
ATCCTCCACGCACCCCCACCTATC
AsCpf1-1





452
DMPK 3 reverse 19:45770076-45770105
ATCCTCCACGCACCCCCACCTATCG
AsCpf1-1





453
DMPK 3 reverse 19:45770082-45770104
TGTTCCATCCTCCACGCA
AsCpf1-1





454
DMPK 3 reverse 19:45770082-45770105
TGTTCCATCCTCCACGCAC
AsCpf1-1





455
DMPK 3 reverse 19:45770082-45770106
TGTTCCATCCTCCACGCACC
AsCpf1-1





456
DMPK 3 reverse 19:45770082-45770107
TGTTCCATCCTCCACGCACCC
AsCpf1-1





457
DMPK 3 reverse 19:45770082-45770108
TGTTCCATCCTCCACGCACCCC
AsCpf1-1





458
DMPK 3 reverse 19:45770082-45770109
TGTTCCATCCTCCACGCACCCCC
AsCpf1-1





459
DMPK 3 reverse 19:45770082-45770110
TGTTCCATCCTCCACGCACCCCCA
AsCpf1-1





460
DMPK 3 reverse 19:45770082-45770111
TGTTCCATCCTCCACGCACCCCCAC
AsCpf1-1





461
DMPK 3 forward 19:45770128-45770150
CAGGCCTGCAGTTTGCCC
AsCpf1-1





462
DMPK 3 forward 19:45770128-45770151
CAGGCCTGCAGTTTGCCCA
AsCpf1-1





463
DMPK 3 forward 19:45770128-45770152
CAGGCCTGCAGTTTGCCCAT
AsCpf1-1





464
DMPK 3 forward 19:45770128-45770153
CAGGCCTGCAGTTTGCCCATC
AsCpf1-1





465
DMPK 3 forward 19:45770128-45770154
CAGGCCTGCAGTTTGCCCATCC
AsCpf1-1





466
DMPK 3 forward 19:45770128-45770155
CAGGCCTGCAGTTTGCCCATCCA
AsCpf1-1





467
DMPK 3 forward 19:45770128-45770156
CAGGCCTGCAGTTTGCCCATCCAC
AsCpf1-1





468
DMPK 3 forward 19:45770128-45770157
CAGGCCTGCAGTTTGCCCATCCACG
AsCpf1-1





469
DMPK 3 forward 19:45770129-45770151
AGGCCTGCAGTTTGCCCA
AsCpf1-1





470
DMPK 3 forward 19:45770129-45770152
AGGCCTGCAGTTTGCCCAT
AsCpf1-1





471
DMPK 3 forward 19:45770129-45770153
AGGCCTGCAGTTTGCCCATC
AsCpf1-1





472
DMPK 3 forward 19:45770129-45770154
AGGCCTGCAGTTTGCCCATCC
AsCpf1-1





473
DMPK 3 forward 19:45770129-45770155
AGGCCTGCAGTTTGCCCATCCA
AsCpf1-1





474
DMPK 3 forward 19:45770129-45770156
AGGCCTGCAGTTTGCCCATCCAC
AsCpf1-1





475
DMPK 3 forward 19:45770129-45770157
AGGCCTGCAGTTTGCCCATCCACG
AsCpf1-1





476
DMPK 3 forward 19:45770129-45770158
AGGCCTGCAGTTTGCCCATCCACGT
AsCpf1-1





477
DMPK 3 reverse 19:45770150-45770172
GCCAGGCTGAGGCCCTGA
AsCpf1-1





478
DMPK 3 reverse 19:45770150-45770173
GCCAGGCTGAGGCCCTGAC
AsCpf1-1





479
DMPK 3 reverse 19:45770150-45770174
GCCAGGCTGAGGCCCTGACG
AsCpf1-1





480
DMPK 3 reverse 19:45770150-45770175
GCCAGGCTGAGGCCCTGACGT
AsCpf1-1





481
DMPK 3 reverse 19:45770150-45770176
GCCAGGCTGAGGCCCTGACGTG
AsCpf1-1





482
DMPK 3 reverse 19:45770150-45770177
GCCAGGCTGAGGCCCTGACGTGG
AsCpf1-1





483
DMPK 3 reverse 19:45770150-45770178
GCCAGGCTGAGGCCCTGACGTGGA
AsCpf1-1





484
DMPK 3 reverse 19:45770150-45770179
GCCAGGCTGAGGCCCTGACGTGGAT
AsCpf1-1





485
DMPK 3 forward 19:45770151-45770173
CGTCAGGGCCTCAGCCTG
AsCpf1-1





486
DMPK 3 forward 19:45770151-45770174
CGTCAGGGCCTCAGCCTGG
AsCpf1-1





487
DMPK 3 forward 19:45770151-45770175
CGTCAGGGCCTCAGCCTGGC
AsCpf1-1





488
DMPK 3 forward 19:45770151-45770176
CGTCAGGGCCTCAGCCTGGCC
AsCpf1-1





489
DMPK 3 forward 19:45770151-45770177
CGTCAGGGCCTCAGCCTGGCCG
AsCpf1-1





490
DMPK 3 forward 19:45770151-45770178
CGTCAGGGCCTCAGCCTGGCCGA
AsCpf1-1





491
DMPK 3 forward 19:45770151-45770179
CGTCAGGGCCTCAGCCTGGCCGAA
AsCpf1-1





492
DMPK 3 forward 19:45770151-45770180
CGTCAGGGCCTCAGCCTGGCCGAAA
AsCpf1-1





493
DMPK 3 forward 19:45770198-45770220
CCCAGCAGCAGCAGCAGC
AsCpf1-1





494
DMPK 3 forward 19:45770198-45770221
CCCAGCAGCAGCAGCAGCA
AsCpf1-1





495
DMPK 3 forward 19:45770198-45770222
CCCAGCAGCAGCAGCAGCAG
AsCpf1-1





496
DMPK 3 forward 19:45770198-45770223
CCCAGCAGCAGCAGCAGCAGC
AsCpf1-1





497
DMPK 3 forward 19:45770198-45770224
CCCAGCAGCAGCAGCAGCAGCA
AsCpf1-1





498
DMPK 3 forward 19:45770198-45770225
CCCAGCAGCAGCAGCAGCAGCAG
AsCpf1-1





499
DMPK 3 forward 19:45770198-45770226
CCCAGCAGCAGCAGCAGCAGCAGC
AsCpf1-1





500
DMPK 3 forward 19:45770198-45770227
CCCAGCAGCAGCAGCAGCAGCAGCA
AsCpf1-1





501
DMPK 3 forward 19:45769885-45769907
CAAACCGCCGAAGCGGGC
AsCpf1-2





502
DMPK 3 forward 19:45769885-45769908
CAAACCGCCGAAGCGGGCG
AsCpf1-2





503
DMPK 3 forward 19:45769885-45769909
CAAACCGCCGAAGCGGGCGG
AsCpf1-2





504
DMPK 3 forward 19:45769885-45769910
CAAACCGCCGAAGCGGGCGGA
AsCpf1-2





505
DMPK 3 forward 19:45769885-45769911
CAAACCGCCGAAGCGGGCGGAG
AsCpf1-2





506
DMPK 3 forward 19:45769885-45769912
CAAACCGCCGAAGCGGGCGGAGC
AsCpf1-2





507
DMPK 3 forward 19:45769885-45769913
CAAACCGCCGAAGCGGGCGGAGCC
AsCpf1-2





508
DMPK 3 forward 19:45769885-45769914
CAAACCGCCGAAGCGGGCGGAGCCG
AsCpf1-2





509
DMPK 3 reverse 19:45770052-45770074
GTTGGTTCGCAAAGTGCA
AsCpf1-2





510
DMPK 3 reverse 19:45770052-45770075
GTTGGTTCGCAAAGTGCAA
AsCpf1-2





511
DMPK 3 reverse 19:45770052-45770076
GTTGGTTCGCAAAGTGCAAA
AsCpf1-2





512
DMPK 3 reverse 19:45770052-45770077
GTTGGTTCGCAAAGTGCAAAG
AsCpf1-2





513
DMPK 3 reverse 19:45770052-45770078
GTTGGTTCGCAAAGTGCAAAGC
AsCpf1-2





514
DMPK 3 reverse 19:45770052-45770079
GTTGGTTCGCAAAGTGCAAAGCT
AsCpf1-2





515
DMPK 3 reverse 19:45770052-45770080
GTTGGTTCGCAAAGTGCAAAGCTT
AsCpf1-2





516
DMPK 3 reverse 19:45770052-45770081
GTTGGTTCGCAAAGTGCAAAGCTTT
AsCpf1-2





517
DMPK 3 forward 19:45769700-45769731
CTGTGGAGTCCAGAGCTTTGGGCAG
SaCas9





518
DMPK 3 forward 19:45769701-45769731
TGTGGAGTCCAGAGCTTTGGGCAG
SaCas9





519
DMPK 3 forward 19:45769702-45769731
GTGGAGTCCAGAGCTTTGGGCAG
SaCas9





520
DMPK 3 forward 19:45769703-45769731
TGGAGTCCAGAGCTTTGGGCAG
SaCas9





521
DMPK 3 forward 19:45769704-45769731
GGAGTCCAGAGCTTTGGGCAG
SaCas9





522
DMPK 3 forward 19:45769705-45769731
GAGTCCAGAGCTTTGGGCAG
SaCas9





523
DMPK 3 forward 19:45769706-45769731
AGTCCAGAGCTTTGGGCAG
SaCas9





524
DMPK 3 forward 19:45769707-45769731
GTCCAGAGCTTTGGGCAG
SaCas9





525
DMPK 3 forward 19:45769701-45769732
TGTGGAGTCCAGAGCTTTGGGCAGA
SaCas9





526
DMPK 3 forward 19:45769702-45769732
GTGGAGTCCAGAGCTTTGGGCAGA
SaCas9





527
DMPK 3 forward 19:45769703-45769732
TGGAGTCCAGAGCTTTGGGCAGA
SaCas9





528
DMPK 3 forward 19:45769704-45769732
GGAGTCCAGAGCTTTGGGCAGA
SaCas9





529
DMPK 3 forward 19:45769705-45769732
GAGTCCAGAGCTTTGGGCAGA
SaCas9





530
DMPK 3 forward 19:45769706-45769732
AGTCCAGAGCTTTGGGCAGA
SaCas9





531
DMPK 3 forward 19:45769707-45769732
GTCCAGAGCTTTGGGCAGA
SaCas9





532
DMPK 3 forward 19:45769708-45769732
TCCAGAGCTTTGGGCAGA
SaCas9





533
DMPK 3 forward 19:45769703-45769734
TGGAGTCCAGAGCTTTGGGCAGATG
SaCas9





534
DMPK 3 forward 19:45769704-45769734
GGAGTCCAGAGCTTTGGGCAGATG
SaCas9





535
DMPK 3 forward 19:45769705-45769734
GAGTCCAGAGCTTTGGGCAGATG
SaCas9





536
DMPK 3 forward 19:45769706-45769734
AGTCCAGAGCTTTGGGCAGATG
SaCas9





537
DMPK 3 forward 19:45769707-45769734
GTCCAGAGCTTTGGGCAGATG
SaCas9





538
DMPK 3 forward 19:45769708-45769734
TCCAGAGCTTTGGGCAGATG
SaCas9





539
DMPK 3 forward 19:45769709-45769734
CCAGAGCTTTGGGCAGATG
SaCas9





540
DMPK 3 forward 19:45769710-45769734
CAGAGCTTTGGGCAGATG
SaCas9





541
DMPK 3 reverse 19:45769707-45769738
AAAGGCCCTCCATCTGCCCAAAGCT
SaCas9





542
DMPK 3 reverse 19:45769708-45769738
AAGGCCCTCCATCTGCCCAAAGCT
SaCas9





543
DMPK 3 reverse 19:45769709-45769738
AGGCCCTCCATCTGCCCAAAGCT
SaCas9





544
DMPK 3 reverse 19:45769710-45769738
GGCCCTCCATCTGCCCAAAGCT
SaCas9





545
DMPK 3 reverse 19:45769711-45769738
GCCCTCCATCTGCCCAAAGCT
SaCas9





546
DMPK 3 reverse 19:45769712-45769738
CCCTCCATCTGCCCAAAGCT
SaCas9





547
DMPK 3 reverse 19:45769713-45769738
CCTCCATCTGCCCAAAGCT
SaCas9





548
DMPK 3 reverse 19:45769714-45769738
CTCCATCTGCCCAAAGCT
SaCas9





549
DMPK 3 forward 19:45769718-45769749
TGGGCAGATGGAGGGCCTTTTATTC
SaCas9





550
DMPK 3 forward 19:45769719-45769749
GGGCAGATGGAGGGCCTTTTATTC
SaCas9





551
DMPK 3 forward 19:45769720-45769749
GGCAGATGGAGGGCCTTTTATTC
SaCas9





552
DMPK 3 forward 19:45769721-45769749
GCAGATGGAGGGCCTTTTATTC
SaCas9





553
DMPK 3 forward 19:45769722-45769749
CAGATGGAGGGCCTTTTATTC
SaCas9





554
DMPK 3 forward 19:45769723-45769749
AGATGGAGGGCCTTTTATTC
SaCas9





555
DMPK 3 forward 19:45769724-45769749
GATGGAGGGCCTTTTATTC
SaCas9





556
DMPK 3 forward 19:45769725-45769749
ATGGAGGGCCTTTTATTC
SaCas9





557
DMPK 3 forward 19:45769720-45769751
GGCAGATGGAGGGCCTTTTATTCGC
SaCas9





558
DMPK 3 forward 19:45769721-45769751
GCAGATGGAGGGCCTTTTATTCGC
SaCas9





559
DMPK 3 forward 19:45769722-45769751
CAGATGGAGGGCCTTTTATTCGC
SaCas9





560
DMPK 3 forward 19:45769723-45769751
AGATGGAGGGCCTTTTATTCGC
SaCas9





561
DMPK 3 forward 19:45769724-45769751
GATGGAGGGCCTTTTATTCGC
SaCas9





562
DMPK 3 forward 19:45769725-45769751
ATGGAGGGCCTTTTATTCGC
SaCas9





563
DMPK 3 forward 19:45769726-45769751
TGGAGGGCCTTTTATTCGC
SaCas9





564
DMPK 3 forward 19:45769727-45769751
GGAGGGCCTTTTATTCGC
SaCas9





565
DMPK 3 forward 19:45769725-45769756
ATGGAGGGCCTTTTATTCGCGAGGG
SaCas9





566
DMPK 3 forward 19:45769726-45769756
TGGAGGGCCTTTTATTCGCGAGGG
SaCas9





567
DMPK 3 forward 19:45769727-45769756
GGAGGGCCTTTTATTCGCGAGGG
SaCas9





568
DMPK 3 forward 19:45769728-45769756
GAGGGCCTTTTATTCGCGAGGG
SaCas9





569
DMPK 3 forward 19:45769729-45769756
AGGGCCTTTTATTCGCGAGGG
SaCas9





570
DMPK 3 forward 19:45769730-45769756
GGGCCTTTTATTCGCGAGGG
SaCas9





571
DMPK 3 forward 19:45769731-45769756
GGCCTTTTATTCGCGAGGG
SaCas9





572
DMPK 3 forward 19:45769732-45769756
GCCTTTTATTCGCGAGGG
SaCas9





573
DMPK 3 forward 19:45769726-45769757
TGGAGGGCCTTTTATTCGCGAGGGT
SaCas9





574
DMPK 3 forward 19:45769727-45769757
GGAGGGCCTTTTATTCGCGAGGGT
SaCas9





575
DMPK 3 forward 19:45769728-45769757
GAGGGCCTTTTATTCGCGAGGGT
SaCas9





576
DMPK 3 forward 19:45769729-45769757
AGGGCCTTTTATTCGCGAGGGT
SaCas9





577
DMPK 3 forward 19:45769730-45769757
GGGCCTTTTATTCGCGAGGGT
SaCas9





578
DMPK 3 forward 19:45769731-45769757
GGCCTTTTATTCGCGAGGGT
SaCas9





579
DMPK 3 forward 19:45769732-45769757
GCCTTTTATTCGCGAGGGT
SaCas9





580
DMPK 3 forward 19:45769733-45769757
CCTTTTATTCGCGAGGGT
SaCas9





581
DMPK 3 forward 19:45769727-45769758
GGAGGGCCTTTTATTCGCGAGGGTC
SaCas9





582
DMPK 3 forward 19:45769728-45769758
GAGGGCCTTTTATTCGCGAGGGTC
SaCas9





583
DMPK 3 forward 19:45769729-45769758
AGGGCCTTTTATTCGCGAGGGTC
SaCas9





584
DMPK 3 forward 19:45769730-45769758
GGGCCTTTTATTCGCGAGGGTC
SaCas9





585
DMPK 3 forward 19:45769731-45769758
GGCCTTTTATTCGCGAGGGTC
SaCas9





586
DMPK 3 forward 19:45769732-45769758
GCCTTTTATTCGCGAGGGTC
SaCas9





587
DMPK 3 forward 19:45769733-45769758
CCTTTTATTCGCGAGGGTC
SaCas9





588
DMPK 3 forward 19:45769734-45769758
CTTTTATTCGCGAGGGTC
SaCas9





589
DMPK 3 forward 19:45769731-45769762
GGCCTTTTATTCGCGAGGGTCGGGG
SaCas9





590
DMPK 3 forward 19:45769732-45769762
GCCTTTTATTCGCGAGGGTCGGGG
SaCas9





591
DMPK 3 forward 19:45769733-45769762
CCTTTTATTCGCGAGGGTCGGGG
SaCas9





592
DMPK 3 forward 19:45769734-45769762
CTTTTATTCGCGAGGGTCGGGG
SaCas9





593
DMPK 3 forward 19:45769735-45769762
TTTTATTCGCGAGGGTCGGGG
SaCas9





594
DMPK 3 forward 19:45769736-45769762
TTTATTCGCGAGGGTCGGGG
SaCas9





595
DMPK 3 forward 19:45769737-45769762
TTATTCGCGAGGGTCGGGG
SaCas9





596
DMPK 3 forward 19:45769738-45769762
TATTCGCGAGGGTCGGGG
SaCas9





597
DMPK 3 forward 19:45769732-45769763
GCCTTTTATTCGCGAGGGTCGGGGG
SaCas9





598
DMPK 3 forward 19:45769733-45769763
CCTTTTATTCGCGAGGGTCGGGGG
SaCas9





599
DMPK 3 forward 19:45769734-45769763
CTTTTATTCGCGAGGGTCGGGGG
SaCas9





600
DMPK 3 forward 19:45769735-45769763
TTTTATTCGCGAGGGTCGGGGG
SaCas9





601
DMPK 3 forward 19:45769736-45769763
TTTATTCGCGAGGGTCGGGGG
SaCas9





602
DMPK 3 forward 19:45769737-45769763
TTATTCGCGAGGGTCGGGGG
SaCas9





603
DMPK 3 forward 19:45769738-45769763
TATTCGCGAGGGTCGGGGG
SaCas9





604
DMPK 3 forward 19:45769739-45769763
ATTCGCGAGGGTCGGGGG
SaCas9





605
DMPK 3 forward 19:45769733-45769764
CCTTTTATTCGCGAGGGTCGGGGGT
SaCas9





606
DMPK 3 forward 19:45769734-45769764
CTTTTATTCGCGAGGGTCGGGGGT
SaCas9





607
DMPK 3 forward 19:45769735-45769764
TTTTATTCGCGAGGGTCGGGGGT
SaCas9





608
DMPK 3 forward 19:45769736-45769764
TTTATTCGCGAGGGTCGGGGGT
SaCas9





609
DMPK 3 forward 19:45769737-45769764
TTATTCGCGAGGGTCGGGGGT
SaCas9





610
DMPK 3 forward 19:45769738-45769764
TATTCGCGAGGGTCGGGGGT
SaCas9





611
DMPK 3 forward 19:45769739-45769764
ATTCGCGAGGGTCGGGGGT
SaCas9





612
DMPK 3 forward 19:45769740-45769764
TTCGCGAGGGTCGGGGGT
SaCas9





613
DMPK 3 reverse 19:45769739-45769770
CCTAGGACCCCCACCCCCGACCCTC
SaCas9





614
DMPK 3 reverse 19:45769740-45769770
CTAGGACCCCCACCCCCGACCCTC
SaCas9





615
DMPK 3 reverse 19:45769741-45769770
TAGGACCCCCACCCCCGACCCTC
SaCas9





616
DMPK 3 reverse 19:45769742-45769770
AGGACCCCCACCCCCGACCCTC
SaCas9





617
DMPK 3 reverse 19:45769743-45769770
GGACCCCCACCCCCGACCCTC
SaCas9





618
DMPK 3 reverse 19:45769744-45769770
GACCCCCACCCCCGACCCTC
SaCas9





619
DMPK 3 reverse 19:45769745-45769770
ACCCCCACCCCCGACCCTC
SaCas9





620
DMPK 3 reverse 19:45769746-45769770
CCCCCACCCCCGACCCTC
SaCas9





621
DMPK 3 forward 19:45769744-45769775
CGAGGGTCGGGGGTGGGGGTCCTAG
SaCas9





622
DMPK 3 forward 19:45769745-45769775
GAGGGTCGGGGGTGGGGGTCCTAG
SaCas9





623
DMPK 3 forward 19:45769746-45769775
AGGGTCGGGGGTGGGGGTCCTAG
SaCas9





624
DMPK 3 forward 19:45769747-45769775
GGGTCGGGGGTGGGGGTCCTAG
SaCas9





625
DMPK 3 forward 19:45769748-45769775
GGTCGGGGGTGGGGGTCCTAG
SaCas9





626
DMPK 3 forward 19:45769749-45769775
GTCGGGGGTGGGGGTCCTAG
SaCas9





627
DMPK 3 forward 19:45769750-45769775
TCGGGGGTGGGGGTCCTAG
SaCas9





628
DMPK 3 forward 19:45769751-45769775
CGGGGGTGGGGGTCCTAG
SaCas9





629
DMPK 3 forward 19:45769745-45769776
GAGGGTCGGGGGTGGGGGTCCTAGG
SaCas9





630
DMPK 3 forward 19:45769746-45769776
AGGGTCGGGGGTGGGGGTCCTAGG
SaCas9





631
DMPK 3 forward 19:45769747-45769776
GGGTCGGGGGTGGGGGTCCTAGG
SaCas9





632
DMPK 3 forward 19:45769748-45769776
GGTCGGGGGTGGGGGTCCTAGG
SaCas9





633
DMPK 3 forward 19:45769749-45769776
GTCGGGGGTGGGGGTCCTAGG
SaCas9





634
DMPK 3 forward 19:45769750-45769776
TCGGGGGTGGGGGTCCTAGG
SaCas9





635
DMPK 3 forward 19:45769751-45769776
CGGGGGTGGGGGTCCTAGG
SaCas9





636
DMPK 3 forward 19:45769752-45769776
GGGGGTGGGGGTCCTAGG
SaCas9





637
DMPK 3 forward 19:45769746-45769777
AGGGTCGGGGGTGGGGGTCCTAGGT
SaCas9





638
DMPK 3 forward 19:45769747-45769777
GGGTCGGGGGTGGGGGTCCTAGGT
SaCas9





639
DMPK 3 forward 19:45769748-45769777
GGTCGGGGGTGGGGGTCCTAGGT
SaCas9





640
DMPK 3 forward 19:45769749-45769777
GTCGGGGGTGGGGGTCCTAGGT
SaCas9





641
DMPK 3 forward 19:45769750-45769777
TCGGGGGTGGGGGTCCTAGGT
SaCas9





642
DMPK 3 forward 19:45769751-45769777
CGGGGGTGGGGGTCCTAGGT
SaCas9





643
DMPK 3 forward 19:45769752-45769777
GGGGGTGGGGGTCCTAGGT
SaCas9





644
DMPK 3 forward 19:45769753-45769777
GGGGTGGGGGTCCTAGGT
SaCas9





645
DMPK 3 reverse 19:45769762-45769793
TCGGTATTTATTGTCTGTCCCCACC
SaCas9





646
DMPK 3 reverse 19:45769763-45769793
CGGTATTTATTGTCTGTCCCCACC
SaCas9





647
DMPK 3 reverse 19:45769764-45769793
GGTATTTATTGTCTGTCCCCACC
SaCas9





648
DMPK 3 reverse 19:45769765-45769793
GTATTTATTGTCTGTCCCCACC
SaCas9





649
DMPK 3 reverse 19:45769766-45769793
TATTTATTGTCTGTCCCCACC
SaCas9





650
DMPK 3 reverse 19:45769767-45769793
ATTTATTGTCTGTCCCCACC
SaCas9





651
DMPK 3 reverse 19:45769768-45769793
TTTATTGTCTGTCCCCACC
SaCas9





652
DMPK 3 reverse 19:45769769-45769793
TTATTGTCTGTCCCCACC
SaCas9





653
DMPK 3 forward 19:45769764-45769795
CCTAGGTGGGGACAGACAATAAATA
SaCas9





654
DMPK 3 forward 19:45769765-45769795
CTAGGTGGGGACAGACAATAAATA
SaCas9





655
DMPK 3 forward 19:45769766-45769795
TAGGTGGGGACAGACAATAAATA
SaCas9





656
DMPK 3 forward 19:45769767-45769795
AGGTGGGGACAGACAATAAATA
SaCas9





657
DMPK 3 forward 19:45769768-45769795
GGTGGGGACAGACAATAAATA
SaCas9





658
DMPK 3 forward 19:45769769-45769795
GTGGGGACAGACAATAAATA
SaCas9





659
DMPK 3 forward 19:45769770-45769795
TGGGGACAGACAATAAATA
SaCas9





660
DMPK 3 forward 19:45769771-45769795
GGGGACAGACAATAAATA
SaCas9





661
DMPK 3 forward 19:45769766-45769797
TAGGTGGGGACAGACAATAAATACC
SaCas9





662
DMPK 3 forward 19:45769767-45769797
AGGTGGGGACAGACAATAAATACC
SaCas9





663
DMPK 3 forward 19:45769768-45769797
GGTGGGGACAGACAATAAATACC
SaCas9





664
DMPK 3 forward 19:45769769-45769797
GTGGGGACAGACAATAAATACC
SaCas9





665
DMPK 3 forward 19:45769770-45769797
TGGGGACAGACAATAAATACC
SaCas9





666
DMPK 3 forward 19:45769771-45769797
GGGGACAGACAATAAATACC
SaCas9





667
DMPK 3 forward 19:45769772-45769797
GGGACAGACAATAAATACC
SaCas9





668
DMPK 3 forward 19:45769773-45769797
GGACAGACAATAAATACC
SaCas9





669
DMPK 3 forward 19:45769767-45769798
AGGTGGGGACAGACAATAAATACCG
SaCas9





670
DMPK 3 forward 19:45769768-45769798
GGTGGGGACAGACAATAAATACCG
SaCas9





671
DMPK 3 forward 19:45769769-45769798
GTGGGGACAGACAATAAATACCG
SaCas9





672
DMPK 3 forward 19:45769770-45769798
TGGGGACAGACAATAAATACCG
SaCas9





673
DMPK 3 forward 19:45769771-45769798
GGGGACAGACAATAAATACCG
SaCas9





674
DMPK 3 forward 19:45769772-45769798
GGGACAGACAATAAATACCG
SaCas9





675
DMPK 3 forward 19:45769773-45769798
GGACAGACAATAAATACCG
SaCas9





676
DMPK 3 forward 19:45769774-45769798
GACAGACAATAAATACCG
SaCas9





677
DMPK 3 forward 19:45769774-45769805
GACAGACAATAAATACCGAGGAATG
SaCas9





678
DMPK 3 forward 19:45769775-45769805
ACAGACAATAAATACCGAGGAATG
SaCas9





679
DMPK 3 forward 19:45769776-45769805
CAGACAATAAATACCGAGGAATG
SaCas9





680
DMPK 3 forward 19:45769777-45769805
AGACAATAAATACCGAGGAATG
SaCas9





681
DMPK 3 forward 19:45769778-45769805
GACAATAAATACCGAGGAATG
SaCas9





682
DMPK 3 forward 19:45769779-45769805
ACAATAAATACCGAGGAATG
SaCas9





683
DMPK 3 forward 19:45769780-45769805
CAATAAATACCGAGGAATG
SaCas9





684
DMPK 3 forward 19:45769781-45769805
AATAAATACCGAGGAATG
SaCas9





685
DMPK 3 forward 19:45769775-45769806
ACAGACAATAAATACCGAGGAATGT
SaCas9





686
DMPK 3 forward 19:45769776-45769806
CAGACAATAAATACCGAGGAATGT
SaCas9





687
DMPK 3 forward 19:45769777-45769806
AGACAATAAATACCGAGGAATGT
SaCas9





688
DMPK 3 forward 19:45769778-45769806
GACAATAAATACCGAGGAATGT
SaCas9





689
DMPK 3 forward 19:45769779-45769806
ACAATAAATACCGAGGAATGT
SaCas9





690
DMPK 3 forward 19:45769780-45769806
CAATAAATACCGAGGAATGT
SaCas9





691
DMPK 3 forward 19:45769781-45769806
AATAAATACCGAGGAATGT
SaCas9





692
DMPK 3 forward 19:45769782-45769806
ATAAATACCGAGGAATGT
SaCas9





693
DMPK 3 forward 19:45769798-45769829
GTCGGGGTCTCAGTGCATCCAAAAC
SaCas9





694
DMPK 3 forward 19:45769799-45769829
TCGGGGTCTCAGTGCATCCAAAAC
SaCas9





695
DMPK 3 forward 19:45769800-45769829
CGGGGTCTCAGTGCATCCAAAAC
SaCas9





696
DMPK 3 forward 19:45769801-45769829
GGGGTCTCAGTGCATCCAAAAC
SaCas9





697
DMPK 3 forward 19:45769802-45769829
GGGTCTCAGTGCATCCAAAAC
SaCas9





698
DMPK 3 forward 19:45769803-45769829
GGTCTCAGTGCATCCAAAAC
SaCas9





699
DMPK 3 forward 19:45769804-45769829
GTCTCAGTGCATCCAAAAC
SaCas9





700
DMPK 3 forward 19:45769805-45769829
TCTCAGTGCATCCAAAAC
SaCas9





701
DMPK 3 forward 19:45769803-45769834
GGTCTCAGTGCATCCAAAACGTGGA
SaCas9





702
DMPK 3 forward 19:45769804-45769834
GTCTCAGTGCATCCAAAACGTGGA
SaCas9





703
DMPK 3 forward 19:45769805-45769834
TCTCAGTGCATCCAAAACGTGGA
SaCas9





704
DMPK 3 forward 19:45769806-45769834
CTCAGTGCATCCAAAACGTGGA
SaCas9





705
DMPK 3 forward 19:45769807-45769834
TCAGTGCATCCAAAACGTGGA
SaCas9





706
DMPK 3 forward 19:45769808-45769834
CAGTGCATCCAAAACGTGGA
SaCas9





707
DMPK 3 forward 19:45769809-45769834
AGTGCATCCAAAACGTGGA
SaCas9





708
DMPK 3 forward 19:45769810-45769834
GTGCATCCAAAACGTGGA
SaCas9





709
DMPK 3 forward 19:45769804-45769835
GTCTCAGTGCATCCAAAACGTGGAT
SaCas9





710
DMPK 3 forward 19:45769805-45769835
TCTCAGTGCATCCAAAACGTGGAT
SaCas9





711
DMPK 3 forward 19:45769806-45769835
CTCAGTGCATCCAAAACGTGGAT
SaCas9





712
DMPK 3 forward 19:45769807-45769835
TCAGTGCATCCAAAACGTGGAT
SaCas9





713
DMPK 3 forward 19:45769808-45769835
CAGTGCATCCAAAACGTGGAT
SaCas9





714
DMPK 3 forward 19:45769809-45769835
AGTGCATCCAAAACGTGGAT
SaCas9





715
DMPK 3 forward 19:45769810-45769835
GTGCATCCAAAACGTGGAT
SaCas9





716
DMPK 3 forward 19:45769811-45769835
TGCATCCAAAACGTGGAT
SaCas9





717
DMPK 3 reverse 19:45769805-45769836
AACCCCAATCCACGTTTTGGATGCA
SaCas9





718
DMPK 3 reverse 19:45769806-45769836
ACCCCAATCCACGTTTTGGATGCA
SaCas9





719
DMPK 3 reverse 19:45769807-45769836
CCCCAATCCACGTTTTGGATGCA
SaCas9





720
DMPK 3 reverse 19:45769808-45769836
CCCAATCCACGTTTTGGATGCA
SaCas9





721
DMPK 3 reverse 19:45769809-45769836
CCAATCCACGTTTTGGATGCA
SaCas9





722
DMPK 3 reverse 19:45769810-45769836
CAATCCACGTTTTGGATGCA
SaCas9





723
DMPK 3 reverse 19:45769811-45769836
AATCCACGTTTTGGATGCA
SaCas9





724
DMPK 3 reverse 19:45769812-45769836
ATCCACGTTTTGGATGCA
SaCas9





725
DMPK 3 forward 19:45769812-45769843
GCATCCAAAACGTGGATTGGGGTTG
SaCas9





726
DMPK 3 forward 19:45769813-45769843
CATCCAAAACGTGGATTGGGGTTG
SaCas9





727
DMPK 3 forward 19:45769814-45769843
ATCCAAAACGTGGATTGGGGTTG
SaCas9





728
DMPK 3 forward 19:45769815-45769843
TCCAAAACGTGGATTGGGGTTG
SaCas9





729
DMPK 3 forward 19:45769816-45769843
CCAAAACGTGGATTGGGGTTG
SaCas9





730
DMPK 3 forward 19:45769817-45769843
CAAAACGTGGATTGGGGTTG
SaCas9





731
DMPK 3 forward 19:45769818-45769843
AAAACGTGGATTGGGGTTG
SaCas9





732
DMPK 3 forward 19:45769819-45769843
AAACGTGGATTGGGGTTG
SaCas9





733
DMPK 3 forward 19:45769813-45769844
CATCCAAAACGTGGATTGGGGTTGT
SaCas9





734
DMPK 3 forward 19:45769814-45769844
ATCCAAAACGTGGATTGGGGTTGT
SaCas9





735
DMPK 3 forward 19:45769815-45769844
TCCAAAACGTGGATTGGGGTTGT
SaCas9





736
DMPK 3 forward 19:45769816-45769844
CCAAAACGTGGATTGGGGTTGT
SaCas9





737
DMPK 3 forward 19:45769817-45769844
CAAAACGTGGATTGGGGTTGT
SaCas9





738
DMPK 3 forward 19:45769818-45769844
AAAACGTGGATTGGGGTTGT
SaCas9





739
DMPK 3 forward 19:45769819-45769844
AAACGTGGATTGGGGTTGT
SaCas9





740
DMPK 3 forward 19:45769820-45769844
AACGTGGATTGGGGTTGT
SaCas9





741
DMPK 3 forward 19:45769814-45769845
ATCCAAAACGTGGATTGGGGTTGTT
SaCas9





742
DMPK 3 forward 19:45769815-45769845
TCCAAAACGTGGATTGGGGTTGTT
SaCas9





743
DMPK 3 forward 19:45769816-45769845
CCAAAACGTGGATTGGGGTTGTT
SaCas9





744
DMPK 3 forward 19:45769817-45769845
CAAAACGTGGATTGGGGTTGTT
SaCas9





745
DMPK 3 forward 19:45769818-45769845
AAAACGTGGATTGGGGTTGTT
SaCas9





746
DMPK 3 forward 19:45769819-45769845
AAACGTGGATTGGGGTTGTT
SaCas9





747
DMPK 3 forward 19:45769820-45769845
AACGTGGATTGGGGTTGTT
SaCas9





748
DMPK 3 forward 19:45769821-45769845
ACGTGGATTGGGGTTGTT
SaCas9





749
DMPK 3 reverse 19:45769814-45769845
ACCCCCAACAACCCCAATCCACGTT
SaCas9





750
DMPK 3 reverse 19:45769815-45769845
CCCCCAACAACCCCAATCCACGTT
SaCas9





751
DMPK 3 reverse 19:45769816-45769845
CCCCAACAACCCCAATCCACGTT
SaCas9





752
DMPK 3 reverse 19:45769817-45769845
CCCAACAACCCCAATCCACGTT
SaCas9





753
DMPK 3 reverse 19:45769818-45769845
CCAACAACCCCAATCCACGTT
SaCas9





754
DMPK 3 reverse 19:45769819-45769845
CAACAACCCCAATCCACGTT
SaCas9





755
DMPK 3 reverse 19:45769820-45769845
AACAACCCCAATCCACGTT
SaCas9





756
DMPK 3 reverse 19:45769821-45769845
ACAACCCCAATCCACGTT
SaCas9





757
DMPK 3 forward 19:45769834-45769865
TTGTTGGGGGTCCTGTAGCCTGTCA
SaCas9





758
DMPK 3 forward 19:45769835-45769865
TGTTGGGGGTCCTGTAGCCTGTCA
SaCas9





759
DMPK 3 forward 19:45769836-45769865
GTTGGGGGTCCTGTAGCCTGTCA
SaCas9





760
DMPK 3 forward 19:45769837-45769865
TTGGGGGTCCTGTAGCCTGTCA
SaCas9





761
DMPK 3 forward 19:45769838-45769865
TGGGGGTCCTGTAGCCTGTCA
SaCas9





762
DMPK 3 forward 19:45769839-45769865
GGGGGTCCTGTAGCCTGTCA
SaCas9





763
DMPK 3 forward 19:45769840-45769865
GGGGTCCTGTAGCCTGTCA
SaCas9





764
DMPK 3 forward 19:45769841-45769865
GGGTCCTGTAGCCTGTCA
SaCas9





765
DMPK 3 forward 19:45769839-45769870
GGGGGTCCTGTAGCCTGTCAGCGAG
SaCas9





766
DMPK 3 forward 19:45769840-45769870
GGGGTCCTGTAGCCTGTCAGCGAG
SaCas9





767
DMPK 3 forward 19:45769841-45769870
GGGTCCTGTAGCCTGTCAGCGAG
SaCas9





768
DMPK 3 forward 19:45769842-45769870
GGTCCTGTAGCCTGTCAGCGAG
SaCas9





769
DMPK 3 forward 19:45769843-45769870
GTCCTGTAGCCTGTCAGCGAG
SaCas9





770
DMPK 3 forward 19:45769844-45769870
TCCTGTAGCCTGTCAGCGAG
SaCas9





771
DMPK 3 forward 19:45769845-45769870
CCTGTAGCCTGTCAGCGAG
SaCas9





772
DMPK 3 forward 19:45769846-45769870
CTGTAGCCTGTCAGCGAG
SaCas9





773
DMPK 3 forward 19:45769840-45769871
GGGGTCCTGTAGCCTGTCAGCGAGT
SaCas9





774
DMPK 3 forward 19:45769841-45769871
GGGTCCTGTAGCCTGTCAGCGAGT
SaCas9





775
DMPK 3 forward 19:45769842-45769871
GGTCCTGTAGCCTGTCAGCGAGT
SaCas9





776
DMPK 3 forward 19:45769843-45769871
GTCCTGTAGCCTGTCAGCGAGT
SaCas9





777
DMPK 3 forward 19:45769844-45769871
TCCTGTAGCCTGTCAGCGAGT
SaCas9





778
DMPK 3 forward 19:45769845-45769871
CCTGTAGCCTGTCAGCGAGT
SaCas9





779
DMPK 3 forward 19:45769846-45769871
CTGTAGCCTGTCAGCGAGT
SaCas9





780
DMPK 3 forward 19:45769847-45769871
TGTAGCCTGTCAGCGAGT
SaCas9





781
DMPK 3 forward 19:45769842-45769873
GGTCCTGTAGCCTGTCAGCGAGTCG
SaCas9





782
DMPK 3 forward 19:45769843-45769873
GTCCTGTAGCCTGTCAGCGAGTCG
SaCas9





783
DMPK 3 forward 19:45769844-45769873
TCCTGTAGCCTGTCAGCGAGTCG
SaCas9





784
DMPK 3 forward 19:45769845-45769873
CCTGTAGCCTGTCAGCGAGTCG
SaCas9





785
DMPK 3 forward 19:45769846-45769873
CTGTAGCCTGTCAGCGAGTCG
SaCas9





786
DMPK 3 forward 19:45769847-45769873
TGTAGCCTGTCAGCGAGTCG
SaCas9





787
DMPK 3 forward 19:45769848-45769873
GTAGCCTGTCAGCGAGTCG
SaCas9





788
DMPK 3 forward 19:45769849-45769873
TAGCCTGTCAGCGAGTCG
SaCas9





789
DMPK 3 reverse 19:45769843-45769874
CGTCCTCCGACTCGCTGACAGGCTA
SaCas9





790
DMPK 3 reverse 19:45769844-45769874
GTCCTCCGACTCGCTGACAGGCTA
SaCas9





791
DMPK 3 reverse 19:45769845-45769874
TCCTCCGACTCGCTGACAGGCTA
SaCas9





792
DMPK 3 reverse 19:45769846-45769874
CCTCCGACTCGCTGACAGGCTA
SaCas9





793
DMPK 3 reverse 19:45769847-45769874
CTCCGACTCGCTGACAGGCTA
SaCas9





794
DMPK 3 reverse 19:45769848-45769874
TCCGACTCGCTGACAGGCTA
SaCas9





795
DMPK 3 reverse 19:45769849-45769874
CCGACTCGCTGACAGGCTA
SaCas9





796
DMPK 3 reverse 19:45769850-45769874
CGACTCGCTGACAGGCTA
SaCas9





797
DMPK 3 forward 19:45769846-45769877
CTGTAGCCTGTCAGCGAGTCGGAGG
SaCas9





798
DMPK 3 forward 19:45769847-45769877
TGTAGCCTGTCAGCGAGTCGGAGG
SaCas9





799
DMPK 3 forward 19:45769848-45769877
GTAGCCTGTCAGCGAGTCGGAGG
SaCas9





800
DMPK 3 forward 19:45769849-45769877
TAGCCTGTCAGCGAGTCGGAGG
SaCas9





801
DMPK 3 forward 19:45769850-45769877
AGCCTGTCAGCGAGTCGGAGG
SaCas9





802
DMPK 3 forward 19:45769851-45769877
GCCTGTCAGCGAGTCGGAGG
SaCas9





803
DMPK 3 forward 19:45769852-45769877
CCTGTCAGCGAGTCGGAGG
SaCas9





804
DMPK 3 forward 19:45769853-45769877
CTGTCAGCGAGTCGGAGG
SaCas9





805
DMPK 3 forward 19:45769871-45769902
ACGAGGTCAATAAATATCCAAACCG
SaCas9





806
DMPK 3 forward 19:45769872-45769902
CGAGGTCAATAAATATCCAAACCG
SaCas9





807
DMPK 3 forward 19:45769873-45769902
GAGGTCAATAAATATCCAAACCG
SaCas9





808
DMPK 3 forward 19:45769874-45769902
AGGTCAATAAATATCCAAACCG
SaCas9





809
DMPK 3 forward 19:45769875-45769902
GGTCAATAAATATCCAAACCG
SaCas9





810
DMPK 3 forward 19:45769876-45769902
GTCAATAAATATCCAAACCG
SaCas9





811
DMPK 3 forward 19:45769877-45769902
TCAATAAATATCCAAACCG
SaCas9





812
DMPK 3 forward 19:45769878-45769902
CAATAAATATCCAAACCG
SaCas9





813
DMPK 3 forward 19:45769876-45769907
GTCAATAAATATCCAAACCGCCGAA
SaCas9





814
DMPK 3 forward 19:45769877-45769907
TCAATAAATATCCAAACCGCCGAA
SaCas9





815
DMPK 3 forward 19:45769878-45769907
CAATAAATATCCAAACCGCCGAA
SaCas9





816
DMPK 3 forward 19:45769879-45769907
AATAAATATCCAAACCGCCGAA
SaCas9





817
DMPK 3 forward 19:45769880-45769907
ATAAATATCCAAACCGCCGAA
SaCas9





818
DMPK 3 forward 19:45769881-45769907
TAAATATCCAAACCGCCGAA
SaCas9





819
DMPK 3 forward 19:45769882-45769907
AAATATCCAAACCGCCGAA
SaCas9





820
DMPK 3 forward 19:45769883-45769907
AATATCCAAACCGCCGAA
SaCas9





821
DMPK 3 forward 19:45769880-45769911
ATAAATATCCAAACCGCCGAAGCGG
SaCas9





822
DMPK 3 forward 19:45769881-45769911
TAAATATCCAAACCGCCGAAGCGG
SaCas9





823
DMPK 3 forward 19:45769882-45769911
AAATATCCAAACCGCCGAAGCGG
SaCas9





824
DMPK 3 forward 19:45769883-45769911
AATATCCAAACCGCCGAAGCGG
SaCas9





825
DMPK 3 forward 19:45769884-45769911
ATATCCAAACCGCCGAAGCGG
SaCas9





826
DMPK 3 forward 19:45769885-45769911
TATCCAAACCGCCGAAGCGG
SaCas9





827
DMPK 3 forward 19:45769886-45769911
ATCCAAACCGCCGAAGCGG
SaCas9





828
DMPK 3 forward 19:45769887-45769911
TCCAAACCGCCGAAGCGG
SaCas9





829
DMPK 3 forward 19:45769881-45769912
TAAATATCCAAACCGCCGAAGCGGG
SaCas9





830
DMPK 3 forward 19:45769882-45769912
AAATATCCAAACCGCCGAAGCGGG
SaCas9





831
DMPK 3 forward 19:45769883-45769912
AATATCCAAACCGCCGAAGCGGG
SaCas9





832
DMPK 3 forward 19:45769884-45769912
ATATCCAAACCGCCGAAGCGGG
SaCas9





833
DMPK 3 forward 19:45769885-45769912
TATCCAAACCGCCGAAGCGGG
SaCas9





834
DMPK 3 forward 19:45769886-45769912
ATCCAAACCGCCGAAGCGGG
SaCas9





835
DMPK 3 forward 19:45769887-45769912
TCCAAACCGCCGAAGCGGG
SaCas9





836
DMPK 3 forward 19:45769888-45769912
CCAAACCGCCGAAGCGGG
SaCas9





837
DMPK 3 reverse 19:45769886-45769917
AGCCGGCTCCGCCCGCTTCGGCGGT
SaCas9





838
DMPK 3 reverse 19:45769887-45769917
GCCGGCTCCGCCCGCTTCGGCGGT
SaCas9





839
DMPK 3 reverse 19:45769888-45769917
CCGGCTCCGCCCGCTTCGGCGGT
SaCas9





840
DMPK 3 reverse 19:45769889-45769917
CGGCTCCGCCCGCTTCGGCGGT
SaCas9





841
DMPK 3 reverse 19:45769890-45769917
GGCTCCGCCCGCTTCGGCGGT
SaCas9





842
DMPK 3 reverse 19:45769891-45769917
GCTCCGCCCGCTTCGGCGGT
SaCas9





843
DMPK 3 reverse 19:45769892-45769917
CTCCGCCCGCTTCGGCGGT
SaCas9





844
DMPK 3 reverse 19:45769893-45769917
TCCGCCCGCTTCGGCGGT
SaCas9





845
DMPK 3 forward 19:45769890-45769921
AAACCGCCGAAGCGGGCGGAGCCGG
SaCas9





846
DMPK 3 forward 19:45769891-45769921
AACCGCCGAAGCGGGCGGAGCCGG
SaCas9





847
DMPK 3 forward 19:45769892-45769921
ACCGCCGAAGCGGGCGGAGCCGG
SaCas9





848
DMPK 3 forward 19:45769893-45769921
CCGCCGAAGCGGGCGGAGCCGG
SaCas9





849
DMPK 3 forward 19:45769894-45769921
CGCCGAAGCGGGCGGAGCCGG
SaCas9





850
DMPK 3 forward 19:45769895-45769921
GCCGAAGCGGGCGGAGCCGG
SaCas9





851
DMPK 3 forward 19:45769896-45769921
CCGAAGCGGGCGGAGCCGG
SaCas9





852
DMPK 3 forward 19:45769897-45769921
CGAAGCGGGCGGAGCCGG
SaCas9





853
DMPK 3 forward 19:45769891-45769922
AACCGCCGAAGCGGGCGGAGCCGGC
SaCas9





854
DMPK 3 forward 19:45769892-45769922
ACCGCCGAAGCGGGCGGAGCCGGC
SaCas9





855
DMPK 3 forward 19:45769893-45769922
CCGCCGAAGCGGGCGGAGCCGGC
SaCas9





856
DMPK 3 forward 19:45769894-45769922
CGCCGAAGCGGGCGGAGCCGGC
SaCas9





857
DMPK 3 forward 19:45769895-45769922
GCCGAAGCGGGCGGAGCCGGC
SaCas9





858
DMPK 3 forward 19:45769896-45769922
CCGAAGCGGGCGGAGCCGGC
SaCas9





859
DMPK 3 forward 19:45769897-45769922
CGAAGCGGGCGGAGCCGGC
SaCas9





860
DMPK 3 forward 19:45769898-45769922
GAAGCGGGCGGAGCCGGC
SaCas9





861
DMPK 3 forward 19:45769898-45769929
GAAGCGGGCGGAGCCGGCTGGGGCT
SaCas9





862
DMPK 3 forward 19:45769899-45769929
AAGCGGGCGGAGCCGGCTGGGGCT
SaCas9





863
DMPK 3 forward 19:45769900-45769929
AGCGGGCGGAGCCGGCTGGGGCT
SaCas9





864
DMPK 3 forward 19:45769901-45769929
GCGGGCGGAGCCGGCTGGGGCT
SaCas9





865
DMPK 3 forward 19:45769902-45769929
CGGGCGGAGCCGGCTGGGGCT
SaCas9





866
DMPK 3 forward 19:45769903-45769929
GGGCGGAGCCGGCTGGGGCT
SaCas9





867
DMPK 3 forward 19:45769904-45769929
GGCGGAGCCGGCTGGGGCT
SaCas9





868
DMPK 3 forward 19:45769905-45769929
GCGGAGCCGGCTGGGGCT
SaCas9





869
DMPK 3 forward 19:45769900-45769931
AGCGGGCGGAGCCGGCTGGGGCTCC
SaCas9





870
DMPK 3 forward 19:45769901-45769931
GCGGGCGGAGCCGGCTGGGGCTCC
SaCas9





871
DMPK 3 forward 19:45769902-45769931
CGGGCGGAGCCGGCTGGGGCTCC
SaCas9





872
DMPK 3 forward 19:45769903-45769931
GGGCGGAGCCGGCTGGGGCTCC
SaCas9





873
DMPK 3 forward 19:45769904-45769931
GGCGGAGCCGGCTGGGGCTCC
SaCas9





874
DMPK 3 forward 19:45769905-45769931
GCGGAGCCGGCTGGGGCTCC
SaCas9





875
DMPK 3 forward 19:45769906-45769931
CGGAGCCGGCTGGGGCTCC
SaCas9





876
DMPK 3 forward 19:45769907-45769931
GGAGCCGGCTGGGGCTCC
SaCas9





877
DMPK 3 forward 19:45769913-45769944
GGCTGGGGCTCCGAGAGCAGCGCAA
SaCas9





878
DMPK 3 forward 19:45769914-45769944
GCTGGGGCTCCGAGAGCAGCGCAA
SaCas9





879
DMPK 3 forward 19:45769915-45769944
CTGGGGCTCCGAGAGCAGCGCAA
SaCas9





880
DMPK 3 forward 19:45769916-45769944
TGGGGCTCCGAGAGCAGCGCAA
SaCas9





881
DMPK 3 forward 19:45769917-45769944
GGGGCTCCGAGAGCAGCGCAA
SaCas9





882
DMPK 3 forward 19:45769918-45769944
GGGCTCCGAGAGCAGCGCAA
SaCas9





883
DMPK 3 forward 19:45769919-45769944
GGCTCCGAGAGCAGCGCAA
SaCas9





884
DMPK 3 forward 19:45769920-45769944
GCTCCGAGAGCAGCGCAA
SaCas9





885
DMPK 3 forward 19:45769915-45769946
CTGGGGCTCCGAGAGCAGCGCAAGT
SaCas9





886
DMPK 3 forward 19:45769916-45769946
TGGGGCTCCGAGAGCAGCGCAAGT
SaCas9





887
DMPK 3 forward 19:45769917-45769946
GGGGCTCCGAGAGCAGCGCAAGT
SaCas9





888
DMPK 3 forward 19:45769918-45769946
GGGCTCCGAGAGCAGCGCAAGT
SaCas9





889
DMPK 3 forward 19:45769919-45769946
GGCTCCGAGAGCAGCGCAAGT
SaCas9





890
DMPK 3 forward 19:45769920-45769946
GCTCCGAGAGCAGCGCAAGT
SaCas9





891
DMPK 3 forward 19:45769921-45769946
CTCCGAGAGCAGCGCAAGT
SaCas9





892
DMPK 3 forward 19:45769922-45769946
TCCGAGAGCAGCGCAAGT
SaCas9





893
DMPK 3 forward 19:45769916-45769947
TGGGGCTCCGAGAGCAGCGCAAGTG
SaCas9





894
DMPK 3 forward 19:45769917-45769947
GGGGCTCCGAGAGCAGCGCAAGTG
SaCas9





895
DMPK 3 forward 19:45769918-45769947
GGGCTCCGAGAGCAGCGCAAGTG
SaCas9





896
DMPK 3 forward 19:45769919-45769947
GGCTCCGAGAGCAGCGCAAGTG
SaCas9





897
DMPK 3 forward 19:45769920-45769947
GCTCCGAGAGCAGCGCAAGTG
SaCas9





898
DMPK 3 forward 19:45769921-45769947
CTCCGAGAGCAGCGCAAGTG
SaCas9





899
DMPK 3 forward 19:45769922-45769947
TCCGAGAGCAGCGCAAGTG
SaCas9





900
DMPK 3 forward 19:45769923-45769947
CCGAGAGCAGCGCAAGTG
SaCas9





901
DMPK 3 forward 19:45769918-45769949
GGGCTCCGAGAGCAGCGCAAGTGAG
SaCas9





902
DMPK 3 forward 19:45769919-45769949
GGCTCCGAGAGCAGCGCAAGTGAG
SaCas9





903
DMPK 3 forward 19:45769920-45769949
GCTCCGAGAGCAGCGCAAGTGAG
SaCas9





904
DMPK 3 forward 19:45769921-45769949
CTCCGAGAGCAGCGCAAGTGAG
SaCas9





905
DMPK 3 forward 19:45769922-45769949
TCCGAGAGCAGCGCAAGTGAG
SaCas9





906
DMPK 3 forward 19:45769923-45769949
CCGAGAGCAGCGCAAGTGAG
SaCas9





907
DMPK 3 forward 19:45769924-45769949
CGAGAGCAGCGCAAGTGAG
SaCas9





908
DMPK 3 forward 19:45769925-45769949
GAGAGCAGCGCAAGTGAG
SaCas9





909
DMPK 3 forward 19:45769919-45769950
GGCTCCGAGAGCAGCGCAAGTGAGG
SaCas9





910
DMPK 3 forward 19:45769920-45769950
GCTCCGAGAGCAGCGCAAGTGAGG
SaCas9





911
DMPK 3 forward 19:45769921-45769950
CTCCGAGAGCAGCGCAAGTGAGG
SaCas9





912
DMPK 3 forward 19:45769922-45769950
TCCGAGAGCAGCGCAAGTGAGG
SaCas9





913
DMPK 3 forward 19:45769923-45769950
CCGAGAGCAGCGCAAGTGAGG
SaCas9





914
DMPK 3 forward 19:45769924-45769950
CGAGAGCAGCGCAAGTGAGG
SaCas9





915
DMPK 3 forward 19:45769925-45769950
GAGAGCAGCGCAAGTGAGG
SaCas9





916
DMPK 3 forward 19:45769926-45769950
AGAGCAGCGCAAGTGAGG
SaCas9





917
DMPK 3 forward 19:45769920-45769951
GCTCCGAGAGCAGCGCAAGTGAGGA
SaCas9





918
DMPK 3 forward 19:45769921-45769951
CTCCGAGAGCAGCGCAAGTGAGGA
SaCas9





919
DMPK 3 forward 19:45769922-45769951
TCCGAGAGCAGCGCAAGTGAGGA
SaCas9





920
DMPK 3 forward 19:45769923-45769951
CCGAGAGCAGCGCAAGTGAGGA
SaCas9





921
DMPK 3 forward 19:45769924-45769951
CGAGAGCAGCGCAAGTGAGGA
SaCas9





922
DMPK 3 forward 19:45769925-45769951
GAGAGCAGCGCAAGTGAGGA
SaCas9





923
DMPK 3 forward 19:45769926-45769951
AGAGCAGCGCAAGTGAGGA
SaCas9





924
DMPK 3 forward 19:45769927-45769951
GAGCAGCGCAAGTGAGGA
SaCas9





925
DMPK 3 reverse 19:45769920-45769951
CCCCCCTCCTCACTTGCGCTGCTCT
SaCas9





926
DMPK 3 reverse 19:45769921-45769951
CCCCCTCCTCACTTGCGCTGCTCT
SaCas9





927
DMPK 3 reverse 19:45769922-45769951
CCCCTCCTCACTTGCGCTGCTCT
SaCas9





928
DMPK 3 reverse 19:45769923-45769951
CCCTCCTCACTTGCGCTGCTCT
SaCas9





929
DMPK 3 reverse 19:45769924-45769951
CCTCCTCACTTGCGCTGCTCT
SaCas9





930
DMPK 3 reverse 19:45769925-45769951
CTCCTCACTTGCGCTGCTCT
SaCas9





931
DMPK 3 reverse 19:45769926-45769951
TCCTCACTTGCGCTGCTCT
SaCas9





932
DMPK 3 reverse 19:45769927-45769951
CCTCACTTGCGCTGCTCT
SaCas9





933
DMPK 3 forward 19:45769921-45769952
CTCCGAGAGCAGCGCAAGTGAGGAG
SaCas9





934
DMPK 3 forward 19:45769922-45769952
TCCGAGAGCAGCGCAAGTGAGGAG
SaCas9





935
DMPK 3 forward 19:45769923-45769952
CCGAGAGCAGCGCAAGTGAGGAG
SaCas9





936
DMPK 3 forward 19:45769924-45769952
CGAGAGCAGCGCAAGTGAGGAG
SaCas9





937
DMPK 3 forward 19:45769925-45769952
GAGAGCAGCGCAAGTGAGGAG
SaCas9





938
DMPK 3 forward 19:45769926-45769952
AGAGCAGCGCAAGTGAGGAG
SaCas9





939
DMPK 3 forward 19:45769927-45769952
GAGCAGCGCAAGTGAGGAG
SaCas9





940
DMPK 3 forward 19:45769928-45769952
AGCAGCGCAAGTGAGGAG
SaCas9





941
DMPK 3 reverse 19:45769921-45769952
GCCCCCCTCCTCACTTGCGCTGCTC
SaCas9





942
DMPK 3 reverse 19:45769922-45769952
CCCCCCTCCTCACTTGCGCTGCTC
SaCas9





943
DMPK 3 reverse 19:45769923-45769952
CCCCCTCCTCACTTGCGCTGCTC
SaCas9





944
DMPK 3 reverse 19:45769924-45769952
CCCCTCCTCACTTGCGCTGCTC
SaCas9





945
DMPK 3 reverse 19:45769925-45769952
CCCTCCTCACTTGCGCTGCTC
SaCas9





946
DMPK 3 reverse 19:45769926-45769952
CCTCCTCACTTGCGCTGCTC
SaCas9





947
DMPK 3 reverse 19:45769927-45769952
CTCCTCACTTGCGCTGCTC
SaCas9





948
DMPK 3 reverse 19:45769928-45769952
TCCTCACTTGCGCTGCTC
SaCas9





949
DMPK 3 forward 19:45769927-45769958
GAGCAGCGCAAGTGAGGAGGGGGGC
SaCas9





950
DMPK 3 forward 19:45769928-45769958
AGCAGCGCAAGTGAGGAGGGGGGC
SaCas9





951
DMPK 3 forward 19:45769929-45769958
GCAGCGCAAGTGAGGAGGGGGGC
SaCas9





952
DMPK 3 forward 19:45769930-45769958
CAGCGCAAGTGAGGAGGGGGGC
SaCas9





953
DMPK 3 forward 19:45769931-45769958
AGCGCAAGTGAGGAGGGGGGC
SaCas9





954
DMPK 3 forward 19:45769932-45769958
GCGCAAGTGAGGAGGGGGGC
SaCas9





955
DMPK 3 forward 19:45769933-45769958
CGCAAGTGAGGAGGGGGGC
SaCas9





956
DMPK 3 forward 19:45769934-45769958
GCAAGTGAGGAGGGGGGC
SaCas9





957
DMPK 3 forward 19:45769928-45769959
AGCAGCGCAAGTGAGGAGGGGGGCG
SaCas9





958
DMPK 3 forward 19:45769929-45769959
GCAGCGCAAGTGAGGAGGGGGGCG
SaCas9





959
DMPK 3 forward 19:45769930-45769959
CAGCGCAAGTGAGGAGGGGGGCG
SaCas9





960
DMPK 3 forward 19:45769931-45769959
AGCGCAAGTGAGGAGGGGGGCG
SaCas9





961
DMPK 3 forward 19:45769932-45769959
GCGCAAGTGAGGAGGGGGGCG
SaCas9





962
DMPK 3 forward 19:45769933-45769959
CGCAAGTGAGGAGGGGGGCG
SaCas9





963
DMPK 3 forward 19:45769934-45769959
GCAAGTGAGGAGGGGGGCG
SaCas9





964
DMPK 3 forward 19:45769935-45769959
CAAGTGAGGAGGGGGGCG
SaCas9





965
DMPK 3 forward 19:45769936-45769967
AAGTGAGGAGGGGGGCGCGGGATCC
SaCas9





966
DMPK 3 forward 19:45769937-45769967
AGTGAGGAGGGGGGCGCGGGATCC
SaCas9





967
DMPK 3 forward 19:45769938-45769967
GTGAGGAGGGGGGCGCGGGATCC
SaCas9





968
DMPK 3 forward 19:45769939-45769967
TGAGGAGGGGGGCGCGGGATCC
SaCas9





969
DMPK 3 forward 19:45769940-45769967
GAGGAGGGGGGCGCGGGATCC
SaCas9





970
DMPK 3 forward 19:45769941-45769967
AGGAGGGGGGCGCGGGATCC
SaCas9





971
DMPK 3 forward 19:45769942-45769967
GGAGGGGGGCGCGGGATCC
SaCas9





972
DMPK 3 forward 19:45769943-45769967
GAGGGGGGCGCGGGATCC
SaCas9





973
DMPK 3 forward 19:45769944-45769975
AGGGGGGCGCGGGATCCCCGAAAAA
SaCas9





974
DMPK 3 forward 19:45769945-45769975
GGGGGGCGCGGGATCCCCGAAAAA
SaCas9





975
DMPK 3 forward 19:45769946-45769975
GGGGGCGCGGGATCCCCGAAAAA
SaCas9





976
DMPK 3 forward 19:45769947-45769975
GGGGCGCGGGATCCCCGAAAAA
SaCas9





977
DMPK 3 forward 19:45769948-45769975
GGGCGCGGGATCCCCGAAAAA
SaCas9





978
DMPK 3 forward 19:45769949-45769975
GGCGCGGGATCCCCGAAAAA
SaCas9





979
DMPK 3 forward 19:45769950-45769975
GCGCGGGATCCCCGAAAAA
SaCas9





980
DMPK 3 forward 19:45769951-45769975
CGCGGGATCCCCGAAAAA
SaCas9





981
DMPK 3 reverse 19:45769957-45769988
TTGCTTTTGCCAAACCCGCTTTTTC
SaCas9





982
DMPK 3 reverse 19:45769958-45769988
TGCTTTTGCCAAACCCGCTTTTTC
SaCas9





983
DMPK 3 reverse 19:45769959-45769988
GCTTTTGCCAAACCCGCTTTTTC
SaCas9





984
DMPK 3 reverse 19:45769960-45769988
CTTTTGCCAAACCCGCTTTTTC
SaCas9





985
DMPK 3 reverse 19:45769961-45769988
TTTTGCCAAACCCGCTTTTTC
SaCas9





986
DMPK 3 reverse 19:45769962-45769988
TTTGCCAAACCCGCTTTTTC
SaCas9





987
DMPK 3 reverse 19:45769963-45769988
TTGCCAAACCCGCTTTTTC
SaCas9





988
DMPK 3 reverse 19:45769964-45769988
TGCCAAACCCGCTTTTTC
SaCas9





989
DMPK 3 reverse 19:45769958-45769989
TTTGCTTTTGCCAAACCCGCTTTTT
SaCas9





990
DMPK 3 reverse 19:45769959-45769989
TTGCTTTTGCCAAACCCGCTTTTT
SaCas9





991
DMPK 3 reverse 19:45769960-45769989
TGCTTTTGCCAAACCCGCTTTTT
SaCas9





992
DMPK 3 reverse 19:45769961-45769989
GCTTTTGCCAAACCCGCTTTTT
SaCas9





993
DMPK 3 reverse 19:45769962-45769989
CTTTTGCCAAACCCGCTTTTT
SaCas9





994
DMPK 3 reverse 19:45769963-45769989
TTTTGCCAAACCCGCTTTTT
SaCas9





995
DMPK 3 reverse 19:45769964-45769989
TTTGCCAAACCCGCTTTTT
SaCas9





996
DMPK 3 reverse 19:45769965-45769989
TTGCCAAACCCGCTTTTT
SaCas9





997
DMPK 3 reverse 19:45769959-45769990
ATTTGCTTTTGCCAAACCCGCTTTT
SaCas9





998
DMPK 3 reverse 19:45769960-45769990
TTTGCTTTTGCCAAACCCGCTTTT
SaCas9





999
DMPK 3 reverse 19:45769961-45769990
TTGCTTTTGCCAAACCCGCTTTT
SaCas9





1000
DMPK 3 reverse 19:45769962-45769990
TGCTTTTGCCAAACCCGCTTTT
SaCas9





1001
DMPK 3 reverse 19:45769963-45769990
GCTTTTGCCAAACCCGCTTTT
SaCas9





1002
DMPK 3 reverse 19:45769964-45769990
CTTTTGCCAAACCCGCTTTT
SaCas9





1003
DMPK 3 reverse 19:45769965-45769990
TTTTGCCAAACCCGCTTTT
SaCas9





1004
DMPK 3 reverse 19:45769966-45769990
TTTGCCAAACCCGCTTTT
SaCas9





1005
DMPK 3 forward 19:45769968-45769999
AGCGGGTTTGGCAAAAGCAAATTTC
SaCas9





1006
DMPK 3 forward 19:45769969-45769999
GCGGGTTTGGCAAAAGCAAATTTC
SaCas9





1007
DMPK 3 forward 19:45769970-45769999
CGGGTTTGGCAAAAGCAAATTTC
SaCas9





1008
DMPK 3 forward 19:45769971-45769999
GGGTTTGGCAAAAGCAAATTTC
SaCas9





1009
DMPK 3 forward 19:45769972-45769999
GGTTTGGCAAAAGCAAATTTC
SaCas9





1010
DMPK 3 forward 19:45769973-45769999
GTTTGGCAAAAGCAAATTTC
SaCas9





1011
DMPK 3 forward 19:45769974-45769999
TTTGGCAAAAGCAAATTTC
SaCas9





1012
DMPK 3 forward 19:45769975-45769999
TTGGCAAAAGCAAATTTC
SaCas9





1013
DMPK 3 forward 19:45769981-45770012
AAAGCAAATTTCCCGAGTAAGCAGG
SaCas9





1014
DMPK 3 forward 19:45769982-45770012
AAGCAAATTTCCCGAGTAAGCAGG
SaCas9





1015
DMPK 3 forward 19:45769983-45770012
AGCAAATTTCCCGAGTAAGCAGG
SaCas9





1016
DMPK 3 forward 19:45769984-45770012
GCAAATTTCCCGAGTAAGCAGG
SaCas9





1017
DMPK 3 forward 19:45769985-45770012
CAAATTTCCCGAGTAAGCAGG
SaCas9





1018
DMPK 3 forward 19:45769986-45770012
AAATTTCCCGAGTAAGCAGG
SaCas9





1019
DMPK 3 forward 19:45769987-45770012
AATTTCCCGAGTAAGCAGG
SaCas9





1020
DMPK 3 forward 19:45769988-45770012
ATTTCCCGAGTAAGCAGG
SaCas9





1021
DMPK 3 reverse 19:45769989-45770020
TGGCGCGATCTCTGCCTGCTTACTC
SaCas9





1022
DMPK 3 reverse 19:45769990-45770020
GGCGCGATCTCTGCCTGCTTACTC
SaCas9





1023
DMPK 3 reverse 19:45769991-45770020
GCGCGATCTCTGCCTGCTTACTC
SaCas9





1024
DMPK 3 reverse 19:45769992-45770020
CGCGATCTCTGCCTGCTTACTC
SaCas9





1025
DMPK 3 reverse 19:45769993-45770020
GCGATCTCTGCCTGCTTACTC
SaCas9





1026
DMPK 3 reverse 19:45769994-45770020
CGATCTCTGCCTGCTTACTC
SaCas9





1027
DMPK 3 reverse 19:45769995-45770020
GATCTCTGCCTGCTTACTC
SaCas9





1028
DMPK 3 reverse 19:45769996-45770020
ATCTCTGCCTGCTTACTC
SaCas9





1029
DMPK 3 reverse 19:45769990-45770021
CTGGCGCGATCTCTGCCTGCTTACT
SaCas9





1030
DMPK 3 reverse 19:45769991-45770021
TGGCGCGATCTCTGCCTGCTTACT
SaCas9





1031
DMPK 3 reverse 19:45769992-45770021
GGCGCGATCTCTGCCTGCTTACT
SaCas9





1032
DMPK 3 reverse 19:45769993-45770021
GCGCGATCTCTGCCTGCTTACT
SaCas9





1033
DMPK 3 reverse 19:45769994-45770021
CGCGATCTCTGCCTGCTTACT
SaCas9





1034
DMPK 3 reverse 19:45769995-45770021
GCGATCTCTGCCTGCTTACT
SaCas9





1035
DMPK 3 reverse 19:45769996-45770021
CGATCTCTGCCTGCTTACT
SaCas9





1036
DMPK 3 reverse 19:45769997-45770021
GATCTCTGCCTGCTTACT
SaCas9





1037
DMPK 3 reverse 19:45769991-45770022
TCTGGCGCGATCTCTGCCTGCTTAC
SaCas9





1038
DMPK 3 reverse 19:45769992-45770022
CTGGCGCGATCTCTGCCTGCTTAC
SaCas9





1039
DMPK 3 reverse 19:45769993-45770022
TGGCGCGATCTCTGCCTGCTTAC
SaCas9





1040
DMPK 3 reverse 19:45769994-45770022
GGCGCGATCTCTGCCTGCTTAC
SaCas9





1041
DMPK 3 reverse 19:45769995-45770022
GCGCGATCTCTGCCTGCTTAC
SaCas9





1042
DMPK 3 reverse 19:45769996-45770022
CGCGATCTCTGCCTGCTTAC
SaCas9





1043
DMPK 3 reverse 19:45769997-45770022
GCGATCTCTGCCTGCTTAC
SaCas9





1044
DMPK 3 reverse 19:45769998-45770022
CGATCTCTGCCTGCTTAC
SaCas9





1045
DMPK 3 forward 19:45770004-45770035
GGCAGAGATCGCGCCAGACGCTCCC
SaCas9





1046
DMPK 3 forward 19:45770005-45770035
GCAGAGATCGCGCCAGACGCTCCC
SaCas9





1047
DMPK 3 forward 19:45770006-45770035
CAGAGATCGCGCCAGACGCTCCC
SaCas9





1048
DMPK 3 forward 19:45770007-45770035
AGAGATCGCGCCAGACGCTCCC
SaCas9





1049
DMPK 3 forward 19:45770008-45770035
GAGATCGCGCCAGACGCTCCC
SaCas9





1050
DMPK 3 forward 19:45770009-45770035
AGATCGCGCCAGACGCTCCC
SaCas9





1051
DMPK 3 forward 19:45770010-45770035
GATCGCGCCAGACGCTCCC
SaCas9





1052
DMPK 3 forward 19:45770011-45770035
ATCGCGCCAGACGCTCCC
SaCas9





1053
DMPK 3 forward 19:45770009-45770040
AGATCGCGCCAGACGCTCCCCAGAG
SaCas9





1054
DMPK 3 forward 19:45770010-45770040
GATCGCGCCAGACGCTCCCCAGAG
SaCas9





1055
DMPK 3 forward 19:45770011-45770040
ATCGCGCCAGACGCTCCCCAGAG
SaCas9





1056
DMPK 3 forward 19:45770012-45770040
TCGCGCCAGACGCTCCCCAGAG
SaCas9





1057
DMPK 3 forward 19:45770013-45770040
CGCGCCAGACGCTCCCCAGAG
SaCas9





1058
DMPK 3 forward 19:45770014-45770040
GCGCCAGACGCTCCCCAGAG
SaCas9





1059
DMPK 3 forward 19:45770015-45770040
CGCCAGACGCTCCCCAGAG
SaCas9





1060
DMPK 3 forward 19:45770016-45770040
GCCAGACGCTCCCCAGAG
SaCas9





1061
DMPK 3 reverse 19:45770023-45770054
TTCTTGTGCATGACGCCCTGCTCTG
SaCas9





1062
DMPK 3 reverse 19:45770024-45770054
TCTTGTGCATGACGCCCTGCTCTG
SaCas9





1063
DMPK 3 reverse 19:45770025-45770054
CTTGTGCATGACGCCCTGCTCTG
SaCas9





1064
DMPK 3 reverse 19:45770026-45770054
TTGTGCATGACGCCCTGCTCTG
SaCas9





1065
DMPK 3 reverse 19:45770027-45770054
TGTGCATGACGCCCTGCTCTG
SaCas9





1066
DMPK 3 reverse 19:45770028-45770054
GTGCATGACGCCCTGCTCTG
SaCas9





1067
DMPK 3 reverse 19:45770029-45770054
TGCATGACGCCCTGCTCTG
SaCas9





1068
DMPK 3 reverse 19:45770030-45770054
GCATGACGCCCTGCTCTG
SaCas9





1069
DMPK 3 forward 19:45770024-45770055
CTCCCCAGAGCAGGGCGTCATGCAC
SaCas9





1070
DMPK 3 forward 19:45770025-45770055
TCCCCAGAGCAGGGCGTCATGCAC
SaCas9





1071
DMPK 3 forward 19:45770026-45770055
CCCCAGAGCAGGGCGTCATGCAC
SaCas9





1072
DMPK 3 forward 19:45770027-45770055
CCCAGAGCAGGGCGTCATGCAC
SaCas9





1073
DMPK 3 forward 19:45770028-45770055
CCAGAGCAGGGCGTCATGCAC
SaCas9





1074
DMPK 3 forward 19:45770029-45770055
CAGAGCAGGGCGTCATGCAC
SaCas9





1075
DMPK 3 forward 19:45770030-45770055
AGAGCAGGGCGTCATGCAC
SaCas9





1076
DMPK 3 forward 19:45770031-45770055
GAGCAGGGCGTCATGCAC
SaCas9





1077
DMPK 3 reverse 19:45770024-45770055
TTTCTTGTGCATGACGCCCTGCTCT
SaCas9





1078
DMPK 3 reverse 19:45770025-45770055
TTCTTGTGCATGACGCCCTGCTCT
SaCas9





1079
DMPK 3 reverse 19:45770026-45770055
TCTTGTGCATGACGCCCTGCTCT
SaCas9





1080
DMPK 3 reverse 19:45770027-45770055
CTTGTGCATGACGCCCTGCTCT
SaCas9





1081
DMPK 3 reverse 19:45770028-45770055
TTGTGCATGACGCCCTGCTCT
SaCas9





1082
DMPK 3 reverse 19:45770029-45770055
TGTGCATGACGCCCTGCTCT
SaCas9





1083
DMPK 3 reverse 19:45770030-45770055
GTGCATGACGCCCTGCTCT
SaCas9





1084
DMPK 3 reverse 19:45770031-45770055
TGCATGACGCCCTGCTCT
SaCas9





1085
DMPK 3 reverse 19:45770025-45770056
CTTTCTTGTGCATGACGCCCTGCTC
SaCas9





1086
DMPK 3 reverse 19:45770026-45770056
TTTCTTGTGCATGACGCCCTGCTC
SaCas9





1087
DMPK 3 reverse 19:45770027-45770056
TTCTTGTGCATGACGCCCTGCTC
SaCas9





1088
DMPK 3 reverse 19:45770028-45770056
TCTTGTGCATGACGCCCTGCTC
SaCas9





1089
DMPK 3 reverse 19:45770029-45770056
CTTGTGCATGACGCCCTGCTC
SaCas9





1090
DMPK 3 reverse 19:45770030-45770056
TTGTGCATGACGCCCTGCTC
SaCas9





1091
DMPK 3 reverse 19:45770031-45770056
TGTGCATGACGCCCTGCTC
SaCas9





1092
DMPK 3 reverse 19:45770032-45770056
GTGCATGACGCCCTGCTC
SaCas9





1093
DMPK 3 reverse 19:45770026-45770057
GCTTTCTTGTGCATGACGCCCTGCT
SaCas9





1094
DMPK 3 reverse 19:45770027-45770057
CTTTCTTGTGCATGACGCCCTGCT
SaCas9





1095
DMPK 3 reverse 19:45770028-45770057
TTTCTTGTGCATGACGCCCTGCT
SaCas9





1096
DMPK 3 reverse 19:45770029-45770057
TTCTTGTGCATGACGCCCTGCT
SaCas9





1097
DMPK 3 reverse 19:45770030-45770057
TCTTGTGCATGACGCCCTGCT
SaCas9





1098
DMPK 3 reverse 19:45770031-45770057
CTTGTGCATGACGCCCTGCT
SaCas9





1099
DMPK 3 reverse 19:45770032-45770057
TTGTGCATGACGCCCTGCT
SaCas9





1100
DMPK 3 reverse 19:45770033-45770057
TGTGCATGACGCCCTGCT
SaCas9





1101
DMPK 3 forward 19:45770042-45770073
CATGCACAAGAAAGCTTTGCACTTT
SaCas9





1102
DMPK 3 forward 19:45770043-45770073
ATGCACAAGAAAGCTTTGCACTTT
SaCas9





1103
DMPK 3 forward 19:45770044-45770073
TGCACAAGAAAGCTTTGCACTTT
SaCas9





1104
DMPK 3 forward 19:45770045-45770073
GCACAAGAAAGCTTTGCACTTT
SaCas9





1105
DMPK 3 forward 19:45770046-45770073
CACAAGAAAGCTTTGCACTTT
SaCas9





1106
DMPK 3 forward 19:45770047-45770073
ACAAGAAAGCTTTGCACTTT
SaCas9





1107
DMPK 3 forward 19:45770048-45770073
CAAGAAAGCTTTGCACTTT
SaCas9





1108
DMPK 3 forward 19:45770049-45770073
AAGAAAGCTTTGCACTTT
SaCas9





1109
DMPK 3 forward 19:45770057-45770088
TTTGCACTTTGCGAACCAACGATAG
SaCas9





1110
DMPK 3 forward 19:45770058-45770088
TTGCACTTTGCGAACCAACGATAG
SaCas9





1111
DMPK 3 forward 19:45770059-45770088
TGCACTTTGCGAACCAACGATAG
SaCas9





1112
DMPK 3 forward 19:45770060-45770088
GCACTTTGCGAACCAACGATAG
SaCas9





1113
DMPK 3 forward 19:45770061-45770088
CACTTTGCGAACCAACGATAG
SaCas9





1114
DMPK 3 forward 19:45770062-45770088
ACTTTGCGAACCAACGATAG
SaCas9





1115
DMPK 3 forward 19:45770063-45770088
CTTTGCGAACCAACGATAG
SaCas9





1116
DMPK 3 forward 19:45770064-45770088
TTTGCGAACCAACGATAG
SaCas9





1117
DMPK 3 forward 19:45770058-45770089
TTGCACTTTGCGAACCAACGATAGG
SaCas9





1118
DMPK 3 forward 19:45770059-45770089
TGCACTTTGCGAACCAACGATAGG
SaCas9





1119
DMPK 3 forward 19:45770060-45770089
GCACTTTGCGAACCAACGATAGG
SaCas9





1120
DMPK 3 forward 19:45770061-45770089
CACTTTGCGAACCAACGATAGG
SaCas9





1121
DMPK 3 forward 19:45770062-45770089
ACTTTGCGAACCAACGATAGG
SaCas9





1122
DMPK 3 forward 19:45770063-45770089
CTTTGCGAACCAACGATAGG
SaCas9





1123
DMPK 3 forward 19:45770064-45770089
TTTGCGAACCAACGATAGG
SaCas9





1124
DMPK 3 forward 19:45770065-45770089
TTGCGAACCAACGATAGG
SaCas9





1125
DMPK 3 forward 19:45770059-45770090
TGCACTTTGCGAACCAACGATAGGT
SaCas9





1126
DMPK 3 forward 19:45770060-45770090
GCACTTTGCGAACCAACGATAGGT
SaCas9





1127
DMPK 3 forward 19:45770061-45770090
CACTTTGCGAACCAACGATAGGT
SaCas9





1128
DMPK 3 forward 19:45770062-45770090
ACTTTGCGAACCAACGATAGGT
SaCas9





1129
DMPK 3 forward 19:45770063-45770090
CTTTGCGAACCAACGATAGGT
SaCas9





1130
DMPK 3 forward 19:45770064-45770090
TTTGCGAACCAACGATAGGT
SaCas9





1131
DMPK 3 forward 19:45770065-45770090
TTGCGAACCAACGATAGGT
SaCas9





1132
DMPK 3 forward 19:45770066-45770090
TGCGAACCAACGATAGGT
SaCas9





1133
DMPK 3 forward 19:45770067-45770098
GCGAACCAACGATAGGTGGGGGTGC
SaCas9





1134
DMPK 3 forward 19:45770068-45770098
CGAACCAACGATAGGTGGGGGTGC
SaCas9





1135
DMPK 3 forward 19:45770069-45770098
GAACCAACGATAGGTGGGGGTGC
SaCas9





1136
DMPK 3 forward 19:45770070-45770098
AACCAACGATAGGTGGGGGTGC
SaCas9





1137
DMPK 3 forward 19:45770071-45770098
ACCAACGATAGGTGGGGGTGC
SaCas9





1138
DMPK 3 forward 19:45770072-45770098
CCAACGATAGGTGGGGGTGC
SaCas9





1139
DMPK 3 forward 19:45770073-45770098
CAACGATAGGTGGGGGTGC
SaCas9





1140
DMPK 3 forward 19:45770074-45770098
AACGATAGGTGGGGGTGC
SaCas9





1141
DMPK 3 forward 19:45770068-45770099
CGAACCAACGATAGGTGGGGGTGCG
SaCas9





1142
DMPK 3 forward 19:45770069-45770099
GAACCAACGATAGGTGGGGGTGCG
SaCas9





1143
DMPK 3 forward 19:45770070-45770099
AACCAACGATAGGTGGGGGTGCG
SaCas9





1144
DMPK 3 forward 19:45770071-45770099
ACCAACGATAGGTGGGGGTGCG
SaCas9





1145
DMPK 3 forward 19:45770072-45770099
CCAACGATAGGTGGGGGTGCG
SaCas9





1146
DMPK 3 forward 19:45770073-45770099
CAACGATAGGTGGGGGTGCG
SaCas9





1147
DMPK 3 forward 19:45770074-45770099
AACGATAGGTGGGGGTGCG
SaCas9





1148
DMPK 3 forward 19:45770075-45770099
ACGATAGGTGGGGGTGCG
SaCas9





1149
DMPK 3 forward 19:45770070-45770101
AACCAACGATAGGTGGGGGTGCGTG
SaCas9





1150
DMPK 3 forward 19:45770071-45770101
ACCAACGATAGGTGGGGGTGCGTG
SaCas9





1151
DMPK 3 forward 19:45770072-45770101
CCAACGATAGGTGGGGGTGCGTG
SaCas9





1152
DMPK 3 forward 19:45770073-45770101
CAACGATAGGTGGGGGTGCGTG
SaCas9





1153
DMPK 3 forward 19:45770074-45770101
AACGATAGGTGGGGGTGCGTG
SaCas9





1154
DMPK 3 forward 19:45770075-45770101
ACGATAGGTGGGGGTGCGTG
SaCas9





1155
DMPK 3 forward 19:45770076-45770101
CGATAGGTGGGGGTGCGTG
SaCas9





1156
DMPK 3 forward 19:45770077-45770101
GATAGGTGGGGGTGCGTG
SaCas9





1157
DMPK 3 forward 19:45770074-45770105
AACGATAGGTGGGGGTGCGTGGAGG
SaCas9





1158
DMPK 3 forward 19:45770075-45770105
ACGATAGGTGGGGGTGCGTGGAGG
SaCas9





1159
DMPK 3 forward 19:45770076-45770105
CGATAGGTGGGGGTGCGTGGAGG
SaCas9





1160
DMPK 3 forward 19:45770077-45770105
GATAGGTGGGGGTGCGTGGAGG
SaCas9





1161
DMPK 3 forward 19:45770078-45770105
ATAGGTGGGGGTGCGTGGAGG
SaCas9





1162
DMPK 3 forward 19:45770079-45770105
TAGGTGGGGGTGCGTGGAGG
SaCas9





1163
DMPK 3 forward 19:45770080-45770105
AGGTGGGGGTGCGTGGAGG
SaCas9





1164
DMPK 3 forward 19:45770081-45770105
GGTGGGGGTGCGTGGAGG
SaCas9





1165
DMPK 3 forward 19:45770075-45770106
ACGATAGGTGGGGGTGCGTGGAGGA
SaCas9





1166
DMPK 3 forward 19:45770076-45770106
CGATAGGTGGGGGTGCGTGGAGGA
SaCas9





1167
DMPK 3 forward 19:45770077-45770106
GATAGGTGGGGGTGCGTGGAGGA
SaCas9





1168
DMPK 3 forward 19:45770078-45770106
ATAGGTGGGGGTGCGTGGAGGA
SaCas9





1169
DMPK 3 forward 19:45770079-45770106
TAGGTGGGGGTGCGTGGAGGA
SaCas9





1170
DMPK 3 forward 19:45770080-45770106
AGGTGGGGGTGCGTGGAGGA
SaCas9





1171
DMPK 3 forward 19:45770081-45770106
GGTGGGGGTGCGTGGAGGA
SaCas9





1172
DMPK 3 forward 19:45770082-45770106
GTGGGGGTGCGTGGAGGA
SaCas9





1173
DMPK 3 forward 19:45770081-45770112
GGTGGGGGTGCGTGGAGGATGGAAC
SaCas9





1174
DMPK 3 forward 19:45770082-45770112
GTGGGGGTGCGTGGAGGATGGAAC
SaCas9





1175
DMPK 3 forward 19:45770083-45770112
TGGGGGTGCGTGGAGGATGGAAC
SaCas9





1176
DMPK 3 forward 19:45770084-45770112
GGGGGTGCGTGGAGGATGGAAC
SaCas9





1177
DMPK 3 forward 19:45770085-45770112
GGGGTGCGTGGAGGATGGAAC
SaCas9





1178
DMPK 3 forward 19:45770086-45770112
GGGTGCGTGGAGGATGGAAC
SaCas9





1179
DMPK 3 forward 19:45770087-45770112
GGTGCGTGGAGGATGGAAC
SaCas9





1180
DMPK 3 forward 19:45770088-45770112
GTGCGTGGAGGATGGAAC
SaCas9





1181
DMPK 3 reverse 19:45770113-45770144
ACTGCAGGCCTGGGAAGGCAGCAAG
SaCas9





1182
DMPK 3 reverse 19:45770114-45770144
CTGCAGGCCTGGGAAGGCAGCAAG
SaCas9





1183
DMPK 3 reverse 19:45770115-45770144
TGCAGGCCTGGGAAGGCAGCAAG
SaCas9





1184
DMPK 3 reverse 19:45770116-45770144
GCAGGCCTGGGAAGGCAGCAAG
SaCas9





1185
DMPK 3 reverse 19:45770117-45770144
CAGGCCTGGGAAGGCAGCAAG
SaCas9





1186
DMPK 3 reverse 19:45770118-45770144
AGGCCTGGGAAGGCAGCAAG
SaCas9





1187
DMPK 3 reverse 19:45770119-45770144
GGCCTGGGAAGGCAGCAAG
SaCas9





1188
DMPK 3 reverse 19:45770120-45770144
GCCTGGGAAGGCAGCAAG
SaCas9





1189
DMPK 3 reverse 19:45770127-45770158
ACGTGGATGGGCAAACTGCAGGCCT
SaCas9





1190
DMPK 3 reverse 19:45770128-45770158
CGTGGATGGGCAAACTGCAGGCCT
SaCas9





1191
DMPK 3 reverse 19:45770129-45770158
GTGGATGGGCAAACTGCAGGCCT
SaCas9





1192
DMPK 3 reverse 19:45770130-45770158
TGGATGGGCAAACTGCAGGCCT
SaCas9





1193
DMPK 3 reverse 19:45770131-45770158
GGATGGGCAAACTGCAGGCCT
SaCas9





1194
DMPK 3 reverse 19:45770132-45770158
GATGGGCAAACTGCAGGCCT
SaCas9





1195
DMPK 3 reverse 19:45770133-45770158
ATGGGCAAACTGCAGGCCT
SaCas9





1196
DMPK 3 reverse 19:45770134-45770158
TGGGCAAACTGCAGGCCT
SaCas9





1197
DMPK 3 reverse 19:45770128-45770159
GACGTGGATGGGCAAACTGCAGGCC
SaCas9





1198
DMPK 3 reverse 19:45770129-45770159
ACGTGGATGGGCAAACTGCAGGCC
SaCas9





1199
DMPK 3 reverse 19:45770130-45770159
CGTGGATGGGCAAACTGCAGGCC
SaCas9





1200
DMPK 3 reverse 19:45770131-45770159
GTGGATGGGCAAACTGCAGGCC
SaCas9





1201
DMPK 3 reverse 19:45770132-45770159
TGGATGGGCAAACTGCAGGCC
SaCas9





1202
DMPK 3 reverse 19:45770133-45770159
GGATGGGCAAACTGCAGGCC
SaCas9





1203
DMPK 3 reverse 19:45770134-45770159
GATGGGCAAACTGCAGGCC
SaCas9





1204
DMPK 3 reverse 19:45770135-45770159
ATGGGCAAACTGCAGGCC
SaCas9





1205
DMPK 3 reverse 19:45770129-45770160
TGACGTGGATGGGCAAACTGCAGGC
SaCas9





1206
DMPK 3 reverse 19:45770130-45770160
GACGTGGATGGGCAAACTGCAGGC
SaCas9





1207
DMPK 3 reverse 19:45770131-45770160
ACGTGGATGGGCAAACTGCAGGC
SaCas9





1208
DMPK 3 reverse 19:45770132-45770160
CGTGGATGGGCAAACTGCAGGC
SaCas9





1209
DMPK 3 reverse 19:45770133-45770160
GTGGATGGGCAAACTGCAGGC
SaCas9





1210
DMPK 3 reverse 19:45770134-45770160
TGGATGGGCAAACTGCAGGC
SaCas9





1211
DMPK 3 reverse 19:45770135-45770160
GGATGGGCAAACTGCAGGC
SaCas9





1212
DMPK 3 reverse 19:45770136-45770160
GATGGGCAAACTGCAGGC
SaCas9





1213
DMPK 3 forward 19:45770133-45770164
AGGCCTGCAGTTTGCCCATCCACGT
SaCas9





1214
DMPK 3 forward 19:45770134-45770164
GGCCTGCAGTTTGCCCATCCACGT
SaCas9





1215
DMPK 3 forward 19:45770135-45770164
GCCTGCAGTTTGCCCATCCACGT
SaCas9





1216
DMPK 3 forward 19:45770136-45770164
CCTGCAGTTTGCCCATCCACGT
SaCas9





1217
DMPK 3 forward 19:45770137-45770164
CTGCAGTTTGCCCATCCACGT
SaCas9





1218
DMPK 3 forward 19:45770138-45770164
TGCAGTTTGCCCATCCACGT
SaCas9





1219
DMPK 3 forward 19:45770139-45770164
GCAGTTTGCCCATCCACGT
SaCas9





1220
DMPK 3 forward 19:45770140-45770164
CAGTTTGCCCATCCACGT
SaCas9





1221
DMPK 3 reverse 19:45770146-45770177
CGGCCAGGCTGAGGCCCTGACGTGG
SaCas9





1222
DMPK 3 reverse 19:45770147-45770177
GGCCAGGCTGAGGCCCTGACGTGG
SaCas9





1223
DMPK 3 reverse 19:45770148-45770177
GCCAGGCTGAGGCCCTGACGTGG
SaCas9





1224
DMPK 3 reverse 19:45770149-45770177
CCAGGCTGAGGCCCTGACGTGG
SaCas9





1225
DMPK 3 reverse 19:45770150-45770177
CAGGCTGAGGCCCTGACGTGG
SaCas9





1226
DMPK 3 reverse 19:45770151-45770177
AGGCTGAGGCCCTGACGTGG
SaCas9





1227
DMPK 3 reverse 19:45770152-45770177
GGCTGAGGCCCTGACGTGG
SaCas9





1228
DMPK 3 reverse 19:45770153-45770177
GCTGAGGCCCTGACGTGG
SaCas9





1229
DMPK 3 forward 19:45770149-45770180
CATCCACGTCAGGGCCTCAGCCTGG
SaCas9





1230
DMPK 3 forward 19:45770150-45770180
ATCCACGTCAGGGCCTCAGCCTGG
SaCas9





1231
DMPK 3 forward 19:45770151-45770180
TCCACGTCAGGGCCTCAGCCTGG
SaCas9





1232
DMPK 3 forward 19:45770152-45770180
CCACGTCAGGGCCTCAGCCTGG
SaCas9





1233
DMPK 3 forward 19:45770153-45770180
CACGTCAGGGCCTCAGCCTGG
SaCas9





1234
DMPK 3 forward 19:45770154-45770180
ACGTCAGGGCCTCAGCCTGG
SaCas9





1235
DMPK 3 forward 19:45770155-45770180
CGTCAGGGCCTCAGCCTGG
SaCas9





1236
DMPK 3 forward 19:45770156-45770180
GTCAGGGCCTCAGCCTGG
SaCas9





1237
DMPK 3 reverse 19:45770150-45770181
CTTTCGGCCAGGCTGAGGCCCTGAC
SaCas9





1238
DMPK 3 reverse 19:45770151-45770181
TTTCGGCCAGGCTGAGGCCCTGAC
SaCas9





1239
DMPK 3 reverse 19:45770152-45770181
TTCGGCCAGGCTGAGGCCCTGAC
SaCas9





1240
DMPK 3 reverse 19:45770153-45770181
TCGGCCAGGCTGAGGCCCTGAC
SaCas9





1241
DMPK 3 reverse 19:45770154-45770181
CGGCCAGGCTGAGGCCCTGAC
SaCas9





1242
DMPK 3 reverse 19:45770155-45770181
GGCCAGGCTGAGGCCCTGAC
SaCas9





1243
DMPK 3 reverse 19:45770156-45770181
GCCAGGCTGAGGCCCTGAC
SaCas9





1244
DMPK 3 reverse 19:45770157-45770181
CCAGGCTGAGGCCCTGAC
SaCas9





1245
DMPK 3 forward 19:45770153-45770184
CACGTCAGGGCCTCAGCCTGGCCGA
SaCas9





1246
DMPK 3 forward 19:45770154-45770184
ACGTCAGGGCCTCAGCCTGGCCGA
SaCas9





1247
DMPK 3 forward 19:45770155-45770184
CGTCAGGGCCTCAGCCTGGCCGA
SaCas9





1248
DMPK 3 forward 19:45770156-45770184
GTCAGGGCCTCAGCCTGGCCGA
SaCas9





1249
DMPK 3 forward 19:45770157-45770184
TCAGGGCCTCAGCCTGGCCGA
SaCas9





1250
DMPK 3 forward 19:45770158-45770184
CAGGGCCTCAGCCTGGCCGA
SaCas9





1251
DMPK 3 forward 19:45770159-45770184
AGGGCCTCAGCCTGGCCGA
SaCas9





1252
DMPK 3 forward 19:45770160-45770184
GGGCCTCAGCCTGGCCGA
SaCas9





1253
DMPK 3 forward 19:45770157-45770188
TCAGGGCCTCAGCCTGGCCGAAAGA
SaCas9





1254
DMPK 3 forward 19:45770158-45770188
CAGGGCCTCAGCCTGGCCGAAAGA
SaCas9





1255
DMPK 3 forward 19:45770159-45770188
AGGGCCTCAGCCTGGCCGAAAGA
SaCas9





1256
DMPK 3 forward 19:45770160-45770188
GGGCCTCAGCCTGGCCGAAAGA
SaCas9





1257
DMPK 3 forward 19:45770161-45770188
GGCCTCAGCCTGGCCGAAAGA
SaCas9





1258
DMPK 3 forward 19:45770162-45770188
GCCTCAGCCTGGCCGAAAGA
SaCas9





1259
DMPK 3 forward 19:45770163-45770188
CCTCAGCCTGGCCGAAAGA
SaCas9





1260
DMPK 3 forward 19:45770164-45770188
CTCAGCCTGGCCGAAAGA
SaCas9





1261
DMPK 3 reverse 19:45770163-45770194
AGACCATTTCTTTCTTTCGGCCAGG
SaCas9





1262
DMPK 3 reverse 19:45770164-45770194
GACCATTTCTTTCTTTCGGCCAGG
SaCas9





1263
DMPK 3 reverse 19:45770165-45770194
ACCATTTCTTTCTTTCGGCCAGG
SaCas9





1264
DMPK 3 reverse 19:45770166-45770194
CCATTTCTTTCTTTCGGCCAGG
SaCas9





1265
DMPK 3 reverse 19:45770167-45770194
CATTTCTTTCTTTCGGCCAGG
SaCas9





1266
DMPK 3 reverse 19:45770168-45770194
ATTTCTTTCTTTCGGCCAGG
SaCas9





1267
DMPK 3 reverse 19:45770169-45770194
TTTCTTTCTTTCGGCCAGG
SaCas9





1268
DMPK 3 reverse 19:45770170-45770194
TTCTTTCTTTCGGCCAGG
SaCas9





1269
DMPK 3 reverse 19:45770197-45770228
CTGCTGCTGCTGCTGCTGCTGCTGG
SaCas9





1270
DMPK 3 reverse 19:45770198-45770228
TGCTGCTGCTGCTGCTGCTGCTGG
SaCas9





1271
DMPK 3 reverse 19:45770199-45770228
GCTGCTGCTGCTGCTGCTGCTGG
SaCas9





1272
DMPK 3 reverse 19:45770200-45770228
CTGCTGCTGCTGCTGCTGCTGG
SaCas9





1273
DMPK 3 reverse 19:45770201-45770228
TGCTGCTGCTGCTGCTGCTGG
SaCas9





1274
DMPK 3 reverse 19:45770202-45770228
GCTGCTGCTGCTGCTGCTGG
SaCas9





1275
DMPK 3 reverse 19:45770203-45770228
CTGCTGCTGCTGCTGCTGG
SaCas9





1276
DMPK 3 reverse 19:45770204-45770228
TGCTGCTGCTGCTGCTGG
SaCas9





1277
DMPK 3 reverse 19:45770198-45770229
GCTGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1278
DMPK 3 reverse 19:45770199-45770229
CTGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1279
DMPK 3 reverse 19:45770200-45770229
TGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1280
DMPK 3 reverse 19:45770201-45770229
GCTGCTGCTGCTGCTGCTGCTG
SaCas9





1281
DMPK 3 reverse 19:45770202-45770229
CTGCTGCTGCTGCTGCTGCTG
SaCas9





1282
DMPK 3 reverse 19:45770203-45770229
TGCTGCTGCTGCTGCTGCTG
SaCas9





1283
DMPK 3 reverse 19:45770204-45770229
GCTGCTGCTGCTGCTGCTG
SaCas9





1284
DMPK 3 reverse 19:45770205-45770229
CTGCTGCTGCTGCTGCTG
SaCas9





1285
DMPK 3 reverse 19:45770199-45770230
TGCTGCTGCTGCTGCTGCTGCTGCT
SaCas9





1286
DMPK 3 reverse 19:45770200-45770230
GCTGCTGCTGCTGCTGCTGCTGCT
SaCas9





1287
DMPK 3 reverse 19:45770201-45770230
CTGCTGCTGCTGCTGCTGCTGCT
SaCas9





1288
DMPK 3 reverse 19:45770202-45770230
TGCTGCTGCTGCTGCTGCTGCT
SaCas9





1289
DMPK 3 reverse 19:45770203-45770230
GCTGCTGCTGCTGCTGCTGCT
SaCas9





1290
DMPK 3 reverse 19:45770204-45770230
CTGCTGCTGCTGCTGCTGCT
SaCas9





1291
DMPK 3 reverse 19:45770205-45770230
TGCTGCTGCTGCTGCTGCT
SaCas9





1292
DMPK 3 reverse 19:45770206-45770230
GCTGCTGCTGCTGCTGCT
SaCas9





1293
DMPK 3 reverse 19:45770200-45770231
CTGCTGCTGCTGCTGCTGCTGCTGC
SaCas9





1294
DMPK 3 reverse 19:45770201-45770231
TGCTGCTGCTGCTGCTGCTGCTGC
SaCas9





1295
DMPK 3 reverse 19:45770202-45770231
GCTGCTGCTGCTGCTGCTGCTGC
SaCas9





1296
DMPK 3 reverse 19:45770203-45770231
CTGCTGCTGCTGCTGCTGCTGC
SaCas9





1297
DMPK 3 reverse 19:45770204-45770231
TGCTGCTGCTGCTGCTGCTGC
SaCas9





1298
DMPK 3 reverse 19:45770205-45770231
GCTGCTGCTGCTGCTGCTGC
SaCas9





1299
DMPK 3 reverse 19:45770206-45770231
CTGCTGCTGCTGCTGCTGC
SaCas9





1300
DMPK 3 reverse 19:45770207-45770231
TGCTGCTGCTGCTGCTGC
SaCas9





1301
DMPK 3 reverse 19:45770201-45770232
GCTGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1302
DMPK 3 reverse 19:45770202-45770232
CTGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1303
DMPK 3 reverse 19:45770203-45770232
TGCTGCTGCTGCTGCTGCTGCTG
SaCas9





1304
DMPK 3 reverse 19:45770204-45770232
GCTGCTGCTGCTGCTGCTGCTG
SaCas9





1305
DMPK 3 reverse 19:45770205-45770232
CTGCTGCTGCTGCTGCTGCTG
SaCas9





1306
DMPK 3 reverse 19:45770206-45770232
TGCTGCTGCTGCTGCTGCTG
SaCas9





1307
DMPK 3 reverse 19:45770207-45770232
GCTGCTGCTGCTGCTGCTG
SaCas9





1308
DMPK 3 reverse 19:45770208-45770232
CTGCTGCTGCTGCTGCTG
SaCas9





1309
DMPK 3 forward 19:45769697-45769725
ACACTGTGGAGTCCAGAGCTTTGGG
SpCas9





1310
DMPK 3 forward 19:45769698-45769725
CACTGTGGAGTCCAGAGCTTTGGG
SpCas9





1311
DMPK 3 forward 19:45769699-45769725
ACTGTGGAGTCCAGAGCTTTGGG
SpCas9





1312
DMPK 3 forward 19:45769700-45769725
CTGTGGAGTCCAGAGCTTTGGG
SpCas9





1313
DMPK 3 forward 19:45769701-45769725
TGTGGAGTCCAGAGCTTTGGG
SpCas9





1314
DMPK 3 forward 19:45769702-45769725
GTGGAGTCCAGAGCTTTGGG
SpCas9





1315
DMPK 3 forward 19:45769703-45769725
TGGAGTCCAGAGCTTTGGG
SpCas9





1316
DMPK 3 forward 19:45769704-45769725
GGAGTCCAGAGCTTTGGG
SpCas9





1317
DMPK 3 forward 19:45769701-45769729
TGTGGAGTCCAGAGCTTTGGGCAGA
SpCas9





1318
DMPK 3 forward 19:45769702-45769729
GTGGAGTCCAGAGCTTTGGGCAGA
SpCas9





1319
DMPK 3 forward 19:45769703-45769729
TGGAGTCCAGAGCTTTGGGCAGA
SpCas9





1320
DMPK 3 forward 19:45769704-45769729
GGAGTCCAGAGCTTTGGGCAGA
SpCas9





1321
DMPK 3 forward 19:45769705-45769729
GAGTCCAGAGCTTTGGGCAGA
SpCas9





1322
DMPK 3 forward 19:45769706-45769729
AGTCCAGAGCTTTGGGCAGA
SpCas9





1323
DMPK 3 forward 19:45769707-45769729
GTCCAGAGCTTTGGGCAGA
SpCas9





1324
DMPK 3 forward 19:45769708-45769729
TCCAGAGCTTTGGGCAGA
SpCas9





1325
DMPK 3 forward 19:45769703-45769731
TGGAGTCCAGAGCTTTGGGCAGATG
SpCas9





1326
DMPK 3 forward 19:45769704-45769731
GGAGTCCAGAGCTTTGGGCAGATG
SpCas9





1327
DMPK 3 forward 19:45769705-45769731
GAGTCCAGAGCTTTGGGCAGATG
SpCas9





1328
DMPK 3 forward 19:45769706-45769731
AGTCCAGAGCTTTGGGCAGATG
SpCas9





1329
DMPK 3 forward 19:45769707-45769731
GTCCAGAGCTTTGGGCAGATG
SpCas9





1330
DMPK 3 forward 19:45769708-45769731
TCCAGAGCTTTGGGCAGATG
SpCas9





1331
DMPK 3 forward 19:45769709-45769731
CCAGAGCTTTGGGCAGATG
SpCas9





1332
DMPK 3 forward 19:45769710-45769731
CAGAGCTTTGGGCAGATG
SpCas9





1333
DMPK 3 forward 19:45769704-45769732
GGAGTCCAGAGCTTTGGGCAGATGG
SpCas9





1334
DMPK 3 forward 19:45769705-45769732
GAGTCCAGAGCTTTGGGCAGATGG
SpCas9





1335
DMPK 3 forward 19:45769706-45769732
AGTCCAGAGCTTTGGGCAGATGG
SpCas9





1336
DMPK 3 forward 19:45769707-45769732
GTCCAGAGCTTTGGGCAGATGG
SpCas9





1337
DMPK 3 forward 19:45769708-45769732
TCCAGAGCTTTGGGCAGATGG
SpCas9





1338
DMPK 3 forward 19:45769709-45769732
CCAGAGCTTTGGGCAGATGG
SpCas9





1339
DMPK 3 forward 19:45769710-45769732
CAGAGCTTTGGGCAGATGG
SpCas9





1340
DMPK 3 forward 19:45769711-45769732
AGAGCTTTGGGCAGATGG
SpCas9





1341
DMPK 3 forward 19:45769705-45769733
GAGTCCAGAGCTTTGGGCAGATGGA
SpCas9





1342
DMPK 3 forward 19:45769706-45769733
AGTCCAGAGCTTTGGGCAGATGGA
SpCas9





1343
DMPK 3 forward 19:45769707-45769733
GTCCAGAGCTTTGGGCAGATGGA
SpCas9





1344
DMPK 3 forward 19:45769708-45769733
TCCAGAGCTTTGGGCAGATGGA
SpCas9





1345
DMPK 3 forward 19:45769709-45769733
CCAGAGCTTTGGGCAGATGGA
SpCas9





1346
DMPK 3 forward 19:45769710-45769733
CAGAGCTTTGGGCAGATGGA
SpCas9





1347
DMPK 3 forward 19:45769711-45769733
AGAGCTTTGGGCAGATGGA
SpCas9





1348
DMPK 3 forward 19:45769712-45769733
GAGCTTTGGGCAGATGGA
SpCas9





1349
DMPK 3 reverse 19:45769715-45769743
GAATAAAAGGCCCTCCATCTGCCCA
SpCas9





1350
DMPK 3 reverse 19:45769716-45769743
AATAAAAGGCCCTCCATCTGCCCA
SpCas9





1351
DMPK 3 reverse 19:45769717-45769743
ATAAAAGGCCCTCCATCTGCCCA
SpCas9





1352
DMPK 3 reverse 19:45769718-45769743
TAAAAGGCCCTCCATCTGCCCA
SpCas9





1353
DMPK 3 reverse 19:45769719-45769743
AAAAGGCCCTCCATCTGCCCA
SpCas9





1354
DMPK 3 reverse 19:45769720-45769743
AAAGGCCCTCCATCTGCCCA
SpCas9





1355
DMPK 3 reverse 19:45769721-45769743
AAGGCCCTCCATCTGCCCA
SpCas9





1356
DMPK 3 reverse 19:45769722-45769743
AGGCCCTCCATCTGCCCA
SpCas9





1357
DMPK 3 forward 19:45769720-45769748
GGCAGATGGAGGGCCTTTTATTCGC
SpCas9





1358
DMPK 3 forward 19:45769721-45769748
GCAGATGGAGGGCCTTTTATTCGC
SpCas9





1359
DMPK 3 forward 19:45769722-45769748
CAGATGGAGGGCCTTTTATTCGC
SpCas9





1360
DMPK 3 forward 19:45769723-45769748
AGATGGAGGGCCTTTTATTCGC
SpCas9





1361
DMPK 3 forward 19:45769724-45769748
GATGGAGGGCCTTTTATTCGC
SpCas9





1362
DMPK 3 forward 19:45769725-45769748
ATGGAGGGCCTTTTATTCGC
SpCas9





1363
DMPK 3 forward 19:45769726-45769748
TGGAGGGCCTTTTATTCGC
SpCas9





1364
DMPK 3 forward 19:45769727-45769748
GGAGGGCCTTTTATTCGC
SpCas9





1365
DMPK 3 forward 19:45769721-45769749
GCAGATGGAGGGCCTTTTATTCGCG
SpCas9





1366
DMPK 3 forward 19:45769722-45769749
CAGATGGAGGGCCTTTTATTCGCG
SpCas9





1367
DMPK 3 forward 19:45769723-45769749
AGATGGAGGGCCTTTTATTCGCG
SpCas9





1368
DMPK 3 forward 19:45769724-45769749
GATGGAGGGCCTTTTATTCGCG
SpCas9





1369
DMPK 3 forward 19:45769725-45769749
ATGGAGGGCCTTTTATTCGCG
SpCas9





1370
DMPK 3 forward 19:45769726-45769749
TGGAGGGCCTTTTATTCGCG
SpCas9





1371
DMPK 3 forward 19:45769727-45769749
GGAGGGCCTTTTATTCGCG
SpCas9





1372
DMPK 3 forward 19:45769728-45769749
GAGGGCCTTTTATTCGCG
SpCas9





1373
DMPK 3 forward 19:45769722-45769750
CAGATGGAGGGCCTTTTATTCGCGA
SpCas9





1374
DMPK 3 forward 19:45769723-45769750
AGATGGAGGGCCTTTTATTCGCGA
SpCas9





1375
DMPK 3 forward 19:45769724-45769750
GATGGAGGGCCTTTTATTCGCGA
SpCas9





1376
DMPK 3 forward 19:45769725-45769750
ATGGAGGGCCTTTTATTCGCGA
SpCas9





1377
DMPK 3 forward 19:45769726-45769750
TGGAGGGCCTTTTATTCGCGA
SpCas9





1378
DMPK 3 forward 19:45769727-45769750
GGAGGGCCTTTTATTCGCGA
SpCas9





1379
DMPK 3 forward 19:45769728-45769750
GAGGGCCTTTTATTCGCGA
SpCas9





1380
DMPK 3 forward 19:45769729-45769750
AGGGCCTTTTATTCGCGA
SpCas9





1381
DMPK 3 forward 19:45769726-45769754
TGGAGGGCCTTTTATTCGCGAGGGT
SpCas9





1382
DMPK 3 forward 19:45769727-45769754
GGAGGGCCTTTTATTCGCGAGGGT
SpCas9





1383
DMPK 3 forward 19:45769728-45769754
GAGGGCCTTTTATTCGCGAGGGT
SpCas9





1384
DMPK 3 forward 19:45769729-45769754
AGGGCCTTTTATTCGCGAGGGT
SpCas9





1385
DMPK 3 forward 19:45769730-45769754
GGGCCTTTTATTCGCGAGGGT
SpCas9





1386
DMPK 3 forward 19:45769731-45769754
GGCCTTTTATTCGCGAGGGT
SpCas9





1387
DMPK 3 forward 19:45769732-45769754
GCCTTTTATTCGCGAGGGT
SpCas9





1388
DMPK 3 forward 19:45769733-45769754
CCTTTTATTCGCGAGGGT
SpCas9





1389
DMPK 3 forward 19:45769727-45769755
GGAGGGCCTTTTATTCGCGAGGGTC
SpCas9





1390
DMPK 3 forward 19:45769728-45769755
GAGGGCCTTTTATTCGCGAGGGTC
SpCas9





1391
DMPK 3 forward 19:45769729-45769755
AGGGCCTTTTATTCGCGAGGGTC
SpCas9





1392
DMPK 3 forward 19:45769730-45769755
GGGCCTTTTATTCGCGAGGGTC
SpCas9





1393
DMPK 3 forward 19:45769731-45769755
GGCCTTTTATTCGCGAGGGTC
SpCas9





1394
DMPK 3 forward 19:45769732-45769755
GCCTTTTATTCGCGAGGGTC
SpCas9





1395
DMPK 3 forward 19:45769733-45769755
CCTTTTATTCGCGAGGGTC
SpCas9





1396
DMPK 3 forward 19:45769734-45769755
CTTTTATTCGCGAGGGTC
SpCas9





1397
DMPK 3 forward 19:45769728-45769756
GAGGGCCTTTTATTCGCGAGGGTCG
SpCas9





1398
DMPK 3 forward 19:45769729-45769756
AGGGCCTTTTATTCGCGAGGGTCG
SpCas9





1399
DMPK 3 forward 19:45769730-45769756
GGGCCTTTTATTCGCGAGGGTCG
SpCas9





1400
DMPK 3 forward 19:45769731-45769756
GGCCTTTTATTCGCGAGGGTCG
SpCas9





1401
DMPK 3 forward 19:45769732-45769756
GCCTTTTATTCGCGAGGGTCG
SpCas9





1402
DMPK 3 forward 19:45769733-45769756
CCTTTTATTCGCGAGGGTCG
SpCas9





1403
DMPK 3 forward 19:45769734-45769756
CTTTTATTCGCGAGGGTCG
SpCas9





1404
DMPK 3 forward 19:45769735-45769756
TTTTATTCGCGAGGGTCG
SpCas9





1405
DMPK 3 forward 19:45769729-45769757
AGGGCCTTTTATTCGCGAGGGTCGG
SpCas9





1406
DMPK 3 forward 19:45769730-45769757
GGGCCTTTTATTCGCGAGGGTCGG
SpCas9





1407
DMPK 3 forward 19:45769731-45769757
GGCCTTTTATTCGCGAGGGTCGG
SpCas9





1408
DMPK 3 forward 19:45769732-45769757
GCCTTTTATTCGCGAGGGTCGG
SpCas9





1409
DMPK 3 forward 19:45769733-45769757
CCTTTTATTCGCGAGGGTCGG
SpCas9





1410
DMPK 3 forward 19:45769734-45769757
CTTTTATTCGCGAGGGTCGG
SpCas9





1411
DMPK 3 forward 19:45769735-45769757
TTTTATTCGCGAGGGTCGG
SpCas9





1412
DMPK 3 forward 19:45769736-45769757
TTTATTCGCGAGGGTCGG
SpCas9





1413
DMPK 3 forward 19:45769732-45769760
GCCTTTTATTCGCGAGGGTCGGGGG
SpCas9





1414
DMPK 3 forward 19:45769733-45769760
CCTTTTATTCGCGAGGGTCGGGGG
SpCas9





1415
DMPK 3 forward 19:45769734-45769760
CTTTTATTCGCGAGGGTCGGGGG
SpCas9





1416
DMPK 3 forward 19:45769735-45769760
TTTTATTCGCGAGGGTCGGGGG
SpCas9





1417
DMPK 3 forward 19:45769736-45769760
TTTATTCGCGAGGGTCGGGGG
SpCas9





1418
DMPK 3 forward 19:45769737-45769760
TTATTCGCGAGGGTCGGGGG
SpCas9





1419
DMPK 3 forward 19:45769738-45769760
TATTCGCGAGGGTCGGGGG
SpCas9





1420
DMPK 3 forward 19:45769739-45769760
ATTCGCGAGGGTCGGGGG
SpCas9





1421
DMPK 3 forward 19:45769733-45769761
CCTTTTATTCGCGAGGGTCGGGGGT
SpCas9





1422
DMPK 3 forward 19:45769734-45769761
CTTTTATTCGCGAGGGTCGGGGGT
SpCas9





1423
DMPK 3 forward 19:45769735-45769761
TTTTATTCGCGAGGGTCGGGGGT
SpCas9





1424
DMPK 3 forward 19:45769736-45769761
TTTATTCGCGAGGGTCGGGGGT
SpCas9





1425
DMPK 3 forward 19:45769737-45769761
TTATTCGCGAGGGTCGGGGGT
SpCas9





1426
DMPK 3 forward 19:45769738-45769761
TATTCGCGAGGGTCGGGGGT
SpCas9





1427
DMPK 3 forward 19:45769739-45769761
ATTCGCGAGGGTCGGGGGT
SpCas9





1428
DMPK 3 forward 19:45769740-45769761
TTCGCGAGGGTCGGGGGT
SpCas9





1429
DMPK 3 reverse 19:45769733-45769761
CCCACCCCCGACCCTCGCGAATAAA
SpCas9





1430
DMPK 3 reverse 19:45769734-45769761
CCACCCCCGACCCTCGCGAATAAA
SpCas9





1431
DMPK 3 reverse 19:45769735-45769761
CACCCCCGACCCTCGCGAATAAA
SpCas9





1432
DMPK 3 reverse 19:45769736-45769761
ACCCCCGACCCTCGCGAATAAA
SpCas9





1433
DMPK 3 reverse 19:45769737-45769761
CCCCCGACCCTCGCGAATAAA
SpCas9





1434
DMPK 3 reverse 19:45769738-45769761
CCCCGACCCTCGCGAATAAA
SpCas9





1435
DMPK 3 reverse 19:45769739-45769761
CCCGACCCTCGCGAATAAA
SpCas9





1436
DMPK 3 reverse 19:45769740-45769761
CCGACCCTCGCGAATAAA
SpCas9





1437
DMPK 3 forward 19:45769734-45769762
CTTTTATTCGCGAGGGTCGGGGGTG
SpCas9





1438
DMPK 3 forward 19:45769735-45769762
TTTTATTCGCGAGGGTCGGGGGTG
SpCas9





1439
DMPK 3 forward 19:45769736-45769762
TTTATTCGCGAGGGTCGGGGGTG
SpCas9





1440
DMPK 3 forward 19:45769737-45769762
TTATTCGCGAGGGTCGGGGGTG
SpCas9





1441
DMPK 3 forward 19:45769738-45769762
TATTCGCGAGGGTCGGGGGTG
SpCas9





1442
DMPK 3 forward 19:45769739-45769762
ATTCGCGAGGGTCGGGGGTG
SpCas9





1443
DMPK 3 forward 19:45769740-45769762
TTCGCGAGGGTCGGGGGTG
SpCas9





1444
DMPK 3 forward 19:45769741-45769762
TCGCGAGGGTCGGGGGTG
SpCas9





1445
DMPK 3 reverse 19:45769734-45769762
CCCCACCCCCGACCCTCGCGAATAA
SpCas9





1446
DMPK 3 reverse 19:45769735-45769762
CCCACCCCCGACCCTCGCGAATAA
SpCas9





1447
DMPK 3 reverse 19:45769736-45769762
CCACCCCCGACCCTCGCGAATAA
SpCas9





1448
DMPK 3 reverse 19:45769737-45769762
CACCCCCGACCCTCGCGAATAA
SpCas9





1449
DMPK 3 reverse 19:45769738-45769762
ACCCCCGACCCTCGCGAATAA
SpCas9





1450
DMPK 3 reverse 19:45769739-45769762
CCCCCGACCCTCGCGAATAA
SpCas9





1451
DMPK 3 reverse 19:45769740-45769762
CCCCGACCCTCGCGAATAA
SpCas9





1452
DMPK 3 reverse 19:45769741-45769762
CCCGACCCTCGCGAATAA
SpCas9





1453
DMPK 3 forward 19:45769735-45769763
TTTTATTCGCGAGGGTCGGGGGTGG
SpCas9





1454
DMPK 3 forward 19:45769736-45769763
TTTATTCGCGAGGGTCGGGGGTGG
SpCas9





1455
DMPK 3 forward 19:45769737-45769763
TTATTCGCGAGGGTCGGGGGTGG
SpCas9





1456
DMPK 3 forward 19:45769738-45769763
TATTCGCGAGGGTCGGGGGTGG
SpCas9





1457
DMPK 3 forward 19:45769739-45769763
ATTCGCGAGGGTCGGGGGTGG
SpCas9





1458
DMPK 3 forward 19:45769740-45769763
TTCGCGAGGGTCGGGGGTGG
SpCas9





1459
DMPK 3 forward 19:45769741-45769763
TCGCGAGGGTCGGGGGTGG
SpCas9





1460
DMPK 3 forward 19:45769742-45769763
CGCGAGGGTCGGGGGTGG
SpCas9





1461
DMPK 3 forward 19:45769741-45769769
TCGCGAGGGTCGGGGGTGGGGGTCC
SpCas9





1462
DMPK 3 forward 19:45769742-45769769
CGCGAGGGTCGGGGGTGGGGGTCC
SpCas9





1463
DMPK 3 forward 19:45769743-45769769
GCGAGGGTCGGGGGTGGGGGTCC
SpCas9





1464
DMPK 3 forward 19:45769744-45769769
CGAGGGTCGGGGGTGGGGGTCC
SpCas9





1465
DMPK 3 forward 19:45769745-45769769
GAGGGTCGGGGGTGGGGGTCC
SpCas9





1466
DMPK 3 forward 19:45769746-45769769
AGGGTCGGGGGTGGGGGTCC
SpCas9





1467
DMPK 3 forward 19:45769747-45769769
GGGTCGGGGGTGGGGGTCC
SpCas9





1468
DMPK 3 forward 19:45769748-45769769
GGTCGGGGGTGGGGGTCC
SpCas9





1469
DMPK 3 forward 19:45769742-45769770
CGCGAGGGTCGGGGGTGGGGGTCCT
SpCas9





1470
DMPK 3 forward 19:45769743-45769770
GCGAGGGTCGGGGGTGGGGGTCCT
SpCas9





1471
DMPK 3 forward 19:45769744-45769770
CGAGGGTCGGGGGTGGGGGTCCT
SpCas9





1472
DMPK 3 forward 19:45769745-45769770
GAGGGTCGGGGGTGGGGGTCCT
SpCas9





1473
DMPK 3 forward 19:45769746-45769770
AGGGTCGGGGGTGGGGGTCCT
SpCas9





1474
DMPK 3 forward 19:45769747-45769770
GGGTCGGGGGTGGGGGTCCT
SpCas9





1475
DMPK 3 forward 19:45769748-45769770
GGTCGGGGGTGGGGGTCCT
SpCas9





1476
DMPK 3 forward 19:45769749-45769770
GTCGGGGGTGGGGGTCCT
SpCas9





1477
DMPK 3 forward 19:45769745-45769773
GAGGGTCGGGGGTGGGGGTCCTAGG
SpCas9





1478
DMPK 3 forward 19:45769746-45769773
AGGGTCGGGGGTGGGGGTCCTAGG
SpCas9





1479
DMPK 3 forward 19:45769747-45769773
GGGTCGGGGGTGGGGGTCCTAGG
SpCas9





1480
DMPK 3 forward 19:45769748-45769773
GGTCGGGGGTGGGGGTCCTAGG
SpCas9





1481
DMPK 3 forward 19:45769749-45769773
GTCGGGGGTGGGGGTCCTAGG
SpCas9





1482
DMPK 3 forward 19:45769750-45769773
TCGGGGGTGGGGGTCCTAGG
SpCas9





1483
DMPK 3 forward 19:45769751-45769773
CGGGGGTGGGGGTCCTAGG
SpCas9





1484
DMPK 3 forward 19:45769752-45769773
GGGGGTGGGGGTCCTAGG
SpCas9





1485
DMPK 3 forward 19:45769746-45769774
AGGGTCGGGGGTGGGGGTCCTAGGT
SpCas9





1486
DMPK 3 forward 19:45769747-45769774
GGGTCGGGGGTGGGGGTCCTAGGT
SpCas9





1487
DMPK 3 forward 19:45769748-45769774
GGTCGGGGGTGGGGGTCCTAGGT
SpCas9





1488
DMPK 3 forward 19:45769749-45769774
GTCGGGGGTGGGGGTCCTAGGT
SpCas9





1489
DMPK 3 forward 19:45769750-45769774
TCGGGGGTGGGGGTCCTAGGT
SpCas9





1490
DMPK 3 forward 19:45769751-45769774
CGGGGGTGGGGGTCCTAGGT
SpCas9





1491
DMPK 3 forward 19:45769752-45769774
GGGGGTGGGGGTCCTAGGT
SpCas9





1492
DMPK 3 forward 19:45769753-45769774
GGGGTGGGGGTCCTAGGT
SpCas9





1493
DMPK 3 forward 19:45769747-45769775
GGGTCGGGGGTGGGGGTCCTAGGTG
SpCas9





1494
DMPK 3 forward 19:45769748-45769775
GGTCGGGGGTGGGGGTCCTAGGTG
SpCas9





1495
DMPK 3 forward 19:45769749-45769775
GTCGGGGGTGGGGGTCCTAGGTG
SpCas9





1496
DMPK 3 forward 19:45769750-45769775
TCGGGGGTGGGGGTCCTAGGTG
SpCas9





1497
DMPK 3 forward 19:45769751-45769775
CGGGGGTGGGGGTCCTAGGTG
SpCas9





1498
DMPK 3 forward 19:45769752-45769775
GGGGGTGGGGGTCCTAGGTG
SpCas9





1499
DMPK 3 forward 19:45769753-45769775
GGGGTGGGGGTCCTAGGTG
SpCas9





1500
DMPK 3 forward 19:45769754-45769775
GGGTGGGGGTCCTAGGTG
SpCas9





1501
DMPK 3 forward 19:45769751-45769779
CGGGGGTGGGGGTCCTAGGTGGGGA
SpCas9





1502
DMPK 3 forward 19:45769752-45769779
GGGGGTGGGGGTCCTAGGTGGGGA
SpCas9





1503
DMPK 3 forward 19:45769753-45769779
GGGGTGGGGGTCCTAGGTGGGGA
SpCas9





1504
DMPK 3 forward 19:45769754-45769779
GGGTGGGGGTCCTAGGTGGGGA
SpCas9





1505
DMPK 3 forward 19:45769755-45769779
GGTGGGGGTCCTAGGTGGGGA
SpCas9





1506
DMPK 3 forward 19:45769756-45769779
GTGGGGGTCCTAGGTGGGGA
SpCas9





1507
DMPK 3 forward 19:45769757-45769779
TGGGGGTCCTAGGTGGGGA
SpCas9





1508
DMPK 3 forward 19:45769758-45769779
GGGGGTCCTAGGTGGGGA
SpCas9





1509
DMPK 3 reverse 19:45769764-45769792
CGGTATTTATTGTCTGTCCCCACCT
SpCas9





1510
DMPK 3 reverse 19:45769765-45769792
GGTATTTATTGTCTGTCCCCACCT
SpCas9





1511
DMPK 3 reverse 19:45769766-45769792
GTATTTATTGTCTGTCCCCACCT
SpCas9





1512
DMPK 3 reverse 19:45769767-45769792
TATTTATTGTCTGTCCCCACCT
SpCas9





1513
DMPK 3 reverse 19:45769768-45769792
ATTTATTGTCTGTCCCCACCT
SpCas9





1514
DMPK 3 reverse 19:45769769-45769792
TTTATTGTCTGTCCCCACCT
SpCas9





1515
DMPK 3 reverse 19:45769770-45769792
TTATTGTCTGTCCCCACCT
SpCas9





1516
DMPK 3 reverse 19:45769771-45769792
TATTGTCTGTCCCCACCT
SpCas9





1517
DMPK 3 reverse 19:45769765-45769793
TCGGTATTTATTGTCTGTCCCCACC
SpCas9





1518
DMPK 3 reverse 19:45769766-45769793
CGGTATTTATTGTCTGTCCCCACC
SpCas9





1519
DMPK 3 reverse 19:45769767-45769793
GGTATTTATTGTCTGTCCCCACC
SpCas9





1520
DMPK 3 reverse 19:45769768-45769793
GTATTTATTGTCTGTCCCCACC
SpCas9





1521
DMPK 3 reverse 19:45769769-45769793
TATTTATTGTCTGTCCCCACC
SpCas9





1522
DMPK 3 reverse 19:45769770-45769793
ATTTATTGTCTGTCCCCACC
SpCas9





1523
DMPK 3 reverse 19:45769771-45769793
TTTATTGTCTGTCCCCACC
SpCas9





1524
DMPK 3 reverse 19:45769772-45769793
TTATTGTCTGTCCCCACC
SpCas9





1525
DMPK 3 forward 19:45769766-45769794
TAGGTGGGGACAGACAATAAATACC
SpCas9





1526
DMPK 3 forward 19:45769767-45769794
AGGTGGGGACAGACAATAAATACC
SpCas9





1527
DMPK 3 forward 19:45769768-45769794
GGTGGGGACAGACAATAAATACC
SpCas9





1528
DMPK 3 forward 19:45769769-45769794
GTGGGGACAGACAATAAATACC
SpCas9





1529
DMPK 3 forward 19:45769770-45769794
TGGGGACAGACAATAAATACC
SpCas9





1530
DMPK 3 forward 19:45769771-45769794
GGGGACAGACAATAAATACC
SpCas9





1531
DMPK 3 forward 19:45769772-45769794
GGGACAGACAATAAATACC
SpCas9





1532
DMPK 3 forward 19:45769773-45769794
GGACAGACAATAAATACC
SpCas9





1533
DMPK 3 forward 19:45769767-45769795
AGGTGGGGACAGACAATAAATACCG
SpCas9





1534
DMPK 3 forward 19:45769768-45769795
GGTGGGGACAGACAATAAATACCG
SpCas9





1535
DMPK 3 forward 19:45769769-45769795
GTGGGGACAGACAATAAATACCG
SpCas9





1536
DMPK 3 forward 19:45769770-45769795
TGGGGACAGACAATAAATACCG
SpCas9





1537
DMPK 3 forward 19:45769771-45769795
GGGGACAGACAATAAATACCG
SpCas9





1538
DMPK 3 forward 19:45769772-45769795
GGGACAGACAATAAATACCG
SpCas9





1539
DMPK 3 forward 19:45769773-45769795
GGACAGACAATAAATACCG
SpCas9





1540
DMPK 3 forward 19:45769774-45769795
GACAGACAATAAATACCG
SpCas9





1541
DMPK 3 forward 19:45769775-45769803
ACAGACAATAAATACCGAGGAATGT
SpCas9





1542
DMPK 3 forward 19:45769776-45769803
CAGACAATAAATACCGAGGAATGT
SpCas9





1543
DMPK 3 forward 19:45769777-45769803
AGACAATAAATACCGAGGAATGT
SpCas9





1544
DMPK 3 forward 19:45769778-45769803
GACAATAAATACCGAGGAATGT
SpCas9





1545
DMPK 3 forward 19:45769779-45769803
ACAATAAATACCGAGGAATGT
SpCas9





1546
DMPK 3 forward 19:45769780-45769803
CAATAAATACCGAGGAATGT
SpCas9





1547
DMPK 3 forward 19:45769781-45769803
AATAAATACCGAGGAATGT
SpCas9





1548
DMPK 3 forward 19:45769782-45769803
ATAAATACCGAGGAATGT
SpCas9





1549
DMPK 3 forward 19:45769776-45769804
CAGACAATAAATACCGAGGAATGTC
SpCas9





1550
DMPK 3 forward 19:45769777-45769804
AGACAATAAATACCGAGGAATGTC
SpCas9





1551
DMPK 3 forward 19:45769778-45769804
GACAATAAATACCGAGGAATGTC
SpCas9





1552
DMPK 3 forward 19:45769779-45769804
ACAATAAATACCGAGGAATGTC
SpCas9





1553
DMPK 3 forward 19:45769780-45769804
CAATAAATACCGAGGAATGTC
SpCas9





1554
DMPK 3 forward 19:45769781-45769804
AATAAATACCGAGGAATGTC
SpCas9





1555
DMPK 3 forward 19:45769782-45769804
ATAAATACCGAGGAATGTC
SpCas9





1556
DMPK 3 forward 19:45769783-45769804
TAAATACCGAGGAATGTC
SpCas9





1557
DMPK 3 forward 19:45769777-45769805
AGACAATAAATACCGAGGAATGTCG
SpCas9





1558
DMPK 3 forward 19:45769778-45769805
GACAATAAATACCGAGGAATGTCG
SpCas9





1559
DMPK 3 forward 19:45769779-45769805
ACAATAAATACCGAGGAATGTCG
SpCas9





1560
DMPK 3 forward 19:45769780-45769805
CAATAAATACCGAGGAATGTCG
SpCas9





1561
DMPK 3 forward 19:45769781-45769805
AATAAATACCGAGGAATGTCG
SpCas9





1562
DMPK 3 forward 19:45769782-45769805
ATAAATACCGAGGAATGTCG
SpCas9





1563
DMPK 3 forward 19:45769783-45769805
TAAATACCGAGGAATGTCG
SpCas9





1564
DMPK 3 forward 19:45769784-45769805
AAATACCGAGGAATGTCG
SpCas9





1565
DMPK 3 forward 19:45769783-45769811
TAAATACCGAGGAATGTCGGGGTCT
SpCas9





1566
DMPK 3 forward 19:45769784-45769811
AAATACCGAGGAATGTCGGGGTCT
SpCas9





1567
DMPK 3 forward 19:45769785-45769811
AATACCGAGGAATGTCGGGGTCT
SpCas9





1568
DMPK 3 forward 19:45769786-45769811
ATACCGAGGAATGTCGGGGTCT
SpCas9





1569
DMPK 3 forward 19:45769787-45769811
TACCGAGGAATGTCGGGGTCT
SpCas9





1570
DMPK 3 forward 19:45769788-45769811
ACCGAGGAATGTCGGGGTCT
SpCas9





1571
DMPK 3 forward 19:45769789-45769811
CCGAGGAATGTCGGGGTCT
SpCas9





1572
DMPK 3 forward 19:45769790-45769811
CGAGGAATGTCGGGGTCT
SpCas9





1573
DMPK 3 reverse 19:45769789-45769817
GATGCACTGAGACCCCGACATTCCT
SpCas9





1574
DMPK 3 reverse 19:45769790-45769817
ATGCACTGAGACCCCGACATTCCT
SpCas9





1575
DMPK 3 reverse 19:45769791-45769817
TGCACTGAGACCCCGACATTCCT
SpCas9





1576
DMPK 3 reverse 19:45769792-45769817
GCACTGAGACCCCGACATTCCT
SpCas9





1577
DMPK 3 reverse 19:45769793-45769817
CACTGAGACCCCGACATTCCT
SpCas9





1578
DMPK 3 reverse 19:45769794-45769817
ACTGAGACCCCGACATTCCT
SpCas9





1579
DMPK 3 reverse 19:45769795-45769817
CTGAGACCCCGACATTCCT
SpCas9





1580
DMPK 3 reverse 19:45769796-45769817
TGAGACCCCGACATTCCT
SpCas9





1581
DMPK 3 forward 19:45769799-45769827
TCGGGGTCTCAGTGCATCCAAAACG
SpCas9





1582
DMPK 3 forward 19:45769800-45769827
CGGGGTCTCAGTGCATCCAAAACG
SpCas9





1583
DMPK 3 forward 19:45769801-45769827
GGGGTCTCAGTGCATCCAAAACG
SpCas9





1584
DMPK 3 forward 19:45769802-45769827
GGGTCTCAGTGCATCCAAAACG
SpCas9





1585
DMPK 3 forward 19:45769803-45769827
GGTCTCAGTGCATCCAAAACG
SpCas9





1586
DMPK 3 forward 19:45769804-45769827
GTCTCAGTGCATCCAAAACG
SpCas9





1587
DMPK 3 forward 19:45769805-45769827
TCTCAGTGCATCCAAAACG
SpCas9





1588
DMPK 3 forward 19:45769806-45769827
CTCAGTGCATCCAAAACG
SpCas9





1589
DMPK 3 forward 19:45769804-45769832
GTCTCAGTGCATCCAAAACGTGGAT
SpCas9





1590
DMPK 3 forward 19:45769805-45769832
TCTCAGTGCATCCAAAACGTGGAT
SpCas9





1591
DMPK 3 forward 19:45769806-45769832
CTCAGTGCATCCAAAACGTGGAT
SpCas9





1592
DMPK 3 forward 19:45769807-45769832
TCAGTGCATCCAAAACGTGGAT
SpCas9





1593
DMPK 3 forward 19:45769808-45769832
CAGTGCATCCAAAACGTGGAT
SpCas9





1594
DMPK 3 forward 19:45769809-45769832
AGTGCATCCAAAACGTGGAT
SpCas9





1595
DMPK 3 forward 19:45769810-45769832
GTGCATCCAAAACGTGGAT
SpCas9





1596
DMPK 3 forward 19:45769811-45769832
TGCATCCAAAACGTGGAT
SpCas9





1597
DMPK 3 forward 19:45769805-45769833
TCTCAGTGCATCCAAAACGTGGATT
SpCas9





1598
DMPK 3 forward 19:45769806-45769833
CTCAGTGCATCCAAAACGTGGATT
SpCas9





1599
DMPK 3 forward 19:45769807-45769833
TCAGTGCATCCAAAACGTGGATT
SpCas9





1600
DMPK 3 forward 19:45769808-45769833
CAGTGCATCCAAAACGTGGATT
SpCas9





1601
DMPK 3 forward 19:45769809-45769833
AGTGCATCCAAAACGTGGATT
SpCas9





1602
DMPK 3 forward 19:45769810-45769833
GTGCATCCAAAACGTGGATT
SpCas9





1603
DMPK 3 forward 19:45769811-45769833
TGCATCCAAAACGTGGATT
SpCas9





1604
DMPK 3 forward 19:45769812-45769833
GCATCCAAAACGTGGATT
SpCas9





1605
DMPK 3 forward 19:45769806-45769834
CTCAGTGCATCCAAAACGTGGATTG
SpCas9





1606
DMPK 3 forward 19:45769807-45769834
TCAGTGCATCCAAAACGTGGATTG
SpCas9





1607
DMPK 3 forward 19:45769808-45769834
CAGTGCATCCAAAACGTGGATTG
SpCas9





1608
DMPK 3 forward 19:45769809-45769834
AGTGCATCCAAAACGTGGATTG
SpCas9





1609
DMPK 3 forward 19:45769810-45769834
GTGCATCCAAAACGTGGATTG
SpCas9





1610
DMPK 3 forward 19:45769811-45769834
TGCATCCAAAACGTGGATTG
SpCas9





1611
DMPK 3 forward 19:45769812-45769834
GCATCCAAAACGTGGATTG
SpCas9





1612
DMPK 3 forward 19:45769813-45769834
CATCCAAAACGTGGATTG
SpCas9





1613
DMPK 3 reverse 19:45769806-45769834
CCCCAATCCACGTTTTGGATGCACT
SpCas9





1614
DMPK 3 reverse 19:45769807-45769834
CCCAATCCACGTTTTGGATGCACT
SpCas9





1615
DMPK 3 reverse 19:45769808-45769834
CCAATCCACGTTTTGGATGCACT
SpCas9





1616
DMPK 3 reverse 19:45769809-45769834
CAATCCACGTTTTGGATGCACT
SpCas9





1617
DMPK 3 reverse 19:45769810-45769834
AATCCACGTTTTGGATGCACT
SpCas9





1618
DMPK 3 reverse 19:45769811-45769834
ATCCACGTTTTGGATGCACT
SpCas9





1619
DMPK 3 reverse 19:45769812-45769834
TCCACGTTTTGGATGCACT
SpCas9





1620
DMPK 3 reverse 19:45769813-45769834
CCACGTTTTGGATGCACT
SpCas9





1621
DMPK 3 forward 19:45769813-45769841
CATCCAAAACGTGGATTGGGGTTGT
SpCas9





1622
DMPK 3 forward 19:45769814-45769841
ATCCAAAACGTGGATTGGGGTTGT
SpCas9





1623
DMPK 3 forward 19:45769815-45769841
TCCAAAACGTGGATTGGGGTTGT
SpCas9





1624
DMPK 3 forward 19:45769816-45769841
CCAAAACGTGGATTGGGGTTGT
SpCas9





1625
DMPK 3 forward 19:45769817-45769841
CAAAACGTGGATTGGGGTTGT
SpCas9





1626
DMPK 3 forward 19:45769818-45769841
AAAACGTGGATTGGGGTTGT
SpCas9





1627
DMPK 3 forward 19:45769819-45769841
AAACGTGGATTGGGGTTGT
SpCas9





1628
DMPK 3 forward 19:45769820-45769841
AACGTGGATTGGGGTTGT
SpCas9





1629
DMPK 3 forward 19:45769814-45769842
ATCCAAAACGTGGATTGGGGTTGTT
SpCas9





1630
DMPK 3 forward 19:45769815-45769842
TCCAAAACGTGGATTGGGGTTGTT
SpCas9





1631
DMPK 3 forward 19:45769816-45769842
CCAAAACGTGGATTGGGGTTGTT
SpCas9





1632
DMPK 3 forward 19:45769817-45769842
CAAAACGTGGATTGGGGTTGTT
SpCas9





1633
DMPK 3 forward 19:45769818-45769842
AAAACGTGGATTGGGGTTGTT
SpCas9





1634
DMPK 3 forward 19:45769819-45769842
AAACGTGGATTGGGGTTGTT
SpCas9





1635
DMPK 3 forward 19:45769820-45769842
AACGTGGATTGGGGTTGTT
SpCas9





1636
DMPK 3 forward 19:45769821-45769842
ACGTGGATTGGGGTTGTT
SpCas9





1637
DMPK 3 forward 19:45769815-45769843
TCCAAAACGTGGATTGGGGTTGTTG
SpCas9





1638
DMPK 3 forward 19:45769816-45769843
CCAAAACGTGGATTGGGGTTGTTG
SpCas9





1639
DMPK 3 forward 19:45769817-45769843
CAAAACGTGGATTGGGGTTGTTG
SpCas9





1640
DMPK 3 forward 19:45769818-45769843
AAAACGTGGATTGGGGTTGTTG
SpCas9





1641
DMPK 3 forward 19:45769819-45769843
AAACGTGGATTGGGGTTGTTG
SpCas9





1642
DMPK 3 forward 19:45769820-45769843
AACGTGGATTGGGGTTGTTG
SpCas9





1643
DMPK 3 forward 19:45769821-45769843
ACGTGGATTGGGGTTGTTG
SpCas9





1644
DMPK 3 forward 19:45769822-45769843
CGTGGATTGGGGTTGTTG
SpCas9





1645
DMPK 3 forward 19:45769816-45769844
CCAAAACGTGGATTGGGGTTGTTGG
SpCas9





1646
DMPK 3 forward 19:45769817-45769844
CAAAACGTGGATTGGGGTTGTTGG
SpCas9





1647
DMPK 3 forward 19:45769818-45769844
AAAACGTGGATTGGGGTTGTTGG
SpCas9





1648
DMPK 3 forward 19:45769819-45769844
AAACGTGGATTGGGGTTGTTGG
SpCas9





1649
DMPK 3 forward 19:45769820-45769844
AACGTGGATTGGGGTTGTTGG
SpCas9





1650
DMPK 3 forward 19:45769821-45769844
ACGTGGATTGGGGTTGTTGG
SpCas9





1651
DMPK 3 forward 19:45769822-45769844
CGTGGATTGGGGTTGTTGG
SpCas9





1652
DMPK 3 forward 19:45769823-45769844
GTGGATTGGGGTTGTTGG
SpCas9





1653
DMPK 3 reverse 19:45769816-45769844
CCCCCAACAACCCCAATCCACGTTT
SpCas9





1654
DMPK 3 reverse 19:45769817-45769844
CCCCAACAACCCCAATCCACGTTT
SpCas9





1655
DMPK 3 reverse 19:45769818-45769844
CCCAACAACCCCAATCCACGTTT
SpCas9





1656
DMPK 3 reverse 19:45769819-45769844
CCAACAACCCCAATCCACGTTT
SpCas9





1657
DMPK 3 reverse 19:45769820-45769844
CAACAACCCCAATCCACGTTT
SpCas9





1658
DMPK 3 reverse 19:45769821-45769844
AACAACCCCAATCCACGTTT
SpCas9





1659
DMPK 3 reverse 19:45769822-45769844
ACAACCCCAATCCACGTTT
SpCas9





1660
DMPK 3 reverse 19:45769823-45769844
CAACCCCAATCCACGTTT
SpCas9





1661
DMPK 3 forward 19:45769824-45769852
TGGATTGGGGTTGTTGGGGGTCCTG
SpCas9





1662
DMPK 3 forward 19:45769825-45769852
GGATTGGGGTTGTTGGGGGTCCTG
SpCas9





1663
DMPK 3 forward 19:45769826-45769852
GATTGGGGTTGTTGGGGGTCCTG
SpCas9





1664
DMPK 3 forward 19:45769827-45769852
ATTGGGGTTGTTGGGGGTCCTG
SpCas9





1665
DMPK 3 forward 19:45769828-45769852
TTGGGGTTGTTGGGGGTCCTG
SpCas9





1666
DMPK 3 forward 19:45769829-45769852
TGGGGTTGTTGGGGGTCCTG
SpCas9





1667
DMPK 3 forward 19:45769830-45769852
GGGGTTGTTGGGGGTCCTG
SpCas9





1668
DMPK 3 forward 19:45769831-45769852
GGGTTGTTGGGGGTCCTG
SpCas9





1669
DMPK 3 forward 19:45769832-45769860
GGTTGTTGGGGGTCCTGTAGCCTGT
SpCas9





1670
DMPK 3 forward 19:45769833-45769860
GTTGTTGGGGGTCCTGTAGCCTGT
SpCas9





1671
DMPK 3 forward 19:45769834-45769860
TTGTTGGGGGTCCTGTAGCCTGT
SpCas9





1672
DMPK 3 forward 19:45769835-45769860
TGTTGGGGGTCCTGTAGCCTGT
SpCas9





1673
DMPK 3 forward 19:45769836-45769860
GTTGGGGGTCCTGTAGCCTGT
SpCas9





1674
DMPK 3 forward 19:45769837-45769860
TTGGGGGTCCTGTAGCCTGT
SpCas9





1675
DMPK 3 forward 19:45769838-45769860
TGGGGGTCCTGTAGCCTGT
SpCas9





1676
DMPK 3 forward 19:45769839-45769860
GGGGGTCCTGTAGCCTGT
SpCas9





1677
DMPK 3 forward 19:45769836-45769864
GTTGGGGGTCCTGTAGCCTGTCAGC
SpCas9





1678
DMPK 3 forward 19:45769837-45769864
TTGGGGGTCCTGTAGCCTGTCAGC
SpCas9





1679
DMPK 3 forward 19:45769838-45769864
TGGGGGTCCTGTAGCCTGTCAGC
SpCas9





1680
DMPK 3 forward 19:45769839-45769864
GGGGGTCCTGTAGCCTGTCAGC
SpCas9





1681
DMPK 3 forward 19:45769840-45769864
GGGGTCCTGTAGCCTGTCAGC
SpCas9





1682
DMPK 3 forward 19:45769841-45769864
GGGTCCTGTAGCCTGTCAGC
SpCas9





1683
DMPK 3 forward 19:45769842-45769864
GGTCCTGTAGCCTGTCAGC
SpCas9





1684
DMPK 3 forward 19:45769843-45769864
GTCCTGTAGCCTGTCAGC
SpCas9





1685
DMPK 3 forward 19:45769840-45769868
GGGGTCCTGTAGCCTGTCAGCGAGT
SpCas9





1686
DMPK 3 forward 19:45769841-45769868
GGGTCCTGTAGCCTGTCAGCGAGT
SpCas9





1687
DMPK 3 forward 19:45769842-45769868
GGTCCTGTAGCCTGTCAGCGAGT
SpCas9





1688
DMPK 3 forward 19:45769843-45769868
GTCCTGTAGCCTGTCAGCGAGT
SpCas9





1689
DMPK 3 forward 19:45769844-45769868
TCCTGTAGCCTGTCAGCGAGT
SpCas9





1690
DMPK 3 forward 19:45769845-45769868
CCTGTAGCCTGTCAGCGAGT
SpCas9





1691
DMPK 3 forward 19:45769846-45769868
CTGTAGCCTGTCAGCGAGT
SpCas9





1692
DMPK 3 forward 19:45769847-45769868
TGTAGCCTGTCAGCGAGT
SpCas9





1693
DMPK 3 forward 19:45769842-45769870
GGTCCTGTAGCCTGTCAGCGAGTCG
SpCas9





1694
DMPK 3 forward 19:45769843-45769870
GTCCTGTAGCCTGTCAGCGAGTCG
SpCas9





1695
DMPK 3 forward 19:45769844-45769870
TCCTGTAGCCTGTCAGCGAGTCG
SpCas9





1696
DMPK 3 forward 19:45769845-45769870
CCTGTAGCCTGTCAGCGAGTCG
SpCas9





1697
DMPK 3 forward 19:45769846-45769870
CTGTAGCCTGTCAGCGAGTCG
SpCas9





1698
DMPK 3 forward 19:45769847-45769870
TGTAGCCTGTCAGCGAGTCG
SpCas9





1699
DMPK 3 forward 19:45769848-45769870
GTAGCCTGTCAGCGAGTCG
SpCas9





1700
DMPK 3 forward 19:45769849-45769870
TAGCCTGTCAGCGAGTCG
SpCas9





1701
DMPK 3 forward 19:45769843-45769871
GTCCTGTAGCCTGTCAGCGAGTCGG
SpCas9





1702
DMPK 3 forward 19:45769844-45769871
TCCTGTAGCCTGTCAGCGAGTCGG
SpCas9





1703
DMPK 3 forward 19:45769845-45769871
CCTGTAGCCTGTCAGCGAGTCGG
SpCas9





1704
DMPK 3 forward 19:45769846-45769871
CTGTAGCCTGTCAGCGAGTCGG
SpCas9





1705
DMPK 3 forward 19:45769847-45769871
TGTAGCCTGTCAGCGAGTCGG
SpCas9





1706
DMPK 3 forward 19:45769848-45769871
GTAGCCTGTCAGCGAGTCGG
SpCas9





1707
DMPK 3 forward 19:45769849-45769871
TAGCCTGTCAGCGAGTCGG
SpCas9





1708
DMPK 3 forward 19:45769850-45769871
AGCCTGTCAGCGAGTCGG
SpCas9





1709
DMPK 3 reverse 19:45769845-45769873
GTCCTCCGACTCGCTGACAGGCTAC
SpCas9





1710
DMPK 3 reverse 19:45769846-45769873
TCCTCCGACTCGCTGACAGGCTAC
SpCas9





1711
DMPK 3 reverse 19:45769847-45769873
CCTCCGACTCGCTGACAGGCTAC
SpCas9





1712
DMPK 3 reverse 19:45769848-45769873
CTCCGACTCGCTGACAGGCTAC
SpCas9





1713
DMPK 3 reverse 19:45769849-45769873
TCCGACTCGCTGACAGGCTAC
SpCas9





1714
DMPK 3 reverse 19:45769850-45769873
CCGACTCGCTGACAGGCTAC
SpCas9





1715
DMPK 3 reverse 19:45769851-45769873
CGACTCGCTGACAGGCTAC
SpCas9





1716
DMPK 3 reverse 19:45769852-45769873
GACTCGCTGACAGGCTAC
SpCas9





1717
DMPK 3 reverse 19:45769846-45769874
CGTCCTCCGACTCGCTGACAGGCTA
SpCas9





1718
DMPK 3 reverse 19:45769847-45769874
GTCCTCCGACTCGCTGACAGGCTA
SpCas9





1719
DMPK 3 reverse 19:45769848-45769874
TCCTCCGACTCGCTGACAGGCTA
SpCas9





1720
DMPK 3 reverse 19:45769849-45769874
CCTCCGACTCGCTGACAGGCTA
SpCas9





1721
DMPK 3 reverse 19:45769850-45769874
CTCCGACTCGCTGACAGGCTA
SpCas9





1722
DMPK 3 reverse 19:45769851-45769874
TCCGACTCGCTGACAGGCTA
SpCas9





1723
DMPK 3 reverse 19:45769852-45769874
CCGACTCGCTGACAGGCTA
SpCas9





1724
DMPK 3 reverse 19:45769853-45769874
CGACTCGCTGACAGGCTA
SpCas9





1725
DMPK 3 forward 19:45769848-45769876
GTAGCCTGTCAGCGAGTCGGAGGAC
SpCas9





1726
DMPK 3 forward 19:45769849-45769876
TAGCCTGTCAGCGAGTCGGAGGAC
SpCas9





1727
DMPK 3 forward 19:45769850-45769876
AGCCTGTCAGCGAGTCGGAGGAC
SpCas9





1728
DMPK 3 forward 19:45769851-45769876
GCCTGTCAGCGAGTCGGAGGAC
SpCas9





1729
DMPK 3 forward 19:45769852-45769876
CCTGTCAGCGAGTCGGAGGAC
SpCas9





1730
DMPK 3 forward 19:45769853-45769876
CTGTCAGCGAGTCGGAGGAC
SpCas9





1731
DMPK 3 forward 19:45769854-45769876
TGTCAGCGAGTCGGAGGAC
SpCas9





1732
DMPK 3 forward 19:45769855-45769876
GTCAGCGAGTCGGAGGAC
SpCas9





1733
DMPK 3 forward 19:45769849-45769877
TAGCCTGTCAGCGAGTCGGAGGACG
SpCas9





1734
DMPK 3 forward 19:45769850-45769877
AGCCTGTCAGCGAGTCGGAGGACG
SpCas9





1735
DMPK 3 forward 19:45769851-45769877
GCCTGTCAGCGAGTCGGAGGACG
SpCas9





1736
DMPK 3 forward 19:45769852-45769877
CCTGTCAGCGAGTCGGAGGACG
SpCas9





1737
DMPK 3 forward 19:45769853-45769877
CTGTCAGCGAGTCGGAGGACG
SpCas9





1738
DMPK 3 forward 19:45769854-45769877
TGTCAGCGAGTCGGAGGACG
SpCas9





1739
DMPK 3 forward 19:45769855-45769877
GTCAGCGAGTCGGAGGACG
SpCas9





1740
DMPK 3 forward 19:45769856-45769877
TCAGCGAGTCGGAGGACG
SpCas9





1741
DMPK 3 reverse 19:45769852-45769880
TGACCTCGTCCTCCGACTCGCTGAC
SpCas9





1742
DMPK 3 reverse 19:45769853-45769880
GACCTCGTCCTCCGACTCGCTGAC
SpCas9





1743
DMPK 3 reverse 19:45769854-45769880
ACCTCGTCCTCCGACTCGCTGAC
SpCas9





1744
DMPK 3 reverse 19:45769855-45769880
CCTCGTCCTCCGACTCGCTGAC
SpCas9





1745
DMPK 3 reverse 19:45769856-45769880
CTCGTCCTCCGACTCGCTGAC
SpCas9





1746
DMPK 3 reverse 19:45769857-45769880
TCGTCCTCCGACTCGCTGAC
SpCas9





1747
DMPK 3 reverse 19:45769858-45769880
CGTCCTCCGACTCGCTGAC
SpCas9





1748
DMPK 3 reverse 19:45769859-45769880
GTCCTCCGACTCGCTGAC
SpCas9





1749
DMPK 3 reverse 19:45769853-45769881
TTGACCTCGTCCTCCGACTCGCTGA
SpCas9





1750
DMPK 3 reverse 19:45769854-45769881
TGACCTCGTCCTCCGACTCGCTGA
SpCas9





1751
DMPK 3 reverse 19:45769855-45769881
GACCTCGTCCTCCGACTCGCTGA
SpCas9





1752
DMPK 3 reverse 19:45769856-45769881
ACCTCGTCCTCCGACTCGCTGA
SpCas9





1753
DMPK 3 reverse 19:45769857-45769881
CCTCGTCCTCCGACTCGCTGA
SpCas9





1754
DMPK 3 reverse 19:45769858-45769881
CTCGTCCTCCGACTCGCTGA
SpCas9





1755
DMPK 3 reverse 19:45769859-45769881
TCGTCCTCCGACTCGCTGA
SpCas9





1756
DMPK 3 reverse 19:45769860-45769881
CGTCCTCCGACTCGCTGA
SpCas9





1757
DMPK 3 forward 19:45769874-45769902
AGGTCAATAAATATCCAAACCGCCG
SpCas9





1758
DMPK 3 forward 19:45769875-45769902
GGTCAATAAATATCCAAACCGCCG
SpCas9





1759
DMPK 3 forward 19:45769876-45769902
GTCAATAAATATCCAAACCGCCG
SpCas9





1760
DMPK 3 forward 19:45769877-45769902
TCAATAAATATCCAAACCGCCG
SpCas9





1761
DMPK 3 forward 19:45769878-45769902
CAATAAATATCCAAACCGCCG
SpCas9





1762
DMPK 3 forward 19:45769879-45769902
AATAAATATCCAAACCGCCG
SpCas9





1763
DMPK 3 forward 19:45769880-45769902
ATAAATATCCAAACCGCCG
SpCas9





1764
DMPK 3 forward 19:45769881-45769902
TAAATATCCAAACCGCCG
SpCas9





1765
DMPK 3 forward 19:45769877-45769905
TCAATAAATATCCAAACCGCCGAAG
SpCas9





1766
DMPK 3 forward 19:45769878-45769905
CAATAAATATCCAAACCGCCGAAG
SpCas9





1767
DMPK 3 forward 19:45769879-45769905
AATAAATATCCAAACCGCCGAAG
SpCas9





1768
DMPK 3 forward 19:45769880-45769905
ATAAATATCCAAACCGCCGAAG
SpCas9





1769
DMPK 3 forward 19:45769881-45769905
TAAATATCCAAACCGCCGAAG
SpCas9





1770
DMPK 3 forward 19:45769882-45769905
AAATATCCAAACCGCCGAAG
SpCas9





1771
DMPK 3 forward 19:45769883-45769905
AATATCCAAACCGCCGAAG
SpCas9





1772
DMPK 3 forward 19:45769884-45769905
ATATCCAAACCGCCGAAG
SpCas9





1773
DMPK 3 forward 19:45769878-45769906
CAATAAATATCCAAACCGCCGAAGC
SpCas9





1774
DMPK 3 forward 19:45769879-45769906
AATAAATATCCAAACCGCCGAAGC
SpCas9





1775
DMPK 3 forward 19:45769880-45769906
ATAAATATCCAAACCGCCGAAGC
SpCas9





1776
DMPK 3 forward 19:45769881-45769906
TAAATATCCAAACCGCCGAAGC
SpCas9





1777
DMPK 3 forward 19:45769882-45769906
AAATATCCAAACCGCCGAAGC
SpCas9





1778
DMPK 3 forward 19:45769883-45769906
AATATCCAAACCGCCGAAGC
SpCas9





1779
DMPK 3 forward 19:45769884-45769906
ATATCCAAACCGCCGAAGC
SpCas9





1780
DMPK 3 forward 19:45769885-45769906
TATCCAAACCGCCGAAGC
SpCas9





1781
DMPK 3 forward 19:45769881-45769909
TAAATATCCAAACCGCCGAAGCGGG
SpCas9





1782
DMPK 3 forward 19:45769882-45769909
AAATATCCAAACCGCCGAAGCGGG
SpCas9





1783
DMPK 3 forward 19:45769883-45769909
AATATCCAAACCGCCGAAGCGGG
SpCas9





1784
DMPK 3 forward 19:45769884-45769909
ATATCCAAACCGCCGAAGCGGG
SpCas9





1785
DMPK 3 forward 19:45769885-45769909
TATCCAAACCGCCGAAGCGGG
SpCas9





1786
DMPK 3 forward 19:45769886-45769909
ATCCAAACCGCCGAAGCGGG
SpCas9





1787
DMPK 3 forward 19:45769887-45769909
TCCAAACCGCCGAAGCGGG
SpCas9





1788
DMPK 3 forward 19:45769888-45769909
CCAAACCGCCGAAGCGGG
SpCas9





1789
DMPK 3 forward 19:45769883-45769911
AATATCCAAACCGCCGAAGCGGGCG
SpCas9





1790
DMPK 3 forward 19:45769884-45769911
ATATCCAAACCGCCGAAGCGGGCG
SpCas9





1791
DMPK 3 forward 19:45769885-45769911
TATCCAAACCGCCGAAGCGGGCG
SpCas9





1792
DMPK 3 forward 19:45769886-45769911
ATCCAAACCGCCGAAGCGGGCG
SpCas9





1793
DMPK 3 forward 19:45769887-45769911
TCCAAACCGCCGAAGCGGGCG
SpCas9





1794
DMPK 3 forward 19:45769888-45769911
CCAAACCGCCGAAGCGGGCG
SpCas9





1795
DMPK 3 forward 19:45769889-45769911
CAAACCGCCGAAGCGGGCG
SpCas9





1796
DMPK 3 forward 19:45769890-45769911
AAACCGCCGAAGCGGGCG
SpCas9





1797
DMPK 3 forward 19:45769887-45769915
TCCAAACCGCCGAAGCGGGCGGAGC
SpCas9





1798
DMPK 3 forward 19:45769888-45769915
CCAAACCGCCGAAGCGGGCGGAGC
SpCas9





1799
DMPK 3 forward 19:45769889-45769915
CAAACCGCCGAAGCGGGCGGAGC
SpCas9





1800
DMPK 3 forward 19:45769890-45769915
AAACCGCCGAAGCGGGCGGAGC
SpCas9





1801
DMPK 3 forward 19:45769891-45769915
AACCGCCGAAGCGGGCGGAGC
SpCas9





1802
DMPK 3 forward 19:45769892-45769915
ACCGCCGAAGCGGGCGGAGC
SpCas9





1803
DMPK 3 forward 19:45769893-45769915
CCGCCGAAGCGGGCGGAGC
SpCas9





1804
DMPK 3 forward 19:45769894-45769915
CGCCGAAGCGGGCGGAGC
SpCas9





1805
DMPK 3 reverse 19:45769888-45769916
GCCGGCTCCGCCCGCTTCGGCGGTT
SpCas9





1806
DMPK 3 reverse 19:45769889-45769916
CCGGCTCCGCCCGCTTCGGCGGTT
SpCas9





1807
DMPK 3 reverse 19:45769890-45769916
CGGCTCCGCCCGCTTCGGCGGTT
SpCas9





1808
DMPK 3 reverse 19:45769891-45769916
GGCTCCGCCCGCTTCGGCGGTT
SpCas9





1809
DMPK 3 reverse 19:45769892-45769916
GCTCCGCCCGCTTCGGCGGTT
SpCas9





1810
DMPK 3 reverse 19:45769893-45769916
CTCCGCCCGCTTCGGCGGTT
SpCas9





1811
DMPK 3 reverse 19:45769894-45769916
TCCGCCCGCTTCGGCGGTT
SpCas9





1812
DMPK 3 reverse 19:45769895-45769916
CCGCCCGCTTCGGCGGTT
SpCas9





1813
DMPK 3 forward 19:45769891-45769919
AACCGCCGAAGCGGGCGGAGCCGGC
SpCas9





1814
DMPK 3 forward 19:45769892-45769919
ACCGCCGAAGCGGGCGGAGCCGGC
SpCas9





1815
DMPK 3 forward 19:45769893-45769919
CCGCCGAAGCGGGCGGAGCCGGC
SpCas9





1816
DMPK 3 forward 19:45769894-45769919
CGCCGAAGCGGGCGGAGCCGGC
SpCas9





1817
DMPK 3 forward 19:45769895-45769919
GCCGAAGCGGGCGGAGCCGGC
SpCas9





1818
DMPK 3 forward 19:45769896-45769919
CCGAAGCGGGCGGAGCCGGC
SpCas9





1819
DMPK 3 forward 19:45769897-45769919
CGAAGCGGGCGGAGCCGGC
SpCas9





1820
DMPK 3 forward 19:45769898-45769919
GAAGCGGGCGGAGCCGGC
SpCas9





1821
DMPK 3 forward 19:45769892-45769920
ACCGCCGAAGCGGGCGGAGCCGGCT
SpCas9





1822
DMPK 3 forward 19:45769893-45769920
CCGCCGAAGCGGGCGGAGCCGGCT
SpCas9





1823
DMPK 3 forward 19:45769894-45769920
CGCCGAAGCGGGCGGAGCCGGCT
SpCas9





1824
DMPK 3 forward 19:45769895-45769920
GCCGAAGCGGGCGGAGCCGGCT
SpCas9





1825
DMPK 3 forward 19:45769896-45769920
CCGAAGCGGGCGGAGCCGGCT
SpCas9





1826
DMPK 3 forward 19:45769897-45769920
CGAAGCGGGCGGAGCCGGCT
SpCas9





1827
DMPK 3 forward 19:45769898-45769920
GAAGCGGGCGGAGCCGGCT
SpCas9





1828
DMPK 3 forward 19:45769899-45769920
AAGCGGGCGGAGCCGGCT
SpCas9





1829
DMPK 3 forward 19:45769893-45769921
CCGCCGAAGCGGGCGGAGCCGGCTG
SpCas9





1830
DMPK 3 forward 19:45769894-45769921
CGCCGAAGCGGGCGGAGCCGGCTG
SpCas9





1831
DMPK 3 forward 19:45769895-45769921
GCCGAAGCGGGCGGAGCCGGCTG
SpCas9





1832
DMPK 3 forward 19:45769896-45769921
CCGAAGCGGGCGGAGCCGGCTG
SpCas9





1833
DMPK 3 forward 19:45769897-45769921
CGAAGCGGGCGGAGCCGGCTG
SpCas9





1834
DMPK 3 forward 19:45769898-45769921
GAAGCGGGCGGAGCCGGCTG
SpCas9





1835
DMPK 3 forward 19:45769899-45769921
AAGCGGGCGGAGCCGGCTG
SpCas9





1836
DMPK 3 forward 19:45769900-45769921
AGCGGGCGGAGCCGGCTG
SpCas9





1837
DMPK 3 reverse 19:45769893-45769921
CCCCAGCCGGCTCCGCCCGCTTCGG
SpCas9





1838
DMPK 3 reverse 19:45769894-45769921
CCCAGCCGGCTCCGCCCGCTTCGG
SpCas9





1839
DMPK 3 reverse 19:45769895-45769921
CCAGCCGGCTCCGCCCGCTTCGG
SpCas9





1840
DMPK 3 reverse 19:45769896-45769921
CAGCCGGCTCCGCCCGCTTCGG
SpCas9





1841
DMPK 3 reverse 19:45769897-45769921
AGCCGGCTCCGCCCGCTTCGG
SpCas9





1842
DMPK 3 reverse 19:45769898-45769921
GCCGGCTCCGCCCGCTTCGG
SpCas9





1843
DMPK 3 reverse 19:45769899-45769921
CCGGCTCCGCCCGCTTCGG
SpCas9





1844
DMPK 3 reverse 19:45769900-45769921
CGGCTCCGCCCGCTTCGG
SpCas9





1845
DMPK 3 reverse 19:45769896-45769924
GAGCCCCAGCCGGCTCCGCCCGCTT
SpCas9





1846
DMPK 3 reverse 19:45769897-45769924
AGCCCCAGCCGGCTCCGCCCGCTT
SpCas9





1847
DMPK 3 reverse 19:45769898-45769924
GCCCCAGCCGGCTCCGCCCGCTT
SpCas9





1848
DMPK 3 reverse 19:45769899-45769924
CCCCAGCCGGCTCCGCCCGCTT
SpCas9





1849
DMPK 3 reverse 19:45769900-45769924
CCCAGCCGGCTCCGCCCGCTT
SpCas9





1850
DMPK 3 reverse 19:45769901-45769924
CCAGCCGGCTCCGCCCGCTT
SpCas9





1851
DMPK 3 reverse 19:45769902-45769924
CAGCCGGCTCCGCCCGCTT
SpCas9





1852
DMPK 3 reverse 19:45769903-45769924
AGCCGGCTCCGCCCGCTT
SpCas9





1853
DMPK 3 forward 19:45769900-45769928
AGCGGGCGGAGCCGGCTGGGGCTCC
SpCas9





1854
DMPK 3 forward 19:45769901-45769928
GCGGGCGGAGCCGGCTGGGGCTCC
SpCas9





1855
DMPK 3 forward 19:45769902-45769928
CGGGCGGAGCCGGCTGGGGCTCC
SpCas9





1856
DMPK 3 forward 19:45769903-45769928
GGGCGGAGCCGGCTGGGGCTCC
SpCas9





1857
DMPK 3 forward 19:45769904-45769928
GGCGGAGCCGGCTGGGGCTCC
SpCas9





1858
DMPK 3 forward 19:45769905-45769928
GCGGAGCCGGCTGGGGCTCC
SpCas9





1859
DMPK 3 forward 19:45769906-45769928
CGGAGCCGGCTGGGGCTCC
SpCas9





1860
DMPK 3 forward 19:45769907-45769928
GGAGCCGGCTGGGGCTCC
SpCas9





1861
DMPK 3 forward 19:45769902-45769930
CGGGCGGAGCCGGCTGGGGCTCCGA
SpCas9





1862
DMPK 3 forward 19:45769903-45769930
GGGCGGAGCCGGCTGGGGCTCCGA
SpCas9





1863
DMPK 3 forward 19:45769904-45769930
GGCGGAGCCGGCTGGGGCTCCGA
SpCas9





1864
DMPK 3 forward 19:45769905-45769930
GCGGAGCCGGCTGGGGCTCCGA
SpCas9





1865
DMPK 3 forward 19:45769906-45769930
CGGAGCCGGCTGGGGCTCCGA
SpCas9





1866
DMPK 3 forward 19:45769907-45769930
GGAGCCGGCTGGGGCTCCGA
SpCas9





1867
DMPK 3 forward 19:45769908-45769930
GAGCCGGCTGGGGCTCCGA
SpCas9





1868
DMPK 3 forward 19:45769909-45769930
AGCCGGCTGGGGCTCCGA
SpCas9





1869
DMPK 3 forward 19:45769905-45769933
GCGGAGCCGGCTGGGGCTCCGAGAG
SpCas9





1870
DMPK 3 forward 19:45769906-45769933
CGGAGCCGGCTGGGGCTCCGAGAG
SpCas9





1871
DMPK 3 forward 19:45769907-45769933
GGAGCCGGCTGGGGCTCCGAGAG
SpCas9





1872
DMPK 3 forward 19:45769908-45769933
GAGCCGGCTGGGGCTCCGAGAG
SpCas9





1873
DMPK 3 forward 19:45769909-45769933
AGCCGGCTGGGGCTCCGAGAG
SpCas9





1874
DMPK 3 forward 19:45769910-45769933
GCCGGCTGGGGCTCCGAGAG
SpCas9





1875
DMPK 3 forward 19:45769911-45769933
CCGGCTGGGGCTCCGAGAG
SpCas9





1876
DMPK 3 forward 19:45769912-45769933
CGGCTGGGGCTCCGAGAG
SpCas9





1877
DMPK 3 forward 19:45769911-45769939
CCGGCTGGGGCTCCGAGAGCAGCGC
SpCas9





1878
DMPK 3 forward 19:45769912-45769939
CGGCTGGGGCTCCGAGAGCAGCGC
SpCas9





1879
DMPK 3 forward 19:45769913-45769939
GGCTGGGGCTCCGAGAGCAGCGC
SpCas9





1880
DMPK 3 forward 19:45769914-45769939
GCTGGGGCTCCGAGAGCAGCGC
SpCas9





1881
DMPK 3 forward 19:45769915-45769939
CTGGGGCTCCGAGAGCAGCGC
SpCas9





1882
DMPK 3 forward 19:45769916-45769939
TGGGGCTCCGAGAGCAGCGC
SpCas9





1883
DMPK 3 forward 19:45769917-45769939
GGGGCTCCGAGAGCAGCGC
SpCas9





1884
DMPK 3 forward 19:45769918-45769939
GGGCTCCGAGAGCAGCGC
SpCas9





1885
DMPK 3 reverse 19:45769911-45769939
CTTGCGCTGCTCTCGGAGCCCCAGC
SpCas9





1886
DMPK 3 reverse 19:45769912-45769939
TTGCGCTGCTCTCGGAGCCCCAGC
SpCas9





1887
DMPK 3 reverse 19:45769913-45769939
TGCGCTGCTCTCGGAGCCCCAGC
SpCas9





1888
DMPK 3 reverse 19:45769914-45769939
GCGCTGCTCTCGGAGCCCCAGC
SpCas9





1889
DMPK 3 reverse 19:45769915-45769939
CGCTGCTCTCGGAGCCCCAGC
SpCas9





1890
DMPK 3 reverse 19:45769916-45769939
GCTGCTCTCGGAGCCCCAGC
SpCas9





1891
DMPK 3 reverse 19:45769917-45769939
CTGCTCTCGGAGCCCCAGC
SpCas9





1892
DMPK 3 reverse 19:45769918-45769939
TGCTCTCGGAGCCCCAGC
SpCas9





1893
DMPK 3 forward 19:45769915-45769943
CTGGGGCTCCGAGAGCAGCGCAAGT
SpCas9





1894
DMPK 3 forward 19:45769916-45769943
TGGGGCTCCGAGAGCAGCGCAAGT
SpCas9





1895
DMPK 3 forward 19:45769917-45769943
GGGGCTCCGAGAGCAGCGCAAGT
SpCas9





1896
DMPK 3 forward 19:45769918-45769943
GGGCTCCGAGAGCAGCGCAAGT
SpCas9





1897
DMPK 3 forward 19:45769919-45769943
GGCTCCGAGAGCAGCGCAAGT
SpCas9





1898
DMPK 3 forward 19:45769920-45769943
GCTCCGAGAGCAGCGCAAGT
SpCas9





1899
DMPK 3 forward 19:45769921-45769943
CTCCGAGAGCAGCGCAAGT
SpCas9





1900
DMPK 3 forward 19:45769922-45769943
TCCGAGAGCAGCGCAAGT
SpCas9





1901
DMPK 3 reverse 19:45769915-45769943
CTCACTTGCGCTGCTCTCGGAGCCC
SpCas9





1902
DMPK 3 reverse 19:45769916-45769943
TCACTTGCGCTGCTCTCGGAGCCC
SpCas9





1903
DMPK 3 reverse 19:45769917-45769943
CACTTGCGCTGCTCTCGGAGCCC
SpCas9





1904
DMPK 3 reverse 19:45769918-45769943
ACTTGCGCTGCTCTCGGAGCCC
SpCas9





1905
DMPK 3 reverse 19:45769919-45769943
CTTGCGCTGCTCTCGGAGCCC
SpCas9





1906
DMPK 3 reverse 19:45769920-45769943
TTGCGCTGCTCTCGGAGCCC
SpCas9





1907
DMPK 3 reverse 19:45769921-45769943
TGCGCTGCTCTCGGAGCCC
SpCas9





1908
DMPK 3 reverse 19:45769922-45769943
GCGCTGCTCTCGGAGCCC
SpCas9





1909
DMPK 3 forward 19:45769916-45769944
TGGGGCTCCGAGAGCAGCGCAAGTG
SpCas9





1910
DMPK 3 forward 19:45769917-45769944
GGGGCTCCGAGAGCAGCGCAAGTG
SpCas9





1911
DMPK 3 forward 19:45769918-45769944
GGGCTCCGAGAGCAGCGCAAGTG
SpCas9





1912
DMPK 3 forward 19:45769919-45769944
GGCTCCGAGAGCAGCGCAAGTG
SpCas9





1913
DMPK 3 forward 19:45769920-45769944
GCTCCGAGAGCAGCGCAAGTG
SpCas9





1914
DMPK 3 forward 19:45769921-45769944
CTCCGAGAGCAGCGCAAGTG
SpCas9





1915
DMPK 3 forward 19:45769922-45769944
TCCGAGAGCAGCGCAAGTG
SpCas9





1916
DMPK 3 forward 19:45769923-45769944
CCGAGAGCAGCGCAAGTG
SpCas9





1917
DMPK 3 forward 19:45769918-45769946
GGGCTCCGAGAGCAGCGCAAGTGAG
SpCas9





1918
DMPK 3 forward 19:45769919-45769946
GGCTCCGAGAGCAGCGCAAGTGAG
SpCas9





1919
DMPK 3 forward 19:45769920-45769946
GCTCCGAGAGCAGCGCAAGTGAG
SpCas9





1920
DMPK 3 forward 19:45769921-45769946
CTCCGAGAGCAGCGCAAGTGAG
SpCas9





1921
DMPK 3 forward 19:45769922-45769946
TCCGAGAGCAGCGCAAGTGAG
SpCas9





1922
DMPK 3 forward 19:45769923-45769946
CCGAGAGCAGCGCAAGTGAG
SpCas9





1923
DMPK 3 forward 19:45769924-45769946
CGAGAGCAGCGCAAGTGAG
SpCas9





1924
DMPK 3 forward 19:45769925-45769946
GAGAGCAGCGCAAGTGAG
SpCas9





1925
DMPK 3 forward 19:45769919-45769947
GGCTCCGAGAGCAGCGCAAGTGAGG
SpCas9





1926
DMPK 3 forward 19:45769920-45769947
GCTCCGAGAGCAGCGCAAGTGAGG
SpCas9





1927
DMPK 3 forward 19:45769921-45769947
CTCCGAGAGCAGCGCAAGTGAGG
SpCas9





1928
DMPK 3 forward 19:45769922-45769947
TCCGAGAGCAGCGCAAGTGAGG
SpCas9





1929
DMPK 3 forward 19:45769923-45769947
CCGAGAGCAGCGCAAGTGAGG
SpCas9





1930
DMPK 3 forward 19:45769924-45769947
CGAGAGCAGCGCAAGTGAGG
SpCas9





1931
DMPK 3 forward 19:45769925-45769947
GAGAGCAGCGCAAGTGAGG
SpCas9





1932
DMPK 3 forward 19:45769926-45769947
AGAGCAGCGCAAGTGAGG
SpCas9





1933
DMPK 3 forward 19:45769920-45769948
GCTCCGAGAGCAGCGCAAGTGAGGA
SpCas9





1934
DMPK 3 forward 19:45769921-45769948
CTCCGAGAGCAGCGCAAGTGAGGA
SpCas9





1935
DMPK 3 forward 19:45769922-45769948
TCCGAGAGCAGCGCAAGTGAGGA
SpCas9





1936
DMPK 3 forward 19:45769923-45769948
CCGAGAGCAGCGCAAGTGAGGA
SpCas9





1937
DMPK 3 forward 19:45769924-45769948
CGAGAGCAGCGCAAGTGAGGA
SpCas9





1938
DMPK 3 forward 19:45769925-45769948
GAGAGCAGCGCAAGTGAGGA
SpCas9





1939
DMPK 3 forward 19:45769926-45769948
AGAGCAGCGCAAGTGAGGA
SpCas9





1940
DMPK 3 forward 19:45769927-45769948
GAGCAGCGCAAGTGAGGA
SpCas9





1941
DMPK 3 forward 19:45769921-45769949
CTCCGAGAGCAGCGCAAGTGAGGAG
SpCas9





1942
DMPK 3 forward 19:45769922-45769949
TCCGAGAGCAGCGCAAGTGAGGAG
SpCas9





1943
DMPK 3 forward 19:45769923-45769949
CCGAGAGCAGCGCAAGTGAGGAG
SpCas9





1944
DMPK 3 forward 19:45769924-45769949
CGAGAGCAGCGCAAGTGAGGAG
SpCas9





1945
DMPK 3 forward 19:45769925-45769949
GAGAGCAGCGCAAGTGAGGAG
SpCas9





1946
DMPK 3 forward 19:45769926-45769949
AGAGCAGCGCAAGTGAGGAG
SpCas9





1947
DMPK 3 forward 19:45769927-45769949
GAGCAGCGCAAGTGAGGAG
SpCas9





1948
DMPK 3 forward 19:45769928-45769949
AGCAGCGCAAGTGAGGAG
SpCas9





1949
DMPK 3 reverse 19:45769921-45769949
CCCCTCCTCACTTGCGCTGCTCTCG
SpCas9





1950
DMPK 3 reverse 19:45769922-45769949
CCCTCCTCACTTGCGCTGCTCTCG
SpCas9





1951
DMPK 3 reverse 19:45769923-45769949
CCTCCTCACTTGCGCTGCTCTCG
SpCas9





1952
DMPK 3 reverse 19:45769924-45769949
CTCCTCACTTGCGCTGCTCTCG
SpCas9





1953
DMPK 3 reverse 19:45769925-45769949
TCCTCACTTGCGCTGCTCTCG
SpCas9





1954
DMPK 3 reverse 19:45769926-45769949
CCTCACTTGCGCTGCTCTCG
SpCas9





1955
DMPK 3 reverse 19:45769927-45769949
CTCACTTGCGCTGCTCTCG
SpCas9





1956
DMPK 3 reverse 19:45769928-45769949
TCACTTGCGCTGCTCTCG
SpCas9





1957
DMPK 3 forward 19:45769922-45769950
TCCGAGAGCAGCGCAAGTGAGGAGG
SpCas9





1958
DMPK 3 forward 19:45769923-45769950
CCGAGAGCAGCGCAAGTGAGGAGG
SpCas9





1959
DMPK 3 forward 19:45769924-45769950
CGAGAGCAGCGCAAGTGAGGAGG
SpCas9





1960
DMPK 3 forward 19:45769925-45769950
GAGAGCAGCGCAAGTGAGGAGG
SpCas9





1961
DMPK 3 forward 19:45769926-45769950
AGAGCAGCGCAAGTGAGGAGG
SpCas9





1962
DMPK 3 forward 19:45769927-45769950
GAGCAGCGCAAGTGAGGAGG
SpCas9





1963
DMPK 3 forward 19:45769928-45769950
AGCAGCGCAAGTGAGGAGG
SpCas9





1964
DMPK 3 forward 19:45769929-45769950
GCAGCGCAAGTGAGGAGG
SpCas9





1965
DMPK 3 forward 19:45769923-45769951
CCGAGAGCAGCGCAAGTGAGGAGGG
SpCas9





1966
DMPK 3 forward 19:45769924-45769951
CGAGAGCAGCGCAAGTGAGGAGGG
SpCas9





1967
DMPK 3 forward 19:45769925-45769951
GAGAGCAGCGCAAGTGAGGAGGG
SpCas9





1968
DMPK 3 forward 19:45769926-45769951
AGAGCAGCGCAAGTGAGGAGGG
SpCas9





1969
DMPK 3 forward 19:45769927-45769951
GAGCAGCGCAAGTGAGGAGGG
SpCas9





1970
DMPK 3 forward 19:45769928-45769951
AGCAGCGCAAGTGAGGAGGG
SpCas9





1971
DMPK 3 forward 19:45769929-45769951
GCAGCGCAAGTGAGGAGGG
SpCas9





1972
DMPK 3 forward 19:45769930-45769951
CAGCGCAAGTGAGGAGGG
SpCas9





1973
DMPK 3 reverse 19:45769923-45769951
CCCCCCTCCTCACTTGCGCTGCTCT
SpCas9





1974
DMPK 3 reverse 19:45769924-45769951
CCCCCTCCTCACTTGCGCTGCTCT
SpCas9





1975
DMPK 3 reverse 19:45769925-45769951
CCCCTCCTCACTTGCGCTGCTCT
SpCas9





1976
DMPK 3 reverse 19:45769926-45769951
CCCTCCTCACTTGCGCTGCTCT
SpCas9





1977
DMPK 3 reverse 19:45769927-45769951
CCTCCTCACTTGCGCTGCTCT
SpCas9





1978
DMPK 3 reverse 19:45769928-45769951
CTCCTCACTTGCGCTGCTCT
SpCas9





1979
DMPK 3 reverse 19:45769929-45769951
TCCTCACTTGCGCTGCTCT
SpCas9





1980
DMPK 3 reverse 19:45769930-45769951
CCTCACTTGCGCTGCTCT
SpCas9





1981
DMPK 3 forward 19:45769928-45769956
AGCAGCGCAAGTGAGGAGGGGGGCG
SpCas9





1982
DMPK 3 forward 19:45769929-45769956
GCAGCGCAAGTGAGGAGGGGGGCG
SpCas9





1983
DMPK 3 forward 19:45769930-45769956
CAGCGCAAGTGAGGAGGGGGGCG
SpCas9





1984
DMPK 3 forward 19:45769931-45769956
AGCGCAAGTGAGGAGGGGGGCG
SpCas9





1985
DMPK 3 forward 19:45769932-45769956
GCGCAAGTGAGGAGGGGGGCG
SpCas9





1986
DMPK 3 forward 19:45769933-45769956
CGCAAGTGAGGAGGGGGGCG
SpCas9





1987
DMPK 3 forward 19:45769934-45769956
GCAAGTGAGGAGGGGGGCG
SpCas9





1988
DMPK 3 forward 19:45769935-45769956
CAAGTGAGGAGGGGGGCG
SpCas9





1989
DMPK 3 forward 19:45769929-45769957
GCAGCGCAAGTGAGGAGGGGGGCGC
SpCas9





1990
DMPK 3 forward 19:45769930-45769957
CAGCGCAAGTGAGGAGGGGGGCGC
SpCas9





1991
DMPK 3 forward 19:45769931-45769957
AGCGCAAGTGAGGAGGGGGGCGC
SpCas9





1992
DMPK 3 forward 19:45769932-45769957
GCGCAAGTGAGGAGGGGGGCGC
SpCas9





1993
DMPK 3 forward 19:45769933-45769957
CGCAAGTGAGGAGGGGGGCGC
SpCas9





1994
DMPK 3 forward 19:45769934-45769957
GCAAGTGAGGAGGGGGGCGC
SpCas9





1995
DMPK 3 forward 19:45769935-45769957
CAAGTGAGGAGGGGGGCGC
SpCas9





1996
DMPK 3 forward 19:45769936-45769957
AAGTGAGGAGGGGGGCGC
SpCas9





1997
DMPK 3 forward 19:45769942-45769970
GGAGGGGGGCGCGGGATCCCCGAAA
SpCas9





1998
DMPK 3 forward 19:45769943-45769970
GAGGGGGGCGCGGGATCCCCGAAA
SpCas9





1999
DMPK 3 forward 19:45769944-45769970
AGGGGGGCGCGGGATCCCCGAAA
SpCas9





2000
DMPK 3 forward 19:45769945-45769970
GGGGGGCGCGGGATCCCCGAAA
SpCas9





2001
DMPK 3 forward 19:45769946-45769970
GGGGGCGCGGGATCCCCGAAA
SpCas9





2002
DMPK 3 forward 19:45769947-45769970
GGGGCGCGGGATCCCCGAAA
SpCas9





2003
DMPK 3 forward 19:45769948-45769970
GGGCGCGGGATCCCCGAAA
SpCas9





2004
DMPK 3 forward 19:45769949-45769970
GGCGCGGGATCCCCGAAA
SpCas9





2005
DMPK 3 forward 19:45769945-45769973
GGGGGGCGCGGGATCCCCGAAAAAG
SpCas9





2006
DMPK 3 forward 19:45769946-45769973
GGGGGCGCGGGATCCCCGAAAAAG
SpCas9





2007
DMPK 3 forward 19:45769947-45769973
GGGGCGCGGGATCCCCGAAAAAG
SpCas9





2008
DMPK 3 forward 19:45769948-45769973
GGGCGCGGGATCCCCGAAAAAG
SpCas9





2009
DMPK 3 forward 19:45769949-45769973
GGCGCGGGATCCCCGAAAAAG
SpCas9





2010
DMPK 3 forward 19:45769950-45769973
GCGCGGGATCCCCGAAAAAG
SpCas9





2011
DMPK 3 forward 19:45769951-45769973
CGCGGGATCCCCGAAAAAG
SpCas9





2012
DMPK 3 forward 19:45769952-45769973
GCGGGATCCCCGAAAAAG
SpCas9





2013
DMPK 3 forward 19:45769946-45769974
GGGGGCGCGGGATCCCCGAAAAAGC
SpCas9





2014
DMPK 3 forward 19:45769947-45769974
GGGGCGCGGGATCCCCGAAAAAGC
SpCas9





2015
DMPK 3 forward 19:45769948-45769974
GGGCGCGGGATCCCCGAAAAAGC
SpCas9





2016
DMPK 3 forward 19:45769949-45769974
GGCGCGGGATCCCCGAAAAAGC
SpCas9





2017
DMPK 3 forward 19:45769950-45769974
GCGCGGGATCCCCGAAAAAGC
SpCas9





2018
DMPK 3 forward 19:45769951-45769974
CGCGGGATCCCCGAAAAAGC
SpCas9





2019
DMPK 3 forward 19:45769952-45769974
GCGGGATCCCCGAAAAAGC
SpCas9





2020
DMPK 3 forward 19:45769953-45769974
CGGGATCCCCGAAAAAGC
SpCas9





2021
DMPK 3 forward 19:45769951-45769979
CGCGGGATCCCCGAAAAAGCGGGTT
SpCas9





2022
DMPK 3 forward 19:45769952-45769979
GCGGGATCCCCGAAAAAGCGGGTT
SpCas9





2023
DMPK 3 forward 19:45769953-45769979
CGGGATCCCCGAAAAAGCGGGTT
SpCas9





2024
DMPK 3 forward 19:45769954-45769979
GGGATCCCCGAAAAAGCGGGTT
SpCas9





2025
DMPK 3 forward 19:45769955-45769979
GGATCCCCGAAAAAGCGGGTT
SpCas9





2026
DMPK 3 forward 19:45769956-45769979
GATCCCCGAAAAAGCGGGTT
SpCas9





2027
DMPK 3 forward 19:45769957-45769979
ATCCCCGAAAAAGCGGGTT
SpCas9





2028
DMPK 3 forward 19:45769958-45769979
TCCCCGAAAAAGCGGGTT
SpCas9





2029
DMPK 3 forward 19:45769957-45769985
ATCCCCGAAAAAGCGGGTTTGGCAA
SpCas9





2030
DMPK 3 forward 19:45769958-45769985
TCCCCGAAAAAGCGGGTTTGGCAA
SpCas9





2031
DMPK 3 forward 19:45769959-45769985
CCCCGAAAAAGCGGGTTTGGCAA
SpCas9





2032
DMPK 3 forward 19:45769960-45769985
CCCGAAAAAGCGGGTTTGGCAA
SpCas9





2033
DMPK 3 forward 19:45769961-45769985
CCGAAAAAGCGGGTTTGGCAA
SpCas9





2034
DMPK 3 forward 19:45769962-45769985
CGAAAAAGCGGGTTTGGCAA
SpCas9





2035
DMPK 3 forward 19:45769963-45769985
GAAAAAGCGGGTTTGGCAA
SpCas9





2036
DMPK 3 forward 19:45769964-45769985
AAAAAGCGGGTTTGGCAA
SpCas9





2037
DMPK 3 reverse 19:45769959-45769987
TGCTTTTGCCAAACCCGCTTTTTCG
SpCas9





2038
DMPK 3 reverse 19:45769960-45769987
GCTTTTGCCAAACCCGCTTTTTCG
SpCas9





2039
DMPK 3 reverse 19:45769961-45769987
CTTTTGCCAAACCCGCTTTTTCG
SpCas9





2040
DMPK 3 reverse 19:45769962-45769987
TTTTGCCAAACCCGCTTTTTCG
SpCas9





2041
DMPK 3 reverse 19:45769963-45769987
TTTGCCAAACCCGCTTTTTCG
SpCas9





2042
DMPK 3 reverse 19:45769964-45769987
TTGCCAAACCCGCTTTTTCG
SpCas9





2043
DMPK 3 reverse 19:45769965-45769987
TGCCAAACCCGCTTTTTCG
SpCas9





2044
DMPK 3 reverse 19:45769966-45769987
GCCAAACCCGCTTTTTCG
SpCas9





2045
DMPK 3 reverse 19:45769960-45769988
TTGCTTTTGCCAAACCCGCTTTTTC
SpCas9





2046
DMPK 3 reverse 19:45769961-45769988
TGCTTTTGCCAAACCCGCTTTTTC
SpCas9





2047
DMPK 3 reverse 19:45769962-45769988
GCTTTTGCCAAACCCGCTTTTTC
SpCas9





2048
DMPK 3 reverse 19:45769963-45769988
CTTTTGCCAAACCCGCTTTTTC
SpCas9





2049
DMPK 3 reverse 19:45769964-45769988
TTTTGCCAAACCCGCTTTTTC
SpCas9





2050
DMPK 3 reverse 19:45769965-45769988
TTTGCCAAACCCGCTTTTTC
SpCas9





2051
DMPK 3 reverse 19:45769966-45769988
TTGCCAAACCCGCTTTTTC
SpCas9





2052
DMPK 3 reverse 19:45769967-45769988
TGCCAAACCCGCTTTTTC
SpCas9





2053
DMPK 3 reverse 19:45769961-45769989
TTTGCTTTTGCCAAACCCGCTTTTT
SpCas9





2054
DMPK 3 reverse 19:45769962-45769989
TTGCTTTTGCCAAACCCGCTTTTT
SpCas9





2055
DMPK 3 reverse 19:45769963-45769989
TGCTTTTGCCAAACCCGCTTTTT
SpCas9





2056
DMPK 3 reverse 19:45769964-45769989
GCTTTTGCCAAACCCGCTTTTT
SpCas9





2057
DMPK 3 reverse 19:45769965-45769989
CTTTTGCCAAACCCGCTTTTT
SpCas9





2058
DMPK 3 reverse 19:45769966-45769989
TTTTGCCAAACCCGCTTTTT
SpCas9





2059
DMPK 3 reverse 19:45769967-45769989
TTTGCCAAACCCGCTTTTT
SpCas9





2060
DMPK 3 reverse 19:45769968-45769989
TTGCCAAACCCGCTTTTT
SpCas9





2061
DMPK 3 forward 19:45769970-45769998
CGGGTTTGGCAAAAGCAAATTTCCC
SpCas9





2062
DMPK 3 forward 19:45769971-45769998
GGGTTTGGCAAAAGCAAATTTCCC
SpCas9





2063
DMPK 3 forward 19:45769972-45769998
GGTTTGGCAAAAGCAAATTTCCC
SpCas9





2064
DMPK 3 forward 19:45769973-45769998
GTTTGGCAAAAGCAAATTTCCC
SpCas9





2065
DMPK 3 forward 19:45769974-45769998
TTTGGCAAAAGCAAATTTCCC
SpCas9





2066
DMPK 3 forward 19:45769975-45769998
TTGGCAAAAGCAAATTTCCC
SpCas9





2067
DMPK 3 forward 19:45769976-45769998
TGGCAAAAGCAAATTTCCC
SpCas9





2068
DMPK 3 forward 19:45769977-45769998
GGCAAAAGCAAATTTCCC
SpCas9





2069
DMPK 3 forward 19:45769974-45770002
TTTGGCAAAAGCAAATTTCCCGAGT
SpCas9





2070
DMPK 3 forward 19:45769975-45770002
TTGGCAAAAGCAAATTTCCCGAGT
SpCas9





2071
DMPK 3 forward 19:45769976-45770002
TGGCAAAAGCAAATTTCCCGAGT
SpCas9





2072
DMPK 3 forward 19:45769977-45770002
GGCAAAAGCAAATTTCCCGAGT
SpCas9





2073
DMPK 3 forward 19:45769978-45770002
GCAAAAGCAAATTTCCCGAGT
SpCas9





2074
DMPK 3 forward 19:45769979-45770002
CAAAAGCAAATTTCCCGAGT
SpCas9





2075
DMPK 3 forward 19:45769980-45770002
AAAAGCAAATTTCCCGAGT
SpCas9





2076
DMPK 3 forward 19:45769981-45770002
AAAGCAAATTTCCCGAGT
SpCas9





2077
DMPK 3 forward 19:45769977-45770005
GGCAAAAGCAAATTTCCCGAGTAAG
SpCas9





2078
DMPK 3 forward 19:45769978-45770005
GCAAAAGCAAATTTCCCGAGTAAG
SpCas9





2079
DMPK 3 forward 19:45769979-45770005
CAAAAGCAAATTTCCCGAGTAAG
SpCas9





2080
DMPK 3 forward 19:45769980-45770005
AAAAGCAAATTTCCCGAGTAAG
SpCas9





2081
DMPK 3 forward 19:45769981-45770005
AAAGCAAATTTCCCGAGTAAG
SpCas9





2082
DMPK 3 forward 19:45769982-45770005
AAGCAAATTTCCCGAGTAAG
SpCas9





2083
DMPK 3 forward 19:45769983-45770005
AGCAAATTTCCCGAGTAAG
SpCas9





2084
DMPK 3 forward 19:45769984-45770005
GCAAATTTCCCGAGTAAG
SpCas9





2085
DMPK 3 forward 19:45769978-45770006
GCAAAAGCAAATTTCCCGAGTAAGC
SpCas9





2086
DMPK 3 forward 19:45769979-45770006
CAAAAGCAAATTTCCCGAGTAAGC
SpCas9





2087
DMPK 3 forward 19:45769980-45770006
AAAAGCAAATTTCCCGAGTAAGC
SpCas9





2088
DMPK 3 forward 19:45769981-45770006
AAAGCAAATTTCCCGAGTAAGC
SpCas9





2089
DMPK 3 forward 19:45769982-45770006
AAGCAAATTTCCCGAGTAAGC
SpCas9





2090
DMPK 3 forward 19:45769983-45770006
AGCAAATTTCCCGAGTAAGC
SpCas9





2091
DMPK 3 forward 19:45769984-45770006
GCAAATTTCCCGAGTAAGC
SpCas9





2092
DMPK 3 forward 19:45769985-45770006
CAAATTTCCCGAGTAAGC
SpCas9





2093
DMPK 3 forward 19:45769981-45770009
AAAGCAAATTTCCCGAGTAAGCAGG
SpCas9





2094
DMPK 3 forward 19:45769982-45770009
AAGCAAATTTCCCGAGTAAGCAGG
SpCas9





2095
DMPK 3 forward 19:45769983-45770009
AGCAAATTTCCCGAGTAAGCAGG
SpCas9





2096
DMPK 3 forward 19:45769984-45770009
GCAAATTTCCCGAGTAAGCAGG
SpCas9





2097
DMPK 3 forward 19:45769985-45770009
CAAATTTCCCGAGTAAGCAGG
SpCas9





2098
DMPK 3 forward 19:45769986-45770009
AAATTTCCCGAGTAAGCAGG
SpCas9





2099
DMPK 3 forward 19:45769987-45770009
AATTTCCCGAGTAAGCAGG
SpCas9





2100
DMPK 3 forward 19:45769988-45770009
ATTTCCCGAGTAAGCAGG
SpCas9





2101
DMPK 3 forward 19:45769983-45770011
AGCAAATTTCCCGAGTAAGCAGGCA
SpCas9





2102
DMPK 3 forward 19:45769984-45770011
GCAAATTTCCCGAGTAAGCAGGCA
SpCas9





2103
DMPK 3 forward 19:45769985-45770011
CAAATTTCCCGAGTAAGCAGGCA
SpCas9





2104
DMPK 3 forward 19:45769986-45770011
AAATTTCCCGAGTAAGCAGGCA
SpCas9





2105
DMPK 3 forward 19:45769987-45770011
AATTTCCCGAGTAAGCAGGCA
SpCas9





2106
DMPK 3 forward 19:45769988-45770011
ATTTCCCGAGTAAGCAGGCA
SpCas9





2107
DMPK 3 forward 19:45769989-45770011
TTTCCCGAGTAAGCAGGCA
SpCas9





2108
DMPK 3 forward 19:45769990-45770011
TTCCCGAGTAAGCAGGCA
SpCas9





2109
DMPK 3 reverse 19:45769992-45770020
TGGCGCGATCTCTGCCTGCTTACTC
SpCas9





2110
DMPK 3 reverse 19:45769993-45770020
GGCGCGATCTCTGCCTGCTTACTC
SpCas9





2111
DMPK 3 reverse 19:45769994-45770020
GCGCGATCTCTGCCTGCTTACTC
SpCas9





2112
DMPK 3 reverse 19:45769995-45770020
CGCGATCTCTGCCTGCTTACTC
SpCas9





2113
DMPK 3 reverse 19:45769996-45770020
GCGATCTCTGCCTGCTTACTC
SpCas9





2114
DMPK 3 reverse 19:45769997-45770020
CGATCTCTGCCTGCTTACTC
SpCas9





2115
DMPK 3 reverse 19:45769998-45770020
GATCTCTGCCTGCTTACTC
SpCas9





2116
DMPK 3 reverse 19:45769999-45770020
ATCTCTGCCTGCTTACTC
SpCas9





2117
DMPK 3 forward 19:45769993-45770021
CCGAGTAAGCAGGCAGAGATCGCGC
SpCas9





2118
DMPK 3 forward 19:45769994-45770021
CGAGTAAGCAGGCAGAGATCGCGC
SpCas9





2119
DMPK 3 forward 19:45769995-45770021
GAGTAAGCAGGCAGAGATCGCGC
SpCas9





2120
DMPK 3 forward 19:45769996-45770021
AGTAAGCAGGCAGAGATCGCGC
SpCas9





2121
DMPK 3 forward 19:45769997-45770021
GTAAGCAGGCAGAGATCGCGC
SpCas9





2122
DMPK 3 forward 19:45769998-45770021
TAAGCAGGCAGAGATCGCGC
SpCas9





2123
DMPK 3 forward 19:45769999-45770021
AAGCAGGCAGAGATCGCGC
SpCas9





2124
DMPK 3 forward 19:45770000-45770021
AGCAGGCAGAGATCGCGC
SpCas9





2125
DMPK 3 reverse 19:45769993-45770021
CTGGCGCGATCTCTGCCTGCTTACT
SpCas9





2126
DMPK 3 reverse 19:45769994-45770021
TGGCGCGATCTCTGCCTGCTTACT
SpCas9





2127
DMPK 3 reverse 19:45769995-45770021
GGCGCGATCTCTGCCTGCTTACT
SpCas9





2128
DMPK 3 reverse 19:45769996-45770021
GCGCGATCTCTGCCTGCTTACT
SpCas9





2129
DMPK 3 reverse 19:45769997-45770021
CGCGATCTCTGCCTGCTTACT
SpCas9





2130
DMPK 3 reverse 19:45769998-45770021
GCGATCTCTGCCTGCTTACT
SpCas9





2131
DMPK 3 reverse 19:45769999-45770021
CGATCTCTGCCTGCTTACT
SpCas9





2132
DMPK 3 reverse 19:45770000-45770021
GATCTCTGCCTGCTTACT
SpCas9





2133
DMPK 3 forward 19:45770004-45770032
GGCAGAGATCGCGCCAGACGCTCCC
SpCas9





2134
DMPK 3 forward 19:45770005-45770032
GCAGAGATCGCGCCAGACGCTCCC
SpCas9





2135
DMPK 3 forward 19:45770006-45770032
CAGAGATCGCGCCAGACGCTCCC
SpCas9





2136
DMPK 3 forward 19:45770007-45770032
AGAGATCGCGCCAGACGCTCCC
SpCas9





2137
DMPK 3 forward 19:45770008-45770032
GAGATCGCGCCAGACGCTCCC
SpCas9





2138
DMPK 3 forward 19:45770009-45770032
AGATCGCGCCAGACGCTCCC
SpCas9





2139
DMPK 3 forward 19:45770010-45770032
GATCGCGCCAGACGCTCCC
SpCas9





2140
DMPK 3 forward 19:45770011-45770032
ATCGCGCCAGACGCTCCC
SpCas9





2141
DMPK 3 forward 19:45770006-45770034
CAGAGATCGCGCCAGACGCTCCCCA
SpCas9





2142
DMPK 3 forward 19:45770007-45770034
AGAGATCGCGCCAGACGCTCCCCA
SpCas9





2143
DMPK 3 forward 19:45770008-45770034
GAGATCGCGCCAGACGCTCCCCA
SpCas9





2144
DMPK 3 forward 19:45770009-45770034
AGATCGCGCCAGACGCTCCCCA
SpCas9





2145
DMPK 3 forward 19:45770010-45770034
GATCGCGCCAGACGCTCCCCA
SpCas9





2146
DMPK 3 forward 19:45770011-45770034
ATCGCGCCAGACGCTCCCCA
SpCas9





2147
DMPK 3 forward 19:45770012-45770034
TCGCGCCAGACGCTCCCCA
SpCas9





2148
DMPK 3 forward 19:45770013-45770034
CGCGCCAGACGCTCCCCA
SpCas9





2149
DMPK 3 forward 19:45770009-45770037
AGATCGCGCCAGACGCTCCCCAGAG
SpCas9





2150
DMPK 3 forward 19:45770010-45770037
GATCGCGCCAGACGCTCCCCAGAG
SpCas9





2151
DMPK 3 forward 19:45770011-45770037
ATCGCGCCAGACGCTCCCCAGAG
SpCas9





2152
DMPK 3 forward 19:45770012-45770037
TCGCGCCAGACGCTCCCCAGAG
SpCas9





2153
DMPK 3 forward 19:45770013-45770037
CGCGCCAGACGCTCCCCAGAG
SpCas9





2154
DMPK 3 forward 19:45770014-45770037
GCGCCAGACGCTCCCCAGAG
SpCas9





2155
DMPK 3 forward 19:45770015-45770037
CGCCAGACGCTCCCCAGAG
SpCas9





2156
DMPK 3 forward 19:45770016-45770037
GCCAGACGCTCCCCAGAG
SpCas9





2157
DMPK 3 forward 19:45770010-45770038
GATCGCGCCAGACGCTCCCCAGAGC
SpCas9





2158
DMPK 3 forward 19:45770011-45770038
ATCGCGCCAGACGCTCCCCAGAGC
SpCas9





2159
DMPK 3 forward 19:45770012-45770038
TCGCGCCAGACGCTCCCCAGAGC
SpCas9





2160
DMPK 3 forward 19:45770013-45770038
CGCGCCAGACGCTCCCCAGAGC
SpCas9





2161
DMPK 3 forward 19:45770014-45770038
GCGCCAGACGCTCCCCAGAGC
SpCas9





2162
DMPK 3 forward 19:45770015-45770038
CGCCAGACGCTCCCCAGAGC
SpCas9





2163
DMPK 3 forward 19:45770016-45770038
GCCAGACGCTCCCCAGAGC
SpCas9





2164
DMPK 3 forward 19:45770017-45770038
CCAGACGCTCCCCAGAGC
SpCas9





2165
DMPK 3 forward 19:45770011-45770039
ATCGCGCCAGACGCTCCCCAGAGCA
SpCas9





2166
DMPK 3 forward 19:45770012-45770039
TCGCGCCAGACGCTCCCCAGAGCA
SpCas9





2167
DMPK 3 forward 19:45770013-45770039
CGCGCCAGACGCTCCCCAGAGCA
SpCas9





2168
DMPK 3 forward 19:45770014-45770039
GCGCCAGACGCTCCCCAGAGCA
SpCas9





2169
DMPK 3 forward 19:45770015-45770039
CGCCAGACGCTCCCCAGAGCA
SpCas9





2170
DMPK 3 forward 19:45770016-45770039
GCCAGACGCTCCCCAGAGCA
SpCas9





2171
DMPK 3 forward 19:45770017-45770039
CCAGACGCTCCCCAGAGCA
SpCas9





2172
DMPK 3 forward 19:45770018-45770039
CAGACGCTCCCCAGAGCA
SpCas9





2173
DMPK 3 reverse 19:45770017-45770045
ATGACGCCCTGCTCTGGGGAGCGTC
SpCas9





2174
DMPK 3 reverse 19:45770018-45770045
TGACGCCCTGCTCTGGGGAGCGTC
SpCas9





2175
DMPK 3 reverse 19:45770019-45770045
GACGCCCTGCTCTGGGGAGCGTC
SpCas9





2176
DMPK 3 reverse 19:45770020-45770045
ACGCCCTGCTCTGGGGAGCGTC
SpCas9





2177
DMPK 3 reverse 19:45770021-45770045
CGCCCTGCTCTGGGGAGCGTC
SpCas9





2178
DMPK 3 reverse 19:45770022-45770045
GCCCTGCTCTGGGGAGCGTC
SpCas9





2179
DMPK 3 reverse 19:45770023-45770045
CCCTGCTCTGGGGAGCGTC
SpCas9





2180
DMPK 3 reverse 19:45770024-45770045
CCTGCTCTGGGGAGCGTC
SpCas9





2181
DMPK 3 forward 19:45770024-45770052
CTCCCCAGAGCAGGGCGTCATGCAC
SpCas9





2182
DMPK 3 forward 19:45770025-45770052
TCCCCAGAGCAGGGCGTCATGCAC
SpCas9





2183
DMPK 3 forward 19:45770026-45770052
CCCCAGAGCAGGGCGTCATGCAC
SpCas9





2184
DMPK 3 forward 19:45770027-45770052
CCCAGAGCAGGGCGTCATGCAC
SpCas9





2185
DMPK 3 forward 19:45770028-45770052
CCAGAGCAGGGCGTCATGCAC
SpCas9





2186
DMPK 3 forward 19:45770029-45770052
CAGAGCAGGGCGTCATGCAC
SpCas9





2187
DMPK 3 forward 19:45770030-45770052
AGAGCAGGGCGTCATGCAC
SpCas9





2188
DMPK 3 forward 19:45770031-45770052
GAGCAGGGCGTCATGCAC
SpCas9





2189
DMPK 3 reverse 19:45770024-45770052
CTTGTGCATGACGCCCTGCTCTGGG
SpCas9





2190
DMPK 3 reverse 19:45770025-45770052
TTGTGCATGACGCCCTGCTCTGGG
SpCas9





2191
DMPK 3 reverse 19:45770026-45770052
TGTGCATGACGCCCTGCTCTGGG
SpCas9





2192
DMPK 3 reverse 19:45770027-45770052
GTGCATGACGCCCTGCTCTGGG
SpCas9





2193
DMPK 3 reverse 19:45770028-45770052
TGCATGACGCCCTGCTCTGGG
SpCas9





2194
DMPK 3 reverse 19:45770029-45770052
GCATGACGCCCTGCTCTGGG
SpCas9





2195
DMPK 3 reverse 19:45770030-45770052
CATGACGCCCTGCTCTGGG
SpCas9





2196
DMPK 3 reverse 19:45770031-45770052
ATGACGCCCTGCTCTGGG
SpCas9





2197
DMPK 3 reverse 19:45770026-45770054
TTCTTGTGCATGACGCCCTGCTCTG
SpCas9





2198
DMPK 3 reverse 19:45770027-45770054
TCTTGTGCATGACGCCCTGCTCTG
SpCas9





2199
DMPK 3 reverse 19:45770028-45770054
CTTGTGCATGACGCCCTGCTCTG
SpCas9





2200
DMPK 3 reverse 19:45770029-45770054
TTGTGCATGACGCCCTGCTCTG
SpCas9





2201
DMPK 3 reverse 19:45770030-45770054
TGTGCATGACGCCCTGCTCTG
SpCas9





2202
DMPK 3 reverse 19:45770031-45770054
GTGCATGACGCCCTGCTCTG
SpCas9





2203
DMPK 3 reverse 19:45770032-45770054
TGCATGACGCCCTGCTCTG
SpCas9





2204
DMPK 3 reverse 19:45770033-45770054
GCATGACGCCCTGCTCTG
SpCas9





2205
DMPK 3 reverse 19:45770027-45770055
TTTCTTGTGCATGACGCCCTGCTCT
SpCas9





2206
DMPK 3 reverse 19:45770028-45770055
TTCTTGTGCATGACGCCCTGCTCT
SpCas9





2207
DMPK 3 reverse 19:45770029-45770055
TCTTGTGCATGACGCCCTGCTCT
SpCas9





2208
DMPK 3 reverse 19:45770030-45770055
CTTGTGCATGACGCCCTGCTCT
SpCas9





2209
DMPK 3 reverse 19:45770031-45770055
TTGTGCATGACGCCCTGCTCT
SpCas9





2210
DMPK 3 reverse 19:45770032-45770055
TGTGCATGACGCCCTGCTCT
SpCas9





2211
DMPK 3 reverse 19:45770033-45770055
GTGCATGACGCCCTGCTCT
SpCas9





2212
DMPK 3 reverse 19:45770034-45770055
TGCATGACGCCCTGCTCT
SpCas9





2213
DMPK 3 forward 19:45770028-45770056
CCAGAGCAGGGCGTCATGCACAAGA
SpCas9





2214
DMPK 3 forward 19:45770029-45770056
CAGAGCAGGGCGTCATGCACAAGA
SpCas9





2215
DMPK 3 forward 19:45770030-45770056
AGAGCAGGGCGTCATGCACAAGA
SpCas9





2216
DMPK 3 forward 19:45770031-45770056
GAGCAGGGCGTCATGCACAAGA
SpCas9





2217
DMPK 3 forward 19:45770032-45770056
AGCAGGGCGTCATGCACAAGA
SpCas9





2218
DMPK 3 forward 19:45770033-45770056
GCAGGGCGTCATGCACAAGA
SpCas9





2219
DMPK 3 forward 19:45770034-45770056
CAGGGCGTCATGCACAAGA
SpCas9





2220
DMPK 3 forward 19:45770035-45770056
AGGGCGTCATGCACAAGA
SpCas9





2221
DMPK 3 reverse 19:45770028-45770056
CTTTCTTGTGCATGACGCCCTGCTC
SpCas9





2222
DMPK 3 reverse 19:45770029-45770056
TTTCTTGTGCATGACGCCCTGCTC
SpCas9





2223
DMPK 3 reverse 19:45770030-45770056
TTCTTGTGCATGACGCCCTGCTC
SpCas9





2224
DMPK 3 reverse 19:45770031-45770056
TCTTGTGCATGACGCCCTGCTC
SpCas9





2225
DMPK 3 reverse 19:45770032-45770056
CTTGTGCATGACGCCCTGCTC
SpCas9





2226
DMPK 3 reverse 19:45770033-45770056
TTGTGCATGACGCCCTGCTC
SpCas9





2227
DMPK 3 reverse 19:45770034-45770056
TGTGCATGACGCCCTGCTC
SpCas9





2228
DMPK 3 reverse 19:45770035-45770056
GTGCATGACGCCCTGCTC
SpCas9





2229
DMPK 3 forward 19:45770054-45770082
AGCTTTGCACTTTGCGAACCAACGA
SpCas9





2230
DMPK 3 forward 19:45770055-45770082
GCTTTGCACTTTGCGAACCAACGA
SpCas9





2231
DMPK 3 forward 19:45770056-45770082
CTTTGCACTTTGCGAACCAACGA
SpCas9





2232
DMPK 3 forward 19:45770057-45770082
TTTGCACTTTGCGAACCAACGA
SpCas9





2233
DMPK 3 forward 19:45770058-45770082
TTGCACTTTGCGAACCAACGA
SpCas9





2234
DMPK 3 forward 19:45770059-45770082
TGCACTTTGCGAACCAACGA
SpCas9





2235
DMPK 3 forward 19:45770060-45770082
GCACTTTGCGAACCAACGA
SpCas9





2236
DMPK 3 forward 19:45770061-45770082
CACTTTGCGAACCAACGA
SpCas9





2237
DMPK 3 forward 19:45770055-45770083
GCTTTGCACTTTGCGAACCAACGAT
SpCas9





2238
DMPK 3 forward 19:45770056-45770083
CTTTGCACTTTGCGAACCAACGAT
SpCas9





2239
DMPK 3 forward 19:45770057-45770083
TTTGCACTTTGCGAACCAACGAT
SpCas9





2240
DMPK 3 forward 19:45770058-45770083
TTGCACTTTGCGAACCAACGAT
SpCas9





2241
DMPK 3 forward 19:45770059-45770083
TGCACTTTGCGAACCAACGAT
SpCas9





2242
DMPK 3 forward 19:45770060-45770083
GCACTTTGCGAACCAACGAT
SpCas9





2243
DMPK 3 forward 19:45770061-45770083
CACTTTGCGAACCAACGAT
SpCas9





2244
DMPK 3 forward 19:45770062-45770083
ACTTTGCGAACCAACGAT
SpCas9





2245
DMPK 3 reverse 19:45770056-45770084
ACCTATCGTTGGTTCGCAAAGTGCA
SpCas9





2246
DMPK 3 reverse 19:45770057-45770084
CCTATCGTTGGTTCGCAAAGTGCA
SpCas9





2247
DMPK 3 reverse 19:45770058-45770084
CTATCGTTGGTTCGCAAAGTGCA
SpCas9





2248
DMPK 3 reverse 19:45770059-45770084
TATCGTTGGTTCGCAAAGTGCA
SpCas9





2249
DMPK 3 reverse 19:45770060-45770084
ATCGTTGGTTCGCAAAGTGCA
SpCas9





2250
DMPK 3 reverse 19:45770061-45770084
TCGTTGGTTCGCAAAGTGCA
SpCas9





2251
DMPK 3 reverse 19:45770062-45770084
CGTTGGTTCGCAAAGTGCA
SpCas9





2252
DMPK 3 reverse 19:45770063-45770084
GTTGGTTCGCAAAGTGCA
SpCas9





2253
DMPK 3 forward 19:45770058-45770086
TTGCACTTTGCGAACCAACGATAGG
SpCas9





2254
DMPK 3 forward 19:45770059-45770086
TGCACTTTGCGAACCAACGATAGG
SpCas9





2255
DMPK 3 forward 19:45770060-45770086
GCACTTTGCGAACCAACGATAGG
SpCas9





2256
DMPK 3 forward 19:45770061-45770086
CACTTTGCGAACCAACGATAGG
SpCas9





2257
DMPK 3 forward 19:45770062-45770086
ACTTTGCGAACCAACGATAGG
SpCas9





2258
DMPK 3 forward 19:45770063-45770086
CTTTGCGAACCAACGATAGG
SpCas9





2259
DMPK 3 forward 19:45770064-45770086
TTTGCGAACCAACGATAGG
SpCas9





2260
DMPK 3 forward 19:45770065-45770086
TTGCGAACCAACGATAGG
SpCas9





2261
DMPK 3 forward 19:45770059-45770087
TGCACTTTGCGAACCAACGATAGGT
SpCas9





2262
DMPK 3 forward 19:45770060-45770087
GCACTTTGCGAACCAACGATAGGT
SpCas9





2263
DMPK 3 forward 19:45770061-45770087
CACTTTGCGAACCAACGATAGGT
SpCas9





2264
DMPK 3 forward 19:45770062-45770087
ACTTTGCGAACCAACGATAGGT
SpCas9





2265
DMPK 3 forward 19:45770063-45770087
CTTTGCGAACCAACGATAGGT
SpCas9





2266
DMPK 3 forward 19:45770064-45770087
TTTGCGAACCAACGATAGGT
SpCas9





2267
DMPK 3 forward 19:45770065-45770087
TTGCGAACCAACGATAGGT
SpCas9





2268
DMPK 3 forward 19:45770066-45770087
TGCGAACCAACGATAGGT
SpCas9





2269
DMPK 3 forward 19:45770060-45770088
GCACTTTGCGAACCAACGATAGGTG
SpCas9





2270
DMPK 3 forward 19:45770061-45770088
CACTTTGCGAACCAACGATAGGTG
SpCas9





2271
DMPK 3 forward 19:45770062-45770088
ACTTTGCGAACCAACGATAGGTG
SpCas9





2272
DMPK 3 forward 19:45770063-45770088
CTTTGCGAACCAACGATAGGTG
SpCas9





2273
DMPK 3 forward 19:45770064-45770088
TTTGCGAACCAACGATAGGTG
SpCas9





2274
DMPK 3 forward 19:45770065-45770088
TTGCGAACCAACGATAGGTG
SpCas9





2275
DMPK 3 forward 19:45770066-45770088
TGCGAACCAACGATAGGTG
SpCas9





2276
DMPK 3 forward 19:45770067-45770088
GCGAACCAACGATAGGTG
SpCas9





2277
DMPK 3 forward 19:45770061-45770089
CACTTTGCGAACCAACGATAGGTGG
SpCas9





2278
DMPK 3 forward 19:45770062-45770089
ACTTTGCGAACCAACGATAGGTGG
SpCas9





2279
DMPK 3 forward 19:45770063-45770089
CTTTGCGAACCAACGATAGGTGG
SpCas9





2280
DMPK 3 forward 19:45770064-45770089
TTTGCGAACCAACGATAGGTGG
SpCas9





2281
DMPK 3 forward 19:45770065-45770089
TTGCGAACCAACGATAGGTGG
SpCas9





2282
DMPK 3 forward 19:45770066-45770089
TGCGAACCAACGATAGGTGG
SpCas9





2283
DMPK 3 forward 19:45770067-45770089
GCGAACCAACGATAGGTGG
SpCas9





2284
DMPK 3 forward 19:45770068-45770089
CGAACCAACGATAGGTGG
SpCas9





2285
DMPK 3 reverse 19:45770063-45770091
CACCCCCACCTATCGTTGGTTCGCA
SpCas9





2286
DMPK 3 reverse 19:45770064-45770091
ACCCCCACCTATCGTTGGTTCGCA
SpCas9





2287
DMPK 3 reverse 19:45770065-45770091
CCCCCACCTATCGTTGGTTCGCA
SpCas9





2288
DMPK 3 reverse 19:45770066-45770091
CCCCACCTATCGTTGGTTCGCA
SpCas9





2289
DMPK 3 reverse 19:45770067-45770091
CCCACCTATCGTTGGTTCGCA
SpCas9





2290
DMPK 3 reverse 19:45770068-45770091
CCACCTATCGTTGGTTCGCA
SpCas9





2291
DMPK 3 reverse 19:45770069-45770091
CACCTATCGTTGGTTCGCA
SpCas9





2292
DMPK 3 reverse 19:45770070-45770091
ACCTATCGTTGGTTCGCA
SpCas9





2293
DMPK 3 forward 19:45770068-45770096
CGAACCAACGATAGGTGGGGGTGCG
SpCas9





2294
DMPK 3 forward 19:45770069-45770096
GAACCAACGATAGGTGGGGGTGCG
SpCas9





2295
DMPK 3 forward 19:45770070-45770096
AACCAACGATAGGTGGGGGTGCG
SpCas9





2296
DMPK 3 forward 19:45770071-45770096
ACCAACGATAGGTGGGGGTGCG
SpCas9





2297
DMPK 3 forward 19:45770072-45770096
CCAACGATAGGTGGGGGTGCG
SpCas9





2298
DMPK 3 forward 19:45770073-45770096
CAACGATAGGTGGGGGTGCG
SpCas9





2299
DMPK 3 forward 19:45770074-45770096
AACGATAGGTGGGGGTGCG
SpCas9





2300
DMPK 3 forward 19:45770075-45770096
ACGATAGGTGGGGGTGCG
SpCas9





2301
DMPK 3 forward 19:45770070-45770098
AACCAACGATAGGTGGGGGTGCGTG
SpCas9





2302
DMPK 3 forward 19:45770071-45770098
ACCAACGATAGGTGGGGGTGCGTG
SpCas9





2303
DMPK 3 forward 19:45770072-45770098
CCAACGATAGGTGGGGGTGCGTG
SpCas9





2304
DMPK 3 forward 19:45770073-45770098
CAACGATAGGTGGGGGTGCGTG
SpCas9





2305
DMPK 3 forward 19:45770074-45770098
AACGATAGGTGGGGGTGCGTG
SpCas9





2306
DMPK 3 forward 19:45770075-45770098
ACGATAGGTGGGGGTGCGTG
SpCas9





2307
DMPK 3 forward 19:45770076-45770098
CGATAGGTGGGGGTGCGTG
SpCas9





2308
DMPK 3 forward 19:45770077-45770098
GATAGGTGGGGGTGCGTG
SpCas9





2309
DMPK 3 forward 19:45770071-45770099
ACCAACGATAGGTGGGGGTGCGTGG
SpCas9





2310
DMPK 3 forward 19:45770072-45770099
CCAACGATAGGTGGGGGTGCGTGG
SpCas9





2311
DMPK 3 forward 19:45770073-45770099
CAACGATAGGTGGGGGTGCGTGG
SpCas9





2312
DMPK 3 forward 19:45770074-45770099
AACGATAGGTGGGGGTGCGTGG
SpCas9





2313
DMPK 3 forward 19:45770075-45770099
ACGATAGGTGGGGGTGCGTGG
SpCas9





2314
DMPK 3 forward 19:45770076-45770099
CGATAGGTGGGGGTGCGTGG
SpCas9





2315
DMPK 3 forward 19:45770077-45770099
GATAGGTGGGGGTGCGTGG
SpCas9





2316
DMPK 3 forward 19:45770078-45770099
ATAGGTGGGGGTGCGTGG
SpCas9





2317
DMPK 3 reverse 19:45770072-45770100
TCCTCCACGCACCCCCACCTATCGT
SpCas9





2318
DMPK 3 reverse 19:45770073-45770100
CCTCCACGCACCCCCACCTATCGT
SpCas9





2319
DMPK 3 reverse 19:45770074-45770100
CTCCACGCACCCCCACCTATCGT
SpCas9





2320
DMPK 3 reverse 19:45770075-45770100
TCCACGCACCCCCACCTATCGT
SpCas9





2321
DMPK 3 reverse 19:45770076-45770100
CCACGCACCCCCACCTATCGT
SpCas9





2322
DMPK 3 reverse 19:45770077-45770100
CACGCACCCCCACCTATCGT
SpCas9





2323
DMPK 3 reverse 19:45770078-45770100
ACGCACCCCCACCTATCGT
SpCas9





2324
DMPK 3 reverse 19:45770079-45770100
CGCACCCCCACCTATCGT
SpCas9





2325
DMPK 3 forward 19:45770075-45770103
ACGATAGGTGGGGGTGCGTGGAGGA
SpCas9





2326
DMPK 3 forward 19:45770076-45770103
CGATAGGTGGGGGTGCGTGGAGGA
SpCas9





2327
DMPK 3 forward 19:45770077-45770103
GATAGGTGGGGGTGCGTGGAGGA
SpCas9





2328
DMPK 3 forward 19:45770078-45770103
ATAGGTGGGGGTGCGTGGAGGA
SpCas9





2329
DMPK 3 forward 19:45770079-45770103
TAGGTGGGGGTGCGTGGAGGA
SpCas9





2330
DMPK 3 forward 19:45770080-45770103
AGGTGGGGGTGCGTGGAGGA
SpCas9





2331
DMPK 3 forward 19:45770081-45770103
GGTGGGGGTGCGTGGAGGA
SpCas9





2332
DMPK 3 forward 19:45770082-45770103
GTGGGGGTGCGTGGAGGA
SpCas9





2333
DMPK 3 forward 19:45770082-45770110
GTGGGGGTGCGTGGAGGATGGAACA
SpCas9





2334
DMPK 3 forward 19:45770083-45770110
TGGGGGTGCGTGGAGGATGGAACA
SpCas9





2335
DMPK 3 forward 19:45770084-45770110
GGGGGTGCGTGGAGGATGGAACA
SpCas9





2336
DMPK 3 forward 19:45770085-45770110
GGGGTGCGTGGAGGATGGAACA
SpCas9





2337
DMPK 3 forward 19:45770086-45770110
GGGTGCGTGGAGGATGGAACA
SpCas9





2338
DMPK 3 forward 19:45770087-45770110
GGTGCGTGGAGGATGGAACA
SpCas9





2339
DMPK 3 forward 19:45770088-45770110
GTGCGTGGAGGATGGAACA
SpCas9





2340
DMPK 3 forward 19:45770089-45770110
TGCGTGGAGGATGGAACA
SpCas9





2341
DMPK 3 forward 19:45770086-45770114
GGGTGCGTGGAGGATGGAACACGGA
SpCas9





2342
DMPK 3 forward 19:45770087-45770114
GGTGCGTGGAGGATGGAACACGGA
SpCas9





2343
DMPK 3 forward 19:45770088-45770114
GTGCGTGGAGGATGGAACACGGA
SpCas9





2344
DMPK 3 forward 19:45770089-45770114
TGCGTGGAGGATGGAACACGGA
SpCas9





2345
DMPK 3 forward 19:45770090-45770114
GCGTGGAGGATGGAACACGGA
SpCas9





2346
DMPK 3 forward 19:45770091-45770114
CGTGGAGGATGGAACACGGA
SpCas9





2347
DMPK 3 forward 19:45770092-45770114
GTGGAGGATGGAACACGGA
SpCas9





2348
DMPK 3 forward 19:45770093-45770114
TGGAGGATGGAACACGGA
SpCas9





2349
DMPK 3 forward 19:45770091-45770119
CGTGGAGGATGGAACACGGACGGCC
SpCas9





2350
DMPK 3 forward 19:45770092-45770119
GTGGAGGATGGAACACGGACGGCC
SpCas9





2351
DMPK 3 forward 19:45770093-45770119
TGGAGGATGGAACACGGACGGCC
SpCas9





2352
DMPK 3 forward 19:45770094-45770119
GGAGGATGGAACACGGACGGCC
SpCas9





2353
DMPK 3 forward 19:45770095-45770119
GAGGATGGAACACGGACGGCC
SpCas9





2354
DMPK 3 forward 19:45770096-45770119
AGGATGGAACACGGACGGCC
SpCas9





2355
DMPK 3 forward 19:45770097-45770119
GGATGGAACACGGACGGCC
SpCas9





2356
DMPK 3 forward 19:45770098-45770119
GATGGAACACGGACGGCC
SpCas9





2357
DMPK 3 forward 19:45770107-45770135
CGGACGGCCCGGCTTGCTGCCTTCC
SpCas9





2358
DMPK 3 forward 19:45770108-45770135
GGACGGCCCGGCTTGCTGCCTTCC
SpCas9





2359
DMPK 3 forward 19:45770109-45770135
GACGGCCCGGCTTGCTGCCTTCC
SpCas9





2360
DMPK 3 forward 19:45770110-45770135
ACGGCCCGGCTTGCTGCCTTCC
SpCas9





2361
DMPK 3 forward 19:45770111-45770135
CGGCCCGGCTTGCTGCCTTCC
SpCas9





2362
DMPK 3 forward 19:45770112-45770135
GGCCCGGCTTGCTGCCTTCC
SpCas9





2363
DMPK 3 forward 19:45770113-45770135
GCCCGGCTTGCTGCCTTCC
SpCas9





2364
DMPK 3 forward 19:45770114-45770135
CCCGGCTTGCTGCCTTCC
SpCas9





2365
DMPK 3 forward 19:45770108-45770136
GGACGGCCCGGCTTGCTGCCTTCCC
SpCas9





2366
DMPK 3 forward 19:45770109-45770136
GACGGCCCGGCTTGCTGCCTTCCC
SpCas9





2367
DMPK 3 forward 19:45770110-45770136
ACGGCCCGGCTTGCTGCCTTCCC
SpCas9





2368
DMPK 3 forward 19:45770111-45770136
CGGCCCGGCTTGCTGCCTTCCC
SpCas9





2369
DMPK 3 forward 19:45770112-45770136
GGCCCGGCTTGCTGCCTTCCC
SpCas9





2370
DMPK 3 forward 19:45770113-45770136
GCCCGGCTTGCTGCCTTCCC
SpCas9





2371
DMPK 3 forward 19:45770114-45770136
CCCGGCTTGCTGCCTTCCC
SpCas9





2372
DMPK 3 forward 19:45770115-45770136
CCGGCTTGCTGCCTTCCC
SpCas9





2373
DMPK 3 reverse 19:45770114-45770142
TGCAGGCCTGGGAAGGCAGCAAGCC
SpCas9





2374
DMPK 3 reverse 19:45770115-45770142
GCAGGCCTGGGAAGGCAGCAAGCC
SpCas9





2375
DMPK 3 reverse 19:45770116-45770142
CAGGCCTGGGAAGGCAGCAAGCC
SpCas9





2376
DMPK 3 reverse 19:45770117-45770142
AGGCCTGGGAAGGCAGCAAGCC
SpCas9





2377
DMPK 3 reverse 19:45770118-45770142
GGCCTGGGAAGGCAGCAAGCC
SpCas9





2378
DMPK 3 reverse 19:45770119-45770142
GCCTGGGAAGGCAGCAAGCC
SpCas9





2379
DMPK 3 reverse 19:45770120-45770142
CCTGGGAAGGCAGCAAGCC
SpCas9





2380
DMPK 3 reverse 19:45770121-45770142
CTGGGAAGGCAGCAAGCC
SpCas9





2381
DMPK 3 forward 19:45770115-45770143
CCGGCTTGCTGCCTTCCCAGGCCTG
SpCas9





2382
DMPK 3 forward 19:45770116-45770143
CGGCTTGCTGCCTTCCCAGGCCTG
SpCas9





2383
DMPK 3 forward 19:45770117-45770143
GGCTTGCTGCCTTCCCAGGCCTG
SpCas9





2384
DMPK 3 forward 19:45770118-45770143
GCTTGCTGCCTTCCCAGGCCTG
SpCas9





2385
DMPK 3 forward 19:45770119-45770143
CTTGCTGCCTTCCCAGGCCTG
SpCas9





2386
DMPK 3 forward 19:45770120-45770143
TTGCTGCCTTCCCAGGCCTG
SpCas9





2387
DMPK 3 forward 19:45770121-45770143
TGCTGCCTTCCCAGGCCTG
SpCas9





2388
DMPK 3 forward 19:45770122-45770143
GCTGCCTTCCCAGGCCTG
SpCas9





2389
DMPK 3 reverse 19:45770115-45770143
CTGCAGGCCTGGGAAGGCAGCAAGC
SpCas9





2390
DMPK 3 reverse 19:45770116-45770143
TGCAGGCCTGGGAAGGCAGCAAGC
SpCas9





2391
DMPK 3 reverse 19:45770117-45770143
GCAGGCCTGGGAAGGCAGCAAGC
SpCas9





2392
DMPK 3 reverse 19:45770118-45770143
CAGGCCTGGGAAGGCAGCAAGC
SpCas9





2393
DMPK 3 reverse 19:45770119-45770143
AGGCCTGGGAAGGCAGCAAGC
SpCas9





2394
DMPK 3 reverse 19:45770120-45770143
GGCCTGGGAAGGCAGCAAGC
SpCas9





2395
DMPK 3 reverse 19:45770121-45770143
GCCTGGGAAGGCAGCAAGC
SpCas9





2396
DMPK 3 reverse 19:45770122-45770143
CCTGGGAAGGCAGCAAGC
SpCas9





2397
DMPK 3 reverse 19:45770119-45770147
CAAACTGCAGGCCTGGGAAGGCAGC
SpCas9





2398
DMPK 3 reverse 19:45770120-45770147
AAACTGCAGGCCTGGGAAGGCAGC
SpCas9





2399
DMPK 3 reverse 19:45770121-45770147
AACTGCAGGCCTGGGAAGGCAGC
SpCas9





2400
DMPK 3 reverse 19:45770122-45770147
ACTGCAGGCCTGGGAAGGCAGC
SpCas9





2401
DMPK 3 reverse 19:45770123-45770147
CTGCAGGCCTGGGAAGGCAGC
SpCas9





2402
DMPK 3 reverse 19:45770124-45770147
TGCAGGCCTGGGAAGGCAGC
SpCas9





2403
DMPK 3 reverse 19:45770125-45770147
GCAGGCCTGGGAAGGCAGC
SpCas9





2404
DMPK 3 reverse 19:45770126-45770147
CAGGCCTGGGAAGGCAGC
SpCas9





2405
DMPK 3 reverse 19:45770123-45770151
TGGGCAAACTGCAGGCCTGGGAAGG
SpCas9





2406
DMPK 3 reverse 19:45770124-45770151
GGGCAAACTGCAGGCCTGGGAAGG
SpCas9





2407
DMPK 3 reverse 19:45770125-45770151
GGCAAACTGCAGGCCTGGGAAGG
SpCas9





2408
DMPK 3 reverse 19:45770126-45770151
GCAAACTGCAGGCCTGGGAAGG
SpCas9





2409
DMPK 3 reverse 19:45770127-45770151
CAAACTGCAGGCCTGGGAAGG
SpCas9





2410
DMPK 3 reverse 19:45770128-45770151
AAACTGCAGGCCTGGGAAGG
SpCas9





2411
DMPK 3 reverse 19:45770129-45770151
AACTGCAGGCCTGGGAAGG
SpCas9





2412
DMPK 3 reverse 19:45770130-45770151
ACTGCAGGCCTGGGAAGG
SpCas9





2413
DMPK 3 reverse 19:45770126-45770154
GGATGGGCAAACTGCAGGCCTGGGA
SpCas9





2414
DMPK 3 reverse 19:45770127-45770154
GATGGGCAAACTGCAGGCCTGGGA
SpCas9





2415
DMPK 3 reverse 19:45770128-45770154
ATGGGCAAACTGCAGGCCTGGGA
SpCas9





2416
DMPK 3 reverse 19:45770129-45770154
TGGGCAAACTGCAGGCCTGGGA
SpCas9





2417
DMPK 3 reverse 19:45770130-45770154
GGGCAAACTGCAGGCCTGGGA
SpCas9





2418
DMPK 3 reverse 19:45770131-45770154
GGCAAACTGCAGGCCTGGGA
SpCas9





2419
DMPK 3 reverse 19:45770132-45770154
GCAAACTGCAGGCCTGGGA
SpCas9





2420
DMPK 3 reverse 19:45770133-45770154
CAAACTGCAGGCCTGGGA
SpCas9





2421
DMPK 3 reverse 19:45770127-45770155
TGGATGGGCAAACTGCAGGCCTGGG
SpCas9





2422
DMPK 3 reverse 19:45770128-45770155
GGATGGGCAAACTGCAGGCCTGGG
SpCas9





2423
DMPK 3 reverse 19:45770129-45770155
GATGGGCAAACTGCAGGCCTGGG
SpCas9





2424
DMPK 3 reverse 19:45770130-45770155
ATGGGCAAACTGCAGGCCTGGG
SpCas9





2425
DMPK 3 reverse 19:45770131-45770155
TGGGCAAACTGCAGGCCTGGG
SpCas9





2426
DMPK 3 reverse 19:45770132-45770155
GGGCAAACTGCAGGCCTGGG
SpCas9





2427
DMPK 3 reverse 19:45770133-45770155
GGCAAACTGCAGGCCTGGG
SpCas9





2428
DMPK 3 reverse 19:45770134-45770155
GCAAACTGCAGGCCTGGG
SpCas9





2429
DMPK 3 reverse 19:45770130-45770158
ACGTGGATGGGCAAACTGCAGGCCT
SpCas9





2430
DMPK 3 reverse 19:45770131-45770158
CGTGGATGGGCAAACTGCAGGCCT
SpCas9





2431
DMPK 3 reverse 19:45770132-45770158
GTGGATGGGCAAACTGCAGGCCT
SpCas9





2432
DMPK 3 reverse 19:45770133-45770158
TGGATGGGCAAACTGCAGGCCT
SpCas9





2433
DMPK 3 reverse 19:45770134-45770158
GGATGGGCAAACTGCAGGCCT
SpCas9





2434
DMPK 3 reverse 19:45770135-45770158
GATGGGCAAACTGCAGGCCT
SpCas9





2435
DMPK 3 reverse 19:45770136-45770158
ATGGGCAAACTGCAGGCCT
SpCas9





2436
DMPK 3 reverse 19:45770137-45770158
TGGGCAAACTGCAGGCCT
SpCas9





2437
DMPK 3 reverse 19:45770131-45770159
GACGTGGATGGGCAAACTGCAGGCC
SpCas9





2438
DMPK 3 reverse 19:45770132-45770159
ACGTGGATGGGCAAACTGCAGGCC
SpCas9





2439
DMPK 3 reverse 19:45770133-45770159
CGTGGATGGGCAAACTGCAGGCC
SpCas9





2440
DMPK 3 reverse 19:45770134-45770159
GTGGATGGGCAAACTGCAGGCC
SpCas9





2441
DMPK 3 reverse 19:45770135-45770159
TGGATGGGCAAACTGCAGGCC
SpCas9





2442
DMPK 3 reverse 19:45770136-45770159
GGATGGGCAAACTGCAGGCC
SpCas9





2443
DMPK 3 reverse 19:45770137-45770159
GATGGGCAAACTGCAGGCC
SpCas9





2444
DMPK 3 reverse 19:45770138-45770159
ATGGGCAAACTGCAGGCC
SpCas9





2445
DMPK 3 forward 19:45770133-45770161
AGGCCTGCAGTTTGCCCATCCACGT
SpCas9





2446
DMPK 3 forward 19:45770134-45770161
GGCCTGCAGTTTGCCCATCCACGT
SpCas9





2447
DMPK 3 forward 19:45770135-45770161
GCCTGCAGTTTGCCCATCCACGT
SpCas9





2448
DMPK 3 forward 19:45770136-45770161
CCTGCAGTTTGCCCATCCACGT
SpCas9





2449
DMPK 3 forward 19:45770137-45770161
CTGCAGTTTGCCCATCCACGT
SpCas9





2450
DMPK 3 forward 19:45770138-45770161
TGCAGTTTGCCCATCCACGT
SpCas9





2451
DMPK 3 forward 19:45770139-45770161
GCAGTTTGCCCATCCACGT
SpCas9





2452
DMPK 3 forward 19:45770140-45770161
CAGTTTGCCCATCCACGT
SpCas9





2453
DMPK 3 forward 19:45770134-45770162
GGCCTGCAGTTTGCCCATCCACGTC
SpCas9





2454
DMPK 3 forward 19:45770135-45770162
GCCTGCAGTTTGCCCATCCACGTC
SpCas9





2455
DMPK 3 forward 19:45770136-45770162
CCTGCAGTTTGCCCATCCACGTC
SpCas9





2456
DMPK 3 forward 19:45770137-45770162
CTGCAGTTTGCCCATCCACGTC
SpCas9





2457
DMPK 3 forward 19:45770138-45770162
TGCAGTTTGCCCATCCACGTC
SpCas9





2458
DMPK 3 forward 19:45770139-45770162
GCAGTTTGCCCATCCACGTC
SpCas9





2459
DMPK 3 forward 19:45770140-45770162
CAGTTTGCCCATCCACGTC
SpCas9





2460
DMPK 3 forward 19:45770141-45770162
AGTTTGCCCATCCACGTC
SpCas9





2461
DMPK 3 forward 19:45770135-45770163
GCCTGCAGTTTGCCCATCCACGTCA
SpCas9





2462
DMPK 3 forward 19:45770136-45770163
CCTGCAGTTTGCCCATCCACGTCA
SpCas9





2463
DMPK 3 forward 19:45770137-45770163
CTGCAGTTTGCCCATCCACGTCA
SpCas9





2464
DMPK 3 forward 19:45770138-45770163
TGCAGTTTGCCCATCCACGTCA
SpCas9





2465
DMPK 3 forward 19:45770139-45770163
GCAGTTTGCCCATCCACGTCA
SpCas9





2466
DMPK 3 forward 19:45770140-45770163
CAGTTTGCCCATCCACGTCA
SpCas9





2467
DMPK 3 forward 19:45770141-45770163
AGTTTGCCCATCCACGTCA
SpCas9





2468
DMPK 3 forward 19:45770142-45770163
GTTTGCCCATCCACGTCA
SpCas9





2469
DMPK 3 reverse 19:45770136-45770164
GCCCTGACGTGGATGGGCAAACTGC
SpCas9





2470
DMPK 3 reverse 19:45770137-45770164
CCCTGACGTGGATGGGCAAACTGC
SpCas9





2471
DMPK 3 reverse 19:45770138-45770164
CCTGACGTGGATGGGCAAACTGC
SpCas9





2472
DMPK 3 reverse 19:45770139-45770164
CTGACGTGGATGGGCAAACTGC
SpCas9





2473
DMPK 3 reverse 19:45770140-45770164
TGACGTGGATGGGCAAACTGC
SpCas9





2474
DMPK 3 reverse 19:45770141-45770164
GACGTGGATGGGCAAACTGC
SpCas9





2475
DMPK 3 reverse 19:45770142-45770164
ACGTGGATGGGCAAACTGC
SpCas9





2476
DMPK 3 reverse 19:45770143-45770164
CGTGGATGGGCAAACTGC
SpCas9





2477
DMPK 3 reverse 19:45770137-45770165
GGCCCTGACGTGGATGGGCAAACTG
SpCas9





2478
DMPK 3 reverse 19:45770138-45770165
GCCCTGACGTGGATGGGCAAACTG
SpCas9





2479
DMPK 3 reverse 19:45770139-45770165
CCCTGACGTGGATGGGCAAACTG
SpCas9





2480
DMPK 3 reverse 19:45770140-45770165
CCTGACGTGGATGGGCAAACTG
SpCas9





2481
DMPK 3 reverse 19:45770141-45770165
CTGACGTGGATGGGCAAACTG
SpCas9





2482
DMPK 3 reverse 19:45770142-45770165
TGACGTGGATGGGCAAACTG
SpCas9





2483
DMPK 3 reverse 19:45770143-45770165
GACGTGGATGGGCAAACTG
SpCas9





2484
DMPK 3 reverse 19:45770144-45770165
ACGTGGATGGGCAAACTG
SpCas9





2485
DMPK 3 forward 19:45770141-45770169
AGTTTGCCCATCCACGTCAGGGCCT
SpCas9





2486
DMPK 3 forward 19:45770142-45770169
GTTTGCCCATCCACGTCAGGGCCT
SpCas9





2487
DMPK 3 forward 19:45770143-45770169
TTTGCCCATCCACGTCAGGGCCT
SpCas9





2488
DMPK 3 forward 19:45770144-45770169
TTGCCCATCCACGTCAGGGCCT
SpCas9





2489
DMPK 3 forward 19:45770145-45770169
TGCCCATCCACGTCAGGGCCT
SpCas9





2490
DMPK 3 forward 19:45770146-45770169
GCCCATCCACGTCAGGGCCT
SpCas9





2491
DMPK 3 forward 19:45770147-45770169
CCCATCCACGTCAGGGCCT
SpCas9





2492
DMPK 3 forward 19:45770148-45770169
CCATCCACGTCAGGGCCT
SpCas9





2493
DMPK 3 forward 19:45770146-45770174
GCCCATCCACGTCAGGGCCTCAGCC
SpCas9





2494
DMPK 3 forward 19:45770147-45770174
CCCATCCACGTCAGGGCCTCAGCC
SpCas9





2495
DMPK 3 forward 19:45770148-45770174
CCATCCACGTCAGGGCCTCAGCC
SpCas9





2496
DMPK 3 forward 19:45770149-45770174
CATCCACGTCAGGGCCTCAGCC
SpCas9





2497
DMPK 3 forward 19:45770150-45770174
ATCCACGTCAGGGCCTCAGCC
SpCas9





2498
DMPK 3 forward 19:45770151-45770174
TCCACGTCAGGGCCTCAGCC
SpCas9





2499
DMPK 3 forward 19:45770152-45770174
CCACGTCAGGGCCTCAGCC
SpCas9





2500
DMPK 3 forward 19:45770153-45770174
CACGTCAGGGCCTCAGCC
SpCas9





2501
DMPK 3 reverse 19:45770147-45770175
GCCAGGCTGAGGCCCTGACGTGGAT
SpCas9





2502
DMPK 3 reverse 19:45770148-45770175
CCAGGCTGAGGCCCTGACGTGGAT
SpCas9





2503
DMPK 3 reverse 19:45770149-45770175
CAGGCTGAGGCCCTGACGTGGAT
SpCas9





2504
DMPK 3 reverse 19:45770150-45770175
AGGCTGAGGCCCTGACGTGGAT
SpCas9





2505
DMPK 3 reverse 19:45770151-45770175
GGCTGAGGCCCTGACGTGGAT
SpCas9





2506
DMPK 3 reverse 19:45770152-45770175
GCTGAGGCCCTGACGTGGAT
SpCas9





2507
DMPK 3 reverse 19:45770153-45770175
CTGAGGCCCTGACGTGGAT
SpCas9





2508
DMPK 3 reverse 19:45770154-45770175
TGAGGCCCTGACGTGGAT
SpCas9





2509
DMPK 3 reverse 19:45770148-45770176
GGCCAGGCTGAGGCCCTGACGTGGA
SpCas9





2510
DMPK 3 reverse 19:45770149-45770176
GCCAGGCTGAGGCCCTGACGTGGA
SpCas9





2511
DMPK 3 reverse 19:45770150-45770176
CCAGGCTGAGGCCCTGACGTGGA
SpCas9





2512
DMPK 3 reverse 19:45770151-45770176
CAGGCTGAGGCCCTGACGTGGA
SpCas9





2513
DMPK 3 reverse 19:45770152-45770176
AGGCTGAGGCCCTGACGTGGA
SpCas9





2514
DMPK 3 reverse 19:45770153-45770176
GGCTGAGGCCCTGACGTGGA
SpCas9





2515
DMPK 3 reverse 19:45770154-45770176
GCTGAGGCCCTGACGTGGA
SpCas9





2516
DMPK 3 reverse 19:45770155-45770176
CTGAGGCCCTGACGTGGA
SpCas9





2517
DMPK 3 reverse 19:45770152-45770180
TTTCGGCCAGGCTGAGGCCCTGACG
SpCas9





2518
DMPK 3 reverse 19:45770153-45770180
TTCGGCCAGGCTGAGGCCCTGACG
SpCas9





2519
DMPK 3 reverse 19:45770154-45770180
TCGGCCAGGCTGAGGCCCTGACG
SpCas9





2520
DMPK 3 reverse 19:45770155-45770180
CGGCCAGGCTGAGGCCCTGACG
SpCas9





2521
DMPK 3 reverse 19:45770156-45770180
GGCCAGGCTGAGGCCCTGACG
SpCas9





2522
DMPK 3 reverse 19:45770157-45770180
GCCAGGCTGAGGCCCTGACG
SpCas9





2523
DMPK 3 reverse 19:45770158-45770180
CCAGGCTGAGGCCCTGACG
SpCas9





2524
DMPK 3 reverse 19:45770159-45770180
CAGGCTGAGGCCCTGACG
SpCas9





2525
DMPK 3 forward 19:45770153-45770181
CACGTCAGGGCCTCAGCCTGGCCGA
SpCas9





2526
DMPK 3 forward 19:45770154-45770181
ACGTCAGGGCCTCAGCCTGGCCGA
SpCas9





2527
DMPK 3 forward 19:45770155-45770181
CGTCAGGGCCTCAGCCTGGCCGA
SpCas9





2528
DMPK 3 forward 19:45770156-45770181
GTCAGGGCCTCAGCCTGGCCGA
SpCas9





2529
DMPK 3 forward 19:45770157-45770181
TCAGGGCCTCAGCCTGGCCGA
SpCas9





2530
DMPK 3 forward 19:45770158-45770181
CAGGGCCTCAGCCTGGCCGA
SpCas9





2531
DMPK 3 forward 19:45770159-45770181
AGGGCCTCAGCCTGGCCGA
SpCas9





2532
DMPK 3 forward 19:45770160-45770181
GGGCCTCAGCCTGGCCGA
SpCas9





2533
DMPK 3 forward 19:45770157-45770185
TCAGGGCCTCAGCCTGGCCGAAAGA
SpCas9





2534
DMPK 3 forward 19:45770158-45770185
CAGGGCCTCAGCCTGGCCGAAAGA
SpCas9





2535
DMPK 3 forward 19:45770159-45770185
AGGGCCTCAGCCTGGCCGAAAGA
SpCas9





2536
DMPK 3 forward 19:45770160-45770185
GGGCCTCAGCCTGGCCGAAAGA
SpCas9





2537
DMPK 3 forward 19:45770161-45770185
GGCCTCAGCCTGGCCGAAAGA
SpCas9





2538
DMPK 3 forward 19:45770162-45770185
GCCTCAGCCTGGCCGAAAGA
SpCas9





2539
DMPK 3 forward 19:45770163-45770185
CCTCAGCCTGGCCGAAAGA
SpCas9





2540
DMPK 3 forward 19:45770164-45770185
CTCAGCCTGGCCGAAAGA
SpCas9





2541
DMPK 3 forward 19:45770163-45770191
CCTCAGCCTGGCCGAAAGAAAGAAA
SpCas9





2542
DMPK 3 forward 19:45770164-45770191
CTCAGCCTGGCCGAAAGAAAGAAA
SpCas9





2543
DMPK 3 forward 19:45770165-45770191
TCAGCCTGGCCGAAAGAAAGAAA
SpCas9





2544
DMPK 3 forward 19:45770166-45770191
CAGCCTGGCCGAAAGAAAGAAA
SpCas9





2545
DMPK 3 forward 19:45770167-45770191
AGCCTGGCCGAAAGAAAGAAA
SpCas9





2546
DMPK 3 forward 19:45770168-45770191
GCCTGGCCGAAAGAAAGAAA
SpCas9





2547
DMPK 3 forward 19:45770169-45770191
CCTGGCCGAAAGAAAGAAA
SpCas9





2548
DMPK 3 forward 19:45770170-45770191
CTGGCCGAAAGAAAGAAA
SpCas9





2549
DMPK 3 reverse 19:45770163-45770191
CCATTTCTTTCTTTCGGCCAGGCTG
SpCas9





2550
DMPK 3 reverse 19:45770164-45770191
CATTTCTTTCTTTCGGCCAGGCTG
SpCas9





2551
DMPK 3 reverse 19:45770165-45770191
ATTTCTTTCTTTCGGCCAGGCTG
SpCas9





2552
DMPK 3 reverse 19:45770166-45770191
TTTCTTTCTTTCGGCCAGGCTG
SpCas9





2553
DMPK 3 reverse 19:45770167-45770191
TTCTTTCTTTCGGCCAGGCTG
SpCas9





2554
DMPK 3 reverse 19:45770168-45770191
TCTTTCTTTCGGCCAGGCTG
SpCas9





2555
DMPK 3 reverse 19:45770169-45770191
CTTTCTTTCGGCCAGGCTG
SpCas9





2556
DMPK 3 reverse 19:45770170-45770191
TTTCTTTCGGCCAGGCTG
SpCas9





2557
DMPK 3 reverse 19:45770164-45770192
ACCATTTCTTTCTTTCGGCCAGGCT
SpCas9





2558
DMPK 3 reverse 19:45770165-45770192
CCATTTCTTTCTTTCGGCCAGGCT
SpCas9





2559
DMPK 3 reverse 19:45770166-45770192
CATTTCTTTCTTTCGGCCAGGCT
SpCas9





2560
DMPK 3 reverse 19:45770167-45770192
ATTTCTTTCTTTCGGCCAGGCT
SpCas9





2561
DMPK 3 reverse 19:45770168-45770192
TTTCTTTCTTTCGGCCAGGCT
SpCas9





2562
DMPK 3 reverse 19:45770169-45770192
TTCTTTCTTTCGGCCAGGCT
SpCas9





2563
DMPK 3 reverse 19:45770170-45770192
TCTTTCTTTCGGCCAGGCT
SpCas9





2564
DMPK 3 reverse 19:45770171-45770192
CTTTCTTTCGGCCAGGCT
SpCas9





2565
DMPK 3 reverse 19:45770169-45770197
CACAGACCATTTCTTTCTTTCGGCC
SpCas9





2566
DMPK 3 reverse 19:45770170-45770197
ACAGACCATTTCTTTCTTTCGGCC
SpCas9





2567
DMPK 3 reverse 19:45770171-45770197
CAGACCATTTCTTTCTTTCGGCC
SpCas9





2568
DMPK 3 reverse 19:45770172-45770197
AGACCATTTCTTTCTTTCGGCC
SpCas9





2569
DMPK 3 reverse 19:45770173-45770197
GACCATTTCTTTCTTTCGGCC
SpCas9





2570
DMPK 3 reverse 19:45770174-45770197
ACCATTTCTTTCTTTCGGCC
SpCas9





2571
DMPK 3 reverse 19:45770175-45770197
CCATTTCTTTCTTTCGGCC
SpCas9





2572
DMPK 3 reverse 19:45770176-45770197
CATTTCTTTCTTTCGGCC
SpCas9





2573
DMPK 3 reverse 19:45770170-45770198
TCACAGACCATTTCTTTCTTTCGGC
SpCas9





2574
DMPK 3 reverse 19:45770171-45770198
CACAGACCATTTCTTTCTTTCGGC
SpCas9





2575
DMPK 3 reverse 19:45770172-45770198
ACAGACCATTTCTTTCTTTCGGC
SpCas9





2576
DMPK 3 reverse 19:45770173-45770198
CAGACCATTTCTTTCTTTCGGC
SpCas9





2577
DMPK 3 reverse 19:45770174-45770198
AGACCATTTCTTTCTTTCGGC
SpCas9





2578
DMPK 3 reverse 19:45770175-45770198
GACCATTTCTTTCTTTCGGC
SpCas9





2579
DMPK 3 reverse 19:45770176-45770198
ACCATTTCTTTCTTTCGGC
SpCas9





2580
DMPK 3 reverse 19:45770177-45770198
CCATTTCTTTCTTTCGGC
SpCas9





2581
DMPK 3 reverse 19:45770174-45770202
GGGATCACAGACCATTTCTTTCTTT
SpCas9





2582
DMPK 3 reverse 19:45770175-45770202
GGATCACAGACCATTTCTTTCTTT
SpCas9





2583
DMPK 3 reverse 19:45770176-45770202
GATCACAGACCATTTCTTTCTTT
SpCas9





2584
DMPK 3 reverse 19:45770177-45770202
ATCACAGACCATTTCTTTCTTT
SpCas9





2585
DMPK 3 reverse 19:45770178-45770202
TCACAGACCATTTCTTTCTTT
SpCas9





2586
DMPK 3 reverse 19:45770179-45770202
CACAGACCATTTCTTTCTTT
SpCas9





2587
DMPK 3 reverse 19:45770180-45770202
ACAGACCATTTCTTTCTTT
SpCas9





2588
DMPK 3 reverse 19:45770181-45770202
CAGACCATTTCTTTCTTT
SpCas9





2589
DMPK 3 forward 19:45770179-45770207
AGAAAGAAATGGTCTGTGATCCCCC
SpCas9





2590
DMPK 3 forward 19:45770180-45770207
GAAAGAAATGGTCTGTGATCCCCC
SpCas9





2591
DMPK 3 forward 19:45770181-45770207
AAAGAAATGGTCTGTGATCCCCC
SpCas9





2592
DMPK 3 forward 19:45770182-45770207
AAGAAATGGTCTGTGATCCCCC
SpCas9





2593
DMPK 3 forward 19:45770183-45770207
AGAAATGGTCTGTGATCCCCC
SpCas9





2594
DMPK 3 forward 19:45770184-45770207
GAAATGGTCTGTGATCCCCC
SpCas9





2595
DMPK 3 forward 19:45770185-45770207
AAATGGTCTGTGATCCCCC
SpCas9





2596
DMPK 3 forward 19:45770186-45770207
AATGGTCTGTGATCCCCC
SpCas9





2597
DMPK 3 forward 19:45770182-45770210
AAGAAATGGTCTGTGATCCCCCCAG
SpCas9





2598
DMPK 3 forward 19:45770183-45770210
AGAAATGGTCTGTGATCCCCCCAG
SpCas9





2599
DMPK 3 forward 19:45770184-45770210
GAAATGGTCTGTGATCCCCCCAG
SpCas9





2600
DMPK 3 forward 19:45770185-45770210
AAATGGTCTGTGATCCCCCCAG
SpCas9





2601
DMPK 3 forward 19:45770186-45770210
AATGGTCTGTGATCCCCCCAG
SpCas9





2602
DMPK 3 forward 19:45770187-45770210
ATGGTCTGTGATCCCCCCAG
SpCas9





2603
DMPK 3 forward 19:45770188-45770210
TGGTCTGTGATCCCCCCAG
SpCas9





2604
DMPK 3 forward 19:45770189-45770210
GGTCTGTGATCCCCCCAG
SpCas9





2605
DMPK 3 forward 19:45770185-45770213
AAATGGTCTGTGATCCCCCCAGCAG
SpCas9





2606
DMPK 3 forward 19:45770186-45770213
AATGGTCTGTGATCCCCCCAGCAG
SpCas9





2607
DMPK 3 forward 19:45770187-45770213
ATGGTCTGTGATCCCCCCAGCAG
SpCas9





2608
DMPK 3 forward 19:45770188-45770213
TGGTCTGTGATCCCCCCAGCAG
SpCas9





2609
DMPK 3 forward 19:45770189-45770213
GGTCTGTGATCCCCCCAGCAG
SpCas9





2610
DMPK 3 forward 19:45770190-45770213
GTCTGTGATCCCCCCAGCAG
SpCas9





2611
DMPK 3 forward 19:45770191-45770213
TCTGTGATCCCCCCAGCAG
SpCas9





2612
DMPK 3 forward 19:45770192-45770213
CTGTGATCCCCCCAGCAG
SpCas9





2613
DMPK 3 forward 19:45770188-45770216
TGGTCTGTGATCCCCCCAGCAGCAG
SpCas9





2614
DMPK 3 forward 19:45770189-45770216
GGTCTGTGATCCCCCCAGCAGCAG
SpCas9





2615
DMPK 3 forward 19:45770190-45770216
GTCTGTGATCCCCCCAGCAGCAG
SpCas9





2616
DMPK 3 forward 19:45770191-45770216
TCTGTGATCCCCCCAGCAGCAG
SpCas9





2617
DMPK 3 forward 19:45770192-45770216
CTGTGATCCCCCCAGCAGCAG
SpCas9





2618
DMPK 3 forward 19:45770193-45770216
TGTGATCCCCCCAGCAGCAG
SpCas9





2619
DMPK 3 forward 19:45770194-45770216
GTGATCCCCCCAGCAGCAG
SpCas9





2620
DMPK 3 forward 19:45770195-45770216
TGATCCCCCCAGCAGCAG
SpCas9





2621
DMPK 3 forward 19:45770191-45770219
TCTGTGATCCCCCCAGCAGCAGCAG
SpCas9





2622
DMPK 3 forward 19:45770192-45770219
CTGTGATCCCCCCAGCAGCAGCAG
SpCas9





2623
DMPK 3 forward 19:45770193-45770219
TGTGATCCCCCCAGCAGCAGCAG
SpCas9





2624
DMPK 3 forward 19:45770194-45770219
GTGATCCCCCCAGCAGCAGCAG
SpCas9





2625
DMPK 3 forward 19:45770195-45770219
TGATCCCCCCAGCAGCAGCAG
SpCas9





2626
DMPK 3 forward 19:45770196-45770219
GATCCCCCCAGCAGCAGCAG
SpCas9





2627
DMPK 3 forward 19:45770197-45770219
ATCCCCCCAGCAGCAGCAG
SpCas9





2628
DMPK 3 forward 19:45770198-45770219
TCCCCCCAGCAGCAGCAG
SpCas9





2629
DMPK 3 reverse 19:45770192-45770220
GCTGCTGCTGCTGCTGGGGGGATCA
SpCas9





2630
DMPK 3 reverse 19:45770193-45770220
CTGCTGCTGCTGCTGGGGGGATCA
SpCas9





2631
DMPK 3 reverse 19:45770194-45770220
TGCTGCTGCTGCTGGGGGGATCA
SpCas9





2632
DMPK 3 reverse 19:45770195-45770220
GCTGCTGCTGCTGGGGGGATCA
SpCas9





2633
DMPK 3 reverse 19:45770196-45770220
CTGCTGCTGCTGGGGGGATCA
SpCas9





2634
DMPK 3 reverse 19:45770197-45770220
TGCTGCTGCTGGGGGGATCA
SpCas9





2635
DMPK 3 reverse 19:45770198-45770220
GCTGCTGCTGGGGGGATCA
SpCas9





2636
DMPK 3 reverse 19:45770199-45770220
CTGCTGCTGGGGGGATCA
SpCas9





2637
DMPK 3 forward 19:45770194-45770222
GTGATCCCCCCAGCAGCAGCAGCAG
SpCas9





2638
DMPK 3 forward 19:45770195-45770222
TGATCCCCCCAGCAGCAGCAGCAG
SpCas9





2639
DMPK 3 forward 19:45770196-45770222
GATCCCCCCAGCAGCAGCAGCAG
SpCas9





2640
DMPK 3 forward 19:45770197-45770222
ATCCCCCCAGCAGCAGCAGCAG
SpCas9





2641
DMPK 3 forward 19:45770198-45770222
TCCCCCCAGCAGCAGCAGCAG
SpCas9





2642
DMPK 3 forward 19:45770199-45770222
CCCCCCAGCAGCAGCAGCAG
SpCas9





2643
DMPK 3 forward 19:45770200-45770222
CCCCCAGCAGCAGCAGCAG
SpCas9





2644
DMPK 3 forward 19:45770201-45770222
CCCCAGCAGCAGCAGCAG
SpCas9





2645
DMPK 3 forward 19:45770197-45770225
ATCCCCCCAGCAGCAGCAGCAGCAG
SpCas9





2646
DMPK 3 forward 19:45770198-45770225
TCCCCCCAGCAGCAGCAGCAGCAG
SpCas9





2647
DMPK 3 forward 19:45770199-45770225
CCCCCCAGCAGCAGCAGCAGCAG
SpCas9





2648
DMPK 3 forward 19:45770200-45770225
CCCCCAGCAGCAGCAGCAGCAG
SpCas9





2649
DMPK 3 forward 19:45770201-45770225
CCCCAGCAGCAGCAGCAGCAG
SpCas9





2650
DMPK 3 forward 19:45770202-45770225
CCCAGCAGCAGCAGCAGCAG
SpCas9





2651
DMPK 3 forward 19:45770203-45770225
CCAGCAGCAGCAGCAGCAG
SpCas9





2652
DMPK 3 forward 19:45770204-45770225
CAGCAGCAGCAGCAGCAG
SpCas9





2653
DMPK 3 reverse 19:45770199-45770227
TGCTGCTGCTGCTGCTGCTGCTGGG
SpCas9





2654
DMPK 3 reverse 19:45770200-45770227
GCTGCTGCTGCTGCTGCTGCTGGG
SpCas9





2655
DMPK 3 reverse 19:45770201-45770227
CTGCTGCTGCTGCTGCTGCTGGG
SpCas9





2656
DMPK 3 reverse 19:45770202-45770227
TGCTGCTGCTGCTGCTGCTGGG
SpCas9





2657
DMPK 3 reverse 19:45770203-45770227
GCTGCTGCTGCTGCTGCTGGG
SpCas9





2658
DMPK 3 reverse 19:45770204-45770227
CTGCTGCTGCTGCTGCTGGG
SpCas9





2659
DMPK 3 reverse 19:45770205-45770227
TGCTGCTGCTGCTGCTGGG
SpCas9





2660
DMPK 3 reverse 19:45770206-45770227
GCTGCTGCTGCTGCTGGG
SpCas9





2661
DMPK 3 forward 19:45770200-45770228
CCCCCAGCAGCAGCAGCAGCAGCAG
SpCas9





2662
DMPK 3 forward 19:45770201-45770228
CCCCAGCAGCAGCAGCAGCAGCAG
SpCas9





2663
DMPK 3 forward 19:45770202-45770228
CCCAGCAGCAGCAGCAGCAGCAG
SpCas9





2664
DMPK 3 forward 19:45770203-45770228
CCAGCAGCAGCAGCAGCAGCAG
SpCas9





2665
DMPK 3 forward 19:45770204-45770228
CAGCAGCAGCAGCAGCAGCAG
SpCas9





2666
DMPK 3 forward 19:45770205-45770228
AGCAGCAGCAGCAGCAGCAG
SpCas9





2667
DMPK 3 forward 19:45770206-45770228
GCAGCAGCAGCAGCAGCAG
SpCas9





2668
DMPK 3 forward 19:45770207-45770228
CAGCAGCAGCAGCAGCAG
SpCas9





2669
DMPK 3 reverse 19:45770200-45770228
CTGCTGCTGCTGCTGCTGCTGCTGG
SpCas9





2670
DMPK 3 reverse 19:45770201-45770228
TGCTGCTGCTGCTGCTGCTGCTGG
SpCas9





2671
DMPK 3 reverse 19:45770202-45770228
GCTGCTGCTGCTGCTGCTGCTGG
SpCas9





2672
DMPK 3 reverse 19:45770203-45770228
CTGCTGCTGCTGCTGCTGCTGG
SpCas9





2673
DMPK 3 reverse 19:45770204-45770228
TGCTGCTGCTGCTGCTGCTGG
SpCas9





2674
DMPK 3 reverse 19:45770205-45770228
GCTGCTGCTGCTGCTGCTGG
SpCas9





2675
DMPK 3 reverse 19:45770206-45770228
CTGCTGCTGCTGCTGCTGG
SpCas9





2676
DMPK 3 reverse 19:45770207-45770228
TGCTGCTGCTGCTGCTGG
SpCas9





2677
DMPK 3 reverse 19:45770201-45770229
GCTGCTGCTGCTGCTGCTGCTGCTG
SpCas9





2678
DMPK 3 reverse 19:45770202-45770229
CTGCTGCTGCTGCTGCTGCTGCTG
SpCas9





2679
DMPK 3 reverse 19:45770203-45770229
TGCTGCTGCTGCTGCTGCTGCTG
SpCas9





2680
DMPK 3 reverse 19:45770204-45770229
GCTGCTGCTGCTGCTGCTGCTG
SpCas9





2681
DMPK 3 reverse 19:45770205-45770229
CTGCTGCTGCTGCTGCTGCTG
SpCas9





2682
DMPK 3 reverse 19:45770206-45770229
TGCTGCTGCTGCTGCTGCTG
SpCas9





2683
DMPK 3 reverse 19:45770207-45770229
GCTGCTGCTGCTGCTGCTG
SpCas9





2684
DMPK 3 reverse 19:45770208-45770229
CTGCTGCTGCTGCTGCTG
SpCas9





2685
DMPK 3 reverse 19:45770202-45770230
TGCTGCTGCTGCTGCTGCTGCTGCT
SpCas9





2686
DMPK 3 reverse 19:45770203-45770230
GCTGCTGCTGCTGCTGCTGCTGCT
SpCas9





2687
DMPK 3 reverse 19:45770204-45770230
CTGCTGCTGCTGCTGCTGCTGCT
SpCas9





2688
DMPK 3 reverse 19:45770205-45770230
TGCTGCTGCTGCTGCTGCTGCT
SpCas9





2689
DMPK 3 reverse 19:45770206-45770230
GCTGCTGCTGCTGCTGCTGCT
SpCas9





2690
DMPK 3 reverse 19:45770207-45770230
CTGCTGCTGCTGCTGCTGCT
SpCas9





2691
DMPK 3 reverse 19:45770208-45770230
TGCTGCTGCTGCTGCTGCT
SpCas9





2692
DMPK 3 reverse 19:45770209-45770230
GCTGCTGCTGCTGCTGCT
SpCas9





2693
DMPK 3 forward 19:45770203-45770231
CCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





2694
DMPK 3 forward 19:45770204-45770231
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





2695
DMPK 3 forward 19:45770205-45770231
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





2696
DMPK 3 forward 19:45770206-45770231
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





2697
DMPK 3 forward 19:45770207-45770231
CAGCAGCAGCAGCAGCAGCAG
SpCas9





2698
DMPK 3 forward 19:45770208-45770231
AGCAGCAGCAGCAGCAGCAG
SpCas9





2699
DMPK 3 forward 19:45770209-45770231
GCAGCAGCAGCAGCAGCAG
SpCas9





2700
DMPK 3 forward 19:45770210-45770231
CAGCAGCAGCAGCAGCAG
SpCas9





2701
DMPK 3 reverse 19:45770203-45770231
CTGCTGCTGCTGCTGCTGCTGCTGC
SpCas9





2702
DMPK 3 reverse 19:45770204-45770231
TGCTGCTGCTGCTGCTGCTGCTGC
SpCas9





2703
DMPK 3 reverse 19:45770205-45770231
GCTGCTGCTGCTGCTGCTGCTGC
SpCas9





2704
DMPK 3 reverse 19:45770206-45770231
CTGCTGCTGCTGCTGCTGCTGC
SpCas9





2705
DMPK 3 reverse 19:45770207-45770231
TGCTGCTGCTGCTGCTGCTGC
SpCas9





2706
DMPK 3 reverse 19:45770208-45770231
GCTGCTGCTGCTGCTGCTGC
SpCas9





2707
DMPK 3 reverse 19:45770209-45770231
CTGCTGCTGCTGCTGCTGC
SpCas9





2708
DMPK 3 reverse 19:45770210-45770231
TGCTGCTGCTGCTGCTGC
SpCas9





2709
DMPK 5 forward 19:45770266-45770288
CGGCTACAAGGACCCTTC
AsCpf1-1





2710
DMPK 5 forward 19:45770266-45770289
CGGCTACAAGGACCCTTCG
AsCpf1-1





2711
DMPK 5 forward 19:45770266-45770290
CGGCTACAAGGACCCTTCGA
AsCpf1-1





2712
DMPK 5 forward 19:45770266-45770291
CGGCTACAAGGACCCTTCGAG
AsCpf1-1





2713
DMPK 5 forward 19:45770266-45770292
CGGCTACAAGGACCCTTCGAGC
AsCpf1-1





2714
DMPK 5 forward 19:45770266-45770293
CGGCTACAAGGACCCTTCGAGCC
AsCpf1-1





2715
DMPK 5 forward 19:45770266-45770294
CGGCTACAAGGACCCTTCGAGCCC
AsCpf1-1





2716
DMPK 5 forward 19:45770266-45770295
CGGCTACAAGGACCCTTCGAGCCCC
AsCpf1-1





2717
DMPK 5 forward 19:45770267-45770289
GGCTACAAGGACCCTTCG
AsCpf1-1





2718
DMPK 5 forward 19:45770267-45770290
GGCTACAAGGACCCTTCGA
AsCpf1-1





2719
DMPK 5 forward 19:45770267-45770291
GGCTACAAGGACCCTTCGAG
AsCpf1-1





2720
DMPK 5 forward 19:45770267-45770292
GGCTACAAGGACCCTTCGAGC
AsCpf1-1





2721
DMPK 5 forward 19:45770267-45770293
GGCTACAAGGACCCTTCGAGCC
AsCpf1-1





2722
DMPK 5 forward 19:45770267-45770294
GGCTACAAGGACCCTTCGAGCCC
AsCpf1-1





2723
DMPK 5 forward 19:45770267-45770295
GGCTACAAGGACCCTTCGAGCCCC
AsCpf1-1





2724
DMPK 5 forward 19:45770267-45770296
GGCTACAAGGACCCTTCGAGCCCCG
AsCpf1-1





2725
DMPK 5 reverse 19:45770282-45770304
CGGCCGGCGAACGGGGCT
AsCpf1-1





2726
DMPK 5 reverse 19:45770282-45770305
CGGCCGGCGAACGGGGCTC
AsCpf1-1





2727
DMPK 5 reverse 19:45770282-45770306
CGGCCGGCGAACGGGGCTCG
AsCpf1-1





2728
DMPK 5 reverse 19:45770282-45770307
CGGCCGGCGAACGGGGCTCGA
AsCpf1-1





2729
DMPK 5 reverse 19:45770282-45770308
CGGCCGGCGAACGGGGCTCGAA
AsCpf1-1





2730
DMPK 5 reverse 19:45770282-45770309
CGGCCGGCGAACGGGGCTCGAAG
AsCpf1-1





2731
DMPK 5 reverse 19:45770282-45770310
CGGCCGGCGAACGGGGCTCGAAGG
AsCpf1-1





2732
DMPK 5 reverse 19:45770282-45770311
CGGCCGGCGAACGGGGCTCGAAGGG
AsCpf1-1





2733
DMPK 5 forward 19:45770285-45770307
AGCCCCGTTCGCCGGCCG
AsCpf1-1





2734
DMPK 5 forward 19:45770285-45770308
AGCCCCGTTCGCCGGCCGC
AsCpf1-1





2735
DMPK 5 forward 19:45770285-45770309
AGCCCCGTTCGCCGGCCGCG
AsCpf1-1





2736
DMPK 5 forward 19:45770285-45770310
AGCCCCGTTCGCCGGCCGCGG
AsCpf1-1





2737
DMPK 5 forward 19:45770285-45770311
AGCCCCGTTCGCCGGCCGCGGA
AsCpf1-1





2738
DMPK 5 forward 19:45770285-45770312
AGCCCCGTTCGCCGGCCGCGGAC
AsCpf1-1





2739
DMPK 5 forward 19:45770285-45770313
AGCCCCGTTCGCCGGCCGCGGACC
AsCpf1-1





2740
DMPK 5 forward 19:45770285-45770314
AGCCCCGTTCGCCGGCCGCGGACCC
AsCpf1-1





2741
DMPK 5 forward 19:45770296-45770318
CCGGCCGCGGACCCGGCC
AsCpf1-1





2742
DMPK 5 forward 19:45770296-45770319
CCGGCCGCGGACCCGGCCC
AsCpf1-1





2743
DMPK 5 forward 19:45770296-45770320
CCGGCCGCGGACCCGGCCCC
AsCpf1-1





2744
DMPK 5 forward 19:45770296-45770321
CCGGCCGCGGACCCGGCCCCT
AsCpf1-1





2745
DMPK 5 forward 19:45770296-45770322
CCGGCCGCGGACCCGGCCCCTC
AsCpf1-1





2746
DMPK 5 forward 19:45770296-45770323
CCGGCCGCGGACCCGGCCCCTCC
AsCpf1-1





2747
DMPK 5 forward 19:45770296-45770324
CCGGCCGCGGACCCGGCCCCTCCC
AsCpf1-1





2748
DMPK 5 forward 19:45770296-45770325
CCGGCCGCGGACCCGGCCCCTCCCT
AsCpf1-1





2749
DMPK 5 forward 19:45770320-45770342
TCCCCGGCCGCTAGGGGG
AsCpf1-1





2750
DMPK 5 forward 19:45770320-45770343
TCCCCGGCCGCTAGGGGGC
AsCpf1-1





2751
DMPK 5 forward 19:45770320-45770344
TCCCCGGCCGCTAGGGGGCG
AsCpf1-1





2752
DMPK 5 forward 19:45770320-45770345
TCCCCGGCCGCTAGGGGGCGG
AsCpf1-1





2753
DMPK 5 forward 19:45770320-45770346
TCCCCGGCCGCTAGGGGGCGGG
AsCpf1-1





2754
DMPK 5 forward 19:45770320-45770347
TCCCCGGCCGCTAGGGGGCGGGC
AsCpf1-1





2755
DMPK 5 forward 19:45770320-45770348
TCCCCGGCCGCTAGGGGGCGGGCC
AsCpf1-1





2756
DMPK 5 forward 19:45770320-45770349
TCCCCGGCCGCTAGGGGGCGGGCCC
AsCpf1-1





2757
DMPK 5 reverse 19:45770323-45770345
GGCCCGCCCCCTAGCGGC
AsCpf1-1





2758
DMPK 5 reverse 19:45770323-45770346
GGCCCGCCCCCTAGCGGCC
AsCpf1-1





2759
DMPK 5 reverse 19:45770323-45770347
GGCCCGCCCCCTAGCGGCCG
AsCpf1-1





2760
DMPK 5 reverse 19:45770323-45770348
GGCCCGCCCCCTAGCGGCCGG
AsCpf1-1





2761
DMPK 5 reverse 19:45770323-45770349
GGCCCGCCCCCTAGCGGCCGGG
AsCpf1-1





2762
DMPK 5 reverse 19:45770323-45770350
GGCCCGCCCCCTAGCGGCCGGGG
AsCpf1-1





2763
DMPK 5 reverse 19:45770323-45770351
GGCCCGCCCCCTAGCGGCCGGGGA
AsCpf1-1





2764
DMPK 5 reverse 19:45770323-45770352
GGCCCGCCCCCTAGCGGCCGGGGAG
AsCpf1-1





2765
DMPK 5 forward 19:45770324-45770346
CGGCCGCTAGGGGGCGGG
AsCpf1-1





2766
DMPK 5 forward 19:45770324-45770347
CGGCCGCTAGGGGGCGGGC
AsCpf1-1





2767
DMPK 5 forward 19:45770324-45770348
CGGCCGCTAGGGGGCGGGCC
AsCpf1-1





2768
DMPK 5 forward 19:45770324-45770349
CGGCCGCTAGGGGGCGGGCCC
AsCpf1-1





2769
DMPK 5 forward 19:45770324-45770350
CGGCCGCTAGGGGGCGGGCCCG
AsCpf1-1





2770
DMPK 5 forward 19:45770324-45770351
CGGCCGCTAGGGGGCGGGCCCGG
AsCpf1-1





2771
DMPK 5 forward 19:45770324-45770352
CGGCCGCTAGGGGGCGGGCCCGGA
AsCpf1-1





2772
DMPK 5 forward 19:45770324-45770353
CGGCCGCTAGGGGGCGGGCCCGGAT
AsCpf1-1





2773
DMPK 5 reverse 19:45770336-45770358
GTCCTGTGATCCGGGCCC
AsCpf1-1





2774
DMPK 5 reverse 19:45770336-45770359
GTCCTGTGATCCGGGCCCG
AsCpf1-1





2775
DMPK 5 reverse 19:45770336-45770360
GTCCTGTGATCCGGGCCCGC
AsCpf1-1





2776
DMPK 5 reverse 19:45770336-45770361
GTCCTGTGATCCGGGCCCGCC
AsCpf1-1





2777
DMPK 5 reverse 19:45770336-45770362
GTCCTGTGATCCGGGCCCGCCC
AsCpf1-1





2778
DMPK 5 reverse 19:45770336-45770363
GTCCTGTGATCCGGGCCCGCCCC
AsCpf1-1





2779
DMPK 5 reverse 19:45770336-45770364
GTCCTGTGATCCGGGCCCGCCCCC
AsCpf1-1





2780
DMPK 5 reverse 19:45770336-45770365
GTCCTGTGATCCGGGCCCGCCCCCT
AsCpf1-1





2781
DMPK 5 reverse 19:45770346-45770368
CCCAGCTCCAGTCCTGTG
AsCpf1-1





2782
DMPK 5 reverse 19:45770346-45770369
CCCAGCTCCAGTCCTGTGA
AsCpf1-1





2783
DMPK 5 reverse 19:45770346-45770370
CCCAGCTCCAGTCCTGTGAT
AsCpf1-1





2784
DMPK 5 reverse 19:45770346-45770371
CCCAGCTCCAGTCCTGTGATC
AsCpf1-1





2785
DMPK 5 reverse 19:45770346-45770372
CCCAGCTCCAGTCCTGTGATCC
AsCpf1-1





2786
DMPK 5 reverse 19:45770346-45770373
CCCAGCTCCAGTCCTGTGATCCG
AsCpf1-1





2787
DMPK 5 reverse 19:45770346-45770374
CCCAGCTCCAGTCCTGTGATCCGG
AsCpf1-1





2788
DMPK 5 reverse 19:45770346-45770375
CCCAGCTCCAGTCCTGTGATCCGGG
AsCpf1-1





2789
DMPK 5 reverse 19:45770360-45770382
AGCGTGGGTCTCCGCCCA
AsCpf1-1





2790
DMPK 5 reverse 19:45770360-45770383
AGCGTGGGTCTCCGCCCAG
AsCpf1-1





2791
DMPK 5 reverse 19:45770360-45770384
AGCGTGGGTCTCCGCCCAGC
AsCpf1-1





2792
DMPK 5 reverse 19:45770360-45770385
AGCGTGGGTCTCCGCCCAGCT
AsCpf1-1





2793
DMPK 5 reverse 19:45770360-45770386
AGCGTGGGTCTCCGCCCAGCTC
AsCpf1-1





2794
DMPK 5 reverse 19:45770360-45770387
AGCGTGGGTCTCCGCCCAGCTCC
AsCpf1-1





2795
DMPK 5 reverse 19:45770360-45770388
AGCGTGGGTCTCCGCCCAGCTCCA
AsCpf1-1





2796
DMPK 5 reverse 19:45770360-45770389
AGCGTGGGTCTCCGCCCAGCTCCAG
AsCpf1-1





2797
DMPK 5 reverse 19:45770371-45770393
CAACCGCTCCGAGCGTGG
AsCpf1-1





2798
DMPK 5 reverse 19:45770371-45770394
CAACCGCTCCGAGCGTGGG
AsCpf1-1





2799
DMPK 5 reverse 19:45770371-45770395
CAACCGCTCCGAGCGTGGGT
AsCpf1-1





2800
DMPK 5 reverse 19:45770371-45770396
CAACCGCTCCGAGCGTGGGTC
AsCpf1-1





2801
DMPK 5 reverse 19:45770371-45770397
CAACCGCTCCGAGCGTGGGTCT
AsCpf1-1





2802
DMPK 5 reverse 19:45770371-45770398
CAACCGCTCCGAGCGTGGGTCTC
AsCpf1-1





2803
DMPK 5 reverse 19:45770371-45770399
CAACCGCTCCGAGCGTGGGTCTCC
AsCpf1-1





2804
DMPK 5 reverse 19:45770371-45770400
CAACCGCTCCGAGCGTGGGTCTCCG
AsCpf1-1





2805
DMPK 5 reverse 19:45770438-45770460
GGGCCCCGTTGGAAGACT
AsCpf1-1





2806
DMPK 5 reverse 19:45770438-45770461
GGGCCCCGTTGGAAGACTG
AsCpf1-1





2807
DMPK 5 reverse 19:45770438-45770462
GGGCCCCGTTGGAAGACTGA
AsCpf1-1





2808
DMPK 5 reverse 19:45770438-45770463
GGGCCCCGTTGGAAGACTGAG
AsCpf1-1





2809
DMPK 5 reverse 19:45770438-45770464
GGGCCCCGTTGGAAGACTGAGT
AsCpf1-1





2810
DMPK 5 reverse 19:45770438-45770465
GGGCCCCGTTGGAAGACTGAGTG
AsCpf1-1





2811
DMPK 5 reverse 19:45770438-45770466
GGGCCCCGTTGGAAGACTGAGTGC
AsCpf1-1





2812
DMPK 5 reverse 19:45770438-45770467
GGGCCCCGTTGGAAGACTGAGTGCC
AsCpf1-1





2813
DMPK 5 reverse 19:45770444-45770466
ACTCCGGGGCCCCGTTGG
AsCpf1-1





2814
DMPK 5 reverse 19:45770444-45770467
ACTCCGGGGCCCCGTTGGA
AsCpf1-1





2815
DMPK 5 reverse 19:45770444-45770468
ACTCCGGGGCCCCGTTGGAA
AsCpf1-1





2816
DMPK 5 reverse 19:45770444-45770469
ACTCCGGGGCCCCGTTGGAAG
AsCpf1-1





2817
DMPK 5 reverse 19:45770444-45770470
ACTCCGGGGCCCCGTTGGAAGA
AsCpf1-1





2818
DMPK 5 reverse 19:45770444-45770471
ACTCCGGGGCCCCGTTGGAAGAC
AsCpf1-1





2819
DMPK 5 reverse 19:45770444-45770472
ACTCCGGGGCCCCGTTGGAAGACT
AsCpf1-1





2820
DMPK 5 reverse 19:45770444-45770473
ACTCCGGGGCCCCGTTGGAAGACTG
AsCpf1-1





2821
DMPK 5 forward 19:45770449-45770471
AACGGGGCCCCGGAGTCG
AsCpf1-1





2822
DMPK 5 forward 19:45770449-45770472
AACGGGGCCCCGGAGTCGA
AsCpf1-1





2823
DMPK 5 forward 19:45770449-45770473
AACGGGGCCCCGGAGTCGAA
AsCpf1-1





2824
DMPK 5 forward 19:45770449-45770474
AACGGGGCCCCGGAGTCGAAG
AsCpf1-1





2825
DMPK 5 forward 19:45770449-45770475
AACGGGGCCCCGGAGTCGAAGA
AsCpf1-1





2826
DMPK 5 forward 19:45770449-45770476
AACGGGGCCCCGGAGTCGAAGAC
AsCpf1-1





2827
DMPK 5 forward 19:45770449-45770477
AACGGGGCCCCGGAGTCGAAGACA
AsCpf1-1





2828
DMPK 5 forward 19:45770449-45770478
AACGGGGCCCCGGAGTCGAAGACAG
AsCpf1-1





2829
DMPK 5 forward 19:45770450-45770472
ACGGGGCCCCGGAGTCGA
AsCpf1-1





2830
DMPK 5 forward 19:45770450-45770473
ACGGGGCCCCGGAGTCGAA
AsCpf1-1





2831
DMPK 5 forward 19:45770450-45770474
ACGGGGCCCCGGAGTCGAAG
AsCpf1-1





2832
DMPK 5 forward 19:45770450-45770475
ACGGGGCCCCGGAGTCGAAGA
AsCpf1-1





2833
DMPK 5 forward 19:45770450-45770476
ACGGGGCCCCGGAGTCGAAGAC
AsCpf1-1





2834
DMPK 5 forward 19:45770450-45770477
ACGGGGCCCCGGAGTCGAAGACA
AsCpf1-1





2835
DMPK 5 forward 19:45770450-45770478
ACGGGGCCCCGGAGTCGAAGACAG
AsCpf1-1





2836
DMPK 5 forward 19:45770450-45770479
ACGGGGCCCCGGAGTCGAAGACAGT
AsCpf1-1





2837
DMPK 5 reverse 19:45770465-45770487
TGAACCCTAGAACTGTCT
AsCpf1-1





2838
DMPK 5 reverse 19:45770465-45770488
TGAACCCTAGAACTGTCTT
AsCpf1-1





2839
DMPK 5 reverse 19:45770465-45770489
TGAACCCTAGAACTGTCTTC
AsCpf1-1





2840
DMPK 5 reverse 19:45770465-45770490
TGAACCCTAGAACTGTCTTCG
AsCpf1-1





2841
DMPK 5 reverse 19:45770465-45770491
TGAACCCTAGAACTGTCTTCGA
AsCpf1-1





2842
DMPK 5 reverse 19:45770465-45770492
TGAACCCTAGAACTGTCTTCGAC
AsCpf1-1





2843
DMPK 5 reverse 19:45770465-45770493
TGAACCCTAGAACTGTCTTCGACT
AsCpf1-1





2844
DMPK 5 reverse 19:45770465-45770494
TGAACCCTAGAACTGTCTTCGACTC
AsCpf1-1





2845
DMPK 5 forward 19:45770252-45770283
CAGCAGCAGCAGCATTCCCGGCTAC
SaCas9





2846
DMPK 5 forward 19:45770253-45770283
AGCAGCAGCAGCATTCCCGGCTAC
SaCas9





2847
DMPK 5 forward 19:45770254-45770283
GCAGCAGCAGCATTCCCGGCTAC
SaCas9





2848
DMPK 5 forward 19:45770255-45770283
CAGCAGCAGCATTCCCGGCTAC
SaCas9





2849
DMPK 5 forward 19:45770256-45770283
AGCAGCAGCATTCCCGGCTAC
SaCas9





2850
DMPK 5 forward 19:45770257-45770283
GCAGCAGCATTCCCGGCTAC
SaCas9





2851
DMPK 5 forward 19:45770258-45770283
CAGCAGCATTCCCGGCTAC
SaCas9





2852
DMPK 5 forward 19:45770259-45770283
AGCAGCATTCCCGGCTAC
SaCas9





2853
DMPK 5 forward 19:45770261-45770292
CAGCATTCCCGGCTACAAGGACCCT
SaCas9





2854
DMPK 5 forward 19:45770262-45770292
AGCATTCCCGGCTACAAGGACCCT
SaCas9





2855
DMPK 5 forward 19:45770263-45770292
GCATTCCCGGCTACAAGGACCCT
SaCas9





2856
DMPK 5 forward 19:45770264-45770292
CATTCCCGGCTACAAGGACCCT
SaCas9





2857
DMPK 5 forward 19:45770265-45770292
ATTCCCGGCTACAAGGACCCT
SaCas9





2858
DMPK 5 forward 19:45770266-45770292
TTCCCGGCTACAAGGACCCT
SaCas9





2859
DMPK 5 forward 19:45770267-45770292
TCCCGGCTACAAGGACCCT
SaCas9





2860
DMPK 5 forward 19:45770268-45770292
CCCGGCTACAAGGACCCT
SaCas9





2861
DMPK 5 reverse 19:45770265-45770296
CGGGGCTCGAAGGGTCCTTGTAGCC
SaCas9





2862
DMPK 5 reverse 19:45770266-45770296
GGGGCTCGAAGGGTCCTTGTAGCC
SaCas9





2863
DMPK 5 reverse 19:45770267-45770296
GGGCTCGAAGGGTCCTTGTAGCC
SaCas9





2864
DMPK 5 reverse 19:45770268-45770296
GGCTCGAAGGGTCCTTGTAGCC
SaCas9





2865
DMPK 5 reverse 19:45770269-45770296
GCTCGAAGGGTCCTTGTAGCC
SaCas9





2866
DMPK 5 reverse 19:45770270-45770296
CTCGAAGGGTCCTTGTAGCC
SaCas9





2867
DMPK 5 reverse 19:45770271-45770296
TCGAAGGGTCCTTGTAGCC
SaCas9





2868
DMPK 5 reverse 19:45770272-45770296
CGAAGGGTCCTTGTAGCC
SaCas9





2869
DMPK 5 reverse 19:45770266-45770297
ACGGGGCTCGAAGGGTCCTTGTAGC
SaCas9





2870
DMPK 5 reverse 19:45770267-45770297
CGGGGCTCGAAGGGTCCTTGTAGC
SaCas9





2871
DMPK 5 reverse 19:45770268-45770297
GGGGCTCGAAGGGTCCTTGTAGC
SaCas9





2872
DMPK 5 reverse 19:45770269-45770297
GGGCTCGAAGGGTCCTTGTAGC
SaCas9





2873
DMPK 5 reverse 19:45770270-45770297
GGCTCGAAGGGTCCTTGTAGC
SaCas9





2874
DMPK 5 reverse 19:45770271-45770297
GCTCGAAGGGTCCTTGTAGC
SaCas9





2875
DMPK 5 reverse 19:45770272-45770297
CTCGAAGGGTCCTTGTAGC
SaCas9





2876
DMPK 5 reverse 19:45770273-45770297
TCGAAGGGTCCTTGTAGC
SaCas9





2877
DMPK 5 reverse 19:45770267-45770298
AACGGGGCTCGAAGGGTCCTTGTAG
SaCas9





2878
DMPK 5 reverse 19:45770268-45770298
ACGGGGCTCGAAGGGTCCTTGTAG
SaCas9





2879
DMPK 5 reverse 19:45770269-45770298
CGGGGCTCGAAGGGTCCTTGTAG
SaCas9





2880
DMPK 5 reverse 19:45770270-45770298
GGGGCTCGAAGGGTCCTTGTAG
SaCas9





2881
DMPK 5 reverse 19:45770271-45770298
GGGCTCGAAGGGTCCTTGTAG
SaCas9





2882
DMPK 5 reverse 19:45770272-45770298
GGCTCGAAGGGTCCTTGTAG
SaCas9





2883
DMPK 5 reverse 19:45770273-45770298
GCTCGAAGGGTCCTTGTAG
SaCas9





2884
DMPK 5 reverse 19:45770274-45770298
CTCGAAGGGTCCTTGTAG
SaCas9





2885
DMPK 5 forward 19:45770281-45770312
ACCCTTCGAGCCCCGTTCGCCGGCC
SaCas9





2886
DMPK 5 forward 19:45770282-45770312
CCCTTCGAGCCCCGTTCGCCGGCC
SaCas9





2887
DMPK 5 forward 19:45770283-45770312
CCTTCGAGCCCCGTTCGCCGGCC
SaCas9





2888
DMPK 5 forward 19:45770284-45770312
CTTCGAGCCCCGTTCGCCGGCC
SaCas9





2889
DMPK 5 forward 19:45770285-45770312
TTCGAGCCCCGTTCGCCGGCC
SaCas9





2890
DMPK 5 forward 19:45770286-45770312
TCGAGCCCCGTTCGCCGGCC
SaCas9





2891
DMPK 5 forward 19:45770287-45770312
CGAGCCCCGTTCGCCGGCC
SaCas9





2892
DMPK 5 forward 19:45770288-45770312
GAGCCCCGTTCGCCGGCC
SaCas9





2893
DMPK 5 reverse 19:45770281-45770312
GTCCGCGGCCGGCGAACGGGGCTCG
SaCas9





2894
DMPK 5 reverse 19:45770282-45770312
TCCGCGGCCGGCGAACGGGGCTCG
SaCas9





2895
DMPK 5 reverse 19:45770283-45770312
CCGCGGCCGGCGAACGGGGCTCG
SaCas9





2896
DMPK 5 reverse 19:45770284-45770312
CGCGGCCGGCGAACGGGGCTCG
SaCas9





2897
DMPK 5 reverse 19:45770285-45770312
GCGGCCGGCGAACGGGGCTCG
SaCas9





2898
DMPK 5 reverse 19:45770286-45770312
CGGCCGGCGAACGGGGCTCG
SaCas9





2899
DMPK 5 reverse 19:45770287-45770312
GGCCGGCGAACGGGGCTCG
SaCas9





2900
DMPK 5 reverse 19:45770288-45770312
GCCGGCGAACGGGGCTCG
SaCas9





2901
DMPK 5 reverse 19:45770284-45770315
CGGGTCCGCGGCCGGCGAACGGGGC
SaCas9





2902
DMPK 5 reverse 19:45770285-45770315
GGGTCCGCGGCCGGCGAACGGGGC
SaCas9





2903
DMPK 5 reverse 19:45770286-45770315
GGTCCGCGGCCGGCGAACGGGGC
SaCas9





2904
DMPK 5 reverse 19:45770287-45770315
GTCCGCGGCCGGCGAACGGGGC
SaCas9





2905
DMPK 5 reverse 19:45770288-45770315
TCCGCGGCCGGCGAACGGGGC
SaCas9





2906
DMPK 5 reverse 19:45770289-45770315
CCGCGGCCGGCGAACGGGGC
SaCas9





2907
DMPK 5 reverse 19:45770290-45770315
CGCGGCCGGCGAACGGGGC
SaCas9





2908
DMPK 5 reverse 19:45770291-45770315
GCGGCCGGCGAACGGGGC
SaCas9





2909
DMPK 5 reverse 19:45770290-45770321
AGGGGCCGGGTCCGCGGCCGGCGAA
SaCas9





2910
DMPK 5 reverse 19:45770291-45770321
GGGGCCGGGTCCGCGGCCGGCGAA
SaCas9





2911
DMPK 5 reverse 19:45770292-45770321
GGGCCGGGTCCGCGGCCGGCGAA
SaCas9





2912
DMPK 5 reverse 19:45770293-45770321
GGCCGGGTCCGCGGCCGGCGAA
SaCas9





2913
DMPK 5 reverse 19:45770294-45770321
GCCGGGTCCGCGGCCGGCGAA
SaCas9





2914
DMPK 5 reverse 19:45770295-45770321
CCGGGTCCGCGGCCGGCGAA
SaCas9





2915
DMPK 5 reverse 19:45770296-45770321
CGGGTCCGCGGCCGGCGAA
SaCas9





2916
DMPK 5 reverse 19:45770297-45770321
GGGTCCGCGGCCGGCGAA
SaCas9





2917
DMPK 5 reverse 19:45770291-45770322
GAGGGGCCGGGTCCGCGGCCGGCGA
SaCas9





2918
DMPK 5 reverse 19:45770292-45770322
AGGGGCCGGGTCCGCGGCCGGCGA
SaCas9





2919
DMPK 5 reverse 19:45770293-45770322
GGGGCCGGGTCCGCGGCCGGCGA
SaCas9





2920
DMPK 5 reverse 19:45770294-45770322
GGGCCGGGTCCGCGGCCGGCGA
SaCas9





2921
DMPK 5 reverse 19:45770295-45770322
GGCCGGGTCCGCGGCCGGCGA
SaCas9





2922
DMPK 5 reverse 19:45770296-45770322
GCCGGGTCCGCGGCCGGCGA
SaCas9





2923
DMPK 5 reverse 19:45770297-45770322
CCGGGTCCGCGGCCGGCGA
SaCas9





2924
DMPK 5 reverse 19:45770298-45770322
CGGGTCCGCGGCCGGCGA
SaCas9





2925
DMPK 5 reverse 19:45770295-45770326
GAGGGAGGGGCCGGGTCCGCGGCCG
SaCas9





2926
DMPK 5 reverse 19:45770296-45770326
AGGGAGGGGCCGGGTCCGCGGCCG
SaCas9





2927
DMPK 5 reverse 19:45770297-45770326
GGGAGGGGCCGGGTCCGCGGCCG
SaCas9





2928
DMPK 5 reverse 19:45770298-45770326
GGAGGGGCCGGGTCCGCGGCCG
SaCas9





2929
DMPK 5 reverse 19:45770299-45770326
GAGGGGCCGGGTCCGCGGCCG
SaCas9





2930
DMPK 5 reverse 19:45770300-45770326
AGGGGCCGGGTCCGCGGCCG
SaCas9





2931
DMPK 5 reverse 19:45770301-45770326
GGGGCCGGGTCCGCGGCCG
SaCas9





2932
DMPK 5 reverse 19:45770302-45770326
GGGCCGGGTCCGCGGCCG
SaCas9





2933
DMPK 5 forward 19:45770310-45770341
ACCCGGCCCCTCCCTCCCCGGCCGC
SaCas9





2934
DMPK 5 forward 19:45770311-45770341
CCCGGCCCCTCCCTCCCCGGCCGC
SaCas9





2935
DMPK 5 forward 19:45770312-45770341
CCGGCCCCTCCCTCCCCGGCCGC
SaCas9





2936
DMPK 5 forward 19:45770313-45770341
CGGCCCCTCCCTCCCCGGCCGC
SaCas9





2937
DMPK 5 forward 19:45770314-45770341
GGCCCCTCCCTCCCCGGCCGC
SaCas9





2938
DMPK 5 forward 19:45770315-45770341
GCCCCTCCCTCCCCGGCCGC
SaCas9





2939
DMPK 5 forward 19:45770316-45770341
CCCCTCCCTCCCCGGCCGC
SaCas9





2940
DMPK 5 forward 19:45770317-45770341
CCCTCCCTCCCCGGCCGC
SaCas9





2941
DMPK 5 reverse 19:45770310-45770341
CCCCTAGCGGCCGGGGAGGGAGGGG
SaCas9





2942
DMPK 5 reverse 19:45770311-45770341
CCCTAGCGGCCGGGGAGGGAGGGG
SaCas9





2943
DMPK 5 reverse 19:45770312-45770341
CCTAGCGGCCGGGGAGGGAGGGG
SaCas9





2944
DMPK 5 reverse 19:45770313-45770341
CTAGCGGCCGGGGAGGGAGGGG
SaCas9





2945
DMPK 5 reverse 19:45770314-45770341
TAGCGGCCGGGGAGGGAGGGG
SaCas9





2946
DMPK 5 reverse 19:45770315-45770341
AGCGGCCGGGGAGGGAGGGG
SaCas9





2947
DMPK 5 reverse 19:45770316-45770341
GCGGCCGGGGAGGGAGGGG
SaCas9





2948
DMPK 5 reverse 19:45770317-45770341
CGGCCGGGGAGGGAGGGG
SaCas9





2949
DMPK 5 forward 19:45770311-45770342
CCCGGCCCCTCCCTCCCCGGCCGCT
SaCas9





2950
DMPK 5 forward 19:45770312-45770342
CCGGCCCCTCCCTCCCCGGCCGCT
SaCas9





2951
DMPK 5 forward 19:45770313-45770342
CGGCCCCTCCCTCCCCGGCCGCT
SaCas9





2952
DMPK 5 forward 19:45770314-45770342
GGCCCCTCCCTCCCCGGCCGCT
SaCas9





2953
DMPK 5 forward 19:45770315-45770342
GCCCCTCCCTCCCCGGCCGCT
SaCas9





2954
DMPK 5 forward 19:45770316-45770342
CCCCTCCCTCCCCGGCCGCT
SaCas9





2955
DMPK 5 forward 19:45770317-45770342
CCCTCCCTCCCCGGCCGCT
SaCas9





2956
DMPK 5 forward 19:45770318-45770342
CCTCCCTCCCCGGCCGCT
SaCas9





2957
DMPK 5 forward 19:45770312-45770343
CCGGCCCCTCCCTCCCCGGCCGCTA
SaCas9





2958
DMPK 5 forward 19:45770313-45770343
CGGCCCCTCCCTCCCCGGCCGCTA
SaCas9





2959
DMPK 5 forward 19:45770314-45770343
GGCCCCTCCCTCCCCGGCCGCTA
SaCas9





2960
DMPK 5 forward 19:45770315-45770343
GCCCCTCCCTCCCCGGCCGCTA
SaCas9





2961
DMPK 5 forward 19:45770316-45770343
CCCCTCCCTCCCCGGCCGCTA
SaCas9





2962
DMPK 5 forward 19:45770317-45770343
CCCTCCCTCCCCGGCCGCTA
SaCas9





2963
DMPK 5 forward 19:45770318-45770343
CCTCCCTCCCCGGCCGCTA
SaCas9





2964
DMPK 5 forward 19:45770319-45770343
CTCCCTCCCCGGCCGCTA
SaCas9





2965
DMPK 5 reverse 19:45770315-45770346
CCCGCCCCCTAGCGGCCGGGGAGGG
SaCas9





2966
DMPK 5 reverse 19:45770316-45770346
CCGCCCCCTAGCGGCCGGGGAGGG
SaCas9





2967
DMPK 5 reverse 19:45770317-45770346
CGCCCCCTAGCGGCCGGGGAGGG
SaCas9





2968
DMPK 5 reverse 19:45770318-45770346
GCCCCCTAGCGGCCGGGGAGGG
SaCas9





2969
DMPK 5 reverse 19:45770319-45770346
CCCCCTAGCGGCCGGGGAGGG
SaCas9





2970
DMPK 5 reverse 19:45770320-45770346
CCCCTAGCGGCCGGGGAGGG
SaCas9





2971
DMPK 5 reverse 19:45770321-45770346
CCCTAGCGGCCGGGGAGGG
SaCas9





2972
DMPK 5 reverse 19:45770322-45770346
CCTAGCGGCCGGGGAGGG
SaCas9





2973
DMPK 5 forward 19:45770316-45770347
CCCCTCCCTCCCCGGCCGCTAGGGG
SaCas9





2974
DMPK 5 forward 19:45770317-45770347
CCCTCCCTCCCCGGCCGCTAGGGG
SaCas9





2975
DMPK 5 forward 19:45770318-45770347
CCTCCCTCCCCGGCCGCTAGGGG
SaCas9





2976
DMPK 5 forward 19:45770319-45770347
CTCCCTCCCCGGCCGCTAGGGG
SaCas9





2977
DMPK 5 forward 19:45770320-45770347
TCCCTCCCCGGCCGCTAGGGG
SaCas9





2978
DMPK 5 forward 19:45770321-45770347
CCCTCCCCGGCCGCTAGGGG
SaCas9





2979
DMPK 5 forward 19:45770322-45770347
CCTCCCCGGCCGCTAGGGG
SaCas9





2980
DMPK 5 forward 19:45770323-45770347
CTCCCCGGCCGCTAGGGG
SaCas9





2981
DMPK 5 reverse 19:45770316-45770347
GCCCGCCCCCTAGCGGCCGGGGAGG
SaCas9





2982
DMPK 5 reverse 19:45770317-45770347
CCCGCCCCCTAGCGGCCGGGGAGG
SaCas9





2983
DMPK 5 reverse 19:45770318-45770347
CCGCCCCCTAGCGGCCGGGGAGG
SaCas9





2984
DMPK 5 reverse 19:45770319-45770347
CGCCCCCTAGCGGCCGGGGAGG
SaCas9





2985
DMPK 5 reverse 19:45770320-45770347
GCCCCCTAGCGGCCGGGGAGG
SaCas9





2986
DMPK 5 reverse 19:45770321-45770347
CCCCCTAGCGGCCGGGGAGG
SaCas9





2987
DMPK 5 reverse 19:45770322-45770347
CCCCTAGCGGCCGGGGAGG
SaCas9





2988
DMPK 5 reverse 19:45770323-45770347
CCCTAGCGGCCGGGGAGG
SaCas9





2989
DMPK 5 reverse 19:45770318-45770349
GGGCCCGCCCCCTAGCGGCCGGGGA
SaCas9





2990
DMPK 5 reverse 19:45770319-45770349
GGCCCGCCCCCTAGCGGCCGGGGA
SaCas9





2991
DMPK 5 reverse 19:45770320-45770349
GCCCGCCCCCTAGCGGCCGGGGA
SaCas9





2992
DMPK 5 reverse 19:45770321-45770349
CCCGCCCCCTAGCGGCCGGGGA
SaCas9





2993
DMPK 5 reverse 19:45770322-45770349
CCGCCCCCTAGCGGCCGGGGA
SaCas9





2994
DMPK 5 reverse 19:45770323-45770349
CGCCCCCTAGCGGCCGGGGA
SaCas9





2995
DMPK 5 reverse 19:45770324-45770349
GCCCCCTAGCGGCCGGGGA
SaCas9





2996
DMPK 5 reverse 19:45770325-45770349
CCCCCTAGCGGCCGGGGA
SaCas9





2997
DMPK 5 reverse 19:45770319-45770350
CGGGCCCGCCCCCTAGCGGCCGGGG
SaCas9





2998
DMPK 5 reverse 19:45770320-45770350
GGGCCCGCCCCCTAGCGGCCGGGG
SaCas9





2999
DMPK 5 reverse 19:45770321-45770350
GGCCCGCCCCCTAGCGGCCGGGG
SaCas9





3000
DMPK 5 reverse 19:45770322-45770350
GCCCGCCCCCTAGCGGCCGGGG
SaCas9





3001
DMPK 5 reverse 19:45770323-45770350
CCCGCCCCCTAGCGGCCGGGG
SaCas9





3002
DMPK 5 reverse 19:45770324-45770350
CCGCCCCCTAGCGGCCGGGG
SaCas9





3003
DMPK 5 reverse 19:45770325-45770350
CGCCCCCTAGCGGCCGGGG
SaCas9





3004
DMPK 5 reverse 19:45770326-45770350
GCCCCCTAGCGGCCGGGG
SaCas9





3005
DMPK 5 reverse 19:45770320-45770351
CCGGGCCCGCCCCCTAGCGGCCGGG
SaCas9





3006
DMPK 5 reverse 19:45770321-45770351
CGGGCCCGCCCCCTAGCGGCCGGG
SaCas9





3007
DMPK 5 reverse 19:45770322-45770351
GGGCCCGCCCCCTAGCGGCCGGG
SaCas9





3008
DMPK 5 reverse 19:45770323-45770351
GGCCCGCCCCCTAGCGGCCGGG
SaCas9





3009
DMPK 5 reverse 19:45770324-45770351
GCCCGCCCCCTAGCGGCCGGG
SaCas9





3010
DMPK 5 reverse 19:45770325-45770351
CCCGCCCCCTAGCGGCCGGG
SaCas9





3011
DMPK 5 reverse 19:45770326-45770351
CCGCCCCCTAGCGGCCGGG
SaCas9





3012
DMPK 5 reverse 19:45770327-45770351
CGCCCCCTAGCGGCCGGG
SaCas9





3013
DMPK 5 forward 19:45770322-45770353
CCTCCCCGGCCGCTAGGGGGCGGGC
SaCas9





3014
DMPK 5 forward 19:45770323-45770353
CTCCCCGGCCGCTAGGGGGCGGGC
SaCas9





3015
DMPK 5 forward 19:45770324-45770353
TCCCCGGCCGCTAGGGGGCGGGC
SaCas9





3016
DMPK 5 forward 19:45770325-45770353
CCCCGGCCGCTAGGGGGCGGGC
SaCas9





3017
DMPK 5 forward 19:45770326-45770353
CCCGGCCGCTAGGGGGCGGGC
SaCas9





3018
DMPK 5 forward 19:45770327-45770353
CCGGCCGCTAGGGGGCGGGC
SaCas9





3019
DMPK 5 forward 19:45770328-45770353
CGGCCGCTAGGGGGCGGGC
SaCas9





3020
DMPK 5 forward 19:45770329-45770353
GGCCGCTAGGGGGCGGGC
SaCas9





3021
DMPK 5 reverse 19:45770322-45770353
ATCCGGGCCCGCCCCCTAGCGGCCG
SaCas9





3022
DMPK 5 reverse 19:45770323-45770353
TCCGGGCCCGCCCCCTAGCGGCCG
SaCas9





3023
DMPK 5 reverse 19:45770324-45770353
CCGGGCCCGCCCCCTAGCGGCCG
SaCas9





3024
DMPK 5 reverse 19:45770325-45770353
CGGGCCCGCCCCCTAGCGGCCG
SaCas9





3025
DMPK 5 reverse 19:45770326-45770353
GGGCCCGCCCCCTAGCGGCCG
SaCas9





3026
DMPK 5 reverse 19:45770327-45770353
GGCCCGCCCCCTAGCGGCCG
SaCas9





3027
DMPK 5 reverse 19:45770328-45770353
GCCCGCCCCCTAGCGGCCG
SaCas9





3028
DMPK 5 reverse 19:45770329-45770353
CCCGCCCCCTAGCGGCCG
SaCas9





3029
DMPK 5 reverse 19:45770323-45770354
GATCCGGGCCCGCCCCCTAGCGGCC
SaCas9





3030
DMPK 5 reverse 19:45770324-45770354
ATCCGGGCCCGCCCCCTAGCGGCC
SaCas9





3031
DMPK 5 reverse 19:45770325-45770354
TCCGGGCCCGCCCCCTAGCGGCC
SaCas9





3032
DMPK 5 reverse 19:45770326-45770354
CCGGGCCCGCCCCCTAGCGGCC
SaCas9





3033
DMPK 5 reverse 19:45770327-45770354
CGGGCCCGCCCCCTAGCGGCC
SaCas9





3034
DMPK 5 reverse 19:45770328-45770354
GGGCCCGCCCCCTAGCGGCC
SaCas9





3035
DMPK 5 reverse 19:45770329-45770354
GGCCCGCCCCCTAGCGGCC
SaCas9





3036
DMPK 5 reverse 19:45770330-45770354
GCCCGCCCCCTAGCGGCC
SaCas9





3037
DMPK 5 reverse 19:45770324-45770355
TGATCCGGGCCCGCCCCCTAGCGGC
SaCas9





3038
DMPK 5 reverse 19:45770325-45770355
GATCCGGGCCCGCCCCCTAGCGGC
SaCas9





3039
DMPK 5 reverse 19:45770326-45770355
ATCCGGGCCCGCCCCCTAGCGGC
SaCas9





3040
DMPK 5 reverse 19:45770327-45770355
TCCGGGCCCGCCCCCTAGCGGC
SaCas9





3041
DMPK 5 reverse 19:45770328-45770355
CCGGGCCCGCCCCCTAGCGGC
SaCas9





3042
DMPK 5 reverse 19:45770329-45770355
CGGGCCCGCCCCCTAGCGGC
SaCas9





3043
DMPK 5 reverse 19:45770330-45770355
GGGCCCGCCCCCTAGCGGC
SaCas9





3044
DMPK 5 reverse 19:45770331-45770355
GGCCCGCCCCCTAGCGGC
SaCas9





3045
DMPK 5 reverse 19:45770325-45770356
GTGATCCGGGCCCGCCCCCTAGCGG
SaCas9





3046
DMPK 5 reverse 19:45770326-45770356
TGATCCGGGCCCGCCCCCTAGCGG
SaCas9





3047
DMPK 5 reverse 19:45770327-45770356
GATCCGGGCCCGCCCCCTAGCGG
SaCas9





3048
DMPK 5 reverse 19:45770328-45770356
ATCCGGGCCCGCCCCCTAGCGG
SaCas9





3049
DMPK 5 reverse 19:45770329-45770356
TCCGGGCCCGCCCCCTAGCGG
SaCas9





3050
DMPK 5 reverse 19:45770330-45770356
CCGGGCCCGCCCCCTAGCGG
SaCas9





3051
DMPK 5 reverse 19:45770331-45770356
CGGGCCCGCCCCCTAGCGG
SaCas9





3052
DMPK 5 reverse 19:45770332-45770356
GGGCCCGCCCCCTAGCGG
SaCas9





3053
DMPK 5 forward 19:45770330-45770361
GCCGCTAGGGGGCGGGCCCGGATCA
SaCas9





3054
DMPK 5 forward 19:45770331-45770361
CCGCTAGGGGGCGGGCCCGGATCA
SaCas9





3055
DMPK 5 forward 19:45770332-45770361
CGCTAGGGGGCGGGCCCGGATCA
SaCas9





3056
DMPK 5 forward 19:45770333-45770361
GCTAGGGGGCGGGCCCGGATCA
SaCas9





3057
DMPK 5 forward 19:45770334-45770361
CTAGGGGGCGGGCCCGGATCA
SaCas9





3058
DMPK 5 forward 19:45770335-45770361
TAGGGGGCGGGCCCGGATCA
SaCas9





3059
DMPK 5 forward 19:45770336-45770361
AGGGGGCGGGCCCGGATCA
SaCas9





3060
DMPK 5 forward 19:45770337-45770361
GGGGGCGGGCCCGGATCA
SaCas9





3061
DMPK 5 forward 19:45770335-45770366
TAGGGGGCGGGCCCGGATCACAGGA
SaCas9





3062
DMPK 5 forward 19:45770336-45770366
AGGGGGCGGGCCCGGATCACAGGA
SaCas9





3063
DMPK 5 forward 19:45770337-45770366
GGGGGCGGGCCCGGATCACAGGA
SaCas9





3064
DMPK 5 forward 19:45770338-45770366
GGGGCGGGCCCGGATCACAGGA
SaCas9





3065
DMPK 5 forward 19:45770339-45770366
GGGCGGGCCCGGATCACAGGA
SaCas9





3066
DMPK 5 forward 19:45770340-45770366
GGCGGGCCCGGATCACAGGA
SaCas9





3067
DMPK 5 forward 19:45770341-45770366
GCGGGCCCGGATCACAGGA
SaCas9





3068
DMPK 5 forward 19:45770342-45770366
CGGGCCCGGATCACAGGA
SaCas9





3069
DMPK 5 forward 19:45770336-45770367
AGGGGGCGGGCCCGGATCACAGGAC
SaCas9





3070
DMPK 5 forward 19:45770337-45770367
GGGGGCGGGCCCGGATCACAGGAC
SaCas9





3071
DMPK 5 forward 19:45770338-45770367
GGGGCGGGCCCGGATCACAGGAC
SaCas9





3072
DMPK 5 forward 19:45770339-45770367
GGGCGGGCCCGGATCACAGGAC
SaCas9





3073
DMPK 5 forward 19:45770340-45770367
GGCGGGCCCGGATCACAGGAC
SaCas9





3074
DMPK 5 forward 19:45770341-45770367
GCGGGCCCGGATCACAGGAC
SaCas9





3075
DMPK 5 forward 19:45770342-45770367
CGGGCCCGGATCACAGGAC
SaCas9





3076
DMPK 5 forward 19:45770343-45770367
GGGCCCGGATCACAGGAC
SaCas9





3077
DMPK 5 forward 19:45770341-45770372
GCGGGCCCGGATCACAGGACTGGAG
SaCas9





3078
DMPK 5 forward 19:45770342-45770372
CGGGCCCGGATCACAGGACTGGAG
SaCas9





3079
DMPK 5 forward 19:45770343-45770372
GGGCCCGGATCACAGGACTGGAG
SaCas9





3080
DMPK 5 forward 19:45770344-45770372
GGCCCGGATCACAGGACTGGAG
SaCas9





3081
DMPK 5 forward 19:45770345-45770372
GCCCGGATCACAGGACTGGAG
SaCas9





3082
DMPK 5 forward 19:45770346-45770372
CCCGGATCACAGGACTGGAG
SaCas9





3083
DMPK 5 forward 19:45770347-45770372
CCGGATCACAGGACTGGAG
SaCas9





3084
DMPK 5 forward 19:45770348-45770372
CGGATCACAGGACTGGAG
SaCas9





3085
DMPK 5 forward 19:45770345-45770376
GCCCGGATCACAGGACTGGAGCTGG
SaCas9





3086
DMPK 5 forward 19:45770346-45770376
CCCGGATCACAGGACTGGAGCTGG
SaCas9





3087
DMPK 5 forward 19:45770347-45770376
CCGGATCACAGGACTGGAGCTGG
SaCas9





3088
DMPK 5 forward 19:45770348-45770376
CGGATCACAGGACTGGAGCTGG
SaCas9





3089
DMPK 5 forward 19:45770349-45770376
GGATCACAGGACTGGAGCTGG
SaCas9





3090
DMPK 5 forward 19:45770350-45770376
GATCACAGGACTGGAGCTGG
SaCas9





3091
DMPK 5 forward 19:45770351-45770376
ATCACAGGACTGGAGCTGG
SaCas9





3092
DMPK 5 forward 19:45770352-45770376
TCACAGGACTGGAGCTGG
SaCas9





3093
DMPK 5 reverse 19:45770345-45770376
CTCCGCCCAGCTCCAGTCCTGTGAT
SaCas9





3094
DMPK 5 reverse 19:45770346-45770376
TCCGCCCAGCTCCAGTCCTGTGAT
SaCas9





3095
DMPK 5 reverse 19:45770347-45770376
CCGCCCAGCTCCAGTCCTGTGAT
SaCas9





3096
DMPK 5 reverse 19:45770348-45770376
CGCCCAGCTCCAGTCCTGTGAT
SaCas9





3097
DMPK 5 reverse 19:45770349-45770376
GCCCAGCTCCAGTCCTGTGAT
SaCas9





3098
DMPK 5 reverse 19:45770350-45770376
CCCAGCTCCAGTCCTGTGAT
SaCas9





3099
DMPK 5 reverse 19:45770351-45770376
CCAGCTCCAGTCCTGTGAT
SaCas9





3100
DMPK 5 reverse 19:45770352-45770376
CAGCTCCAGTCCTGTGAT
SaCas9





3101
DMPK 5 forward 19:45770346-45770377
CCCGGATCACAGGACTGGAGCTGGG
SaCas9





3102
DMPK 5 forward 19:45770347-45770377
CCGGATCACAGGACTGGAGCTGGG
SaCas9





3103
DMPK 5 forward 19:45770348-45770377
CGGATCACAGGACTGGAGCTGGG
SaCas9





3104
DMPK 5 forward 19:45770349-45770377
GGATCACAGGACTGGAGCTGGG
SaCas9





3105
DMPK 5 forward 19:45770350-45770377
GATCACAGGACTGGAGCTGGG
SaCas9





3106
DMPK 5 forward 19:45770351-45770377
ATCACAGGACTGGAGCTGGG
SaCas9





3107
DMPK 5 forward 19:45770352-45770377
TCACAGGACTGGAGCTGGG
SaCas9





3108
DMPK 5 forward 19:45770353-45770377
CACAGGACTGGAGCTGGG
SaCas9





3109
DMPK 5 forward 19:45770359-45770390
ACTGGAGCTGGGCGGAGACCCACGC
SaCas9





3110
DMPK 5 forward 19:45770360-45770390
CTGGAGCTGGGCGGAGACCCACGC
SaCas9





3111
DMPK 5 forward 19:45770361-45770390
TGGAGCTGGGCGGAGACCCACGC
SaCas9





3112
DMPK 5 forward 19:45770362-45770390
GGAGCTGGGCGGAGACCCACGC
SaCas9





3113
DMPK 5 forward 19:45770363-45770390
GAGCTGGGCGGAGACCCACGC
SaCas9





3114
DMPK 5 forward 19:45770364-45770390
AGCTGGGCGGAGACCCACGC
SaCas9





3115
DMPK 5 forward 19:45770365-45770390
GCTGGGCGGAGACCCACGC
SaCas9





3116
DMPK 5 forward 19:45770366-45770390
CTGGGCGGAGACCCACGC
SaCas9





3117
DMPK 5 forward 19:45770360-45770391
CTGGAGCTGGGCGGAGACCCACGCT
SaCas9





3118
DMPK 5 forward 19:45770361-45770391
TGGAGCTGGGCGGAGACCCACGCT
SaCas9





3119
DMPK 5 forward 19:45770362-45770391
GGAGCTGGGCGGAGACCCACGCT
SaCas9





3120
DMPK 5 forward 19:45770363-45770391
GAGCTGGGCGGAGACCCACGCT
SaCas9





3121
DMPK 5 forward 19:45770364-45770391
AGCTGGGCGGAGACCCACGCT
SaCas9





3122
DMPK 5 forward 19:45770365-45770391
GCTGGGCGGAGACCCACGCT
SaCas9





3123
DMPK 5 forward 19:45770366-45770391
CTGGGCGGAGACCCACGCT
SaCas9





3124
DMPK 5 forward 19:45770367-45770391
TGGGCGGAGACCCACGCT
SaCas9





3125
DMPK 5 forward 19:45770370-45770401
GCGGAGACCCACGCTCGGAGCGGTT
SaCas9





3126
DMPK 5 forward 19:45770371-45770401
CGGAGACCCACGCTCGGAGCGGTT
SaCas9





3127
DMPK 5 forward 19:45770372-45770401
GGAGACCCACGCTCGGAGCGGTT
SaCas9





3128
DMPK 5 forward 19:45770373-45770401
GAGACCCACGCTCGGAGCGGTT
SaCas9





3129
DMPK 5 forward 19:45770374-45770401
AGACCCACGCTCGGAGCGGTT
SaCas9





3130
DMPK 5 forward 19:45770375-45770401
GACCCACGCTCGGAGCGGTT
SaCas9





3131
DMPK 5 forward 19:45770376-45770401
ACCCACGCTCGGAGCGGTT
SaCas9





3132
DMPK 5 forward 19:45770377-45770401
CCCACGCTCGGAGCGGTT
SaCas9





3133
DMPK 5 reverse 19:45770376-45770407
CTGCCAGTTCACAACCGCTCCGAGC
SaCas9





3134
DMPK 5 reverse 19:45770377-45770407
TGCCAGTTCACAACCGCTCCGAGC
SaCas9





3135
DMPK 5 reverse 19:45770378-45770407
GCCAGTTCACAACCGCTCCGAGC
SaCas9





3136
DMPK 5 reverse 19:45770379-45770407
CCAGTTCACAACCGCTCCGAGC
SaCas9





3137
DMPK 5 reverse 19:45770380-45770407
CAGTTCACAACCGCTCCGAGC
SaCas9





3138
DMPK 5 reverse 19:45770381-45770407
AGTTCACAACCGCTCCGAGC
SaCas9





3139
DMPK 5 reverse 19:45770382-45770407
GTTCACAACCGCTCCGAGC
SaCas9





3140
DMPK 5 reverse 19:45770383-45770407
TTCACAACCGCTCCGAGC
SaCas9





3141
DMPK 5 reverse 19:45770382-45770413
CACCGCCTGCCAGTTCACAACCGCT
SaCas9





3142
DMPK 5 reverse 19:45770383-45770413
ACCGCCTGCCAGTTCACAACCGCT
SaCas9





3143
DMPK 5 reverse 19:45770384-45770413
CCGCCTGCCAGTTCACAACCGCT
SaCas9





3144
DMPK 5 reverse 19:45770385-45770413
CGCCTGCCAGTTCACAACCGCT
SaCas9





3145
DMPK 5 reverse 19:45770386-45770413
GCCTGCCAGTTCACAACCGCT
SaCas9





3146
DMPK 5 reverse 19:45770387-45770413
CCTGCCAGTTCACAACCGCT
SaCas9





3147
DMPK 5 reverse 19:45770388-45770413
CTGCCAGTTCACAACCGCT
SaCas9





3148
DMPK 5 reverse 19:45770389-45770413
TGCCAGTTCACAACCGCT
SaCas9





3149
DMPK 5 forward 19:45770385-45770416
CGGAGCGGTTGTGAACTGGCAGGCG
SaCas9





3150
DMPK 5 forward 19:45770386-45770416
GGAGCGGTTGTGAACTGGCAGGCG
SaCas9





3151
DMPK 5 forward 19:45770387-45770416
GAGCGGTTGTGAACTGGCAGGCG
SaCas9





3152
DMPK 5 forward 19:45770388-45770416
AGCGGTTGTGAACTGGCAGGCG
SaCas9





3153
DMPK 5 forward 19:45770389-45770416
GCGGTTGTGAACTGGCAGGCG
SaCas9





3154
DMPK 5 forward 19:45770390-45770416
CGGTTGTGAACTGGCAGGCG
SaCas9





3155
DMPK 5 forward 19:45770391-45770416
GGTTGTGAACTGGCAGGCG
SaCas9





3156
DMPK 5 forward 19:45770392-45770416
GTTGTGAACTGGCAGGCG
SaCas9





3157
DMPK 5 forward 19:45770410-45770441
GTGGGCGCGGCTTCTGTGCCGTGCC
SaCas9





3158
DMPK 5 forward 19:45770411-45770441
TGGGCGCGGCTTCTGTGCCGTGCC
SaCas9





3159
DMPK 5 forward 19:45770412-45770441
GGGCGCGGCTTCTGTGCCGTGCC
SaCas9





3160
DMPK 5 forward 19:45770413-45770441
GGCGCGGCTTCTGTGCCGTGCC
SaCas9





3161
DMPK 5 forward 19:45770414-45770441
GCGCGGCTTCTGTGCCGTGCC
SaCas9





3162
DMPK 5 forward 19:45770415-45770441
CGCGGCTTCTGTGCCGTGCC
SaCas9





3163
DMPK 5 forward 19:45770416-45770441
GCGGCTTCTGTGCCGTGCC
SaCas9





3164
DMPK 5 forward 19:45770417-45770441
CGGCTTCTGTGCCGTGCC
SaCas9





3165
DMPK 5 reverse 19:45770420-45770451
AAGACTGAGTGCCCGGGGCACGGCA
SaCas9





3166
DMPK 5 reverse 19:45770421-45770451
AGACTGAGTGCCCGGGGCACGGCA
SaCas9





3167
DMPK 5 reverse 19:45770422-45770451
GACTGAGTGCCCGGGGCACGGCA
SaCas9





3168
DMPK 5 reverse 19:45770423-45770451
ACTGAGTGCCCGGGGCACGGCA
SaCas9





3169
DMPK 5 reverse 19:45770424-45770451
CTGAGTGCCCGGGGCACGGCA
SaCas9





3170
DMPK 5 reverse 19:45770425-45770451
TGAGTGCCCGGGGCACGGCA
SaCas9





3171
DMPK 5 reverse 19:45770426-45770451
GAGTGCCCGGGGCACGGCA
SaCas9





3172
DMPK 5 reverse 19:45770427-45770451
AGTGCCCGGGGCACGGCA
SaCas9





3173
DMPK 5 forward 19:45770429-45770460
CGTGCCCCGGGCACTCAGTCTTCCA
SaCas9





3174
DMPK 5 forward 19:45770430-45770460
GTGCCCCGGGCACTCAGTCTTCCA
SaCas9





3175
DMPK 5 forward 19:45770431-45770460
TGCCCCGGGCACTCAGTCTTCCA
SaCas9





3176
DMPK 5 forward 19:45770432-45770460
GCCCCGGGCACTCAGTCTTCCA
SaCas9





3177
DMPK 5 forward 19:45770433-45770460
CCCCGGGCACTCAGTCTTCCA
SaCas9





3178
DMPK 5 forward 19:45770434-45770460
CCCGGGCACTCAGTCTTCCA
SaCas9





3179
DMPK 5 forward 19:45770435-45770460
CCGGGCACTCAGTCTTCCA
SaCas9





3180
DMPK 5 forward 19:45770436-45770460
CGGGCACTCAGTCTTCCA
SaCas9





3181
DMPK 5 forward 19:45770430-45770461
GTGCCCCGGGCACTCAGTCTTCCAA
SaCas9





3182
DMPK 5 forward 19:45770431-45770461
TGCCCCGGGCACTCAGTCTTCCAA
SaCas9





3183
DMPK 5 forward 19:45770432-45770461
GCCCCGGGCACTCAGTCTTCCAA
SaCas9





3184
DMPK 5 forward 19:45770433-45770461
CCCCGGGCACTCAGTCTTCCAA
SaCas9





3185
DMPK 5 forward 19:45770434-45770461
CCCGGGCACTCAGTCTTCCAA
SaCas9





3186
DMPK 5 forward 19:45770435-45770461
CCGGGCACTCAGTCTTCCAA
SaCas9





3187
DMPK 5 forward 19:45770436-45770461
CGGGCACTCAGTCTTCCAA
SaCas9





3188
DMPK 5 forward 19:45770437-45770461
GGGCACTCAGTCTTCCAA
SaCas9





3189
DMPK 5 reverse 19:45770432-45770463
GGGCCCCGTTGGAAGACTGAGTGCC
SaCas9





3190
DMPK 5 reverse 19:45770433-45770463
GGCCCCGTTGGAAGACTGAGTGCC
SaCas9





3191
DMPK 5 reverse 19:45770434-45770463
GCCCCGTTGGAAGACTGAGTGCC
SaCas9





3192
DMPK 5 reverse 19:45770435-45770463
CCCCGTTGGAAGACTGAGTGCC
SaCas9





3193
DMPK 5 reverse 19:45770436-45770463
CCCGTTGGAAGACTGAGTGCC
SaCas9





3194
DMPK 5 reverse 19:45770437-45770463
CCGTTGGAAGACTGAGTGCC
SaCas9





3195
DMPK 5 reverse 19:45770438-45770463
CGTTGGAAGACTGAGTGCC
SaCas9





3196
DMPK 5 reverse 19:45770439-45770463
GTTGGAAGACTGAGTGCC
SaCas9





3197
DMPK 5 reverse 19:45770433-45770464
GGGGCCCCGTTGGAAGACTGAGTGC
SaCas9





3198
DMPK 5 reverse 19:45770434-45770464
GGGCCCCGTTGGAAGACTGAGTGC
SaCas9





3199
DMPK 5 reverse 19:45770435-45770464
GGCCCCGTTGGAAGACTGAGTGC
SaCas9





3200
DMPK 5 reverse 19:45770436-45770464
GCCCCGTTGGAAGACTGAGTGC
SaCas9





3201
DMPK 5 reverse 19:45770437-45770464
CCCCGTTGGAAGACTGAGTGC
SaCas9





3202
DMPK 5 reverse 19:45770438-45770464
CCCGTTGGAAGACTGAGTGC
SaCas9





3203
DMPK 5 reverse 19:45770439-45770464
CCGTTGGAAGACTGAGTGC
SaCas9





3204
DMPK 5 reverse 19:45770440-45770464
CGTTGGAAGACTGAGTGC
SaCas9





3205
DMPK 5 forward 19:45770437-45770468
GGGCACTCAGTCTTCCAACGGGGCC
SaCas9





3206
DMPK 5 forward 19:45770438-45770468
GGCACTCAGTCTTCCAACGGGGCC
SaCas9





3207
DMPK 5 forward 19:45770439-45770468
GCACTCAGTCTTCCAACGGGGCC
SaCas9





3208
DMPK 5 forward 19:45770440-45770468
CACTCAGTCTTCCAACGGGGCC
SaCas9





3209
DMPK 5 forward 19:45770441-45770468
ACTCAGTCTTCCAACGGGGCC
SaCas9





3210
DMPK 5 forward 19:45770442-45770468
CTCAGTCTTCCAACGGGGCC
SaCas9





3211
DMPK 5 forward 19:45770443-45770468
TCAGTCTTCCAACGGGGCC
SaCas9





3212
DMPK 5 forward 19:45770444-45770468
CAGTCTTCCAACGGGGCC
SaCas9





3213
DMPK 5 forward 19:45770438-45770469
GGCACTCAGTCTTCCAACGGGGCCC
SaCas9





3214
DMPK 5 forward 19:45770439-45770469
GCACTCAGTCTTCCAACGGGGCCC
SaCas9





3215
DMPK 5 forward 19:45770440-45770469
CACTCAGTCTTCCAACGGGGCCC
SaCas9





3216
DMPK 5 forward 19:45770441-45770469
ACTCAGTCTTCCAACGGGGCCC
SaCas9





3217
DMPK 5 forward 19:45770442-45770469
CTCAGTCTTCCAACGGGGCCC
SaCas9





3218
DMPK 5 forward 19:45770443-45770469
TCAGTCTTCCAACGGGGCCC
SaCas9





3219
DMPK 5 forward 19:45770444-45770469
CAGTCTTCCAACGGGGCCC
SaCas9





3220
DMPK 5 forward 19:45770445-45770469
AGTCTTCCAACGGGGCCC
SaCas9





3221
DMPK 5 reverse 19:45770441-45770472
TCGACTCCGGGGCCCCGTTGGAAGA
SaCas9





3222
DMPK 5 reverse 19:45770442-45770472
CGACTCCGGGGCCCCGTTGGAAGA
SaCas9





3223
DMPK 5 reverse 19:45770443-45770472
GACTCCGGGGCCCCGTTGGAAGA
SaCas9





3224
DMPK 5 reverse 19:45770444-45770472
ACTCCGGGGCCCCGTTGGAAGA
SaCas9





3225
DMPK 5 reverse 19:45770445-45770472
CTCCGGGGCCCCGTTGGAAGA
SaCas9





3226
DMPK 5 reverse 19:45770446-45770472
TCCGGGGCCCCGTTGGAAGA
SaCas9





3227
DMPK 5 reverse 19:45770447-45770472
CCGGGGCCCCGTTGGAAGA
SaCas9





3228
DMPK 5 reverse 19:45770448-45770472
CGGGGCCCCGTTGGAAGA
SaCas9





3229
DMPK 5 forward 19:45770443-45770474
TCAGTCTTCCAACGGGGCCCCGGAG
SaCas9





3230
DMPK 5 forward 19:45770444-45770474
CAGTCTTCCAACGGGGCCCCGGAG
SaCas9





3231
DMPK 5 forward 19:45770445-45770474
AGTCTTCCAACGGGGCCCCGGAG
SaCas9





3232
DMPK 5 forward 19:45770446-45770474
GTCTTCCAACGGGGCCCCGGAG
SaCas9





3233
DMPK 5 forward 19:45770447-45770474
TCTTCCAACGGGGCCCCGGAG
SaCas9





3234
DMPK 5 forward 19:45770448-45770474
CTTCCAACGGGGCCCCGGAG
SaCas9





3235
DMPK 5 forward 19:45770449-45770474
TTCCAACGGGGCCCCGGAG
SaCas9





3236
DMPK 5 forward 19:45770450-45770474
TCCAACGGGGCCCCGGAG
SaCas9





3237
DMPK 5 reverse 19:45770448-45770479
ACTGTCTTCGACTCCGGGGCCCCGT
SaCas9





3238
DMPK 5 reverse 19:45770449-45770479
CTGTCTTCGACTCCGGGGCCCCGT
SaCas9





3239
DMPK 5 reverse 19:45770450-45770479
TGTCTTCGACTCCGGGGCCCCGT
SaCas9





3240
DMPK 5 reverse 19:45770451-45770479
GTCTTCGACTCCGGGGCCCCGT
SaCas9





3241
DMPK 5 reverse 19:45770452-45770479
TCTTCGACTCCGGGGCCCCGT
SaCas9





3242
DMPK 5 reverse 19:45770453-45770479
CTTCGACTCCGGGGCCCCGT
SaCas9





3243
DMPK 5 reverse 19:45770454-45770479
TTCGACTCCGGGGCCCCGT
SaCas9





3244
DMPK 5 reverse 19:45770455-45770479
TCGACTCCGGGGCCCCGT
SaCas9





3245
DMPK 5 reverse 19:45770449-45770480
AACTGTCTTCGACTCCGGGGCCCCG
SaCas9





3246
DMPK 5 reverse 19:45770450-45770480
ACTGTCTTCGACTCCGGGGCCCCG
SaCas9





3247
DMPK 5 reverse 19:45770451-45770480
CTGTCTTCGACTCCGGGGCCCCG
SaCas9





3248
DMPK 5 reverse 19:45770452-45770480
TGTCTTCGACTCCGGGGCCCCG
SaCas9





3249
DMPK 5 reverse 19:45770453-45770480
GTCTTCGACTCCGGGGCCCCG
SaCas9





3250
DMPK 5 reverse 19:45770454-45770480
TCTTCGACTCCGGGGCCCCG
SaCas9





3251
DMPK 5 reverse 19:45770455-45770480
CTTCGACTCCGGGGCCCCG
SaCas9





3252
DMPK 5 reverse 19:45770456-45770480
TTCGACTCCGGGGCCCCG
SaCas9





3253
DMPK 5 forward 19:45770456-45770487
GGGGCCCCGGAGTCGAAGACAGTTC
SaCas9





3254
DMPK 5 forward 19:45770457-45770487
GGGCCCCGGAGTCGAAGACAGTTC
SaCas9





3255
DMPK 5 forward 19:45770458-45770487
GGCCCCGGAGTCGAAGACAGTTC
SaCas9





3256
DMPK 5 forward 19:45770459-45770487
GCCCCGGAGTCGAAGACAGTTC
SaCas9





3257
DMPK 5 forward 19:45770460-45770487
CCCCGGAGTCGAAGACAGTTC
SaCas9





3258
DMPK 5 forward 19:45770461-45770487
CCCGGAGTCGAAGACAGTTC
SaCas9





3259
DMPK 5 forward 19:45770462-45770487
CCGGAGTCGAAGACAGTTC
SaCas9





3260
DMPK 5 forward 19:45770463-45770487
CGGAGTCGAAGACAGTTC
SaCas9





3261
DMPK 5 reverse 19:45770459-45770490
TGAACCCTAGAACTGTCTTCGACTC
SaCas9





3262
DMPK 5 reverse 19:45770460-45770490
GAACCCTAGAACTGTCTTCGACTC
SaCas9





3263
DMPK 5 reverse 19:45770461-45770490
AACCCTAGAACTGTCTTCGACTC
SaCas9





3264
DMPK 5 reverse 19:45770462-45770490
ACCCTAGAACTGTCTTCGACTC
SaCas9





3265
DMPK 5 reverse 19:45770463-45770490
CCCTAGAACTGTCTTCGACTC
SaCas9





3266
DMPK 5 reverse 19:45770464-45770490
CCTAGAACTGTCTTCGACTC
SaCas9





3267
DMPK 5 reverse 19:45770465-45770490
CTAGAACTGTCTTCGACTC
SaCas9





3268
DMPK 5 reverse 19:45770466-45770490
TAGAACTGTCTTCGACTC
SaCas9





3269
DMPK 5 reverse 19:45770460-45770491
CTGAACCCTAGAACTGTCTTCGACT
SaCas9





3270
DMPK 5 reverse 19:45770461-45770491
TGAACCCTAGAACTGTCTTCGACT
SaCas9





3271
DMPK 5 reverse 19:45770462-45770491
GAACCCTAGAACTGTCTTCGACT
SaCas9





3272
DMPK 5 reverse 19:45770463-45770491
AACCCTAGAACTGTCTTCGACT
SaCas9





3273
DMPK 5 reverse 19:45770464-45770491
ACCCTAGAACTGTCTTCGACT
SaCas9





3274
DMPK 5 reverse 19:45770465-45770491
CCCTAGAACTGTCTTCGACT
SaCas9





3275
DMPK 5 reverse 19:45770466-45770491
CCTAGAACTGTCTTCGACT
SaCas9





3276
DMPK 5 reverse 19:45770467-45770491
CTAGAACTGTCTTCGACT
SaCas9





3277
DMPK 5 forward 19:45770463-45770494
CGGAGTCGAAGACAGTTCTAGGGTT
SaCas9





3278
DMPK 5 forward 19:45770464-45770494
GGAGTCGAAGACAGTTCTAGGGTT
SaCas9





3279
DMPK 5 forward 19:45770465-45770494
GAGTCGAAGACAGTTCTAGGGTT
SaCas9





3280
DMPK 5 forward 19:45770466-45770494
AGTCGAAGACAGTTCTAGGGTT
SaCas9





3281
DMPK 5 forward 19:45770467-45770494
GTCGAAGACAGTTCTAGGGTT
SaCas9





3282
DMPK 5 forward 19:45770468-45770494
TCGAAGACAGTTCTAGGGTT
SaCas9





3283
DMPK 5 forward 19:45770469-45770494
CGAAGACAGTTCTAGGGTT
SaCas9





3284
DMPK 5 forward 19:45770470-45770494
GAAGACAGTTCTAGGGTT
SaCas9





3285
DMPK 5 forward 19:45770464-45770495
GGAGTCGAAGACAGTTCTAGGGTTC
SaCas9





3286
DMPK 5 forward 19:45770465-45770495
GAGTCGAAGACAGTTCTAGGGTTC
SaCas9





3287
DMPK 5 forward 19:45770466-45770495
AGTCGAAGACAGTTCTAGGGTTC
SaCas9





3288
DMPK 5 forward 19:45770467-45770495
GTCGAAGACAGTTCTAGGGTTC
SaCas9





3289
DMPK 5 forward 19:45770468-45770495
TCGAAGACAGTTCTAGGGTTC
SaCas9





3290
DMPK 5 forward 19:45770469-45770495
CGAAGACAGTTCTAGGGTTC
SaCas9





3291
DMPK 5 forward 19:45770470-45770495
GAAGACAGTTCTAGGGTTC
SaCas9





3292
DMPK 5 forward 19:45770471-45770495
AAGACAGTTCTAGGGTTC
SaCas9





3293
DMPK 5 forward 19:45770465-45770496
GAGTCGAAGACAGTTCTAGGGTTCA
SaCas9





3294
DMPK 5 forward 19:45770466-45770496
AGTCGAAGACAGTTCTAGGGTTCA
SaCas9





3295
DMPK 5 forward 19:45770467-45770496
GTCGAAGACAGTTCTAGGGTTCA
SaCas9





3296
DMPK 5 forward 19:45770468-45770496
TCGAAGACAGTTCTAGGGTTCA
SaCas9





3297
DMPK 5 forward 19:45770469-45770496
CGAAGACAGTTCTAGGGTTCA
SaCas9





3298
DMPK 5 forward 19:45770470-45770496
GAAGACAGTTCTAGGGTTCA
SaCas9





3299
DMPK 5 forward 19:45770471-45770496
AAGACAGTTCTAGGGTTCA
SaCas9





3300
DMPK 5 forward 19:45770472-45770496
AGACAGTTCTAGGGTTCA
SaCas9





3301
DMPK 5 reverse 19:45770477-45770508
GGAGCCGCCCGCGCTCCCTGAACCC
SaCas9





3302
DMPK 5 reverse 19:45770478-45770508
GAGCCGCCCGCGCTCCCTGAACCC
SaCas9





3303
DMPK 5 reverse 19:45770479-45770508
AGCCGCCCGCGCTCCCTGAACCC
SaCas9





3304
DMPK 5 reverse 19:45770480-45770508
GCCGCCCGCGCTCCCTGAACCC
SaCas9





3305
DMPK 5 reverse 19:45770481-45770508
CCGCCCGCGCTCCCTGAACCC
SaCas9





3306
DMPK 5 reverse 19:45770482-45770508
CGCCCGCGCTCCCTGAACCC
SaCas9





3307
DMPK 5 reverse 19:45770483-45770508
GCCCGCGCTCCCTGAACCC
SaCas9





3308
DMPK 5 reverse 19:45770484-45770508
CCCGCGCTCCCTGAACCC
SaCas9





3309
DMPK 5 forward 19:45770245-45770273
GCAGCAGCAGCAGCAGCAGCATTCC
SpCas9





3310
DMPK 5 forward 19:45770246-45770273
CAGCAGCAGCAGCAGCAGCATTCC
SpCas9





3311
DMPK 5 forward 19:45770247-45770273
AGCAGCAGCAGCAGCAGCATTCC
SpCas9





3312
DMPK 5 forward 19:45770248-45770273
GCAGCAGCAGCAGCAGCATTCC
SpCas9





3313
DMPK 5 forward 19:45770249-45770273
CAGCAGCAGCAGCAGCATTCC
SpCas9





3314
DMPK 5 forward 19:45770250-45770273
AGCAGCAGCAGCAGCATTCC
SpCas9





3315
DMPK 5 forward 19:45770251-45770273
GCAGCAGCAGCAGCATTCC
SpCas9





3316
DMPK 5 forward 19:45770252-45770273
CAGCAGCAGCAGCATTCC
SpCas9





3317
DMPK 5 forward 19:45770252-45770280
CAGCAGCAGCAGCATTCCCGGCTAC
SpCas9





3318
DMPK 5 forward 19:45770253-45770280
AGCAGCAGCAGCATTCCCGGCTAC
SpCas9





3319
DMPK 5 forward 19:45770254-45770280
GCAGCAGCAGCATTCCCGGCTAC
SpCas9





3320
DMPK 5 forward 19:45770255-45770280
CAGCAGCAGCATTCCCGGCTAC
SpCas9





3321
DMPK 5 forward 19:45770256-45770280
AGCAGCAGCATTCCCGGCTAC
SpCas9





3322
DMPK 5 forward 19:45770257-45770280
GCAGCAGCATTCCCGGCTAC
SpCas9





3323
DMPK 5 forward 19:45770258-45770280
CAGCAGCATTCCCGGCTAC
SpCas9





3324
DMPK 5 forward 19:45770259-45770280
AGCAGCATTCCCGGCTAC
SpCas9





3325
DMPK 5 forward 19:45770253-45770281
AGCAGCAGCAGCATTCCCGGCTACA
SpCas9





3326
DMPK 5 forward 19:45770254-45770281
GCAGCAGCAGCATTCCCGGCTACA
SpCas9





3327
DMPK 5 forward 19:45770255-45770281
CAGCAGCAGCATTCCCGGCTACA
SpCas9





3328
DMPK 5 forward 19:45770256-45770281
AGCAGCAGCATTCCCGGCTACA
SpCas9





3329
DMPK 5 forward 19:45770257-45770281
GCAGCAGCATTCCCGGCTACA
SpCas9





3330
DMPK 5 forward 19:45770258-45770281
CAGCAGCATTCCCGGCTACA
SpCas9





3331
DMPK 5 forward 19:45770259-45770281
AGCAGCATTCCCGGCTACA
SpCas9





3332
DMPK 5 forward 19:45770260-45770281
GCAGCATTCCCGGCTACA
SpCas9





3333
DMPK 5 forward 19:45770263-45770291
GCATTCCCGGCTACAAGGACCCTTC
SpCas9





3334
DMPK 5 forward 19:45770264-45770291
CATTCCCGGCTACAAGGACCCTTC
SpCas9





3335
DMPK 5 forward 19:45770265-45770291
ATTCCCGGCTACAAGGACCCTTC
SpCas9





3336
DMPK 5 forward 19:45770266-45770291
TTCCCGGCTACAAGGACCCTTC
SpCas9





3337
DMPK 5 forward 19:45770267-45770291
TCCCGGCTACAAGGACCCTTC
SpCas9





3338
DMPK 5 forward 19:45770268-45770291
CCCGGCTACAAGGACCCTTC
SpCas9





3339
DMPK 5 forward 19:45770269-45770291
CCGGCTACAAGGACCCTTC
SpCas9





3340
DMPK 5 forward 19:45770270-45770291
CGGCTACAAGGACCCTTC
SpCas9





3341
DMPK 5 reverse 19:45770268-45770296
CGGGGCTCGAAGGGTCCTTGTAGCC
SpCas9





3342
DMPK 5 reverse 19:45770269-45770296
GGGGCTCGAAGGGTCCTTGTAGCC
SpCas9





3343
DMPK 5 reverse 19:45770270-45770296
GGGCTCGAAGGGTCCTTGTAGCC
SpCas9





3344
DMPK 5 reverse 19:45770271-45770296
GGCTCGAAGGGTCCTTGTAGCC
SpCas9





3345
DMPK 5 reverse 19:45770272-45770296
GCTCGAAGGGTCCTTGTAGCC
SpCas9





3346
DMPK 5 reverse 19:45770273-45770296
CTCGAAGGGTCCTTGTAGCC
SpCas9





3347
DMPK 5 reverse 19:45770274-45770296
TCGAAGGGTCCTTGTAGCC
SpCas9





3348
DMPK 5 reverse 19:45770275-45770296
CGAAGGGTCCTTGTAGCC
SpCas9





3349
DMPK 5 reverse 19:45770269-45770297
ACGGGGCTCGAAGGGTCCTTGTAGC
SpCas9





3350
DMPK 5 reverse 19:45770270-45770297
CGGGGCTCGAAGGGTCCTTGTAGC
SpCas9





3351
DMPK 5 reverse 19:45770271-45770297
GGGGCTCGAAGGGTCCTTGTAGC
SpCas9





3352
DMPK 5 reverse 19:45770272-45770297
GGGCTCGAAGGGTCCTTGTAGC
SpCas9





3353
DMPK 5 reverse 19:45770273-45770297
GGCTCGAAGGGTCCTTGTAGC
SpCas9





3354
DMPK 5 reverse 19:45770274-45770297
GCTCGAAGGGTCCTTGTAGC
SpCas9





3355
DMPK 5 reverse 19:45770275-45770297
CTCGAAGGGTCCTTGTAGC
SpCas9





3356
DMPK 5 reverse 19:45770276-45770297
TCGAAGGGTCCTTGTAGC
SpCas9





3357
DMPK 5 reverse 19:45770273-45770301
GCGAACGGGGCTCGAAGGGTCCTTG
SpCas9





3358
DMPK 5 reverse 19:45770274-45770301
CGAACGGGGCTCGAAGGGTCCTTG
SpCas9





3359
DMPK 5 reverse 19:45770275-45770301
GAACGGGGCTCGAAGGGTCCTTG
SpCas9





3360
DMPK 5 reverse 19:45770276-45770301
AACGGGGCTCGAAGGGTCCTTG
SpCas9





3361
DMPK 5 reverse 19:45770277-45770301
ACGGGGCTCGAAGGGTCCTTG
SpCas9





3362
DMPK 5 reverse 19:45770278-45770301
CGGGGCTCGAAGGGTCCTTG
SpCas9





3363
DMPK 5 reverse 19:45770279-45770301
GGGGCTCGAAGGGTCCTTG
SpCas9





3364
DMPK 5 reverse 19:45770280-45770301
GGGCTCGAAGGGTCCTTG
SpCas9





3365
DMPK 5 forward 19:45770276-45770304
CAAGGACCCTTCGAGCCCCGTTCGC
SpCas9





3366
DMPK 5 forward 19:45770277-45770304
AAGGACCCTTCGAGCCCCGTTCGC
SpCas9





3367
DMPK 5 forward 19:45770278-45770304
AGGACCCTTCGAGCCCCGTTCGC
SpCas9





3368
DMPK 5 forward 19:45770279-45770304
GGACCCTTCGAGCCCCGTTCGC
SpCas9





3369
DMPK 5 forward 19:45770280-45770304
GACCCTTCGAGCCCCGTTCGC
SpCas9





3370
DMPK 5 forward 19:45770281-45770304
ACCCTTCGAGCCCCGTTCGC
SpCas9





3371
DMPK 5 forward 19:45770282-45770304
CCCTTCGAGCCCCGTTCGC
SpCas9





3372
DMPK 5 forward 19:45770283-45770304
CCTTCGAGCCCCGTTCGC
SpCas9





3373
DMPK 5 forward 19:45770282-45770310
CCCTTCGAGCCCCGTTCGCCGGCCG
SpCas9





3374
DMPK 5 forward 19:45770283-45770310
CCTTCGAGCCCCGTTCGCCGGCCG
SpCas9





3375
DMPK 5 forward 19:45770284-45770310
CTTCGAGCCCCGTTCGCCGGCCG
SpCas9





3376
DMPK 5 forward 19:45770285-45770310
TTCGAGCCCCGTTCGCCGGCCG
SpCas9





3377
DMPK 5 forward 19:45770286-45770310
TCGAGCCCCGTTCGCCGGCCG
SpCas9





3378
DMPK 5 forward 19:45770287-45770310
CGAGCCCCGTTCGCCGGCCG
SpCas9





3379
DMPK 5 forward 19:45770288-45770310
GAGCCCCGTTCGCCGGCCG
SpCas9





3380
DMPK 5 forward 19:45770289-45770310
AGCCCCGTTCGCCGGCCG
SpCas9





3381
DMPK 5 reverse 19:45770282-45770310
CCGCGGCCGGCGAACGGGGCTCGAA
SpCas9





3382
DMPK 5 reverse 19:45770283-45770310
CGCGGCCGGCGAACGGGGCTCGAA
SpCas9





3383
DMPK 5 reverse 19:45770284-45770310
GCGGCCGGCGAACGGGGCTCGAA
SpCas9





3384
DMPK 5 reverse 19:45770285-45770310
CGGCCGGCGAACGGGGCTCGAA
SpCas9





3385
DMPK 5 reverse 19:45770286-45770310
GGCCGGCGAACGGGGCTCGAA
SpCas9





3386
DMPK 5 reverse 19:45770287-45770310
GCCGGCGAACGGGGCTCGAA
SpCas9





3387
DMPK 5 reverse 19:45770288-45770310
CCGGCGAACGGGGCTCGAA
SpCas9





3388
DMPK 5 reverse 19:45770289-45770310
CGGCGAACGGGGCTCGAA
SpCas9





3389
DMPK 5 reverse 19:45770283-45770311
TCCGCGGCCGGCGAACGGGGCTCGA
SpCas9





3390
DMPK 5 reverse 19:45770284-45770311
CCGCGGCCGGCGAACGGGGCTCGA
SpCas9





3391
DMPK 5 reverse 19:45770285-45770311
CGCGGCCGGCGAACGGGGCTCGA
SpCas9





3392
DMPK 5 reverse 19:45770286-45770311
GCGGCCGGCGAACGGGGCTCGA
SpCas9





3393
DMPK 5 reverse 19:45770287-45770311
CGGCCGGCGAACGGGGCTCGA
SpCas9





3394
DMPK 5 reverse 19:45770288-45770311
GGCCGGCGAACGGGGCTCGA
SpCas9





3395
DMPK 5 reverse 19:45770289-45770311
GCCGGCGAACGGGGCTCGA
SpCas9





3396
DMPK 5 reverse 19:45770290-45770311
CCGGCGAACGGGGCTCGA
SpCas9





3397
DMPK 5 reverse 19:45770284-45770312
GTCCGCGGCCGGCGAACGGGGCTCG
SpCas9





3398
DMPK 5 reverse 19:45770285-45770312
TCCGCGGCCGGCGAACGGGGCTCG
SpCas9





3399
DMPK 5 reverse 19:45770286-45770312
CCGCGGCCGGCGAACGGGGCTCG
SpCas9





3400
DMPK 5 reverse 19:45770287-45770312
CGCGGCCGGCGAACGGGGCTCG
SpCas9





3401
DMPK 5 reverse 19:45770288-45770312
GCGGCCGGCGAACGGGGCTCG
SpCas9





3402
DMPK 5 reverse 19:45770289-45770312
CGGCCGGCGAACGGGGCTCG
SpCas9





3403
DMPK 5 reverse 19:45770290-45770312
GGCCGGCGAACGGGGCTCG
SpCas9





3404
DMPK 5 reverse 19:45770291-45770312
GCCGGCGAACGGGGCTCG
SpCas9





3405
DMPK 5 forward 19:45770288-45770316
GAGCCCCGTTCGCCGGCCGCGGACC
SpCas9





3406
DMPK 5 forward 19:45770289-45770316
AGCCCCGTTCGCCGGCCGCGGACC
SpCas9





3407
DMPK 5 forward 19:45770290-45770316
GCCCCGTTCGCCGGCCGCGGACC
SpCas9





3408
DMPK 5 forward 19:45770291-45770316
CCCCGTTCGCCGGCCGCGGACC
SpCas9





3409
DMPK 5 forward 19:45770292-45770316
CCCGTTCGCCGGCCGCGGACC
SpCas9





3410
DMPK 5 forward 19:45770293-45770316
CCGTTCGCCGGCCGCGGACC
SpCas9





3411
DMPK 5 forward 19:45770294-45770316
CGTTCGCCGGCCGCGGACC
SpCas9





3412
DMPK 5 forward 19:45770295-45770316
GTTCGCCGGCCGCGGACC
SpCas9





3413
DMPK 5 reverse 19:45770291-45770319
GGGCCGGGTCCGCGGCCGGCGAACG
SpCas9





3414
DMPK 5 reverse 19:45770292-45770319
GGCCGGGTCCGCGGCCGGCGAACG
SpCas9





3415
DMPK 5 reverse 19:45770293-45770319
GCCGGGTCCGCGGCCGGCGAACG
SpCas9





3416
DMPK 5 reverse 19:45770294-45770319
CCGGGTCCGCGGCCGGCGAACG
SpCas9





3417
DMPK 5 reverse 19:45770295-45770319
CGGGTCCGCGGCCGGCGAACG
SpCas9





3418
DMPK 5 reverse 19:45770296-45770319
GGGTCCGCGGCCGGCGAACG
SpCas9





3419
DMPK 5 reverse 19:45770297-45770319
GGTCCGCGGCCGGCGAACG
SpCas9





3420
DMPK 5 reverse 19:45770298-45770319
GTCCGCGGCCGGCGAACG
SpCas9





3421
DMPK 5 reverse 19:45770292-45770320
GGGGCCGGGTCCGCGGCCGGCGAAC
SpCas9





3422
DMPK 5 reverse 19:45770293-45770320
GGGCCGGGTCCGCGGCCGGCGAAC
SpCas9





3423
DMPK 5 reverse 19:45770294-45770320
GGCCGGGTCCGCGGCCGGCGAAC
SpCas9





3424
DMPK 5 reverse 19:45770295-45770320
GCCGGGTCCGCGGCCGGCGAAC
SpCas9





3425
DMPK 5 reverse 19:45770296-45770320
CCGGGTCCGCGGCCGGCGAAC
SpCas9





3426
DMPK 5 reverse 19:45770297-45770320
CGGGTCCGCGGCCGGCGAAC
SpCas9





3427
DMPK 5 reverse 19:45770298-45770320
GGGTCCGCGGCCGGCGAAC
SpCas9





3428
DMPK 5 reverse 19:45770299-45770320
GGTCCGCGGCCGGCGAAC
SpCas9





3429
DMPK 5 reverse 19:45770293-45770321
AGGGGCCGGGTCCGCGGCCGGCGAA
SpCas9





3430
DMPK 5 reverse 19:45770294-45770321
GGGGCCGGGTCCGCGGCCGGCGAA
SpCas9





3431
DMPK 5 reverse 19:45770295-45770321
GGGCCGGGTCCGCGGCCGGCGAA
SpCas9





3432
DMPK 5 reverse 19:45770296-45770321
GGCCGGGTCCGCGGCCGGCGAA
SpCas9





3433
DMPK 5 reverse 19:45770297-45770321
GCCGGGTCCGCGGCCGGCGAA
SpCas9





3434
DMPK 5 reverse 19:45770298-45770321
CCGGGTCCGCGGCCGGCGAA
SpCas9





3435
DMPK 5 reverse 19:45770299-45770321
CGGGTCCGCGGCCGGCGAA
SpCas9





3436
DMPK 5 reverse 19:45770300-45770321
GGGTCCGCGGCCGGCGAA
SpCas9





3437
DMPK 5 reverse 19:45770300-45770328
GGGAGGGAGGGGCCGGGTCCGCGGC
SpCas9





3438
DMPK 5 reverse 19:45770301-45770328
GGAGGGAGGGGCCGGGTCCGCGGC
SpCas9





3439
DMPK 5 reverse 19:45770302-45770328
GAGGGAGGGGCCGGGTCCGCGGC
SpCas9





3440
DMPK 5 reverse 19:45770303-45770328
AGGGAGGGGCCGGGTCCGCGGC
SpCas9





3441
DMPK 5 reverse 19:45770304-45770328
GGGAGGGGCCGGGTCCGCGGC
SpCas9





3442
DMPK 5 reverse 19:45770305-45770328
GGAGGGGCCGGGTCCGCGGC
SpCas9





3443
DMPK 5 reverse 19:45770306-45770328
GAGGGGCCGGGTCCGCGGC
SpCas9





3444
DMPK 5 reverse 19:45770307-45770328
AGGGGCCGGGTCCGCGGC
SpCas9





3445
DMPK 5 forward 19:45770303-45770331
GCCGCGGACCCGGCCCCTCCCTCCC
SpCas9





3446
DMPK 5 forward 19:45770304-45770331
CCGCGGACCCGGCCCCTCCCTCCC
SpCas9





3447
DMPK 5 forward 19:45770305-45770331
CGCGGACCCGGCCCCTCCCTCCC
SpCas9





3448
DMPK 5 forward 19:45770306-45770331
GCGGACCCGGCCCCTCCCTCCC
SpCas9





3449
DMPK 5 forward 19:45770307-45770331
CGGACCCGGCCCCTCCCTCCC
SpCas9





3450
DMPK 5 forward 19:45770308-45770331
GGACCCGGCCCCTCCCTCCC
SpCas9





3451
DMPK 5 forward 19:45770309-45770331
GACCCGGCCCCTCCCTCCC
SpCas9





3452
DMPK 5 forward 19:45770310-45770331
ACCCGGCCCCTCCCTCCC
SpCas9





3453
DMPK 5 reverse 19:45770304-45770332
GCCGGGGAGGGAGGGGCCGGGTCCG
SpCas9





3454
DMPK 5 reverse 19:45770305-45770332
CCGGGGAGGGAGGGGCCGGGTCCG
SpCas9





3455
DMPK 5 reverse 19:45770306-45770332
CGGGGAGGGAGGGGCCGGGTCCG
SpCas9





3456
DMPK 5 reverse 19:45770307-45770332
GGGGAGGGAGGGGCCGGGTCCG
SpCas9





3457
DMPK 5 reverse 19:45770308-45770332
GGGAGGGAGGGGCCGGGTCCG
SpCas9





3458
DMPK 5 reverse 19:45770309-45770332
GGAGGGAGGGGCCGGGTCCG
SpCas9





3459
DMPK 5 reverse 19:45770310-45770332
GAGGGAGGGGCCGGGTCCG
SpCas9





3460
DMPK 5 reverse 19:45770311-45770332
AGGGAGGGGCCGGGTCCG
SpCas9





3461
DMPK 5 forward 19:45770310-45770338
ACCCGGCCCCTCCCTCCCCGGCCGC
SpCas9





3462
DMPK 5 forward 19:45770311-45770338
CCCGGCCCCTCCCTCCCCGGCCGC
SpCas9





3463
DMPK 5 forward 19:45770312-45770338
CCGGCCCCTCCCTCCCCGGCCGC
SpCas9





3464
DMPK 5 forward 19:45770313-45770338
CGGCCCCTCCCTCCCCGGCCGC
SpCas9





3465
DMPK 5 forward 19:45770314-45770338
GGCCCCTCCCTCCCCGGCCGC
SpCas9





3466
DMPK 5 forward 19:45770315-45770338
GCCCCTCCCTCCCCGGCCGC
SpCas9





3467
DMPK 5 forward 19:45770316-45770338
CCCCTCCCTCCCCGGCCGC
SpCas9





3468
DMPK 5 forward 19:45770317-45770338
CCCTCCCTCCCCGGCCGC
SpCas9





3469
DMPK 5 forward 19:45770311-45770339
CCCGGCCCCTCCCTCCCCGGCCGCT
SpCas9





3470
DMPK 5 forward 19:45770312-45770339
CCGGCCCCTCCCTCCCCGGCCGCT
SpCas9





3471
DMPK 5 forward 19:45770313-45770339
CGGCCCCTCCCTCCCCGGCCGCT
SpCas9





3472
DMPK 5 forward 19:45770314-45770339
GGCCCCTCCCTCCCCGGCCGCT
SpCas9





3473
DMPK 5 forward 19:45770315-45770339
GCCCCTCCCTCCCCGGCCGCT
SpCas9





3474
DMPK 5 forward 19:45770316-45770339
CCCCTCCCTCCCCGGCCGCT
SpCas9





3475
DMPK 5 forward 19:45770317-45770339
CCCTCCCTCCCCGGCCGCT
SpCas9





3476
DMPK 5 forward 19:45770318-45770339
CCTCCCTCCCCGGCCGCT
SpCas9





3477
DMPK 5 reverse 19:45770311-45770339
CCTAGCGGCCGGGGAGGGAGGGGCC
SpCas9





3478
DMPK 5 reverse 19:45770312-45770339
CTAGCGGCCGGGGAGGGAGGGGCC
SpCas9





3479
DMPK 5 reverse 19:45770313-45770339
TAGCGGCCGGGGAGGGAGGGGCC
SpCas9





3480
DMPK 5 reverse 19:45770314-45770339
AGCGGCCGGGGAGGGAGGGGCC
SpCas9





3481
DMPK 5 reverse 19:45770315-45770339
GCGGCCGGGGAGGGAGGGGCC
SpCas9





3482
DMPK 5 reverse 19:45770316-45770339
CGGCCGGGGAGGGAGGGGCC
SpCas9





3483
DMPK 5 reverse 19:45770317-45770339
GGCCGGGGAGGGAGGGGCC
SpCas9





3484
DMPK 5 reverse 19:45770318-45770339
GCCGGGGAGGGAGGGGCC
SpCas9





3485
DMPK 5 forward 19:45770312-45770340
CCGGCCCCTCCCTCCCCGGCCGCTA
SpCas9





3486
DMPK 5 forward 19:45770313-45770340
CGGCCCCTCCCTCCCCGGCCGCTA
SpCas9





3487
DMPK 5 forward 19:45770314-45770340
GGCCCCTCCCTCCCCGGCCGCTA
SpCas9





3488
DMPK 5 forward 19:45770315-45770340
GCCCCTCCCTCCCCGGCCGCTA
SpCas9





3489
DMPK 5 forward 19:45770316-45770340
CCCCTCCCTCCCCGGCCGCTA
SpCas9





3490
DMPK 5 forward 19:45770317-45770340
CCCTCCCTCCCCGGCCGCTA
SpCas9





3491
DMPK 5 forward 19:45770318-45770340
CCTCCCTCCCCGGCCGCTA
SpCas9





3492
DMPK 5 forward 19:45770319-45770340
CTCCCTCCCCGGCCGCTA
SpCas9





3493
DMPK 5 reverse 19:45770312-45770340
CCCTAGCGGCCGGGGAGGGAGGGGC
SpCas9





3494
DMPK 5 reverse 19:45770313-45770340
CCTAGCGGCCGGGGAGGGAGGGGC
SpCas9





3495
DMPK 5 reverse 19:45770314-45770340
CTAGCGGCCGGGGAGGGAGGGGC
SpCas9





3496
DMPK 5 reverse 19:45770315-45770340
TAGCGGCCGGGGAGGGAGGGGC
SpCas9





3497
DMPK 5 reverse 19:45770316-45770340
AGCGGCCGGGGAGGGAGGGGC
SpCas9





3498
DMPK 5 reverse 19:45770317-45770340
GCGGCCGGGGAGGGAGGGGC
SpCas9





3499
DMPK 5 reverse 19:45770318-45770340
CGGCCGGGGAGGGAGGGGC
SpCas9





3500
DMPK 5 reverse 19:45770319-45770340
GGCCGGGGAGGGAGGGGC
SpCas9





3501
DMPK 5 forward 19:45770313-45770341
CGGCCCCTCCCTCCCCGGCCGCTAG
SpCas9





3502
DMPK 5 forward 19:45770314-45770341
GGCCCCTCCCTCCCCGGCCGCTAG
SpCas9





3503
DMPK 5 forward 19:45770315-45770341
GCCCCTCCCTCCCCGGCCGCTAG
SpCas9





3504
DMPK 5 forward 19:45770316-45770341
CCCCTCCCTCCCCGGCCGCTAG
SpCas9





3505
DMPK 5 forward 19:45770317-45770341
CCCTCCCTCCCCGGCCGCTAG
SpCas9





3506
DMPK 5 forward 19:45770318-45770341
CCTCCCTCCCCGGCCGCTAG
SpCas9





3507
DMPK 5 forward 19:45770319-45770341
CTCCCTCCCCGGCCGCTAG
SpCas9





3508
DMPK 5 forward 19:45770320-45770341
TCCCTCCCCGGCCGCTAG
SpCas9





3509
DMPK 5 forward 19:45770314-45770342
GGCCCCTCCCTCCCCGGCCGCTAGG
SpCas9





3510
DMPK 5 forward 19:45770315-45770342
GCCCCTCCCTCCCCGGCCGCTAGG
SpCas9





3511
DMPK 5 forward 19:45770316-45770342
CCCCTCCCTCCCCGGCCGCTAGG
SpCas9





3512
DMPK 5 forward 19:45770317-45770342
CCCTCCCTCCCCGGCCGCTAGG
SpCas9





3513
DMPK 5 forward 19:45770318-45770342
CCTCCCTCCCCGGCCGCTAGG
SpCas9





3514
DMPK 5 forward 19:45770319-45770342
CTCCCTCCCCGGCCGCTAGG
SpCas9





3515
DMPK 5 forward 19:45770320-45770342
TCCCTCCCCGGCCGCTAGG
SpCas9





3516
DMPK 5 forward 19:45770321-45770342
CCCTCCCCGGCCGCTAGG
SpCas9





3517
DMPK 5 reverse 19:45770316-45770344
CGCCCCCTAGCGGCCGGGGAGGGAG
SpCas9





3518
DMPK 5 reverse 19:45770317-45770344
GCCCCCTAGCGGCCGGGGAGGGAG
SpCas9





3519
DMPK 5 reverse 19:45770318-45770344
CCCCCTAGCGGCCGGGGAGGGAG
SpCas9





3520
DMPK 5 reverse 19:45770319-45770344
CCCCTAGCGGCCGGGGAGGGAG
SpCas9





3521
DMPK 5 reverse 19:45770320-45770344
CCCTAGCGGCCGGGGAGGGAG
SpCas9





3522
DMPK 5 reverse 19:45770321-45770344
CCTAGCGGCCGGGGAGGGAG
SpCas9





3523
DMPK 5 reverse 19:45770322-45770344
CTAGCGGCCGGGGAGGGAG
SpCas9





3524
DMPK 5 reverse 19:45770323-45770344
TAGCGGCCGGGGAGGGAG
SpCas9





3525
DMPK 5 forward 19:45770317-45770345
CCCTCCCTCCCCGGCCGCTAGGGGG
SpCas9





3526
DMPK 5 forward 19:45770318-45770345
CCTCCCTCCCCGGCCGCTAGGGGG
SpCas9





3527
DMPK 5 forward 19:45770319-45770345
CTCCCTCCCCGGCCGCTAGGGGG
SpCas9





3528
DMPK 5 forward 19:45770320-45770345
TCCCTCCCCGGCCGCTAGGGGG
SpCas9





3529
DMPK 5 forward 19:45770321-45770345
CCCTCCCCGGCCGCTAGGGGG
SpCas9





3530
DMPK 5 forward 19:45770322-45770345
CCTCCCCGGCCGCTAGGGGG
SpCas9





3531
DMPK 5 forward 19:45770323-45770345
CTCCCCGGCCGCTAGGGGG
SpCas9





3532
DMPK 5 forward 19:45770324-45770345
TCCCCGGCCGCTAGGGGG
SpCas9





3533
DMPK 5 reverse 19:45770317-45770345
CCGCCCCCTAGCGGCCGGGGAGGGA
SpCas9





3534
DMPK 5 reverse 19:45770318-45770345
CGCCCCCTAGCGGCCGGGGAGGGA
SpCas9





3535
DMPK 5 reverse 19:45770319-45770345
GCCCCCTAGCGGCCGGGGAGGGA
SpCas9





3536
DMPK 5 reverse 19:45770320-45770345
CCCCCTAGCGGCCGGGGAGGGA
SpCas9





3537
DMPK 5 reverse 19:45770321-45770345
CCCCTAGCGGCCGGGGAGGGA
SpCas9





3538
DMPK 5 reverse 19:45770322-45770345
CCCTAGCGGCCGGGGAGGGA
SpCas9





3539
DMPK 5 reverse 19:45770323-45770345
CCTAGCGGCCGGGGAGGGA
SpCas9





3540
DMPK 5 reverse 19:45770324-45770345
CTAGCGGCCGGGGAGGGA
SpCas9





3541
DMPK 5 forward 19:45770318-45770346
CCTCCCTCCCCGGCCGCTAGGGGGC
SpCas9





3542
DMPK 5 forward 19:45770319-45770346
CTCCCTCCCCGGCCGCTAGGGGGC
SpCas9





3543
DMPK 5 forward 19:45770320-45770346
TCCCTCCCCGGCCGCTAGGGGGC
SpCas9





3544
DMPK 5 forward 19:45770321-45770346
CCCTCCCCGGCCGCTAGGGGGC
SpCas9





3545
DMPK 5 forward 19:45770322-45770346
CCTCCCCGGCCGCTAGGGGGC
SpCas9





3546
DMPK 5 forward 19:45770323-45770346
CTCCCCGGCCGCTAGGGGGC
SpCas9





3547
DMPK 5 forward 19:45770324-45770346
TCCCCGGCCGCTAGGGGGC
SpCas9





3548
DMPK 5 forward 19:45770325-45770346
CCCCGGCCGCTAGGGGGC
SpCas9





3549
DMPK 5 reverse 19:45770318-45770346
CCCGCCCCCTAGCGGCCGGGGAGGG
SpCas9





3550
DMPK 5 reverse 19:45770319-45770346
CCGCCCCCTAGCGGCCGGGGAGGG
SpCas9





3551
DMPK 5 reverse 19:45770320-45770346
CGCCCCCTAGCGGCCGGGGAGGG
SpCas9





3552
DMPK 5 reverse 19:45770321-45770346
GCCCCCTAGCGGCCGGGGAGGG
SpCas9





3553
DMPK 5 reverse 19:45770322-45770346
CCCCCTAGCGGCCGGGGAGGG
SpCas9





3554
DMPK 5 reverse 19:45770323-45770346
CCCCTAGCGGCCGGGGAGGG
SpCas9





3555
DMPK 5 reverse 19:45770324-45770346
CCCTAGCGGCCGGGGAGGG
SpCas9





3556
DMPK 5 reverse 19:45770325-45770346
CCTAGCGGCCGGGGAGGG
SpCas9





3557
DMPK 5 reverse 19:45770319-45770347
GCCCGCCCCCTAGCGGCCGGGGAGG
SpCas9





3558
DMPK 5 reverse 19:45770320-45770347
CCCGCCCCCTAGCGGCCGGGGAGG
SpCas9





3559
DMPK 5 reverse 19:45770321-45770347
CCGCCCCCTAGCGGCCGGGGAGG
SpCas9





3560
DMPK 5 reverse 19:45770322-45770347
CGCCCCCTAGCGGCCGGGGAGG
SpCas9





3561
DMPK 5 reverse 19:45770323-45770347
GCCCCCTAGCGGCCGGGGAGG
SpCas9





3562
DMPK 5 reverse 19:45770324-45770347
CCCCCTAGCGGCCGGGGAGG
SpCas9





3563
DMPK 5 reverse 19:45770325-45770347
CCCCTAGCGGCCGGGGAGG
SpCas9





3564
DMPK 5 reverse 19:45770326-45770347
CCCTAGCGGCCGGGGAGG
SpCas9





3565
DMPK 5 reverse 19:45770321-45770349
GGGCCCGCCCCCTAGCGGCCGGGGA
SpCas9





3566
DMPK 5 reverse 19:45770322-45770349
GGCCCGCCCCCTAGCGGCCGGGGA
SpCas9





3567
DMPK 5 reverse 19:45770323-45770349
GCCCGCCCCCTAGCGGCCGGGGA
SpCas9





3568
DMPK 5 reverse 19:45770324-45770349
CCCGCCCCCTAGCGGCCGGGGA
SpCas9





3569
DMPK 5 reverse 19:45770325-45770349
CCGCCCCCTAGCGGCCGGGGA
SpCas9





3570
DMPK 5 reverse 19:45770326-45770349
CGCCCCCTAGCGGCCGGGGA
SpCas9





3571
DMPK 5 reverse 19:45770327-45770349
GCCCCCTAGCGGCCGGGGA
SpCas9





3572
DMPK 5 reverse 19:45770328-45770349
CCCCCTAGCGGCCGGGGA
SpCas9





3573
DMPK 5 reverse 19:45770322-45770350
CGGGCCCGCCCCCTAGCGGCCGGGG
SpCas9





3574
DMPK 5 reverse 19:45770323-45770350
GGGCCCGCCCCCTAGCGGCCGGGG
SpCas9





3575
DMPK 5 reverse 19:45770324-45770350
GGCCCGCCCCCTAGCGGCCGGGG
SpCas9





3576
DMPK 5 reverse 19:45770325-45770350
GCCCGCCCCCTAGCGGCCGGGG
SpCas9





3577
DMPK 5 reverse 19:45770326-45770350
CCCGCCCCCTAGCGGCCGGGG
SpCas9





3578
DMPK 5 reverse 19:45770327-45770350
CCGCCCCCTAGCGGCCGGGG
SpCas9





3579
DMPK 5 reverse 19:45770328-45770350
CGCCCCCTAGCGGCCGGGG
SpCas9





3580
DMPK 5 reverse 19:45770329-45770350
GCCCCCTAGCGGCCGGGG
SpCas9





3581
DMPK 5 forward 19:45770323-45770351
CTCCCCGGCCGCTAGGGGGCGGGCC
SpCas9





3582
DMPK 5 forward 19:45770324-45770351
TCCCCGGCCGCTAGGGGGCGGGCC
SpCas9





3583
DMPK 5 forward 19:45770325-45770351
CCCCGGCCGCTAGGGGGCGGGCC
SpCas9





3584
DMPK 5 forward 19:45770326-45770351
CCCGGCCGCTAGGGGGCGGGCC
SpCas9





3585
DMPK 5 forward 19:45770327-45770351
CCGGCCGCTAGGGGGCGGGCC
SpCas9





3586
DMPK 5 forward 19:45770328-45770351
CGGCCGCTAGGGGGCGGGCC
SpCas9





3587
DMPK 5 forward 19:45770329-45770351
GGCCGCTAGGGGGCGGGCC
SpCas9





3588
DMPK 5 forward 19:45770330-45770351
GCCGCTAGGGGGCGGGCC
SpCas9





3589
DMPK 5 reverse 19:45770323-45770351
CCGGGCCCGCCCCCTAGCGGCCGGG
SpCas9





3590
DMPK 5 reverse 19:45770324-45770351
CGGGCCCGCCCCCTAGCGGCCGGG
SpCas9





3591
DMPK 5 reverse 19:45770325-45770351
GGGCCCGCCCCCTAGCGGCCGGG
SpCas9





3592
DMPK 5 reverse 19:45770326-45770351
GGCCCGCCCCCTAGCGGCCGGG
SpCas9





3593
DMPK 5 reverse 19:45770327-45770351
GCCCGCCCCCTAGCGGCCGGG
SpCas9





3594
DMPK 5 reverse 19:45770328-45770351
CCCGCCCCCTAGCGGCCGGG
SpCas9





3595
DMPK 5 reverse 19:45770329-45770351
CCGCCCCCTAGCGGCCGGG
SpCas9





3596
DMPK 5 reverse 19:45770330-45770351
CGCCCCCTAGCGGCCGGG
SpCas9





3597
DMPK 5 reverse 19:45770325-45770353
ATCCGGGCCCGCCCCCTAGCGGCCG
SpCas9





3598
DMPK 5 reverse 19:45770326-45770353
TCCGGGCCCGCCCCCTAGCGGCCG
SpCas9





3599
DMPK 5 reverse 19:45770327-45770353
CCGGGCCCGCCCCCTAGCGGCCG
SpCas9





3600
DMPK 5 reverse 19:45770328-45770353
CGGGCCCGCCCCCTAGCGGCCG
SpCas9





3601
DMPK 5 reverse 19:45770329-45770353
GGGCCCGCCCCCTAGCGGCCG
SpCas9





3602
DMPK 5 reverse 19:45770330-45770353
GGCCCGCCCCCTAGCGGCCG
SpCas9





3603
DMPK 5 reverse 19:45770331-45770353
GCCCGCCCCCTAGCGGCCG
SpCas9





3604
DMPK 5 reverse 19:45770332-45770353
CCCGCCCCCTAGCGGCCG
SpCas9





3605
DMPK 5 reverse 19:45770326-45770354
GATCCGGGCCCGCCCCCTAGCGGCC
SpCas9





3606
DMPK 5 reverse 19:45770327-45770354
ATCCGGGCCCGCCCCCTAGCGGCC
SpCas9





3607
DMPK 5 reverse 19:45770328-45770354
TCCGGGCCCGCCCCCTAGCGGCC
SpCas9





3608
DMPK 5 reverse 19:45770329-45770354
CCGGGCCCGCCCCCTAGCGGCC
SpCas9





3609
DMPK 5 reverse 19:45770330-45770354
CGGGCCCGCCCCCTAGCGGCC
SpCas9





3610
DMPK 5 reverse 19:45770331-45770354
GGGCCCGCCCCCTAGCGGCC
SpCas9





3611
DMPK 5 reverse 19:45770332-45770354
GGCCCGCCCCCTAGCGGCC
SpCas9





3612
DMPK 5 reverse 19:45770333-45770354
GCCCGCCCCCTAGCGGCC
SpCas9





3613
DMPK 5 reverse 19:45770327-45770355
TGATCCGGGCCCGCCCCCTAGCGGC
SpCas9





3614
DMPK 5 reverse 19:45770328-45770355
GATCCGGGCCCGCCCCCTAGCGGC
SpCas9





3615
DMPK 5 reverse 19:45770329-45770355
ATCCGGGCCCGCCCCCTAGCGGC
SpCas9





3616
DMPK 5 reverse 19:45770330-45770355
TCCGGGCCCGCCCCCTAGCGGC
SpCas9





3617
DMPK 5 reverse 19:45770331-45770355
CCGGGCCCGCCCCCTAGCGGC
SpCas9





3618
DMPK 5 reverse 19:45770332-45770355
CGGGCCCGCCCCCTAGCGGC
SpCas9





3619
DMPK 5 reverse 19:45770333-45770355
GGGCCCGCCCCCTAGCGGC
SpCas9





3620
DMPK 5 reverse 19:45770334-45770355
GGCCCGCCCCCTAGCGGC
SpCas9





3621
DMPK 5 forward 19:45770330-45770358
GCCGCTAGGGGGCGGGCCCGGATCA
SpCas9





3622
DMPK 5 forward 19:45770331-45770358
CCGCTAGGGGGCGGGCCCGGATCA
SpCas9





3623
DMPK 5 forward 19:45770332-45770358
CGCTAGGGGGCGGGCCCGGATCA
SpCas9





3624
DMPK 5 forward 19:45770333-45770358
GCTAGGGGGCGGGCCCGGATCA
SpCas9





3625
DMPK 5 forward 19:45770334-45770358
CTAGGGGGCGGGCCCGGATCA
SpCas9





3626
DMPK 5 forward 19:45770335-45770358
TAGGGGGCGGGCCCGGATCA
SpCas9





3627
DMPK 5 forward 19:45770336-45770358
AGGGGGCGGGCCCGGATCA
SpCas9





3628
DMPK 5 forward 19:45770337-45770358
GGGGGCGGGCCCGGATCA
SpCas9





3629
DMPK 5 forward 19:45770331-45770359
CCGCTAGGGGGCGGGCCCGGATCAC
SpCas9





3630
DMPK 5 forward 19:45770332-45770359
CGCTAGGGGGCGGGCCCGGATCAC
SpCas9





3631
DMPK 5 forward 19:45770333-45770359
GCTAGGGGGCGGGCCCGGATCAC
SpCas9





3632
DMPK 5 forward 19:45770334-45770359
CTAGGGGGCGGGCCCGGATCAC
SpCas9





3633
DMPK 5 forward 19:45770335-45770359
TAGGGGGCGGGCCCGGATCAC
SpCas9





3634
DMPK 5 forward 19:45770336-45770359
AGGGGGCGGGCCCGGATCAC
SpCas9





3635
DMPK 5 forward 19:45770337-45770359
GGGGGCGGGCCCGGATCAC
SpCas9





3636
DMPK 5 forward 19:45770338-45770359
GGGGCGGGCCCGGATCAC
SpCas9





3637
DMPK 5 reverse 19:45770331-45770359
CCTGTGATCCGGGCCCGCCCCCTAG
SpCas9





3638
DMPK 5 reverse 19:45770332-45770359
CTGTGATCCGGGCCCGCCCCCTAG
SpCas9





3639
DMPK 5 reverse 19:45770333-45770359
TGTGATCCGGGCCCGCCCCCTAG
SpCas9





3640
DMPK 5 reverse 19:45770334-45770359
GTGATCCGGGCCCGCCCCCTAG
SpCas9





3641
DMPK 5 reverse 19:45770335-45770359
TGATCCGGGCCCGCCCCCTAG
SpCas9





3642
DMPK 5 reverse 19:45770336-45770359
GATCCGGGCCCGCCCCCTAG
SpCas9





3643
DMPK 5 reverse 19:45770337-45770359
ATCCGGGCCCGCCCCCTAG
SpCas9





3644
DMPK 5 reverse 19:45770338-45770359
TCCGGGCCCGCCCCCTAG
SpCas9





3645
DMPK 5 reverse 19:45770334-45770362
AGTCCTGTGATCCGGGCCCGCCCCC
SpCas9





3646
DMPK 5 reverse 19:45770335-45770362
GTCCTGTGATCCGGGCCCGCCCCC
SpCas9





3647
DMPK 5 reverse 19:45770336-45770362
TCCTGTGATCCGGGCCCGCCCCC
SpCas9





3648
DMPK 5 reverse 19:45770337-45770362
CCTGTGATCCGGGCCCGCCCCC
SpCas9





3649
DMPK 5 reverse 19:45770338-45770362
CTGTGATCCGGGCCCGCCCCC
SpCas9





3650
DMPK 5 reverse 19:45770339-45770362
TGTGATCCGGGCCCGCCCCC
SpCas9





3651
DMPK 5 reverse 19:45770340-45770362
GTGATCCGGGCCCGCCCCC
SpCas9





3652
DMPK 5 reverse 19:45770341-45770362
TGATCCGGGCCCGCCCCC
SpCas9





3653
DMPK 5 forward 19:45770336-45770364
AGGGGGCGGGCCCGGATCACAGGAC
SpCas9





3654
DMPK 5 forward 19:45770337-45770364
GGGGGCGGGCCCGGATCACAGGAC
SpCas9





3655
DMPK 5 forward 19:45770338-45770364
GGGGCGGGCCCGGATCACAGGAC
SpCas9





3656
DMPK 5 forward 19:45770339-45770364
GGGCGGGCCCGGATCACAGGAC
SpCas9





3657
DMPK 5 forward 19:45770340-45770364
GGCGGGCCCGGATCACAGGAC
SpCas9





3658
DMPK 5 forward 19:45770341-45770364
GCGGGCCCGGATCACAGGAC
SpCas9





3659
DMPK 5 forward 19:45770342-45770364
CGGGCCCGGATCACAGGAC
SpCas9





3660
DMPK 5 forward 19:45770343-45770364
GGGCCCGGATCACAGGAC
SpCas9





3661
DMPK 5 forward 19:45770338-45770366
GGGGCGGGCCCGGATCACAGGACTG
SpCas9





3662
DMPK 5 forward 19:45770339-45770366
GGGCGGGCCCGGATCACAGGACTG
SpCas9





3663
DMPK 5 forward 19:45770340-45770366
GGCGGGCCCGGATCACAGGACTG
SpCas9





3664
DMPK 5 forward 19:45770341-45770366
GCGGGCCCGGATCACAGGACTG
SpCas9





3665
DMPK 5 forward 19:45770342-45770366
CGGGCCCGGATCACAGGACTG
SpCas9





3666
DMPK 5 forward 19:45770343-45770366
GGGCCCGGATCACAGGACTG
SpCas9





3667
DMPK 5 forward 19:45770344-45770366
GGCCCGGATCACAGGACTG
SpCas9





3668
DMPK 5 forward 19:45770345-45770366
GCCCGGATCACAGGACTG
SpCas9





3669
DMPK 5 forward 19:45770342-45770370
CGGGCCCGGATCACAGGACTGGAGC
SpCas9





3670
DMPK 5 forward 19:45770343-45770370
GGGCCCGGATCACAGGACTGGAGC
SpCas9





3671
DMPK 5 forward 19:45770344-45770370
GGCCCGGATCACAGGACTGGAGC
SpCas9





3672
DMPK 5 forward 19:45770345-45770370
GCCCGGATCACAGGACTGGAGC
SpCas9





3673
DMPK 5 forward 19:45770346-45770370
CCCGGATCACAGGACTGGAGC
SpCas9





3674
DMPK 5 forward 19:45770347-45770370
CCGGATCACAGGACTGGAGC
SpCas9





3675
DMPK 5 forward 19:45770348-45770370
CGGATCACAGGACTGGAGC
SpCas9





3676
DMPK 5 forward 19:45770349-45770370
GGATCACAGGACTGGAGC
SpCas9





3677
DMPK 5 forward 19:45770343-45770371
GGGCCCGGATCACAGGACTGGAGCT
SpCas9





3678
DMPK 5 forward 19:45770344-45770371
GGCCCGGATCACAGGACTGGAGCT
SpCas9





3679
DMPK 5 forward 19:45770345-45770371
GCCCGGATCACAGGACTGGAGCT
SpCas9





3680
DMPK 5 forward 19:45770346-45770371
CCCGGATCACAGGACTGGAGCT
SpCas9





3681
DMPK 5 forward 19:45770347-45770371
CCGGATCACAGGACTGGAGCT
SpCas9





3682
DMPK 5 forward 19:45770348-45770371
CGGATCACAGGACTGGAGCT
SpCas9





3683
DMPK 5 forward 19:45770349-45770371
GGATCACAGGACTGGAGCT
SpCas9





3684
DMPK 5 forward 19:45770350-45770371
GATCACAGGACTGGAGCT
SpCas9





3685
DMPK 5 forward 19:45770346-45770374
CCCGGATCACAGGACTGGAGCTGGG
SpCas9





3686
DMPK 5 forward 19:45770347-45770374
CCGGATCACAGGACTGGAGCTGGG
SpCas9





3687
DMPK 5 forward 19:45770348-45770374
CGGATCACAGGACTGGAGCTGGG
SpCas9





3688
DMPK 5 forward 19:45770349-45770374
GGATCACAGGACTGGAGCTGGG
SpCas9





3689
DMPK 5 forward 19:45770350-45770374
GATCACAGGACTGGAGCTGGG
SpCas9





3690
DMPK 5 forward 19:45770351-45770374
ATCACAGGACTGGAGCTGGG
SpCas9





3691
DMPK 5 forward 19:45770352-45770374
TCACAGGACTGGAGCTGGG
SpCas9





3692
DMPK 5 forward 19:45770353-45770374
CACAGGACTGGAGCTGGG
SpCas9





3693
DMPK 5 reverse 19:45770346-45770374
CCGCCCAGCTCCAGTCCTGTGATCC
SpCas9





3694
DMPK 5 reverse 19:45770347-45770374
CGCCCAGCTCCAGTCCTGTGATCC
SpCas9





3695
DMPK 5 reverse 19:45770348-45770374
GCCCAGCTCCAGTCCTGTGATCC
SpCas9





3696
DMPK 5 reverse 19:45770349-45770374
CCCAGCTCCAGTCCTGTGATCC
SpCas9





3697
DMPK 5 reverse 19:45770350-45770374
CCAGCTCCAGTCCTGTGATCC
SpCas9





3698
DMPK 5 reverse 19:45770351-45770374
CAGCTCCAGTCCTGTGATCC
SpCas9





3699
DMPK 5 reverse 19:45770352-45770374
AGCTCCAGTCCTGTGATCC
SpCas9





3700
DMPK 5 reverse 19:45770353-45770374
GCTCCAGTCCTGTGATCC
SpCas9





3701
DMPK 5 reverse 19:45770347-45770375
TCCGCCCAGCTCCAGTCCTGTGATC
SpCas9





3702
DMPK 5 reverse 19:45770348-45770375
CCGCCCAGCTCCAGTCCTGTGATC
SpCas9





3703
DMPK 5 reverse 19:45770349-45770375
CGCCCAGCTCCAGTCCTGTGATC
SpCas9





3704
DMPK 5 reverse 19:45770350-45770375
GCCCAGCTCCAGTCCTGTGATC
SpCas9





3705
DMPK 5 reverse 19:45770351-45770375
CCCAGCTCCAGTCCTGTGATC
SpCas9





3706
DMPK 5 reverse 19:45770352-45770375
CCAGCTCCAGTCCTGTGATC
SpCas9





3707
DMPK 5 reverse 19:45770353-45770375
CAGCTCCAGTCCTGTGATC
SpCas9





3708
DMPK 5 reverse 19:45770354-45770375
AGCTCCAGTCCTGTGATC
SpCas9





3709
DMPK 5 forward 19:45770348-45770376
CGGATCACAGGACTGGAGCTGGGCG
SpCas9





3710
DMPK 5 forward 19:45770349-45770376
GGATCACAGGACTGGAGCTGGGCG
SpCas9





3711
DMPK 5 forward 19:45770350-45770376
GATCACAGGACTGGAGCTGGGCG
SpCas9





3712
DMPK 5 forward 19:45770351-45770376
ATCACAGGACTGGAGCTGGGCG
SpCas9





3713
DMPK 5 forward 19:45770352-45770376
TCACAGGACTGGAGCTGGGCG
SpCas9





3714
DMPK 5 forward 19:45770353-45770376
CACAGGACTGGAGCTGGGCG
SpCas9





3715
DMPK 5 forward 19:45770354-45770376
ACAGGACTGGAGCTGGGCG
SpCas9





3716
DMPK 5 forward 19:45770355-45770376
CAGGACTGGAGCTGGGCG
SpCas9





3717
DMPK 5 forward 19:45770360-45770388
CTGGAGCTGGGCGGAGACCCACGCT
SpCas9





3718
DMPK 5 forward 19:45770361-45770388
TGGAGCTGGGCGGAGACCCACGCT
SpCas9





3719
DMPK 5 forward 19:45770362-45770388
GGAGCTGGGCGGAGACCCACGCT
SpCas9





3720
DMPK 5 forward 19:45770363-45770388
GAGCTGGGCGGAGACCCACGCT
SpCas9





3721
DMPK 5 forward 19:45770364-45770388
AGCTGGGCGGAGACCCACGCT
SpCas9





3722
DMPK 5 forward 19:45770365-45770388
GCTGGGCGGAGACCCACGCT
SpCas9





3723
DMPK 5 forward 19:45770366-45770388
CTGGGCGGAGACCCACGCT
SpCas9





3724
DMPK 5 forward 19:45770367-45770388
TGGGCGGAGACCCACGCT
SpCas9





3725
DMPK 5 reverse 19:45770360-45770388
CCGAGCGTGGGTCTCCGCCCAGCTC
SpCas9





3726
DMPK 5 reverse 19:45770361-45770388
CGAGCGTGGGTCTCCGCCCAGCTC
SpCas9





3727
DMPK 5 reverse 19:45770362-45770388
GAGCGTGGGTCTCCGCCCAGCTC
SpCas9





3728
DMPK 5 reverse 19:45770363-45770388
AGCGTGGGTCTCCGCCCAGCTC
SpCas9





3729
DMPK 5 reverse 19:45770364-45770388
GCGTGGGTCTCCGCCCAGCTC
SpCas9





3730
DMPK 5 reverse 19:45770365-45770388
CGTGGGTCTCCGCCCAGCTC
SpCas9





3731
DMPK 5 reverse 19:45770366-45770388
GTGGGTCTCCGCCCAGCTC
SpCas9





3732
DMPK 5 reverse 19:45770367-45770388
TGGGTCTCCGCCCAGCTC
SpCas9





3733
DMPK 5 forward 19:45770362-45770390
GGAGCTGGGCGGAGACCCACGCTCG
SpCas9





3734
DMPK 5 forward 19:45770363-45770390
GAGCTGGGCGGAGACCCACGCTCG
SpCas9





3735
DMPK 5 forward 19:45770364-45770390
AGCTGGGCGGAGACCCACGCTCG
SpCas9





3736
DMPK 5 forward 19:45770365-45770390
GCTGGGCGGAGACCCACGCTCG
SpCas9





3737
DMPK 5 forward 19:45770366-45770390
CTGGGCGGAGACCCACGCTCG
SpCas9





3738
DMPK 5 forward 19:45770367-45770390
TGGGCGGAGACCCACGCTCG
SpCas9





3739
DMPK 5 forward 19:45770368-45770390
GGGCGGAGACCCACGCTCG
SpCas9





3740
DMPK 5 forward 19:45770369-45770390
GGCGGAGACCCACGCTCG
SpCas9





3741
DMPK 5 forward 19:45770365-45770393
GCTGGGCGGAGACCCACGCTCGGAG
SpCas9





3742
DMPK 5 forward 19:45770366-45770393
CTGGGCGGAGACCCACGCTCGGAG
SpCas9





3743
DMPK 5 forward 19:45770367-45770393
TGGGCGGAGACCCACGCTCGGAG
SpCas9





3744
DMPK 5 forward 19:45770368-45770393
GGGCGGAGACCCACGCTCGGAG
SpCas9





3745
DMPK 5 forward 19:45770369-45770393
GGCGGAGACCCACGCTCGGAG
SpCas9





3746
DMPK 5 forward 19:45770370-45770393
GCGGAGACCCACGCTCGGAG
SpCas9





3747
DMPK 5 forward 19:45770371-45770393
CGGAGACCCACGCTCGGAG
SpCas9





3748
DMPK 5 forward 19:45770372-45770393
GGAGACCCACGCTCGGAG
SpCas9





3749
DMPK 5 reverse 19:45770366-45770394
ACCGCTCCGAGCGTGGGTCTCCGCC
SpCas9





3750
DMPK 5 reverse 19:45770367-45770394
CCGCTCCGAGCGTGGGTCTCCGCC
SpCas9





3751
DMPK 5 reverse 19:45770368-45770394
CGCTCCGAGCGTGGGTCTCCGCC
SpCas9





3752
DMPK 5 reverse 19:45770369-45770394
GCTCCGAGCGTGGGTCTCCGCC
SpCas9





3753
DMPK 5 reverse 19:45770370-45770394
CTCCGAGCGTGGGTCTCCGCC
SpCas9





3754
DMPK 5 reverse 19:45770371-45770394
TCCGAGCGTGGGTCTCCGCC
SpCas9





3755
DMPK 5 reverse 19:45770372-45770394
CCGAGCGTGGGTCTCCGCC
SpCas9





3756
DMPK 5 reverse 19:45770373-45770394
CGAGCGTGGGTCTCCGCC
SpCas9





3757
DMPK 5 forward 19:45770376-45770404
ACCCACGCTCGGAGCGGTTGTGAAC
SpCas9





3758
DMPK 5 forward 19:45770377-45770404
CCCACGCTCGGAGCGGTTGTGAAC
SpCas9





3759
DMPK 5 forward 19:45770378-45770404
CCACGCTCGGAGCGGTTGTGAAC
SpCas9





3760
DMPK 5 forward 19:45770379-45770404
CACGCTCGGAGCGGTTGTGAAC
SpCas9





3761
DMPK 5 forward 19:45770380-45770404
ACGCTCGGAGCGGTTGTGAAC
SpCas9





3762
DMPK 5 forward 19:45770381-45770404
CGCTCGGAGCGGTTGTGAAC
SpCas9





3763
DMPK 5 forward 19:45770382-45770404
GCTCGGAGCGGTTGTGAAC
SpCas9





3764
DMPK 5 forward 19:45770383-45770404
CTCGGAGCGGTTGTGAAC
SpCas9





3765
DMPK 5 reverse 19:45770377-45770405
GCCAGTTCACAACCGCTCCGAGCGT
SpCas9





3766
DMPK 5 reverse 19:45770378-45770405
CCAGTTCACAACCGCTCCGAGCGT
SpCas9





3767
DMPK 5 reverse 19:45770379-45770405
CAGTTCACAACCGCTCCGAGCGT
SpCas9





3768
DMPK 5 reverse 19:45770380-45770405
AGTTCACAACCGCTCCGAGCGT
SpCas9





3769
DMPK 5 reverse 19:45770381-45770405
GTTCACAACCGCTCCGAGCGT
SpCas9





3770
DMPK 5 reverse 19:45770382-45770405
TTCACAACCGCTCCGAGCGT
SpCas9





3771
DMPK 5 reverse 19:45770383-45770405
TCACAACCGCTCCGAGCGT
SpCas9





3772
DMPK 5 reverse 19:45770384-45770405
CACAACCGCTCCGAGCGT
SpCas9





3773
DMPK 5 reverse 19:45770378-45770406
TGCCAGTTCACAACCGCTCCGAGCG
SpCas9





3774
DMPK 5 reverse 19:45770379-45770406
GCCAGTTCACAACCGCTCCGAGCG
SpCas9





3775
DMPK 5 reverse 19:45770380-45770406
CCAGTTCACAACCGCTCCGAGCG
SpCas9





3776
DMPK 5 reverse 19:45770381-45770406
CAGTTCACAACCGCTCCGAGCG
SpCas9





3777
DMPK 5 reverse 19:45770382-45770406
AGTTCACAACCGCTCCGAGCG
SpCas9





3778
DMPK 5 reverse 19:45770383-45770406
GTTCACAACCGCTCCGAGCG
SpCas9





3779
DMPK 5 reverse 19:45770384-45770406
TTCACAACCGCTCCGAGCG
SpCas9





3780
DMPK 5 reverse 19:45770385-45770406
TCACAACCGCTCCGAGCG
SpCas9





3781
DMPK 5 forward 19:45770379-45770407
CACGCTCGGAGCGGTTGTGAACTGG
SpCas9





3782
DMPK 5 forward 19:45770380-45770407
ACGCTCGGAGCGGTTGTGAACTGG
SpCas9





3783
DMPK 5 forward 19:45770381-45770407
CGCTCGGAGCGGTTGTGAACTGG
SpCas9





3784
DMPK 5 forward 19:45770382-45770407
GCTCGGAGCGGTTGTGAACTGG
SpCas9





3785
DMPK 5 forward 19:45770383-45770407
CTCGGAGCGGTTGTGAACTGG
SpCas9





3786
DMPK 5 forward 19:45770384-45770407
TCGGAGCGGTTGTGAACTGG
SpCas9





3787
DMPK 5 forward 19:45770385-45770407
CGGAGCGGTTGTGAACTGG
SpCas9





3788
DMPK 5 forward 19:45770386-45770407
GGAGCGGTTGTGAACTGG
SpCas9





3789
DMPK 5 forward 19:45770380-45770408
ACGCTCGGAGCGGTTGTGAACTGGC
SpCas9





3790
DMPK 5 forward 19:45770381-45770408
CGCTCGGAGCGGTTGTGAACTGGC
SpCas9





3791
DMPK 5 forward 19:45770382-45770408
GCTCGGAGCGGTTGTGAACTGGC
SpCas9





3792
DMPK 5 forward 19:45770383-45770408
CTCGGAGCGGTTGTGAACTGGC
SpCas9





3793
DMPK 5 forward 19:45770384-45770408
TCGGAGCGGTTGTGAACTGGC
SpCas9





3794
DMPK 5 forward 19:45770385-45770408
CGGAGCGGTTGTGAACTGGC
SpCas9





3795
DMPK 5 forward 19:45770386-45770408
GGAGCGGTTGTGAACTGGC
SpCas9





3796
DMPK 5 forward 19:45770387-45770408
GAGCGGTTGTGAACTGGC
SpCas9





3797
DMPK 5 forward 19:45770383-45770411
CTCGGAGCGGTTGTGAACTGGCAGG
SpCas9





3798
DMPK 5 forward 19:45770384-45770411
TCGGAGCGGTTGTGAACTGGCAGG
SpCas9





3799
DMPK 5 forward 19:45770385-45770411
CGGAGCGGTTGTGAACTGGCAGG
SpCas9





3800
DMPK 5 forward 19:45770386-45770411
GGAGCGGTTGTGAACTGGCAGG
SpCas9





3801
DMPK 5 forward 19:45770387-45770411
GAGCGGTTGTGAACTGGCAGG
SpCas9





3802
DMPK 5 forward 19:45770388-45770411
AGCGGTTGTGAACTGGCAGG
SpCas9





3803
DMPK 5 forward 19:45770389-45770411
GCGGTTGTGAACTGGCAGG
SpCas9





3804
DMPK 5 forward 19:45770390-45770411
CGGTTGTGAACTGGCAGG
SpCas9





3805
DMPK 5 reverse 19:45770383-45770411
CCGCCTGCCAGTTCACAACCGCTCC
SpCas9





3806
DMPK 5 reverse 19:45770384-45770411
CGCCTGCCAGTTCACAACCGCTCC
SpCas9





3807
DMPK 5 reverse 19:45770385-45770411
GCCTGCCAGTTCACAACCGCTCC
SpCas9





3808
DMPK 5 reverse 19:45770386-45770411
CCTGCCAGTTCACAACCGCTCC
SpCas9





3809
DMPK 5 reverse 19:45770387-45770411
CTGCCAGTTCACAACCGCTCC
SpCas9





3810
DMPK 5 reverse 19:45770388-45770411
TGCCAGTTCACAACCGCTCC
SpCas9





3811
DMPK 5 reverse 19:45770389-45770411
GCCAGTTCACAACCGCTCC
SpCas9





3812
DMPK 5 reverse 19:45770390-45770411
CCAGTTCACAACCGCTCC
SpCas9





3813
DMPK 5 forward 19:45770386-45770414
GGAGCGGTTGTGAACTGGCAGGCGG
SpCas9





3814
DMPK 5 forward 19:45770387-45770414
GAGCGGTTGTGAACTGGCAGGCGG
SpCas9





3815
DMPK 5 forward 19:45770388-45770414
AGCGGTTGTGAACTGGCAGGCGG
SpCas9





3816
DMPK 5 forward 19:45770389-45770414
GCGGTTGTGAACTGGCAGGCGG
SpCas9





3817
DMPK 5 forward 19:45770390-45770414
CGGTTGTGAACTGGCAGGCGG
SpCas9





3818
DMPK 5 forward 19:45770391-45770414
GGTTGTGAACTGGCAGGCGG
SpCas9





3819
DMPK 5 forward 19:45770392-45770414
GTTGTGAACTGGCAGGCGG
SpCas9





3820
DMPK 5 forward 19:45770393-45770414
TTGTGAACTGGCAGGCGG
SpCas9





3821
DMPK 5 forward 19:45770387-45770415
GAGCGGTTGTGAACTGGCAGGCGGT
SpCas9





3822
DMPK 5 forward 19:45770388-45770415
AGCGGTTGTGAACTGGCAGGCGGT
SpCas9





3823
DMPK 5 forward 19:45770389-45770415
GCGGTTGTGAACTGGCAGGCGGT
SpCas9





3824
DMPK 5 forward 19:45770390-45770415
CGGTTGTGAACTGGCAGGCGGT
SpCas9





3825
DMPK 5 forward 19:45770391-45770415
GGTTGTGAACTGGCAGGCGGT
SpCas9





3826
DMPK 5 forward 19:45770392-45770415
GTTGTGAACTGGCAGGCGGT
SpCas9





3827
DMPK 5 forward 19:45770393-45770415
TTGTGAACTGGCAGGCGGT
SpCas9





3828
DMPK 5 forward 19:45770394-45770415
TGTGAACTGGCAGGCGGT
SpCas9





3829
DMPK 5 forward 19:45770392-45770420
GTTGTGAACTGGCAGGCGGTGGGCG
SpCas9





3830
DMPK 5 forward 19:45770393-45770420
TTGTGAACTGGCAGGCGGTGGGCG
SpCas9





3831
DMPK 5 forward 19:45770394-45770420
TGTGAACTGGCAGGCGGTGGGCG
SpCas9





3832
DMPK 5 forward 19:45770395-45770420
GTGAACTGGCAGGCGGTGGGCG
SpCas9





3833
DMPK 5 forward 19:45770396-45770420
TGAACTGGCAGGCGGTGGGCG
SpCas9





3834
DMPK 5 forward 19:45770397-45770420
GAACTGGCAGGCGGTGGGCG
SpCas9





3835
DMPK 5 forward 19:45770398-45770420
AACTGGCAGGCGGTGGGCG
SpCas9





3836
DMPK 5 forward 19:45770399-45770420
ACTGGCAGGCGGTGGGCG
SpCas9





3837
DMPK 5 reverse 19:45770400-45770428
CACAGAAGCCGCGCCCACCGCCTGC
SpCas9





3838
DMPK 5 reverse 19:45770401-45770428
ACAGAAGCCGCGCCCACCGCCTGC
SpCas9





3839
DMPK 5 reverse 19:45770402-45770428
CAGAAGCCGCGCCCACCGCCTGC
SpCas9





3840
DMPK 5 reverse 19:45770403-45770428
AGAAGCCGCGCCCACCGCCTGC
SpCas9





3841
DMPK 5 reverse 19:45770404-45770428
GAAGCCGCGCCCACCGCCTGC
SpCas9





3842
DMPK 5 reverse 19:45770405-45770428
AAGCCGCGCCCACCGCCTGC
SpCas9





3843
DMPK 5 reverse 19:45770406-45770428
AGCCGCGCCCACCGCCTGC
SpCas9





3844
DMPK 5 reverse 19:45770407-45770428
GCCGCGCCCACCGCCTGC
SpCas9





3845
DMPK 5 forward 19:45770411-45770439
TGGGCGCGGCTTCTGTGCCGTGCCC
SpCas9





3846
DMPK 5 forward 19:45770412-45770439
GGGCGCGGCTTCTGTGCCGTGCCC
SpCas9





3847
DMPK 5 forward 19:45770413-45770439
GGCGCGGCTTCTGTGCCGTGCCC
SpCas9





3848
DMPK 5 forward 19:45770414-45770439
GCGCGGCTTCTGTGCCGTGCCC
SpCas9





3849
DMPK 5 forward 19:45770415-45770439
CGCGGCTTCTGTGCCGTGCCC
SpCas9





3850
DMPK 5 forward 19:45770416-45770439
GCGGCTTCTGTGCCGTGCCC
SpCas9





3851
DMPK 5 forward 19:45770417-45770439
CGGCTTCTGTGCCGTGCCC
SpCas9





3852
DMPK 5 forward 19:45770418-45770439
GGCTTCTGTGCCGTGCCC
SpCas9





3853
DMPK 5 forward 19:45770412-45770440
GGGCGCGGCTTCTGTGCCGTGCCCC
SpCas9





3854
DMPK 5 forward 19:45770413-45770440
GGCGCGGCTTCTGTGCCGTGCCCC
SpCas9





3855
DMPK 5 forward 19:45770414-45770440
GCGCGGCTTCTGTGCCGTGCCCC
SpCas9





3856
DMPK 5 forward 19:45770415-45770440
CGCGGCTTCTGTGCCGTGCCCC
SpCas9





3857
DMPK 5 forward 19:45770416-45770440
GCGGCTTCTGTGCCGTGCCCC
SpCas9





3858
DMPK 5 forward 19:45770417-45770440
CGGCTTCTGTGCCGTGCCCC
SpCas9





3859
DMPK 5 forward 19:45770418-45770440
GGCTTCTGTGCCGTGCCCC
SpCas9





3860
DMPK 5 forward 19:45770419-45770440
GCTTCTGTGCCGTGCCCC
SpCas9





3861
DMPK 5 forward 19:45770419-45770447
GCTTCTGTGCCGTGCCCCGGGCACT
SpCas9





3862
DMPK 5 forward 19:45770420-45770447
CTTCTGTGCCGTGCCCCGGGCACT
SpCas9





3863
DMPK 5 forward 19:45770421-45770447
TTCTGTGCCGTGCCCCGGGCACT
SpCas9





3864
DMPK 5 forward 19:45770422-45770447
TCTGTGCCGTGCCCCGGGCACT
SpCas9





3865
DMPK 5 forward 19:45770423-45770447
CTGTGCCGTGCCCCGGGCACT
SpCas9





3866
DMPK 5 forward 19:45770424-45770447
TGTGCCGTGCCCCGGGCACT
SpCas9





3867
DMPK 5 forward 19:45770425-45770447
GTGCCGTGCCCCGGGCACT
SpCas9





3868
DMPK 5 forward 19:45770426-45770447
TGCCGTGCCCCGGGCACT
SpCas9





3869
DMPK 5 reverse 19:45770420-45770448
ACTGAGTGCCCGGGGCACGGCACAG
SpCas9





3870
DMPK 5 reverse 19:45770421-45770448
CTGAGTGCCCGGGGCACGGCACAG
SpCas9





3871
DMPK 5 reverse 19:45770422-45770448
TGAGTGCCCGGGGCACGGCACAG
SpCas9





3872
DMPK 5 reverse 19:45770423-45770448
GAGTGCCCGGGGCACGGCACAG
SpCas9





3873
DMPK 5 reverse 19:45770424-45770448
AGTGCCCGGGGCACGGCACAG
SpCas9





3874
DMPK 5 reverse 19:45770425-45770448
GTGCCCGGGGCACGGCACAG
SpCas9





3875
DMPK 5 reverse 19:45770426-45770448
TGCCCGGGGCACGGCACAG
SpCas9





3876
DMPK 5 reverse 19:45770427-45770448
GCCCGGGGCACGGCACAG
SpCas9





3877
DMPK 5 reverse 19:45770423-45770451
AAGACTGAGTGCCCGGGGCACGGCA
SpCas9





3878
DMPK 5 reverse 19:45770424-45770451
AGACTGAGTGCCCGGGGCACGGCA
SpCas9





3879
DMPK 5 reverse 19:45770425-45770451
GACTGAGTGCCCGGGGCACGGCA
SpCas9





3880
DMPK 5 reverse 19:45770426-45770451
ACTGAGTGCCCGGGGCACGGCA
SpCas9





3881
DMPK 5 reverse 19:45770427-45770451
CTGAGTGCCCGGGGCACGGCA
SpCas9





3882
DMPK 5 reverse 19:45770428-45770451
TGAGTGCCCGGGGCACGGCA
SpCas9





3883
DMPK 5 reverse 19:45770429-45770451
GAGTGCCCGGGGCACGGCA
SpCas9





3884
DMPK 5 reverse 19:45770430-45770451
AGTGCCCGGGGCACGGCA
SpCas9





3885
DMPK 5 reverse 19:45770428-45770456
GTTGGAAGACTGAGTGCCCGGGGCA
SpCas9





3886
DMPK 5 reverse 19:45770429-45770456
TTGGAAGACTGAGTGCCCGGGGCA
SpCas9





3887
DMPK 5 reverse 19:45770430-45770456
TGGAAGACTGAGTGCCCGGGGCA
SpCas9





3888
DMPK 5 reverse 19:45770431-45770456
GGAAGACTGAGTGCCCGGGGCA
SpCas9





3889
DMPK 5 reverse 19:45770432-45770456
GAAGACTGAGTGCCCGGGGCA
SpCas9





3890
DMPK 5 reverse 19:45770433-45770456
AAGACTGAGTGCCCGGGGCA
SpCas9





3891
DMPK 5 reverse 19:45770434-45770456
AGACTGAGTGCCCGGGGCA
SpCas9





3892
DMPK 5 reverse 19:45770435-45770456
GACTGAGTGCCCGGGGCA
SpCas9





3893
DMPK 5 forward 19:45770430-45770458
GTGCCCCGGGCACTCAGTCTTCCAA
SpCas9





3894
DMPK 5 forward 19:45770431-45770458
TGCCCCGGGCACTCAGTCTTCCAA
SpCas9





3895
DMPK 5 forward 19:45770432-45770458
GCCCCGGGCACTCAGTCTTCCAA
SpCas9





3896
DMPK 5 forward 19:45770433-45770458
CCCCGGGCACTCAGTCTTCCAA
SpCas9





3897
DMPK 5 forward 19:45770434-45770458
CCCGGGCACTCAGTCTTCCAA
SpCas9





3898
DMPK 5 forward 19:45770435-45770458
CCGGGCACTCAGTCTTCCAA
SpCas9





3899
DMPK 5 forward 19:45770436-45770458
CGGGCACTCAGTCTTCCAA
SpCas9





3900
DMPK 5 forward 19:45770437-45770458
GGGCACTCAGTCTTCCAA
SpCas9





3901
DMPK 5 forward 19:45770431-45770459
TGCCCCGGGCACTCAGTCTTCCAAC
SpCas9





3902
DMPK 5 forward 19:45770432-45770459
GCCCCGGGCACTCAGTCTTCCAAC
SpCas9





3903
DMPK 5 forward 19:45770433-45770459
CCCCGGGCACTCAGTCTTCCAAC
SpCas9





3904
DMPK 5 forward 19:45770434-45770459
CCCGGGCACTCAGTCTTCCAAC
SpCas9





3905
DMPK 5 forward 19:45770435-45770459
CCGGGCACTCAGTCTTCCAAC
SpCas9





3906
DMPK 5 forward 19:45770436-45770459
CGGGCACTCAGTCTTCCAAC
SpCas9





3907
DMPK 5 forward 19:45770437-45770459
GGGCACTCAGTCTTCCAAC
SpCas9





3908
DMPK 5 forward 19:45770438-45770459
GGCACTCAGTCTTCCAAC
SpCas9





3909
DMPK 5 forward 19:45770432-45770460
GCCCCGGGCACTCAGTCTTCCAACG
SpCas9





3910
DMPK 5 forward 19:45770433-45770460
CCCCGGGCACTCAGTCTTCCAACG
SpCas9





3911
DMPK 5 forward 19:45770434-45770460
CCCGGGCACTCAGTCTTCCAACG
SpCas9





3912
DMPK 5 forward 19:45770435-45770460
CCGGGCACTCAGTCTTCCAACG
SpCas9





3913
DMPK 5 forward 19:45770436-45770460
CGGGCACTCAGTCTTCCAACG
SpCas9





3914
DMPK 5 forward 19:45770437-45770460
GGGCACTCAGTCTTCCAACG
SpCas9





3915
DMPK 5 forward 19:45770438-45770460
GGCACTCAGTCTTCCAACG
SpCas9





3916
DMPK 5 forward 19:45770439-45770460
GCACTCAGTCTTCCAACG
SpCas9





3917
DMPK 5 reverse 19:45770433-45770461
GCCCCGTTGGAAGACTGAGTGCCCG
SpCas9





3918
DMPK 5 reverse 19:45770434-45770461
CCCCGTTGGAAGACTGAGTGCCCG
SpCas9





3919
DMPK 5 reverse 19:45770435-45770461
CCCGTTGGAAGACTGAGTGCCCG
SpCas9





3920
DMPK 5 reverse 19:45770436-45770461
CCGTTGGAAGACTGAGTGCCCG
SpCas9





3921
DMPK 5 reverse 19:45770437-45770461
CGTTGGAAGACTGAGTGCCCG
SpCas9





3922
DMPK 5 reverse 19:45770438-45770461
GTTGGAAGACTGAGTGCCCG
SpCas9





3923
DMPK 5 reverse 19:45770439-45770461
TTGGAAGACTGAGTGCCCG
SpCas9





3924
DMPK 5 reverse 19:45770440-45770461
TGGAAGACTGAGTGCCCG
SpCas9





3925
DMPK 5 reverse 19:45770434-45770462
GGCCCCGTTGGAAGACTGAGTGCCC
SpCas9





3926
DMPK 5 reverse 19:45770435-45770462
GCCCCGTTGGAAGACTGAGTGCCC
SpCas9





3927
DMPK 5 reverse 19:45770436-45770462
CCCCGTTGGAAGACTGAGTGCCC
SpCas9





3928
DMPK 5 reverse 19:45770437-45770462
CCCGTTGGAAGACTGAGTGCCC
SpCas9





3929
DMPK 5 reverse 19:45770438-45770462
CCGTTGGAAGACTGAGTGCCC
SpCas9





3930
DMPK 5 reverse 19:45770439-45770462
CGTTGGAAGACTGAGTGCCC
SpCas9





3931
DMPK 5 reverse 19:45770440-45770462
GTTGGAAGACTGAGTGCCC
SpCas9





3932
DMPK 5 reverse 19:45770441-45770462
TTGGAAGACTGAGTGCCC
SpCas9





3933
DMPK 5 reverse 19:45770435-45770463
GGGCCCCGTTGGAAGACTGAGTGCC
SpCas9





3934
DMPK 5 reverse 19:45770436-45770463
GGCCCCGTTGGAAGACTGAGTGCC
SpCas9





3935
DMPK 5 reverse 19:45770437-45770463
GCCCCGTTGGAAGACTGAGTGCC
SpCas9





3936
DMPK 5 reverse 19:45770438-45770463
CCCCGTTGGAAGACTGAGTGCC
SpCas9





3937
DMPK 5 reverse 19:45770439-45770463
CCCGTTGGAAGACTGAGTGCC
SpCas9





3938
DMPK 5 reverse 19:45770440-45770463
CCGTTGGAAGACTGAGTGCC
SpCas9





3939
DMPK 5 reverse 19:45770441-45770463
CGTTGGAAGACTGAGTGCC
SpCas9





3940
DMPK 5 reverse 19:45770442-45770463
GTTGGAAGACTGAGTGCC
SpCas9





3941
DMPK 5 forward 19:45770438-45770466
GGCACTCAGTCTTCCAACGGGGCCC
SpCas9





3942
DMPK 5 forward 19:45770439-45770466
GCACTCAGTCTTCCAACGGGGCCC
SpCas9





3943
DMPK 5 forward 19:45770440-45770466
CACTCAGTCTTCCAACGGGGCCC
SpCas9





3944
DMPK 5 forward 19:45770441-45770466
ACTCAGTCTTCCAACGGGGCCC
SpCas9





3945
DMPK 5 forward 19:45770442-45770466
CTCAGTCTTCCAACGGGGCCC
SpCas9





3946
DMPK 5 forward 19:45770443-45770466
TCAGTCTTCCAACGGGGCCC
SpCas9





3947
DMPK 5 forward 19:45770444-45770466
CAGTCTTCCAACGGGGCCC
SpCas9





3948
DMPK 5 forward 19:45770445-45770466
AGTCTTCCAACGGGGCCC
SpCas9





3949
DMPK 5 forward 19:45770440-45770468
CACTCAGTCTTCCAACGGGGCCCCG
SpCas9





3950
DMPK 5 forward 19:45770441-45770468
ACTCAGTCTTCCAACGGGGCCCCG
SpCas9





3951
DMPK 5 forward 19:45770442-45770468
CTCAGTCTTCCAACGGGGCCCCG
SpCas9





3952
DMPK 5 forward 19:45770443-45770468
TCAGTCTTCCAACGGGGCCCCG
SpCas9





3953
DMPK 5 forward 19:45770444-45770468
CAGTCTTCCAACGGGGCCCCG
SpCas9





3954
DMPK 5 forward 19:45770445-45770468
AGTCTTCCAACGGGGCCCCG
SpCas9





3955
DMPK 5 forward 19:45770446-45770468
GTCTTCCAACGGGGCCCCG
SpCas9





3956
DMPK 5 forward 19:45770447-45770468
TCTTCCAACGGGGCCCCG
SpCas9





3957
DMPK 5 reverse 19:45770442-45770470
GACTCCGGGGCCCCGTTGGAAGACT
SpCas9





3958
DMPK 5 reverse 19:45770443-45770470
ACTCCGGGGCCCCGTTGGAAGACT
SpCas9





3959
DMPK 5 reverse 19:45770444-45770470
CTCCGGGGCCCCGTTGGAAGACT
SpCas9





3960
DMPK 5 reverse 19:45770445-45770470
TCCGGGGCCCCGTTGGAAGACT
SpCas9





3961
DMPK 5 reverse 19:45770446-45770470
CCGGGGCCCCGTTGGAAGACT
SpCas9





3962
DMPK 5 reverse 19:45770447-45770470
CGGGGCCCCGTTGGAAGACT
SpCas9





3963
DMPK 5 reverse 19:45770448-45770470
GGGGCCCCGTTGGAAGACT
SpCas9





3964
DMPK 5 reverse 19:45770449-45770470
GGGCCCCGTTGGAAGACT
SpCas9





3965
DMPK 5 forward 19:45770446-45770474
GTCTTCCAACGGGGCCCCGGAGTCG
SpCas9





3966
DMPK 5 forward 19:45770447-45770474
TCTTCCAACGGGGCCCCGGAGTCG
SpCas9





3967
DMPK 5 forward 19:45770448-45770474
CTTCCAACGGGGCCCCGGAGTCG
SpCas9





3968
DMPK 5 forward 19:45770449-45770474
TTCCAACGGGGCCCCGGAGTCG
SpCas9





3969
DMPK 5 forward 19:45770450-45770474
TCCAACGGGGCCCCGGAGTCG
SpCas9





3970
DMPK 5 forward 19:45770451-45770474
CCAACGGGGCCCCGGAGTCG
SpCas9





3971
DMPK 5 forward 19:45770452-45770474
CAACGGGGCCCCGGAGTCG
SpCas9





3972
DMPK 5 forward 19:45770453-45770474
AACGGGGCCCCGGAGTCG
SpCas9





3973
DMPK 5 reverse 19:45770448-45770476
GTCTTCGACTCCGGGGCCCCGTTGG
SpCas9





3974
DMPK 5 reverse 19:45770449-45770476
TCTTCGACTCCGGGGCCCCGTTGG
SpCas9





3975
DMPK 5 reverse 19:45770450-45770476
CTTCGACTCCGGGGCCCCGTTGG
SpCas9





3976
DMPK 5 reverse 19:45770451-45770476
TTCGACTCCGGGGCCCCGTTGG
SpCas9





3977
DMPK 5 reverse 19:45770452-45770476
TCGACTCCGGGGCCCCGTTGG
SpCas9





3978
DMPK 5 reverse 19:45770453-45770476
CGACTCCGGGGCCCCGTTGG
SpCas9





3979
DMPK 5 reverse 19:45770454-45770476
GACTCCGGGGCCCCGTTGG
SpCas9





3980
DMPK 5 reverse 19:45770455-45770476
ACTCCGGGGCCCCGTTGG
SpCas9





3981
DMPK 5 forward 19:45770450-45770478
TCCAACGGGGCCCCGGAGTCGAAGA
SpCas9





3982
DMPK 5 forward 19:45770451-45770478
CCAACGGGGCCCCGGAGTCGAAGA
SpCas9





3983
DMPK 5 forward 19:45770452-45770478
CAACGGGGCCCCGGAGTCGAAGA
SpCas9





3984
DMPK 5 forward 19:45770453-45770478
AACGGGGCCCCGGAGTCGAAGA
SpCas9





3985
DMPK 5 forward 19:45770454-45770478
ACGGGGCCCCGGAGTCGAAGA
SpCas9





3986
DMPK 5 forward 19:45770455-45770478
CGGGGCCCCGGAGTCGAAGA
SpCas9





3987
DMPK 5 forward 19:45770456-45770478
GGGGCCCCGGAGTCGAAGA
SpCas9





3988
DMPK 5 forward 19:45770457-45770478
GGGCCCCGGAGTCGAAGA
SpCas9





3989
DMPK 5 reverse 19:45770451-45770479
ACTGTCTTCGACTCCGGGGCCCCGT
SpCas9





3990
DMPK 5 reverse 19:45770452-45770479
CTGTCTTCGACTCCGGGGCCCCGT
SpCas9





3991
DMPK 5 reverse 19:45770453-45770479
TGTCTTCGACTCCGGGGCCCCGT
SpCas9





3992
DMPK 5 reverse 19:45770454-45770479
GTCTTCGACTCCGGGGCCCCGT
SpCas9





3993
DMPK 5 reverse 19:45770455-45770479
TCTTCGACTCCGGGGCCCCGT
SpCas9





3994
DMPK 5 reverse 19:45770456-45770479
CTTCGACTCCGGGGCCCCGT
SpCas9





3995
DMPK 5 reverse 19:45770457-45770479
TTCGACTCCGGGGCCCCGT
SpCas9





3996
DMPK 5 reverse 19:45770458-45770479
TCGACTCCGGGGCCCCGT
SpCas9





3997
DMPK 5 forward 19:45770456-45770484
GGGGCCCCGGAGTCGAAGACAGTTC
SpCas9





3998
DMPK 5 forward 19:45770457-45770484
GGGCCCCGGAGTCGAAGACAGTTC
SpCas9





3999
DMPK 5 forward 19:45770458-45770484
GGCCCCGGAGTCGAAGACAGTTC
SpCas9





4000
DMPK 5 forward 19:45770459-45770484
GCCCCGGAGTCGAAGACAGTTC
SpCas9





4001
DMPK 5 forward 19:45770460-45770484
CCCCGGAGTCGAAGACAGTTC
SpCas9





4002
DMPK 5 forward 19:45770461-45770484
CCCGGAGTCGAAGACAGTTC
SpCas9





4003
DMPK 5 forward 19:45770462-45770484
CCGGAGTCGAAGACAGTTC
SpCas9





4004
DMPK 5 forward 19:45770463-45770484
CGGAGTCGAAGACAGTTC
SpCas9





4005
DMPK 5 forward 19:45770457-45770485
GGGCCCCGGAGTCGAAGACAGTTCT
SpCas9





4006
DMPK 5 forward 19:45770458-45770485
GGCCCCGGAGTCGAAGACAGTTCT
SpCas9





4007
DMPK 5 forward 19:45770459-45770485
GCCCCGGAGTCGAAGACAGTTCT
SpCas9





4008
DMPK 5 forward 19:45770460-45770485
CCCCGGAGTCGAAGACAGTTCT
SpCas9





4009
DMPK 5 forward 19:45770461-45770485
CCCGGAGTCGAAGACAGTTCT
SpCas9





4010
DMPK 5 forward 19:45770462-45770485
CCGGAGTCGAAGACAGTTCT
SpCas9





4011
DMPK 5 forward 19:45770463-45770485
CGGAGTCGAAGACAGTTCT
SpCas9





4012
DMPK 5 forward 19:45770464-45770485
GGAGTCGAAGACAGTTCT
SpCas9





4013
DMPK 5 forward 19:45770458-45770486
GGCCCCGGAGTCGAAGACAGTTCTA
SpCas9





4014
DMPK 5 forward 19:45770459-45770486
GCCCCGGAGTCGAAGACAGTTCTA
SpCas9





4015
DMPK 5 forward 19:45770460-45770486
CCCCGGAGTCGAAGACAGTTCTA
SpCas9





4016
DMPK 5 forward 19:45770461-45770486
CCCGGAGTCGAAGACAGTTCTA
SpCas9





4017
DMPK 5 forward 19:45770462-45770486
CCGGAGTCGAAGACAGTTCTA
SpCas9





4018
DMPK 5 forward 19:45770463-45770486
CGGAGTCGAAGACAGTTCTA
SpCas9





4019
DMPK 5 forward 19:45770464-45770486
GGAGTCGAAGACAGTTCTA
SpCas9





4020
DMPK 5 forward 19:45770465-45770486
GAGTCGAAGACAGTTCTA
SpCas9





4021
DMPK 5 reverse 19:45770460-45770488
AACCCTAGAACTGTCTTCGACTCCG
SpCas9





4022
DMPK 5 reverse 19:45770461-45770488
ACCCTAGAACTGTCTTCGACTCCG
SpCas9





4023
DMPK 5 reverse 19:45770462-45770488
CCCTAGAACTGTCTTCGACTCCG
SpCas9





4024
DMPK 5 reverse 19:45770463-45770488
CCTAGAACTGTCTTCGACTCCG
SpCas9





4025
DMPK 5 reverse 19:45770464-45770488
CTAGAACTGTCTTCGACTCCG
SpCas9





4026
DMPK 5 reverse 19:45770465-45770488
TAGAACTGTCTTCGACTCCG
SpCas9





4027
DMPK 5 reverse 19:45770466-45770488
AGAACTGTCTTCGACTCCG
SpCas9





4028
DMPK 5 reverse 19:45770467-45770488
GAACTGTCTTCGACTCCG
SpCas9





4029
DMPK 5 reverse 19:45770461-45770489
GAACCCTAGAACTGTCTTCGACTCC
SpCas9





4030
DMPK 5 reverse 19:45770462-45770489
AACCCTAGAACTGTCTTCGACTCC
SpCas9





4031
DMPK 5 reverse 19:45770463-45770489
ACCCTAGAACTGTCTTCGACTCC
SpCas9





4032
DMPK 5 reverse 19:45770464-45770489
CCCTAGAACTGTCTTCGACTCC
SpCas9





4033
DMPK 5 reverse 19:45770465-45770489
CCTAGAACTGTCTTCGACTCC
SpCas9





4034
DMPK 5 reverse 19:45770466-45770489
CTAGAACTGTCTTCGACTCC
SpCas9





4035
DMPK 5 reverse 19:45770467-45770489
TAGAACTGTCTTCGACTCC
SpCas9





4036
DMPK 5 reverse 19:45770468-45770489
AGAACTGTCTTCGACTCC
SpCas9





4037
DMPK 5 reverse 19:45770462-45770490
TGAACCCTAGAACTGTCTTCGACTC
SpCas9





4038
DMPK 5 reverse 19:45770463-45770490
GAACCCTAGAACTGTCTTCGACTC
SpCas9





4039
DMPK 5 reverse 19:45770464-45770490
AACCCTAGAACTGTCTTCGACTC
SpCas9





4040
DMPK 5 reverse 19:45770465-45770490
ACCCTAGAACTGTCTTCGACTC
SpCas9





4041
DMPK 5 reverse 19:45770466-45770490
CCCTAGAACTGTCTTCGACTC
SpCas9





4042
DMPK 5 reverse 19:45770467-45770490
CCTAGAACTGTCTTCGACTC
SpCas9





4043
DMPK 5 reverse 19:45770468-45770490
CTAGAACTGTCTTCGACTC
SpCas9





4044
DMPK 5 reverse 19:45770469-45770490
TAGAACTGTCTTCGACTC
SpCas9





4045
DMPK 5 forward 19:45770463-45770491
CGGAGTCGAAGACAGTTCTAGGGTT
SpCas9





4046
DMPK 5 forward 19:45770464-45770491
GGAGTCGAAGACAGTTCTAGGGTT
SpCas9





4047
DMPK 5 forward 19:45770465-45770491
GAGTCGAAGACAGTTCTAGGGTT
SpCas9





4048
DMPK 5 forward 19:45770466-45770491
AGTCGAAGACAGTTCTAGGGTT
SpCas9





4049
DMPK 5 forward 19:45770467-45770491
GTCGAAGACAGTTCTAGGGTT
SpCas9





4050
DMPK 5 forward 19:45770468-45770491
TCGAAGACAGTTCTAGGGTT
SpCas9





4051
DMPK 5 forward 19:45770469-45770491
CGAAGACAGTTCTAGGGTT
SpCas9





4052
DMPK 5 forward 19:45770470-45770491
GAAGACAGTTCTAGGGTT
SpCas9





4053
DMPK 5 forward 19:45770464-45770492
GGAGTCGAAGACAGTTCTAGGGTTC
SpCas9





4054
DMPK 5 forward 19:45770465-45770492
GAGTCGAAGACAGTTCTAGGGTTC
SpCas9





4055
DMPK 5 forward 19:45770466-45770492
AGTCGAAGACAGTTCTAGGGTTC
SpCas9





4056
DMPK 5 forward 19:45770467-45770492
GTCGAAGACAGTTCTAGGGTTC
SpCas9





4057
DMPK 5 forward 19:45770468-45770492
TCGAAGACAGTTCTAGGGTTC
SpCas9





4058
DMPK 5 forward 19:45770469-45770492
CGAAGACAGTTCTAGGGTTC
SpCas9





4059
DMPK 5 forward 19:45770470-45770492
GAAGACAGTTCTAGGGTTC
SpCas9





4060
DMPK 5 forward 19:45770471-45770492
AAGACAGTTCTAGGGTTC
SpCas9





4061
DMPK 5 forward 19:45770465-45770493
GAGTCGAAGACAGTTCTAGGGTTCA
SpCas9





4062
DMPK 5 forward 19:45770466-45770493
AGTCGAAGACAGTTCTAGGGTTCA
SpCas9





4063
DMPK 5 forward 19:45770467-45770493
GTCGAAGACAGTTCTAGGGTTCA
SpCas9





4064
DMPK 5 forward 19:45770468-45770493
TCGAAGACAGTTCTAGGGTTCA
SpCas9





4065
DMPK 5 forward 19:45770469-45770493
CGAAGACAGTTCTAGGGTTCA
SpCas9





4066
DMPK 5 forward 19:45770470-45770493
GAAGACAGTTCTAGGGTTCA
SpCas9





4067
DMPK 5 forward 19:45770471-45770493
AAGACAGTTCTAGGGTTCA
SpCas9





4068
DMPK 5 forward 19:45770472-45770493
AGACAGTTCTAGGGTTCA
SpCas9





4069
DMPK 5 reverse 19:45770480-45770508
GGAGCCGCCCGCGCTCCCTGAACCC
SpCas9





4070
DMPK 5 reverse 19:45770481-45770508
GAGCCGCCCGCGCTCCCTGAACCC
SpCas9





4071
DMPK 5 reverse 19:45770482-45770508
AGCCGCCCGCGCTCCCTGAACCC
SpCas9





4072
DMPK 5 reverse 19:45770483-45770508
GCCGCCCGCGCTCCCTGAACCC
SpCas9





4073
DMPK 5 reverse 19:45770484-45770508
CCGCCCGCGCTCCCTGAACCC
SpCas9





4074
DMPK 5 reverse 19:45770485-45770508
CGCCCGCGCTCCCTGAACCC
SpCas9





4075
DMPK 5 reverse 19:45770486-45770508
GCCCGCGCTCCCTGAACCC
SpCas9





4076
DMPK 5 reverse 19:45770487-45770508
CCCGCGCTCCCTGAACCC
SpCas9





4077
DMPK O reverse 19:45770583-45770605
CCTGCTCCTGTTCGCCGT
As/LbCpf1





4078
DMPK O reverse 19:45770583-45770606
CCTGCTCCTGTTCGCCGTT
As/LbCpf1





4079
DMPK O reverse 19:45770583-45770607
CCTGCTCCTGTTCGCCGTTG
As/LbCpf1





4080
DMPK O reverse 19:45770583-45770608
CCTGCTCCTGTTCGCCGTTGT
As/LbCpf1





4081
DMPK O reverse 19:45770583-45770609
CCTGCTCCTGTTCGCCGTTGTT
As/LbCpf1





4082
DMPK O reverse 19:45770583-45770610
CCTGCTCCTGTTCGCCGTTGTTC
As/LbCpf1





4083
DMPK O reverse 19:45770583-45770611
CCTGCTCCTGTTCGCCGTTGTTCT
As/LbCpf1





4084
DMPK O reverse 19:45770583-45770612
CCTGCTCCTGTTCGCCGTTGTTCTG
As/LbCpf1





4085
DMPK O reverse 19:45769669-45769691
CGGTTTGCGTTGTGGGCC
AsCpf1-1





4086
DMPK O reverse 19:45769669-45769692
CGGTTTGCGTTGTGGGCCG
AsCpf1-1





4087
DMPK O reverse 19:45769669-45769693
CGGTTTGCGTTGTGGGCCGG
AsCpf1-1





4088
DMPK O reverse 19:45769669-45769694
CGGTTTGCGTTGTGGGCCGGA
AsCpf1-1





4089
DMPK O reverse 19:45769669-45769695
CGGTTTGCGTTGTGGGCCGGAG
AsCpf1-1





4090
DMPK O reverse 19:45769669-45769696
CGGTTTGCGTTGTGGGCCGGAGG
AsCpf1-1





4091
DMPK O reverse 19:45769669-45769697
CGGTTTGCGTTGTGGGCCGGAGGC
AsCpf1-1





4092
DMPK O reverse 19:45769669-45769698
CGGTTTGCGTTGTGGGCCGGAGGCT
AsCpf1-1





4093
DMPK O forward 19:45769673-45769695
GCCCACAACGCAAACCGC
AsCpf1-1





4094
DMPK O forward 19:45769673-45769696
GCCCACAACGCAAACCGCG
AsCpf1-1





4095
DMPK O forward 19:45769673-45769697
GCCCACAACGCAAACCGCGG
AsCpf1-1





4096
DMPK O forward 19:45769673-45769698
GCCCACAACGCAAACCGCGGA
AsCpf1-1





4097
DMPK O forward 19:45769673-45769699
GCCCACAACGCAAACCGCGGAC
AsCpf1-1





4098
DMPK O forward 19:45769673-45769700
GCCCACAACGCAAACCGCGGACA
AsCpf1-1





4099
DMPK O forward 19:45769673-45769701
GCCCACAACGCAAACCGCGGACAC
AsCpf1-1





4100
DMPK O forward 19:45769673-45769702
GCCCACAACGCAAACCGCGGACACT
AsCpf1-1





4101
DMPK O reverse 19:45769678-45769700
CAGTGTCCGCGGTTTGCG
AsCpf1-1





4102
DMPK O reverse 19:45769678-45769701
CAGTGTCCGCGGTTTGCGT
AsCpf1-1





4103
DMPK O reverse 19:45769678-45769702
CAGTGTCCGCGGTTTGCGTT
AsCpf1-1





4104
DMPK O reverse 19:45769678-45769703
CAGTGTCCGCGGTTTGCGTTG
AsCpf1-1





4105
DMPK O reverse 19:45769678-45769704
CAGTGTCCGCGGTTTGCGTTGT
AsCpf1-1





4106
DMPK O reverse 19:45769678-45769705
CAGTGTCCGCGGTTTGCGTTGTG
AsCpf1-1





4107
DMPK O reverse 19:45769678-45769706
CAGTGTCCGCGGTTTGCGTTGTGG
AsCpf1-1





4108
DMPK O reverse 19:45769678-45769707
CAGTGTCCGCGGTTTGCGTTGTGGG
AsCpf1-1





4109
DMPK O reverse 19:45769701-45769723
TCTGCCCAAAGCTCTGGA
AsCpf1-1





4110
DMPK O reverse 19:45769701-45769724
TCTGCCCAAAGCTCTGGAC
AsCpf1-1





4111
DMPK O reverse 19:45769701-45769725
TCTGCCCAAAGCTCTGGACT
AsCpf1-1





4112
DMPK O reverse 19:45769701-45769726
TCTGCCCAAAGCTCTGGACTC
AsCpf1-1





4113
DMPK O reverse 19:45769701-45769727
TCTGCCCAAAGCTCTGGACTCC
AsCpf1-1





4114
DMPK O reverse 19:45769701-45769728
TCTGCCCAAAGCTCTGGACTCCA
AsCpf1-1





4115
DMPK O reverse 19:45769701-45769729
TCTGCCCAAAGCTCTGGACTCCAC
AsCpf1-1





4116
DMPK O reverse 19:45769701-45769730
TCTGCCCAAAGCTCTGGACTCCACA
AsCpf1-1





4117
DMPK O forward 19:45770486-45770508
GGGAGCGCGGGCGGCTCC
AsCpf1-1





4118
DMPK O forward 19:45770486-45770509
GGGAGCGCGGGCGGCTCCT
AsCpf1-1





4119
DMPK O forward 19:45770486-45770510
GGGAGCGCGGGCGGCTCCTG
AsCpf1-1





4120
DMPK O forward 19:45770486-45770511
GGGAGCGCGGGCGGCTCCTGG
AsCpf1-1





4121
DMPK O forward 19:45770486-45770512
GGGAGCGCGGGCGGCTCCTGGG
AsCpf1-1





4122
DMPK O forward 19:45770486-45770513
GGGAGCGCGGGCGGCTCCTGGGC
AsCpf1-1





4123
DMPK O forward 19:45770486-45770514
GGGAGCGCGGGCGGCTCCTGGGCG
AsCpf1-1





4124
DMPK O forward 19:45770486-45770515
GGGAGCGCGGGCGGCTCCTGGGCGG
AsCpf1-1





4125
DMPK O reverse 19:45770569-45770591
CCGTTGTTCTGTCTCGTG
AsCpf1-1





4126
DMPK O reverse 19:45770569-45770592
CCGTTGTTCTGTCTCGTGC
AsCpf1-1





4127
DMPK O reverse 19:45770569-45770593
CCGTTGTTCTGTCTCGTGCC
AsCpf1-1





4128
DMPK O reverse 19:45770569-45770594
CCGTTGTTCTGTCTCGTGCCG
AsCpf1-1





4129
DMPK O reverse 19:45770569-45770595
CCGTTGTTCTGTCTCGTGCCGC
AsCpf1-1





4130
DMPK O reverse 19:45770569-45770596
CCGTTGTTCTGTCTCGTGCCGCC
AsCpf1-1





4131
DMPK O reverse 19:45770569-45770597
CCGTTGTTCTGTCTCGTGCCGCCG
AsCpf1-1





4132
DMPK O reverse 19:45770569-45770598
CCGTTGTTCTGTCTCGTGCCGCCGC
AsCpf1-1





4133
DMPK O reverse 19:45770581-45770603
TGCTCCTGTTCGCCGTTG
AsCpf1-1





4134
DMPK O reverse 19:45770581-45770604
TGCTCCTGTTCGCCGTTGT
AsCpf1-1





4135
DMPK O reverse 19:45770581-45770605
TGCTCCTGTTCGCCGTTGTT
AsCpf1-1





4136
DMPK O reverse 19:45770581-45770606
TGCTCCTGTTCGCCGTTGTTC
AsCpf1-1





4137
DMPK O reverse 19:45770581-45770607
TGCTCCTGTTCGCCGTTGTTCT
AsCpf1-1





4138
DMPK O reverse 19:45770581-45770608
TGCTCCTGTTCGCCGTTGTTCTG
AsCpf1-1





4139
DMPK O reverse 19:45770581-45770609
TGCTCCTGTTCGCCGTTGTTCTGT
AsCpf1-1





4140
DMPK O reverse 19:45770581-45770610
TGCTCCTGTTCGCCGTTGTTCTGTC
AsCpf1-1





4141
DMPK O reverse 19:45770582-45770604
CTGCTCCTGTTCGCCGTT
AsCpf1-1





4142
DMPK O reverse 19:45770582-45770605
CTGCTCCTGTTCGCCGTTG
AsCpf1-1





4143
DMPK O reverse 19:45770582-45770606
CTGCTCCTGTTCGCCGTTGT
AsCpf1-1





4144
DMPK O reverse 19:45770582-45770607
CTGCTCCTGTTCGCCGTTGTT
AsCpf1-1





4145
DMPK O reverse 19:45770582-45770608
CTGCTCCTGTTCGCCGTTGTTC
AsCpf1-1





4146
DMPK O reverse 19:45770582-45770609
CTGCTCCTGTTCGCCGTTGTTCT
AsCpf1-1





4147
DMPK O reverse 19:45770582-45770610
CTGCTCCTGTTCGCCGTTGTTCTG
AsCpf1-1





4148
DMPK O reverse 19:45770582-45770611
CTGCTCCTGTTCGCCGTTGTTCTGT
AsCpf1-1





4149
DMPK O reverse 19:45770610-45770632
TAGGCCTGGCCTATCGGA
AsCpf1-1





4150
DMPK O reverse 19:45770610-45770633
TAGGCCTGGCCTATCGGAG
AsCpf1-1





4151
DMPK O reverse 19:45770610-45770634
TAGGCCTGGCCTATCGGAGG
AsCpf1-1





4152
DMPK O reverse 19:45770610-45770635
TAGGCCTGGCCTATCGGAGGC
AsCpf1-1





4153
DMPK O reverse 19:45770610-45770636
TAGGCCTGGCCTATCGGAGGCG
AsCpf1-1





4154
DMPK O reverse 19:45770610-45770637
TAGGCCTGGCCTATCGGAGGCGC
AsCpf1-1





4155
DMPK O reverse 19:45770610-45770638
TAGGCCTGGCCTATCGGAGGCGCT
AsCpf1-1





4156
DMPK O reverse 19:45770610-45770639
TAGGCCTGGCCTATCGGAGGCGCTT
AsCpf1-1





4157
DMPK O reverse 19:45770595-45770617
GGAGGCGCTTTCCCTGCT
AsCpf1-2





4158
DMPK O reverse 19:45770595-45770618
GGAGGCGCTTTCCCTGCTC
AsCpf1-2





4159
DMPK O reverse 19:45770595-45770619
GGAGGCGCTTTCCCTGCTCC
AsCpf1-2





4160
DMPK O reverse 19:45770595-45770620
GGAGGCGCTTTCCCTGCTCCT
AsCpf1-2





4161
DMPK O reverse 19:45770595-45770621
GGAGGCGCTTTCCCTGCTCCTG
AsCpf1-2





4162
DMPK O reverse 19:45770595-45770622
GGAGGCGCTTTCCCTGCTCCTGT
AsCpf1-2





4163
DMPK O reverse 19:45770595-45770623
GGAGGCGCTTTCCCTGCTCCTGTT
AsCpf1-2





4164
DMPK O reverse 19:45770595-45770624
GGAGGCGCTTTCCCTGCTCCTGTTC
AsCpf1-2





4165
DMPK O forward 19:45769668-45769699
GAGCCTCCGGCCCACAACGCAAACC
SaCas9





4166
DMPK O forward 19:45769669-45769699
AGCCTCCGGCCCACAACGCAAACC
SaCas9





4167
DMPK O forward 19:45769670-45769699
GCCTCCGGCCCACAACGCAAACC
SaCas9





4168
DMPK O forward 19:45769671-45769699
CCTCCGGCCCACAACGCAAACC
SaCas9





4169
DMPK O forward 19:45769672-45769699
CTCCGGCCCACAACGCAAACC
SaCas9





4170
DMPK O forward 19:45769673-45769699
TCCGGCCCACAACGCAAACC
SaCas9





4171
DMPK O forward 19:45769674-45769699
CCGGCCCACAACGCAAACC
SaCas9





4172
DMPK O forward 19:45769675-45769699
CGGCCCACAACGCAAACC
SaCas9





4173
DMPK O reverse 19:45769671-45769702
AGTGTCCGCGGTTTGCGTTGTGGGC
SaCas9





4174
DMPK O reverse 19:45769672-45769702
GTGTCCGCGGTTTGCGTTGTGGGC
SaCas9





4175
DMPK O reverse 19:45769673-45769702
TGTCCGCGGTTTGCGTTGTGGGC
SaCas9





4176
DMPK O reverse 19:45769674-45769702
GTCCGCGGTTTGCGTTGTGGGC
SaCas9





4177
DMPK O reverse 19:45769675-45769702
TCCGCGGTTTGCGTTGTGGGC
SaCas9





4178
DMPK O reverse 19:45769676-45769702
CCGCGGTTTGCGTTGTGGGC
SaCas9





4179
DMPK O reverse 19:45769677-45769702
CGCGGTTTGCGTTGTGGGC
SaCas9





4180
DMPK O reverse 19:45769678-45769702
GCGGTTTGCGTTGTGGGC
SaCas9





4181
DMPK O reverse 19:45769672-45769703
CAGTGTCCGCGGTTTGCGTTGTGGG
SaCas9





4182
DMPK O reverse 19:45769673-45769703
AGTGTCCGCGGTTTGCGTTGTGGG
SaCas9





4183
DMPK O reverse 19:45769674-45769703
GTGTCCGCGGTTTGCGTTGTGGG
SaCas9





4184
DMPK O reverse 19:45769675-45769703
TGTCCGCGGTTTGCGTTGTGGG
SaCas9





4185
DMPK O reverse 19:45769676-45769703
GTCCGCGGTTTGCGTTGTGGG
SaCas9





4186
DMPK O reverse 19:45769677-45769703
TCCGCGGTTTGCGTTGTGGG
SaCas9





4187
DMPK O reverse 19:45769678-45769703
CCGCGGTTTGCGTTGTGGG
SaCas9





4188
DMPK O reverse 19:45769679-45769703
CGCGGTTTGCGTTGTGGG
SaCas9





4189
DMPK O forward 19:45769677-45769708
GCCCACAACGCAAACCGCGGACACT
SaCas9





4190
DMPK O forward 19:45769678-45769708
CCCACAACGCAAACCGCGGACACT
SaCas9





4191
DMPK O forward 19:45769679-45769708
CCACAACGCAAACCGCGGACACT
SaCas9





4192
DMPK O forward 19:45769680-45769708
CACAACGCAAACCGCGGACACT
SaCas9





4193
DMPK O forward 19:45769681-45769708
ACAACGCAAACCGCGGACACT
SaCas9





4194
DMPK O forward 19:45769682-45769708
CAACGCAAACCGCGGACACT
SaCas9





4195
DMPK O forward 19:45769683-45769708
AACGCAAACCGCGGACACT
SaCas9





4196
DMPK O forward 19:45769684-45769708
ACGCAAACCGCGGACACT
SaCas9





4197
DMPK O reverse 19:45769677-45769708
CTCCACAGTGTCCGCGGTTTGCGTT
SaCas9





4198
DMPK O reverse 19:45769678-45769708
TCCACAGTGTCCGCGGTTTGCGTT
SaCas9





4199
DMPK O reverse 19:45769679-45769708
CCACAGTGTCCGCGGTTTGCGTT
SaCas9





4200
DMPK O reverse 19:45769680-45769708
CACAGTGTCCGCGGTTTGCGTT
SaCas9





4201
DMPK O reverse 19:45769681-45769708
ACAGTGTCCGCGGTTTGCGTT
SaCas9





4202
DMPK O reverse 19:45769682-45769708
CAGTGTCCGCGGTTTGCGTT
SaCas9





4203
DMPK O reverse 19:45769683-45769708
AGTGTCCGCGGTTTGCGTT
SaCas9





4204
DMPK O reverse 19:45769684-45769708
GTGTCCGCGGTTTGCGTT
SaCas9





4205
DMPK O forward 19:45769678-45769709
CCCACAACGCAAACCGCGGACACTG
SaCas9





4206
DMPK O forward 19:45769679-45769709
CCACAACGCAAACCGCGGACACTG
SaCas9





4207
DMPK O forward 19:45769680-45769709
CACAACGCAAACCGCGGACACTG
SaCas9





4208
DMPK O forward 19:45769681-45769709
ACAACGCAAACCGCGGACACTG
SaCas9





4209
DMPK O forward 19:45769682-45769709
CAACGCAAACCGCGGACACTG
SaCas9





4210
DMPK O forward 19:45769683-45769709
AACGCAAACCGCGGACACTG
SaCas9





4211
DMPK O forward 19:45769684-45769709
ACGCAAACCGCGGACACTG
SaCas9





4212
DMPK O forward 19:45769685-45769709
CGCAAACCGCGGACACTG
SaCas9





4213
DMPK O forward 19:45769685-45769716
CGCAAACCGCGGACACTGTGGAGTC
SaCas9





4214
DMPK O forward 19:45769686-45769716
GCAAACCGCGGACACTGTGGAGTC
SaCas9





4215
DMPK O forward 19:45769687-45769716
CAAACCGCGGACACTGTGGAGTC
SaCas9





4216
DMPK O forward 19:45769688-45769716
AAACCGCGGACACTGTGGAGTC
SaCas9





4217
DMPK O forward 19:45769689-45769716
AACCGCGGACACTGTGGAGTC
SaCas9





4218
DMPK O forward 19:45769690-45769716
ACCGCGGACACTGTGGAGTC
SaCas9





4219
DMPK O forward 19:45769691-45769716
CCGCGGACACTGTGGAGTC
SaCas9





4220
DMPK O forward 19:45769692-45769716
CGCGGACACTGTGGAGTC
SaCas9





4221
DMPK O forward 19:45769692-45769723
CGCGGACACTGTGGAGTCCAGAGCT
SaCas9





4222
DMPK O forward 19:45769693-45769723
GCGGACACTGTGGAGTCCAGAGCT
SaCas9





4223
DMPK O forward 19:45769694-45769723
CGGACACTGTGGAGTCCAGAGCT
SaCas9





4224
DMPK O forward 19:45769695-45769723
GGACACTGTGGAGTCCAGAGCT
SaCas9





4225
DMPK O forward 19:45769696-45769723
GACACTGTGGAGTCCAGAGCT
SaCas9





4226
DMPK O forward 19:45769697-45769723
ACACTGTGGAGTCCAGAGCT
SaCas9





4227
DMPK O forward 19:45769698-45769723
CACTGTGGAGTCCAGAGCT
SaCas9





4228
DMPK O forward 19:45769699-45769723
ACTGTGGAGTCCAGAGCT
SaCas9





4229
DMPK O forward 19:45770471-45770502
AAGACAGTTCTAGGGTTCAGGGAGC
SaCas9





4230
DMPK O forward 19:45770472-45770502
AGACAGTTCTAGGGTTCAGGGAGC
SaCas9





4231
DMPK O forward 19:45770473-45770502
GACAGTTCTAGGGTTCAGGGAGC
SaCas9





4232
DMPK O forward 19:45770474-45770502
ACAGTTCTAGGGTTCAGGGAGC
SaCas9





4233
DMPK O forward 19:45770475-45770502
CAGTTCTAGGGTTCAGGGAGC
SaCas9





4234
DMPK O forward 19:45770476-45770502
AGTTCTAGGGTTCAGGGAGC
SaCas9





4235
DMPK O forward 19:45770477-45770502
GTTCTAGGGTTCAGGGAGC
SaCas9





4236
DMPK O forward 19:45770478-45770502
TTCTAGGGTTCAGGGAGC
SaCas9





4237
DMPK O forward 19:45770482-45770513
AGGGTTCAGGGAGCGCGGGCGGCTC
SaCas9





4238
DMPK O forward 19:45770483-45770513
GGGTTCAGGGAGCGCGGGCGGCTC
SaCas9





4239
DMPK O forward 19:45770484-45770513
GGTTCAGGGAGCGCGGGCGGCTC
SaCas9





4240
DMPK O forward 19:45770485-45770513
GTTCAGGGAGCGCGGGCGGCTC
SaCas9





4241
DMPK O forward 19:45770486-45770513
TTCAGGGAGCGCGGGCGGCTC
SaCas9





4242
DMPK O forward 19:45770487-45770513
TCAGGGAGCGCGGGCGGCTC
SaCas9





4243
DMPK O forward 19:45770488-45770513
CAGGGAGCGCGGGCGGCTC
SaCas9





4244
DMPK O forward 19:45770489-45770513
AGGGAGCGCGGGCGGCTC
SaCas9





4245
DMPK O reverse 19:45770485-45770516
GCCGCCCAGGAGCCGCCCGCGCTCC
SaCas9





4246
DMPK O reverse 19:45770486-45770516
CCGCCCAGGAGCCGCCCGCGCTCC
SaCas9





4247
DMPK O reverse 19:45770487-45770516
CGCCCAGGAGCCGCCCGCGCTCC
SaCas9





4248
DMPK O reverse 19:45770488-45770516
GCCCAGGAGCCGCCCGCGCTCC
SaCas9





4249
DMPK O reverse 19:45770489-45770516
CCCAGGAGCCGCCCGCGCTCC
SaCas9





4250
DMPK O reverse 19:45770490-45770516
CCAGGAGCCGCCCGCGCTCC
SaCas9





4251
DMPK O reverse 19:45770491-45770516
CAGGAGCCGCCCGCGCTCC
SaCas9





4252
DMPK O reverse 19:45770492-45770516
AGGAGCCGCCCGCGCTCC
SaCas9





4253
DMPK O forward 19:45770502-45770533
GGCTCCTGGGCGGCGCCAGACTGCG
SaCas9





4254
DMPK O forward 19:45770503-45770533
GCTCCTGGGCGGCGCCAGACTGCG
SaCas9





4255
DMPK O forward 19:45770504-45770533
CTCCTGGGCGGCGCCAGACTGCG
SaCas9





4256
DMPK O forward 19:45770505-45770533
TCCTGGGCGGCGCCAGACTGCG
SaCas9





4257
DMPK O forward 19:45770506-45770533
CCTGGGCGGCGCCAGACTGCG
SaCas9





4258
DMPK O forward 19:45770507-45770533
CTGGGCGGCGCCAGACTGCG
SaCas9





4259
DMPK O forward 19:45770508-45770533
TGGGCGGCGCCAGACTGCG
SaCas9





4260
DMPK O forward 19:45770509-45770533
GGGCGGCGCCAGACTGCG
SaCas9





4261
DMPK O reverse 19:45770503-45770534
AACTCACCGCAGTCTGGCGCCGCCC
SaCas9





4262
DMPK O reverse 19:45770504-45770534
ACTCACCGCAGTCTGGCGCCGCCC
SaCas9





4263
DMPK O reverse 19:45770505-45770534
CTCACCGCAGTCTGGCGCCGCCC
SaCas9





4264
DMPK O reverse 19:45770506-45770534
TCACCGCAGTCTGGCGCCGCCC
SaCas9





4265
DMPK O reverse 19:45770507-45770534
CACCGCAGTCTGGCGCCGCCC
SaCas9





4266
DMPK O reverse 19:45770508-45770534
ACCGCAGTCTGGCGCCGCCC
SaCas9





4267
DMPK O reverse 19:45770509-45770534
CCGCAGTCTGGCGCCGCCC
SaCas9





4268
DMPK O reverse 19:45770510-45770534
CGCAGTCTGGCGCCGCCC
SaCas9





4269
DMPK O reverse 19:45770504-45770535
CAACTCACCGCAGTCTGGCGCCGCC
SaCas9





4270
DMPK O reverse 19:45770505-45770535
AACTCACCGCAGTCTGGCGCCGCC
SaCas9





4271
DMPK O reverse 19:45770506-45770535
ACTCACCGCAGTCTGGCGCCGCC
SaCas9





4272
DMPK O reverse 19:45770507-45770535
CTCACCGCAGTCTGGCGCCGCC
SaCas9





4273
DMPK O reverse 19:45770508-45770535
TCACCGCAGTCTGGCGCCGCC
SaCas9





4274
DMPK O reverse 19:45770509-45770535
CACCGCAGTCTGGCGCCGCC
SaCas9





4275
DMPK O reverse 19:45770510-45770535
ACCGCAGTCTGGCGCCGCC
SaCas9





4276
DMPK O reverse 19:45770511-45770535
CCGCAGTCTGGCGCCGCC
SaCas9





4277
DMPK O forward 19:45770516-45770547
GCCAGACTGCGGTGAGTTGGCCGGC
SaCas9





4278
DMPK O forward 19:45770517-45770547
CCAGACTGCGGTGAGTTGGCCGGC
SaCas9





4279
DMPK O forward 19:45770518-45770547
CAGACTGCGGTGAGTTGGCCGGC
SaCas9





4280
DMPK O forward 19:45770519-45770547
AGACTGCGGTGAGTTGGCCGGC
SaCas9





4281
DMPK O forward 19:45770520-45770547
GACTGCGGTGAGTTGGCCGGC
SaCas9





4282
DMPK O forward 19:45770521-45770547
ACTGCGGTGAGTTGGCCGGC
SaCas9





4283
DMPK O forward 19:45770522-45770547
CTGCGGTGAGTTGGCCGGC
SaCas9





4284
DMPK O forward 19:45770523-45770547
TGCGGTGAGTTGGCCGGC
SaCas9





4285
DMPK O forward 19:45770540-45770571
CGTGGGCCACCAACCCAATGCAGCC
SaCas9





4286
DMPK O forward 19:45770541-45770571
GTGGGCCACCAACCCAATGCAGCC
SaCas9





4287
DMPK O forward 19:45770542-45770571
TGGGCCACCAACCCAATGCAGCC
SaCas9





4288
DMPK O forward 19:45770543-45770571
GGGCCACCAACCCAATGCAGCC
SaCas9





4289
DMPK O forward 19:45770544-45770571
GGCCACCAACCCAATGCAGCC
SaCas9





4290
DMPK O forward 19:45770545-45770571
GCCACCAACCCAATGCAGCC
SaCas9





4291
DMPK O forward 19:45770546-45770571
CCACCAACCCAATGCAGCC
SaCas9





4292
DMPK O forward 19:45770547-45770571
CACCAACCCAATGCAGCC
SaCas9





4293
DMPK O forward 19:45770552-45770583
ACCCAATGCAGCCCAGGGCGGCGGC
SaCas9





4294
DMPK O forward 19:45770553-45770583
CCCAATGCAGCCCAGGGCGGCGGC
SaCas9





4295
DMPK O forward 19:45770554-45770583
CCAATGCAGCCCAGGGCGGCGGC
SaCas9





4296
DMPK O forward 19:45770555-45770583
CAATGCAGCCCAGGGCGGCGGC
SaCas9





4297
DMPK O forward 19:45770556-45770583
AATGCAGCCCAGGGCGGCGGC
SaCas9





4298
DMPK O forward 19:45770557-45770583
ATGCAGCCCAGGGCGGCGGC
SaCas9





4299
DMPK O forward 19:45770558-45770583
TGCAGCCCAGGGCGGCGGC
SaCas9





4300
DMPK O forward 19:45770559-45770583
GCAGCCCAGGGCGGCGGC
SaCas9





4301
DMPK O reverse 19:45770552-45770583
TCTCGTGCCGCCGCCCTGGGCTGCA
SaCas9





4302
DMPK O reverse 19:45770553-45770583
CTCGTGCCGCCGCCCTGGGCTGCA
SaCas9





4303
DMPK O reverse 19:45770554-45770583
TCGTGCCGCCGCCCTGGGCTGCA
SaCas9





4304
DMPK O reverse 19:45770555-45770583
CGTGCCGCCGCCCTGGGCTGCA
SaCas9





4305
DMPK O reverse 19:45770556-45770583
GTGCCGCCGCCCTGGGCTGCA
SaCas9





4306
DMPK O reverse 19:45770557-45770583
TGCCGCCGCCCTGGGCTGCA
SaCas9





4307
DMPK O reverse 19:45770558-45770583
GCCGCCGCCCTGGGCTGCA
SaCas9





4308
DMPK O reverse 19:45770559-45770583
CCGCCGCCCTGGGCTGCA
SaCas9





4309
DMPK O forward 19:45770558-45770589
TGCAGCCCAGGGCGGCGGCACGAGA
SaCas9





4310
DMPK O forward 19:45770559-45770589
GCAGCCCAGGGCGGCGGCACGAGA
SaCas9





4311
DMPK O forward 19:45770560-45770589
CAGCCCAGGGCGGCGGCACGAGA
SaCas9





4312
DMPK O forward 19:45770561-45770589
AGCCCAGGGCGGCGGCACGAGA
SaCas9





4313
DMPK O forward 19:45770562-45770589
GCCCAGGGCGGCGGCACGAGA
SaCas9





4314
DMPK O forward 19:45770563-45770589
CCCAGGGCGGCGGCACGAGA
SaCas9





4315
DMPK O forward 19:45770564-45770589
CCAGGGCGGCGGCACGAGA
SaCas9





4316
DMPK O forward 19:45770565-45770589
CAGGGCGGCGGCACGAGA
SaCas9





4317
DMPK O reverse 19:45770562-45770593
CGTTGTTCTGTCTCGTGCCGCCGCC
SaCas9





4318
DMPK O reverse 19:45770563-45770593
GTTGTTCTGTCTCGTGCCGCCGCC
SaCas9





4319
DMPK O reverse 19:45770564-45770593
TTGTTCTGTCTCGTGCCGCCGCC
SaCas9





4320
DMPK O reverse 19:45770565-45770593
TGTTCTGTCTCGTGCCGCCGCC
SaCas9





4321
DMPK O reverse 19:45770566-45770593
GTTCTGTCTCGTGCCGCCGCC
SaCas9





4322
DMPK O reverse 19:45770567-45770593
TTCTGTCTCGTGCCGCCGCC
SaCas9





4323
DMPK O reverse 19:45770568-45770593
TCTGTCTCGTGCCGCCGCC
SaCas9





4324
DMPK O reverse 19:45770569-45770593
CTGTCTCGTGCCGCCGCC
SaCas9





4325
DMPK O forward 19:45770568-45770599
GGCGGCGGCACGAGACAGAACAACG
SaCas9





4326
DMPK O forward 19:45770569-45770599
GCGGCGGCACGAGACAGAACAACG
SaCas9





4327
DMPK O forward 19:45770570-45770599
CGGCGGCACGAGACAGAACAACG
SaCas9





4328
DMPK O forward 19:45770571-45770599
GGCGGCACGAGACAGAACAACG
SaCas9





4329
DMPK O forward 19:45770572-45770599
GCGGCACGAGACAGAACAACG
SaCas9





4330
DMPK O forward 19:45770573-45770599
CGGCACGAGACAGAACAACG
SaCas9





4331
DMPK O forward 19:45770574-45770599
GGCACGAGACAGAACAACG
SaCas9





4332
DMPK O forward 19:45770575-45770599
GCACGAGACAGAACAACG
SaCas9





4333
DMPK O forward 19:45770573-45770604
CGGCACGAGACAGAACAACGGCGAA
SaCas9





4334
DMPK O forward 19:45770574-45770604
GGCACGAGACAGAACAACGGCGAA
SaCas9





4335
DMPK O forward 19:45770575-45770604
GCACGAGACAGAACAACGGCGAA
SaCas9





4336
DMPK O forward 19:45770576-45770604
CACGAGACAGAACAACGGCGAA
SaCas9





4337
DMPK O forward 19:45770577-45770604
ACGAGACAGAACAACGGCGAA
SaCas9





4338
DMPK O forward 19:45770578-45770604
CGAGACAGAACAACGGCGAA
SaCas9





4339
DMPK O forward 19:45770579-45770604
GAGACAGAACAACGGCGAA
SaCas9





4340
DMPK O forward 19:45770580-45770604
AGACAGAACAACGGCGAA
SaCas9





4341
DMPK O forward 19:45770574-45770605
GGCACGAGACAGAACAACGGCGAAC
SaCas9





4342
DMPK O forward 19:45770575-45770605
GCACGAGACAGAACAACGGCGAAC
SaCas9





4343
DMPK O forward 19:45770576-45770605
CACGAGACAGAACAACGGCGAAC
SaCas9





4344
DMPK O forward 19:45770577-45770605
ACGAGACAGAACAACGGCGAAC
SaCas9





4345
DMPK O forward 19:45770578-45770605
CGAGACAGAACAACGGCGAAC
SaCas9





4346
DMPK O forward 19:45770579-45770605
GAGACAGAACAACGGCGAAC
SaCas9





4347
DMPK O forward 19:45770580-45770605
AGACAGAACAACGGCGAAC
SaCas9





4348
DMPK O forward 19:45770581-45770605
GACAGAACAACGGCGAAC
SaCas9





4349
DMPK O forward 19:45770579-45770610
GAGACAGAACAACGGCGAACAGGAG
SaCas9





4350
DMPK O forward 19:45770580-45770610
AGACAGAACAACGGCGAACAGGAG
SaCas9





4351
DMPK O forward 19:45770581-45770610
GACAGAACAACGGCGAACAGGAG
SaCas9





4352
DMPK O forward 19:45770582-45770610
ACAGAACAACGGCGAACAGGAG
SaCas9





4353
DMPK O forward 19:45770583-45770610
CAGAACAACGGCGAACAGGAG
SaCas9





4354
DMPK O forward 19:45770584-45770610
AGAACAACGGCGAACAGGAG
SaCas9





4355
DMPK O forward 19:45770585-45770610
GAACAACGGCGAACAGGAG
SaCas9





4356
DMPK O forward 19:45770586-45770610
AACAACGGCGAACAGGAG
SaCas9





4357
DMPK O forward 19:45770580-45770611
AGACAGAACAACGGCGAACAGGAGC
SaCas9





4358
DMPK O forward 19:45770581-45770611
GACAGAACAACGGCGAACAGGAGC
SaCas9





4359
DMPK O forward 19:45770582-45770611
ACAGAACAACGGCGAACAGGAGC
SaCas9





4360
DMPK O forward 19:45770583-45770611
CAGAACAACGGCGAACAGGAGC
SaCas9





4361
DMPK O forward 19:45770584-45770611
AGAACAACGGCGAACAGGAGC
SaCas9





4362
DMPK O forward 19:45770585-45770611
GAACAACGGCGAACAGGAGC
SaCas9





4363
DMPK O forward 19:45770586-45770611
AACAACGGCGAACAGGAGC
SaCas9





4364
DMPK O forward 19:45770587-45770611
ACAACGGCGAACAGGAGC
SaCas9





4365
DMPK O forward 19:45770581-45770612
GACAGAACAACGGCGAACAGGAGCA
SaCas9





4366
DMPK O forward 19:45770582-45770612
ACAGAACAACGGCGAACAGGAGCA
SaCas9





4367
DMPK O forward 19:45770583-45770612
CAGAACAACGGCGAACAGGAGCA
SaCas9





4368
DMPK O forward 19:45770584-45770612
AGAACAACGGCGAACAGGAGCA
SaCas9





4369
DMPK O forward 19:45770585-45770612
GAACAACGGCGAACAGGAGCA
SaCas9





4370
DMPK O forward 19:45770586-45770612
AACAACGGCGAACAGGAGCA
SaCas9





4371
DMPK O forward 19:45770587-45770612
ACAACGGCGAACAGGAGCA
SaCas9





4372
DMPK O forward 19:45770588-45770612
CAACGGCGAACAGGAGCA
SaCas9





4373
DMPK O forward 19:45770608-45770639
GAAAGCGCCTCCGATAGGCCAGGCC
SaCas9





4374
DMPK O forward 19:45770609-45770639
AAAGCGCCTCCGATAGGCCAGGCC
SaCas9





4375
DMPK O forward 19:45770610-45770639
AAGCGCCTCCGATAGGCCAGGCC
SaCas9





4376
DMPK O forward 19:45770611-45770639
AGCGCCTCCGATAGGCCAGGCC
SaCas9





4377
DMPK O forward 19:45770612-45770639
GCGCCTCCGATAGGCCAGGCC
SaCas9





4378
DMPK O forward 19:45770613-45770639
CGCCTCCGATAGGCCAGGCC
SaCas9





4379
DMPK O forward 19:45770614-45770639
GCCTCCGATAGGCCAGGCC
SaCas9





4380
DMPK O forward 19:45770615-45770639
CCTCCGATAGGCCAGGCC
SaCas9





4381
DMPK O forward 19:45770609-45770640
AAAGCGCCTCCGATAGGCCAGGCCT
SaCas9





4382
DMPK O forward 19:45770610-45770640
AAGCGCCTCCGATAGGCCAGGCCT
SaCas9





4383
DMPK O forward 19:45770611-45770640
AGCGCCTCCGATAGGCCAGGCCT
SaCas9





4384
DMPK O forward 19:45770612-45770640
GCGCCTCCGATAGGCCAGGCCT
SaCas9





4385
DMPK O forward 19:45770613-45770640
CGCCTCCGATAGGCCAGGCCT
SaCas9





4386
DMPK O forward 19:45770614-45770640
GCCTCCGATAGGCCAGGCCT
SaCas9





4387
DMPK O forward 19:45770615-45770640
CCTCCGATAGGCCAGGCCT
SaCas9





4388
DMPK O forward 19:45770616-45770640
CTCCGATAGGCCAGGCCT
SaCas9





4389
DMPK O forward 19:45769669-45769697
AGCCTCCGGCCCACAACGCAAACCG
SpCas9





4390
DMPK O forward 19:45769670-45769697
GCCTCCGGCCCACAACGCAAACCG
SpCas9





4391
DMPK O forward 19:45769671-45769697
CCTCCGGCCCACAACGCAAACCG
SpCas9





4392
DMPK O forward 19:45769672-45769697
CTCCGGCCCACAACGCAAACCG
SpCas9





4393
DMPK O forward 19:45769673-45769697
TCCGGCCCACAACGCAAACCG
SpCas9





4394
DMPK O forward 19:45769674-45769697
CCGGCCCACAACGCAAACCG
SpCas9





4395
DMPK O forward 19:45769675-45769697
CGGCCCACAACGCAAACCG
SpCas9





4396
DMPK O forward 19:45769676-45769697
GGCCCACAACGCAAACCG
SpCas9





4397
DMPK O reverse 19:45769671-45769699
GTCCGCGGTTTGCGTTGTGGGCCGG
SpCas9





4398
DMPK O reverse 19:45769672-45769699
TCCGCGGTTTGCGTTGTGGGCCGG
SpCas9





4399
DMPK O reverse 19:45769673-45769699
CCGCGGTTTGCGTTGTGGGCCGG
SpCas9





4400
DMPK O reverse 19:45769674-45769699
CGCGGTTTGCGTTGTGGGCCGG
SpCas9





4401
DMPK O reverse 19:45769675-45769699
GCGGTTTGCGTTGTGGGCCGG
SpCas9





4402
DMPK O reverse 19:45769676-45769699
CGGTTTGCGTTGTGGGCCGG
SpCas9





4403
DMPK O reverse 19:45769677-45769699
GGTTTGCGTTGTGGGCCGG
SpCas9





4404
DMPK O reverse 19:45769678-45769699
GTTTGCGTTGTGGGCCGG
SpCas9





4405
DMPK O reverse 19:45769672-45769700
TGTCCGCGGTTTGCGTTGTGGGCCG
SpCas9





4406
DMPK O reverse 19:45769673-45769700
GTCCGCGGTTTGCGTTGTGGGCCG
SpCas9





4407
DMPK O reverse 19:45769674-45769700
TCCGCGGTTTGCGTTGTGGGCCG
SpCas9





4408
DMPK O reverse 19:45769675-45769700
CCGCGGTTTGCGTTGTGGGCCG
SpCas9





4409
DMPK O reverse 19:45769676-45769700
CGCGGTTTGCGTTGTGGGCCG
SpCas9





4410
DMPK O reverse 19:45769677-45769700
GCGGTTTGCGTTGTGGGCCG
SpCas9





4411
DMPK O reverse 19:45769678-45769700
CGGTTTGCGTTGTGGGCCG
SpCas9





4412
DMPK O reverse 19:45769679-45769700
GGTTTGCGTTGTGGGCCG
SpCas9





4413
DMPK O reverse 19:45769674-45769702
AGTGTCCGCGGTTTGCGTTGTGGGC
SpCas9





4414
DMPK O reverse 19:45769675-45769702
GTGTCCGCGGTTTGCGTTGTGGGC
SpCas9





4415
DMPK O reverse 19:45769676-45769702
TGTCCGCGGTTTGCGTTGTGGGC
SpCas9





4416
DMPK O reverse 19:45769677-45769702
GTCCGCGGTTTGCGTTGTGGGC
SpCas9





4417
DMPK O reverse 19:45769678-45769702
TCCGCGGTTTGCGTTGTGGGC
SpCas9





4418
DMPK O reverse 19:45769679-45769702
CCGCGGTTTGCGTTGTGGGC
SpCas9





4419
DMPK O reverse 19:45769680-45769702
CGCGGTTTGCGTTGTGGGC
SpCas9





4420
DMPK O reverse 19:45769681-45769702
GCGGTTTGCGTTGTGGGC
SpCas9





4421
DMPK O forward 19:45769678-45769706
CCCACAACGCAAACCGCGGACACTG
SpCas9





4422
DMPK O forward 19:45769679-45769706
CCACAACGCAAACCGCGGACACTG
SpCas9





4423
DMPK O forward 19:45769680-45769706
CACAACGCAAACCGCGGACACTG
SpCas9





4424
DMPK O forward 19:45769681-45769706
ACAACGCAAACCGCGGACACTG
SpCas9





4425
DMPK O forward 19:45769682-45769706
CAACGCAAACCGCGGACACTG
SpCas9





4426
DMPK O forward 19:45769683-45769706
AACGCAAACCGCGGACACTG
SpCas9





4427
DMPK O forward 19:45769684-45769706
ACGCAAACCGCGGACACTG
SpCas9





4428
DMPK O forward 19:45769685-45769706
CGCAAACCGCGGACACTG
SpCas9





4429
DMPK O reverse 19:45769678-45769706
CCACAGTGTCCGCGGTTTGCGTTGT
SpCas9





4430
DMPK O reverse 19:45769679-45769706
CACAGTGTCCGCGGTTTGCGTTGT
SpCas9





4431
DMPK O reverse 19:45769680-45769706
ACAGTGTCCGCGGTTTGCGTTGT
SpCas9





4432
DMPK O reverse 19:45769681-45769706
CAGTGTCCGCGGTTTGCGTTGT
SpCas9





4433
DMPK O reverse 19:45769682-45769706
AGTGTCCGCGGTTTGCGTTGT
SpCas9





4434
DMPK O reverse 19:45769683-45769706
GTGTCCGCGGTTTGCGTTGT
SpCas9





4435
DMPK O reverse 19:45769684-45769706
TGTCCGCGGTTTGCGTTGT
SpCas9





4436
DMPK O reverse 19:45769685-45769706
GTCCGCGGTTTGCGTTGT
SpCas9





4437
DMPK O reverse 19:45769679-45769707
TCCACAGTGTCCGCGGTTTGCGTTG
SpCas9





4438
DMPK O reverse 19:45769680-45769707
CCACAGTGTCCGCGGTTTGCGTTG
SpCas9





4439
DMPK O reverse 19:45769681-45769707
CACAGTGTCCGCGGTTTGCGTTG
SpCas9





4440
DMPK O reverse 19:45769682-45769707
ACAGTGTCCGCGGTTTGCGTTG
SpCas9





4441
DMPK O reverse 19:45769683-45769707
CAGTGTCCGCGGTTTGCGTTG
SpCas9





4442
DMPK O reverse 19:45769684-45769707
AGTGTCCGCGGTTTGCGTTG
SpCas9





4443
DMPK O reverse 19:45769685-45769707
GTGTCCGCGGTTTGCGTTG
SpCas9





4444
DMPK O reverse 19:45769686-45769707
TGTCCGCGGTTTGCGTTG
SpCas9





4445
DMPK O forward 19:45769680-45769708
CACAACGCAAACCGCGGACACTGTG
SpCas9





4446
DMPK O forward 19:45769681-45769708
ACAACGCAAACCGCGGACACTGTG
SpCas9





4447
DMPK O forward 19:45769682-45769708
CAACGCAAACCGCGGACACTGTG
SpCas9





4448
DMPK O forward 19:45769683-45769708
AACGCAAACCGCGGACACTGTG
SpCas9





4449
DMPK O forward 19:45769684-45769708
ACGCAAACCGCGGACACTGTG
SpCas9





4450
DMPK O forward 19:45769685-45769708
CGCAAACCGCGGACACTGTG
SpCas9





4451
DMPK O forward 19:45769686-45769708
GCAAACCGCGGACACTGTG
SpCas9





4452
DMPK O forward 19:45769687-45769708
CAAACCGCGGACACTGTG
SpCas9





4453
DMPK O forward 19:45769685-45769713
CGCAAACCGCGGACACTGTGGAGTC
SpCas9





4454
DMPK O forward 19:45769686-45769713
GCAAACCGCGGACACTGTGGAGTC
SpCas9





4455
DMPK O forward 19:45769687-45769713
CAAACCGCGGACACTGTGGAGTC
SpCas9





4456
DMPK O forward 19:45769688-45769713
AAACCGCGGACACTGTGGAGTC
SpCas9





4457
DMPK O forward 19:45769689-45769713
AACCGCGGACACTGTGGAGTC
SpCas9





4458
DMPK O forward 19:45769690-45769713
ACCGCGGACACTGTGGAGTC
SpCas9





4459
DMPK O forward 19:45769691-45769713
CCGCGGACACTGTGGAGTC
SpCas9





4460
DMPK O forward 19:45769692-45769713
CGCGGACACTGTGGAGTC
SpCas9





4461
DMPK O forward 19:45769687-45769715
CAAACCGCGGACACTGTGGAGTCCA
SpCas9





4462
DMPK O forward 19:45769688-45769715
AAACCGCGGACACTGTGGAGTCCA
SpCas9





4463
DMPK O forward 19:45769689-45769715
AACCGCGGACACTGTGGAGTCCA
SpCas9





4464
DMPK O forward 19:45769690-45769715
ACCGCGGACACTGTGGAGTCCA
SpCas9





4465
DMPK O forward 19:45769691-45769715
CCGCGGACACTGTGGAGTCCA
SpCas9





4466
DMPK O forward 19:45769692-45769715
CGCGGACACTGTGGAGTCCA
SpCas9





4467
DMPK O forward 19:45769693-45769715
GCGGACACTGTGGAGTCCA
SpCas9





4468
DMPK O forward 19:45769694-45769715
CGGACACTGTGGAGTCCA
SpCas9





4469
DMPK O reverse 19:45769691-45769719
AAAGCTCTGGACTCCACAGTGTCCG
SpCas9





4470
DMPK O reverse 19:45769692-45769719
AAGCTCTGGACTCCACAGTGTCCG
SpCas9





4471
DMPK O reverse 19:45769693-45769719
AGCTCTGGACTCCACAGTGTCCG
SpCas9





4472
DMPK O reverse 19:45769694-45769719
GCTCTGGACTCCACAGTGTCCG
SpCas9





4473
DMPK O reverse 19:45769695-45769719
CTCTGGACTCCACAGTGTCCG
SpCas9





4474
DMPK O reverse 19:45769696-45769719
TCTGGACTCCACAGTGTCCG
SpCas9





4475
DMPK O reverse 19:45769697-45769719
CTGGACTCCACAGTGTCCG
SpCas9





4476
DMPK O reverse 19:45769698-45769719
TGGACTCCACAGTGTCCG
SpCas9





4477
DMPK O forward 19:45769693-45769721
GCGGACACTGTGGAGTCCAGAGCTT
SpCas9





4478
DMPK O forward 19:45769694-45769721
CGGACACTGTGGAGTCCAGAGCTT
SpCas9





4479
DMPK O forward 19:45769695-45769721
GGACACTGTGGAGTCCAGAGCTT
SpCas9





4480
DMPK O forward 19:45769696-45769721
GACACTGTGGAGTCCAGAGCTT
SpCas9





4481
DMPK O forward 19:45769697-45769721
ACACTGTGGAGTCCAGAGCTT
SpCas9





4482
DMPK O forward 19:45769698-45769721
CACTGTGGAGTCCAGAGCTT
SpCas9





4483
DMPK O forward 19:45769699-45769721
ACTGTGGAGTCCAGAGCTT
SpCas9





4484
DMPK O forward 19:45769700-45769721
CTGTGGAGTCCAGAGCTT
SpCas9





4485
DMPK O forward 19:45769694-45769722
CGGACACTGTGGAGTCCAGAGCTTT
SpCas9





4486
DMPK O forward 19:45769695-45769722
GGACACTGTGGAGTCCAGAGCTTT
SpCas9





4487
DMPK O forward 19:45769696-45769722
GACACTGTGGAGTCCAGAGCTTT
SpCas9





4488
DMPK O forward 19:45769697-45769722
ACACTGTGGAGTCCAGAGCTTT
SpCas9





4489
DMPK O forward 19:45769698-45769722
CACTGTGGAGTCCAGAGCTTT
SpCas9





4490
DMPK O forward 19:45769699-45769722
ACTGTGGAGTCCAGAGCTTT
SpCas9





4491
DMPK O forward 19:45769700-45769722
CTGTGGAGTCCAGAGCTTT
SpCas9





4492
DMPK O forward 19:45769701-45769722
TGTGGAGTCCAGAGCTTT
SpCas9





4493
DMPK O reverse 19:45769700-45769728
CATCTGCCCAAAGCTCTGGACTCCA
SpCas9





4494
DMPK O reverse 19:45769701-45769728
ATCTGCCCAAAGCTCTGGACTCCA
SpCas9





4495
DMPK O reverse 19:45769702-45769728
TCTGCCCAAAGCTCTGGACTCCA
SpCas9





4496
DMPK O reverse 19:45769703-45769728
CTGCCCAAAGCTCTGGACTCCA
SpCas9





4497
DMPK O reverse 19:45769704-45769728
TGCCCAAAGCTCTGGACTCCA
SpCas9





4498
DMPK O reverse 19:45769705-45769728
GCCCAAAGCTCTGGACTCCA
SpCas9





4499
DMPK O reverse 19:45769706-45769728
CCCAAAGCTCTGGACTCCA
SpCas9





4500
DMPK O reverse 19:45769707-45769728
CCAAAGCTCTGGACTCCA
SpCas9





4501
DMPK O reverse 19:45769709-45769737
AAGGCCCTCCATCTGCCCAAAGCTC
SpCas9





4502
DMPK O reverse 19:45769710-45769737
AGGCCCTCCATCTGCCCAAAGCTC
SpCas9





4503
DMPK O reverse 19:45769711-45769737
GGCCCTCCATCTGCCCAAAGCTC
SpCas9





4504
DMPK O reverse 19:45769712-45769737
GCCCTCCATCTGCCCAAAGCTC
SpCas9





4505
DMPK O reverse 19:45769713-45769737
CCCTCCATCTGCCCAAAGCTC
SpCas9





4506
DMPK O reverse 19:45769714-45769737
CCTCCATCTGCCCAAAGCTC
SpCas9





4507
DMPK O reverse 19:45769715-45769737
CTCCATCTGCCCAAAGCTC
SpCas9





4508
DMPK O reverse 19:45769716-45769737
TCCATCTGCCCAAAGCTC
SpCas9





4509
DMPK O forward 19:45770206-45770234
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4510
DMPK O forward 19:45770207-45770234
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4511
DMPK O forward 19:45770208-45770234
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4512
DMPK O forward 19:45770209-45770234
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4513
DMPK O forward 19:45770210-45770234
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4514
DMPK O forward 19:45770211-45770234
AGCAGCAGCAGCAGCAGCAG
SpCas9





4515
DMPK O forward 19:45770212-45770234
GCAGCAGCAGCAGCAGCAG
SpCas9





4516
DMPK O forward 19:45770213-45770234
CAGCAGCAGCAGCAGCAG
SpCas9





4517
DMPK O forward 19:45770209-45770237
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4518
DMPK O forward 19:45770210-45770237
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4519
DMPK O forward 19:45770211-45770237
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4520
DMPK O forward 19:45770212-45770237
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4521
DMPK O forward 19:45770213-45770237
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4522
DMPK O forward 19:45770214-45770237
AGCAGCAGCAGCAGCAGCAG
SpCas9





4523
DMPK O forward 19:45770215-45770237
GCAGCAGCAGCAGCAGCAG
SpCas9





4524
DMPK O forward 19:45770216-45770237
CAGCAGCAGCAGCAGCAG
SpCas9





4525
DMPK O forward 19:45770212-45770240
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4526
DMPK O forward 19:45770213-45770240
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4527
DMPK O forward 19:45770214-45770240
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4528
DMPK O forward 19:45770215-45770240
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4529
DMPK O forward 19:45770216-45770240
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4530
DMPK O forward 19:45770217-45770240
AGCAGCAGCAGCAGCAGCAG
SpCas9





4531
DMPK O forward 19:45770218-45770240
GCAGCAGCAGCAGCAGCAG
SpCas9





4532
DMPK O forward 19:45770219-45770240
CAGCAGCAGCAGCAGCAG
SpCas9





4533
DMPK O forward 19:45770215-45770243
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4534
DMPK O forward 19:45770216-45770243
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4535
DMPK O forward 19:45770217-45770243
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4536
DMPK O forward 19:45770218-45770243
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4537
DMPK O forward 19:45770219-45770243
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4538
DMPK O forward 19:45770220-45770243
AGCAGCAGCAGCAGCAGCAG
SpCas9





4539
DMPK O forward 19:45770221-45770243
GCAGCAGCAGCAGCAGCAG
SpCas9





4540
DMPK O forward 19:45770222-45770243
CAGCAGCAGCAGCAGCAG
SpCas9





4541
DMPK O forward 19:45770218-45770246
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4542
DMPK O forward 19:45770219-45770246
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4543
DMPK O forward 19:45770220-45770246
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4544
DMPK O forward 19:45770221-45770246
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4545
DMPK O forward 19:45770222-45770246
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4546
DMPK O forward 19:45770223-45770246
AGCAGCAGCAGCAGCAGCAG
SpCas9





4547
DMPK O forward 19:45770224-45770246
GCAGCAGCAGCAGCAGCAG
SpCas9





4548
DMPK O forward 19:45770225-45770246
CAGCAGCAGCAGCAGCAG
SpCas9





4549
DMPK O forward 19:45770221-45770249
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4550
DMPK O forward 19:45770222-45770249
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4551
DMPK O forward 19:45770223-45770249
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4552
DMPK O forward 19:45770224-45770249
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4553
DMPK O forward 19:45770225-45770249
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4554
DMPK O forward 19:45770226-45770249
AGCAGCAGCAGCAGCAGCAG
SpCas9





4555
DMPK O forward 19:45770227-45770249
GCAGCAGCAGCAGCAGCAG
SpCas9





4556
DMPK O forward 19:45770228-45770249
CAGCAGCAGCAGCAGCAG
SpCas9





4557
DMPK O forward 19:45770224-45770252
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4558
DMPK O forward 19:45770225-45770252
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4559
DMPK O forward 19:45770226-45770252
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4560
DMPK O forward 19:45770227-45770252
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4561
DMPK O forward 19:45770228-45770252
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4562
DMPK O forward 19:45770229-45770252
AGCAGCAGCAGCAGCAGCAG
SpCas9





4563
DMPK O forward 19:45770230-45770252
GCAGCAGCAGCAGCAGCAG
SpCas9





4564
DMPK O forward 19:45770231-45770252
CAGCAGCAGCAGCAGCAG
SpCas9





4565
DMPK O forward 19:45770227-45770255
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4566
DMPK O forward 19:45770228-45770255
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4567
DMPK O forward 19:45770229-45770255
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4568
DMPK O forward 19:45770230-45770255
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4569
DMPK O forward 19:45770231-45770255
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4570
DMPK O forward 19:45770232-45770255
AGCAGCAGCAGCAGCAGCAG
SpCas9





4571
DMPK O forward 19:45770233-45770255
GCAGCAGCAGCAGCAGCAG
SpCas9





4572
DMPK O forward 19:45770234-45770255
CAGCAGCAGCAGCAGCAG
SpCas9





4573
DMPK O forward 19:45770230-45770258
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4574
DMPK O forward 19:45770231-45770258
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4575
DMPK O forward 19:45770232-45770258
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4576
DMPK O forward 19:45770233-45770258
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4577
DMPK O forward 19:45770234-45770258
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4578
DMPK O forward 19:45770235-45770258
AGCAGCAGCAGCAGCAGCAG
SpCas9





4579
DMPK O forward 19:45770236-45770258
GCAGCAGCAGCAGCAGCAG
SpCas9





4580
DMPK O forward 19:45770237-45770258
CAGCAGCAGCAGCAGCAG
SpCas9





4581
DMPK O forward 19:45770233-45770261
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4582
DMPK O forward 19:45770234-45770261
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4583
DMPK O forward 19:45770235-45770261
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4584
DMPK O forward 19:45770236-45770261
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4585
DMPK O forward 19:45770237-45770261
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4586
DMPK O forward 19:45770238-45770261
AGCAGCAGCAGCAGCAGCAG
SpCas9





4587
DMPK O forward 19:45770239-45770261
GCAGCAGCAGCAGCAGCAG
SpCas9





4588
DMPK O forward 19:45770240-45770261
CAGCAGCAGCAGCAGCAG
SpCas9





4589
DMPK O forward 19:45770236-45770264
GCAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4590
DMPK O forward 19:45770237-45770264
CAGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4591
DMPK O forward 19:45770238-45770264
AGCAGCAGCAGCAGCAGCAGCAG
SpCas9





4592
DMPK O forward 19:45770239-45770264
GCAGCAGCAGCAGCAGCAGCAG
SpCas9





4593
DMPK O forward 19:45770240-45770264
CAGCAGCAGCAGCAGCAGCAG
SpCas9





4594
DMPK O forward 19:45770241-45770264
AGCAGCAGCAGCAGCAGCAG
SpCas9





4595
DMPK O forward 19:45770242-45770264
GCAGCAGCAGCAGCAGCAG
SpCas9





4596
DMPK O forward 19:45770243-45770264
CAGCAGCAGCAGCAGCAG
SpCas9





4597
DMPK O forward 19:45770467-45770495
GTCGAAGACAGTTCTAGGGTTCAGG
SpCas9





4598
DMPK O forward 19:45770468-45770495
TCGAAGACAGTTCTAGGGTTCAGG
SpCas9





4599
DMPK O forward 19:45770469-45770495
CGAAGACAGTTCTAGGGTTCAGG
SpCas9





4600
DMPK O forward 19:45770470-45770495
GAAGACAGTTCTAGGGTTCAGG
SpCas9





4601
DMPK O forward 19:45770471-45770495
AAGACAGTTCTAGGGTTCAGG
SpCas9





4602
DMPK O forward 19:45770472-45770495
AGACAGTTCTAGGGTTCAGG
SpCas9





4603
DMPK O forward 19:45770473-45770495
GACAGTTCTAGGGTTCAGG
SpCas9





4604
DMPK O forward 19:45770474-45770495
ACAGTTCTAGGGTTCAGG
SpCas9





4605
DMPK O forward 19:45770472-45770500
AGACAGTTCTAGGGTTCAGGGAGCG
SpCas9





4606
DMPK O forward 19:45770473-45770500
GACAGTTCTAGGGTTCAGGGAGCG
SpCas9





4607
DMPK O forward 19:45770474-45770500
ACAGTTCTAGGGTTCAGGGAGCG
SpCas9





4608
DMPK O forward 19:45770475-45770500
CAGTTCTAGGGTTCAGGGAGCG
SpCas9





4609
DMPK O forward 19:45770476-45770500
AGTTCTAGGGTTCAGGGAGCG
SpCas9





4610
DMPK O forward 19:45770477-45770500
GTTCTAGGGTTCAGGGAGCG
SpCas9





4611
DMPK O forward 19:45770478-45770500
TTCTAGGGTTCAGGGAGCG
SpCas9





4612
DMPK O forward 19:45770479-45770500
TCTAGGGTTCAGGGAGCG
SpCas9





4613
DMPK O forward 19:45770473-45770501
GACAGTTCTAGGGTTCAGGGAGCGC
SpCas9





4614
DMPK O forward 19:45770474-45770501
ACAGTTCTAGGGTTCAGGGAGCGC
SpCas9





4615
DMPK O forward 19:45770475-45770501
CAGTTCTAGGGTTCAGGGAGCGC
SpCas9





4616
DMPK O forward 19:45770476-45770501
AGTTCTAGGGTTCAGGGAGCGC
SpCas9





4617
DMPK O forward 19:45770477-45770501
GTTCTAGGGTTCAGGGAGCGC
SpCas9





4618
DMPK O forward 19:45770478-45770501
TTCTAGGGTTCAGGGAGCGC
SpCas9





4619
DMPK O forward 19:45770479-45770501
TCTAGGGTTCAGGGAGCGC
SpCas9





4620
DMPK O forward 19:45770480-45770501
CTAGGGTTCAGGGAGCGC
SpCas9





4621
DMPK O forward 19:45770476-45770504
AGTTCTAGGGTTCAGGGAGCGCGGG
SpCas9





4622
DMPK O forward 19:45770477-45770504
GTTCTAGGGTTCAGGGAGCGCGGG
SpCas9





4623
DMPK O forward 19:45770478-45770504
TTCTAGGGTTCAGGGAGCGCGGG
SpCas9





4624
DMPK O forward 19:45770479-45770504
TCTAGGGTTCAGGGAGCGCGGG
SpCas9





4625
DMPK O forward 19:45770480-45770504
CTAGGGTTCAGGGAGCGCGGG
SpCas9





4626
DMPK O forward 19:45770481-45770504
TAGGGTTCAGGGAGCGCGGG
SpCas9





4627
DMPK O forward 19:45770482-45770504
AGGGTTCAGGGAGCGCGGG
SpCas9





4628
DMPK O forward 19:45770483-45770504
GGGTTCAGGGAGCGCGGG
SpCas9





4629
DMPK O forward 19:45770483-45770511
GGGTTCAGGGAGCGCGGGCGGCTCC
SpCas9





4630
DMPK O forward 19:45770484-45770511
GGTTCAGGGAGCGCGGGCGGCTCC
SpCas9





4631
DMPK O forward 19:45770485-45770511
GTTCAGGGAGCGCGGGCGGCTCC
SpCas9





4632
DMPK O forward 19:45770486-45770511
TTCAGGGAGCGCGGGCGGCTCC
SpCas9





4633
DMPK O forward 19:45770487-45770511
TCAGGGAGCGCGGGCGGCTCC
SpCas9





4634
DMPK O forward 19:45770488-45770511
CAGGGAGCGCGGGCGGCTCC
SpCas9





4635
DMPK O forward 19:45770489-45770511
AGGGAGCGCGGGCGGCTCC
SpCas9





4636
DMPK O forward 19:45770490-45770511
GGGAGCGCGGGCGGCTCC
SpCas9





4637
DMPK O forward 19:45770484-45770512
GGTTCAGGGAGCGCGGGCGGCTCCT
SpCas9





4638
DMPK O forward 19:45770485-45770512
GTTCAGGGAGCGCGGGCGGCTCCT
SpCas9





4639
DMPK O forward 19:45770486-45770512
TTCAGGGAGCGCGGGCGGCTCCT
SpCas9





4640
DMPK O forward 19:45770487-45770512
TCAGGGAGCGCGGGCGGCTCCT
SpCas9





4641
DMPK O forward 19:45770488-45770512
CAGGGAGCGCGGGCGGCTCCT
SpCas9





4642
DMPK O forward 19:45770489-45770512
AGGGAGCGCGGGCGGCTCCT
SpCas9





4643
DMPK O forward 19:45770490-45770512
GGGAGCGCGGGCGGCTCCT
SpCas9





4644
DMPK O forward 19:45770491-45770512
GGAGCGCGGGCGGCTCCT
SpCas9





4645
DMPK O forward 19:45770487-45770515
TCAGGGAGCGCGGGCGGCTCCTGGG
SpCas9





4646
DMPK O forward 19:45770488-45770515
CAGGGAGCGCGGGCGGCTCCTGGG
SpCas9





4647
DMPK O forward 19:45770489-45770515
AGGGAGCGCGGGCGGCTCCTGGG
SpCas9





4648
DMPK O forward 19:45770490-45770515
GGGAGCGCGGGCGGCTCCTGGG
SpCas9





4649
DMPK O forward 19:45770491-45770515
GGAGCGCGGGCGGCTCCTGGG
SpCas9





4650
DMPK O forward 19:45770492-45770515
GAGCGCGGGCGGCTCCTGGG
SpCas9





4651
DMPK O forward 19:45770493-45770515
AGCGCGGGCGGCTCCTGGG
SpCas9





4652
DMPK O forward 19:45770494-45770515
GCGCGGGCGGCTCCTGGG
SpCas9





4653
DMPK O forward 19:45770493-45770521
AGCGCGGGCGGCTCCTGGGCGGCGC
SpCas9





4654
DMPK O forward 19:45770494-45770521
GCGCGGGCGGCTCCTGGGCGGCGC
SpCas9





4655
DMPK O forward 19:45770495-45770521
CGCGGGCGGCTCCTGGGCGGCGC
SpCas9





4656
DMPK O forward 19:45770496-45770521
GCGGGCGGCTCCTGGGCGGCGC
SpCas9





4657
DMPK O forward 19:45770497-45770521
CGGGCGGCTCCTGGGCGGCGC
SpCas9





4658
DMPK O forward 19:45770498-45770521
GGGCGGCTCCTGGGCGGCGC
SpCas9





4659
DMPK O forward 19:45770499-45770521
GGCGGCTCCTGGGCGGCGC
SpCas9





4660
DMPK O forward 19:45770500-45770521
GCGGCTCCTGGGCGGCGC
SpCas9





4661
DMPK O forward 19:45770500-45770528
GCGGCTCCTGGGCGGCGCCAGACTG
SpCas9





4662
DMPK O forward 19:45770501-45770528
CGGCTCCTGGGCGGCGCCAGACTG
SpCas9





4663
DMPK O forward 19:45770502-45770528
GGCTCCTGGGCGGCGCCAGACTG
SpCas9





4664
DMPK O forward 19:45770503-45770528
GCTCCTGGGCGGCGCCAGACTG
SpCas9





4665
DMPK O forward 19:45770504-45770528
CTCCTGGGCGGCGCCAGACTG
SpCas9





4666
DMPK O forward 19:45770505-45770528
TCCTGGGCGGCGCCAGACTG
SpCas9





4667
DMPK O forward 19:45770506-45770528
CCTGGGCGGCGCCAGACTG
SpCas9





4668
DMPK O forward 19:45770507-45770528
CTGGGCGGCGCCAGACTG
SpCas9





4669
DMPK O forward 19:45770504-45770532
CTCCTGGGCGGCGCCAGACTGCGGT
SpCas9





4670
DMPK O forward 19:45770505-45770532
TCCTGGGCGGCGCCAGACTGCGGT
SpCas9





4671
DMPK O forward 19:45770506-45770532
CCTGGGCGGCGCCAGACTGCGGT
SpCas9





4672
DMPK O forward 19:45770507-45770532
CTGGGCGGCGCCAGACTGCGGT
SpCas9





4673
DMPK O forward 19:45770508-45770532
TGGGCGGCGCCAGACTGCGGT
SpCas9





4674
DMPK O forward 19:45770509-45770532
GGGCGGCGCCAGACTGCGGT
SpCas9





4675
DMPK O forward 19:45770510-45770532
GGCGGCGCCAGACTGCGGT
SpCas9





4676
DMPK O forward 19:45770511-45770532
GCGGCGCCAGACTGCGGT
SpCas9





4677
DMPK O reverse 19:45770504-45770532
CTCACCGCAGTCTGGCGCCGCCCAG
SpCas9





4678
DMPK O reverse 19:45770505-45770532
TCACCGCAGTCTGGCGCCGCCCAG
SpCas9





4679
DMPK O reverse 19:45770506-45770532
CACCGCAGTCTGGCGCCGCCCAG
SpCas9





4680
DMPK O reverse 19:45770507-45770532
ACCGCAGTCTGGCGCCGCCCAG
SpCas9





4681
DMPK O reverse 19:45770508-45770532
CCGCAGTCTGGCGCCGCCCAG
SpCas9





4682
DMPK O reverse 19:45770509-45770532
CGCAGTCTGGCGCCGCCCAG
SpCas9





4683
DMPK O reverse 19:45770510-45770532
GCAGTCTGGCGCCGCCCAG
SpCas9





4684
DMPK O reverse 19:45770511-45770532
CAGTCTGGCGCCGCCCAG
SpCas9





4685
DMPK O reverse 19:45770506-45770534
AACTCACCGCAGTCTGGCGCCGCCC
SpCas9





4686
DMPK O reverse 19:45770507-45770534
ACTCACCGCAGTCTGGCGCCGCCC
SpCas9





4687
DMPK O reverse 19:45770508-45770534
CTCACCGCAGTCTGGCGCCGCCC
SpCas9





4688
DMPK O reverse 19:45770509-45770534
TCACCGCAGTCTGGCGCCGCCC
SpCas9





4689
DMPK O reverse 19:45770510-45770534
CACCGCAGTCTGGCGCCGCCC
SpCas9





4690
DMPK O reverse 19:45770511-45770534
ACCGCAGTCTGGCGCCGCCC
SpCas9





4691
DMPK O reverse 19:45770512-45770534
CCGCAGTCTGGCGCCGCCC
SpCas9





4692
DMPK O reverse 19:45770513-45770534
CGCAGTCTGGCGCCGCCC
SpCas9





4693
DMPK O reverse 19:45770507-45770535
CAACTCACCGCAGTCTGGCGCCGCC
SpCas9





4694
DMPK O reverse 19:45770508-45770535
AACTCACCGCAGTCTGGCGCCGCC
SpCas9





4695
DMPK O reverse 19:45770509-45770535
ACTCACCGCAGTCTGGCGCCGCC
SpCas9





4696
DMPK O reverse 19:45770510-45770535
CTCACCGCAGTCTGGCGCCGCC
SpCas9





4697
DMPK O reverse 19:45770511-45770535
TCACCGCAGTCTGGCGCCGCC
SpCas9





4698
DMPK O reverse 19:45770512-45770535
CACCGCAGTCTGGCGCCGCC
SpCas9





4699
DMPK O reverse 19:45770513-45770535
ACCGCAGTCTGGCGCCGCC
SpCas9





4700
DMPK O reverse 19:45770514-45770535
CCGCAGTCTGGCGCCGCC
SpCas9





4701
DMPK O forward 19:45770508-45770536
TGGGCGGCGCCAGACTGCGGTGAGT
SpCas9





4702
DMPK O forward 19:45770509-45770536
GGGCGGCGCCAGACTGCGGTGAGT
SpCas9





4703
DMPK O forward 19:45770510-45770536
GGCGGCGCCAGACTGCGGTGAGT
SpCas9





4704
DMPK O forward 19:45770511-45770536
GCGGCGCCAGACTGCGGTGAGT
SpCas9





4705
DMPK O forward 19:45770512-45770536
CGGCGCCAGACTGCGGTGAGT
SpCas9





4706
DMPK O forward 19:45770513-45770536
GGCGCCAGACTGCGGTGAGT
SpCas9





4707
DMPK O forward 19:45770514-45770536
GCGCCAGACTGCGGTGAGT
SpCas9





4708
DMPK O forward 19:45770515-45770536
CGCCAGACTGCGGTGAGT
SpCas9





4709
DMPK O forward 19:45770512-45770540
CGGCGCCAGACTGCGGTGAGTTGGC
SpCas9





4710
DMPK O forward 19:45770513-45770540
GGCGCCAGACTGCGGTGAGTTGGC
SpCas9





4711
DMPK O forward 19:45770514-45770540
GCGCCAGACTGCGGTGAGTTGGC
SpCas9





4712
DMPK O forward 19:45770515-45770540
CGCCAGACTGCGGTGAGTTGGC
SpCas9





4713
DMPK O forward 19:45770516-45770540
GCCAGACTGCGGTGAGTTGGC
SpCas9





4714
DMPK O forward 19:45770517-45770540
CCAGACTGCGGTGAGTTGGC
SpCas9





4715
DMPK O forward 19:45770518-45770540
CAGACTGCGGTGAGTTGGC
SpCas9





4716
DMPK O forward 19:45770519-45770540
AGACTGCGGTGAGTTGGC
SpCas9





4717
DMPK O forward 19:45770517-45770545
CCAGACTGCGGTGAGTTGGCCGGCG
SpCas9





4718
DMPK O forward 19:45770518-45770545
CAGACTGCGGTGAGTTGGCCGGCG
SpCas9





4719
DMPK O forward 19:45770519-45770545
AGACTGCGGTGAGTTGGCCGGCG
SpCas9





4720
DMPK O forward 19:45770520-45770545
GACTGCGGTGAGTTGGCCGGCG
SpCas9





4721
DMPK O forward 19:45770521-45770545
ACTGCGGTGAGTTGGCCGGCG
SpCas9





4722
DMPK O forward 19:45770522-45770545
CTGCGGTGAGTTGGCCGGCG
SpCas9





4723
DMPK O forward 19:45770523-45770545
TGCGGTGAGTTGGCCGGCG
SpCas9





4724
DMPK O forward 19:45770524-45770545
GCGGTGAGTTGGCCGGCG
SpCas9





4725
DMPK O reverse 19:45770517-45770545
CCACGCCGGCCAACTCACCGCAGTC
SpCas9





4726
DMPK O reverse 19:45770518-45770545
CACGCCGGCCAACTCACCGCAGTC
SpCas9





4727
DMPK O reverse 19:45770519-45770545
ACGCCGGCCAACTCACCGCAGTC
SpCas9





4728
DMPK O reverse 19:45770520-45770545
CGCCGGCCAACTCACCGCAGTC
SpCas9





4729
DMPK O reverse 19:45770521-45770545
GCCGGCCAACTCACCGCAGTC
SpCas9





4730
DMPK O reverse 19:45770522-45770545
CCGGCCAACTCACCGCAGTC
SpCas9





4731
DMPK O reverse 19:45770523-45770545
CGGCCAACTCACCGCAGTC
SpCas9





4732
DMPK O reverse 19:45770524-45770545
GGCCAACTCACCGCAGTC
SpCas9





4733
DMPK O forward 19:45770518-45770546
CAGACTGCGGTGAGTTGGCCGGCGT
SpCas9





4734
DMPK O forward 19:45770519-45770546
AGACTGCGGTGAGTTGGCCGGCGT
SpCas9





4735
DMPK O forward 19:45770520-45770546
GACTGCGGTGAGTTGGCCGGCGT
SpCas9





4736
DMPK O forward 19:45770521-45770546
ACTGCGGTGAGTTGGCCGGCGT
SpCas9





4737
DMPK O forward 19:45770522-45770546
CTGCGGTGAGTTGGCCGGCGT
SpCas9





4738
DMPK O forward 19:45770523-45770546
TGCGGTGAGTTGGCCGGCGT
SpCas9





4739
DMPK O forward 19:45770524-45770546
GCGGTGAGTTGGCCGGCGT
SpCas9





4740
DMPK O forward 19:45770525-45770546
CGGTGAGTTGGCCGGCGT
SpCas9





4741
DMPK O reverse 19:45770522-45770550
GTGGCCCACGCCGGCCAACTCACCG
SpCas9





4742
DMPK O reverse 19:45770523-45770550
TGGCCCACGCCGGCCAACTCACCG
SpCas9





4743
DMPK O reverse 19:45770524-45770550
GGCCCACGCCGGCCAACTCACCG
SpCas9





4744
DMPK O reverse 19:45770525-45770550
GCCCACGCCGGCCAACTCACCG
SpCas9





4745
DMPK O reverse 19:45770526-45770550
CCCACGCCGGCCAACTCACCG
SpCas9





4746
DMPK O reverse 19:45770527-45770550
CCACGCCGGCCAACTCACCG
SpCas9





4747
DMPK O reverse 19:45770528-45770550
CACGCCGGCCAACTCACCG
SpCas9





4748
DMPK O reverse 19:45770529-45770550
ACGCCGGCCAACTCACCG
SpCas9





4749
DMPK O forward 19:45770535-45770563
GCCGGCGTGGGCCACCAACCCAATG
SpCas9





4750
DMPK O forward 19:45770536-45770563
CCGGCGTGGGCCACCAACCCAATG
SpCas9





4751
DMPK O forward 19:45770537-45770563
CGGCGTGGGCCACCAACCCAATG
SpCas9





4752
DMPK O forward 19:45770538-45770563
GGCGTGGGCCACCAACCCAATG
SpCas9





4753
DMPK O forward 19:45770539-45770563
GCGTGGGCCACCAACCCAATG
SpCas9





4754
DMPK O forward 19:45770540-45770563
CGTGGGCCACCAACCCAATG
SpCas9





4755
DMPK O forward 19:45770541-45770563
GTGGGCCACCAACCCAATG
SpCas9





4756
DMPK O forward 19:45770542-45770563
TGGGCCACCAACCCAATG
SpCas9





4757
DMPK O reverse 19:45770536-45770564
GCTGCATTGGGTTGGTGGCCCACGC
SpCas9





4758
DMPK O reverse 19:45770537-45770564
CTGCATTGGGTTGGTGGCCCACGC
SpCas9





4759
DMPK O reverse 19:45770538-45770564
TGCATTGGGTTGGTGGCCCACGC
SpCas9





4760
DMPK O reverse 19:45770539-45770564
GCATTGGGTTGGTGGCCCACGC
SpCas9





4761
DMPK O reverse 19:45770540-45770564
CATTGGGTTGGTGGCCCACGC
SpCas9





4762
DMPK O reverse 19:45770541-45770564
ATTGGGTTGGTGGCCCACGC
SpCas9





4763
DMPK O reverse 19:45770542-45770564
TTGGGTTGGTGGCCCACGC
SpCas9





4764
DMPK O reverse 19:45770543-45770564
TGGGTTGGTGGCCCACGC
SpCas9





4765
DMPK O forward 19:45770540-45770568
CGTGGGCCACCAACCCAATGCAGCC
SpCas9





4766
DMPK O forward 19:45770541-45770568
GTGGGCCACCAACCCAATGCAGCC
SpCas9





4767
DMPK O forward 19:45770542-45770568
TGGGCCACCAACCCAATGCAGCC
SpCas9





4768
DMPK O forward 19:45770543-45770568
GGGCCACCAACCCAATGCAGCC
SpCas9





4769
DMPK O forward 19:45770544-45770568
GGCCACCAACCCAATGCAGCC
SpCas9





4770
DMPK O forward 19:45770545-45770568
GCCACCAACCCAATGCAGCC
SpCas9





4771
DMPK O forward 19:45770546-45770568
CCACCAACCCAATGCAGCC
SpCas9





4772
DMPK O forward 19:45770547-45770568
CACCAACCCAATGCAGCC
SpCas9





4773
DMPK O forward 19:45770541-45770569
GTGGGCCACCAACCCAATGCAGCCC
SpCas9





4774
DMPK O forward 19:45770542-45770569
TGGGCCACCAACCCAATGCAGCCC
SpCas9





4775
DMPK O forward 19:45770543-45770569
GGGCCACCAACCCAATGCAGCCC
SpCas9





4776
DMPK O forward 19:45770544-45770569
GGCCACCAACCCAATGCAGCCC
SpCas9





4777
DMPK O forward 19:45770545-45770569
GCCACCAACCCAATGCAGCCC
SpCas9





4778
DMPK O forward 19:45770546-45770569
CCACCAACCCAATGCAGCCC
SpCas9





4779
DMPK O forward 19:45770547-45770569
CACCAACCCAATGCAGCCC
SpCas9





4780
DMPK O forward 19:45770548-45770569
ACCAACCCAATGCAGCCC
SpCas9





4781
DMPK O forward 19:45770542-45770570
TGGGCCACCAACCCAATGCAGCCCA
SpCas9





4782
DMPK O forward 19:45770543-45770570
GGGCCACCAACCCAATGCAGCCCA
SpCas9





4783
DMPK O forward 19:45770544-45770570
GGCCACCAACCCAATGCAGCCCA
SpCas9





4784
DMPK O forward 19:45770545-45770570
GCCACCAACCCAATGCAGCCCA
SpCas9





4785
DMPK O forward 19:45770546-45770570
CCACCAACCCAATGCAGCCCA
SpCas9





4786
DMPK O forward 19:45770547-45770570
CACCAACCCAATGCAGCCCA
SpCas9





4787
DMPK O forward 19:45770548-45770570
ACCAACCCAATGCAGCCCA
SpCas9





4788
DMPK O forward 19:45770549-45770570
CCAACCCAATGCAGCCCA
SpCas9





4789
DMPK O forward 19:45770545-45770573
GCCACCAACCCAATGCAGCCCAGGG
SpCas9





4790
DMPK O forward 19:45770546-45770573
CCACCAACCCAATGCAGCCCAGGG
SpCas9





4791
DMPK O forward 19:45770547-45770573
CACCAACCCAATGCAGCCCAGGG
SpCas9





4792
DMPK O forward 19:45770548-45770573
ACCAACCCAATGCAGCCCAGGG
SpCas9





4793
DMPK O forward 19:45770549-45770573
CCAACCCAATGCAGCCCAGGG
SpCas9





4794
DMPK O forward 19:45770550-45770573
CAACCCAATGCAGCCCAGGG
SpCas9





4795
DMPK O forward 19:45770551-45770573
AACCCAATGCAGCCCAGGG
SpCas9





4796
DMPK O forward 19:45770552-45770573
ACCCAATGCAGCCCAGGG
SpCas9





4797
DMPK O reverse 19:45770546-45770574
GCCGCCCTGGGCTGCATTGGGTTGG
SpCas9





4798
DMPK O reverse 19:45770547-45770574
CCGCCCTGGGCTGCATTGGGTTGG
SpCas9





4799
DMPK O reverse 19:45770548-45770574
CGCCCTGGGCTGCATTGGGTTGG
SpCas9





4800
DMPK O reverse 19:45770549-45770574
GCCCTGGGCTGCATTGGGTTGG
SpCas9





4801
DMPK O reverse 19:45770550-45770574
CCCTGGGCTGCATTGGGTTGG
SpCas9





4802
DMPK O reverse 19:45770551-45770574
CCTGGGCTGCATTGGGTTGG
SpCas9





4803
DMPK O reverse 19:45770552-45770574
CTGGGCTGCATTGGGTTGG
SpCas9





4804
DMPK O reverse 19:45770553-45770574
TGGGCTGCATTGGGTTGG
SpCas9





4805
DMPK O forward 19:45770548-45770576
ACCAACCCAATGCAGCCCAGGGCGG
SpCas9





4806
DMPK O forward 19:45770549-45770576
CCAACCCAATGCAGCCCAGGGCGG
SpCas9





4807
DMPK O forward 19:45770550-45770576
CAACCCAATGCAGCCCAGGGCGG
SpCas9





4808
DMPK O forward 19:45770551-45770576
AACCCAATGCAGCCCAGGGCGG
SpCas9





4809
DMPK O forward 19:45770552-45770576
ACCCAATGCAGCCCAGGGCGG
SpCas9





4810
DMPK O forward 19:45770553-45770576
CCCAATGCAGCCCAGGGCGG
SpCas9





4811
DMPK O forward 19:45770554-45770576
CCAATGCAGCCCAGGGCGG
SpCas9





4812
DMPK O forward 19:45770555-45770576
CAATGCAGCCCAGGGCGG
SpCas9





4813
DMPK O reverse 19:45770549-45770577
GCCGCCGCCCTGGGCTGCATTGGGT
SpCas9





4814
DMPK O reverse 19:45770550-45770577
CCGCCGCCCTGGGCTGCATTGGGT
SpCas9





4815
DMPK O reverse 19:45770551-45770577
CGCCGCCCTGGGCTGCATTGGGT
SpCas9





4816
DMPK O reverse 19:45770552-45770577
GCCGCCCTGGGCTGCATTGGGT
SpCas9





4817
DMPK O reverse 19:45770553-45770577
CCGCCCTGGGCTGCATTGGGT
SpCas9





4818
DMPK O reverse 19:45770554-45770577
CGCCCTGGGCTGCATTGGGT
SpCas9





4819
DMPK O reverse 19:45770555-45770577
GCCCTGGGCTGCATTGGGT
SpCas9





4820
DMPK O reverse 19:45770556-45770577
CCCTGGGCTGCATTGGGT
SpCas9





4821
DMPK O reverse 19:45770553-45770581
TCGTGCCGCCGCCCTGGGCTGCATT
SpCas9





4822
DMPK O reverse 19:45770554-45770581
CGTGCCGCCGCCCTGGGCTGCATT
SpCas9





4823
DMPK O reverse 19:45770555-45770581
GTGCCGCCGCCCTGGGCTGCATT
SpCas9





4824
DMPK O reverse 19:45770556-45770581
TGCCGCCGCCCTGGGCTGCATT
SpCas9





4825
DMPK O reverse 19:45770557-45770581
GCCGCCGCCCTGGGCTGCATT
SpCas9





4826
DMPK O reverse 19:45770558-45770581
CCGCCGCCCTGGGCTGCATT
SpCas9





4827
DMPK O reverse 19:45770559-45770581
CGCCGCCCTGGGCTGCATT
SpCas9





4828
DMPK O reverse 19:45770560-45770581
GCCGCCCTGGGCTGCATT
SpCas9





4829
DMPK O forward 19:45770554-45770582
CCAATGCAGCCCAGGGCGGCGGCAC
SpCas9





4830
DMPK O forward 19:45770555-45770582
CAATGCAGCCCAGGGCGGCGGCAC
SpCas9





4831
DMPK O forward 19:45770556-45770582
AATGCAGCCCAGGGCGGCGGCAC
SpCas9





4832
DMPK O forward 19:45770557-45770582
ATGCAGCCCAGGGCGGCGGCAC
SpCas9





4833
DMPK O forward 19:45770558-45770582
TGCAGCCCAGGGCGGCGGCAC
SpCas9





4834
DMPK O forward 19:45770559-45770582
GCAGCCCAGGGCGGCGGCAC
SpCas9





4835
DMPK O forward 19:45770560-45770582
CAGCCCAGGGCGGCGGCAC
SpCas9





4836
DMPK O forward 19:45770561-45770582
AGCCCAGGGCGGCGGCAC
SpCas9





4837
DMPK O reverse 19:45770554-45770582
CTCGTGCCGCCGCCCTGGGCTGCAT
SpCas9





4838
DMPK O reverse 19:45770555-45770582
TCGTGCCGCCGCCCTGGGCTGCAT
SpCas9





4839
DMPK O reverse 19:45770556-45770582
CGTGCCGCCGCCCTGGGCTGCAT
SpCas9





4840
DMPK O reverse 19:45770557-45770582
GTGCCGCCGCCCTGGGCTGCAT
SpCas9





4841
DMPK O reverse 19:45770558-45770582
TGCCGCCGCCCTGGGCTGCAT
SpCas9





4842
DMPK O reverse 19:45770559-45770582
GCCGCCGCCCTGGGCTGCAT
SpCas9





4843
DMPK O reverse 19:45770560-45770582
CCGCCGCCCTGGGCTGCAT
SpCas9





4844
DMPK O reverse 19:45770561-45770582
CGCCGCCCTGGGCTGCAT
SpCas9





4845
DMPK O forward 19:45770558-45770586
TGCAGCCCAGGGCGGCGGCACGAGA
SpCas9





4846
DMPK O forward 19:45770559-45770586
GCAGCCCAGGGCGGCGGCACGAGA
SpCas9





4847
DMPK O forward 19:45770560-45770586
CAGCCCAGGGCGGCGGCACGAGA
SpCas9





4848
DMPK O forward 19:45770561-45770586
AGCCCAGGGCGGCGGCACGAGA
SpCas9





4849
DMPK O forward 19:45770562-45770586
GCCCAGGGCGGCGGCACGAGA
SpCas9





4850
DMPK O forward 19:45770563-45770586
CCCAGGGCGGCGGCACGAGA
SpCas9





4851
DMPK O forward 19:45770564-45770586
CCAGGGCGGCGGCACGAGA
SpCas9





4852
DMPK O forward 19:45770565-45770586
CAGGGCGGCGGCACGAGA
SpCas9





4853
DMPK O reverse 19:45770563-45770591
TTGTTCTGTCTCGTGCCGCCGCCCT
SpCas9





4854
DMPK O reverse 19:45770564-45770591
TGTTCTGTCTCGTGCCGCCGCCCT
SpCas9





4855
DMPK O reverse 19:45770565-45770591
GTTCTGTCTCGTGCCGCCGCCCT
SpCas9





4856
DMPK O reverse 19:45770566-45770591
TTCTGTCTCGTGCCGCCGCCCT
SpCas9





4857
DMPK O reverse 19:45770567-45770591
TCTGTCTCGTGCCGCCGCCCT
SpCas9





4858
DMPK O reverse 19:45770568-45770591
CTGTCTCGTGCCGCCGCCCT
SpCas9





4859
DMPK O reverse 19:45770569-45770591
TGTCTCGTGCCGCCGCCCT
SpCas9





4860
DMPK O reverse 19:45770570-45770591
GTCTCGTGCCGCCGCCCT
SpCas9





4861
DMPK O reverse 19:45770564-45770592
GTTGTTCTGTCTCGTGCCGCCGCCC
SpCas9





4862
DMPK O reverse 19:45770565-45770592
TTGTTCTGTCTCGTGCCGCCGCCC
SpCas9





4863
DMPK O reverse 19:45770566-45770592
TGTTCTGTCTCGTGCCGCCGCCC
SpCas9





4864
DMPK O reverse 19:45770567-45770592
GTTCTGTCTCGTGCCGCCGCCC
SpCas9





4865
DMPK O reverse 19:45770568-45770592
TTCTGTCTCGTGCCGCCGCCC
SpCas9





4866
DMPK O reverse 19:45770569-45770592
TCTGTCTCGTGCCGCCGCCC
SpCas9





4867
DMPK O reverse 19:45770570-45770592
CTGTCTCGTGCCGCCGCCC
SpCas9





4868
DMPK O reverse 19:45770571-45770592
TGTCTCGTGCCGCCGCCC
SpCas9





4869
DMPK O forward 19:45770566-45770594
AGGGCGGCGGCACGAGACAGAACAA
SpCas9





4870
DMPK O forward 19:45770567-45770594
GGGCGGCGGCACGAGACAGAACAA
SpCas9





4871
DMPK O forward 19:45770568-45770594
GGCGGCGGCACGAGACAGAACAA
SpCas9





4872
DMPK O forward 19:45770569-45770594
GCGGCGGCACGAGACAGAACAA
SpCas9





4873
DMPK O forward 19:45770570-45770594
CGGCGGCACGAGACAGAACAA
SpCas9





4874
DMPK O forward 19:45770571-45770594
GGCGGCACGAGACAGAACAA
SpCas9





4875
DMPK O forward 19:45770572-45770594
GCGGCACGAGACAGAACAA
SpCas9





4876
DMPK O forward 19:45770573-45770594
CGGCACGAGACAGAACAA
SpCas9





4877
DMPK O forward 19:45770573-45770601
CGGCACGAGACAGAACAACGGCGAA
SpCas9





4878
DMPK O forward 19:45770574-45770601
GGCACGAGACAGAACAACGGCGAA
SpCas9





4879
DMPK O forward 19:45770575-45770601
GCACGAGACAGAACAACGGCGAA
SpCas9





4880
DMPK O forward 19:45770576-45770601
CACGAGACAGAACAACGGCGAA
SpCas9





4881
DMPK O forward 19:45770577-45770601
ACGAGACAGAACAACGGCGAA
SpCas9





4882
DMPK O forward 19:45770578-45770601
CGAGACAGAACAACGGCGAA
SpCas9





4883
DMPK O forward 19:45770579-45770601
GAGACAGAACAACGGCGAA
SpCas9





4884
DMPK O forward 19:45770580-45770601
AGACAGAACAACGGCGAA
SpCas9





4885
DMPK O forward 19:45770574-45770602
GGCACGAGACAGAACAACGGCGAAC
SpCas9





4886
DMPK O forward 19:45770575-45770602
GCACGAGACAGAACAACGGCGAAC
SpCas9





4887
DMPK O forward 19:45770576-45770602
CACGAGACAGAACAACGGCGAAC
SpCas9





4888
DMPK O forward 19:45770577-45770602
ACGAGACAGAACAACGGCGAAC
SpCas9





4889
DMPK O forward 19:45770578-45770602
CGAGACAGAACAACGGCGAAC
SpCas9





4890
DMPK O forward 19:45770579-45770602
GAGACAGAACAACGGCGAAC
SpCas9





4891
DMPK O forward 19:45770580-45770602
AGACAGAACAACGGCGAAC
SpCas9





4892
DMPK O forward 19:45770581-45770602
GACAGAACAACGGCGAAC
SpCas9





4893
DMPK O forward 19:45770576-45770604
CACGAGACAGAACAACGGCGAACAG
SpCas9





4894
DMPK O forward 19:45770577-45770604
ACGAGACAGAACAACGGCGAACAG
SpCas9





4895
DMPK O forward 19:45770578-45770604
CGAGACAGAACAACGGCGAACAG
SpCas9





4896
DMPK O forward 19:45770579-45770604
GAGACAGAACAACGGCGAACAG
SpCas9





4897
DMPK O forward 19:45770580-45770604
AGACAGAACAACGGCGAACAG
SpCas9





4898
DMPK O forward 19:45770581-45770604
GACAGAACAACGGCGAACAG
SpCas9





4899
DMPK O forward 19:45770582-45770604
ACAGAACAACGGCGAACAG
SpCas9





4900
DMPK O forward 19:45770583-45770604
CAGAACAACGGCGAACAG
SpCas9





4901
DMPK O forward 19:45770579-45770607
GAGACAGAACAACGGCGAACAGGAG
SpCas9





4902
DMPK O forward 19:45770580-45770607
AGACAGAACAACGGCGAACAGGAG
SpCas9





4903
DMPK O forward 19:45770581-45770607
GACAGAACAACGGCGAACAGGAG
SpCas9





4904
DMPK O forward 19:45770582-45770607
ACAGAACAACGGCGAACAGGAG
SpCas9





4905
DMPK O forward 19:45770583-45770607
CAGAACAACGGCGAACAGGAG
SpCas9





4906
DMPK O forward 19:45770584-45770607
AGAACAACGGCGAACAGGAG
SpCas9





4907
DMPK O forward 19:45770585-45770607
GAACAACGGCGAACAGGAG
SpCas9





4908
DMPK O forward 19:45770586-45770607
AACAACGGCGAACAGGAG
SpCas9





4909
DMPK O forward 19:45770580-45770608
AGACAGAACAACGGCGAACAGGAGC
SpCas9





4910
DMPK O forward 19:45770581-45770608
GACAGAACAACGGCGAACAGGAGC
SpCas9





4911
DMPK O forward 19:45770582-45770608
ACAGAACAACGGCGAACAGGAGC
SpCas9





4912
DMPK O forward 19:45770583-45770608
CAGAACAACGGCGAACAGGAGC
SpCas9





4913
DMPK O forward 19:45770584-45770608
AGAACAACGGCGAACAGGAGC
SpCas9





4914
DMPK O forward 19:45770585-45770608
GAACAACGGCGAACAGGAGC
SpCas9





4915
DMPK O forward 19:45770586-45770608
AACAACGGCGAACAGGAGC
SpCas9





4916
DMPK O forward 19:45770587-45770608
ACAACGGCGAACAGGAGC
SpCas9





4917
DMPK O forward 19:45770581-45770609
GACAGAACAACGGCGAACAGGAGCA
SpCas9





4918
DMPK O forward 19:45770582-45770609
ACAGAACAACGGCGAACAGGAGCA
SpCas9





4919
DMPK O forward 19:45770583-45770609
CAGAACAACGGCGAACAGGAGCA
SpCas9





4920
DMPK O forward 19:45770584-45770609
AGAACAACGGCGAACAGGAGCA
SpCas9





4921
DMPK O forward 19:45770585-45770609
GAACAACGGCGAACAGGAGCA
SpCas9





4922
DMPK O forward 19:45770586-45770609
AACAACGGCGAACAGGAGCA
SpCas9





4923
DMPK O forward 19:45770587-45770609
ACAACGGCGAACAGGAGCA
SpCas9





4924
DMPK O forward 19:45770588-45770609
CAACGGCGAACAGGAGCA
SpCas9





4925
DMPK O forward 19:45770585-45770613
GAACAACGGCGAACAGGAGCAGGGA
SpCas9





4926
DMPK O forward 19:45770586-45770613
AACAACGGCGAACAGGAGCAGGGA
SpCas9





4927
DMPK O forward 19:45770587-45770613
ACAACGGCGAACAGGAGCAGGGA
SpCas9





4928
DMPK O forward 19:45770588-45770613
CAACGGCGAACAGGAGCAGGGA
SpCas9





4929
DMPK O forward 19:45770589-45770613
AACGGCGAACAGGAGCAGGGA
SpCas9





4930
DMPK O forward 19:45770590-45770613
ACGGCGAACAGGAGCAGGGA
SpCas9





4931
DMPK O forward 19:45770591-45770613
CGGCGAACAGGAGCAGGGA
SpCas9





4932
DMPK O forward 19:45770592-45770613
GGCGAACAGGAGCAGGGA
SpCas9





4933
DMPK O forward 19:45770597-45770625
ACAGGAGCAGGGAAAGCGCCTCCGA
SpCas9





4934
DMPK O forward 19:45770598-45770625
CAGGAGCAGGGAAAGCGCCTCCGA
SpCas9





4935
DMPK O forward 19:45770599-45770625
AGGAGCAGGGAAAGCGCCTCCGA
SpCas9





4936
DMPK O forward 19:45770600-45770625
GGAGCAGGGAAAGCGCCTCCGA
SpCas9





4937
DMPK O forward 19:45770601-45770625
GAGCAGGGAAAGCGCCTCCGA
SpCas9





4938
DMPK O forward 19:45770602-45770625
AGCAGGGAAAGCGCCTCCGA
SpCas9





4939
DMPK O forward 19:45770603-45770625
GCAGGGAAAGCGCCTCCGA
SpCas9





4940
DMPK O forward 19:45770604-45770625
CAGGGAAAGCGCCTCCGA
SpCas9





4941
DMPK O forward 19:45770598-45770626
CAGGAGCAGGGAAAGCGCCTCCGAT
SpCas9





4942
DMPK O forward 19:45770599-45770626
AGGAGCAGGGAAAGCGCCTCCGAT
SpCas9





4943
DMPK O forward 19:45770600-45770626
GGAGCAGGGAAAGCGCCTCCGAT
SpCas9





4944
DMPK O forward 19:45770601-45770626
GAGCAGGGAAAGCGCCTCCGAT
SpCas9





4945
DMPK O forward 19:45770602-45770626
AGCAGGGAAAGCGCCTCCGAT
SpCas9





4946
DMPK O forward 19:45770603-45770626
GCAGGGAAAGCGCCTCCGAT
SpCas9





4947
DMPK O forward 19:45770604-45770626
CAGGGAAAGCGCCTCCGAT
SpCas9





4948
DMPK O forward 19:45770605-45770626
AGGGAAAGCGCCTCCGAT
SpCas9





4949
DMPK O forward 19:45770602-45770630
AGCAGGGAAAGCGCCTCCGATAGGC
SpCas9





4950
DMPK O forward 19:45770603-45770630
GCAGGGAAAGCGCCTCCGATAGGC
SpCas9





4951
DMPK O forward 19:45770604-45770630
CAGGGAAAGCGCCTCCGATAGGC
SpCas9





4952
DMPK O forward 19:45770605-45770630
AGGGAAAGCGCCTCCGATAGGC
SpCas9





4953
DMPK O forward 19:45770606-45770630
GGGAAAGCGCCTCCGATAGGC
SpCas9





4954
DMPK O forward 19:45770607-45770630
GGAAAGCGCCTCCGATAGGC
SpCas9





4955
DMPK O forward 19:45770608-45770630
GAAAGCGCCTCCGATAGGC
SpCas9





4956
DMPK O forward 19:45770609-45770630
AAAGCGCCTCCGATAGGC
SpCas9





4957
DMPK O forward 19:45770603-45770631
GCAGGGAAAGCGCCTCCGATAGGCC
SpCas9





4958
DMPK O forward 19:45770604-45770631
CAGGGAAAGCGCCTCCGATAGGCC
SpCas9





4959
DMPK O forward 19:45770605-45770631
AGGGAAAGCGCCTCCGATAGGCC
SpCas9





4960
DMPK O forward 19:45770606-45770631
GGGAAAGCGCCTCCGATAGGCC
SpCas9





4961
DMPK O forward 19:45770607-45770631
GGAAAGCGCCTCCGATAGGCC
SpCas9





4962
DMPK O forward 19:45770608-45770631
GAAAGCGCCTCCGATAGGCC
SpCas9





4963
DMPK O forward 19:45770609-45770631
AAAGCGCCTCCGATAGGCC
SpCas9





4964
DMPK O forward 19:45770610-45770631
AAGCGCCTCCGATAGGCC
SpCas9





4965
DMPK O forward 19:45770608-45770636
GAAAGCGCCTCCGATAGGCCAGGCC
SpCas9





4966
DMPK O forward 19:45770609-45770636
AAAGCGCCTCCGATAGGCCAGGCC
SpCas9





4967
DMPK O forward 19:45770610-45770636
AAGCGCCTCCGATAGGCCAGGCC
SpCas9





4968
DMPK O forward 19:45770611-45770636
AGCGCCTCCGATAGGCCAGGCC
SpCas9





4969
DMPK O forward 19:45770612-45770636
GCGCCTCCGATAGGCCAGGCC
SpCas9





4970
DMPK O forward 19:45770613-45770636
CGCCTCCGATAGGCCAGGCC
SpCas9





4971
DMPK O forward 19:45770614-45770636
GCCTCCGATAGGCCAGGCC
SpCas9





4972
DMPK O forward 19:45770615-45770636
CCTCCGATAGGCCAGGCC
SpCas9





4973
DMPK O forward 19:45770609-45770637
AAAGCGCCTCCGATAGGCCAGGCCT
SpCas9





4974
DMPK O forward 19:45770610-45770637
AAGCGCCTCCGATAGGCCAGGCCT
SpCas9





4975
DMPK O forward 19:45770611-45770637
AGCGCCTCCGATAGGCCAGGCCT
SpCas9





4976
DMPK O forward 19:45770612-45770637
GCGCCTCCGATAGGCCAGGCCT
SpCas9





4977
DMPK O forward 19:45770613-45770637
CGCCTCCGATAGGCCAGGCCT
SpCas9





4978
DMPK O forward 19:45770614-45770637
GCCTCCGATAGGCCAGGCCT
SpCas9





4979
DMPK O forward 19:45770615-45770637
CCTCCGATAGGCCAGGCCT
SpCas9





4980
DMPK O forward 19:45770616-45770637
CTCCGATAGGCCAGGCCT
SpCas9





4981
DMPK O forward 19:45770610-45770638
AAGCGCCTCCGATAGGCCAGGCCTA
SpCas9





4982
DMPK O forward 19:45770611-45770638
AGCGCCTCCGATAGGCCAGGCCTA
SpCas9





4983
DMPK O forward 19:45770612-45770638
GCGCCTCCGATAGGCCAGGCCTA
SpCas9





4984
DMPK O forward 19:45770613-45770638
CGCCTCCGATAGGCCAGGCCTA
SpCas9





4985
DMPK O forward 19:45770614-45770638
GCCTCCGATAGGCCAGGCCTA
SpCas9





4986
DMPK O forward 19:45770615-45770638
CCTCCGATAGGCCAGGCCTA
SpCas9





4987
DMPK O forward 19:45770616-45770638
CTCCGATAGGCCAGGCCTA
SpCas9





4988
DMPK O forward 19:45770617-45770638
TCCGATAGGCCAGGCCTA
SpCas9





4989-5000
Not used







5070
FMR1 3 forward X:147912120-147912146
AGCGCCCGCAGCCCACCTCT
SaCas9





5262
FMR1 3 forward X:147912120-147912143
AGCGCCCGCAGCCCACCTCT
SpCas9





5264
FMR1 3 forward X:147912122-147912143
CGCCCGCAGCCCACCTCT
SpCas9





5310
FMR1 3 forward X:147912126-147912149
CGCAGCCCACCTCTCGGGGG
SpCas9





5312
FMR1 3 forward X:147912128-147912149
CAGCCCACCTCTCGGGGG
SpCas9





5334
FMR1 3 reverse X:147912130-147912153
CGCCCCCGAGAGGTGGGCTG
SpCas9





5336
FMR1 3 reverse X:147912132-147912153
CCCCCGAGAGGTGGGCTG
SpCas9





5622
FMR1 5 reverse X:147911956-147911982
GCTCAGAGGCGGCCCTCCAC
SaCas9





5782
FMR1 5 reverse X:147911959-147911982
GCTCAGAGGCGGCCCTCCAC
SpCas9





5830
FMR1 5 reverse X:147911973-147911996
TCGGCCCGCCGCCCGCTCAG
SpCas9





5832
FMR1 5 reverse X:147911975-147911996
GGCCCGCCGCCCGCTCAG
SpCas9





5926
FMR1 5 forward X:147911999-147912022
GCGGGCGGCGGCGGTGACGG
SpCas9





5950
FMR1 5 forward X:147912013-147912036
TGACGGAGGCGCCGCTGCCA
SpCas9





5998
FMR1 5 forward X:147912030-147912053
CCAGGGGGCGTGCGGCAGCG
SpCas9





6022
FMR1 5 reverse X:147912035-147912058
CCGCGCTGCCGCACGCCCCC
SpCas9





6024
FMR1 5 reverse X:147912037-147912058
GCGCTGCCGCACGCCCCC
SpCas9





7265-7300
Not Used







7445
FXN 3 forward 9:69037505-69037527
CCAGCATCTCTGGAAAAA
As/LbCpf1





7447
FXN 3 forward 9:69037505-69037529
CCAGCATCTCTGGAAAAATA
As/LbCpf1





7461
FXN 3 forward 9:69037578-69037600
TTACTTGGCTTCTGTGCA
As/LbCpf1





7463
FXN 3 forward 9:69037578-69037602
TTACTTGGCTTCTGTGCACT
As/LbCpf1





7678
FXN 3 forward 9:69038085-69038108
TGGATAGATGGTTAGCAAC
As/LbCpf1





7680
FXN 3 forward 9:69038085-69038110
TGGATAGATGGTTAGCAACCT
As/LbCpf1





26530
FXN 3 forward 9:69037499-69037522
AATGGATTTCCCAGCATCTC
SpCas9





26546
FXN 3 forward 9:69037508-69037531
CCCAGCATCTCTGGAAAAAT
SpCas9





26562
FXN 3 reverse 9:69037513-69037536
CCTATTTTTCCAGAGATGCT
SpCas9





26570
FXN 3 reverse 9:69037514-69037537
GCCTATTTTTCCAGAGATGC
SpCas9





26578
FXN 3 forward 9:69037517-69037540
TCTGGAAAAATAGGCAAGTG
SpCas9





26602
FXN 3 forward 9:69037526-69037549
ATAGGCAAGTGTGGCCATGA
SpCas9





26626
FXN 3 forward 9:69037545-69037568
ATGGTCCTTAGATCTCCTCT
SpCas9





26634
FXN 3 reverse 9:69037545-69037568
AGGAGATCTAAGGACCATCA
SpCas9





26698
FXN 3 forward 9:69037567-69037590
GAAAGCAGACATTTATTACT
SpCas9





26746
FXN 3 forward 9:69037600-69037623
CTATCTGAGCTGCCACGTAT
SpCas9





26754
FXN 3 forward 9:69037601-69037624
TATCTGAGCTGCCACGTATT
SpCas9





26786
FXN 3 reverse 9:69037617-69037640
AGGGGTGGAAGCCCAATACG
SpCas9





26882
FXN 3 reverse 9:69037641-69037664
ACAACCCATGCTGTCCACAC
SpCas9





27722
FXN 3 forward 9:69037985-69038008
AGGTGGTACAGTTTTTTAGA
SpCas9





27730
FXN 3 forward 9:69037992-69038015
ACAGTTTTTTAGATGGTACC
SpCas9





27738
FXN 3 forward 9:69037995-69038018
GTTTTTTAGATGGTACCTGG
SpCas9





27754
FXN 3 forward 9:69038004-69038027
ATGGTACCTGGTGGCTGTTA
SpCas9





27762
FXN 3 forward 9:69038005-69038028
TGGTACCTGGTGGCTGTTAA
SpCas9





27770
FXN 3 reverse 9:69038015-69038038
AATAGCCCTTAACAGCCACC
SpCas9





27802
FXN 3 forward 9:69038034-69038057
ACTGACAAACACACCCAACT
SpCas9





27842
FXN 3 forward 9:69038051-69038074
ACTTGGCGCTGCCGCCCAGG
SpCas9





27850
FXN 3 reverse 9:69038052-69038075
CTGGGCGGCAGCGCCAAGTT
SpCas9





27922
FXN 3 reverse 9:69038070-69038093
AAACCCAGTGTCCACCTCCT
SpCas9





27946
FXN 3 forward 9:69038077-69038100
ACACTGGGTTTCTGGATAGA
SpCas9





27986
FXN 3 forward 9:69038101-69038124
TAGCAACCTCTGTCACCAGC
SpCas9





28114
FXN 3 forward 9:69038175-69038198
CATAGTTCCCTTGCACATCT
SpCas9





28122
FXN 3 forward 9:69038176-69038199
ATAGTTCCCTTGCACATCTT
SpCas9





28130
FXN 3 reverse 9:69038179-69038202
CAAGATGTGCAAGGGAACTA
SpCas9





28146
FXN 3 forward 9:69038185-69038208
TTGCACATCTTGGGTATTTG
SpCas9





28186
FXN 3 forward 9:69038191-69038214
ATCTTGGGTATTTGAGGAGT
SpCas9





28194
FXN 3 forward 9:69038192-69038215
TCTTGGGTATTTGAGGAGTT
SpCas9





28322
FXN 3 forward 9:69038256-69038279
TTTTAAAGCCCTGACTGTCC
SpCas9





28338
FXN 3 reverse 9:69038269-69038292
GGGTCAATCCAGGACAGTCA
SpCas9





28346
FXN 3 reverse 9:69038270-69038293
AGGGTCAATCCAGGACAGTC
SpCas9





28370
FXN 3 forward 9:69038278-69038301
GATTGACCCTAAGCTCCCCC
SpCas9





28378
FXN 3 reverse 9:69038279-69038302
GGGGAGCTTAGGGTCAATCC
SpCas9





28458
FXN 3 reverse 9:69038301-69038324
TCTGATGAATTTTGGAGACC
SpCas9





28506
FXN 3 forward 9:69038315-69038338
CAGAAACTGAGTTCACTTGA
SpCas9





28634
FXN 3 reverse 9:69038366-69038389
GCTTTAGAAGTAGATGCAAG
SpCas9





28642
FXN 3 reverse 9:69038367-69038390
TGCTTTAGAAGTAGATGCAA
SpCas9





28650
FXN 3 reverse 9:69038368-69038391
CTGCTTTAGAAGTAGATGCA
SpCas9





33388
FXN 3 reverse 9:69040573-69040594
CACGCCATTCTCCTGCCT
SpCas9





34442
FXN 3 reverse 9:69041083-69041106
ACAAATTCTATCTCTTAACC
SpCas9





45906
FXN 3 reverse 9:69046038-69046061
AGACCAAAGCAAACCCATCA
SpCas9





46766
FXN 5 forward 9:69036522-69036545
GAAACTGACCCGACCTTTA
As/LbCpf1





46768
FXN 5 forward 9:69036522-69036547
GAAACTGACCCGACCTTTATT
As/LbCpf1





46967
FXN 5 reverse 9:69037058-69037082
TTCAAACACAATGTGGGCCA
As/LbCpf1





47030
FXN 5 forward 9:69037135-69037158
CTGGCAGGACGCGGTGGCT
As/LbCpf1





47032
FXN 5 forward 9:69037135-69037160
CTGGCAGGACGCGGTGGCTCA
As/LbCpf1





47045
FXN 5 reverse 9:69037219-69037241
ACCATGTTGGCCAGGTTA
As/LbCpf1





47047
FXN 5 reverse 9:69037219-69037243
ACCATGTTGGCCAGGTTAGT
As/LbCpf1





49986
FXN 5 forward 9:69035996-69036019
CGCCGCACGCCTGCGCAGGG
SpCas9





50394
FXN 5 forward 9:69036141-69036164
CACTGGCTTCTGCTTTCCGA
SpCas9





50538
FXN 5 forward 9:69036189-69036212
GCGACTGCGGGTCAAGGCAC
SpCas9





50674
FXN 5 forward 9:69036229-69036252
GGTGGAGGGGACCGGTTCCG
SpCas9





50682
FXN 5 forward 9:69036230-69036253
GTGGAGGGGACCGGTTCCGA
SpCas9





50706
FXN 5 forward 9:69036238-69036261
GACCGGTTCCGAGGGGTGTG
SpCas9





50714
FXN 5 reverse 9:69036245-69036268
AGCCGCACACCCCTCGGAAC
SpCas9





50898
FXN 5 forward 9:69036417-69036440
ACACCTAATATTTTCAAGGC
SpCas9





50978
FXN 5 reverse 9:69036467-69036490
TGAAAGTTTCACCTCGTTCC
SpCas9





51058
FXN 5 forward 9:69036490-69036513
GCAGAATAGCTAGAGCAGCA
SpCas9





51162
FXN 5 reverse 9:69036540-69036563
GCAGAATCTGGAATAAAGGT
SpCas9





51322
FXN 5 forward 9:69036592-69036615
CCCCTAACCTCTCTGAGACG
SpCas9





51362
FXN 5 reverse 9:69036604-69036627
AACAAAGCCACGTCTCAGAG
SpCas9





51394
FXN 5 forward 9:69036608-69036631
GACGTGGCTTTGTTTTCTGT
SpCas9





51466
FXN 5 forward 9:69036638-69036661
TAAAGGTGACGCCCATTTTG
SpCas9





51474
FXN 5 forward 9:69036644-69036667
TGACGCCCATTTTGCGGACC
SpCas9





51490
FXN 5 forward 9:69036651-69036674
CATTTTGCGGACCTGGTGTG
SpCas9





51498
FXN 5 reverse 9:69036654-69036677
TCACACCAGGTCCGCAAAAT
SpCas9





51506
FXN 5 reverse 9:69036655-69036678
CTCACACCAGGTCCGCAAAA
SpCas9





51650
FXN 5 reverse 9:69036728-69036751
GTACCCCCCAAAGGAAGAAA
SpCas9





51658
FXN 5 reverse 9:69036729-69036752
TGTACCCCCCAAAGGAAGAA
SpCas9





51682
FXN 5 reverse 9:69036737-69036760
TATTTCTTTGTACCCCCCAA
SpCas9





51706
FXN 5 forward 9:69036753-69036776
TATCTGACCCAGTTACGCCA
SpCas9





51746
FXN 5 forward 9:69036765-69036788
TTACGCCACGGCTTGAAAGG
SpCas9





51754
FXN 5 reverse 9:69036765-69036788
TTTCAAGCCGTGGCGTAACT
SpCas9





51762
FXN 5 reverse 9:69036766-69036789
CTTTCAAGCCGTGGCGTAAC
SpCas9





51810
FXN 5 forward 9:69036787-69036810
GAAACCCAAAGAATGGCTGT
SpCas9





51898
FXN 5 forward 9:69036810-69036833
GATGAGGAAGATTCCTCAAG
SpCas9





51914
FXN 5 forward 9:69036813-69036836
GAGGAAGATTCCTCAAGGGG
SpCas9





51930
FXN 5 reverse 9:69036828-69036851
AATACCATGTCCTCCCCTTG
SpCas9





51954
FXN 5 forward 9:69036831-69036854
GGAGGACATGGTATTTAATG
SpCas9





52066
FXN 5 forward 9:69036874-69036897
GTGGTAGAGGGTGTTTCACG
SpCas9





52082
FXN 5 forward 9:69036877-69036900
GTAGAGGGTGTTTCACGAGG
SpCas9





52090
FXN 5 forward 9:69036878-69036901
TAGAGGGTGTTTCACGAGGA
SpCas9





52098
FXN 5 forward 9:69036888-69036911
TTCACGAGGAGGGAACCGTC
SpCas9





52106
FXN 5 forward 9:69036889-69036912
TCACGAGGAGGGAACCGTCT
SpCas9





52250
FXN 5 forward 9:69036932-69036955
GGGGATCCCTTCAGAGTGGC
SpCas9





52258
FXN 5 reverse 9:69036943-69036966
GGCGTACCAGCCACTCTGAA
SpCas9





52266
FXN 5 reverse 9:69036944-69036967
CGGCGTACCAGCCACTCTGA
SpCas9





52290
FXN 5 forward 9:69036950-69036973
GCTGGTACGCCGCATGTATT
SpCas9





52298
FXN 5 forward 9:69036951-69036974
CTGGTACGCCGCATGTATTA
SpCas9





52306
FXN 5 forward 9:69036952-69036975
TGGTACGCCGCATGTATTAG
SpCas9





52354
FXN 5 reverse 9:69036964-69036987
TTCATCTCCCCTAATACATG
SpCas9





52386
FXN 5 reverse 9:69036996-69037019
ACACAAATATGGCTTGGACG
SpCas9





52418
FXN 5 reverse 9:69037007-69037030
TCCGGAGAGCAACACAAATA
SpCas9





52434
FXN 5 forward 9:69037016-69037039
CTCTCCGGAGTTTGTACTTT
SpCas9





52458
FXN 5 reverse 9:69037025-69037048
CAAGCCTAAAGTACAAACTC
SpCas9





52474
FXN 5 forward 9:69037043-69037066
AACTTCCCACACGTGTTATT
SpCas9





52498
FXN 5 reverse 9:69037053-69037076
GTGGGCCAAATAACACGTGT
SpCas9





52506
FXN 5 reverse 9:69037054-69037077
TGTGGGCCAAATAACACGTG
SpCas9





52522
FXN 5 forward 9:69037070-69037093
CATTGTGTTTGAAGAAACTT
SpCas9





52530
FXN 5 forward 9:69037071-69037094
ATTGTGTTTGAAGAAACTTT
SpCas9





52546
FXN 5 reverse 9:69037072-69037095
AAGTTTCTTCAAACACAATG
SpCas9





52554
FXN 5 forward 9:69037076-69037099
GTTTGAAGAAACTTTGGGAT
SpCas9





52594
FXN 5 forward 9:69037098-69037121
GTTGCCAGTGCTTAAAAGTT
SpCas9





52610
FXN 5 reverse 9:69037107-69037130
AAGTCCTAACTTTTAAGCAC
SpCas9





52618
FXN 5 forward 9:69037111-69037134
AAAAGTTAGGACTTAGAAAA
SpCas9





52634
FXN 5 forward 9:69037120-69037143
GACTTAGAAAATGGATTTCC
SpCas9





52666
FXN 5 forward 9:69037130-69037153
ATGGATTTCCTGGCAGGACG
SpCas9





52898
FXN 5 reverse 9:69037217-69037240
GCCAGGTTAGTCTTGAACTC
SpCas9









SID means SEQ ID NO. In Table 2, the descriptions have the following meaning. The target locus is indicated first, followed by a 5 or 3 to indicate whether the guide directs cleavage 5′ or 3′ of the repeat region (in the orientation of the forward strand) or an 0 to indicate that the guide falls within the repeat region or outside of the segment (e.g., UTR or intron) where the repeats occur, followed by “forward” or “reverse” to indicate the strand to which the sequence corresponds, followed by the genomic coordinates of the sequence (version GRCh38 of the human genome). Thus, for example, for SEQ ID NO: 101, the designation “DMPK 3 forward 19:45769716-45769738” means that the guide directs cleavage 3′ of the repeat region of DMPK and corresponds to the sequence of the forward strand of chromosome 19 positions 45769716-45769738. As/LbCpf1 is sometimes referred to herein as Cpf1. Where a combination of guides is to be used to direct cleavage 5′ and 3′ of a repeat region, one skilled in the art can select a combination of a 5′ guide disclosed herein and a 3′ guide disclosed herein for a given target such as DMPK, FMR1, or FXN.


Provided herein are compositions comprising one or more guide RNAs or one or more nucleic acids encoding one or more guide RNAs. Such compositions may comprise any one or more of the spacer sequences disclosed herein (see, e.g., Table 2 and the Sequence Listing).


The following are guide sequences directed to DMPK: SEQ ID NOs 101-4988. In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence comprising any one of SEQ ID NOs 101-4988. A composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence of any one of SEQ ID NOs 101-4988. The following are guide sequences directed to FMR1: SEQ ID NOs 5001-7264. In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence comprising any one of SEQ ID NOs 5001-7264. In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence of any one of SEQ ID NOs 5001-7264. The following are guide sequences directed to FXN: SEQ ID NOs 7301-53372. In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence comprising any one of SEQ ID NOs 7301-53372. In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence of any one of SEQ ID NOs 7301-53372.


In some embodiments, a composition comprising one or more guide RNAs (gRNAs), or one or more nucleic acids encoding one or more guide RNAs, is provided, wherein the guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the CTG repeat region in the myotonic dystrophy protein kinase gene (DMPK) associated with myotonic dystrophy type 1. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a DMPK guide sequence shown in Table 2 or the Sequence Listing at SEQ ID NOs: 101-4988. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises 17, 18, 19, or 20 contiguous nucleotides of a DMPK guide sequence shown in Table 2 or the Sequence Listing at SEQ ID NOs: 101-4988.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises 17, 18, 19, or 20 contiguous nucleotides of any one of SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, or 1386.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to at least 17, 18, 19, or 20 contiguous nucleotides of a DMPK guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a guide sequence shown in Table 2. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA further comprises a trRNA. In each composition and method embodiment described herein, the crRNA (comprising the spacer sequence) and trRNA may be associated as a single RNA (sgRNA) or may be on separate RNAs (dgRNA). In the context of sgRNAs, the crRNA and trRNA components may be covalently linked, e.g., via a phosphodiester bond or other covalent bond.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, or 1386. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, 3722, 3802, 3858, 3514, 3770, 3370, 3354, 4010, 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, 2322, 1770, 1538, 2514, 2458, 2194, 2594, 2162, and 2618. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, and 3722. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, and 2322. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, and 2506. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3914, 2114, 2618, and 3418. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3916, 3420, and 3940. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 3914 and 3418. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises SEQ ID NO: 3938.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises 17, 18, 19, or 20 contiguous nucleotides of a FXN guide sequence selected from SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, or 1386.


In some embodiments a gRNA is useful for single cut excision of a TNR from the DMPK gene with DNA-PK inhibition. In some embodiments, the DNA-PK inhibitor enhances the single cut excision. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising the sequence of SEQ ID NOs: 3914. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises the sequence of SEQ ID NOs: 3418. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises the sequence of SEQ ID NOs: 3938. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises the sequence of SEQ ID NOs: 3916. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises the sequence of SEQ ID NOs: 3420. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises the sequence of SEQ ID NOs: 3940.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence selected from: SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386; 1706 and 3418; 1706 and 3370; 1706 and 3514; 1706 and 3658; 1706 and 4010; 1706 and 4026; 1706 and 3914; 1706 and 3938; 1706 and 3858; 1706 and 3818; 1706 and 3794; 1706 and 3802; 1706 and 3746; 1706 and 3778; 1706 and 3770; 1706 and 3722; 1706 and 3690; 1706 and 3682; 1706 and 3330; 1706 and 3354; 1706 and 3394; 1706 and 3386; 2210 and 3418; 2210 and 3370; 2210 and 3514; 2210 and 3658; 2210 and 4010; 2210 and 4026; 2210 and 3914; 2210 and 3938; 2210 and 3858; 2210 and 3818; 2210 and 3794; 2210 and 3802; 2210 and 3746; 2210 and 3778; 2210 and 3770; 2210 and 3722; 2210 and 3690; 2210 and 3682; 2210 and 3330; 2210 and 3354; 2210 and 3394; 2210 and 3386; 1778 and 3418; 1778 and 3370; 1778 and 3514; 1778 and 3658; 1778 and 4010; 1778 and 4026; 1778 and 3914; 1778 and 3938; 1778 and 3858; 1778 and 3818; 1778 and 3794; 1778 and 3802; 1778 and 3746; 1778 and 3778; 1778 and 3770; 1778 and 3722; 1778 and 3690; 1778 and 3682; 1778 and 3330; 1778 and 3354; 1778 and 3394; 1778 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 2114 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 1706 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 1746 and 3418; 1746 and 3370; 1746 and 3514; 1746 and 3658; 1746 and 4010; 1746 and 4026; 1746 and 3914; 1746 and 3938; 1746 and 3858; 1746 and 3818; 1746 and 3794; 1746 and 3802; 1746 and 3746; 1746 and 3778; 1746 and 3770; 1746 and 3722; 1746 and 3690; 1746 and 3682; 1746 and 3330; 1746 and 3354; 1746 and 3394; 1746 and 3386; 2322 and 3418; 2322 and 3370; 2322 and 3514; 2322 and 3658; 2322 and 4010; 2322 and 4026; 2322 and 3914; 2322 and 3938; 2322 and 3858; 2322 and 3818; 2322 and 3794; 2322 and 3802; 2322 and 3746; 2322 and 3778; 2322 and 3770; 2322 and 3722; 2322 and 3690; 2322 and 3682; 2322 and 3330; 2322 and 3354; 2322 and 3394; 2322 and 3386; 1770 and 3418; 1770 and 3370; 1770 and 3514; 1770 and 3658; 1770 and 4010; 1770 and 4026; 1770 and 3914; 1770 and 3938; 1770 and 3858; 1770 and 3818; 1770 and 3794; 1770 and 3802; 1770 and 3746; 1770 and 3778; 1770 and 3770; 1770 and 3722; 1770 and 3690; 1770 and 3682; 1770 and 3330; 1770 and 3354; 1770 and 3394; 1770 and 3386; 1538 and 3418; 1538 and 3370; 1538 and 3514; 1538 and 3658; 1538 and 4010; 1538 and 4026; 1538 and 3914; 1538 and 3938; 1538 and 3858; 1538 and 3818; 1538 and 3794; 1538 and 3802; 1538 and 3746; 1538 and 3778; 1538 and 3770; 1538 and 3722; 1538 and 3690; 1538 and 3682; 1538 and 3330; 1538 and 3354; 1538 and 3394; 1538 and 3386; 2514 and 3418; 2514 and 3370; 2514 and 3514; 2514 and 3658; 2514 and 4010; 2514 and 4026; 2514 and 3914; 2514 and 3938; 2514 and 3858; 2514 and 3818; 2514 and 3794; 2514 and 3802; 2514 and 3746; 2514 and 3778; 2514 and 3770; 2514 and 3722; 2514 and 3690; 2514 and 3682; 2514 and 3330; 2514 and 3354; 2514 and 3394; 2514 and 3386; 2458 and 3418; 2458 and 3370; 2458 and 3514; 2458 and 3658; 2458 and 4010; 2458 and 4026; 2458 and 3914; 2458 and 3938; 2458 and 3858; 2458 and 3818; 2458 and 3794; 2458 and 3802; 2458 and 3746; 2458 and 3778; 2458 and 3770; 2458 and 3722; 2458 and 3690; 2458 and 3682; 2458 and 3330; 2458 and 3354; 2458 and 3394; 2458 and 3386; 2194 and 3418; 2194 and 3370; 2194 and 3514; 2194 and 3658; 2194 and 4010; 2194 and 4026; 2194 and 3914; 2194 and 3938; 2194 and 3858; 2194 and 3818; 2194 and 3794; 2194 and 3802; 2194 and 3746; 2194 and 3778; 2194 and 3770; 2194 and 3722; 2194 and 3690; 2194 and 3682; 2194 and 3330; 2194 and 3354; 2194 and 3394; 2194 and 3386; 2594 and 3418; 2594 and 3370; 2594 and 3514; 2594 and 3658; 2594 and 4010; 2594 and 4026; 2594 and 3914; 2594 and 3938; 2594 and 3858; 2594 and 3818; 2594 and 3794; 2594 and 3802; 2594 and 3746; 2594 and 3778; 2594 and 3770; 2594 and 3722; 2594 and 3690; 2594 and 3682; 2594 and 3330; 2594 and 3354; 2594 and 3394; 2594 and 3386; 2618 and 3418; 2618 and 3370; 2618 and 3514; 2618 and 3658; 2618 and 4010; 2618 and 4026; 2618 and 3914; 2618 and 3938; 2618 and 3858; 2618 and 3818; 2618 and 3794; 2618 and 3802; 2618 and 3746; 2618 and 3778; 2618 and 3770; 2618 and 3722; 2618 and 3690; 2618 and 3682; 2618 and 3330; 2618 and 3354; 2618 and 3394; and 2618 and 3386.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; and 2162 and 3658. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2514; 3778 and 2258; 3778 and 2210; 3386 and 2514; 3386 and 2258; 3386 and 2210; 3354 and 2514; 3354 and 2258; and 3354 and 2210. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2258; 3778 and 2210; 3386 and 2258; 3386 and 2210; and 3354 and 2514. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3330 and 2506; and 3330 and 2546. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3354 and 2546; 3354 and 2506; 3378 and 2546; 3378 and 2506. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; and 3330 and 2498. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising SEQ ID NOs: 1153 and 1129.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, and 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, and 4992. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906 and 3746, and a second spacer sequence selected from SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3778 and 1778; 3778 and 1746; 3778 and 1770; 3778 and 1586; 3778 and 1914; 3778 and 2210; 4026 and 1778; 4026 and 1746; 4026 and 1770; 4026 and 1586; 4026 and 1914; 4026 and 2210; 3794 and 1778; 3794 and 1746; 3794 and 1770; 3794 and 1586; 3794 and 1586; 3794 and 1914; 3794 and 2210; 4010 and 1778; 4010 and 1770; 4010 and 1746; 4010 and 1586; 4010 and 1914; 4010 and 2210; 3906 and 1778; 3906 and 1778; 3906 and 1746; 3906 and 1770; 3906 and 1586; 3906 and 1914; 3906 and 2210; 3746 and 1778; 3746 and 1746; 3746 and 1770; 3746 and 1586; 3746 and 1914; and 3746 and 2210. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from first spacer sequence selected from SEQ ID NOs: 3256, 2896, 3136, and 3224, and a second spacer sequence selected from SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence comprising a first and second spacer sequence selected from SEQ ID NOs: 3256 and 4989; 3256 and 984; 3256 and 616; 2896 and 4989; 2896 and 672; 2896 and 760; 3136 and 4989; 3136 and 560; 3224 and 4989; 3224 and 976; and 3224 and 760.


In some embodiments, a composition is provided comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch starts 1 nucleotide from the DMPK-U29 cut site and continues through the repeat.


In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch is SEQ ID NO: 53413:











gtgggtctccgcccagctccagtcctgtgatccgggcccgccccc







tagcggccggggagggaggggccgggtccgcggccggcgaacggg







gctcgaagggtccttgtagccgggaatgctgctgctg.






In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch starts 1 nucleotide from the DMPK-U30 cut site and continues through 1 nucleotide before the DMPK-U56 cut site.


In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch is SEQ ID NO: 53414:











tgggtctccgcccagctccagtcctgtgatccgggcccgccccct







agcggccggggagggaggggccgggtccgcggccggcgaacgggg.






In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch starts 1 nucleotide from the DMPK-U30 cut site and continues through 1 nucleotide before the DMPK-U52 cut site.


In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch is SEQ ID NO: 53415:











tgggtctccgcccagctccagtcctgtgatccgggcccgccccct







agcggccggggagggaggggccgggtccgcggccggc.






In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch starts 1 nucleotide from the DMPK-D15 cut site and continues through 1 nucleotide before the DMPK-D51 cut site.


In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch is SEQ ID NO: 53416:











gatgggcaaactgcaggcctgggaaggcagcaagccgggccgtccg







tgttccatcctccacgcacccccacctatcgttggttcgcaaagtg







caaagctttcttgtgcatgacgccctgctctggggagcgtctggcg







cgatctctgcctgctt.






In some embodiments, the stretch starts 1 nucleotide from the DMPK-D35 cut site and continues through 1 nucleotide before the DMPK-D51 cut site.


In some embodiments, a composition comprising a guide RNA or a nucleic acid encoding a guide RNA is provided, wherein the guide RNA comprises a spacer sequence, wherein the spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a stretch of sequence, wherein the stretch is SEQ ID NO: 53417:











gttggttcgcaaagtgcaaagctttcttgtgcatgacgccctgctc







tggggagcgtctggcgcgatctctgcctgctt.






The U29 cut site is: chr19: between nucleotides 45,770,383 and 45,770,384 (using Hg38 coordinates), which corresponds to * in the following sequence: ttcacaaccgctccgag*cgtggg.


The U30 cut site is: chr19: between 45,770,385 and 45,770,386 (using Hg38 coordinates), which corresponds to * in the following sequence: gctgggcggagacccac*gctcgg.


The D15 cut site is: chr19: between 45,770,154 and 45,770,155 (using Hg38 coordinates), which corresponds to * in the following sequence: ggctgaggccctgacgt*ggatgg.


The D35 cut site is: chr19: between 45,770,078 and 45,770,079 (using Hg38 coordinates), which corresponds to * in the following sequence: cacgcacccccacctat*cgttgg.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the CTG repeat region in the myotonic dystrophy protein kinase gene (FXN) associated with myotonic dystrophy type 1. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising a FXN guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising 17, 18, 19, or 20 contiguous nucleotides of a FXN guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to at least 17, 18, 19, or 20 contiguous nucleotides of a FXN guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA further comprises a trRNA. In each composition and method embodiment described herein, the crRNA and trRNA may be associated as a single RNA (sgRNA) or may be on separate RNAs (dgRNA). In the context of sgRNAs, the crRNA and trRNA components may be covalently linked, e.g., via a phosphodiester bond or other covalent bond.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising a spacer sequence selected from SEQ ID NOs: 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, or 45906.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises 17, 18, 19, or 20 contiguous nucleotides of a FXN guide sequence selected from SEQ ID NOs: 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, or 45906.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 51706, 51058, 51754, 52090, 52594, 52098, 52298, 52106, 51682, 52066, 52354, 52458, 52290, 52498, 51658, 51930, 51162, 52506, 51762, 51746, 52386, 52258, 52530, 52634, 27850, 28634, 26882, 28650, 28370, 28194, 26626, 26634, 26786, 26754, 27770, 26578, 28130, 27738, 28338, 28642, 26602, 27754, 27730, and 28122. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 47047 and 7447; 7463 and 46967; 46768 and 7680; 47032 and 7447. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise SEQ ID NOs: 47047 and 7447. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise SEQ ID NOs: 52898 and 26546.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the CTG repeat region in the myotonic dystrophy protein kinase gene (FMR1) associated with myotonic dystrophy type 1. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising a FMR1 guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising 17, 18, 19, or 20 contiguous nucleotides of a FMR1 guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a crRNA comprising a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to at least 17, 18, 19, or 20 contiguous nucleotides of a FMR1 guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a sequence with about 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a guide sequence shown in Table 2 or the Sequence Listing. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA further comprises a trRNA. In each composition and method embodiment described herein, the crRNA and trRNA may be associated as a single RNA (sgRNA) or may be on separate RNAs (dgRNA). In the context of sgRNAs, the crRNA and trRNA components may be covalently linked, e.g., via a phosphodiester bond or other covalent bond.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising a spacer sequence selected from SEQ ID NOs: 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, and 5334.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising a spacer sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising a spacer sequence selected from SEQ ID NOs: 5262, 5334, and 5830. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising SEQ ID NO: 5262. In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises a spacer sequence comprising a spacer sequence selected from SEQ ID NOs: 5264.


In some embodiments, a composition is provided comprising a gRNA, or nucleic acid encoding a gRNA, wherein the gRNA comprises 17, 18, 19, or 20 contiguous nucleotides of a FMR1 guide sequence selected from SEQ ID NOs: 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, or 5334.


In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 5782 and 5262; 5830 and 5262; 5926 and 5262; 5950 and 5262; and 5998 and 5262. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise a first and second spacer sequence selected from SEQ ID NOs: 5830 and 5262; and 6022 and 5310. In some embodiments, a pair of guide RNAs or one or more nucleic acids encoding a pair of guide RNAs is provided as one or more compositions, wherein the pair of guide RNAs comprise SEQ ID NOs: 5334 and 5830.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in the huntingtin (HTT) gene associated with Huntington's disease.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in or adjacent to the Fragile X Mental Retardation 2 (FMR2) gene associated with Fragile XE syndrome.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in the androgen receptor (AR) gene associated with X-linked spinal and bulbar muscular atrophy (Kennedy disease).


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in the aristaless related homeobox (ARX) gene associated with ARX-associated infantile epileptic encephalopathy, Early infantile epileptic encephalopathy 1, Ohtahara syndrome, Partington syndrome, or West syndrome.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in the Ataxin 1 (ATXN1), Ataxin 2 (ATXN2), Ataxin 3 (ATXN3), Calcium voltage-gated channel subunit alpha 1 A (CACNA1A), Ataxin 7 (ATXN7), ATXN8 opposite strand lncRNA (ATXN80S/SCA8), Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform (PPP2R2B), or TATA binding protein (TBP) gene associated with a form of spinocerebellar ataxia.


In some embodiments, a composition is provided comprising one or more guide RNAs (gRNA) or one or more nucleic acids encoding one or more guide RNAs, wherein the one or more guide RNAs comprise guide sequences that direct an RNA-targeted endonuclease (e.g., a Cas nuclease such as Cas9), to a target DNA sequence in or near the repeat region in the Atrophin-1 (ATN1) gene associated with Dentatorubropallidoluysian atrophy (DRPLA).


In each of the composition, use, and method embodiments described herein, the guide RNA may comprise two RNA molecules as a “dual guide RNA” or “dgRNA.” The dgRNA comprises a first RNA molecule comprising a crRNA comprising, e.g., a guide sequence shown in Table 2 and the Sequence Listing, and a second RNA molecule comprising a trRNA. The first and second RNA molecules may not be covalently linked, but may form an RNA duplex via the base pairing between portions of the crRNA and the trRNA.


In each of the composition, use, and method embodiments described herein, the guide RNA may comprise a single RNA molecule as a “single guide RNA” or “sgRNA”. The sgRNA may comprise a crRNA (or a portion thereof) comprising a guide sequence shown in Table 2 covalently linked to a trRNA. The sgRNA may comprise 17, 18, 19, or 20 contiguous nucleotides of a guide sequence shown in Table 2 and the Sequence Listing. In some embodiments, the crRNA and the trRNA are covalently linked via a linker. In some embodiments, the sgRNA forms a stem-loop structure via the base pairing between portions of the crRNA and the trRNA. In some embodiments, the crRNA and the trRNA are covalently linked via one or more bonds that are not a phosphodiester bond.


In some embodiments, the trRNA may comprise all or a portion of a trRNA sequence derived from a naturally-occurring CRISPR/Cas system. In some embodiments, the trRNA comprises a truncated or modified wild type trRNA. The length of the trRNA depends on the CRISPR/Cas system used. In some embodiments, the trRNA comprises or consists of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or more than 100 nucleotides. In some embodiments, the trRNA may comprise certain secondary structures, such as, for example, one or more hairpin or stem-loop structures, or one or more bulge structures.


In some embodiments, a composition is provided comprising one or more guide RNAs (or one or more nucleic acids encoding one or more guide RNAs) wherein the one or more gRNAs comprise a guide sequence of any one of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372.


In one aspect, a composition is provided comprising a gRNA or a vector encoding a gRNA that comprises a guide sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the nucleic acids of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372.


In other embodiments, the composition comprises at least one, e.g., at least two gRNAs, or one or more nucleic acids encoding at least one, e.g., at least two gRNAs, wherein the gRNAs comprise guide sequences selected from any two or more of the guide sequences of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372. In some embodiments, the composition comprises at least two gRNAs that each comprise a guide sequence at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the nucleic acids of SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372.


In some embodiments, a composition is provided comprising a nucleic acid encoding a guide RNA, wherein the nucleic acid encoding the guide RNA is a vector. In some embodiments, a composition is provided comprising one or more nucleic acids encoding one or more guide RNAs, wherein the one or more nucleic acids encoding one or more guide RNAs is one or more vectors.


Any type of vector, such as any of those described herein, may be used. In some embodiments, the composition comprises one or more nucleic acids encoding one or more gRNAs described herein. In some embodiments, the vector is a viral vector. In some embodiments, the viral vector is a non-integrating viral vector (i.e., that does not insert sequence from the vector into a host chromosome). In some embodiments, the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector. In some embodiments, the vector comprises a muscle-specific promoter. Exemplary muscle-specific promoters include a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, or an SPc5-12 promoter. See US 2004/0175727 A1; Wang et al., Expert Opin Drug Deliv. (2014) 11, 345-364; Wang et al., Gene Therapy (2008) 15, 1489-1499. In some embodiments, the muscle-specific promoter is a CK8 promoter. In some embodiments, the muscle-specific promoter is a CK8e promoter. In any of the foregoing embodiments, the vector may be an adeno-associated virus vector.


The guide RNA compositions disclosed herein are designed to recognize (e.g., hybridize to) a target sequence in or near a trinucleotide repeat or self-complementary region, such as a trinucleotide repeat or self-complementary region in the DIVIPK gene. For example, the target sequence may be recognized and cleaved by a provided Cas cleavase comprising a guide RNA. In some embodiments, an RNA-targeted endonuclease, such as a Cas cleavase, may be directed by a guide RNA to the target sequence, where the guide sequence of the guide RNA hybridizes with the target sequence and the RNA-targeted endonuclease, such as a Cas cleavase, cleaves the target sequence.


In some embodiments, the selection of the one or more guide RNAs is determined based on target sequences within a gene of interest, such as any gene associated with a trinucleotide repeat expansion disease. Exemplary genes of interest are listed in Table 1.


Without being bound by any particular theory, mutations (e.g., excision resulting from repair of a nuclease-mediated DSB) may be provided more efficiently and/or better tolerated when cleavage occurs in certain regions of the gene, thus the location of a DSB is an important factor in the post-excision allele that may result.


In some embodiments, the guide sequence is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a target sequence present in the human gene of interest. In some embodiments, the target sequence may be complementary to the guide sequence of the guide RNA. In some embodiments, the degree of complementarity or identity between a guide sequence of a guide RNA and its corresponding target sequence may be at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the target sequence and the guide sequence of the gRNA may be 100% complementary or identical. In other embodiments, the target sequence and the guide sequence of the gRNA may contain at least one mismatch. For example, the target sequence and the guide sequence of the gRNA may contain 1, 2, 3, or 4 mismatches, where the total length of the guide sequence is 20. In some embodiments, the target sequence and the guide sequence of the gRNA may contain 1-4 mismatches where the guide sequence is 20 nucleotides.


In some embodiments, a composition or formulation disclosed herein comprises an mRNA comprising an open reading frame (ORF) encoding an RNA-targeted endonuclease, such as a Cas nuclease as described herein. In some embodiments, an mRNA comprising an ORF encoding an RNA-targeted endonuclease, such as a Cas nuclease, is provided, used, or administered.


Modified gRNAs


In some embodiments, the gRNA is chemically modified. A gRNA comprising one or more modified nucleosides or nucleotides is called a “modified” gRNA or “chemically modified” gRNA, to describe the presence of one or more non-naturally and/or naturally occurring components or configurations that are used instead of or in addition to the canonical A, G, C, and U residues. In some embodiments, a modified gRNA is synthesized with a non-canonical nucleoside or nucleotide, is here called “modified.” Modified nucleosides and nucleotides can include one or more of: (i) alteration, e.g., replacement, of one or both of the non-linking phosphate oxygens and/or of one or more of the linking phosphate oxygens in the phosphodiester backbone linkage (an exemplary backbone modification); (ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar (an exemplary sugar modification); (iii) wholesale replacement of the phosphate moiety with “dephospho” linkers (an exemplary backbone modification); (iv) modification or replacement of a naturally occurring nucleobase, including with a non-canonical nucleobase (an exemplary base modification); (v) replacement or modification of the ribose-phosphate backbone (an exemplary backbone modification); (vi) modification of the 3′ end or 5′ end of the oligonucleotide, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety, cap or linker (such 3′ or 5′ cap modifications may comprise a sugar and/or backbone modification); and (vii) modification or replacement of the sugar (an exemplary sugar modification).


Chemical modifications such as those listed above can be combined to provide modified gRNAs comprising nucleosides and nucleotides (collectively “residues”) that can have two, three, four, or more modifications. For example, a modified residue can have a modified sugar and a modified nucleobase, or a modified sugar and a modified phosphodiester. In some embodiments, every base of a gRNA is modified, e.g., all bases have a modified phosphate group, such as a phosphorothioate group. In certain embodiments, all, or substantially all, of the phosphate groups of an gRNA molecule are replaced with phosphorothioate groups. In some embodiments, modified gRNAs comprise at least one modified residue at or near the 5′ end of the RNA. In some embodiments, modified gRNAs comprise at least one modified residue at or near the 3′ end of the RNA.


In some embodiments, the gRNA comprises one, two, three or more modified residues. In some embodiments, at least 5% (e.g., at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100%) of the positions in a modified gRNA are modified nucleosides or nucleotides.


Unmodified nucleic acids can be prone to degradation by, e.g., intracellular nucleases or those found in serum. For example, nucleases can hydrolyze nucleic acid phosphodiester bonds. Accordingly, in one aspect the gRNAs described herein can contain one or more modified nucleosides or nucleotides, e.g., to introduce stability toward intracellular or serum-based nucleases. In some embodiments, the modified gRNA molecules described herein can exhibit a reduced innate immune response when introduced into a population of cells, both in vivo and ex vivo. The term “innate immune response” includes a cellular response to exogenous nucleic acids, including single stranded nucleic acids, which involves the induction of cytokine expression and release, particularly the interferons, and cell death.


In some embodiments of a backbone modification, the phosphate group of a modified residue can be modified by replacing one or more of the oxygens with a different substituent. Further, the modified residue, e.g., modified residue present in a modified nucleic acid, can include the wholesale replacement of an unmodified phosphate moiety with a modified phosphate group as described herein. In some embodiments, the backbone modification of the phosphate backbone can include alterations that result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.


Examples of modified phosphate groups include, phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. The phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non-bridging oxygens with one of the above atoms or groups of atoms can render the phosphorous atom chiral. The stereogenic phosphorous atom can possess either the “R” configuration (herein Rp) or the “S” configuration (herein Sp). The backbone can also be modified by replacement of a bridging oxygen, (i.e., the oxygen that links the phosphate to the nucleoside), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at either linking oxygen or at both of the linking oxygens.


The phosphate group can be replaced by non-phosphorus containing connectors in certain backbone modifications. In some embodiments, the charged phosphate group can be replaced by a neutral moiety. Examples of moieties which can replace the phosphate group can include, without limitation, e.g., methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.


Scaffolds that can mimic nucleic acids can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. Such modifications may comprise backbone and sugar modifications. In some embodiments, the nucleobases can be tethered by a surrogate backbone. Examples can include, without limitation, the morpholino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates.


The modified nucleosides and modified nucleotides can include one or more modifications to the sugar group, i.e. at sugar modification. For example, the 2′ hydroxyl group (OH) can be modified, e.g. replaced with a number of different “oxy” or “deoxy” substituents. In some embodiments, modifications to the 2′ hydroxyl group can enhance the stability of the nucleic acid since the hydroxyl can no longer be deprotonated to form a 2′-alkoxide ion.


Examples of 2′ hydroxyl group modifications can include alkoxy or aryloxy (OR, wherein “R” can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or a sugar); polyethyleneglycols (PEG), O(CH2CH2O).CH2CH2OR wherein R can be, e.g., H or optionally substituted alkyl, and n can be an integer from 0 to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from 0 to 16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from 1 to 20, from 2 to 4, from 2 to 8, from 2 to 10, from 2 to 16, from 2 to 20, from 4 to 8, from 4 to 10, from 4 to 16, and from 4 to 20). In some embodiments, the 2′ hydroxyl group modification can be 2′-O—Me. In some embodiments, the 2′ hydroxyl group modification can be a 2′-fluoro modification, which replaces the 2′ hydroxyl group with a fluoride. In some embodiments, the 2′ hydroxyl group modification can include “locked” nucleic acids (LNA) in which the 2′ hydroxyl can be connected, e.g., by a C1-6 alkylene or C1-6 heteroalkylene bridge, to the 4′ carbon of the same ribose sugar, where exemplary bridges can include methylene, propylene, ether, or amino bridges; 0-amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino) and aminoalkoxy, 0(CH2).-amino, (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino) In some embodiments, the 2′ hydroxyl group modification can include “unlocked” nucleic acids (UNA) in which the ribose ring lacks the C2′-C3′ bond. In some embodiments, the 2′ hydroxyl group modification can include the methoxyethyl group (MOE), (OCH2CH2OCH3, e.g., a PEG derivative).


“Deoxy” 2′ modifications can include hydrogen (i.e. deoxyribose sugars, e.g., at the overhang portions of partially dsRNA); halo (e.g., bromo, chloro, fluoro, or iodo); amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, diheteroarylamino, or amino acid); NH(CH2CH2NH).CH2CH2-amino (wherein amino can be, e.g., as described herein), —NHC(O)R (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino as described herein.


The sugar modification can comprise a sugar group which may also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified nucleic acid can include nucleotides containing e.g., arabinose, as the sugar. The modified nucleic acids can also include abasic sugars. These abasic sugars can also be further modified at one or more of the constituent sugar atoms. The modified nucleic acids can also include one or more sugars that are in the L form, e.g. L- nucleosides.


The modified nucleosides and modified nucleotides described herein, which can be incorporated into a modified nucleic acid, can include a modified base, also called a nucleobase. Examples of nucleobases include, but are not limited to, adenine (A), guanine (G), cytosine (C), and uracil (U). These nucleobases can be modified or wholly replaced to provide modified residues that can be incorporated into modified nucleic acids. The nucleobase of the nucleotide can be independently selected from a purine, a pyrimidine, a purine analog, or pyrimidine analog. In some embodiments, the nucleobase can include, for example, naturally-occurring and synthetic derivatives of a base.


In embodiments employing a dual guide RNA, each of the crRNA and the tracr RNA can contain modifications. Such modifications may be at one or both ends of the crRNA and/or tracr RNA. In embodiments comprising an sgRNA, one or more residues at one or both ends of the sgRNA may be chemically modified, and/or internal nucleosides may be modified, and/or the entire sgRNA may be chemically modified. Certain embodiments comprise a 5′ end modification. Certain embodiments comprise a 3′ end modification.


Modifications of 2′-O-methyl are encompassed.


Another chemical modification that has been shown to influence nucleotide sugar rings is halogen substitution. For example, 2′-fluoro (2′-F) substitution on nucleotide sugar rings can increase oligonucleotide binding affinity and nuclease stability. Modifications of 2′-fluoro (2′-F) are encompassed.


Phosphorothioate (PS) linkage or bond refers to a bond where a sulfur is substituted for one nonbridging phosphate oxygen in a phosphodiester linkage, for example in the bonds between nucleotides bases. When phosphorothioates are used to generate oligonucleotides, the modified oligonucleotides may also be referred to as S-oligos.


Abasic nucleotides refer to those which lack nitrogenous bases.


Inverted bases refer to those with linkages that are inverted from the normal 5′ to 3′ linkage (i.e., either a 5′ to 5′ linkage or a 3′ to 3′ linkage).


An abasic nucleotide can be attached with an inverted linkage. For example, an abasic nucleotide may be attached to the terminal 5′ nucleotide via a 5′ to 5′ linkage, or an abasic nucleotide may be attached to the terminal 3′ nucleotide via a 3′ to 3′ linkage. An inverted abasic nucleotide at either the terminal 5′ or 3′ nucleotide may also be called an inverted abasic end cap.


In some embodiments, one or more of the first three, four, or five nucleotides at the 5′ terminus, and one or more of the last three, four, or five nucleotides at the 3′ terminus are modified. In some embodiments, the modification is a 2′-O—Me, 2′-F, inverted abasic nucleotide, PS bond, or other nucleotide modification well known in the art to increase stability and/or performance.


In some embodiments, the first four nucleotides at the 5′ terminus, and the last four nucleotides at the 3′ terminus are linked with phosphorothioate (PS) bonds.


In some embodiments, the first three nucleotides at the 5′ terminus, and the last three nucleotides at the 3′ terminus comprise a 2′-O-methyl (2′-O—Me) modified nucleotide. In some embodiments, the first three nucleotides at the 5′ terminus, and the last three nucleotides at the 3′ terminus comprise a 2′-fluoro (2′-F) modified nucleotide.


Ribonucleoprotein Complex

In some embodiments, a composition is encompassed comprising one or more gRNAs comprising one or more guide sequences from Table 2 or the Sequence Listing and an RNA-targeted endonuclease, e.g., a nuclease, such as a Cas nuclease, such as Cas9. In some embodiments, the RNA-targeted endonuclease has cleavase activity, which can also be referred to as double-strand endonuclease activity. In some embodiments, the RNA-targeted endonuclease comprises a Cas nuclease. Examples of Cas9 nucleases include those of the type II CRISPR systems of S. pyogenes, S. aureus, and other prokaryotes (see, e.g., the list in the next paragraph), and modified (e.g., engineered or mutant) versions thereof. See, e.g., US2016/0312198 A1; US 2016/0312199 A1. Other examples of Cas nucleases include a Csm or Cmr complex of a type III CRISPR system or the Cas10, Csm 1, or Cmr2 subunit thereof; and a Cascade complex of a type I CRISPR system, or the Cas3 subunit thereof. In some embodiments, the Cas nuclease may be from a Type-IIA, Type-IIB, or Type-IIC system. For discussion of various CRISPR systems and Cas nucleases see, e.g., Makarova et al., NAT. REV. MICROBIOL. 9:467-477 (2011); Makarova et al., NAT. REV. MICROBIOL, 13: 722-36 (2015); Shmakov et al., MOLECULAR CELL, 60:385-397 (2015).


Non-limiting exemplary species that the Cas nuclease can be derived from include Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., Staphylococcus aureus, Listeria innocua, Lactobacillus gasseri, Francisella novicida, Wolinella succinogenes, Sutterella wadsworthensis, Gammaproteobacterium, Neisseria meningitidis, Campylobacter jejuni, Pasteurella multocida, Fibrobacter succinogene, Rhodospirillum rubrum, Nocardiopsis dassonvillei, Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptosporangium roseum, Alicyclobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenitireducens, Exiguobacterium sibiricum, Lactobacillus delbrueckii, Lactobacillus salivarius, Lactobacillus buchneri, Treponema denficola, Microscilla marina, Burkholderiales bacterium, Polaromonas naphthalenivorans, Polaromonas sp., Crocosphaera watsonii, Cyanothece sp., Microcystis aeruginosa, Synechococcus sp., Acetohalobium arabaficum, Ammonifex degensii, Caldicelulosiruptor becscii, Candidatus Desulforudis, Clostridium botulinum, Clostridium difficile, Finegoldia magna, Natranaerobius thermophilus, Pelotomaculum thermopropionicum, Acidithiobacillus caldus, Acidithiobacillus ferrooxidans, Allochromatium vinosum, Marinobacter sp., Nitrosococcus halophilus, Nitrosococcus watsoni, Pseudoalteromonas haloplanktis, Ktedonobacter racemifer, Methanohalobium evestigatum, Anabaena variabilis, Nodularia spumigena, Nostoc sp., Arthrospira maxima, Arthrospira platensis, Arthrospira sp., Lyngbya sp., Microcoleus chthonoplastes, Oscillatoria sp., Petrotoga mobilis, Thermosipho africanus, Streptococcus pasteurianus, Neisseria cinerea, Campylobacter lari, Parvibaculum lavamentivorans, Corynebacterium diphtheria, Acidaminococcus sp., Lachnospiraceae bacterium ND2006, and Acaryochloris marina.


In some embodiments, the Cas nuclease is the Cas9 nuclease from Streptococcus pyogenes. In some embodiments, the Cas nuclease is the Cas9 nuclease from Streptococcus thermophilus. In some embodiments, the Cas nuclease is the Cas9 nuclease from Neisseria meningitidis. In some embodiments, the Cas nuclease is the Cas9 nuclease is from Staphylococcus aureus. In some embodiments, the Cas nuclease is the Cpf1 nuclease from Francisella novicida. In some embodiments, the Cas nuclease is the Cpf1 nuclease from Acidaminococcus sp. In some embodiments, the Cas nuclease is the Cpf1 nuclease from Lachnospiraceae bacterium ND2006. In further embodiments, the Cas nuclease is the Cpf1 nuclease from Francisella tularensis, Lachnospiraceae bacterium, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium, Parcubacteria bacterium, Smithella, Acidaminococcus, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi, Leptospira inadai, Porphyromonas crevioricanis, Prevotella disiens, or Porphyromonas macacae. In certain embodiments, the Cas nuclease is a Cpf1 nuclease from an Acidaminococcus or Lachnospiraceae.


In some embodiments, the gRNA together with an RNA-targeted endonuclease is called a ribonucleoprotein complex (RNP). In some embodiments, the RNA-targeted endonuclease is a Cas nuclease. In some embodiments, the gRNA together with a Cas nuclease is called a Cas RNP. In some embodiments, the RNP comprises Type-I, Type-II, Type-III, Type-IV, or Type-V components. In some embodiments, the Cas nuclease may be from a Type-V system, such as Cas12, or Cas12a (previously known as Cpf1). In some embodiments, the Cas nuclease is the Cas9 protein from the Type-II CRISPR/Cas system. In some embodiment, the gRNA together with Cas9 is called a Cas9 RNP.


Wild type Cas9 has two nuclease domains: RuvC and HNH. The RuvC domain cleaves the non-target DNA strand, and the HNH domain cleaves the target strand of DNA. In some embodiments, the Cas9 protein comprises more than one RuvC domain and/or more than one HNH domain. In some embodiments, the Cas9 protein is a wild type Cas9. In each of the composition, use, and method embodiments, the Cas induces a double strand break in target DNA.


In some embodiments, chimeric Cas nucleases are used, where one domain or region of the protein is replaced by a portion of a different protein. In some embodiments, a Cas nuclease domain may be replaced with a domain from a different nuclease such as Fok 1. In some embodiments, a Cas nuclease may be a modified nuclease.


In other embodiments, the Cas nuclease may be from a Type-I CRISPR/Cas system. In some embodiments, the Cas nuclease may be a component of the Cascade complex of a Type-I CRISPR/Cas system. In some embodiments, the Cas nuclease may be a Cas3 protein. In some embodiments, the Cas nuclease may be from a Type-III CRISPR/Cas system. In some embodiments, the Cas nuclease may have an RNA cleavage activity.


In some embodiments, the RNA-targeted endonuclease has single-strand nickase activity, i.e., can cut one DNA strand to produce a single-strand break, also known as a “nick.” In some embodiments, the RNA-targeted endonuclease comprises a Cas nickase. A nickase is an enzyme that creates a nick in dsDNA, i.e., cuts one strand but not the other of the DNA double helix. In some embodiments, a Cas nickase is a version of a Cas nuclease (e.g., a Cas nuclease discussed above) in which an endonucleolytic active site is inactivated, e.g., by one or more alterations (e.g., point mutations) in a catalytic domain. See, e.g., U.S. Pat. No. 8,889,356 for discussion of Cas nickases and exemplary catalytic domain alterations. In some embodiments, a Cas nickase such as a Cas9 nickase has an inactivated RuvC or HNH domain.


In some embodiments, the RNA-targeted endonuclease is modified to contain only one functional nuclease domain. For example, the agent protein may be modified such that one of the nuclease domains is mutated or fully or partially deleted to reduce its nucleic acid cleavage activity. In some embodiments, a nickase is used having a RuvC domain with reduced activity. In some embodiments, a nickase is used having an inactive RuvC domain. In some embodiments, a nickase is used having an HNH domain with reduced activity. In some embodiments, a nickase is used having an inactive HNH domain.


In some embodiments, a conserved amino acid within a Cas protein nuclease domain is substituted to reduce or alter nuclease activity. In some embodiments, a Cas nuclease may comprise an amino acid substitution in the RuvC or RuvC-like nuclease domain. Exemplary amino acid substitutions in the RuvC or RuvC-like nuclease domain include DlOA (based on the S. pyogenes Cas9 protein). See, e.g., Zetsche et al. (2015) Cell Oct 22:163(3): 759-771. In some embodiments, the Cas nuclease may comprise an amino acid substitution in the HNH or HNH-like nuclease domain. Exemplary amino acid substitutions in the HNH or HNH-like nuclease domain include E762A, H840A, N863A, H983A, and D986A (based on the S. pyogenes Cas9 protein). See, e.g., Zetsche et al. (2015). Further exemplary amino acid substitutions include D917A, E1006A, and D1255A (based on the Francisella novicida U112 Cpf1 (FnCpf1) sequence (UniProtKB-A0Q7Q2 (CPFl_FRATN)).


In some embodiments, an mRNA encoding a nickase is provided in combination with a pair of guide RNAs that are complementary to the sense and antisense strands of the target sequence, respectively. In this embodiment, the guide RNAs direct the nickase to a target sequence and introduce a DSB by generating a nick on opposite strands of the target sequence (i.e., double nicking). In some embodiments, use of double nicking may improve specificity and reduce off-target effects. In some embodiments, a nickase is used together with two separate guide RNAs targeting opposite strands of DNA to produce a double nick in the target DNA. In some embodiments, a nickase is used together with two separate guide RNAs that are selected to be in close proximity to produce a double nick in the target DNA.


In some embodiments, the RNA-targeted endonuclease lacks cleavase and nickase activity. In some embodiments, the RNA-targeted endonuclease comprises a dCas DNA-binding polypeptide. A dCas polypeptide has DNA-binding activity while essentially lacking catalytic (cleavase/nickase) activity. In some embodiments, the dCas polypeptide is a dCas9 polypeptide. In some embodiments, the RNA-targeted endonuclease lacking cleavase and nickase activity or the dCas DNA-binding polypeptide is a version of a Cas nuclease (e.g., a Cas nuclease discussed above) in which its endonucleolytic active sites are inactivated, e.g., by one or more alterations (e.g., point mutations) in its catalytic domains. See, e.g., US 2014/0186958 A1; US 2015/0166980 A1.


In some embodiments, the RNA-targeted endonuclease comprises one or more heterologous functional domains (e.g., is or comprises a fusion polypeptide).


In some embodiments, the heterologous functional domain may facilitate transport of the RNA-targeted endonuclease into the nucleus of a cell. For example, the heterologous functional domain may be a nuclear localization signal (NLS). In some embodiments, the RNA-targeted endonuclease may be fused with 1-10 NLS(s). In some embodiments, the RNA-targeted endonuclease may be fused with 1-5 NLS(s). In some embodiments, the RNA-targeted endonuclease may be fused with one NLS. Where one NLS is used, the NLS may be linked at the N-terminus or the C-terminus of the RNA-targeted endonuclease sequence. It may also be inserted within the RNA-targeted endonuclease sequence. In other embodiments, the RNA-targeted endonuclease may be fused with more than one NLS. In some embodiments, the RNA-targeted endonuclease may be fused with 2, 3, 4, or 5 NLSs. In some embodiments, the RNA-targeted endonuclease may be fused with two NLSs. In certain circumstances, the two NLSs may be the same (e.g., two SV40 NLSs) or different. In some embodiments, the RNA-targeted endonuclease is fused to two SV40 NLS sequences linked at the carboxy terminus. In some embodiments, the RNA-targeted endonuclease may be fused with two NLSs, one linked at the N-terminus and one at the C-terminus. In some embodiments, the RNA-targeted endonuclease may be fused with 3 NLSs. In some embodiments, the RNA-targeted endonuclease may be fused with no NLS.


In some embodiments, the heterologous functional domain may be capable of modifying the intracellular half-life of the RNA-targeted endonuclease. In some embodiments, the half-life of the RNA-targeted endonuclease may be increased. In some embodiments, the half-life of the RNA-targeted endonuclease may be reduced. In some embodiments, the heterologous functional domain may be capable of increasing the stability of the RNA-targeted endonuclease. In some embodiments, the heterologous functional domain may be capable of reducing the stability of the RNA-targeted endonuclease. In some embodiments, the heterologous functional domain may act as a signal peptide for protein degradation. In some embodiments, the protein degradation may be mediated by proteolytic enzymes, such as, for example, proteasomes, lysosomal proteases, or calpain proteases. In some embodiments, the heterologous functional domain may comprise a PEST sequence. In some embodiments, the RNA-targeted endonuclease may be modified by addition of ubiquitin or a polyubiquitin chain In some embodiments, the ubiquitin may be a ubiquitin-like protein (UBL). Non-limiting examples of ubiquitin-like proteins include small ubiquitin-like modifier (SUMO), ubiquitin cross-reactive protein (UCRP, also known as interferon-stimulated gene-15 (ISG15)), ubiquitin-related modifier-1 (URM1), neuronal-precursor-cell-expressed developmentally downregulated protein-8 (NEDD8, also called Rubl in S. cerevisiae), human leukocyte antigen F-associated (FAT10), autophagy-8 (ATG8) and -12 (ATG12), Fau ubiquitin-like protein (FUB1), membrane-anchored UBL (MUB), ubiquitin fold-modifier-1 (UFM1), and ubiquitin-like protein-5 (UBLS).


In some embodiments, the heterologous functional domain may be a marker domain. Non-limiting examples of marker domains include fluorescent proteins, purification tags, epitope tags, and reporter gene sequences. In some embodiments, the marker domain may be a fluorescent protein. Non-limiting examples of suitable fluorescent proteins include green fluorescent proteins (e.g., GFP, GFP-2, tagGFP, turboGFP, sfGFP, EGFP, Emerald, Azami Green, Monomeric Azami Green, CopGFP, AceGFP, ZsGreen1), yellow fluorescent proteins (e.g., YFP, EYFP, Citrine, Venus, YPet, PhiYFP, ZsYellow 1), blue fluorescent proteins (e.g., EBFP, EBFP2, Azurite, mKalamal, GFPuv, Sapphire, T-sapphire,), cyan fluorescent proteins (e.g., ECFP, Cerulean, CyPet, AmCyanl, Midoriishi-Cyan), red fluorescent proteins (e.g., mKate, mKate2, mPlum, DsRed monomer, mCherry, mRFP1, DsRed-Express, DsRed2, DsRed-Monomer, HcRed-Tandem, HcRedl, AsRed2, eqFP611, mRasberry, mStrawberry, Jred), and orange fluorescent proteins (mOrange, mKO, Kusabira-Orange, Monomeric Kusabira-Orange, mTangerine, tdTomato) or any other suitable fluorescent protein. In other embodiments, the marker domain may be a purification tag and/or an epitope tag. Non-limiting exemplary tags include glutathione-S-transferase (GST), chitin binding protein (CBP), maltose binding protein (MBP), thioredoxin (TRX), poly(NANP), tandem affinity purification (TAP) tag, myc, AcV5, AU1, AUS, E, ECS, E2, FLAG, HA, nus, Softag 1, Softag 3, Strep, SBP, Glu-Glu, HSV, KT3, S, 51, T7, V5, VSV-G, 6xHis, 8xHis, biotin carboxyl carrier protein (BCCP), poly-His, and calmodulin. Non-limiting exemplary reporter genes include glutathione-S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT), beta-galactosidase, beta-glucuronidase, luciferase, or fluorescent proteins.


In additional embodiments, the heterologous functional domain may target the RNA-targeted endonuclease to a specific organelle, cell type, tissue, or organ. In some embodiments, the heterologous functional domain may target the RNA-targeted endonuclease to muscle.


In further embodiments, the heterologous functional domain may be an effector domain. When the RNA-targeted endonuclease is directed to its target sequence, e.g., when a Cas nuclease is directed to a target sequence by a gRNA, the effector domain may modify or affect the target sequence. In some embodiments, the effector domain may be chosen from a nucleic acid binding domain or a nuclease domain (e.g., a non-Cas nuclease domain) In some embodiments, the heterologous functional domain is a nuclease, such as a FokI nuclease. See, e.g., U.S. Pat. No. 9,023,649.


Determination of Efficacy of gRNAs


In some embodiments, the efficacy of a gRNA is determined when delivered or expressed together with other components forming an RNP. In some embodiments, the gRNA is expressed together with an RNA-targeted endonuclease, such as a Cas protein, e.g., Cas9. In some embodiments, the gRNA is delivered to or expressed in a cell line that already stably expresses an RNA-guided DNA nuclease, such as a Cas nuclease or nickase, e.g., Cas9 nuclease or nickase. In some embodiments the gRNA is delivered to a cell as part of a RNP. In some embodiments, the gRNA is delivered to a cell along with a mRNA encoding an RNA-guided DNA nuclease, such as a Cas nuclease or nickase, e.g., Cas9 nuclease or nickase.


As described herein, use of an RNA-guided DNA nuclease and one or more guide RNAs disclosed herein can lead to double-stranded breaks in the DNA which can produce excision of a trinucleotide repeat or self-complementary region upon repair by cellular machinery, e.g., in the presence of a DNA-PK inhibitor.


In some embodiments, the efficacy of particular gRNAs is determined based on in vitro models. In some embodiments, the in vitro model is a cell line containing a target trinucleotide repeat or self-complementary region, such as any such cell line described in the Example section below.


In some embodiments, the efficacy of particular gRNAs is determined across multiple in vitro cell models for a gRNA selection process. In some embodiments, a cell line comparison of data with selected gRNAs is performed. In some embodiments, cross screening in multiple cell models is performed.


In some embodiments, the efficacy of particular gRNAs is determined based on in vivo models. In some embodiments, the in vivo model is a rodent model. In some embodiments, the rodent model is a mouse which expresses a gene comprising an expanded trinucleotide repeat or a self-complementary region. The gene may be the human version or a rodent (e.g., murine) homolog of any of the genes listed in Table 1. In some embodiments, the gene is human DMPK. In some embodiments, the gene is a rodent (e.g., murine) homolog of DMPK In some embodiments, the in vivo model is a non-human primate, for example cynomolgus monkey.


In some embodiments, the efficacy of a guide RNA is measured by an amount of excision of a trinucleotide repeat of interest. The amount of excision may be determined by any appropriate method, e.g., quantitative sequencing; quantitative PCR; quantitative analysis of a Southern blot; etc.


Additional embodiments are provided:


Embodiment 1A is a method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor.

    • Embodiment 2A is a method of excising a self-complementary region in DNA comprising delivering to a cell that comprises the self-complementary region i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the self-complementary region, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein the self-complementary region is excised.
    • Embodiment 3A is a method of excising a trinucleotide repeat (TNR) in DNA comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised.
    • Embodiment 4A The method of embodiment 2A, wherein the self-complementary region comprises a palindromic sequence, a direct repeat, an inverted repeat, a GC-rich sequence, or an AT-rich sequence, optionally wherein the GC-richness or AT-richness is at least 70%, 75%, 80%, 85%, 90%, or 95% over a length of at least 10 nucleotides which are optionally interrupted by a loop-forming sequence.
    • Embodiment 5A The method of any one of the preceding embodiments, wherein a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 6A The method of any one of the preceding embodiments, wherein the target is (i) in the TNR or self-complementary region or (ii) within 10, 15, 20, 25, 30, 40, or 50 nucleotides of the TNR or self-complementary region.
    • Embodiment 7A The method of any one of embodiments 1A, 3A, 5A, and 6A, wherein the TNR is a CTG in the 3′ untranslated region (UTR) of the DMPK gene.
    • Embodiment 8A The method of embodiment 7A, wherein the excision results in treatment of myotonic dystrophy type 1 (DM1).
    • Embodiment 9A The method of any one of embodiments 1A, 3A, 5A, and 6A, wherein the TNR is within the huntingtin, frataxin (FXN), Fragile X Mental Retardation 1 (FMR1), Fragile X Mental Retardation 2 (FMR2), androgen receptor (AR), aristaless related homeobox (ARX), Ataxin 1 (ATXN1), Ataxin 2 (ATXN2), Ataxin 3 (ATXN3), Calcium voltage-gated channel subunit alphal A (CACNA1A), Ataxin 7 (ATXN7), ATXN8 opposite strand lncRNA (ATXN8OS), Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform (PPP2R2B), TATA binding protein (TBP), or Atrophin-1 (ATN1) gene, or the TNR is adjacent to the 5′ UTR of FMR2.
    • Embodiment 10A The method of embodiment 9A, wherein the excision in huntingtin (HTT) results in treatment of Huntington's disease (HD); the excision in FXN results in treatment of Friedrich's ataxia (FA); the excision in FMR1 results in treatment of Fragile X syndrome (FXS), Fragile X associated primary ovarian insufficiency (FXPOI), or fragile X-associated tremor/ataxia syndrome (FXTAS); the excision in FMR2 or adjacent to the 5′ UTR of FMR2 results in treatment of fragile XE syndrome (FXES); the excision in AR results in treatment of X-linked spinal and bulbar muscular atrophy (XSBMA); the excision in ATXN1 results in treatment of spinocerebellar ataxia type 1 (SCA1), the excision in ATXN2 results in treatment of spinocerebellar ataxia type 2 (SCA2), the excision in ATXN3 results in treatment of spinocerebellar ataxia type 3 (SCA3), the excision in CACNA1A results in treatment of spinocerebellar ataxia type 6 (SCA6), the excision in ATXN7 results in treatment of spinocerebellar ataxia type 7 (SCAT), the excision in ATXN8OS results in treatment of spinocerebellar ataxia type 8 (SCAB), the excision in PPP2R2B results in treatment of spinocerebellar ataxia type 12 (SCA12), the excision in TBP results in treatment of spinocerebellar ataxia type 17 (SCA17), or the excision in ATN1 results in treatment of Dentatorubropallidoluysian atrophy (DRPLA).
    • Embodiment 11A The method of any one of the preceding embodiments comprising administering a DNA-PK inhibitor.
    • Embodiment 12A A composition comprising:
      • a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, wherein the spacer sequence comprises:
      • a spacer sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372; or
      • a spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372; or
      • a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 101-4988, 5001-7264, or 7301-53372; or
      • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • a first spacer sequence selected from SEQ ID NOs: 2709-4076, and a second spacer sequence selected from SEQ ID NOs: 101-2708; or
      • a first spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 2709-4076 and a second spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 101-2708; or
      • a first spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 2709-4076, and a second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 101-2708; or
      • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the guide RNAs, wherein the pair of spacer sequences comprise:
      • a first spacer sequence selected from SEQ ID NOs: 5001-5496, and a second spacer sequence selected from SEQ ID NOs: 5497-6080; or
      • a first spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 5001-5496 and a second spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 5497-6080; or
      • a first spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 5001-5496, and a second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 5497-6080; or
      • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the guide RNAs, wherein the pair of spacer sequences comprise:
      • a first spacer sequence selected from SEQ ID NOs: 46597-53028, and a second spacer sequence selected from SEQ ID NOs: 7301-46596; or
      • a first spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 46597-53028 and a second spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 7301-46596; or
      • a first spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 46597-53028, and a second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 7301-46596.
    • Embodiment 13A is the composition of embodiment 12A, comprising a guide RNA comprising a spacer sequence, wherein the spacer sequence is any one of SEQ ID NOs 3378, 3354 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, 2506, 4010, 4026, 3914, 3938, 3858, 3818, 3794, 3746, 3778, 3770, 3722, 3690, 3658, 3514, 3370, 3418, 3394, 3386, 3802, 3682, 2618, 2594, 2458, 2514, 2258, 2322, 2210, 2194, 2114, 1914, 1778, 1770, 1738, 1706, 1746, 1642, 1538, 2202, 2178, 2170, or 2162.
    • Embodiment 14A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3378.
    • Embodiment 15A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3354.
    • Embodiment 16A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3346.
    • Embodiment 17A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3330.
    • Embodiment 18A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3314.
    • Embodiment 19A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2658.
    • Embodiment 20A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2690.
    • Embodiment 21A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2546.
    • Embodiment 22A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2554.
    • Embodiment 23A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2498.
    • Embodiment 24A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2506.
    • Embodiment 25A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 4010.
    • Embodiment 26A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 4026.
    • Embodiment 27A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3914.
    • Embodiment 28A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3938.
    • Embodiment 29A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3858.
    • Embodiment 30A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3818.
    • Embodiment 31A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3794.
    • Embodiment 32A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3746.
    • Embodiment 33A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3778.
    • Embodiment 34A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3770.
    • Embodiment 35A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3272.
    • Embodiment 36A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3690.
    • Embodiment 37A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3658.
    • Embodiment 38A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3514.
    • Embodiment 39A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3370.
    • Embodiment 40A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3418.
    • Embodiment 41A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3394.
    • Embodiment 42A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3386.
    • Embodiment 43A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3802.
    • Embodiment 44A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 3682.
    • Embodiment 45A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2618.
    • Embodiment 46A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2594.
    • Embodiment 47A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2458.
    • Embodiment 48A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2514.
    • Embodiment 49A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2258.
    • Embodiment 50A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2322.
    • Embodiment 51A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2210.
    • Embodiment 52A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2194.
    • Embodiment 53A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2114.
    • Embodiment 54A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1914.
    • Embodiment 55A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1778.
    • Embodiment 56A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1770.
    • Embodiment 57A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1738.
    • Embodiment 58A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1706.
    • Embodiment 59A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1746.
    • Embodiment 60A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1642.
    • Embodiment 61A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 1538.
    • Embodiment 62A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2202.
    • Embodiment 63A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2178.
    • Embodiment 64A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2170.
    • Embodiment 65A The composition of embodiment 13A, wherein the spacer sequence has the sequence of SEQ ID NO: 2162.
    • Embodiment 66A The composition of embodiment 12A, comprising a pair of guide RNAs comprising a pair of spacer sequences, wherein
      • the first spacer sequence is SEQ ID NO 3346, and wherein the second spacer sequence is SEQ ID NO 2554; or
      • the first spacer sequence is SEQ ID NO 3346, and wherein the second spacer sequence is SEQ ID NO 1498; or
      • the first spacer sequence is SEQ ID NO 3330, and wherein the second spacer sequence is SEQ ID NO 2554; or
      • the first spacer sequence is SEQ ID NO 3330, and wherein the second spacer sequence is SEQ ID NO 2498; or
      • the first spacer sequence is SEQ ID NO 3378, and wherein the second spacer sequence is SEQ ID NO 2546; or
      • the first spacer sequence is SEQ ID NO 3354, and wherein the second spacer sequence is SEQ ID NO 2546; or
      • the first spacer sequence is SEQ ID NO 3354, and wherein the second spacer sequence is SEQ ID NO 2506.
    • Embodiment 67A The composition of embodiment 12A, further comprising an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 68A The composition of embodiment 12A or 67A, further comprising a DNA-PK inhibitor.
    • Embodiment 69A The method or composition of any of the preceding embodiments, wherein the guide RNA is an sgRNA.
    • Embodiment 70A The method or composition of embodiment 69A, wherein the sgRNA is modified.
    • Embodiment 71A The method or composition of embodiment 70A, wherein the modifications alter one or more 2′ positions and/or phosphodiester linkages.
    • Embodiment 72A The method or composition of any one of embodiments 70A-71A, wherein the modifications alter one or more, or all, of the first three nucleotides of the sgRNA.
    • Embodiment 73A The method or composition of any one of embodiments 70A-72A, wherein the modifications alter one or more, or all, of the last three nucleotides of the sgRNA.
    • Embodiment 74A The method or composition of any one of embodiments 70A-73A, wherein the modifications include one or more of a phosphorothioate modification, a 2′-OMe modification, a 2′-O-moe modification, a 2′-F modification, a 2′-O-methine-4′ bridge modification, a 3′-thiophosphonoacetate modification, and a 2′-deoxy modification.
    • Embodiment 75A The method or composition of any of the preceding embodiments, wherein the DNA-PK inhibitor is NU7441, KU-0060648, Compound 1, Compound 2, Compound 3, Compound 4, Compound 5, or Compound 6.
    • Embodiment 76A The method or composition of embodiment 75A, wherein the DNA-PK inhibitor is Compound 3 or Compound 6.
    • Embodiment 77A The method or composition of any of the preceding embodiments, wherein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10,000 TNRs are excised.
    • Embodiment 78A The method or composition of any of the preceding embodiments, wherein 1-5, 5-10, 10-20, 20-30, 40-60, 60-80, 80-100, 100-150, 150-200, 200-300, 300-500, 500-700, 700-1000, 1000-1500, 1500-2000, 2000-3000, 3000-4000, 4000-5000, 5000-6000, 6000-7000, 7000-8000, 8000-9000, or 9000-10,000 TNRs are excised.
    • Embodiment 79A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the DMPK gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat DMPK gene, said amelioration optionally comprising one or more of increasing myotonic dystrophy protein kinase activity; increasing phosphorylation of phospholemman, dihydropyridine receptor, myogenin, L-type calcium channel beta subunit, and/or myosin phosphatase targeting subunit; increasing inhibition of myosin phosphatase; and/or ameliorating muscle loss, muscle weakness, hypersomnia, one or more executive function deficiencies, insulin resistance, cataract formation, balding, or male infertility or low fertility.
    • Embodiment 80A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the HTT gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat HTT gene, said amelioration optionally comprising ameliorating one or more of striatal neuron loss, involuntary movements, irritability, depression, small involuntary movements, poor coordination, difficulty learning new information or making decisions, difficulty walking, speaking, and/or swallowing, and/or a decline in thinking and/or reasoning abilities.
    • Embodiment 81A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the FMR1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat FMR1 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR1 transcript or Fragile X Mental Retardation Protein levels, translational dysregulation of mRNAs normally associated with FMRP, lowered levels of phospho-cofilin (CFL1), increased levels of phospho-cofilin phosphatase PPP2CA, diminished mRNA transport to neuronal synapses, increased expression of HSP27, HSP70, and/or CRYAB, abnormal cellular distribution of lamin A/C isoforms, early-onset menopause such as menopause before age 40 years, defects in ovarian development or function, elevated level of serum gonadotropins (e.g., FSH), progressive intention tremor, parkinsonism, cognitive decline, generalized brain atrophy, impotence, and/or developmental delay.
    • Embodiment 82A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the FMR2 gene or adjacent to the 5′ UTR of FMR2, and wherein excision of the TNRs ameliorates one or more phenotypes associated with expanded-repeats in or adjacent to the FMR2 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR2 expression, developmental delays, poor eye contact, repetitive use of language, and hand-flapping.
    • Embodiment 83A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the AR gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat AR gene, said amelioration optionally comprising ameliorating one or more of aberrant AR expression; production of a C-terminally truncated fragment of the androgen receptor protein; proteolysis of androgen receptor protein by caspase-3 and/or through the ubiquitin-proteasome pathway; formation of nuclear inclusions comprising CREB-binding protein; aberrant phosphorylation of p44/42, p38, and/or SAPK/JNK; muscle weakness; muscle wasting; difficulty walking, swallowing, and/or speaking; gynecomastia; and/or male infertility.
    • Embodiment 84A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATXN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN1 gene, said amelioration optionally comprising ameliorating one or more of formation of aggregates comprising ATXN1; Purkinje cell death; ataxia; muscle stiffness; rapid, involuntary eye movements; limb numbness, tingling, or pain; and/or muscle twitches.
    • Embodiment 85A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATXN2 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN2 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN2 production; Purkinje cell death; ataxia; difficulty speaking or swallowing; loss of sensation and weakness in the limbs; dementia; muscle wasting; uncontrolled muscle tensing; and/or involuntary jerking movements.
    • Embodiment 86A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATXN3 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN3 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN3 levels; aberrant beclin-1 levels; inhibition of autophagy; impaired regulation of superoxide dismutase 2; ataxia; difficulty swallowing; loss of sensation and weakness in the limbs; dementia; muscle stiffness; uncontrolled muscle tensing; tremors; restless leg symptoms; and/or muscle cramps.
    • Embodiment 87A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the CACNA1A gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat CACNA1A gene, said amelioration optionally comprising ameliorating one or more of aberrant CaV2.1 voltage-gated calcium channels in CACNA1A-expressing cells; ataxia; difficulty speaking; involuntary eye movements; double vision; loss of arm coordination; tremors; and/or uncontrolled muscle tensing.
    • Embodiment 88A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATXN7 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN7 gene, said amelioration optionally comprising ameliorating one or more of aberrant histone acetylation; aberrant histone deubiquitination; impairment of transactivation by CRX; formation of nuclear inclusions comprising ATXN7; ataxia; incoordination of gait; poor coordination of hands, speech and/or eye movements; retinal degeneration; and/or pigmentary macular dystrophy.
    • Embodiment 89A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATXN8OS gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN8OS gene, said amelioration optionally comprising ameliorating one or more of formation of ribonuclear inclusions comprising ATXN8OS mRNA; aberrant KLHL1 protein expression; ataxia; difficulty speaking and/or walking; and/or involuntary eye movements.
    • Embodiment 90A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the PPP2R2B gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat PPP2R2B gene, said amelioration optionally comprising ameliorating one or more of aberrant PPP2R2B expression; aberrant phosphatase 2 activity; ataxia; cerebellar degeneration; difficulty walking; and/or poor coordination of hands, speech and/or eye movements.
    • Embodiment 91A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the TBP gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat TBP gene, said amelioration optionally comprising ameliorating one or more of aberrant transcription initiation; aberrant TBP protein accumulation (e.g., in cerebellar neurons); aberrant cerebellar neuron cell death; ataxia; difficulty walking; muscle weakness; and/or loss of cognitive abilities.
    • Embodiment 92A The method or composition of any one of the preceding embodiments, wherein the TNRs are within the ATN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATN1 gene, said amelioration optionally comprising ameliorating one or more of aberrant transcriptional regulation; aberrant ATN1 protein accumulation (e.g., in neurons); aberrant neuron cell death; involuntary movements; and/or loss of cognitive abilities.
    • Embodiment 93A The method or composition of any one of the preceding embodiments, wherein the composition further comprises a pharmaceutically acceptable excipient.
    • Embodiment 94A The method or composition of any one of the preceding embodiments, wherein the guide RNA is associated with a lipid nanoparticle (LNP), or encoded by a viral vector.
    • Embodiment 95A The method or composition of embodiment 94A, wherein the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector.
    • Embodiment 96A The method or composition of embodiment 95A, wherein the viral vector is an adeno-associated virus (AAV) vector.
    • Embodiment 97A The method or composition of embodiment 96A, wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, or AAV9 vector, wherein the number following AAV indicates the AAV serotype.
    • Embodiment 98A The method or composition of embodiment 96A, wherein the AAV vector is an AAV serotype 9 vector.
    • Embodiment 99A The method or composition of any one of embodiments 94A-98A, wherein the viral vector comprises a tissue-specific promoter.
    • Embodiment 100A The method or composition of any one of embodiments 94A-99A, wherein the viral vector comprises a muscle-specific promoter, optionally wherein the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, or an SPc5-12 promoter.
    • Embodiment 101A The method or composition of any one of embodiments 94A-100A, wherein the viral vector comprises a neuron-specific promoter, optionally wherein the neuron-specific promoter is an enolase promoter.
    • Embodiment 102A Use of a composition of any one of the preceding embodiments for the preparation of a medicament for treating a human subject having DM1, HD, FA, FXS, FXTAS, FXPOI, FXES, XSBMA, SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, or DRPLA.
    • Embodiment 103A A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor which is Compound 3 or Compound 6.
    • Embodiment 104A A method of excising a self-complementary region in DNA comprising delivering to a cell that comprises the self-complementary region i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the self-complementary region, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor which is Compound 3 or Compound 6, wherein the self-complementary region is excised.
    • Embodiment 105A A method of excising a trinucleotide repeat (TNR) in DNA comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor which is Compound 3 or Compound 6, wherein at least one TNR is excised.
    • Embodiment 106A The method of embodiment 103A or 105A, wherein the DNA-PK inhibitor is Compound 3.
    • Embodiment 107A The method of embodiment 106A, wherein the TNR is within the frataxin gene.
    • Embodiment 108A The method of embodiment 103A or 105A, wherein the DNA-PK inhibitor is Compound 6.
    • Embodiment 109A The method of embodiment 108A, wherein the TNR is a CTG in the 3′ UTR of the DMPK gene.
    • Embodiment 110A The method of embodiment 108A, wherein the TNR is within the frataxin gene.
    • Embodiment 111A The method of any one of embodiments 103A-110A, wherein a pair of guide


RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.

    • Embodiment 112A A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, 2506, 4010, 4026, 3914, 3938, 3858, 3818, 3794, 3746, 3778, 3770, 3722, 3690, 3658, 3514, 3370, 3418, 3394, 3386, 3802, 3682, 2618, 2594, 2458, 2514, 2258, 2322, 2210, 2194, 2114, 1914, 1778, 1770, 1738, 1706, 1746, 1642, 1538, 2202, 2178, 2170, or 2162, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor.
    • Embodiment 113A A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, 2506, 4010, 4026, 3914, 3938, 3858, 3818, 3794, 3746, 3778, 3770, 3722, 3690, 3658, 3514, 3370, 3418, 3394, 3386, 3802, 3682, 2618, 2594, 2458, 2514, 2258, 2322, 2210, 2194, 2114, 1914, 1778, 1770, 1738, 1706, 1746, 1642, 1538, 2202, 2178, 2170, or 2162, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised.
    • Embodiment 114A The method of embodiment 112A or 113A, wherein the DNA-PK inhibitor is delivered.
    • Embodiment 115A The method of embodiment 114A, wherein the DNA-PK inhibitor is Compound 6.
    • Embodiment 116A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3378.
    • Embodiment 117A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3354.
    • Embodiment 118A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3346.
    • Embodiment 119A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3330.
    • Embodiment 120A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3314.
    • Embodiment 121A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2658.
    • Embodiment 122A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2690.
    • Embodiment 123A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2546.
    • Embodiment 124A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2554.
    • Embodiment 125A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2498.
    • Embodiment 126A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2506.
    • Embodiment 127A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 4010.
    • Embodiment 128A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 4026.
    • Embodiment 129A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3914.
    • Embodiment 130A The method of any one of embodiments112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3938.
    • Embodiment 131A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3858.
    • Embodiment 132A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3818.
    • Embodiment 133A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3794.
    • Embodiment 134A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3746.
    • Embodiment 135A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3778.
    • Embodiment 136A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3770.
    • Embodiment 137A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3722.
    • Embodiment 138A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3690.
    • Embodiment 139A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3658.
    • Embodiment 140A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3514.
    • Embodiment 141A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3370.
    • Embodiment 142A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3418.
    • Embodiment 143A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3394.
    • Embodiment 144A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3386.
    • Embodiment 145A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3802.
    • Embodiment 146A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 3682.
    • Embodiment 147A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2618.
    • Embodiment 148A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2594.
    • Embodiment 149A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2458.
    • Embodiment 150A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2514.
    • Embodiment 151A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2258.
    • Embodiment 152A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2322.
    • Embodiment 153A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2210.
    • Embodiment 154A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2194.
    • Embodiment 155A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2114.
    • Embodiment 156A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1914.
    • Embodiment 157A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1778.
    • Embodiment 158A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1770.
    • Embodiment 159A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1738.
    • Embodiment 160A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1706.
    • Embodiment 161A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1746.
    • Embodiment 162A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1642.
    • Embodiment 163A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 1538.
    • Embodiment 164A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2202.
    • Embodiment 165A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2178.
    • Embodiment 166A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2170.
    • Embodiment 167A The method of any one of embodiments 112A-115A, wherein the spacer sequence has the sequence of SEQ ID NO: 2162.
    • Embodiment 168A The method of any one of embodiments 112A-167A, wherein a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 169A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3346 and 2554.
    • Embodiment 170A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3346 and 2498.
    • Embodiment 171A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3330 and 2554.
    • Embodiment 172A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3330 and 2498.
    • Embodiment 173A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3378 and 2546.
    • Embodiment 174A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3378 and 2506.
    • Embodiment 175A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3354 and 2546.
    • Embodiment 176A The method of embodiment 168A, wherein the first and second spacers have the sequences of SEQ ID NOs 3354 and 2506.
    • Embodiment 177A A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 5830, 6022, 5070, 5310, 5334, 5622, 5926, 5950, or 5998, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor.
    • Embodiment 178A A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 5830, 6022, 5070, 5310, 5334, 5622, 5926, 5950, or 5998, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised.
    • Embodiment 179A The method of embodiment 177A or 178A, wherein the DNA-PK inhibitor is delivered.
    • Embodiment 180A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5830.
    • Embodiment 181A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 6022.
    • Embodiment 182A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5070.
    • Embodiment 183A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5310.
    • Embodiment 184A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5334.
    • Embodiment 185A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5622.
    • Embodiment 186A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5926.
    • Embodiment 187A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO: 5950.
    • Embodiment 188A The method of any one of embodiments 177A-179A, wherein the spacer sequence has the sequence of SEQ ID NO:5998.
    • Embodiment 189A The method of any one of embodiments 177A-188A, wherein a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 190A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 5830 and 5070.
    • Embodiment 191A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 6022 and 5310.
    • Embodiment 192A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 5622 and 5070.
    • Embodiment 193A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 5926 and 5070.
    • Embodiment 194A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 5950 and 5070.
    • Embodiment 195A The method of embodiment 189A, wherein the first and second spacers have the sequences of SEQ ID NOs 5998 and 5070.
    • Embodiment 196A A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in an intron of the FXN gene, the method comprising delivering to a cell that comprises a TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 16690, 34442, 45906, 15994, 52666, 51322, 46599, 52898, 26546, 7447, 47047, or 49986, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor.
    • Embodiment 197A A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene comprising delivering to a cell that comprises the TNR i) a guide RNA comprising a spacer having a sequence of any one of SEQ ID NOs 16690, 34442, 45906, 15994, 52666, 51322, 46599, 52898, 26546, 7447, 47047, or 49986, or a nucleic acid encoding the guide RNA; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) optionally a DNA-PK inhibitor, wherein at least one TNR is excised.
    • Embodiment 198A The method of embodiment 196A or 197A, wherein the DNA-PK inhibitor is delivered.
    • Embodiment 199A The method of embodiment 198A, wherein the DNA-PK inhibitor is Compound 3.
    • Embodiment 200A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 16690.
    • Embodiment 201A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 34442.
    • Embodiment 202A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 45906.
    • Embodiment 203A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 15994.
    • Embodiment 204A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 52666.
    • Embodiment 205A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 51322.
    • Embodiment 206A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 46599.
    • Embodiment 207A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 49986.
    • Embodiment 208A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 52898.
    • Embodiment 209A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 26546.
    • Embodiment 210A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 7447.
    • Embodiment 211A The method of any one of embodiments 196A-199A, wherein the spacer sequence has the sequence of SEQ ID NO: 47047.
    • Embodiment 212A The method of any one of embodiments 196A-211A, wherein a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near the TNR, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 213A The method of embodiment 212A, wherein the first and second spacers have the sequences of SEQ ID NOs 52898 and 26546.
    • Embodiment 214A The method of embodiment 212A, wherein the first and second spacers have the sequences of SEQ ID NOs 47047 and 7447.
    • Embodiment 215A The method of embodiment 212A, wherein the first and second spacers have the sequences of SEQ ID NOs 52666 and 15994.
    • Embodiment 216A The method or composition of any one of embodiments 1A-4A, 6A-167A, 177A-188A, or 196A-211A, wherein only one gRNA or vector encoding only one gRNA is provided or delivered.
    • Embodiment 1B is a composition comprising:
    • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • i. a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506; and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992; and/or
      • ii. a first spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506, and a second spacer sequence having at least 17, 18, 19, or 20 contiguous nucleotides of a sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992; and/or
      • iii. a first spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506, and a second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to a sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992.
    • Embodiment 2B is a composition comprising:
    • a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • iv. a first spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906 or 3746, and a second spacer sequence selected from SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, or 2210; and/or
      • v. a first spacer sequence selected from SEQ ID NOs: 3256, 2896, 3136, or 3224, and a second spacer sequence selected from SEQ ID NOs: 4989, 560, 672, 976, 760, 984, or 616; and/or
      • vi. a first spacer sequence and a second spacer sequence selected from SEQ ID NOs: 3778 and 1778; 3778 and 1746; 3778 and 1770; 3778 and 1586; 3778 and 1914; 3778 and 2210; 4026 and 1778; 4026 and 1746; 4026 and 1770; 4026 and 1586; 4026 and 1914; 4026 and 2210; 3794 and 1778; 3794 and 1746; 3794 and 1770; 3794 and 1586; 3794 and 1586; 3794 and 1914; 3794 and 2210; 4010 and 1778; 4010 and 1770; 4010 and 1746; 4010 and 1586; 4010 and 1914; 4010 and 2210; 3906 and 1778; 3906 and 1778; 3906 and 1746; 3906 and 1770; 3906 and 1586; 3906 and 1914; 3906 and 2210; 3746 and 1778; 3746 and 1746; 3746 and 1770; 3746 and 1586; 3746 and 1914; or 3746 and 2210; and/or
      • vii. a first spacer sequence and a second spacer sequence selected from SEQ ID NOs: 3256 and 4989; 3256 and 984; 3256 and 616; 2896 and 4989; 2896 and 672; 2896 and 760; 3136 and 4989; 3136 and 560; 3224 and 4989; 3224 and 976; or 3224 and 760.
    • Embodiment 3B is the composition of embodiment 1B or 2B, further comprising an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 4B is the composition of any of the preceding embodiments, wherein the guide RNA is an sgRNA.
    • Embodiment 5B is the composition of embodiment 4B, wherein the sgRNA is modified.
    • Embodiment 6B is the composition of embodiment 5B, wherein the modifications alter one or more 2′ positions and/or phosphodiester linkages.
    • Embodiment 7B is the composition of any one of embodiments 5B-6B, wherein the modifications alter one or more, or all, of the first three nucleotides of the sgRNA.
    • Embodiment 8B is the composition of any one of embodiments 5B-7B, wherein the modifications alter one or more, or all, of the last three nucleotides of the sgRNA.
    • Embodiment 9B is the composition of any one of embodiments 5B-8B, wherein the modifications include one or more of a phosphorothioate modification, a 2′-OMe modification, a 2′-O-MOE modification, a 2′-F modification, a 2′-O-methine-4′ bridge modification, a 3′-thiophosphonoacetate modification, and a 2′-deoxy modification.
    • Embodiment 10B is the composition of any of the preceding embodiments, wherein the composition further comprises a pharmaceutically acceptable excipient.
    • Embodiment 11B is the composition of any of the preceding embodiments, wherein the guide RNA is associated with a lipid nanoparticle (LNP), or encoded by a viral vector.
    • Embodiment 12B is the composition of embodiment 11B, wherein the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector.
    • Embodiment 13B is the composition of embodiment 12B, wherein the viral vector is an adeno-associated virus (AAV) vector.
    • Embodiment 14B is the composition of embodiment 13B, wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh10, AAVrh74, or AAV9 vector, wherein the number following AAV indicates the AAV serotype.
    • Embodiment 15B is the composition of embodiment 14B, wherein the AAV vector is an AAV serotype 9 vector.
    • Embodiment 16B is the composition of any one of embodiments 11B-15B, wherein the viral vector comprises a tissue-specific promoter.
    • Embodiment 17B is the composition of any one of embodiments 11B-16B, wherein the viral vector comprises a muscle-specific promoter, optionally wherein the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, or an SPc5-12 promoter.
    • Embodiment 18B is the composition of any one of embodiments 11B-17B, wherein the viral vector comprises a neuron-specific promoter, optionally wherein the neuron-specific promoter is an enolase promoter.
    • Embodiment 19B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 560.
    • Embodiment 20B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 584.
    • Embodiment 21B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 608.
    • Embodiment 22B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 616.
    • Embodiment 23B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 656.
    • Embodiment 24B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 672.
    • Embodiment 25B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 688.
    • Embodiment 26B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 696.
    • Embodiment 27B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 712.
    • Embodiment 28B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 744.
    • Embodiment 29B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 752.
    • Embodiment 30B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 760.
    • Embodiment 31B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 840.
    • Embodiment 32B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 864.
    • Embodiment 33B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 960.
    • Embodiment 34B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 976.
    • Embodiment 35B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 984.
    • Embodiment 36B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1008.
    • Embodiment 37B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1056.
    • Embodiment 38B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1128.
    • Embodiment 39B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1136.
    • Embodiment 40B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1152.
    • Embodiment 41B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1224.
    • Embodiment 42B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1240.
    • Embodiment 43B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1272.
    • Embodiment 44B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1338.
    • Embodiment 45B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1346.
    • Embodiment 46B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1370.
    • Embodiment 47B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1378.
    • Embodiment 48B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1386.
    • Embodiment 49B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1394.
    • Embodiment 50B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1402.
    • Embodiment 51B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1410.
    • Embodiment 52B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1418.
    • Embodiment 53B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1426.
    • Embodiment 54B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1434.
    • Embodiment 55B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1442.
    • Embodiment 56B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1458.
    • Embodiment 57B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1474.
    • Embodiment 58B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1482.
    • Embodiment 59B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1490.
    • Embodiment 60B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1498.
    • Embodiment 61B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1514.
    • Embodiment 62B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1538.
    • Embodiment 63B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1546.
    • Embodiment 64B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1554.
    • Embodiment 65B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1562.
    • Embodiment 66B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1578.
    • Embodiment 67B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1586.
    • Embodiment 68B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1594.
    • Embodiment 69B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1602.
    • Embodiment 70B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1610.
    • Embodiment 71B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1626.
    • Embodiment 72B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1634.
    • Embodiment 73B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1642.
    • Embodiment 74B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1650.
    • Embodiment 75B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1658.
    • Embodiment 76B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1690.
    • Embodiment 77B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1706.
    • Embodiment 78B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1714.
    • Embodiment 79B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1738.
    • Embodiment 80B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1746.
    • Embodiment 81B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1770.
    • Embodiment 82B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1778.
    • Embodiment 83B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1786.
    • Embodiment 84B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1802.
    • Embodiment 85B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1810.
    • Embodiment 86B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1818.
    • Embodiment 87B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1826.
    • Embodiment 88B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1834.
    • Embodiment 89B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1842.
    • Embodiment 90B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1850.
    • Embodiment 91B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1890.
    • Embodiment 92B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1914.
    • Embodiment 93B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1930.
    • Embodiment 94B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1938.
    • Embodiment 95B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1946.
    • Embodiment 96B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1962.
    • Embodiment 97B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1970.
    • Embodiment 98B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1978.
    • Embodiment 99B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1986.
    • Embodiment 100B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 1994.
    • Embodiment 101B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2010.
    • Embodiment 102B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2018.
    • Embodiment 103B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2026.
    • Embodiment 104B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2042.
    • Embodiment 105B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2050.
    • Embodiment 106B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2058.
    • Embodiment 107B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2090.
    • Embodiment 108B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2114.
    • Embodiment 109B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2130.
    • Embodiment 110B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2162.
    • Embodiment 111B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2170.
    • Embodiment 112B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2178.
    • Embodiment 113B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2202.
    • Embodiment 114B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2210.
    • Embodiment 115B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2226.
    • Embodiment 116B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2242.
    • Embodiment 117B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2258.
    • Embodiment 118B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2266.
    • Embodiment 119B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2274.
    • Embodiment 120B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2282.
    • Embodiment 121B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2298.
    • Embodiment 122B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2314.
    • Embodiment 123B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2322.
    • Embodiment 124B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2330.
    • Embodiment 125B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2338.
    • Embodiment 126B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2346.
    • Embodiment 127B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2354.
    • Embodiment 128B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2370.
    • Embodiment 129B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2378.
    • Embodiment 130B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2394.
    • Embodiment 131B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2418.
    • Embodiment 132B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2434.
    • Embodiment 133B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2442.
    • Embodiment 134B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2458.
    • Embodiment 135B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2466.
    • Embodiment 136B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2474.
    • Embodiment 137B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2498.
    • Embodiment 138B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2506.
    • Embodiment 139B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2514.
    • Embodiment 140B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2522.
    • Embodiment 141B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2546.
    • Embodiment 142B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2554.
    • Embodiment 143B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2570.
    • Embodiment 144B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2586.
    • Embodiment 145B is the composition of any one of the preceding embodiments, wherein the second spacer sequence has the sequence of SEQ ID NO: 2658.
    • Embodiment 146B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2856.
    • Embodiment 147B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2864.
    • Embodiment 148B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2880.
    • Embodiment 149B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2896.
    • Embodiment 150B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2904.
    • Embodiment 151B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2912.
    • Embodiment 152B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2936.
    • Embodiment 153B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2944.
    • Embodiment 154B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2960.
    • Embodiment 155B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 2992.
    • Embodiment 156B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3016.
    • Embodiment 157B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3024.
    • Embodiment 158B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3064.
    • Embodiment 159B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3096.
    • Embodiment 160B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3112.
    • Embodiment 161B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3128.
    • Embodiment 162B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3136.
    • Embodiment 163B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3144.
    • Embodiment 164B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3160.
    • Embodiment 165B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3168.
    • Embodiment 166B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3192.
    • Embodiment 167B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3200.
    • Embodiment 168B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3208.
    • Embodiment 169B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3216.
    • Embodiment 170B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3224.
    • Embodiment 171B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3232.
    • Embodiment 172B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3240.
    • Embodiment 173B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3248.
    • Embodiment 174B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3256.
    • Embodiment 175B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3264.
    • Embodiment 176B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3314.
    • Embodiment 177B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3330.
    • Embodiment 178B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3346.
    • Embodiment 179B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3354.
    • Embodiment 180B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3370.
    • Embodiment 181B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3378.
    • Embodiment 182B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3386.
    • Embodiment 183B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3394.
    • Embodiment 184B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3410.
    • Embodiment 185B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3418.
    • Embodiment 186B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3426.
    • Embodiment 187B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3434.
    • Embodiment 188B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3442.
    • Embodiment 189B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3450.
    • Embodiment 190B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3458.
    • Embodiment 191B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3474.
    • Embodiment 192B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3482.
    • Embodiment 193B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3490.
    • Embodiment 194B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3498.
    • Embodiment 195B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3506.
    • Embodiment 196B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3514.
    • Embodiment 197B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3522.
    • Embodiment 198B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3530.
    • Embodiment 199B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3538.
    • Embodiment 200B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3546.
    • Embodiment 201B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3554.
    • Embodiment 202B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3570.
    • Embodiment 203B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3578.
    • Embodiment 204B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3586.
    • Embodiment 205B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3602.
    • Embodiment 206B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3610.
    • Embodiment 207B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3618.
    • Embodiment 208B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3634.
    • Embodiment 209B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3642.
    • Embodiment 210B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3658.
    • Embodiment 211B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3674.
    • Embodiment 212B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3682.
    • Embodiment 213B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3690.
    • Embodiment 214B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3698.
    • Embodiment 215B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3706.
    • Embodiment 216B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3722.
    • Embodiment 217B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3746.
    • Embodiment 218B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3762.
    • Embodiment 219B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3770.
    • Embodiment 220B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3778.
    • Embodiment 221B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3794.
    • Embodiment 222B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3802.
    • Embodiment 223B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3818.
    • Embodiment 224B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3826.
    • Embodiment 225B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3834.
    • Embodiment 226B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3850.
    • Embodiment 227B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3858.
    • Embodiment 228B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3890.
    • Embodiment 229B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3898.
    • Embodiment 230B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3906.
    • Embodiment 231B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3914.
    • Embodiment 232B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3922.
    • Embodiment 233B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3930.
    • Embodiment 234B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3938.
    • Embodiment 235B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3946.
    • Embodiment 236B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 3994.
    • Embodiment 237B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4010.
    • Embodiment 238B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4018.
    • Embodiment 239B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4026.
    • Embodiment 240B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4034.
    • Embodiment 241B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4042.
    • Embodiment 242B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4208.
    • Embodiment 243B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4506.
    • Embodiment 244B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4989.
    • Embodiment 245B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4990.
    • Embodiment 246B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4991.
    • Embodiment 247B is the composition of any one of the preceding embodiments, wherein the first spacer sequence has the sequence of SEQ ID NO: 4992.
    • Embodiment 248B is the use of a composition of any one of the preceding embodiments for the preparation of a medicament for treating a human subject having DM1.
    • Embodiment 249B is a method of treating muscular dystrophy characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising delivering to a cell that comprises a TNR in the 3′ UTR of the DMPK gene a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • i. a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992, or a nucleic acid encoding the guide RNA; and ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 250B is a method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene comprising delivering to a cell that comprises the TNR in the 3′ UTR of the DMPK gene a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise:
      • ii. a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, or 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, or 4992, or a nucleic acid encoding the guide RNA; and ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease, wherein at least one TNR is excised.
    • Embodiment 251B is the method of any one of embodiments 249B-250B, wherein a pair of guide RNAs that comprise a first and second spacer that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
    • Embodiment 252B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 1778.
    • Embodiment 253B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 1746.
    • Embodiment 254B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 1770.
    • Embodiment 255B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 1586.
    • Embodiment 256B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 1914.
    • Embodiment 257B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3778 and 2210.
    • Embodiment 258B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 1778.
    • Embodiment 259B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 1746.
    • Embodiment 260B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 1770.
    • Embodiment 261B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 1586.
    • Embodiment 262B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 1914.
    • Embodiment 263B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4026 and 2210.
    • Embodiment 264B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 1778.
    • Embodiment 265B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 1746.
    • Embodiment 266B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 1770.
    • Embodiment 267B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 1586.
    • Embodiment 268B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 1914.
    • Embodiment 269B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3794 and 2210.
    • Embodiment 270B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 1778.
    • Embodiment 271B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 1746.
    • Embodiment 272B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 1770.
    • Embodiment 273B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 1586.
    • Embodiment 274B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 1914.
    • Embodiment 275B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 4010 and 2210.
    • Embodiment 276B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 1778.
    • Embodiment 277B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 1746.
    • Embodiment 278B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 1770.
    • Embodiment 279B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 1586.
    • Embodiment 280B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 1914.
    • Embodiment 281B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3906 and 2210.
    • Embodiment 282B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 1778.
    • Embodiment 283B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 1746.
    • Embodiment 284B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 1770.
    • Embodiment 285B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 1586.
    • Embodiment 286B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 1914.
    • Embodiment 287B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3746 and 2210.
    • Embodiment 288B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 4989.
    • Embodiment 289B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 560.
    • Embodiment 290B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 672.
    • Embodiment 291B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 976.
    • Embodiment 292B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 760.
    • Embodiment 293B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 984.
    • Embodiment 294B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3256 and 616.
    • Embodiment 295B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 4989.
    • Embodiment 296B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 560.
    • Embodiment 297B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 672.
    • Embodiment 298B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 976.
    • Embodiment 299B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 760.
    • Embodiment 300B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 984.
    • Embodiment 301B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 2896 and 616.
    • Embodiment 302B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 4989.
    • Embodiment 303B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 560.
    • Embodiment 304B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 672.
    • Embodiment 305B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 976.
    • Embodiment 306B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 760.
    • Embodiment 307B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 984.
    • Embodiment 308B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3136 and 616.
    • Embodiment 309B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 4989.
    • Embodiment 310B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 560.
    • Embodiment 311B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 672.
    • Embodiment 312B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 976.
    • Embodiment 313B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 760.
    • Embodiment 314B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 984.
    • Embodiment 315B is the method of any one of embodiments 249B-251B, wherein the first and second spacer sequences have the sequences of SEQ ID NOs 3224 and 616.
    • Embodiment 316B is the method of any one of embodiments 249B-315B, further comprising an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
    • Embodiment 317B is the method of any one of embodiments 249B-316B, wherein the guide RNA is an sgRNA.
    • Embodiment 318B is the method of embodiment 317B, wherein the sgRNA is modified.
    • Embodiment 319B is the method of embodiment 318B, wherein the modifications alter one or more 2′ positions and/or phosphodiester linkages.
    • Embodiment 320B is the method of embodiments 318B-319B, wherein the modifications alter one or more, or all, of the first three nucleotides of the sgRNA.
    • Embodiment 321B is the method of embodiments 318B-320B, wherein the modifications alter one or more, or all, of the last three nucleotides of the sgRNA.
    • Embodiment 322B is the method of embodiments 318B-321B, wherein the modifications include one or more of a phosphorothioate modification, a 2′-OMe modification, a 2′-O-MOE modification, a 2′-F modification, a 2′-O-methine-4′ bridge modification, a 3′-thiophosphonoacetate modification, and a 2′-deoxy modification.
    • Embodiment 323B is the method of any one of embodiments 249B-322B, wherein the composition further comprises a pharmaceutically acceptable excipient.
    • Embodiment 324B is the method of any one of embodiments 249B-323B, wherein the guide RNA is associated with a lipid nanoparticle (LNP), or encoded by a viral vector.
    • Embodiment 325B is the method of embodiment 324B, wherein the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector.
    • Embodiment 326B is the method of embodiment 325B, wherein the viral vector is an adeno-associated virus (AAV) vector.
    • Embodiment 327B is the method of embodiment 326B, wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh10, AAVrh74, or AAV9 vector, wherein the number following AAV indicates the AAV serotype.
    • Embodiment 328B is the method of embodiment 327B, wherein the AAV vector is an AAV serotype 9 vector.
    • Embodiment 329B is the method of any one of embodiments 324B-328B, wherein the viral vector comprises a tissue-specific promoter.
    • Embodiment 330B is the method of any one of embodiments 324B-329B, wherein the viral vector comprises a muscle-specific promoter, optionally wherein the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, or an SPc5-12 promoter.
    • Embodiment 331B is the method of any one of embodiments 324B-330B, wherein the viral vector comprises a neuron-specific promoter, optionally wherein the neuron-specific promoter is an enolase promoter.


EXAMPLES

The following examples are provided to illustrate certain disclosed embodiments and are not to be construed as limiting the scope of this disclosure in any way.


1. Materials and Methods


Guide RNA and Primer sequences. Primer sequences are shown in the Table of Additional Sequences. Cas9 Guide RNAs were used as a dual guide (dgRNA) format unless otherwise indicated as the single guide format (sgRNA). The crRNA contained the spacer sequence listed in the Table of Additional Sequences and was obtained from IDT as AltR-crRNA. The tracrRNA used with SpCas9 was AltR-tracrRNA (IDT Cat. No. 1072534).


Fibroblast immortalization. 2×105 fibroblasts (GM04033 and GM07492, Cone11 Institute) were seeded in 6 well plates. The following day fibroblasts were transduced at MOI 5 with hTERT-neo lentivirus with 10 ug/mL polybrene. Media was changed 24 hours post-transduction. Cells were selected with 0.5mg/ml G418 48 hrs post-transduction in MEM+15% FBS+NEAA.


Immortalized fibroblast electroporation & DNA-PK inhibitor treatment (paired guides). 200 uM crRNA (resuspended in IDTE, IDT Cat. No. 11-01-02-05) and 200 uM tracrRNA (resuspended in IDT duplex buffer, Cat. No. 11-01-03-01) were mixed 1:1 and pre-annealed (incubated 5min at 95° C., then cooled to room temperature). Unless otherwise indicated, RNP assembly was performed using 2 μL of 100 μM pre-annealed 5′ guide, 2 μL of 100 μM pre-annealed 3′ guide, and 2 μL of nuclease where a pair of guides were used, or 4 μL of 100 μM pre-annealed guide and 2 μL of nuclease where only one guide was used. Each RNP was assembled in triplicate. The SpCas9 (IDT) stock solution had a concentration of 10 ug/ul.


Guide (100 uM pre-annealed) and SpCas9 protein (10 ug/ul IDT) were mixed for each nucleofection in 1.7 ml Eppendorf tubes and incubated at room temperature ˜10 minutes to pre-assemble RNPs. (Note: experiments were generally carried out in biological triplicates for each condition.)


20 ul of P2 nucleofection solution (Lonza, Cat. No. V4XP-2032; pre-warmed to room temperature and prepared by adding the included supplement) was added to each RNP mixture.


Cell preparation: 04033 hTert-transformed DM1 patient fibroblasts and 7492 hTert-transformed heathy control fibroblasts were expanded in a T175 flask until confluent. Cells were washed 1× with PBS-, treated with 5 ml of 1× TrypLE Express for 7 minutes, and washed off in 25 ml of serum-containing media (MEM with GlutaMAX, 15% FBS, 1xNEAA).


Cells were spun down for 5 minutes at 500 g and re-suspended in fresh media. Suspensions were filtered through 44 uM filter to ensure a single cell suspension. Cells were counted and aliquoted at ˜300K per electroporation condition in a 15 ml conical tube. All the aliquots were pelleted for 5 minutes at 500 g and media removed just prior to nucleofection.


Nucleofection: 20 ul of the RNP/P2 mixture was used to resuspend the 300K cell pellet and resulting suspension was moved to a 16 well electroporation cuvette. Nucleofection was carried out on the Lonza X-unit (Lonza Bioscience) with the following settings: solution P2 and pulse code EN150.


Plating: Each nucleofected well (˜300K cells in 20 ul) was split into 2 wells of 12-well plates (8 ul per well) containing lml pre-warmed (1) plain medium or (2) medium supplemented with 10 uM Compound 6. Media was changed to plain medium (without Compound 6) in all wells 24 hours after plating. Cells were expanded for 10 days with media changes every 3 days until most wells were nearing confluence.


Harvesting: On day 10 after nucleofection, cells were washed 1× with PBS-, treated with 200 ul of 1X TrypLE Express for 7 minutes, and washed off in 2 ml of serum-containing media. Cells were pelleted for 5 min at 500 g and re-suspended in lml of fresh medium.


CUG foci FISH assay: cells were counted and plated in 384 well high content imaging plates in quadruplicate at 5K cells per well. Cells were allowed to attach overnight before fixation.


Preparation of samples for genotyping: 100 ul of cell suspension was pelleted in 1.7 ml tubes for 5 minutes at 500 g. Cell pellets were re-suspended in 100 ul of Lucigen QuickExtract buffer and lysed at 65° C. for 15 minutes followed by heat inactivation at 98° C. for 2 minutes. Extracts were stored at -80° C.


Preparation of samples for splicing assays: all remaining cells were pelleted in 1.7 ml tubes for 5 min at 500 g. Media was removed, and pellets were frozen until RNA processing.


Genotyping: A PCR mastermix was prepared as follows for 20 ul reactions: 10 ul Phusion 2× Master Mix, 1 ul 10 uM DMPK-nest-F primer, 1 ul 10 uM DMPK-nest-R primer, 7 ul of water. 3 ul of sample in QuickExtract DNA extraction buffer was added to 17 ul of master mix for each reaction. Cycling was performed as a touchdown program: 98° C. for 30 s, followed by 8 cycles of melting at 98° C. for 10 sec, annealing at 72° C. for lOs (decreasing by 0.5C per cycle), extension 72° C. for 30 s. Followed by 27 cycles of 98° C. for 10 s, 68° C. for 10 s, 72° C. for 30 S. Final extension at 72° C. for 10 minutes. Products were analyzed by electrophoresis on 2% agarose gels.


Electroporation & DNAPK-I Treatment (Individual Guides)


The protocol was as described above for the paired guide protocol, except as indicated herein. Electroporations were performed using P3 solution and pulse code CA137 and grown in 24 well plate with or without 10 uM Compound 6. RNP assembly was performed using 4 μL pre-annealed 100 μM guide and 2 μL Cas9 as described above. Harvesting: 48 hrs after nucleofection, cells were washed 1× with PBS-, treated with 200 ul of 1× TrypLE Express for 7 min, and washed off in 2 ml of serum-containing media. Cells were pelleted for 5 min at 500 g and re-suspended in lml fresh media.


For genotyping 50 ul of cell suspension was pelleted in 1.7 ml tubes for 5 min at 500 g. Cell pellets were re-suspended in 100 ul of Lucigen QuickExtract buffer and lysed at 65° C. for 15 min followed by heat inactivation at 98° C. for 2 min. Extracts were stored at −80° C.


Fluorescence In Situ Hybridization (FISH)/IF Co-Staining


MBNL1/(CUG)n foci imaging was used as an orthogonal method to evaluate CTG repeat excision with DMPK guide RNAs in DM1 fibroblasts.


Cells were fixed for 15 min at RT with 4% PFA and washed 5 times for 10 min in 1× PBS at RT. Cells were stored at 4° C. if not probed immediately.


For the fluorescence in situ hybridization (FISH) procedure, cells were permeabilized with 0.5% triton X-100, in 1× PBS at RT for 5 min.


Cells were prewashed with 30% formamide, 2× SSC for 10 min at RT. Cells were then probed for 2 hrs at 37° C., with a 1 ng/uL of Alexa546-(CAG)io probe in 30% formamide, 2× SSC, 2 ug/mL BSA, 66 ug/mL yeast tRNA, 2 mM vanadyl complex.


Cells were then washed for 30 min in 30% formamide, 2× SSC at 42° C., and then in 30% formamide, 2× SSC for 30 min at 37° C., then in 1× SSC for 10 min at RT, and last in 1× PBS for 10 min at RT. Cells were next probed overnight, at 4° C. with anti-MBNL1 antibody (1:1000 dilution, santacruz, 3A4) in 1× PBS +1%BSA. Cells were washed 2 times for 10 min at RT with 1× PBS. Cells were incubated with goat anti-rabbit Alexa 647 in 1× PBS +1%BSA (1:500 dilution) for 1 h at RT. Cells were washed 2 times, for 10 min at RT with 1× PBS. Cells were stained with Hoechst solution (0.1mg/m1) for 5 min, and then washed with 1× PBS once for 5 min.


PBS was aspirated and fresh PBS (100 ul) was added per well. Imaging plates were sealed with adhesive aluminum foils and imaged using MetaXpress (Molecular Devices).


Electroporation of iPS Cells


SpCas9 RNPs for electroporation into iPS cells were prepared as follows. SpCas9 crRNAs were resuspended at 200 μM in IDTE and tracrRNA was resuspended at 200 μM in duplex buffer. Equal amounts of 200 uM crRNA and 200 uM tracrRNA were mixed in a PCR tube, heated to 95° C., and allowed to cool to room temperature, giving guide complex at 100 μM.


Cpf1 guides were resuspended at 100 mM in IDTE.


RNP complexes for experiments corresponding to FIG. 22 were prepared by assembling 2 μL each of the 5′ guide, the 3′ guide, and the nuclease.


RNP complexes for experiments corresponding to FIG. 24 were prepared by assembling 4 μL each of the 5′ guide and the 3′ guide (or 8 μL of one guide where only one guide was used), and 3 μL of the nuclease.


Cell pellets were resuspended in 100 ul of pre-mixed P3 nucleofection solution and transferred to the tube containing pre-assembled RNP. 100 ul of RNP/Cell mixture was transferred to a nucleofection cuvette. Nucleofection was performed using a Lonza X-unit set for solution P3 and pulse code CA137. The cells were promptly moved from the cuvette to the pre-warmed media in the Laminin-coated plate splitting each nucleofection between pain medium or medium supplemented with 3 uM Compound 6 (for experiments corresponding to FIG. 24) or 1 μM Compound 3 (for experiments corresponding to FIGS. 22 and 23). The next day, media was changed to StemFlex +10 uM rock inhibitor. The following day, the media was changed again to StemFlex without rock inhibitor. Culture was continued for a total of 5 days.


Cells were detached using ReLeSR at 37° C. for 6 min and washed off with 2 ml StemFlex. 200 μ1 were passaged into a new 6-well dish with 2 ml StemFlex +4 ul Lamin 411 for further culturing and clonal isolation. The rest was split into 1.7 ml tubes as follows: 600 ul for protein; and 100 ul for DNA extraction.


DNA was extracted using Qiagen Blood and Tissue Kit following the manufacturer's protocol. Genotyping was performed as a nested PCR:


PCR1:


Primers: GDO_FA_F7 and GDO_FA_R7
















reagent
for 1 rxn




















10X buffer
2.5
ul



dNTP (2.5 uM)
2
ul



Fwd primer (10 uM)
0.5
ul



Rev primer (10 uM)
0.5
ul



ExTaq
0.125
ul



DNA
50
ng



ddH2O
To 25
ul










Cycling conditions:














Step
temp
time







1
98 C.
30 sec


2
98 C.
10 sec


3
58 C.
15 sec


4
72 C.
 5 min


5
goto step 2
 9 times


6
72 C.
15 min


7
12 C.
hold









Following completion, the PCR was diluted 1:10 and 2 ul was used as input in the next reaction (PCR2):


Primers: GDO_FA_F2 and GDO_FA_R2
















reagent
for 1 rxn




















10X buffer
2.5
ul



dNTP (2.5 uM)
2
ul



Fwd primer (10 uM)
0.5
ul



Rev primer (10 uM)
0.5
ul



ExTaq
0.125
ul



DNA
2
ul from PCR1



ddH2O
To 25
ul










Cycling conditions:














Step
temp
time







1
98 C.
30 sec


2
98 C.
10 sec


3
61.8 C.
15 sec


4
72 C.
 5 min


5
goto step 2
34 times


6
72 C.
15 min


7
12 C.
hold









Products were analyzed on a 2% agarose gel.


Cardiomyocyte differentiation protocol


Cardiomyocytes were prepared as follows. A culture of iPSCs was purified of differentiated cells by aspiration, then treated with accutase. Cells were plated at 0.133×106 cells per cm2 in StemFlex with ROCKi (10 uM final conc.) and were fed with StemFlex for 2 more days. Then (on “day 0”) media was changed to RPMI/B27 -insulin with small molecule CHIR99021 (StemCell Tech. Cat. no. 72052) (concentration depends on line). For days 1-3, media was changed to RPMI/B27 -insulin. For days 3-5, media was changed to RPMI/B27-insulin with small molecule IWP2 (Tocris Cat no. 3533) (5 uM). For days 5-7, media was changed to RPMI/B27 -insulin. For days 7-11, media was changed to RPMI/B27 +insulin. For days 11-15, media was changed to CDM3L:



















Stock
Example
Final









RPMI 1640 without
Basal
100 mL




glucose






rHA (Sigma Cat no.
 75 mg/mL
670 ul
 500 ug/mL



A9731-5 G)






L-ascorbic acid 2-
200 mM
330 ul
0.65 mM



phosphate (Sigma






Cat no. A8960)






Sodium DL-lactate
 1M
500 ul
  5 mM



(Sigma Cat no.






L4263)










Cardiomyocyte Nucleofection Protocol


Plates were prepared as follows. lmg/ml Fibronectin was diluted 1:100 in PBS and 200 ul was added per well in s 24-well plate. Plates were left at room temp for 2 hours. Fibronectin was removed and 500 ul of iCell Cardiomyocytes Maintenance Medium was added to each well and pre-warmed at 37° C.


RNPs were prepared essentially according to procedures described above for fibroblast experiments. Following RNP complex assembly, 20 ul of P3 solution (with supplement added) was added to each RNP and lul of electroporation enhancer (IDT) was added to each RNP mixture.


To prepare cells, media was aspirated from iPSC-derived cardiomyocytes grown in a 6-well dish and cells were washed 1× with 2 ml PBS per well. lml of TrypLE™ Select Enzyme (10X×) was added per well and cells were incubated for 10 min at 37° C.


Cells were gently pipetted and added to a 15mL tube with lml FBS +8 ml PBS per well in 6 well plate to inactivate TrypLE enzymes. Cells were spun down at 1000 RPM for 5 min, PBS was aspirated and cells were resuspended in fresh iCell Cardiomyocytes Maintenance Medium. Cells were passed through a 100um filter to 50mL tube, and slowly pipetted the resuspended cells through. Cells were counted and aliquoted ˜100K cardiomyocytes per nucleofection in 15 ml tubes. Cells were pelleted at 1000RPM for 5 minutes, and media was removed prior to nucleofection.


20 ul of the RNP/P3 mixture was used to resuspend the -100k cell pellet and the suspension was transferred to a 16 well electroporation cuvette. Nucleofection was carried out on the Lonza X-unit, with solution set to P3 and pulse code CA137. After nucleofections cells were plated in prepared 24 well plates and recovered for 48 hours prior to harvesting.


Media was removed and 100 ul of QuickExtract DNA extraction buffer was added to each well and pipetted up and down to remove all cells, then transferred to PCR tubes. Lysis was performed for 15 minutes at 65° C. followed by inactivation for 2 minutes at 98° C. Lysates were stored at −80° C.


Preparation of Neural Progenitor Cells


Basal media was prepared as follows:

















Component
Part Number
Volume









Neurobasal Media
Gibco, 21103-049
250 mL



Advanced DMEM/F12 Media
Gibco, 12634-010
250 mL



SM1 w/o Vitamin A
StemCell, 05731
 10 mL



N2-B
StemCell, 07156
 5 mL



GlutaMAX
Gibco, 35050-061
 5 mL



Normocin
Invivogen, Ant-NR-2
 1 mL










The following media were also used. Media 2: Basal media +1 μM LDN 193189 +10 μM SB431542. Media 3: Basal media +1 μM LDN 193189 +10 μM SB431542 +1 μM Cyclopamine +10 ng/mL FGF2. Media 4: Basal media +1 μM Cyclopamine +10 ng/mL FGF2. Media 5: Basal media +10 ng/mL FGF2. NPC Maturation Seeding Media: Basal media +1:100 laminin +1:1,000 Y-27632 ROCK inhibitor. BrainPhys Maturation Media:














Component
Part Number
Volume







BrainPhys Basal Media
StemCell, #05790
500 mL


SM1 w/ Vitamin A
StemCell, #05711
 10 mL


N2-A
StemCell, #07152
 5 mL


BDNF
Peprotech, 450-02
100 μL of 100 μg/mL


GDNF
Peprotech, 450-10
100 μL of 100 μg/mL


Dibutyryl cAMP
SCBT, SC-201567A
 2.5 mL of 100 mg/mL


Ascorbic Acid
Sigma, A4403-100MG
350 μL of 50 μg/mL


Normocin
Invivogen, An-NR-2
 1 mL









To seed iPSCs for neural re-patterning, human iPSCs were subcultured using StemFlex media supplemented at seeding with Laminin5-1-1 (1:400) in 6-well plates to approximately 80% confluence. Monthly mycoplasma analyses and regular karyotyping (5-10 passages) were generally performed to prevent culture artifacts from propagating.


On the day of seeding for differentiation (defined as Day 0), iPSCs were inspected for aberrant spontaneous differentiation. Generally, less than 10% of cultures should exhibit differentiated or loose morphology. Culture media was aspirated and cells were rinsed once with 3 mL Dulbecco's PBS (DPBS, divalent cation-free, Thermo Fisher # 14190144). DPBS was aspirated and 1 mL of warmed (25-35° C.) Accutase solution (Thermo Fisher # A1110501) was immediately dispensed. The plate was gently swirled to ensure even and complete dissociation, then incubated in a 3TC incubator for 10 minutes. The plate was firmly taped every 3-5 minutes to encourage iPSC colonies to dissociate from the plate.


Accutase was neutralized with at least 2 mL of warmed (25-35° C.) culture medium, typically StemFlex (StemCell Tech # 85850) or StemFlex (Thermo Fisher # A3349401). The cell solution was gently triturated to further dissociate any clumped cells.


The cell solution was transferred to a clean 50 mL conical tube and cells were pelleted by centrifugation at ˜150 RCF for 5 minutes.


After aspirating supernatant, the cell pellet was broken up by adding 1 mL of warmed StemFlex supplemented with Y-27632 ROCK inhibitor (1:1000 v/v) and gently tapping tube against the back of the hand. An additional 9 mL of culture media was added, and gently inverted to mix. A viable cell count was obtained using a ViCell Cell Viability Analyzer or equivalent device. 6E6 viable cells were diluted into a total of 12 mL iPSC culture media supplemented with Y-27632 ROCK inhibitor (1:1000) followed by dispensing 2 mL of the cell solution to each well of a matrigel-coated 6-well plate (1E6 cells per well seeding density), then rocking the plate perpendicularly 3-4 times in each direction (left-to-right, front-to-back) to evenly distribute cells in each well. Culture was maintained in a 3TC, 5% CO2, 85% RH incubator. The plates were then left undisturbed for at least 3 hours after seeding. Each day, the media was fully aspirated and replaced according to the following media schedule (see below regarding day 12). For each 6-well plate, prepare and warm at least 12-13 mL of media (2 mL per well). Cultures were inspected for morphological heterogeneity (should be low after first week) or matrigel layer breakdown. Media schedule:














DIV
Media








 0
StemFlex + ROCKi
Plate at 1E6/well MG-coated 6-well


 1
1:1 StemFlex + Media 1



 2
Media 2



 3
Media 2



 4
Media 3



 5
Media 3



 6
Media 3



 7
Media 3



 8
Media 3



 9
Media 4



10
Media 4



11
Media 4



12
Media 4
Accutase 10-15 m. Plate at




1.5E6/well MG-coated 6-well


13
Media 5



14
Media 5



15
Media 5



16
Media 5
Culture 2-3 passages, flow sort


17
Media 5
(Yuan: CD184+/SSEA4−/Tra-




1-60−/44−/271−/24+), expand in




6-well, then T75/175/225,




bank, karyotype









Passaging Re-Ppatterned NPCs


On Day 12, after inspecting the cultures for morphological heterogeneity, culture media was aspirated and cells were rinsed once with 3 mL Dulbecco's PBS (DPBS, divalent cation-free, Thermo Fisher # 14190144). DPBS was then aspirated followed by immediately dispensing 1 mL of warmed (25-35° C.) Accutase solution (Thermo Fisher # A1110501). The plate was gently swirled to ensure even and complete dissociation, then incubated in a 3TC incubator for 10 minutes. The plate was firmly tapped every 3-5 minutes to encourage iPSC colonies to dissociate from the plate. Accutase was neutralized with at least 2 mL of warmed (25-35° C.) Medium 4. Gently triturate cell solution to further dissociated any clumped cells.


Transfer cell solution to a clean 50 mL conical tube. Pellet cells by centrifugation at 300 RCF for 5 minutes. Supernatant was aspirated and the cell pellet was broken up by adding 1 mL of warmed culture media supplemented with Y-27632 ROCK inhibitor (1:1000 v/v) and gently tapping tube against the back of the hand. An additional 9 mL of culture media was added and the tube was gently inverted to mix cell solution. Cells were counted and 9E6 viable cells were diluted into a total of 12 mL iPSC culture media supplemented with Y-27632 ROCK inhibitor (1:1000). 2 mL of the cell solution was dispensed to each well of a matrigel-coated 6-well plate (1.5E6 cells per well maintenance density). The plate was rocked perpendicularly 3-4 times in each direction (left-to-right, front-to-back) to evenly distribute cells in each well. The culture was maintained in a 3TC, 5% CO2, 85% RH incubator. Plates were left undisturbed for at least 3 hours after seeding.


Each day, media was fully aspirated and replaced according to the above media schedule (2 mL media per well).


NPCs were passaged once per week and passaged twice prior to FACS sorting definitive NPCs (takes place during Passage 3).


NPC Flow Cytometry Labeling Protocol


A single-cell suspension was generated and it was confirmed that NPCs are highly dense (seeded at 9E6/6-well plate, allowed to propagate for 5-7 days) and morphologically homogeneous. Culture media was aspirated and cells were washed once with divalent cation-free Dulbecco's PBS (Thermo Fisher, # 14190250), then aspirated, and 1 mL of warmed (25-35° C.) Accutase (Thermo Fisher, # A1110501) was added followed by incubation at 37° C. for 10-15 minutes. The plate was tapped firmly to dislodge adherent NPCs.


Accutase was neutralized by adding 2 mL of warmed (˜35° C.) DMEM-F12 (Thermo Fisher, # 11320033). Cells were pelleted by centrifugation at 300 ×g for 5 minutes at 22° C. Supernatant was aspirated and NPCs resuspended in 5 mL warmed DMEM-F12. A cell count was generated using a ViCell Cell Counting system.


To immunolabel NPCs, the following procedure was used: dispense 2-5E7 cells into 50 mL conical tubes; pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature; aspirate supernatant, taking care not to disturb the cell pellet; wash the cells once in cation-free DPBS; gently triturate the cells to break up clumps; pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature; aspirate supernatant. Label live/dead cells using the fixable dye Zombie Aqua (BioLegend, # 423102) by dispensing 100 μL of diluted (1:250) dye to each well (except autofluorescence controls or fluorescence minus one controls). Foil and incubate cells at 4° C. for 15-30 minutes; pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature; aspirate supernatant; wash the cells once in cation-free DPBS. Gently triturate the cells to break up clumps; pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature; aspirate supernatant. Block non-specific labeling using cold (4° C.) Cell Staining Buffer (BioLegend, # 420201) for 30 minutes at 4C (foiled). After dispensing, gently triturate the cells to break up clumps. Pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature; aspirate supernatant. Dispense 100 μL of antibodies (see table below) per 5E6 total cells diluted in Cell Staining Buffer to each sample (except autofluorescence controls or fluorescence minus one controls). After dispensing, gently triturate the cells to break up clumps. Foil samples and incubate for 30 minutes at 4C. Note: Single-stained compensation controls can be produced using either water-lysed cells (Zombie Aqua L/D) or antibody capture beads (Thermo Fisher, # A10497)















Antigen/Marker
Fluorescent Dye
Manufacturer, Part Number
Dilution







CD15
PE/Cy5
BioLegend, 323014
1:50


CD24
BV421
BioLegend, 311122
1:100


CD44
APC/Fire750
BioLegend, 103062
1:50


CD184
PE/Dazz1e594
BioLegend, 306526
1:50


CD271
PE/Cy7
BioLegend, 345110
1:50


Tra-1-60
PE
BioLegend, 330610
1:50


SSEA4
AF488
BioLegend, 330412
1:50









After incubation, wash cells with 5 mL Cell Staining Buffer. Gently triturate the cells to break up clumps and evenly wash. Pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature. Aspirate supernatant. Wash the cells once more in cold Cell Staining Buffer. Gently triturate the cells to break up clumps. Pellet cells by centrifugation at 300 ×g for 5 minutes at room temperature. Aspirate supernatant.


Resuspend cells in Pre-Sort Buffer (BD Bioscience, # 563503) supplemented with normocin (1:500) to a final concentration of 7-10E6 cells per mL. Foil and store at 4C until sorting on BD FACSAria Fusion (within 1-2 hours). Sort into chilled, 15 mL conical tubes pre-coated and filled with 7 mL Media 5 supplemented with Y-27632 ROCK inhibitor (1:1000), normocin (1:500), and 15 mMolar HEPES (Thermo Fisher # 15630080, 1:67 dilution of 1 M stock).


NPC Flow Cytometry Sorting and Analysis


The following procedure was used for NPC sorting and analysis. Set up instrument (BD FACSAria Fusion) using standard settings for a 100-micron nozzle (100 μm-20 psi) with 300 RPM sample agitation and 4° C. sample storage. Run CS&T using beads (BD Biosciences, # 655051; 1 drop in 350 μL DPBS). Do not modify voltages from the CS&T settings. Run Accudrop calibration (BD Biosciences, # 345249; 1 drop in 500 μL DPBS). Left deflector plate position should be set to 32 for calibration, 58-60 for sorting. Verify droplets hit the center of a 15 mL conical tube filled to 7 mL with 70% ethanol. For each sample, collect 10,000 pre-sort events with P1 scatter gate as the stop gate. Set gates as shown below. Collect: FSC-A/SSC-A P1 ->SSC-H/SSC-W P2 ->FSC-H/FSC-W P3->L/D Zombie Aqua (−) (live cells) ->CD184 (+) ->Tra-1-60 (−)/SSEA4 (−) (non-iPSCs)->CD44 (−)/CD271 (−) (non-glia, non-neural crest) ->CD24 (+)/CD15 (lo/mid) (NPC). Sort 1.5-2E6 cells from each line. Keep all samples chilled before and after sort. Seed 1.5E6 viable NPCs suspended in 2 mL of Media 5 supplemented with Y-27632 ROCK inhibitor (1:1000) into a matrigel-coated 6-well plate.


NPC Scale Up


The following procedure was used to scale up NPCs: Passage NPCs once per week. For passage 4 (first passage post-FACS sorting): Confirm NPCs are highly dense (seeded at 9E6/6-well plate, allowed to propagate for 5-7 days) and morphologically homogeneous. Aspirate culture media, wash once with divalent cation-free Dulbecco's PBS (Thermo Fisher, # 14190250). Aspirate the DPBS, and dispense 1 mL of warmed (25-35° C.) Accutase (Thermo Fisher, # A1110501). Incubate at 37C for 8-10 minutes. Tap firmly to dislodge adherent NPCs. Neutralize Accutase by adding 1 mL of warmed (˜35C) Media 5 supplemented with Y-27632 ROCK inhibitor (1:1,000). Pellet cells by centrifugation at 300 ×g for 5 minutes at 22° C. Aspirate supernatant and resuspend NPCs in 5 mL warmed Media 5 supplemented with Y-27632 ROCK inhibitor (1:1,000). Generate a cell count using a ViCell Cell Counting system. Resuspend 9E6 viable NPCs in 12 mL of Media 5 supplemented with Y-27632 ROCK inhibitor (1:1,000). Dispense 2 mL into each well of a matrigel-coated 6-well plate. For passage 5, repeat the above procedure, but scale up to seed 12.5E6 NPCs in 15 mL of Media 5 supplemented with Y-27632 ROCKi (1:1,000). Dispense all cells into a matrigel coated T75 flask.


NPC Banking/Cryopreservation


The following procedure was used for banking/cryopreservation of NPCs: Confirm NPCs are highly dense (seeded at 12.5E6/plate in T75 format, allowed to propagate for 5-7 days) and morphologically homogeneous. Aspirate culture media, wash once with divalent cation-free Dulbecco's PBS (Thermo Fisher, # 14190250). Aspirate the DPBS, and dispense 1 mL of warmed (25-35° C.) Accutase (Thermo Fisher, # A1110501). Incubate at 37C for 10-15 minutes. Tap firmly to dislodge adherent NPCs. Neutralize Accutase by adding 2 mL of warmed (˜35C) Basal Media supplemented with Y-27632 ROCK inhibitor (1:1,000).


Pellet cells by centrifugation at 300 ×g for 5 minutes at 22° C. Aspirate supernatant and resuspend NPCs in 5 mL warmed Basal Media supplemented with Y-27632 ROCK inhibitor (1:1,000). Generate a cell count using a ViCell Cell Counting system. NPCs are banked at 12.5E6/mL in 1 mL CryoStorlO (StemCell Technologies, # 07930). Calculate the number of cells needed to fill the desired number of banked aliquots, then dispense the required volume of the NPC-containing Basal Media supplemented with Y-27632 ROCK inhibitor (1:1,000) into a new 50 mL conical tube. Pellet cells by centrifugation at 300 ×g for 5 minutes at 22° C. Resuspend NPCs in required volume of CryoStor10 (1 mL per desired aliquot), and dispense into 2 mL cryovials (Corning, # 430659). Quickly transfer filled cryovials to a Mr. Frosty freezing container (Thermo, # 5100-0001). Store at −80° C. for at least 24 hr, then transfer to long-term storage in liquid nitrogen.


Neuronal Maturation


The following procedure was used to prepare polyethyleneimine-coated plates: To 474 mL of sterile distilled water, add 25 mL of Borate Buffer pH 8.2 (20X; Sigma, # 08059) and 1 mL of polyethyleneimine (50%; Sigma, # 03880). Swirl the PEI with a Stripette. Sterile filter and store at 4° C. for <1 month. Dispense 0.1% PEI into cell culture plates and incubate at RT for 1 hour. Aspirate PEI. Wash four times with sterile distilled water. Aspirate to dry. Air-dry in a cell culture hood overnight. Store at 4° C. for <2 weeks.


For neuronal maturation, the following procedure was used: On the day of reseeding, confirm NPCs are highly dense (seeded at 12.5E6/T75 flask, allowed to propagate for 5-7 days) and morphologically homogeneous. Aspirate culture media, wash once with divalent cation-free Dulbecco's PBS (Thermo Fisher, # 14190250). Aspirate the DPBS, and dispense 1 mL of warmed (25-35° C.) Accutase (Thermo Fisher, # A1110501). Incubate at 37C for 8-10 minutes. Tap firmly to dislodge adherent NPCs. Neutralize Accutase by adding 2 mL of warmed (˜35C) Basal Media supplemented with Y-27632 ROCK inhibitor (1:1,000). Pellet cells by centrifugation at 300 ×g for 5 minutes at 22° C. Aspirate supernatant and resuspend NPCs in 5 mL warmed Basal Media supplemented with Y-27632 ROCK inhibitor (1:1,000). Generate a cell count using a ViCell Cell Counting system (or equivalent).


Resuspend required number of viable NPCs in Basal Media supplemented with laminin (1:100) and Y-27632 ROCK inhibitor (1:1,000). Dispense cell solution into a polyethyleneimine-coated vessel. The following day (DIV1) perform a full media change of Basal Media with laminin (1:1,000). On DIV 2, perform a full media change of a 50:50 mix of Basal Media with laminin (1:1,000), and BrainPhys supplemented with PD 0332991 (1:5,000), DAPT (1:2,500), laminin (1:1,000). From DIV 3-5, perform daily full media changes with BrainPhys supplemented with PD 0332991 (1:5,000), DAPT (1:2,500), laminin (1:1,000). From DIV7+perform 1/2 media changes with BrainPhys supplemented with PD 0332991 (1:5,000), DAPT (1:2,500), laminin (1:1,000) 2-3 times per week.


NPC Nucleofection


RNP complexes were prepared essentially as described above for fibroblast experiments.


The following procedure was used to prepare the cells. For Basal Media preparation: Combine 500 mL of Neurobasal with 500 mL of Advanced DMEM/F12, then add 20 mL of SM1 supplement (without VitA), 10 mL N2-B supplement, 10 mL GlutaMax, and 2 mL Normocin.


To coat cell culture vessel: Thaw Matrigel on ice at 4C overnight. Dilute 5 mL Matrigel into 495 mL of cold DMEM (1% vol/vol) and stored at 4C. Dispense 0.5 mL per well of a 12 well plate and incubated for 1 hour at RT. Aspirate Matrigel solution immediately prior to cell plating.


To prepare the cells: Aspirate culture media, wash once with divalent cation-free Dulbecco's PBS. Aspirate the DPBS, and dispense 1 mL of warmed (25-35° C.) Accutase. Incubate at 37C for 10-15 minutes. Dislodge adherent NPCs by tapping flask. Neutralize Accutase by adding 2 mL of warmed (˜35C) Basal Media (as above). Pellet cells by centrifugation at 300 ×g for 5 minutes at 22° C. Aspirate supernatant and resuspend NPCs in 5 mL warmed Basal Media (as above), pass through 40um cell strainer, and count. Aliquot cells in 15 ml tubes at 2.5E6 per nucleofection.


To nucleofect: resuspend cell pellets in 100 ul of pre-mixed P3 nucleofection solution and transfer to the tube containing pre-assembled RNP. Transfer 100 ul of RNP/Cell mixture to a nucleofection cuvette. Nucleofect using Lonza X-unit. Set solution to P3 and used pulse code CA137. Wash cells 1× in DPBS. Promptly move the cells from the cuvette to a 12 well pre-coated dish with pre-warmed media containing Rock inhibitor. For recovery, the next day, change the media to Basal Media supplemented with l0ng/mL FGF-2. Continue to culture for total of 5 days, with daily media change supplemented with 1 Ong/mL FGF-2, as above. For harvesting: detach cells using Accutase at 37C for 10 min. Wash 1× with DPBS, pelleted cells, removed PBS and froze pellets at −80C.


DNA was extracted using Qiagen Blood and Tissue Kit following manufacturer's protocol. DNA was digested with HindIII and sized by PCR/agarose electrophoresis using standard techniques. PCR primers:











(SEQ ID NO: 55)



5′-AGTTCAGCGGCCGCGCTCAGCTCCG







TTTCGGTTTCACTTCCGGT-3′;







(SEQ ID NO: 56)



5′-CAAGTCGCGGCCGCCTTGTAGAAAG







CGCCATTGGAGCCCCGCA-3′.






Neuron Nucleofection


Neurons (e.g., differentiated from NPCs as described above) were nucleofected as follows. RNPs were prepared essentially as described above for fibroblast experiments.


The enclosed supplement was added to AD1 nucleofection solution and 350 ul of solution was added to each RNP complex tube. 7.5 ul of 100 uM electroporation enhancer was added to each RNP tube just prior to nucleofection.


Media was removed from cells one well at a time and replaced with 350 ul of RNP-containing nucleofection solution. Once all wells were replaced, the electrode was gently inserted into well, avoiding bubbles. Cells were nucleofected using Lonza Y-unit nucleofector set to solution AD1 and pulse code EH-158. After nucleofection, the RNP solution was gently removed and replaced with fresh pre-warmed Brainphys media (described in maturation protocol). Cells were allowed to recover for 72 hours at 37° C. prior to harvesting. To harvest media was removed and cells were re-suspended in 500 ul of PBS, pelleted, PBS removed and pellets frozen.


DNA extraction and genotyping was performed as described above for NPC nucleofection.


Western Blot Protocol


Cell Pellets were resuspended in 1× MSD lysis buffer supplemented with protease and phosphatase inhibitors. 50 μl lysis buffer was used for 200K cells.


Lysates were vortexed and sonicated briefly (5-10 sec) at 20 Amp (using a Cole Parmer ultrasonic sonicator) before clearing by centrifugation at 21000× g for 10min at 4° C. Supernatants obtained can be used for protein estimation (BCA assay).


4× LDS buffer was added to the cleared supernatants to obtain a final concentration of lx LDS followed by boiling at 100° C. for 5min.


5-15 μg of cell lysate was run on a 4-12% NuPage Bis-tris gel with 1× MES SDS running buffer, followed by transfer onto a 0.204 Nitrocellulose membrane using the Transblot Turbo system (Instruction manual for catalog # 1704150). The blot was blocked for 1 hour at room temperature with LiCoR PBS blocking buffer (catalog # 927-40000). After one hour, overnight incubation was performed in primary antibody in LiCor PBS blocking buffer with 0.2% Tween-20 at 4° C. with rocking. Concentrations varied with the primary antibody efficiency.


The next day, the membrane was washed 3x times with PBS-T (0.1% tween-20), followed by a 1 hour incubation in secondary antibody (LiCor IRdye 800 or 680) at 1:10000 dilution in LiCoR PBS blocking buffer with 0.1% tween-20. The membrane was washed 3 times with PBS-T (0.1% tween-20), and proceed to signal detection of LiCor fluorescence using Odyssey CLx detector. Antibodies Used (Abcam): Vinculin: ab129002 (1:5000); Frataxin: ab110328 (1:250).


RNA Extraction & qRT-PCR


Mis-splicing correction was used as a functional readout of CTG repeat excision by dual DMPK guide RNAs in DM1 fibroblasts. Total RNA was extracted using Quick-RNA 96 kit in a volume of 20 ul (ZYMO Research). 10 ul of RNA was used to generate first strand cDNA by mixing with 10 ul of 2× RT mastermix from the high capacity cDNA RT kit (Thermo Fisher 4368814). Reaction mixes were spun down to remove air bubbles and loaded into a thermal cycler.


Reverse transcription was performed using a 3-step program, which consisted of 10 minutes at 25° C., 120 minutes at 37° C. , and 5 minutes at 85° C., followed by holding at 4° C.


Splicing was evaluated by qRT-PCR using the PowerUp SYBR green mastermix (Thermo Fisher A25742) in a Quantstudio 12K Flex Real-time PCR system. The composition of 10 ul of a 1× reaction is shown in Table 3 below. Primer sequences are listed in the Table of Additional Sequences.












TABLE 3








Volume(ul)



















SYBR MIX 2x
5.0



primer (10 uM)
0.8



cDNA
0.15



H2O
4.05



Total reaction
10.0










Source of Materials


The materials listed in Table 4 were obtained from the indicated vendors.











TABLE 4





Description
Catalog No.
Vendor







10 × 2 ml IDTE pH 7.5
11-01-02-02
IDT


(1X TE Solution)




10 × 2 mL Nuclease Free Duplex
11-01-03-01
IDT


Buffer




100 um Nylon Cell Strainer
352360
Corning


100x NEAA
11140050
Thermo Fisher


16% PFA
28908
Thermo Fisher


40 um Nylon Cell Strainer
352340
Corning


Accutase
NC9971356 or
Stemcell Technologies or



A1110501
ThermoFisher


AD1 4D-Nucleofector ™ Y Kit
V4YP-1A24
Lonza


Advanced DMEM/F12
12634-010
Gibco


Advanced DMEM/F12 Media
12634-010
Gibco


Alt-R ® A.s. Cas12a (Cpfl) Ultra, 500
10001273
IDT


μg




Alt-R ® Cas9 Electroporation Enhancer,
1075916
IDT


10 nmol




Alt-R ® CRISPR-Cas9 crRNA, 10 nmol
custom
IDT


Alt-R ® CRISPR-Cas9 tracrRNA, 100
1072534
IDT


nmol




Alt-R ® CRISPR-Cpfl crRNA, 10 nmol
custom
IDT


Alt-R ® S.p. Cas9 Nuclease V3, 500 μg
1081059
IDT


Anti-MBNL1 antibody
SC-47740
Santa Cruz Biotechnology


Ascorbic Acid
A4403-100MG
Sigma


BDNF
450-02
PeproTech


BrainPhys Basal Media
#05790
StemCell


Cyclopamine
239806
Millipore


DAPT
565770
Millipore


Dibutyryl cAMP
SC-201567A
SCBT


DM1 fibroblasts
GM04033
Cornell Institute


DMEM/F-12
11320033
ThermoFisher


DNeasy Blood and Tissue Kit (250)
69506
Qiagen


DPBS, no calcium, no magnesium
14190144
ThermoFisher


EmbryoMax 2-Mercaptoethanol (100X)
ES-007-E
EMD Millipore


FBS
F2442
Sigma


Fetal Bovine Serum
F8317-500ML
Sigma-Aldrich


FGF2
100-18B
PeproTech


FGF-Basic (AA 10-155) Recombinant
PHG0021L
ThermoFisher


Human Protein Solution




Fibronectin bovine plasma
F1141-5MG
Sigma-Aldrich


Formamide
221198
Sigma


GDNF
450-10
PeproTech


GlutaMAX
35050-061
Gibco


GlutaMax
35050-061
Gibco


GlutaMAX Supplement (100X)
35050061
ThermoFisher


Goat anti-Mouse IgG, Alexa 647
A32728
Thermo Fisher


Healthy fibroblasts
GM07492
Conic11 Institute


hESC-qualified Matrigel
354277
Corning


High capacity cDNA RT kit
4368814
Thermo Fisher


Hoechst 33258
H3569
Thermo Fisher


hTert-Neo Lentivirus
PLV-10133-200
Cellomics Technology


iCell Cardiomyocytes Maintenance
M1004
CellularDynamics


Medium




InSolution ™ Y-27632 (Rock inhibitor)
688002-1MG
Millipore


Knockout DMEM
10829-018
Invitrogen


Knockout Serum Replacement
10828-028
Invitrogen


Laminin
L2020-1MG
Sigma


Laminin 5-1-1
NP892-012
StemGent


Laminin 5-1-1
NP892-012
StemGent


LDN 193189
04-0074-02
StemGent


MEM media, HEPES, GlutaMAX
42360032
Thermo Fisher


N2-A
07152
StemCell Tech


N2-B
07156
StemCell Tech


Neurobasal Media
21103-049
Gibco


nonessential amino acids (100X)
11140050
ThermoFisher


Normocin
Ant-NR-2
Invivogen


P2 Primary Cell 4D-NucleofectorTM X
V4XP-2032
Lonza


Kit S




P3 Primary Cell 4D-NucleofectorTM X
V4XP-3032
Lonza


Kit S




PD 0332991
4786
Tocris


Phusion High-Fidelity PCR
F-531L
Thermo Fisher


Master Mix




PowerUp SYBR green mastermix
A25742
Thermo Fisher


QuickExtract ™ DNA Extraction
QE09050
Lucigen


Solution




Quick-RNA 96 kit
R1053
ZYMO Research


Recombinant human FGF-2
100-18B
PeproTech


ReLeSR
5872
Stemcell Technologies


RPMI 1640 Medium, GlutaMAX ™
72400120
ThermoFisher


Supplement, HEPES




SB431542
S4317
Sigma


SM1 supplement without VitA
05731
StemCell


SM1 w/ Vitamin A
#05711
StemCell


StemFlex
A3349401
ThermoFisher


TaKaRa Ex Taq ® DNA Polymerase
RR001B
Clonetech


TrypLE Express
12604013
Thermo Fisher


TrypLE ™ Select Enzyme (10X), no
A1217701
ThermoFisher


phenol red




Vanadyl Complex
R3380
Sigma


Y-27632 (ROCKi)
688002
EMD Millipore


Yeast tRNA
15401029
Thermo Fisher









2. TNR Excision of DMPK in Cardiomyocytes and Fibroblasts using paired gRNAs


Analysis of Excision by PCR and gel electrophoresis. Cardiomyocytes were treated with RNP comprising spCas9 and a pair of gRNAs targeting sites flanking the CTG repeat locus of DMPK1 via electroporation as described above. The gRNA pair was one of pairs A-H as indicated in Tables 5 and 6.









TABLE 5







Exemplary DMPK Guides













SEQ



Guide
Spacer Region
ID



RNA
Sequence
NO







DMPK-U50
cgagccccgttcgccggccg
3378







DMPK-U58
gctcgaagggtccttgtagc
3354







DMPK-U59
ctcgaagggtccttgtagcc
3346







DMPK-U57
cagcagcattcccggctaca
3330







DMPK-U60
agcagcagcagcagcattcc
3314







DMPK-R12
ctgctgctgctgctgctggg
2658







DMPK-R08
ctgctgctgctgctgctgct
2690







DMPK-D04
gcctggccgaaagaaagaaa
2546







DMPK-D03
tctactacggccaggctg
2554







DMPK-D10
tccacgtcagggcctcagcc
2498







DMPK-D16
gctgaggccctgacgtggat
2506

















TABLE 6







Exemplary DMPK Guide Pairs











Pair
Guide RNAs
SEQ ID NO







A
DMPK-U59 & DMPK-D03
3346 & 2554



B
DMPK-U59 & DMPK-D10
3346 & 2498



C
DMPK-U57 & DMPK-D03
3330 & 2554



D
DMPK-U57 & DMPK-D10
3330 & 2498



E
DMPK-U58 & DMPK-D04
3354 & 2546



F
DMPK-U58 & DMPK-D16
3354 & 2506



G
DMPK-U50 & DMPK-D04
3378 & 2546



H
DMPK-U50 & DMPK-D16
3378 & 2506










Pairs of guides comprising the following 18-mer spacer sequences were tested: SEQ ID NOs: 3348 and 2556; SEQ ID NOs: 3348 and 2500; SEQ ID NOs: 3332 and 2556; SEQ ID NOs: 3332 and 2500; SEQ ID NOs: 3356 and 2548; SEQ ID NOs: 3356 and 2508; SEQ ID NOs: 3380 and 2548; SEQ ID NOs: 3380 and 2508. More specifically, the tested guides were the tested 20-mer guide pairs in FIG. 7 as shown in Table 6.


The treatment resulted in excision of the CTG repeat locus to the extent indicated in FIG. 7, which shows electrophoretic separation of products of PCR using primers that flank the CTG repeat locus of DMPK1.


Wild-type and heterozygous DM1 patient cardiomyocytes were prepared from iPSCs and treated with RNP comprising spCas9 and a pair of gRNAs targeting sites flanking the CTG repeat locus of DMPK1 via electroporation as described above. The gRNA pair was one of pairs 1 or 2 (as shown in FIG. 8A), which are the same as pairs B and C, respectively, as indicated in Table 6. The treatment resulted in excision of the CTG repeat locus to the extent indicated in FIG. 8A, which shows electrophoretic separation of products of PCR using primers that flank the CTG repeat locus of DMPK1.


Wild-type and heterozygous DM1 patient fibroblasts were treated with RNP comprising spCas9 and a pair of gRNAs targeting sites flanking the CTG repeat locus of DMPK1 via electroporation as described above. The gRNA pair was one of pairs 1 or 2 (as shown in FIG. 8B) as indicated in Table 6. The treatment resulted in excision of the CTG repeat locus to the extent indicated in FIG. 8B, which shows electrophoretic separation of products of PCR using primers that flank the CTG repeat locus of DMPK1.


Excision of the CTG repeat locus was confirmed by Sanger sequencing for a representative product (FIG. 8C).


Analysis of excision by FISH for CUG foci and immunofluorescence for MBNL1 foci. Primary DM1 and wild-type fibroblasts were treated with RNP comprising spCas9 and a pair of gRNAs targeting sites flanking the CTG repeat locus of DMPK1 via electroporation as described above, or no gRNA (negative control). The gRNA pair was one of pairs A-D as indicated in Table 6. Samples of treated cells were assayed by FISH using the Alexa546-(CAG)io probe (custom-ordered from IDT) for the CUG repeat region of DMPK1 mRNA as described above. Samples of treated cells were also assayed by immunofluorescence for MBNL1 protein foci.


The number of CUG foci per nucleus was determined and is shown in FIG. 9A, with each of guide pairs A-D providing a reduction in CUG foci per nucleus relative to the negative control. A histogram of the number of CUG foci per nucleus in each treated cell population and unedited cells is shown in FIG. 11.


The number of MBNL1 foci per nucleus was determined and is shown in FIG. 9B, with each of guide pairs A-D providing a reduction in MBNL1 foci per nucleus relative to the negative control.


Analysis of RNA splicing. Primary DM1 fibroblasts were treated with RNP containing gRNA pair 7 (identical to pair C in Table 6) or mock-treated without gRNA as described above, or not treated. Splicing was assayed in MBNL1 (FIG. 10A), NCOR2 (FIG. 10B), FN1 (FIG. 10C) and KIF13A (FIG. 10D) mRNAs. Results indicated a decrease in mis-splicing in each assayed mRNA following treatment with RNP containing gRNA pair 7. FIG. 10E shows quantitative analysis of mis-splicing correction, expressed as percentage rescue in excised DM1 fibroblasts.


3. TNR Excision of DMPK with Inhibition of DNA-PK


hTert-transformed DM1 fibroblasts were treated as described above with or without 10 uM of the DNA-PK inhibitor Compound 6 and with RNP containing one of the DMPK gRNA pairs A-D (see Table 6). The treatment resulted in excision of the CTG repeat locus to the extent indicated in FIG. 12, which shows electrophoretic separation of products of PCR using primers that flank the CTG repeat locus of DMPK1. The band representing the excision product was noticeably more intense, and the band representing wild-type product was noticeably less intense, in the samples treated with Compound 6.


gRNAs comprising the 18-mer spacer sequences of SEQ ID NOs: 3332, 3316, 2660, 2692, 2556, and 2500 were tested. More specifically, the tested guides were the 20-mer guides as shown in Table 5 and Table 6.


hTert-transformed DM1 fibroblasts were treated as described above with or without 10 uM of the DNA-PK inhibitor Compound 6 and with RNP containing one of the following DMPK gRNAs: DMPK-U57 (SEQ ID NO: 3330) (gRNA # 4), DMPK-U60 (SEQ ID NO: 3314) (gRNA # 5), DMPK-R12 (SEQ ID NO: 2658) (gRNA # 6), DMPK-R08 (SEQ ID NO: 2690) (gRNA# 7), DMPK-D03 (SEQ ID NO: 2554) (gRNA # 9), or DMPK-D10 (SEQ ID NO: 2498) (gRNA # 10) (see Table 5, FIG. 13, FIG. 16). The treatment resulted in excision of the CTG repeat locus to the extent indicated in FIG. 13, which shows electrophoretic separation of products of PCR using primers that flank the CTG repeat locus of DMPK1. In the samples treated with Compound 6, the band representing the excision product was noticeably more intense for guides DMPK-U60, DMPK-R08, DMPK-D03, and DMPK-D10, and the band representing wild-type product was noticeably less intense for guides DMPK-U60, DMPK-R12, and DMPK-R08.


hTert-transformed DM1 fibroblasts were treated as described above with or without 10 uM of the DNA-PK inhibitor Compound 6 and with RNP containing one of the following DMPK gRNA pairs: A, B, C, or D (see Table 6). Cells were assayed for CUG foci per nucleus by FISH as described above. FIG. 14 shows histograms of CUG foci per nucleus for triplicate experiments with gRNA pairs A, B, C, or D, and for unedited healthy and patient cells. Treatment with each guide pair in the presence of Compound 6 provided a greater frequency of cells with 0 foci than cells treated with the guide pair in the absence of Compound 6, which showed a greater frequency of cells with 0 foci than unedited patient cells.


hTert-transformed DM1 fibroblasts were treated as described above with or without 10 uM of the DNA-PK inhibitor Compound 6 and with RNP containing one of the following DMPK gRNA pairs: A, B, C, or D. Pair A =guides DMPK-U59 and DMPK-D03; pair B =guides DMPK-U59 and DMPK-D10; pair C =guides DMPK-U57 and DMPK-D03; pair D =guides DMPK-U57 and DMPK-D10 ((sequences shown above, Table 5, and the sequence listing). Mock-treated (M) and cells treated with a control guide targeting AAVS1 (NT) (spacer sequence: accccacagtggggccacta, SEQ ID NO: 31) were also analyzed. The percentages of mis-spliced transcripts were determined for MBNL1 (FIG. 15A), NCOR2 (FIG. 15B), and FM1 (FIG. 15C) as described above. Relative DMPK expression was also determined (FIG. 15D). Partial restoration of RNA splicing was confirmed by qPCR for each of MBNL1, NCOR2, and FM1, with many results showing further enhancement in the presence of Compound 6. Editing did not significantly alter expression of DMPK.



FIG. 16 shows an overview of exemplary gRNAs used for single gRNA CTG repeat excision in human DMPK locus. gRNAs were designed to target a site 5′ or 3′ of the CTG repeat and include e.g., guides comprising SEQ ID NO: 3378 (gRNA # 1), SEQ ID NO: 3354 (gRNA # 2), SEQ ID NO: 3346 (gRNA# 3), SEQ ID NO: 3330 (gRNA # 4), SEQ ID NO: 3314 (gRNA # 5), SEQ ID NO: 2658 (gRNA # 6), SEQ ID NO: 2690 (gRNA # 7), SEQ ID NO: 2546 (gRNA # 8), SEQ ID NO: 2554 (gRNA # 9), SEQ ID NO: 2498 (gRNA # 10), and SEQ ID NO: 2506 (gRNA # 11).


4. Excision of Repeats of FMR1 Using Guide Pairs that Overlap Trinucleotide Repeats


M28 CHOC2 and mosaic CHOC1 neuronal precursor cells (NPC) were treated with a combination of 5′ and 3′ FMR1 gRNAs and SpCas9 via electroporation. Locations in FMR1 targeted by various guides are indicated in FIG. 17. DNA was isolated from cells treated with guides as follows. The 3′ guide for each of lanes A-E had the spacer sequence of SEQ ID NO: 5262. The 5′ guide had the spacer sequence of SEQ ID NOs: 5782, 5830, 5926, 5950, or 5998 for lanes A through E, respectively. Excision was analyzed by PCR and gel electrophoresis (FIG. 18). Excision products were visible for each tested guide combination.


5. Excision of CGG Repeats of FMR1 in CHOC1 Cells and in CHOC2 Cells


a. Excision of CGG Repeats of FMR1 in CHOC1 Cells


CHOC1 cells were genotyped using PCR and electrophoresis of the targeted locus (FIG. 19), which revealed a pre-existing deletion in the 5′ UTR. The deletion was characterized by sequencing as a 71-bp loss 5′ of the CGG repeat region that eliminated certain gRNA binding sites (data not shown).


Nonetheless, treatment of CHOC1 cells with one gRNA targeting a site 3′ of the CGG repeat region of FMR1, paired with a 5′ guide that targeted a sequence in the deleted region and therefore should have been ineffective, still resulted in repeat excision, indicating that one effective guide can be used to excise the repeats. Sequences from clones that underwent such excision with a single guide RNA (SEQ ID NO: 5262) are shown in FIG. 20. Junction sequences were consistent with repair through the MMEJ pathway.


b. Excision of CGG Repeats of FMR1 in CHOC2 Cells


CGG repeat excision was evaluated using single or paired gRNAs in differentiated, post-mitotic CHOC2 neurons after SpCas9 RNP electroporation. CHOC2 post-mitotic neurons were treated with RNP comprising spCas9 and guides as indicated below in Table 7a without DNA-PK inhibition. SEQ ID NOs are provided for the spacer region sequences. See Table 2 and/or the Sequence Listing for sequences.











TABLE 7A





Lane in




FIG. 21A
5′ guide
3′ guide







1
GDG_Cas9_IRES1
none



(SEQ ID NO: 5830)



2
GDG_Cas9_Fmr1_GGG1
none



(SEQ ID NO: 6022)



3
none
GDG_Cas9_Fmr1_1




(SEQ ID NO: 5262)


4
none
GDG_Cas9_Fmr1_GGG2




(SEQ ID NO: 5310)


5
GDG_Cas9_IRES1
GDG_Cas9_Fmr1_1



(SEQ ID NO: 5830)
(SEQ ID NO: 5262)


6
GDG_Cas9_Fmr1_GGG1
GDG_Cas9_Fmr1_GGG2



(SEQ ID NO: 6022)
(SEQ ID NO: 5310)









Excision of CGG repeats was analyzed by PCR (FIG. 21A). The experiment with the 3′ guide SEQ ID NO: 5262 gave a visible band representing a CGG repeat excision product (FIG. 21A, lane 3), which was confirmed by Sanger sequencing (not shown).


Excision of CGG repeats of FMR1 was further evaluated with treatment of a DNA-PK inhibitor. CHOC2 neuronal precursor cells (NPCs) were treated with RNPs comprising spCas9 and guides as indicated below in Table 7b. SEQ ID NOs are provided for the spacer region sequences. See Table 2 and/or the Sequence Listing for sequences. Following electroporation, CHOC2 NPCs were treated with DMSO or 304 DNA-PK inhibitor (compound 6) as indicated below in Table 7b.











TABLE 7B





Lane in

Inhibitor


FIG. 21B
Guide
(Compound 6)







B1
GDG_Cas9_Fmr1_1
No



(SEQ ID NO: 5262)



Cl
GDG_Cas9_Fmr1_B
No



(SEQ ID NO: 5334)



D1
Fmr1_IRES1 (SEQ ID NO: 5830)
No


E1
GDG_Cas9_Fmr1_B and Fmr1_IRES1
No



(SEQ ID NOs: 5334 and 5830)



F1
GDG_AAVS1_1 (SEQ ID NO: 53373)
No


G1
None (mock)
No


A2
GDG_Cas9_Fmr1_1
3 μM



(SEQ ID NO: 5262)



B2
GDG_Cas9_Fmr1_B
3 μM



(SEQ ID NO: 5334)



C2
Fmr1_IRES1 (SEQ ID NO: 5830)
3 μM


D2
GDG_Cas9_Fmr1_B and Fmr1_IRES1
3 μM



(SEQ ID NOs: 5334 and 5830)



E1
GDG_AAVS1_1 (SEQ ID NO: 53373)
3 μM


F2
None (mock)
3 μM


G2
None (negative control for PCR)
N/A









Excision of CGG repeats was analyzed by amplifying FMR1 DNA by PCR and separating the PCR products by electrophoresis using Agilent's 2200 TapeStation (FIG. 21B). The experiment with the 3′ guide SEQ ID NO: 5262 showed excision of CGG repeats (FIG. 21B, lanes B1 and A2). Of note, the more prominent bands (small arrowheads) in FIG. 21B, lane A2 demonstrate enhanced CTG excision with 3 uM Compound 6 compared to the DMSO control.


gRNAs comprising the 18-mer spacer sequences of SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312 were tested. More specifically, the tested guides were the 20-mer guides as shown in Tables 7a and 7b.


6. Excision of GAA Repeats at the Frataxin Locus of FXN


iPS cells (wild-type, 4670, or 68FA) were treated with an RNA-targeted endonuclease (Cpf1 or Cas9) and Frataxin gRNAs as follows, which flank the GAA repeats in the Frataxin locus, with or without 1μM Compound 3. Cpf1 FXN gRNA 1 and 2: SEQ ID NOs: 47047 and 7447, respectively; SpCas9 FXN gRNAs 1 and 2: SEQ ID NOs: 52898 and 26546. Repeat excision was analyzed by PCR and electrophoresis (FIG. 22). GAA repeat excision was improved in the presence of Compound 3. Clones that had undergone excision were sequenced at the Frataxin locus (FIG. 23). Sequences from clones that underwent excision in the absence of Compound 3 were consistent with repair by NHEJ only. 50% of the sequences from clones that underwent excision in the presence of Compound 3 were indicative of repair by MMEJ, and 50% were indicative of repair by NHEJ. Thus, treatment with Compound 3 reduced the frequency of NHEJ repair in favor of MMEJ repair.


Excision of repeats in the FXN locus resulted in elevated FXN levels (FIGS. 24B-C). Specifically, as illustrated in the workflow of FIG. 24A, FA iPSCs were electroporated with RNP comprising SpCas9 and a guide pair targeted to produce excision of a 0.4, 1.5, 5 or 11 kb fragment and grown with or without a Compound 6 (“Inh.” In FIG. 24A) and analyzed by Western blot either in bulk (FIG. 24B) or following clonal expansion of single cells isolated by FACS (FIG. 24C). Tested guide pairs were as follows: pair 1 (SEQ ID NOs: 52666 and 26562); pair 2 (GDG_SpCas9_FA_680 bp_5 (SEQ ID NO: 51322) and GDG_SpCas9_FA_880 bp_3 (SEQ ID NO: 28130)); pair 3 (GDG_SpCas9_FA_lkb_5 (SEQ ID NO: 50394) and GDG_SpCas9_FA_4 kb_3 (SEQ ID NO: 34442)); pair 4 (GDG_SpCas9_FA_1.3 kb_5 (SEQ ID NO: 49986) and GDG_SpCas9_FA_10 kb_3 (SEQ ID NO: 45906)). Bulk FXN expression noticeably increased relative to control in all DNA-PK-inhibitor treated populations (FIG. 24B). Multiple clones with increased expression were isolated from populations not treated with a DNA-PK inhibitor.


7. Model for MMEJ-based CGG-repeat excision at the Fragile-X locus of FMR1



FIG. 25 illustrates a mechanism for CGG repeat excision through an MMEJ pathway at the Fragile X locus in FMR1. Cleavage at the indicated location is followed by 5′ resection of the DNA ends, which exposes a 3′ end in which the last two nucleotides are G and A (5′ to 3′ direction). A microhomology search may identify one of several TC dinucleotides in the complementary strand (indicated by boxes and thick arrowheads in FIG. 25). The repair product resulting from use of any of these TC dinucleotides in MMEJ will lack the repeat region.


8. sgRNA screening in the 3′ UTR of DMPK


a. Materials and Methods


sgRNA selection. The 3′ untranslated region (UTR) of the DMPK gene was scanned for NGG or NAG SpCas9 protospacer adjacent motif (PAM) on either the sense or antisense strand, and 20-nucleotide sgRNA spacer sequences adjacent to the PAMs were identified. 172 sgRNAs with NGG PAM and 46 sgRNAs with NAG PAM were selected for evaluation of editing efficiency in HEK293T cells (Table 8).


Plasmids. An all-in-one expression vector pU6-sgRNA-Cbh-SpCas9-2A-EGFP that expresses sgRNA, SpCas9, and EGFP was used to subclone individual sgRNAs. The top and bottom strand oligos for each sgRNA were annealed and then subcloned into the Bbsl restriction sites of the pU6-sgRNA-Cbh-SpCas9-2A-EGFP vector as previously described (Ran, F.A. et al. (2013) Nat. Protoc. 8:2281-2308; PMID: 24157548).


Transfection and PCR amplification. pU6-sgRNA-Cbh-SpCas9-2A-EGFP vectors containing individual sgRNAs were transfected into HEK293T cells seeded in CELLSTAR black 96-well plates (Greiner) using either Lipofectamine 3000 (and 72 hr transfection time) or Lipofectamine 2000 (and 48 hr transfection time) as the transfection reagent (Thermo Fisher Scientific) following manufacturer's protocol. Post transfection, genomic DNA was isolated using DirectPCR lysis reagent (Viagen) supplemented with 0.5 mg/ml of proteinase K (Viagen), and used as template for subsequent PCR. The DMPK 3′ UTR region was amplified using GoTaq Green Master Mix (Promega) and PCR primers flanking the 3′ UTR region (SEQ ID NOs: 32 and 33) (Table of Additional Sequences). Amplification was conducted using the following cycling parameters: 1 cycle at 95° C. for 2 min; 40 cycles of 95° C. for 30 sec, 63° C. for 30 sec, and 72° C. for 90 sec; 1 cycle at 72° C. for 5 min.


Sanger sequencing and TIDE analysis. PCR products were sent to GeneWiz for purification and Sanger sequencing. Sequencing primer UTRsF3 (SEQ ID NO: 34) was used for sgRNAs upstream of the CTG repeat, while the reverse PCR primer (SEQ ID NO: 33) was used for downstream sgRNAs and 13 sgRNAs overlapping the CTG repeat region. The sgRNAs (DMPK-D75, DMPK-D76, DMPK-D85, DMPK-D86, DMPK-D102, DMPK-D103, DMPK-D104, DMPK-D105, DMPK-D119, DMPK-D120, DMPK-D121, DMPK-D122, DMPK-D123, DMPK-D124, DMPK-D125, DMPK-D126, DMPK-D127, DMPK-D128, DMPKD129) that were located close to the reverse PCR primer (SEQ ID NO: 33) were sequenced using sequencing primer UTRsF2 (SEQ ID NO: 35). Indel values were estimated using the TIDE analysis algorithm (DeskGen/Vertex) with the electrophoretograms obtained from Sanger sequencing. TIDE is a method based on the recovery of indels' spectrum from the sequencing electrophoretograms to quantify the proportion of template-mediated editing events (Brinkman, E. A. et al. (2014) Nucleic Acids Res. 42: e168; PMID: 25300484).


Off-target scoring of s2RNAs. Off-target sites were computationally predicted for each sgRNA based on sequence similarity to the hg38 human reference genome, specifically, any site that was identified to have up to 3 mismatches, or up to 2 mismatches and 1 DNA/RNA bulge, relative to the protospacer sequence as well as a protospacer adjacent motif (PAM) sequence of either NGG or NAG. An off-target score was then calculated for each sgRNA based on these computationally predicted off-target sites.


Specifically, each off-target site was given a weight representing the probability of it being edited, based on the site's degree of sequence similarity to the target site and its PAM sequence: (i) weighting based on the number of mismatches was calculated from the published metanalysis of empirical data at Haeussler, M. et. Al. (2016) Genome Biol., 17(148); PMID: 27380939 (if a DNA/RNA bulge was present at the off-target site, the bulge was counted as 2 additional mismatches, based on empirical data that off-target editing at sites with DNA/RNA bulges is observed less frequently than mismatches); and (ii) weighting based on the PAM sequence used the Cutting Frequency Determination model from Doench, J. G. et. Al. (2016) Nat Biotechnol., 34 (2): 184-191; PMID: 26780180. The weight for each off-target site was calculated by multiplying the site's weight based on number of mismatches with the site's weight based on PAM sequence. The overall off-target score for each sgRNA was calculated as the sum of weights for all associated predicted off-target sites. Overall, the off-target score for the sgRNA corresponds to the expected value of the number of off-target sites for that sgRNA. Higher off-target scores correspond with sgRNAs that are more likely to have off-target editing.


b. Results


Two hundred eighteen sgRNAs flanking the CTG repeat expansion of the DMPK gene (Table 8) were selected for editing the CTG repeat expansion. To avoid interference with the DIVIPK coding sequence and mRNA maturation, all selected sgRNAs were located within the 3′UTR of the DMPK gene between the stop codon and the end of the last exon. Among these 218 sgRNAs, 76 (DMPK-U01-DMPK-U76) are located upstream of the CTG repeat expansion (between the stop codon and the CTG repeat expansion), 129 sgRNAs (DMPK-D01-DMPK-D129) are located downstream of the CTG repeat expansion (between the CTG repeat expansion and the end of the last exon of DMPK), and 13 sgRNAs (DMPK-R01-DMPK-R13) are completely or partially overlapping the CTG repeat expansion.


Guides comprising the 18-mer spacer sequence of SEQ ID NOs: 4020, 4012, 4004, 4044, 4036, 4028, 3956, 3948, 3996, 3916, 3980, 3908, 3900, 3940, 3852, 3884, 2828, 3820, 3844, 3796, 3788, 3764, 3812, 3748, 3780, 3740, 3772, 3724, 3756, 3692, 3668, 3660, 3636, 3588, 3548, 3532, 3644, 3516, 3508, 3492, 3620, 3612, 3604, 3580, 3444, 3524, 3412, 3380, 3436, 3372, 3428, 3420, 3396, 3388, 3332, 3356, 3348, 3316, 3932, 3892, 3836, 3804, 3708, 3700, 3684, 3676, 3572, 3556, 3540, 3500, 3484, 3460, 3476, 3452, 2669, 2668, 2652, 2644, 2628, 2620, 2708, 2692, 2684, 2612, 2676, 2660, 2604, 2596, 2636, 2556, 2548, 2588, 2540, 2580, 2572, 2524, 2500, 2492, 2468, 2460, 2452, 2516, 2508, 2420, 2484, 2476, 2696, 2444, 2436, 2372, 2380, 2356, 2348, 2340, 2316, 2300, 2284, 2276, 2268, 2332, 2260, 2324, 2244, 2236, 2292, 2252, 2220, 2228, 2212, 2196, 2148, 2140, 2124, 2108, 2100, 2092, 2132, 2116, 2036, 2028, 2060, 2052, 2044, 1916, 1788, 1780, 1772, 1844, 1740, 1708, 1692, 1748, 1716, 1652, 1644, 1612, 1588, 1564, 1548, 1580, 1540, 1380, 1372, 1924, 1900, 1908, 1796, 1764, 1700, 1676, 1724, 1364, 1452, 2204, 2180, 2172, 2164, 2020, 2012, 1892, 1964, 1948, 1852, 1820, 1660, 1636, 1604, 1556, 1436, 1428, 1340, 1348, 1980, 1996, 1988, 1972, 1940, 1932, 1812, 1836, 1828, 1804, 1628, 1596, 1516, 1500, 1492, 1484, 1476, 1460, 1444, 1420, 1412, 1404, 1396, and 1388 were tested. More specifically, the exemplified guides were 20-mer guides as shown in Table 8.


To assess editing efficiencies, individual sgRNAs were subcloned into the pU6-sgRNA-Cbh-SpCas9-2A-EGFP vector, and transfected into HEK293T cells which contain 5 CTG repeats in the DMPK gene on both alleles. Genomic DNA was extracted 48 hr (for Lipofectamine 2000) or 72 hr (for Lipofectamine 3000) post transfection, and a 1174 bp sequence covering the CTG repeat expansion and the sgRNAs target sites was amplified by PCR. Sanger sequencing and TIDE analysis were then used to quantify the frequency of indels generated by each sgRNA. Results are shown from transfection with Lipofectamine 3000 for upstream guides (FIG. 26A), downstream guides (FIG. 26B), and guides located within or adjacent to CTG repeat expansion (FIG. 26C). Results are also shown from transfection with Lipofectamine 2000 for upstream guides (FIG. 27A), downstream guides (FIG. 27B), and guides located within or adjacent to CTG repeat expansion (FIG. 27C). With Lipofectamine 2000 transfection, thirteen upstream sgRNAs induced indels greater than 40% and 36 upstream sgRNAs induced indels greater than 20%, with DMPK-U32 displaying the highest activity (65% indel value) (FIG. 27A). Five downstream sgRNAs induced indels greater than 40% and 51 downstream sgRNAs induced indels greater than 20%, with DMPK-D87 displaying the highest activity (60% indel value) (FIG. 27B). Eight of the 13 sgRNAs overlapping the CTG repeat region contain more than five consecutive CTG or CAG repeat sequences and therefore didn't yield any indels in HEK293T cells (FIG. 27C). Among the five remaining CTG repeat region sgRNAs, DMPK-R06 resulted in the highest indel value of 20% (FIG. 27C). See also, Table 8, which provides the raw data shown in FIGS. 26 and 27, as well as the off-target score.













TABLE 8







% Indels with
% Indels with



SEQ

Lipofectamine
Lipofectamine
Off-


ID

2000 (4
3000 (3
target


NO
Guide RNA
replicates)
replicates)
Score



















4018
DMPK-U01
 7.60%
18.27%
0.056


4010
DMPK-U02
18.90%
16.00%
0.102


4002
DMPK-U03
 3.85%
 4.70%
0.173


4042
DMPK-U04
 2.28%
 3.47%
0.094


4034
DMPK-U05
16.18%
11.53%
0.117


4026
DMPK-U06
27.28%
25.27%
0.028


3954
DMPK-U07
10.85%
15.20%
0.185


3946
DMPK-U08
27.65%
28.23%
0.463


3994
DMPK-U09
19.95%
21.90%
0.040


3914
DMPK-U10
28.83%
41.97%
0.171


3978
DMPK-U11
13.53%
 8.30%
0.046


3906
DMPK-U12
 2.55%
 6.17%
0.194


3898
DMPK-U13
37.20%
23.27%
0.512


3938
DMPK-U14
48.23%
27.00%
0.186


3922
DMPK-U15
31.93%
20.23%
0.290


3858
DMPK-U16
15.68%
12.67%
0.194


3850
DMPK-U17
 8.10%
 9.70%
0.262


3882
DMPK-U18
 7.43%
 9.77%
0.780


3826
DMPK-U19
24.05%
32.00%
0.299


3818
DMPK-U20
49.85%
41.70%
0.323


3842
DMPK-U21
 7.20%
 6.23%
0.447


3794
DMPK-U22
63.90%
57.70%
0.116


3786
DMPK-U23
11.33%
11.10%
0.068


3762
DMPK-U24
21.63%
19.20%
0.001


3810
DMPK-U25
 9.23%
 8.80%
0.141


3746
DMPK-U26
62.30%
47.97%
0.205


3778
DMPK-U27
61.83%
74.53%
0.002


3738
DMPK-U28
 9.05%
12.50%
0.052


3770
DMPK-U29
31.70%
47.33%
0.070


3722
DMPK-U30
23.45%
22.07%
0.299


3754
DMPK-U31
11.98%
20.20%
0.040


3690
DMPK-U32
64.85%
55.17%
1.925


3666
DMPK-U33
 5.43%
10.17%
0.707


3658
DMPK-U34
33.28%
41.87%
0.201


3634
DMPK-U35
 5.98%
 7.70%
0.358


3586
DMPK-U36
 0.85%
 4.13%
0.714


3546
DMPK-U37
 9.05%
 8.90%
0.375


3530
DMPK-U38
20.33%
12.80%
0.538


3642
DMPK-U39
18.15%
14.57%
0.213


3514
DMPK-U40
46.98%
23.93%
0.600


3506
DMPK-U41
25.73%
15.60%
0.950


3490
DMPK-U42
15.70%
15.07%
0.593


3618
DMPK-U43
11.80%
12.57%
0.358


3610
DMPK-U44
20.40%
18.40%
0.533


3602
DMPK-U45
16.10%
16.10%
1.297


3578
DMPK-U46
 4.00%
 4.83%
1.282


3442
DMPK-U47
11.78%
10.63%
4.424


3522
DMPK-U48
28.43%
19.40%
0.904


3410
DMPK-U49
12.23%
 7.53%
0.194


3378
DMPK-U50
28.23%
21.30%
0.169


3434
DMPK-U51
24.25%
 9.97%
0.187


3370
DMPK-U52
41.18%
22.80%
0.019


3426
DMPK-U53
20.28%
12.53%
0.047


3418
DMPK-U54
54.73%
50.63%
0.138


3394
DMPK-U55
56.33%
51.47%
0.177


3386
DMPK-U56
54.28%
39.60%
0.033


3330
DMPK-U57
44.20%
36.90%
0.307


3354
DMPK-U58
30.58%
23.77%
0.055


3346
DMPK-U59
18.33%
11.20%
0.117


3314
DMPK-U60
19.80%
12.70%
21.127


3930
DMPK-U61
27.07%
N/A
0.370


3890
DMPK-U62
16.93%
N/A
1.013


3834
DMPK-U63
26.15%
N/A
1.228


3802
DMPK-U64
33.60%
N/A
0.359


3706
DMPK-U65
19.95%
N/A
0.614


3698
DMPK-U66
21.58%
N/A
1.017


3682
DMPK-U67
55.28%
N/A
0.685


3674
DMPK-U68
24.73%
N/A
0.340


3570
DMPK-U69
 4.95%
N/A
1.838


3554
DMPK-U70
13.03%
N/A
0.728


3538
DMPK-U71
14.03%
N/A
0.365


3498
DMPK-U72
 7.73%
N/A
10.292


3482
DMPK-U73
 6.28%
N/A
5.222


3458
DMPK-U74
11.35%
N/A
6.087


3474
DMPK-U75
13.23%
N/A
2.078


3450
DMPK-U76
 9.08%
N/A
4.829


2667
DMPK-R01
N/A
N/A
1224.362


2666
DMPK-R02
N/A
N/A
1022.174


2650
DMPK-R03
N/A
N/A
197.587


2642
DMPK-R04
 2.20%
 3.13%
19.022


2626
DMPK-R05
17.85%
15.37%
1.897


2618
DMPK-R06
20.33%
24.83%
1.003


2706
DMPK-R07
N/A
N/A
395.659


2690
DMPK-R08
N/A
N/A
195.498


2682
DMPK-R09
N/A
N/A
232.734


2610
DMPK-R10
 9.38%
 8.07%
0.343


2674
DMPK-R11
N/A
N/A
258.336


2658
DMPK-R12
N/A
N/A
72.335


2602
DMPK-R13
12.93%
 7.43%
72.335


2594
DMPK-D01
31.30%
20.13%
0.304


2634
DMPK-D02
 6.10%
 3.63%
1.456


2554
DMPK-D03
22.75%
16.77%
40.745


2546
DMPK-D04
20.43%
13.43%
1.066


2586
DMPK-D05
16.18%
13.17%
2.268


2538
DMPK-D06
 9.33%
 6.57%
0.725


2578
DMPK-D07
 6.88%
 4.57%
0.187


2570
DMPK-D08
20.73%
16.17%
0.327


2522
DMPK-D09
11.03%
 6.50%
1.280


2498
DMPK-D10
20.05%
21.30%
0.803


2490
DMPK-D11
 8.50%
 0.97%
0.335


2466
DMPK-D12
14.15%
16.60%
0.159


2458
DMPK-D13
26.68%
15.47%
0.061


2450
DMPK-D14
11.68%
 8.23%
0.34


2514
DMPK-D15
35.75%
33.37%
0.886


2506
DMPK-D16
21.08%
16.97%
0.281


2418
DMPK-D17
22.90%
16.40%
1.703


2482
DMPK-D18
16.30%
 5.50%
0.368


2474
DMPK-D19
19.70%
12.53%
0.152


2394
DMPK-D20
11.55%
 8.43%
3.383


2442
DMPK-D21
17.40%
16.30%
2.035


2434
DMPK-D22
14.80%
19.23%
2.634


2370
DMPK-D23
18.53%
12.43%
0.840


2378
DMPK-D24
10.53%
 9.23%
2.370


2354
DMPK-D25
 4.55%
 2.27%
0.146


2346
DMPK-D26
24.80%
12.23%
0.199


2338
DMPK-D27
24.85%
10.63%
2.016


2314
DMPK-D28
26.30%
14.97%
0.382


2298
DMPK-D29
19.68%
14.83%
0.054


2282
DMPK-D30
19.73%
17.47%
0.006


2274
DMPK-D31
18.63%
12.10%
0.002


2266
DMPK-D32
21.33%
18.00%
0.009


2330
DMPK-D33
15.08%
11.30%
4.191


2258
DMPK-D34
40.00%
29.83%
0.048


2322
DMPK-D35
38.65%
31.00%
0.046


2242
DMPK-D36
20.98%
26.20%
0.171


2234
DMPK-D37
 6.98%
 4.47%
0.080


2290
DMPK-D38
 5.63%
 6.57%
0.004


2250
DMPK-D39
 6.78%
 6.97%
0.149


2218
DMPK-D40
14.88%
15.17%
0.125


2226
DMPK-D41
27.53%
22.87%
0.245


2210
DMPK-D42
40.40%
30.37%
0.152


2194
DMPK-D43
26.45%
20.00%
0.647


2146
DMPK-D44
27.78%
18.47%
0.005


2138
DMPK-D45
11.40%
10.07%
0.285


2122
DMPK-D46
 7.28%
 6.17%
0.039


2106
DMPK-D47
13.65%
14.00%
0.276


2098
DMPK-D48
 5.00%
 6.63%
0.201


2090
DMPK-D49
19.80%
13.57%
0.174


2130
DMPK-D50
 9.33%
 5.30%
0.151


2114
DMPK-D51
15.75%
12.03%
0.228


2034
DMPK-D52
 5.50%
 4.93%
0.064


2026
DMPK-D53
19.35%
12.93%
0.065


2058
DMPK-D54
 7.65%
 4.37%
0.196


2050
DMPK-D55
 1.38%
 4.93%
0.309


2042
DMPK-D56
 5.23%
 4.47%
0.042


1914
DMPK-D57
34.05%
16.67%
0.175


1786
DMPK-D58
22.35%
13.10%
0.031


1778
DMPK-D59
28.95%
21.53%
0.005


1770
DMPK-D60
19.00%
12.90%
0.157


1842
DMPK-D61
27.95%
10.80%
0.222


1738
DMPK-D62
29.33%
16.63%
0.163


1706
DMPK-D63
37.30%
24.57%
0.446


1690
DMPK-D64
16.45%
 8.23%
0.346


1746
DMPK-D65
33.53%
24.00%
0.014


1714
DMPK-D66
25.80%
18.23%
0.046


1650
DMPK-D67
30.55%
20.13%
0.343


1642
DMPK-D68
29.15%
17.27%
0.264


1610
DMPK-D69
23.95%
16.43%
0.250


1586
DMPK-D70
23.45%
15.37%
0.143


1562
DMPK-D71
16.18%
14.63%
0.143


1546
DMPK-D72
12.18%
 8.17%
0.393


1578
DMPK-D73
30.68%
10.13%
0.486


1538
DMPK-D74
32.03%
14.77%
0.253


1378
DMPK-D75
26.23%
10.83%
0.055


1370
DMPK-D76
15.15%
 5.60%
0.011


1922
DMPK-D77
13.03%
 9.03%
0.258


1898
DMPK-D78
 6.45%
 3.63%
0.217


1906
DMPK-D79
 8.13%
 5.67%
0.278


1794
DMPK-D80
 4.25%
 2.37%
0.003


1762
DMPK-D81
11.93%
 6.67%
0.140


1698
DMPK-D82
 8.73%
 8.97%
0.226


1674
DMPK-D83
 7.00%
 5.00%
0.600


1722
DMPK-D84
 3.50%
 3.97%
0.073


1362
DMPK-D85
 5.30%
 1.43%
0.132


1450
DMPK-D86
 3.93%
 3.37%
0.043


2202
DMPK-D87
59.63%
39.33%
0.317


2178
DMPK-D88
46.20%
22.33%
0.836


2170
DMPK-D89
50.28%
38.60%
0.635


2162
DMPK-D90
29.68%
15.60%
0.343


2018
DMPK-D91
19.75%
 6.40%
0.029


2010
DMPK-D92
17.85%
10.90%
0.011


1890
DMPK-D93
18.80%
 7.37%
0.862


1962
DMPK-D94
22.55%
 9.10%
1.425


1946
DMPK-D95
17.23%
 6.90%
0.911


1850
DMPK-D96
21.38%
11.90%
0.166


1818
DMPK-D97
21.28%
12.37%
0.526


1658
DMPK-D98
11.23%
10.83%
0.164


1634
DMPK-D99
23.30%
16.90%
0.471


1602
DMPK-D100
23.33%
18.67%
0.100


1554
DMPK-D101
24.90%
15.37%
0.449


1434
DMPK-D102
17.80%
12.70%
0.039


1426
DMPK-D103
 9.35%
 8.60%
0.056


1338
DMPK-D104
 8.95%
15.53%
1.981


1346
DMPK-D105
 9.53%
14.97%
1.563


1978
DMPK-D106
18.70%
N/A
0.461


1994
DMPK-D107
19.80%
N/A
1.238


1986
DMPK-D108
 5.13%
N/A
0.630


1970
DMPK-D109
14.23%
N/A
0.861


1938
DMPK-D110
16.70%
N/A
0.879


1930
DMPK-D111
18.05%
N/A
0.256


1810
DMPK-D112
23.23%
N/A
0.025


1834
DMPK-D113
15.80%
N/A
0.805


1826
DMPK-D114
17.57%
N/A
0.137


1802
DMPK-D115
21.10%
N/A
0.116


1626
DMPK-D116
21.28%
N/A
0.528


1594
DMPK-D117
33.60%
N/A
0.035


1514
DMPK-D118
37.05%
N/A
0.803


1498
DMPK-D119
 9.50%
N/A
5.865


1490
DMPK-D120
12.55%
N/A
1.462


1482
DMPK-D121
11.23%
N/A
1.430


1474
DMPK-D122
 3.80%
N/A
6.627


1458
DMPK-D123
12.48%
N/A
0.689


1442
DMPK-D124
14.85%
N/A
0.211


1418
DMPK-D125
13.03%
N/A
0.066


1410
DMPK-D126
15.83%
N/A
0.036


1402
DMPK-D127
21.25%
N/A
0.043


1394
DMPK-D128
19.48%
N/A
0.019


1386
DMPK-D129
18.48%
N/A
0.039





* A guide may be referred to throughout, for example as “U6” or “U06”, without the zero preceding the number.






9. CTG Repeat Excision of DMPK with and Without DNA-PK Inhibition


a. Materials and Methods


Preparation of DM1 myoblasts and myotubes. Healthy human myoblast (P01431-18F) and DM1 patient myoblast (03001-32F) were obtained from Cook myosite. Primary human myoblast were cultured in growth medium consisting of Myotonic™ Basal Medium (Cook myosite, MB-2222) plus MyoTonic™ Growth Supplement (Cook myosite, MS-3333). Myoblast differentiation was induced by changing culture medium to MYOTONIC DIFFERENTIATION MEDIA (Cook myoite, MD-5555). Myotubes were formed after changing to differentiation medium, and myotube samples were collected 7 days post differentiation induction. Primary human myoblasts were further purified with EasySep Human CD56 Positive Selection Kit II (StemCell Tech 17855) following manufacturer's protocol 3 days before Nucleofection and maintain in growth medium until nucleofection of RNPs.


sgRNA selection. 42 sgRNAs were selected from the DMPK 3′ UTR screen in HEK293 T cells (Example 8) for further evaluation in DM1 myoblasts. The sgRNAs were selected based on editing efficiency in HEK293 T cells, in silico off-target score, and coverage of regions flanking the CTG repeat region. Of the 42 sgRNAs, 22 upstream and 20 downstream sgRNAs were selected (Table 9).


Preparation of RNPs. RNPs containing Cas9 and sgRNA were prepared at a ratio of 1:6 (single-cut screen) and 1:3 (double-cut screen) Cas:sgRNA. For single-cut screening, RNP complexes were assembled with 30, 20 or 10 pmole of Cas9 and 180,120 or 60 pmole of sgRNA respectively in 10 uL of electroporation buffer. After incubation at room temperature for 20 minutes, 10 uL of this solution was mixed with 3×105 primary myoblasts in 10 uL nucleofection buffer. For Double-cut screen, RNP complexes were first assembled for individual sgRNA with 10 pmole Cas9 and 30 pmole sgRNA in 5 uL electroporation buffer. After incubation at room temperature for 20 minutes, two RNPs were mixed at 1:1 ratio and then with 2×105 primary myoblasts in 10 uL electroporation buffer, so that final RNPs in each reaction contained 20 pmole cas9 +30 pmole sgRNA1 +30 pmole sgRNA2.


Delivery of RNPs to DM1 myoblasts. DM1 myoblasts (Cook myosite 03001-32F; 3×105 cells per reaction for single-cut screen; 2×105 cells per reaction for double-cut screen) were nucleofected with Cas9/sgRNA RNPs. The Lonza Nucleofector 96-well shuttle system was used to deliver Cas9 (Aldevron) and chemically modified sgRNAs (Synthego). In the single-cut screen, three doses of Cas9 (10, 20, or 30 pmols) were evaluated. In the double-cut screen, 20 pmol Cas9 was used. Following electroporation, myoblasts from each well of nucleofection shuttle device were split into 6 identical wells of the 96-well cell culture plate. 24 hours post electroporation, fresh medium were changed. These myoblasts were cultured until 72 hours post electroporation at 37° C/5% CO2, and then harvested for DNA extraction and fluorescent in situ hybridization (FISH) staining, or induced for myotube differentiation by replacing the culture medium with MYOTONIC DIFFERENTIATION MEDIA (Cook myoite, MD-5555) for additional 7 days. DM1 myotubes were then fixed for FISH or harvest for RNA extraction.


PCR Amplification. On day 3 post nucleofection, genomic DNA of DM1 myoblasts was isolated and amplified as described in Example 8.


Sanger sequencing and TIDE analysis. PCR products were analyzed as described in Example 8.


PacBio sequencing. PacBio long read sequencing was used to investigate the impact of guide and DNA PK inhibitor treatment on Cas9 gene editing near the DMPK CTG repeat. Long read sequencing was chosen over Illumina short read sequencing (<<300NT reads) to capture the full complexity of edits in our -1.2 kb amplicons. Gene specific primers CGCTAGGAAGCAGCCAATGA (SEQ ID NO: 53374) and TAGCTCCTCCCAGACCTTCG (SEQ ID NO: 53375), which amplify a 1219 NT amplicon centered on the CTG repeat of the DMPK gene, were appended with PacBio specific 16 NT indexes. The final format for the forward and reverse primers was /5Phos/GGGT(16NT_index) CGCTAGGAAGCAGCCAATGA (SEQ ID NO: 53376) and /5Phos/CAGT(16NT index) TAGCTCCTCCCAGACCTTCG (SEQ ID NO: 53377). The 5′ phosphorylation promotes ligation of the SMRTBell adaptor and the GGGT or CAGT bases added to the forward or reverse primers help to normalize ligation efficiency as well as to facilitate demultiplexing.


To generate the PacBio libraries, WT or DM1 cells were treated with guide and/or compound in 96 well plates. DNA was recovered using the DirectPCR Lysis Reagent (Viagen Bio, 301-C) according to the manufacturer's directions and frozen for future use. 2μl of this lysate was used in 25 μl PCR's with NEB's 2XQ5 PCR mix (New England Biolabs, M0491). Indexed primers were included at 250nM each. All primers and indexes used are shown below. A gradient was used to identify an optimal annealing temperature of 69° C. and a total of 30 cycles were used to generate sufficient amplicon for SMRTBell ligation while minimizing unnecessary amplification that could skew editing distributions. The cycling parameters used are below.



















Initial Denaturation
98° C.
30S



30 Cycles
98° C.
10S




69° C.
10S




72° C.
60S




72° C.
2 mins




 4° C.
hold










PCR's were diluted 1:10 in Molecular Biology grade water and run on an Agilent 4200 TapeStation (Agilent, G2991AA) using high sensitivity D5000 tapes (Agilent, 5067-5592). Prominent peaks 1200 nucleotides (NT) were detected as well as several smaller bands in some samples, indicative of deletions. Samples were pooled and purified with 2 sequential 0.7 X ratio AmpureXP beads steps (Beckman Coulter, A63880). Serial elution was performed with 100 μl and 25 μl TE according to the manufacture's protocol. Samples were ligated to SMRTBell adaptor and sequenced on a PacBio Sequel II (Fornax Biosciences) using an 8M SMRTCell for 10 hr data collection. Sequence demultiplexing, adapter removal and processing of subreads into circular consensus sequences were performed by Fornax Biosciences. PacBio barcode primers- Indexes (IDT Technologies) are shown in Table 9.














TABLE 9







Well


SEQ



Posi-


ID



tion
Printer
Sequence
NO









A1
bc_1001_
/5Phos/GGGTCACATATCAGAGT
53378




FWD_
GCGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A2
bc_1002_
/5Phos/GGGTACACACAGACTGT
53379




FWD_
GAGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A3
bc_1003_
/5Phos/GGGTACACATCTCGTGA
53380




FWD_
GAGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A4
bc_1004_
/5Phos/GGGTCACGCACACACGC
53381




FWD_

CGCGGCTAGGAAGCAGCCAATGA






PacB.PCR









A5
bc_1005_
/5Phos/GGGTCACTCGACTCTCG
53382




FWD_
CGTCGCTAGGAAGCAGCCAATGA





PacB.PCR









A6
bc_1006_
/5Phos/GGGTCATATATATCAGC
53383




FWD_
TGTCGCTAGGAAGCAGCCAATGA





PacB.PCR









A7
bc_1007_
/5Phos/GGGTTCTGTATCTCTAT
53384




FWD_
GTGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A8
bc_1008_
/5Phos/GGGTACAGTCGAGCGCT
53385




FWD_
GCGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A9
bc_l009_
/5Phos/GGGTACACACGCGAGAC
53386




FWD_
AGACGCTAGGAAGCAGCCAATGA





PacB.PCR









A10
bc_1010_
/5Phos/GGGTACGCGCTATCTCA
53387




FWD_
GAGCGCTAGGAAGCAGCCAATGA





PacB.PCR









A11
Bc_1011_
/5Phos/GGGTCTATACGTATATC
53388




FWD_
TATCGCTAGGAAGCAGCCAATGA





PacB.PCR









A12
bc_1012_
/5Phos/GGGTACACTAGATCGCG
53389




FWD_
TGTCGCTAGGAAGCAGCCAATGA





PacB.PCR









C1
bc_1025_
/5Phos/CAGTGCGCGAGCGTGTC
53390




REV_

TGCGAGCTCCTCCCAGACCTTCG






PacB.PCR









C2
bc_1026_
/5Phos/CAGTTGTGCGTGTCTCT
53391




REV_
GTGTAGCTCCTCCCAGACCTTCG





PacB.PCR









C3
bc_1027_
/3Phos/CAGTTGTGAGAGAGTGT
53392




REV_
GAGTAGCTCCTCCCAGACCTTCG





PacB.PCR









C4
bc_1028_
/5Phos/CAGTGAGAGTCAGAGCA
53393




REV_
GAGTAGCTCCTCCCAGACCTTCG





PacB.PCR









C5
bc_1029_
/3Phos/CAGTTCTATAGACATAT
53394




REV_
ATATAGCTCCTCCCAGACCTTCG





PacB.PCR









C6
bc_1030_
/5Phos/CAGTGAGCGCGATAGAG
53395




REV_
AGATAGCTCCTCCCAGACCTTCG





PacB.PCR









C7
bc_1031_
/5Phos/CAGTCACACACTCAGAC
53396




REV_
ATCTAGCTCCTCCCAGACCTTCG





PacB.PCR









C8
bc_1032_
/5Phos/CAGTCACTATCTCTAGT
53397




REV_
CTCTAGCTCCTCCCAGACCTTCG





PacB.PCR









C9
bc_1033_
/5Phos/CAGTAGAGACTGCGACG
53398




REV_
AGATAGCTCCTCCCAGACCTTCG





PacB.PCR









C10
bc_1034_
/5Phos/CAGTATATCTATATACA
53399




REV_
CATTAGCTCCTCCCAGACCTTCG





PacB.PCR









C11
bc_1035_
/5Phos/CAGTCAGAGAGTGCGCG
53400




REV_
CGCTAGCTCCTCCCAGACCTTCG





PacB.PCR









C12
bc_1036_
/5Phos/CAGTGTGTGCGACGTGT
53401




REV_
CTCTAGCTCCTCCCAGACCTTCG





PacB.PCR










PacBio data was processed using the PacBio SMRT Tools command line program. Circular consensus sequences were called and demultiplexed using the ccs and lima tools, respectively. Then, reads were aligned to the amplicon using pbmm2 (a wrapper for mimimap2). For alignment, the RNA sequencing presets in pbmm2 were used, on the assumption that these settings would allow detection of large deletions more accurately (because RNA sequencing alignment is already set up to detect introns).


For quality control, all reads were removed that did not map to the reference amplicon with a mapping score (MAPQ) of at least 30. Reads that were less than 400 or more than 1500 base pairs long were also removed. In addition, reads that were split across multiple alignments, reads with more than 20 soft-clipped bases at the beginning or end of the alignment, and reads which were not within at least 10 bp of spanning the entire CIGAR string were removed.


The CIGAR strings were parsed to call all variants observed in each read. Short indels in homopolymer regions were flagged as likely to be spurious, as PacBio sequencing is known to have a relatively high error rate in such areas. Pileups were generated with the bedtools genomecov tool.


Droplet digital PCR (ddPCR). ddPCR primer and probe sequences were designed with Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). The Target primer/probe set was used to detect CTG repeat excision, and the Reference primer/probe set was used as a control to amplify a region located in Exon 1 of DMPK gene. The primer and probe sequences are listed in Table 10 below.










TABLE 10







ddPCR













Oligo

Sequence
SEQ ID


Set
Type
Name
(5′→3′)
NO





Target
Forward
UTRF1
GGGGATCACA
53402



Primer

GACCATTTCT







Reverse
UTRR14
TGGAGGATGG
53403



Primer

AACACGGAC







Probe
UTRP2-
TTCTTTCGGC
53404




FAM
CAGGCTGAGG






CCCT






Reference
Forward
DMPKF8
GGATATGTGA
53405



Primer

CCATGCTACC







Reverse
DMPKR7
GGGTTGTATC
53406



Primer

CAGTACCTCT







Probe
DMPKP6-
TGTCCTGTTC
53407




HEX
CTTCCCCCAG






CCCCA









The 24 uL of ddPCR reaction consisted of 12 μL of Supermix for Probes (no dUTP) (Bio-Rad Laboratories), 1 μL of reference primers mix (21.6 μM), 1 μL of reference probe (6 μM), 1 IaL of target primers mix (21.6 μM), 1 μL of target probe (6 μM), and 8 μL of sample genomic DNA. Droplets were generated using probe oil with the QX200 Droplet Generator (Bio-Rad Laboratories). Droplets were transferred to a 96-well PCR plate, sealed and cycled in a C1000 deep well Thermocycler (Bio-Rad Laboratories) under the following cycling protocol: 95° C. for 10 min, followed by 40 cycles of 94° C. for 30 seconds (denaturation) and 58° C. for 1 min (annealing) followed by post-cycling steps of 98° C. for 10 min (enzyme inactivation) and an infinite 4° C. hold. The cycled plate was then transferred and read in the FAM and HEX channels using the Bio-Rad QX200 Droplet Reader run on a C1000 Thermal Cycler with a deep-well block (Bio-Rad Laboratories). All ddPCR reactions were run under the following thermal cycling conditions: 1) 95 ° C. for 10 min; 2) 94 ° C. for 30 sec; 3) 58 ° C. for 1 min; 4) steps 2 and 3 repeated 39 times; 5) 98 ° C. for 10 min. ddPCR analysis was performed by the Bio-Rad QuantaSoft Pro Software.


Fluorescence In Situ Hybridization (FISH).


MBNL1/(CUG)n foci imaging was used as an orthogonal method to evaluate CTG repeat excision with DMPK sgRNAs in DM1 myoblasts. Myogenin antibody were used to identify myonuclei in the myotubes differentiated from myoblasts.


Cells were fixed for 15 min at RT with 4% PFA and washed 5 times for 10 min each in lx PBS at RT. Cells were stored at 4° C. if not probed immediately.


For the FISH procedure, cells were permeabilized with 0.5% triton X-100, in 1× PBS at RT for 5 min.


Cells were prewashed with 30% formamide, 2x SSC for 10 min at RT. Cells were then probed for 15 minutes at 80° C., with a 1 ng/μL of Cy3-PNA(CAG)5 probe (PNA Bio, F5001) in 30% formamide, 2× SSC, 2 μg/mL BSA, 66 μg/mL yeast tRNA, 2 mM vanadyl complex.


Cells were then washed for 30 min in 30% formamide, 2x SSC at 42° C., and then in 30% formamide, 2× SSC for 30 min at 37° C., then in 1× SSC for 10 min at RT, and last in 1× PBS for 10 min at RT. Cells were next probed overnight, at 4° C. with anti-MBNL1 antibody (1:1000 dilution, Santacruz, 3A4) anti-Myogenin antibody (1:500 dilution, Abcam-only for Myotube samples) in lx PBS +1% BSA. Cells were washed 2 times for 10 min each at RT with 1× PBS. Cells were incubated with goat anti-rabbit Alexa 647 and goat anti-rabbit Alexa 488 (only for Myotubes) in 1× PBS +1% BSA (1:500 dilution) for 1 hour at RT. Cells were washed 2 times, for 10 min each at RT with lx PBS. Cells were stained with Hoechst solution (0.1 mg/ml) for 5 min, and then washed with 1× PBS once for 5 min.


PBS was aspirated and fresh PBS (100 p.1) was added per well. Imaging plates were sealed with adhesive aluminum foils and imaged using MetaXpress (Molecular Devices).


RNA Extraction and uRT-PCR. Mis-splicing correction was used as a functional readout of CTG repeat excision by pairs of sgRNAs in DM1 myotubes. RNA was extracted with TaqMan® Gene Expression Cells-to-CTTM Kit (Thermal Fisher, AM1728) according to manufacturer's protocol and analyzed by qRT-PCR as described in Example 1.


Primer sequences are listed in the Table of Additional Sequences.


b. Screening of sgRNAs for Editing Efficiency of DMPK in DM1 Myoblasts


Forty two sgRNAs flanking the CTG repeat expansion of the DMPK gene were selected for editing the CTG repeat expansion. Among these 42 sgRNAs, 22 were located upstream of the CTG repeat expansion (between the stop codon and the CTG repeat expansion) and 20 were located downstream of the CTG repeat expansion (between the CTG repeat expansion and the end of the last exon of DMPK or are partially overlapping the CTG repeat expansion).


gRNA comprising the 18-mer spacer sequence of SEQ ID NOs: 3332, 3916, 3420, 3748, 3780, 3396, 4028, 3692, 3796, 3388, 3940, 3684, 3820, 3660, 3724, 3804, 3860, 3516, 3772, 3372, 3356, 4012, 2204, 1708, 2212, 2172, 1780, 2260, 2116, 2180, 1644, 1740, 1748, 2324, 1772, 1540, 2516, 2460, 2196, 2596, 2164, or 2620 were tested. More specifically, the tested guides were the exemplified 20-mer guides as shown in Table 11.


To assess editing efficiencies, individual sgRNAs were prepared as RNPs with spCas9 and delivered to DM1 myoblasts. Genomic DNA was isolated from the cells and amplified by PCR. Sanger sequencing and TIDE analysis were used to quantify the frequency of indels generated by each sgRNA. Results are shown for upstream and downstream guides at three concentrations spCas9 (10, 20, or 30 pmols) as % editing efficiency by TIDE analysis (FIG. 28A, FIG. 28B). The % editing efficiencies at 20 pmol spCas9 are shown in Table 11.














TABLE 11





SEQ

Upstream or





ID

Downstream
TIDE
Large
CTG


NO
Guide RNA
sgRNA
(%)
Indel
Excision




















3330
DMPK-U57
Upstream
83.625
Yes
No


3914
DMPK-U10
Upstream
82.7
No



3418
DMPK-U54
Upstream
82.125
No



3746
DMPK-U26
Upstream
78.025
Yes
Yes


3778
DMPK-U27
Upstream
74.075
Yes
Yes


3394
DMPK-U55
Upstream
73.825
Yes
Yes


4026
DMPK-U06
Upstream
69.725
Yes
No


3690
DMPK-U32
Upstream
60.475
No



3794
DMPK-U22
Upstream
55.825
No



3386
DMPK-U56
Upstream
50.275
Yes
Yes


3938
DMPK-U14
Upstream
36.9
Yes
Yes


3682
DMPK-U67
Upstream
35.625
No



3818
DMPK-U20
Upstream
32.2
Yes
Yes


3658
DMPK-U34
Upstream
31.725
No



3722
DMPK-U30
Upstream
31.175
Yes
Yes


3802
DMPK-U64
Upstream
23.7
Yes
No


3858
DMPK-U16
Upstream
22.225
Yes
Yes


3514
DMPK-U40
Upstream
21.8
Yes
No


3770
DMPK-U29
Upstream
21.4
Yes
No


3370
DMPK-U52
Upstream
16.55
Yes
Yes


3354
DMPK-U58
Upstream
15.85
No



4010
DMPK-U02
Upstream
6.775
No



2202
DMPK-D87
Downstream
86.7
Yes



1706
DMPK-D63
Downstream
78.525
Yes
Yes


2210
DMPK-D42
Downstream
74.725
Yes
Yes


2170
DMPK-D89
Downstream
73.95
No



1778
DMPK-D59
Downstream
73.85
Yes



2258
DMPK-D34
Downstream
56
No



2114
DMPK-D51
Downstream
46.325
Yes
Yes


2178
DMPK-D88
Downstream
42.075
No



1642
DMPK-D68
Downstream
40.825
No



1738
DMPK-D62
Downstream
37.05
Yes
NA


1746*
DMPK-D65
Downstream
33.275
Yes



2322
DMPK-D35
Downstream
33.025
Yes
No


1770
DMPK-D60
Downstream
21.025
No



1538
DMPK-D74
Downstream
14.1
Yes
Yes


2514
DMPK-D15
Downstream
12.925
Yes
NA


2458
DMPK-D13
Downstream
10.1
Yes



2194
DMPK-D43
Downstream
6.925
Yes
NA


2594
DMPK-D01
Downstream
6.825
Yes
Yes


2162
DMPK-D90
Downstream
6.475
No



2618
DMPK-R06
Downstream
3
No






*May induce chromosomal rearrangement.






The editing efficiencies in DM1 myoblasts were compared to those obtained in HEK293T cells using a Spearman correlation (see Example 8 for HEK293 T cell data used in the analysis). FIG. 29 shows the Spearman correlation plot (myoblasts on the x axis and HEK293 T cells on the y axis) for the 42 upstream and downstream guide RNAs tested in both cell types. The comparison resulted in a Spearman correlation value of rho-0.528 and a p-value of 0.0002.


To visualize the editing efficiencies of individual sgRNAs targeting the 3′ UTR of DMPK, the PCR products from the genomic DNA of treated DM1 myoblasts were separated by DNA gel electrophoresis (FIG. 30). For some sgRNAs, high editing efficiency was not reflected in the TIDE score due to low-frequency large indels (>50 bp) induced in DM1 myoblasts. For example, sgRNA DMPK-U14 (SEQ ID NO: 3938) was found to induce a low-frequency large indels as evidenced by Sanger sequencing (FIG. 31A), and DNA gel electrophoresis (FIG. 31B). Other sgRNAs also induced large indels in DM1 myoblasts as indicated in Table 11 and as depicted in FIG. 32. Importantly, some individual sgRNAs induced large indels that resulted in excision of the CTG repeat region (see Table 11, FIG. 32).


Based on the TIDE scores in DM1 myoblasts (e.g., >30% editing efficiency, Table 11), 15 upstream sgRNAs (DMPK-U57, DMPK-U10, DMPK-U54, DMPK-U26, DMPK-U27, DMPK-U55, DMPK-U6, DMPK-U32, DMPK-U22, DMPK-U56, DMPK-U14, DMPK-U67, DMPK-U20, DMPK-U34, DMPK-U30) and 11 downstream sgRNAs (DMPK-D87, DMPK-D63, DMPK-D42, DMPK-D89, DMPK-D59, DMPK-D34, DMPK-D51, DMPK-D88, DMPK-D68, DMPK-D62, DMPK-D35) were identified for screening as pairs in DM1 myoblasts.


c. CTG repeat excision of DMPK with exemplary guide pairs in DM1 myoblasts


Pairs of sgRNAs were selected and tested for efficiency of CTG repeat excision in DM1 myoblasts, including 3 upstream sgRNAs (SEQ ID NOs: 3778, 3386, 3354) and 3 downstream sgRNAs (SEQ ID NOs: 2514, 2258, 2210). Each sgRNA was tested individually, and the following sgRNAs were tested as pairs (SEQ ID NOs: 3778 and 2258 (pair 1); 3778 and 2210 (pair 2); 3386 and 2258 (pair 3); 3386 and 2210 (pair 4); 3354 and 2514 (pair 5)).


To assess CTG repeat excision efficiencies, pairs of sgRNAs were prepared as RNPs with spCas9 (20 pmol) and delivered to DM1 myoblasts by nucleofection. CTG repeat excision was evaluated by PCR of the wildtype allele (schematic in FIG. 33A) in DM1 patient myoblasts treated with individual sgRNAs (SEQ ID NOs: 3778, 3386, 3354, 2514, 2258, 2210) or sgRNA pairs (SEQ ID NOs: 3778 and 2258; 3778 and 2210; 3386 and 2258; 3386 and 2210; 3354 and 2514) and were compared to healthy myoblasts. The wildtype allele and double-cut edited alleles were separated by DNA gel electrophoresis (FIG. 33B).


CTG repeat excision was further measured using a loss-of-signal ddPCR assay (schematic in FIG. 33A). The % correction of the disease allele was greater for the tested pairs of sgRNAs as compared to the individual sgRNAs (FIG. 33C).


CTG repeat excision was further evaluated by measuring the reduction of (CUG). RNA foci by FISH following treatment with sgRNA pairs or individual sgRNAs in DM1 myoblasts (FIG. 34) and DM1 myotubes (FIG. 35). In general, cells with mutant transcripts of CTG repeats are detained in nuclear RNA foci. Therefore, myoblasts treated with sgRNAs that excise the CTG repeats show a reduction in (CUG). RNA foci.


The accumulation of CUG repeat RNA can disrupt the function of proteins that normally regulate splicing, resulting in expression of mis-spliced mRNA products of other genes. The effect of CTG repeat excision in DMPK on splicing of other genes was evaluated in DM1 myotubes using the sgRNA pair (SEQ ID NO: 3386/2210). Results showed showing partial restoration of RNA splicing in BIN1 (FIG. 36A), DMD (FIG. 36B), KIF13A (FIG. 36C), and CACNA2D1 (FIG. 36D) mRNAs by qPCR.


d. CTG Repeat Excision of DMPK in DM1 Myoblasts with DNA-PK Inhibition


Individual guide RNAs from the screen for editing efficiency in DM1 myoblasts were further analyzed for CTG repeat excision with and without DNA-PK inhibition. Specifically, DM1 myoblasts were treated with RNPs containing spCas9 and guide RNAs (DMPK-U10 (SEQ ID NO: 3914), DMPK-U40 (SEQ ID NO: 3514), DMPK-D59 (SEQ ID NO: 1778), DMPK-D13 (SEQ ID NO: 2458), DMPK-U16 (SEQ ID NO: 3858), DMPK-U54 (SEQ ID NO: 3418), DMPK-D63 (SEQ ID NO: 1706), or DMPK-D34 (SEQ ID NO: 2258)) with 304 Compound 6 or DMSO. Samples were processed by PCR and TapeStation electrophoresis. More prominent bands in Compound 6 treated samples indicate enhanced excision rates compared to the DMSO control (FIG. 37, encircled).


Mis-splicing correction was also evaluated in DM1 myoblasts after dual gRNA CTG repeat excision with and without DNA-PK inhibition. DM1 myoblasts were treated with RNPs containing spCas9 and guide RNAs (SEQ ID NO: 3330 also referred to as DMPK-U57 and GDG_Cas9_Dmpk3; and SEQ ID NO: 2554 also referred to as DMPK-D03 and GDG_Cas9_Dmpk_6), with or without 3μM Compound 6. Mis-splicing correction was evaluated for genes GFTP1, BIN1, MBNL2, DMD, NFIX, GOLGA4, and KIF13A in cells treated with the pair of gRNAs (FIG. 38A), AAVS1 gRNA (FIG. 38B), or mock electroporated (FIG. 38C).


e. Dose Response of DNA-PK Inhibitor with Exemplary Guide Pairs


The dose response of DNA-PK inhibition on CTG repeat excision of DMPK was evaluated in DM1 patient fibroblasts (cells described above in Example 1). Cells were treated with RNPs containing spCas9 and guide pairs (SEQ ID NO: 3330 (GDG_DMPK3) and SEQ ID NO: 2506 (CRISPR-3); or SEQ ID NO: 3330 (GDG_DMPK3) and SEQ ID NO: 2546 (CRISPR-4)) and an increasing dose of Compound 6 (30nM, 300nM, 3 μM, and 10 μM), or DMSO. A stronger band corresponding to the excised product was observed for both pairs with increasing dose of DNA-PKi (FIG. 39A and FIG. 39B).


f. CTG repeat excision of DMPK with SaCas9 and with a DNA-PK inhibitor


Single guide excision was evaluated in DM1 patient fibroblasts (cells described above in Example 1) with and without DNA-PK inhibitor (Compound 6) using saCas9. Cells were treated with RNPs containing saCas9 and individual guides (FIG. 40B) (SEQ ID NO: 1153 (gRNA 1); SEQ ID NO: 1129 (gRNA2)).


g. Screening of CTG repeat excision with individual sgRNAs with DNA-PK inhibition


A screen of the 42 individual SpCas9 sgRNAs targeting the 3′ UTR of DMPK (Table 11) was performed in DM1 myoblasts with DMSO or 3 uM Compound 6. After electroporation cells were incubated with DMSO or 3 uM Compound 6 for 24 hours. FIGS. 41A-B show composites of electropherograms of PCR amplified 3′UTR region of DMPK from edited cells from two replicate experiments. Non-targeting control gRNAs included CDC42BPB gRNA (GAGCCGCACCUUGGCCGACA) (SEQ ID NO: 53408) and RELA gRNA (GAUCUCCACAUAGGGGCCAG) (SEQ ID NO: 53409). Exemplary PacBio sequencing read pileup results for single cut excision experiments show improved enhanced excision with DNA-PK inhibition (FIGS. 42A-F).


h. Screening of CTG repeat excision with guide pairs with DNA-PK inhibition


A screen of all pairwise combinations of the 42 SpCas9 sgRNAs targeting the 3′ UTR of DMPK gene (Table 11, 22 sgRNAs upstream of the CTG repeat and 20 downstream) was performed in DM1 patient fibroblasts (cells described above in Example 1). After electroporation with RNPs pre-loaded with each guide pair cells were incubated with DMSO or 3 uM Compound 6 for 24 hours. FIGS. 43A-E show composites of electropherograms of PCR amplified 3′UTR region of DMPK from edited cells. Samples (corresponding to the results shown in FIGS. 42A-E) were run on five plates as shown in Tables 12A-E below.






















TABLE 12A





Plate 1:

1
2
3
4
5
6
7
8
9
10
11
12







A
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06



guide














B
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01



guide














C
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13



guide














D
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15



guide














E
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34



guide














F
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35



guide














G
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42



guide














H
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43



guide





























TABLE 12B





Plate 2:

1
2
3
4
5
6
7
8
9
10
11
12







A
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51



guide














B
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60



guide














C
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59



guide














D
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62



guide














E
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63



guide














F
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65



guide














G
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68



guide














H
Upstream
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
RelAg



guide















Downstream
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74



guide





























TABLE 12C





Plate 3:

1
2
3
4
5
6
7
8
9
10
11
12







A
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06
R06


B
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01
D01


C
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13
D13


D
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15
D15


E
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34
D34


F
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35
D35


G
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42
D42


H
Upstream
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD



guide











C42















BPB



Downstream guide
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43
D43





























TABLE 12D





Plate 4:

1
2
3
4
5
6
7
8
9
10
11
12







A
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51
D51


B
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60
D60


C
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59
D59


D
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62
D62


E
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63
D63


F
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65
D65


G
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68
D68


H
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74
D74





























TABLE 12E





Plate 5:

1
2
3
4
5
6
7
8
9
10
11
12







A
Upstream guide
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
Rel















Ag



Downstream guide
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87


B
Upstream guide
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
Rel















Ag



Downstream guide
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88


C
Upstream guide
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
Rel















Ag



Downstream guide
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89


D
Upstream guide
U02
U06
U10
U14
U16
U20
U22
U26
U27
U29
U30
Rel















Ag



Downstream guide
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90


E
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87
D87


F
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88
D88


G
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89
D89


H
Upstream guide
U32
U34
U40
U52
U54
U55
U56
U57
U58
U64
U67
CD















C42















BPB



Downstream guide
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90
D90









10. Screen of Individual Frataxin sgRNAs


a. Materials and Methods


sgRNA Selection. A selected region containing the GAA repeat within intron 1 of the FXN gene was scanned for NGG SpCas9 protospacer adjacent motif (PAM) on either sense (+1) or antisense strand (−1), and guide sequences were generated based on the 20-nucleotide sgRNA spacer sequences adjacent to the PAMs. 218 sgRNAs were identified within the region upstream of the GAA repeat (chr9: 69 035 950-69 037 295), and 173 sgRNAs within the region downstream of the GAA repeat (chr9: 69 037 307-69 038 600) (Table 13). Computational off target prediction using an in-house algorithm was performed for each sgRNA in both upstream and downstream regions. Of the total 391 sgRNAs, a subset of 96 sgRNAs was selected to move forward into a screen evaluating editing efficacy in two patient cell lines of long repeat length and at two RNP (ribonucleoprotein) complex concentrations (see FIG. 44) for screen of Cas9/sgRNA RNP concentrations). The criteria for selection of sgRNAs included low off target score and genomic location. From this single-cut sgRNA screen, a total of 45 sgRNAs (25 sgRNAs upstream of the GAA repeat and 20 sgRNAs downstream of the GAA repeat) were selected to move forward into a sgRNA pair combination screen (Table 14).


The selection criteria included high editing efficacy across the conditions tested, genomic location and the presence of SNPs (single nucleotide polymorphisms).


Electroporation of RNP Complexes into FA Patient Cells. The Lonza Nucleofector 96-well shuttle system was used to deliver Cas9 (Aldevron) and chemically modified sgRNAs (Synthego) into two cell lines, derived from two patients with long GAA repeats: GM14518 (a lymphoblastoid cell line) and GM03665 (a fibroblast cell line) (Coriell Institute). RNP complexes were first assembled, comprising 36 pmol of Cas9 and 108 pmol sgRNA, in a volume of 12 uL of electroporation buffer. After incubation at room temperature for 30 minutes, this solution was mixed with cells in two dilutions, such that for each cell line two concentrations of RNPs were delivered: one with 15 pmol Cas9 +45 pmol sgRNA (“High”) and another with 7.5 pmol Cas9 +22.5 pmol sgRNA (“Low”). Following electroporation, cells were cultured for 72 hours at 37° C/5% CO2, and then harvested for DNA extraction.


Sanger sequencing and ICE analysis. The relevant loci for each guide were amplified by PCR and the products were sent to GeneWiz for Sanger sequencing. Due to the length and complexity of the locus being analyzed, the sequencing primer was customized for each sgRNA. The primer sequences used for amplification and sequencing of the appropriate locus are shown in the Table of Additional Sequences (SEQ ID NOs: 36-54). Indel values were estimated using ICE (inference of CRISPR edits) analysis algorithm (Synthego). ICE analysis is a method that quantifies the identity and prevalence of indels using Sanger sequencing data (Hsiau, T. et al. (2018) bioRxiv haps://www.biorxiv.org/content/10.1101/251082v3).


b. Results of Single-Cut Screen of Frataxin sgRNAs


A set encompassing 96 sgRNAs flanking the GAA repeat of the FXN gene was selected for editing efficacy evaluation. Among these, 56 sgRNAs were located upstream of the GAA repeat and 40 sgRNAs were positioned downstream of the GAA repeat. To evaluate editing efficacy, RNP complexes containing a chemically modified sgRNA and Cas9 protein were delivered to patient cell lines by nucleofection. Two RNP concentrations were used to obtain a comprehensive overview of editing efficiencies and differentiate the leading sgRNAs with highest cutting efficacy. Additionally, the consistency of indel efficacy between different cell types/donors was assessed for each sgRNA. These cell types consisted of patient lymphoblasts and fibroblasts of long repeat length. FIG. 458shows the indel efficacy of the 56 sgRNAs located upstream of the GAA repeat expansion. Of these, 29 sgRNAs had an indel efficacy higher than 50%, which was consistent between the conditions tested. FIG. 46 shows the indel efficacy of the 40 sgRNAs located downstream of the GAA repeat, with 21 sgRNAs having an efficacy higher than 50% in all conditions. These results, in addition to genomic location and SNP evaluation, provided the criteria to select a set of 45 sgRNAs (25 sgRNAs upstream of the GAA repeat and 20 sgRNAs downstream of the GAA repeat) for evaluating in a sgRNA pair combination screen for repeat excision efficiency. Other readouts to be evaluated include rescue of FXN mRNA and protein levels. The sgRNA pair screen will evaluate all possible combinations of the selected 25 upstream sgRNAs paired with the 20 downstream sgRNAs, resulting in a total of 500 combinations.









TABLE 13







Guide RNAs selected within the selected region


of the first intron of FXN containing the


GAA repeat.












SEQ



Guide
PAM


ID
Guide


RNA
Se-


NO
RNA
Position
Strand
sequence
quence















50106
FXN-U1
69036048
−1
GCTAGTCCAGCGCGCGTACC
CGG





51762
FXN-U2
69036768
−1
CTTTCAAGCCGTGGCGTAAC
TGG





50514
FXN-U3
69036188
−1
TTGACCCGCAGTCGCACCGC
AGG





51754
FXN-U4
69036767
−1
TTTCAAGCCGTGGCGTAACT
GGG





52290
FXN-U5
69036968
1
GCTGGTACGCCGCATGTATT
AGG





50074
FXN-U6
69036053
1
GTCGCTCCGGGTACGCGCGC
TGG





52298
FXN-U7
69036969
1
CTGGTACGCCGCATGTATTA
GGG





51474
FXN-U8
69036662
1
TGACGCCCATTTTGCGGACC
TGG





52306
FXN-U9
69036970
1
TGGTACGCCGCATGTATTAG
GGG





50490
FXN-U10
69036195
1
TTGTCCTGCGGTGCGACTGC
GGG





51730
FXN-U11
69036780
1
CAGTTACGCCACGGCTTGAA
AGG





50682
FXN-U12
69036248
1
GTGGAGGGGACCGGTTCCGA
GGG





51706
FXN-U13
69036771
1
TATCTGACCCAGTTACGCCA
CGG





50258
FXN-U14
69036095
−1
GTTGCAAGGCCGCTTCCGCC
GGG





50266
FXN-U15
69036096
−1
AGTTGCAAGGCCGCTTCCGC
CGG





52890
FXN-U16
69037229
1
TCCGGAGTTCAAGACTAACC
TGG





50482
FXN-U17
69036194
1
TTTGTCCTGCGGTGCGACTG
CGG





52098
FXN-U18
69036906
1
TTCACGAGGAGGGAACCGTC
TGG





50714
FXN-U19
69036247
−1
AGCCGCACACCCCTCGGAAC
CGG





50554
FXN-U20
69036213
1
GCGGGTCAAGGCACGGGCGA
AGG





50506
FXN-U21
69036201
1
TGCGGTGCGACTGCGGGTCA
AGG





51498
FXN-U22
69036656
−1
TCACACCAGGTCCGCAAAAT
GGG





52498
FXN-U23
69037055
−1
GTGGGCCAAATAACACGTGT
GGG





52874
FXN-U24
69037211
−1
AGTCTTGAACTCCGGACCTC
AGG





50978
FXN-U25
69036469
−1
TGAAAGTTTCACCTCGTTCC
AGG





50082
FXN-U26
69036037
−1
GCGCGTACCCGGAGCGACCC
CGG





51746
FXN-U27
69036783
1
TTACGCCACGGCTTGAAAGG
AGG





52106
FXN-U28
69036907
1
TCACGAGGAGGGAACCGTCT
GGG





51506
FXN-U29
69036657
−1
CTCACACCAGGTCCGCAAAA
TGG





50066
FXN-U30
69036028
−1
CGGAGCGACCCCGGCGTGCG
CGG





50690
FXN-U31
69036249
1
TGGAGGGGACCGGTTCCGAG
GGG





50674
FXN-U32
69036247
1
GGTGGAGGGGACCGGTTCCG
AGG





49882
FXN-U33
69035971
1
ATCCGCGCCGGGAACAGCCG
CGG





50578
FXN-U34
69036217
1
GTCAAGGCACGGGCGAAGGC
AGG





52082
FXN-U35
69036895
1
GTAGAGGGTGTTTCACGAGG
AGG





52506
FXN-U36
69037056
−1
TGTGGGCCAAATAACACGTG
TGG





50346
FXN-U37
69036142
1
TCTCCCGGTTGCATTTACAC
TGG





50538
FXN-U38
69036207
1
GCGACTGCGGGTCAAGGCAC
GGG





50058
FXN-U39
69036041
1
GCGCACGCCGGGGTCGCTCC
GGG





50050
FXN-U40
69036040
1
CGCGCACGCCGGGGTCGCTC
CGG





52066
FXN-U41
69036892
1
GTGGTAGAGGGTGTTTCACG
AGG





52386
FXN-U42
69036998
−1
ACACAAATATGGCTTGGACG
TGG





52090
FXN-U43
69036896
1
TAGAGGGTGTTTCACGAGGA
GGG





50186
FXN-U44
69036091
1
TCCTTCTCAGGGCGGCCCGG
CGG





52266
FXN-U45
69036946
−1
CGGCGTACCAGCCACTCTGA
AGG





50234
FXN-U46
69036081
−1
TCCGCCGGGCCGCCCTGAGA
AGG





52474
FXN-U47
69037061
1
AACTTCCCACACGTGTTATT
TGG





49922
FXN-U48
69035986
1
AGCCGCGGGCCGCACGCCGC
GGG





49994
FXN-U49
69035998
−1
CTGCGCAGGCGTGCGGCGTG
CGG





50586
FXN-U50
69036218
1
TCAAGGCACGGGCGAAGGCA
GGG





52258
FXN-U51
69036945
−1
GGCGTACCAGCCACTCTGAA
GGG





52434
FXN-U52
69037034
1
CTCTCCGGAGTTTGTACTTT
AGG





52674
FXN-U53
69037151
1
GATTTCCTGGCAGGACGCGG
TGG





50033
FXN-U54
69036029
1
CAGGGAGGCGCCGCGCACGC
CGG





51298
FXN-U55
69036587
−1
GAGGTTAGGGGAATCCCCCA
AGG





49962
FXN-U56
69036010
1
CGCACGCCGCACGCCTGCGC
AGG





51330
FXN-U57
69036599
−1
CCACGTCTCAGAGAGGTTAG
GGG





50706
FXN-U58
69036256
1
GACCGGTTCCGAGGGGTGTG
CGG





51778
FXN-U59
69036777
−1
GGTTTCCTCCTTTCAAGCCG
TGG





49986
FXN-U60
69036014
1
CGCCGCACGCCTGCGCAGGG
AGG





51322
FXN-U61
69036610
1
CCCCTAACCTCTCTGAGACG
TGG





50530
FXN-U62
69036206
1
TGCGACTGCGGGTCAAGGCA
CGG





52826
FXN-U63
69037206
1
CTAGGAAGGTGGATCACCTG
AGG





51234
FXN-U64
69036565
−1
GTCACACAGCTCTGCGGAGT
GGG





49906
FXN-U65
69035967
−1
GTGCGGCCCGCGGCTGTTCC
CGG





51338
FXN-U66
69036600
−1
GCCACGTCTCAGAGAGGTTA
GGG





49914
FXN-U67
69035985
1
CAGCCGCGGGCCGCACGCCG
CGG





51218
FXN-U68
69036564
−1
TCACACAGCTCTGCGGAGTG
GGG





51114
FXN-U69
69036522
−1
CGGGTCAGTTTCCAAAAGCC
AGG





49970
FXN-U70
69036011
1
GCACGCCGCACGCCTGCGCA
GGG





50226
FXN-U71
69036097
1
TCAGGGCGGCCCGGCGGAAG
CGG





52898
FXN-U72
69037219
−1
GCCAGGTTAGTCTTGAACTC
CGG





50946
FXN-U73
69036469
1
CGAAATGCTTTCCTGGAACG
AGG





50874
FXN-U74
69036405
1
GTGTGTGTGTTTGCGCGCAC
GGG





51490
FXN-U75
69036669
1
CATTTTGCGGACCTGGTGTG
AGG





52458
FXN-U76
69037027
−1
CAAGCCTAAAGTACAAACTC
CGG





50034
FXN-U77
69036030
1
AGGGAGGCGCCGCGCACGCC
GGG





50010
FXN-U78
69036012
−1
TGCGCGGCGCCTCCCTGCGC
AGG





50042
FXN-U79
69036031
1
GGGAGGCGCCGCGCACGCCG
GGG





49946
FXN-U80
69035991
−1
GGCGTGCGGCGTGCGGCCCG
CGG





52226
FXN-U81
69036925
−1
GGGATCCCCTTCCGCCTTCC
TGG





52666
FXN-U82
69037148
1
ATGGATTTCCTGGCAGGACG
CGG





51466
FXN-U83
69036656
1
TAAAGGTGACGCCCATTTTG
CGG





49890
FXN-U84
69035972
1
TCCGCGCCGGGAACAGCCGC
GGG





52394
FXN-U85
69037019
1
GCCATATTTGTGTTGCTCTC
CGG





50394
FXN-U86
69036159
1
CACTGGCTTCTGCTTTCCGA
AGG





52682
FXN-U87
69037145
−1
ATGAGCCACCGCGTCCTGCC
AGG





49898
FXN-U88
69035962
−1
GCCCGCGGCTGTTCCCGGCG
CGG





52354
FXN-U89
69036966
−1
TTCATCTCCCCTAATACATG
CGG





50002
FXN-U90
69036005
−1
CGCCTCCCTGCGCAGGCGTG
CGG





51346
FXN-U91
69036601
−1
AGCCACGTCTCAGAGAGGTT
AGG





50866
FXN-U92
69036404
1
TGTGTGTGTGTTTGCGCGCA
CGG





49938
FXN-U93
69035984
−1
GGCGTGCGGCCCGCGGCGTG
CGG





51250
FXN-U94
69036566
−1
GGTCACACAGCTCTGCGGAG
TGG





51154
FXN-U95
69036541
−1
CAGAATCTGGAATAAAGGTC
GGG





50370
FXN-U96
69036134
−1
AAGCCAGTGTAAATGCAACC
GGG





50890
FXN-U97
69036431
1
GCGCACACCTAATATTTTCA
AGG





51914
FXN-U98
69036831
1
GAGGAAGATTCCTCAAGGGG
AGG





50722
FXN-U99
69036253
−1
GGAGACAGCCGCACACCCCT
CGG





51362
FXN-U100
69036606
−1
AACAAAGCCACGTCTCAGAG
AGG





50378
FXN-U101
69036135
−1
GAAGCCAGTGTAAATGCAAC
CGG





51050
FXN-U102
69036507
1
TGCAGAATAGCTAGAGCAGC
AGG





51058
FXN-U103
69036508
1
GCAGAATAGCTAGAGCAGCA
GGG





50178
FXN-U104
69036074
−1
GGCCGCCCTGAGAAGGAGCG
GGG





50170
FXN-U105
69036088
1
CGCTCCTTCTCAGGGCGGCC
CGG





52418
FXN-U106
69037009
−1
TCCGGAGAGCAACACAAATA
TGG





52194
FXN-U107
69036930
1
CAAAGGCCAGGAAGGCGGAA
GGG





51202
FXN-U108
69036554
−1
CTGCGGAGTGGGGCAGAATC
TGG





51954
FXN-U109
69036849
1
GGAGGACATGGTATTTAATG
AGG





52250
FXN-U110
69036950
1
GGGGATCCCTTCAGAGTGGC
TGG





50410
FXN-U111
69036165
1
CTTCTGCTTTCCGAAGGAAA
AGG





51930
FXN-U112
69036830
−1
AATACCATGTCCTCCCCTTG
AGG





51682
FXN-U113
69036739
−1
TATTTCTTTGTACCCCCCAA
AGG





52594
FXN-U114
69037116
1
GTTGCCAGTGCTTAAAAGTT
AGG





52122
FXN-U115
69036913
1
GGAGGGAACCGTCTGGGCAA
AGG





51842
FXN-U116
69036798
−1
CATCCCCACAGCCATTCTTT
GGG





51890
FXN-U117
69036827
1
GGATGAGGAAGATTCCTCAA
GGG





49930
FXN-U118
69035977
−1
GGCCCGCGGCGTGCGGCCCG
CGG





52610
FXN-U119
69037109
−1
AAGTCCTAACTTTTAAGCAC
TGG





52834
FXN-U120
69037194
−1
CTCAGGTGATCCACCTTCCT
AGG





52242
FXN-U121
69036946
1
GGAAGGGGATCCCTTCAGAG
TGG





51162
FXN-U122
69036542
−1
GCAGAATCTGGAATAAAGGT
CGG





51530
FXN-U123
69036669
−1
TCCCATTTAATCCTCACACC
AGG





49162
FXN-U124
69036805
1
GAAACCCAAAGAATGGCTGT
GGG





50322
FXN-U125
69036120
−1
GCAACCGGGAGAACCAGAGA
AGG





51858
FXN-U126
69036799
−1
TCATCCCCACAGCCATTCTT
TGG





50154
FXN-U127
69036083
1
CACCCCGCTCCTTCTCAGGG
CGG





52402
FXN-U128
69037004
−1
AGAGCAACACAAATATGGCT
TGG





51962
FXN-U129
69036850
1
GAGGACATGGTATTTAATGA
GGG





50898
FXN-U130
69036435
1
ACACCTAATATTTTCAAGGC
TGG





51898
FXN-U131
69036828
1
GATGAGGAAGATTCCTCAAG
GGG





51818
FXN-U132
69036806
1
AAACCCAAAGAATGGCTGTG
GGG





51802
FXN-U133
69036804
1
GGAAACCCAAAGAATGGCTG
TGG





50202
FXN-U134
69036076
−1
CGGGCCGCCCTGAGAAGGAG
CGG





52786
FXN-U135
69037192
1
GCACTTTGGGAGGCCTAGGA
AGG





51658
FXN-U136
69036731
−1
TGTACCCCCCAAAGGAAGAA
AGG





50474
FXN-U137
69036183
1
AAAGGGGACATTTTGTCCTG
CGG





51258
FXN-U138
69036583
1
CGCAGAGCTGTGTGACCTTG
GGG





52026
FXN-U139
69036879
1
AGATGCCAAGGAAGTGGTAG
AGG





50930
FXN-U140
69036462
1
TTTTGAACGAAATGCTTTCC
TGG





51402
FXN-U141
69036627
1
ACGTGGCTTTGTTTTCTGTA
GGG





52210
FXN-U142
69036931
1
AAAGGCCAGGAAGGCGGAAG
GGG





51986
FXN-U143
69036867
1
TGAGGGTCTTGAAGATGCCA
AGG





50274
FXN-U144
69036118
1
GGCCTTGCAACTCCCTTCTC
TGG





51170
FXN-U145
69036546
−1
TGGGGCAGAATCTGGAATAA
AGG





51106
FXN-U146
69036521
−1
GGGTCAGTTTCCAAAAGCCA
GGG





50314
FXN-U147
69036119
−1
CAACCGGGAGAACCAGAGAA
GGG





50138
FXN-U148
69036080
1
GCTCACCCCGCTCCTTCTCA
GGG





52706
FXN-U149
69037178
1
TGCCCATAATCTCAGCACTT
TGG





50746
FXN-U150
69036274
−1
TCGCAGAGAAGTGACAAGCA
TGG





51922
FXN-U151
69036837
1
GATTCCTCAAGGGGAGGACA
TGG





52554
FXN-U152
69037094
1
GTTTGAAGAAACTTTGGGAT
TGG





52050
FXN-U153
69036873
−1
AACACCCTCTACCACTTCCT
TGG





52634
FXN-U154
69037138
1
GACTTAGAAAATGGATTTCC
TGG





51066
FXN-U155
69036509
1
CAGAATAGCTAGAGCAGCAG
GGG





50130
FXN-U156
69036079
1
AGCTCACCCCGCTCCTTCTC
AGG





52962
FXN-U157
69037256
−1
TTGTATTTTTTAGTAGATAC
TGG





52186
FXN-U158
69036929
1
GCAAAGGCCAGGAAGGCGGA
AGG





52954
FXN-U159
69037255
−1
TGTATTTTTTAGTAGATACT
GGG





51394
FXN-U160
69036626
1
GACGTGGCTTTGTTTTCTGT
AGG





51514
FXN-U161
69036678
1
GACCTGGTGTGAGGATTAAA
TGG





52042
FXN-U162
69036880
1
GATGCCAAGGAAGTGGTAGA
GGG





50418
FXN-U163
69036166
1
TTCTGCTTTCCGAAGGAAAA
GGG





51522
FXN-U164
69036679
1
ACCTGGTGTGAGGATTAAAT
GGG





50282
FXN-U165
69036109
−1
AACCAGAGAAGGGAGTTGCA
AGG





51450
FXN-U166
69036639
1
TTTCTGTAGGGAGAAGATAA
AGG





51650
FXN-U167
69036730
−1
GTACCCCCCAAAGGAAGAAA
GGG





52546
FXN-U168
69037074
−1
AAGTTTCTTCAAACACAATG
TGG





52650
FXN-U169
69037142
1
TAGAAAATGGATTTCCTGGC
AGG





50298
FXN-U170
69036127
1
ACTCCCTTCTCTGGTTCTCC
CGG





51266
FXN-U171
69036584
1
GCAGAGCTGTGTGACCTTGG
GGG





52170
FXN-U172
69036910
−1
CTTCCTGGCCTTTGCCCAGA
CGG





52538
FXN-U173
69037073
−1
AGTTTCTTCAAACACAATGT
GGG





52138
FXN-U174
69036918
1
GAACCGTCTGGGCAAAGGCC
AGG





50434
FXN-U175
69036167
1
TCTGCTTTCCGAAGGAAAAG
GGG





52002
FXN-U176
69036873
1
TCTTGAAGATGCCAAGGAAG
TGG





52802
FXN-U177
69037195
1
CTTTGGGAGGCCTAGGAAGG
TGG





50914
FXN-U178
69036075
−1
GGGCCGCCCTGAGAAGGAGC
GGG





51642
FXN-U179
69036729
−1
TACCCCCCAAAGGAAGAAAG
GGG





52522
FXN-U180
69037088
1
CATTGTGTTTGAAGAAACTT
TGG





50802
FXN-U181
69036314
1
GTTTCAGTAATATTAATAGA
TGG





50466
FXN-U182
69036164
−1
CAAAATGTCCCCTTTTCCTT
CGG





52154
FXN-U183
69036922
1
CGTCTGGGCAAAGGCCAGGA
AGG





50906
FXN-U184
69036427
−1
AATCCAGCCTTGAAAATATT
AGG





51090
FXN-U185
69036522
1
GCAGCAGGGGCCCTGGCTTT
TGG





52618
FXN-U186
69037129
1
AAAAGTTAGGACTTAGAAAA
TGG





52530
FXN-U187
69037089
1
ATTGTGTTTGAAGAAACTTT
GGG





51834
FXN-U188
69036812
1
AAAGAATGGCTGTGGGGATG
AGG





52370
FXN-U189
69036986
1
TTAGGGGAGATGAAAGAGGC
AGG





51594
FXN-U190
69036734
1
TTAGTTCCCCTTTCTTCCTT
TGG





52714
FXN-U191
69037179
1
GCCCATAATCTCAGCACTTT
GGG





51874
FXN-U192
69036826
1
GGGATGAGGAAGATTCCTCA
AGG





51618
FXN-U193
69036737
1
GTTCCCCTTTCTTCCTTTGG
GGG





51602
FXN-U194
69036735
1
TAGTTCCCCTTTCTTCCTTT
GGG





51610
FXN-U195
69036736
1
AGTTCCCCTTTCTTCCTTTG
GGG





52906
FXN-U196
69037238
1
CAAGACTAACCTGGCCAACA
TGG





52946
FXN-U197
69037241
−1
GATACTGGGTTTCACCATGT
TGG





51626
FXN-U198
69036738
1
TTCCCCTTTCTTCCTTTGGG
GGG





51082
FXN-U199
69036515
1
AGCTAGAGCAGCAGGGGCCC
TGG





52162
FXN-U200
69036925
1
CTGGGCAAAGGCCAGGAAGG
CGG





50602
FXN-U201
69036222
1
GGCACGGGCGAAGGCAGGGC
AGG





50610
FXN-U202
69036226
1
CGGGCGAAGGCAGGGCAGGC
TGG





51242
FXN-U203
69036582
1
CCGCAGAGCTGTGTGACCTT
GGG





51786
FXN-U204
69036798
1
AAAGGAGGAAACCCAAAGAA
TGG





52346
FXN-U205
69036982
1
TGTATTAGGGGAGATGAAAG
AGG





52842
FXN-U206
69037211
1
AAGGTGGATCACCTGAGGTC
CGG





52770
FXN-U207
69037188
1
CTCAGCACTTTGGGAGGCCT
AGG





52746
FXN-U208
69037169
−1
TCCCAAAGTGCTGAGATTAT
GGG





50658
FXN-U209
69036239
1
GGCAGGCTGGTGGAGGGGAC
CGG





51226
FXN-U210
69036581
1
TCCGCAGAGCTGTGTGACCT
TGG





52738
FXN-U211
69037182
1
CATAATCTCAGCACTTTGGG
AGG





50634
FXN-U212
69036232
1
AAGGCAGGGCAGGCTGGTGG
AGG





50650
FXN-U213
69036234
1
GGCAGGGCAGGCTGGTGGAG
GGG





51282
FXN-U214
69036571
−1
CCCAAGGTCACACAGCTCTG
CGG





50618
FXN-U215
69036229
1
GCGAAGGCAGGGCAGGCTGG
TGG





50642
FXN-U216
69036233
1
AGGCAGGGCAGGCTGGTGGA
GGG





52930
FXN-U217
69037236
−1
TGGGTTTCACCATGTTGGCC
AGG





52754
FXN-U218
69037170
−1
CTCCCAAAGTGCTGAGATTA
TGG





26138
FXN-D1
69037325
1
AAAGAAAAGTTAGCCGGGCG
TGG





26146
FXN-D2
69037327
−1
CAGGCGCGCGACACCACGCC
CGG





26186
FXN-D3
69037346
−1
TCTGGAGTAGCTGGGATTAC
AGG





26226
FXN-D4
69037354
−1
CCGCAGCCTCTGGAGTAGCT
GGG





26242
FXN-D5
69037355
−1
GCCGCAGCCTCTGGAGTAGC
TGG





26178
FXN-D6
69037359
1
TGTAATCCCAGCTACTCCAG
AGG





26266
FXN-D7
69037364
−1
GATTCTCCTGCCGCAGCCTC
TGG





26202
FXN-D8
69037365
1
CCCAGCTACTCCAGAGGCTG
CGG





26218
FXN-D9
69037369
1
GCTACTCCAGAGGCTGCGGC
AGG





26282
FXN-D10
69037387
1
GCAGGAGAATCGCTTGAGCC
CGG





26298
FXN-D11
69037388
1
CAGGAGAATCGCTTGAGCCC
GGG





26314
FXN-D12
69037391
1
GAGAATCGCTTGAGCCCGGG
AGG





26362
FXN-D13
69037394
−1
TAATGCAACCTCTGCCTCCC
GGG





26370
FXN-D14
69037395
−1
TTAATGCAACCTCTGCCTCC
CGG





26338
FXN-D15
69037397
1
CGCTTGAGCCCGGGAGGCAG
AGG





26394
FXN-D16
69037419
−1
CGGAGTGCATTGGGCGATCT
TGG





26426
FXN-D17
69037428
−1
CGCCCAGGCCGGAGTGCATT
GGG





26442
FXN-D18
69037429
−1
TCGCCCAGGCCGGAGTGCAT
TGG





26386
FXN-D19
69037431
1
CAAGATCGCCCAATGCACTC
CGG





26402
FXN-D20
69037436
1
TCGCCCAATGCACTCCGGCC
TGG





26410
FXN-D21
69037437
1
CGCCCAATGCACTCCGGCCT
GGG





26466
FXN-D22
69037439
−1
TCTTGCTCTGTCGCCCAGGC
CGG





26474
FXN-D23
69037443
−1
GGAGTCTTGCTCTGTCGCCC
AGG





26498
FXN-D24
69037464
−1
ATTATTATTATTTTTTGAGA
CGG





26562
FXN-D25
69037515
−1
CCTATTTTTCCAGAGATGCT
GGG





26570
FXN-D26
69037516
−1
GCCTATTTTTCCAGAGATGC
TGG





26530
FXN-D27
69037517
1
AATGGATTTCCCAGCATCTC
TGG





26546
FXN-D28
69037526
1
CCCAGCATCTCTGGAAAAAT
AGG





26578
FXN-D29
69037535
1
TCTGGAAAAATAGGCAAGTG
TGG





26602
FXN-D30
69037544
1
ATAGGCAAGTGTGGCCATGA
TGG





26634
FXN-D31
69037547
−1
AGGAGATCTAAGGACCATCA
TGG





26658
FXN-D32
69037557
−1
GCTTTCCTAGAGGAGATCTA
AGG





26626
FXN-D33
69037563
1
ATGGTCCTTAGATCTCCTCT
AGG





26682
FXN-D34
69037567
−1
ATAAATGTCTGCTTTCCTAG
AGG





26698
FXN-D35
69037585
1
GAAAGCAGACATTTATTACT
TGG





26746
FXN-D36
69037618
1
CTATCTGAGCTGCCACGTAT
TGG





26754
FXN-D37
69037619
1
TATCTGAGCTGCCACGTATT
GGG





26786
FXN-D38
69037619
−1
AGGGGTGGAAGCCCAATACG
TGG





26834
FXN-D39
69037634
−1
GCTGTCCACACAGGCAGGGG
TGG





26842
FXN-D40
69037637
−1
CATGCTGTCCACACAGGCAG
GGG





26850
FXN-D41
69037638
−1
CCATGCTGTCCACACAGGCA
GGG





26858
FXN-D42
69037639
−1
CCCATGCTGTCCACACAGGC
AGG





26794
FXN-D43
69037640
1
GGCTTCCACCCCTGCCTGTG
TGG





26882
FXN-D44
69037643
−1
ACAACCCATGCTGTCCACAC
AGG





26818
FXN-D45
69037649
1
CCCTGCCTGTGTGGACAGCA
TGG





26826
FXN-D46
69037650
1
CCTGCCTGTGTGGACAGCAT
GGG





26978
FXN-D47
69037708
−1
CTCCAGCCTGGGCAACAAGA
GGG





26986
FXN-D48
69037709
−1
ACTCCAGCCTGGGCAACAAG
AGG





26976
FXN-D49
69037713
1
GAGTTTCCCTCTTGTTGCCC
AGG





26954
FXN-D50
69037717
1
TTCCCTCTTGTTGCCCAGGC
TGG





27026
FXN-D51
69037719
−1
GAGCCACTGCACTCCAGCCT
GGG





27034
FXN-D52
69037720
−1
TGAGCCACTGCACTCCAGCC
TGG





27002
FXN-D53
69037727
1
TTGCCCAGGCTGGAGTGCAG
TGG





27114
FXN-D54
69037760
−1
CACTTGAACCCAGGAGGCAG
AGG





27074
FXN-D55
69037762
1
TCACTGCAACCTCTGCCTCC
TGG





27082
FXN-D56
69037763
1
CACTGCAACCTCTGCCTCCT
GGG





27138
FXN-D57
69037766
−1
GAGAATCACTTGAACCCAGG
AGG





37002
FXN-D58
69037769
−1
CAGGAGAATCACTTGAACCC
AGG





27218
FXN-D59
69037788
−1
GCTACTCGGGAGGCTGAGGC
AGG





27234
FXN-D60
69037792
−1
CCCAGCTACTCGGGAGGCTG
AGG





27258
FXN-D61
69037798
−1
GATAATCCCAGCTACTCGGG
AGG





27274
FXN-D62
69037801
−1
GCCGATAATCCCAGCTACTC
GGG





29314
FXN-D63
69037802
1
GCCTCAGCCTCCCGAGTAGC
TGG





27282
FXN-D64
69037802
−1
AGCCGATAATCCCAGCTACT
CGG





27210
FXN-D65
69037803
1
CCTCAGCCTCCCGAGTAGCT
GGG





27250
FXN-D66
69037811
1
TCCCGAGTAGCTGGGATTAT
CGG





27338
FXN-D67
69037853
1
AGAGACAGATTTCTCCATGT
TGG





27378
FXN-D68
69037856
−1
CGAGACCAGCCTGACCAACA
TGG





27354
FXN-D69
69037858
1
CAGATTTCTCCATGTTGGTC
AGG





27362
FXN-D70
69037862
1
TTTCTCCATGTTGGTCAGGC
TGG





27394
FXN-D71
69037883
1
GGTCTCGAACTCCCAACCTC
AGG





27426
FXN-D72
69037883
−1
TGGGCGGATCACCTGAGGTT
GGG





27434
FXN-D73
69037884
−1
GTGGGCGGATCACCTGAGGT
TGG





27442
FXN-D74
69037888
−1
CGAGGTGGGCGGATCACCTG
AGG





27466
FXN-D75
69037899
−1
CTTTGGGAGGGCGAGGTGGG
CGG





27482
FXN-D76
69037902
−1
GCACTTTGGGAGGGCGAGGT
GGG





27490
FXN-D77
69037903
−1
AGCACTTTGGGAGGGCGAGG
TGG





27498
FXN-D78
69037906
−1
TCCAGCACTTTGGGAGGGCG
AGG





27530
FXN-D79
69037911
−1
GTAATTCCAGCACTTTGGGA
GGG





27538
FXN-D80
69037912
−1
TGTAATTCCAGCACTTTGGG
AGG





27562
FXN-D81
69037915
−1
GCCTGTAATTCCAGCACTTT
GGG





27474
FXN-D82
69037916
1
ACCTCGCCCTCCCAAAGTGC
TGG





27570
FXN-D83
69037916
−1
CGCCTGTAATTCCAGCACTT
TGG





27522
FXN-D84
69037925
1
TCCCAAAGTGCTGGAATTAC
AGG





27618
FXN-D85
69037943
−1
CTGCTGATGGCCAGACGCGG
TGG





27586
FXN-D86
69037944
1
CAGGCGTGAGCCACCGCGTC
TGG





27626
FXN-D87
69037946
−1
ACTCTGCTGATGGCCAGACG
CGG





27666
FXN-D88
69037956
−1
TAAATTAAAAACTCTGCTGA
TGG





27650
FXN-D89
69037969
1
ATCAGCAGAGTTTTTAATTT
AGG





27690
FXN-D90
69037983
1
TAATTTAGGAGAATGACAAG
AGG





27698
FXN-D91
69037986
1
TTTAGGAGAATGACAAGAGG
TGG





27722
FXN-D92
69038003
1
AGGTGGTACAGTTTTTTAGA
TGG





27730
FXN-D93
69038010
1
ACAGTTTTTTAGATGGTACC
TGG





27738
FXN-D94
69038013
1
GTTTTTTAGATGGTACCTGG
TGG





27770
FXN-D95
69038017
−1
AATAGCCCTTAACAGCCACC
AGG





27754
FXN-D96
69038022
1
ATGGTACCTGGTGGCTGTTA
AGG





27762
FXN-D97
69038023
1
TGGTACCTGGTGGCTGTTAA
GGG





27802
FXN-D98
69038052
1
ACTGACAAACACACCCAACT
TGG





27850
FXN-D99
69038054
−1
CTGGGCGGCAGCGCCAAGTT
GGG





27858
FXN-D100
69038055
−1
CCTGGGCGGCAGCGCCAAGT
TGG





27826
FXN-D101
69038066
1
CCAACTTGGCGCTGCCGCCC
AGG





27842
FXN-D102
69038069
1
ACTTGGCGCTGCCGCCCAGG
AGG





27906
FXN-D103
69038069
−1
CCCAGTGTCCACCTCCTGGG
CGG





27866
FXN-D104
69038072
1
TGGCGCTGCCGCCCAGGAGG
TGG





27922
FXN-D105
69038072
−1
AAACCCAGTGTCCACCTCCT
GGG





27930
FXN-D106
69038073
−1
GAAACCCAGTGTCCACCTCC
TGG





27882
FXN-D107
69038079
1
GCCGCCCAGGAGGTGGACAC
TGG





27890
FXN-D108
69038080
1
CCGCCCAGGAGGTGGACACT
GGG





27914
FXN-D109
69038087
1
GGAGGTGGACACTGGGTTTC
TGG





27946
FXN-D110
69038095
1
ACACTGGGTTTCTGGATAGA
TGG





28002
FXN-D111
69038114
−1
AGAGGCCCAGCTGGTGACAG
AGG





27986
FXN-D112
69038119
1
TAGCAACCTCTGTCACCAGC
TGG





27994
FXN-D113
69038120
1
AGCAACCTCTGTCACCAGCT
GGG





28026
FXN-D114
69038123
−1
TAGAAAAAAAGAGGCCCAGC
TGG





28042
FXN-D115
69038132
−1
AATTCAGTATAGAAAAAAAG
AGG





28090
FXN-D116
69038171
−1
AAGGGAACTATGGAACAGAC
AGG





28130
FXN-D117
69038181
−1
CAAGATGTGCAAGGGAACTA
TGG





28114
FXN-D118
69038193
1
CATAGTTCCCTTGCACATCT
TGG





28122
FXN-D119
69038194
1
ATAGTTCCCTTGCACATCTT
GGG





28162
FXN-D120
69038189
−1
CAAATACCCAAGATGTGCAA
GGG





28170
FXN-D121
69038190
−1
TCAAATACCCAAGATGTGCA
AGG





28146
FXN-D122
69038203
1
TTGCACATCTTGGGTATTTG
AGG





28186
FXN-D123
69038209
1
ATCTTGGGTATTTGAGGAGT
TGG





28194
FXN-D124
69038210
1
TCTTGGGTATTTGAGGAGTT
GGG





28202
FXN-D125
69038213
1
TGGGTATTTGAGGAGTTGGG
TGG





28210
FXN-D126
69038214
1
GGGTATTTGAGGAGTTGGGT
GGG





28226
FXN-D127
69038217
1
TATTTGAGGAGTTGGGTGGG
TGG





28242
FXN-D128
69038223
1
AGGAGTTGGGTGGGTGGCAG
TGG





28250
FXN-D129
69038230
1
GGGTGGGTGGCAGTGGCAAC
TGG





28258
FXN-D130
69038231
1
GGTGGGTGGCAGTGGCAACT
GGG





28266
FXN-D131
69038232
1
GTGGGTGGCAGTGGCAACTG
GGG





28290
FXN-D132
69038244
−1
AAAATAATTAAACAGGATGG
TGG





28298
FXN-D133
69038247
−1
TTTAAAATAATTAAACAGGA
TGG





28306
FXN-D134
69038251
−1
GGGCTTTAAAATAATTAAAC
AGG





28338
FXN-D135
69038271
−1
GGGTCAATCCAGGACAGTCA
GGG





28346
FXN-D136
69038272
−1
AGGGTCAATCCAGGACAGTC
AGG





28322
FXN-D137
69038274
1
TTTTAAAGCCCTGACTGTCC
TGG





28378
FXN-D138
69038281
−1
GGGGAGCTTAGGGTCAATCC
AGG





28394
FXN-D139
69038291
−1
TGGAGACCAGGGGGAGCTTA
GGG





28402
FXN-D140
69038292
−1
TTGGAGACCAGGGGGAGCTT
AGG





28370
FXN-D141
69038296
1
GATTGACCCTAAGCTCCCCC
TGG





28434
FXN-D142
69038300
−1
GATGAATTTTGGAGACCAGG
GGG





28442
FXN-D143
69038301
−1
TGATGAATTTTGGAGACCAG
GGG





28450
FXN-D144
69038302
−1
CTGATGAATTTTGGAGACCA
GGG





28458
FXN-D145
69038303
−1
TCTGATGAATTTTGGAGACC
AGG





28490
FXN-D146
69038311
−1
ACTCAGTTTCTGATGAATTT
TGG





28506
FXN-D147
69038333
1
CAGAAACTGAGTTCACTTGA
AGG





28530
FXN-D148
69038345
−1
TGGAGAAAAGGGTGGGGAAG
AGG





28554
FXN-D149
69038351
−1
AAGGGGTGGAGAAAAGGGTG
GGG





28562
FXN-D150
69038352
−1
CAAGGGGTGGAGAAAAGGGT
GGG





28570
FXN-D151
69038353
−1
GCAAGGGGTGGAGAAAAGGG
TGG





28578
FXN-D152
69038356
−1
GATGCAAGGGGTGGAGAAAA
GGG





28586
FXN-D153
69038357
−1
AGATGCAAGGGGTGGAGAAA
AGG





28626
FXN-D154
69038365
−1
TTAGAAGTAGATGCAAGGGG
TGG





28634
FXN-D155
69038368
−1
GCTTTAGAAGTAGATGCAAG
GGG





28642
FXN-D156
69038369
−1
TGCTTTAGAAGTAGATGCAA
GGG





28650
FXN-D157
69038370
−1
CTGCTTTAGAAGTAGATGCA
AGG





28706
FXN-D158
69038403
1
GCTGTTCAACAGAAACAGAA
TGG





28714
FXN-D159
69038404
1
CTGTTCAACAGAAACAGAAT
GGG





28746
FXN-D160
69038418
−1
AAAATGTAGAATTATGTGTG
TGG





28786
FXN-D161
69038488
−1
GATAATATTTTGTATGTACT
AGG





28810
FXN-D162
69038514
−1
TTAAAATACTGATTACATGT
TGG





28842
FXN-D163
69038545
1
TAAAAATCAGTAATGAGACC
AGG





28850
FXN-D164
69038550
1
ATCAGTAATGAGACCAGGCA
CGG





28866
FXN-D165
69038552
−1
CAGTCGTGAGCCACCGTGCC
TGG





28858
FXN-D166
69038553
1
AGTAATGAGACCAGGCACGG
TGG





28882
FXN-D167
69038573
1
TGGCTCACGACTGTAATCCC
AGG





28962
FXN-D168
69038579
−1
CCTCGGCCTCCCAAAGTCCT
GGG





28890
FXN-D169
69038580
1
CGACTGTAATCCCAGGACTT
TGG





28970
FXN-D170
69038580
−1
GCCTCGGCCTCCCAAAGTCC
TGG





28898
FXN-D171
69038581
1
GACTGTAATCCCAGGACTTT
GGG





28922
FXN-D172
69038584
1
TGTAATCCCAGGACTTTGGG
AGG





28946
FXN-D173
69038590
1
CCCAGGACTTTGGGAGGCCG
AGG
















TABLE 14







Selected sgRNAs for double-cut Screen for


repeat expansion excision efficiency and FXN


mRNA and protein rescue.











SEQ ID
Guide





NO
RNA
Strand
Sequence
PAM





51706
FXN-U13
 1
TATCTGACCCAGTTACGCCA
CGG





51058
FXN-U103
 1
GCAGAATAGCTAGAGCAGCA
GGG





51754
FXN-U4
−1
TTTCAAGCCGTGGCGTAACT
GGG





52090
FXN-U43
 1
TAGAGGGTGTTTCACGAGGA
GGG





52594
FXN-U114
 1
GTTGCCAGTGCTTAAAAGTT
AGG





52098
FXN-U18
 1
TTCACGAGGAGGGAACCGTC
TGG





52298
FXN-U7
 1
CTGGTACGCCGCATGTATTA
GGG





52106
FXN-U28
 1
TCACGAGGAGGGAACCGTCT
GGG





51682
FXN-U113
−1
TATTTCTTTGTACCCCCCAA
AGG





52066
FXN-U41
 1
GTGGTAGAGGGTGTTTCACG
AGG





52354
FXN-U89
−1
TTCATCTCCCCTAATACATG
CGG





52458
FXN-U76
−1
TAAGCCTAAAGTACAAACTC
CGG





52290
FXN-U5
 1
GCTGGTACGCCGCATGTATT
AGG





52498
FXN-U23
−1
GTGGGCCAAATAACACGTGT
GGG





51658
FXN-U136
−1
TGTACCCCCCAAAGGAAGAA
AGG





51930
FXN-U112
−1
AATACCATGTCCTCCCCTTG
AGG





51162
FXN-U122
−1
GCAGAATCTGGAATAAAGGT
CGG





52506
FXN-U36
−1
TGTGGGCCAAATAACACGTG
TGG





51762
FXN-U2
−1
CTTTCAAGCCGTGGCGTAAC
TGG





51746
FXN-U27
 1
TTACGCCACGGCTTGAAAGG
AGG





52386
FXN-U42
−1
ACACAAATATGGCTTGGACG
TGG





52258
FXN-U51
−1
GGCGTACCAGCCACTCTGAA
GGG





52530
FXN-U187
 1
ATTGTGTTTGAAGAAACTTT
GGG





52634
FXN-U154
 1
GACTTAGAAAATGGATTTCC
TGG





52610
FXN-U119
−1
AAGTCCTAACTTTTAAGCAC
TGG





27850
FXN-D99
−1
CTGGGCGGCAGCGCCAAGTT
GGG





28634
FXN-D155
−1
GCTTTAGAAGTAGATGCAAG
GGG





26882
FXN-D44
−1
ACAACCCATGCTGTCCACAC
AGG





28650
FXN-D157
−1
CTGCTTTAGAAGTAGATGCA
AGG





28370
FXN-D141
 1
GATTGACCCTAAGCTCCCCC
TGG





28194
FXN-D124
 1
TCTTGGGTATTTGAGGAGTT
GGG





26626
FXN-D33
 1
ATGGTCCTTAGATCTCCTCT
AGG





26634
FXN-D31
−1
AGGAGATCTAAGGACCATCA
TGG





26786
FXN-D38
−1
AGGGGTGGAAGCCCAATACG
TGG





26754
FXN-D37
 1
TATCTGAGCTGCCACGTATT
GGG





27770
FXN-D95
−1
AATAGCCCTTAACAGCCACC
AGG





26578
FXN-D29
 1
TCTGGAAAAATAGGCAAGTG
TGG





28130
FXN-D117
−1
CAAGATGTGCAAGGGAACTA
TGG





27738
FXN-D94
 1
GTTTTTTAGATGGTACCTGG
TGG





28338
FXN-D135
−1
GGGTCAATCCAGGACAGTCA
GGG





28642
FXN-D156
−1
TGCTTTAGAAGTAGATGCAA
GGG





26602
FXN-D30
 1
ATAGGCAAGTGTGGCCATGA
TGG





27754
FXN-D96
 1
ATGGTACCTGGTGGCTGTTA
AGG





27730
FXN-D93
 1
ACAGTTTTTTAGATGGTACC
TGG





28122
FXN-D119
 1
ATAGTTCCCTTGCACATCTT
GGG









11. GAA Repeat Excision at the Frataxin Locus of FXN in Cardiomyocytes with DNA-PK Inhibition


FA post-mitotic cardiomyocytes were prepared from a culture of iPSCs as described in Example 1.


Cells were treated with spCas9 and a guide pair flanking the GAA repeat (SEQ ID NOs 52666 and 26562) and Compound 6 (3ttM) for 24 hours or DMSO. The rate of repeat excision was evaluated on day 7 and day 14 by ddPCR assay (FIG. 47A). The relative level of FXN mRNA on day 14 was evaluated by qPCR (FIG. 47B), and the levels of frataxin protein were measured on day 14 by western blot (FIG. 47C). Treatment with a DNA-PK inhibitor enhanced the GAA repeat excision rate and resulted in increased FXN mRNA levels and frataxin protein in post-mitotic cardiomyocytes.


12. GAA Repeat Excision at the Frataxin Locus of FXN in FA iPSCs


GAA repeat excision was evaluated with Cpf1 (Cas12a) and SpCas9 in wildtype (WT) and FA iPSCs (4670) using RNP electroporation. DNA gel-electrophoresis showed excised DNA bands after GAA repeat excision with Cpf1 (boxes, FIG. 48) using Cpf1 guide RNAs (GD1&2) (SEQ ID NOs 47047 and 7447) and SpCas9 guide RNAs (Cas9 LG5&11) (SEQ ID NOs 52666, and 26562).


13. GAA Repeat Excision at the Frataxin Locus of FXN in Cortical Neurons with Cpf1


Additional Cpf1 guide pairs were selected for GAA repeat excision in iPSC-derived cortical neurons as shown in Table 15 below.











TABLE 15





Guide RNA
SEQ ID NO
Sequence







GDG_Cpf1_FA_guide_1
47047
ACCATGTTGGCCAGGTTAGT





GDG_Cpf1_FA_guide_2
7447
CCAGCATCTCTGGAAAAATA





GDG_Cpf1_FA_guide_3
7463
TTACTTGGCTTCTGTGCACT





GDG_Cpf1_FA_guide_4
46967
TTCAAACACAATGTGGGCCA





GDG_Cpf1_FA_guide_5
46768
GAAACTGACCCGACCTTTATT





GDG_Cpf1_FA_guide_6
7680
TGGATAGATGGTTAGCAACCT





GDG_Cpf1_FA_guide_7
47032
CTGGCAGGACGCGGTGGCTCA









gRNAs comprising the 18-mer spacer sequences of SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030 were tested. More specifically, the tested guides were the tested 20-mer guides as shown in Table 15.


Pairs of gRNAs were tested with Cpf1 (Cas12a) in the iPSC-derived cortical neurons. The following guide pairs were used: Guides 1&2 (SEQ ID NOs: 47047 and 7447); Guides 3&4 (SEQ ID NOs: 7463 and 46967); Guides 5&6 (SEQ ID NOs: 46768 and 7680); Guides 7&2 (SEQ ID NOs: 47032 and 7447). DNA gel electrophoresis of PCR products showed excised DNA bands after GAA repeat excision (FIG. 49).


GAA repeat excision was further confirmed in single cell nuclei of wildtype iPSC-derived cortical neurons using Cpf1 and gRNAs (SEQ ID NOs 47047 and 7447). Cell nuclei were prepared using the Nuclei Isolation Kit: Nuclei EZ prep (Sigma, NUC101) according to the manufacture's protocol. For nuclei isolation from mouse brain, tissue samples were dounced 2×25x in 2 ml lysis buffer with pestle A and pestle B (Sigma), respectively. Lysate was then transferred into a lml falcon tube on ice for 5min. Lysate was spin down at 500 ×g for 5min and pellet was resuspended in lml lysis buffer, additional 3 ml lysis buffer were added and kept on ice for 5min. Lysate was spin down at 500 ×g for 5min and pellet was resuspended in lml resuspension buffer. Vybrant DyeCycle Ruby Stain (Thermo Fisher, V10309, 1:800) or Hoechst (Invitrogen, H3570, 1:10,000) was added for fluorescent labeling of nuclei. Isolated nuclei were then sorted using a BD FACSMelody Cell Sorter (BD Biosciences) into QuickExtract DNA Extraction Solution (Lucigen, QE9050). Sequencing results showed 8/10 nuclei with a homogenous GAA repeat excision and 2/10 nuclei had a heterogenous GAA excision.


14. In Vivo GAA repeat excision at the frataxin locus of FXN in adult mouse brain


An AAV vector was designed for targeting neurons in adult YG8+/− mice (FIG. 50). YG8+/− mice carry a human Frataxin transgene with expanded GAA repeat. hSynapsin 1 promoter drives expression of AsCpf1 (Cas12a, vector 1) and mCherry-KASH (vector 2) in neurons. Two Cpf1 gRNAs (SEQ ID NOs: 47047 and 7447) were cloned in tandem under control of one U6 promoter to excise the GAA repeat.


A dual guide excision experiment was performed with AsCpf1 (Cas12a) in a mouse model of Friedreich's Ataxis with dual AAV delivery (1:1 ratio) into stratum of adult YG8+/− mice.


Heterozygous adult male FXNem2.1LutzyTg(FXN)YG8Pook/J mice (Jackson laboratory, 030930) were anesthetized and craniotomy was performed according to IACUC approved procedures. lul of mixed AAV (1:1) were injected into striatum (0.5mm Bregma, 1.5 mm lateral, 2.5mm deep). To prevent leakage, the pipette was held in place for 3min before retraction. The incision was sutured and post-operative analgesics were administered and mice were euthanized 2 weeks after AAV injection according to IACUC approved protocols and AVMA Guidelines for Euthanasia of Animals. Brain samples were fixed in 4% PFA for vibratome sectioning and fluorescent imaging of mCherry-KASH labeled striatal neurons. For nuclei isolation and FACS, striatum was dissected and shock frozen. Following AAV1 vectors have been used: a) hSyn-Cas12a and b) Cas12a sgRNA (Sap1) hSyn_mCh-KASH (SignaGen, ˜2.5×10^6 Vg/ml) (see Table 16 below and SEQ ID NOs 53411 and 53412, respectively).


All AAV constructs were synthesized by Genescript. Cas12a and gRNA array sequences have been published elsewhere (Zetsche et al., Nat Biotech, 2017). gRNA array DNA oligos were cloned using one-directional annealing and using a sticky-end design and Sapl restriction of the Cas12a sgRNA vector as described elsewhere (Zetsche et al., Nat Biotech, 2017).


The following fw oligo for cloning the dual Cas12a sgRNA array has been used:










agaTACCATGTTGGCCAGGTTAGTCTAATTTCTACTCTTGTAGATCCA







GCATCTCTGGAAAAATAG (SEQ ID NO: 53410) and






(Cas12a array: Italic: Cas12a direct repeat;






Bold: spacers, aga: SapI cloning overhang).







Results showed successful excision of the GAA repeat in neurons in vivo with dual Cas12a sgRNAs. Histology of the brain 2 weeks after stereotactic injection showed mCherry positive striatum (FIG. 51A). Nuclei were sorted of targeted neurons by FACS (FIG. 51B). DNA gel-electrophoresis showed excised DNA bands after GAA repeat excision with Cpf1 in targeted neurons (mCherry +) versus non-targeted cells (mCherry −) (FIG. 51C). Single clone Sanger Sequencing analysis of excised DNA bands showed successful GAA repeat excision in neurons in vivo.









TABLE 16







AAV1: hSyn-Cas12a (SEQ ID NO: 53411):


cctgcaggcagctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcg


agcgagcgcgcagagagggagtggccaactccatcactaggggttcctgcggcctctagactgcagagggccctgcgtatgagtgcaagtggg


ttttaggaccaggatgaggcggggtgggggtgcctacctgacgaccgaccccgacccactggacaagcacccaacccccattccccaaattgc


gcatcccctatcagagagggggaggggaaacaggatgcggcgaggcgcgtgcgcactgccagcttcagcaccgcggacagtgccttcgccccc


gcctggcggcgcgcgccaccgccgcctcagcactgaaggcgcgctgacgtcactcgccggtcccccgcaaactccccttcccggccaccttgg


tcgcgtccgcgccgccgccggcccagccggaccgcaccacgcgaggcgcgagataggggggcacgggcgcgaccatctgcgctgcggcgcc


ggcgactcagcgctgcctcagtctgcggtgggcagcggaggagtcgtgtcgtgcctgagagcgcagtcgagaaggtaccggatccccgggtac


CGGTGCCACCatgtacccatacgatgttccagattacgcttcgccgaagaaaaagcgcaaggtcgaagcgtccACACAGTTCG


AGGGCTTTACCAACCTGTATCAGGTGAGCAAGACACTGCGGTTTGAGCTGATCCCACAG


GGCAAGACCCTGAAGCACATCCAGGAGCAGGGCTTCATCGAGGAGGACAAGGCCCGCA


ATGATCACTACAAGGAGCTGAAGCCCATCATCGATCGGATCTACAAGACCTATGCCGAC


CAGTGCCTGCAGCTGGTGCAGCTGGATTGGGAGAACCTGAGCGCCGCCATCGACTCCTAT


AGAAAGGAGAAAACCGAGGAGACAAGGAACGCCCTGATCGAGGAGCAGGCCACATATC


GCAATGCCATCCACGACTACTTCATCGGCCGGACAGACAACCTGACCGATGCCATCAAT


AAGAGACACGCCGAGATCTACAAGGGCCTGTTCAAGGCCGAGCTGTTTAATGGCAAGGT


GCTGAAGCAGCTGGGCACCGTGACCACAACCGAGCACGAGAACGCCCTGCTGCGGAGCT


TCGACAAGTTTACAACCTACTTCTCCGGCTTTTATGAGAACAGGAAGAACGTGTTCAGCG


CCGAGGATATCAGCACAGCCATCCCACACCGCATCGTGCAGGACAACTTCCCCAAGTTTA


AGGAGAATTGTCACATCTTCACACGCCTGATCACCGCCGTGCCCAGCCTGCGGGAGCACT


TTGAGAACGTGAAGAAGGCCATCGGCATCTTCGTGAGCACCTCCATCGAGGAGGTGTTTT


CCTTCCCTTTTTATAACCAGCTGCTGACACAGACCCAGATCGACCTGTATAACCAGCTGC


TGGGAGGAATCTCTCGGGAGGCAGGCACCGAGAAGATCAAGGGCCTGAACGAGGTGCT


GAATCTGGCCATCCAGAAGAATGATGAGACAGCCCACATCATCGCCTCCCTGCCACACA


GATTCATCCCCCTGTTTAAGCAGATCCTGTCCGATAGGAACACCCTGTCTTTCATCCTGGA


GGAGTTTAAGAGCGACGAGGAAGTGATCCAGTCCTTCTGCAAGTACAAGACACTGCTGA


GAAACGAGAACGTGCTGGAGACAGCCGAGGCCCTGTTTAACGAGCTGAACAGCATCGAC


CTGACACACATCTTCATCAGCCACAAGAAGCTGGAGACAATCAGCAGCGCCCTGTGCGA


CCACTGGGATACACTGAGGAATGCCCTGTATGAGCGGAGAATCTCCGAGCTGACAGGCA


AGATCACCAAGTCTGCCAAGGAGAAGGTGCAGCGCAGCCTGAAGCACGAGGATATCAAC


CTGCAGGAGATCATCTCTGCCGCAGGCAAGGAGCTGAGCGAGGCCTTCAAGCAGAAAAC


CAGCGAGATCCTGTCCCACGCACACGCCGCCCTGGATCAGCCACTGCCTACAACCCTGAA


GAAGCAGGAGGAGAAGGAGATCCTGAAGTCTCAGCTGGACAGCCTGCTGGGCCTGTACC


ACCTGCTGGACTGGTTTGCCGTGGATGAGTCCAACGAGGTGGACCCCGAGTTCTCTGCCC


GGCTGACCGGCATCAAGCTGGAGATGGAGCCTTCTCTGAGCTTCTACAACAAGGCCAGA


AATTATGCCACCAAGAAGCCCTACTCCGTGGAGAAGTTCAAGCTGAACTTTCAGATGCCT


ACACTGGCCTCTGGCTGGGACGTGAATAAGGAGAAGAACAATGGCGCCATCCTGTTTGT


GAAGAACGGCCTGTACTATCTGGGCATCATGCCAAAGCAGAAGGGCAGGTATAAGGCCC


TGAGCTTCGAGCCCACAGAGAAAACCAGCGAGGGCTTTGATAAGATGTACTATGACTAC


TTCCCTGATGCCGCCAAGATGATCCCAAAGTGCAGCACCCAGCTGAAGGCCGTGACAGC


CCACTTTCAGACCCACACAACCCCCATCCTGCTGTCCAACAATTTCATCGAGCCTCTGGA


GATCACAAAGGAGATCTACGACCTGAACAATCCTGAGAAGGAGCCAAAGAAGTTTCAGA


CAGCCTACGCCAAGAAAACCGGCGACCAGAAGGGCTACAGAGAGGCCCTGTGCAAGTG


GATCGACTTCACAAGGGATTTTCTGTCCAAGTATACCAAGACAACCTCTATCGATCTGTC


TAGCCTGCGGCCATCCTCTCAGTATAAGGACCTGGGCGAGTACTATGCCGAGCTGAATCC


CCTGCTGTACCACATCAGCTTCCAGAGAATCGCCGAGAAGGAGATCATGGATGCCGTGG


AGACAGGCAAGCTGTACCTGTTCCAGATCTATAACAAGGACTTTGCCAAGGGCCACCAC


GGCAAGCCTAATCTGCACACACTGTATTGGACCGGCCTGTTTTCTCCAGAGAACCTGGCC


AAGACAAGCATCAAGCTGAATGGCCAGGCCGAGCTGTTCTACCGCCCTAAGTCCAGGAT


GAAGAGGATGGCACACCGGCTGGGAGAGAAGATGCTGAACAAGAAGCTGAAGGATCAG


AAAACCCCAATCCCCGACACCCTGTACCAGGAGCTGTACGACTATGTGAATCACAGACT


GTCCCACGACCTGTCTGATGAGGCCAGGGCCCTGCTGCCCAACGTGATCACCAAGGAGG


TGTCTCACGAGATCATCAAGGATAGGCGCTTTACCAGCGACAAGTTCTTTTTCCACGTGC


CTATCACACTGAACTATCAGGCCGCCAATTCCCCATCTAAGTTCAACCAGAGGGTGAATG


CCTACCTGAAGGAGCACCCCGAGACACCTATCATCGGCATCGATCGGGGCGAGAGAAAC


CTGATCTATATCACAGTGATCGACTCCACCGGCAAGATCCTGGAGCAGCGGAGCCTGAA


CACCATCCAGCAGTTTGATTACCAGAAGAAGCTGGACAACAGGGAGAAGGAGAGGGTG


GCAGCAAGGCAGGCCTGGTCTGTGGTGGGCACAATCAAGGATCTGAAGCAGGGCTATCT


GAGCCAGGTCATCCACGAGATCGTGGACCTGATGATCCACTACCAGGCCGTGGTGGTGC


TGGAGAACCTGAATTTCGGCTTTAAGAGCAAGAGGACCGGCATCGCCGAGAAGGCCGTG


TACCAGCAGTTCGAGAAGATGCTGATCGATAAGCTGAATTGCCTGGTGCTGAAGGACTA


TCCAGCAGAGAAAGTGGGAGGCGTGCTGAACCCATACCAGCTGACAGACCAGTTCACCT


CCTTTGCCAAGATGGGCACCCAGTCTGGCTTCCTGTTTTACGTGCCTGCCCCATATACATC


TAAGATCGATCCCCTGACCGGCTTCGTGGACCCCTTCGTGTGGAAAACCATCAAGAATCA


CGAGAGCCGCAAGCACTTCCTGGAGGGCTTCGACTTTCTGCACTACGACGTGAAAACCG


GCGACTTCATCCTGCACTTTAAGATGAACAGAAATCTGTCCTTCCAGAGGGGCCTGCCCG


GCTTTATGCCTGCATGGGATATCGTGTTCGAGAAGAACGAGACACAGTTTGACGCCAAG


GGCACCCCTTTCATCGCCGGCAAGAGAATCGTGCCAGTGATCGAGAATCACAGATTCAC


CGGCAGATACCGGGACCTGTATCCTGCCAACGAGCTGATCGCCCTGCTGGAGGAGAAGG


GCATCGTGTTCAGGGATGGCTCCAACATCCTGCCAAAGCTGCTGGAGAATGACGATTCTC


ACGCCATCGACACCATGGTGGCCCTGATCCGCAGCGTGCTGCAGATGCGGAACTCCAAT


GCCGCCACAGGCGAGGACTATATCAACAGCCCCGTGCGCGATCTGAATGGCGTGTGCTT


CGACTCCCGGTTTCAGAACCCAGAGTGGCCCATGGACGCCGATGCCAATGGCGCCTACC


ACATCGCCCTGAAGGGCCAGCTGCTGCTGAATCACCTGAAGGAGAGCAAGGATCTGAAG


CTGCAGAACGGCATCTCCAATCAGGACTGGCTGGCCTACATCCAGGAGCTGCGCAACtaag


aattcAATAAAAGATCTTTATTTTCATTAGATCTGTGTGTTGGTTTTTTGTGTgcggccgcaggaacc


cctagtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggcgaccaaaggtcgcccgacgcccgggctttgcccg


ggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccg


catacgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgcc


agcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccct


ttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgatagacg


gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattct


tttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatatta


acgtttacaattttatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcg


ccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatca


ccgaaacgcgcgagacgaaagggcctcgtgatacgcctttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttt


tcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgct


tcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgc


tcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagat


ccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgg


gcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgac


agtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaac


cgcttttttgcacaacatgggggatcatgtaactcgccttgatcgagggaaccggagctgaatgaagccataccaaacgacgagcgtgacacc


acgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatg


gaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtggaagc


cgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacga


aatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaa


cttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcg


tcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctacca


gcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttcta


gtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagt


ggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacag


cccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggac


aggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggttt


cgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttc


ctggccttttgctggccttttgctcacatgt





AAV1: Cas12a sgRNA (SapI)_hSyn_mCh-KASH


(SEQ ID NO: 53412)


cctgcaggcagctgcgcgctcgctcgctcactgaggccgcccgggcaaagcccgggcgtcgggcgacctttggtcgcccggcctcagtgagcg


tgcagcgagcgcgcagagagggagtggccaactccatcactaggggttcctgcggccgcacgcgtgagggcctatttcccatgattccttcat


attatatacgatacaaggctgttagagagataattggaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagt


aataatttcttgggtagtttgcagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttgg


ctttatatatcttgtggaaaggacgaaacaccgTAATTTCTACTCTTGTAGATgaagagcgagctcttcTTTTTTtctagactgcagagggcc


ctgcgtatgagtgcaagtgggttttaggaccaggatgaggcggggtgggggtgcctacctgacgaccgaccccgacccactggacaagcaccc


aacccccattccccaaattgcgcatcccctatcagagagggggaggggaaacaggatgcggcgaggcgcgtgcgcactgccagcttcagcacc


gcggacagtgccttcgcccccgcctggcggcgcgcgccaccgccgcctcagcactgaaggcgcgctgacgtcactcgccggtcccccgcaaac


tccccttcccggccaccttggtcgcgtccgcgccgccgccggcccagccggaccgcaccacgcgaggcgcgagataggggggcacgggcgcga


ccatctgcgctgcggcgccggcgactcagcgctgcctcagtctgcggtgggcagcggaggagtcgtgtcgtgcctgagagcgcagtcgagaag


gtaccgGatCcGGCCGCTCGAGTCGCCACCATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCA


TCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTC


GAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGA


AGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGT


ACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCT


TCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACC


GTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGG


CACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCT


CCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTG


AAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGA


AGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACA


ACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGC


GGCATGGACGAGCTaTACAAGttGTACAAgtccggactcagatctcgagaggaggaggaggagacagacagcaggatgccccacctcgacagc


cccggcagctcccagccgagacgctccttcctctcaagggtgatcagggcagcgctaccgttgcagctgcttctgctgctgctgctgctcctg


gcctgcctgctacctgcctctgaagatgactacagctgcacccaggccaacaactttgcccgatccttctaccccatgctgcggtacaccaac


gggccacctcccacctaggaattcgatatcaagcttatcgataccgagcgctgctcgagagatctacgggtggcatccctgtgacccctcccc


agtgcctctcctggccctggaagttgccactccagtgcccaccagccttgtcctaataaaattaagttgcatcattttgtctgactaggtgtc


cttctataatattatggggtggaggggggtggtatggagcaaggggcaagttgggaagacaacctgtagggcctgcggggtctattgggaacc


aagctggagtgcagtggcacaatcttggctcactgcaatctccgcctcctgggttcaagcgattctcctgcctcagcctcccgagttgttggg


attccaggcatgcatgaccaggctcagctaatttttgtttttttggtagagacggggtttcaccatattggccaggctggtctccaactccta


atctcaggtgatctacccaccttggcctcccaaattgctgggattacaggcgtgaaccactgctcccttccctgtccttctgattttgtaggt


aaccacgtgcggaccgagcggccgcaggaacccctagtgatggagttggccactccctctctgcgcgctcgctcgctcactgaggccgggcga


ccaaaggtcgcccgacgcccgggctttgcccgggcggcctcagtgagcgagcgagcgcgcagctgcctgcaggggcgcctgatgcggtatttt


ctccttacgcatctgtgcggtatttcacaccgcatacgtcaaagcaaccatagtacgcgccctgtagcggcgcattaagcgcggcgggtgtgg


tggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggct


ttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatg


gttcacgtagtgggccatcgccctgatagacggtattcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgg


aacaacactcaaccctatctcgggctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaaca


aaaatttaacgcgaattttaacaaaatattaacgtttacaattttatggtgcactctcagtacaatctgctctgatgccgcatagttaagcca


gccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggag


ctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgat


aataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgta


tccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcc


cttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtggg


ttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgct


atgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcacc


agtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttact


tctgacaacgatcggaggaccgaaggagctaaccgctttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctg


aatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttact


ctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttatt


gctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctac


acgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaa


gtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaa


atcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatc


tgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttc


agcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgct


ctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcag


cggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaa


agcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggggga


aacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatgg


aaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgt









15. CTG Repeat Excision with Guide Pairs in DMPK


a. Materials and Methods


Guide and Primer sequences. Primer sequences are shown in the Table of Additional Sequences (SEQ ID NOs: 55-62). The crRNA and tracrRNA used for gRNAs with SpCas9 was GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAA AGUGGCACCGAGUCGGUGCUUUU (SEQ ID NO: 98). The crRNA and tracrRNA used for gRNAs with SaCas9 was GUUUUAGUACUCUGGAAACAGAAUCUACUAAAACAAGGCAAAAUGCCGUGUUUAUCU CGUCAACUUGUUGGCGAGAU (SEQ ID NO: 97).


Preparation and Transfection of SpCas9-Expressing HEK293 T Cells. A cell line stably expressing the CRISPR Cas9 nuclease was purchased from Genecopoeia. Cas9 is integrated at the human AAVS1 Safe Harbor locus (also known as PPP1R2C). This cell line also expresses copGFP and the puromycin resistance gene. In combination with separately transfected or transduced single guide RNAs (sgRNAs), this cell line will sustain double-strand DNA breaks (DSBs) at targeted genome sites. Cas9 expressing HEK 293 T cells were transfected with individual IVT gRNAs using MessengerMax lipofectamine-based delivery. Genomic DNA was isolated from the cells and amplified by PCR. Sanger sequencing and TIDE analysis were used to quantify the frequency of indels generated by each sgRNA.


Preparation and Electroporation of DM1 iPSC Cell Lines. SBI Cell Line: Cells were isolated from peripheral blood mononuclear cells from an adult female DM1 patient (source of cells from Nicholas E. Johnson (Virginia Commonwealth University)) and reprogrammed with the CytoTune®-iPS Sendai reprogramming kit. Individual iPSC clones were isolated, including clone SB1. The SB1 cell line had a pluripotency signature consistent with an iPSC cell line by Nanostring assay. High resolution aCGH karyotyping revealed no gross genomic abnormalities. Southern analysis confirmed that the SB1 cell line contains a pathogenic CTG repeat expansion (˜300 CTG repeats) (FIG. 52).


4033-4 Cell Line: A parent fibroblast line derived from an adult DM1 male (GM04033, Coriell Institute) was reprogrammed using CytoTune®-iPS 2.0 Sendai Reprogramming Kit. Individual iPSC clones were isolated, including clone 4033-4. Southern blot analysis confirmed that the 4033-4 cell line contains a pathogenic CTG repeat expansion (3000 CTG repeats).


Electroporation of DM1 iPSC cells: DM1 iPSC cells (200,000 per reaction) were mixed with RNPs prepared as follows.


Broadly, RNP complexes for experiments corresponding to FIGS. 54-60 and FIGS. 67-68 were prepared by assembling 1.5 μg each of the 5′ guide, the 3′ guide, and 3 μg of the SpCas9 (FIGS. 54-60) or SaCas9 nuclease (FIGS. 67-68). Guide RNAs were diluted to 1.5 μg/μl and Cas9 nucleases were diluted to 3 μg/μl and 1μl of each component was combined together and complexed together for a minimum of 10 minutes at room temperature.


RNP complexes for experiments corresponding to FIGS. 55-56 were prepared by assembling 2 μg guide and 2 μg of the SaCas9 nuclease. Individual chemically synthesized guide RNAs were diluted to 2 μg/μl and Cas9 nucleases were diluted to 2 μg/μl and 1μl of each component was combined together and complexed together for a minimum of 10 minutes at room temperature.


Cells were electroporated with a Lonza Nucleofector (CA-137 setting) and harvested 72 hours post electroporation. Genomic DNA was isolated and used as template for subsequent PCR for TIDE analysis and ddPCR deletion analysis.


Sequencing and TIDE Analysis. PCR was Performed on Genomic DNA as Follows.


PCR Sample:

















Volume (μl)









Platinum
45 



Enhancer
5



Primer (10 μM)
1



DNA
1










PCR Conditions:


















34X














94 C.
94 C.
60 C.
68 C.
68 C.
4 C.


2 min
15 sec
30 sec
3 min
10 min










PCR products were cleaned up using AMPure bead-based PCR purification (Beckman Coulter). The AMPure bead bottle was vortexed and aliquoted into a falcon tube. Following incubation for 30 minutes at room temperature, 85 μL of beads were added to each well of PCR products, pipetted up and down 10 times and incubated for 10 minutes. The bead mixture was then placed on a magnet for 5 minutes. Liquid was aspirated, and beads were washed twice with 70% EtOH while keeping the plate on the magnet. The plate was then removed from the magnet and 20 μL of dH2O was added to the beads and pipetted up and down to mix. Following incubation for 5-10 minutes, the plate was placed on the magnet for 1 minute. The dH2O containing the DNA was removed and PCR concentrations were analyzed on by nanodrop.


PCR products were sent for sequenced using Forward Primer (SEQ ID NO: 57) and Reverse Primer (SEQ ID NO: 58). Indel values were estimated using the TIDE analysis algorithm. TIDE is a method based on the recovery of indels' spectrum from the sequencing electrophoretograms to quantify the proportion of template-mediated editing events (Brinkman, E A et al. (2014) Nucleic Acids Res. 42: e168; PMID: 25300484).


Two Loss-of-Signal (LOS) Droplet Digital PCR (ddPCR) Assay. The loss-of-signal ddPCR assay amplifies a region of the 3′ UTR of DMPK that is 5′ of the CTG repeat region or 3′ of the CTG region and detects the loss-of-signal of a probe targeting the amplified region as a result of successful deletion of the CTG repeat region (see FIG. 53 schematic of assay). The “dual” or “two” LOS ddPCR assay refers to results from both the 5′ LOS and 3′ LOS assays.


For the 5′ LOS ddPCR assay, Forward Primer (SEQ ID NO: 59), Reverse Primer (SEQ ID NO: 60), and Probe (SEQ ID NO: 61) were used.


For the 3′ LOS ddPCR assay, Forward Primer (SEQ ID NO: 62), Reverse Primer (SEQ ID NO: 63), and Probe (SEQ ID NO: 64) were used.


The ddPCR samples were setup at room temperature. DNA samples were diluted to a concentration of 10-20 ng/μL Diluted DNA (4 μL) was added to 21 μL of ddPCR mix.


dd PCR mix:

















1X



















2X Droplet PCR Supermix
12.5



Forward Primer (18 uM)
1.25



Reverse Primer (18 uM)
1.25



Probe (5 uM)
1.25



RPP30 (dHsaCP2500350)
1



HINDIII
0.2



H20
3.55



Mix volume
21










The plate was sealed with a heat seal and mixed by vortexing, and then centrifuged briefly. The final volume was 25 μL.


The samples were transferred to a 96 well plate for auto digital generation. Droplets (40 laL) were generated and the plate was transferred to the PCR machine.


A three-step cycling protocol was run:

















#Cycles
Temp
Duration of Cycle









 1
95 C.
10 min



40
94 C.
30 sec




60 C.
 1 min



 1
98 C.
10 min



 1
 4 C.
forever










The reference gene used for 5′ and 3′ loss-of-signal (LOS) ddPCRs was RPP30.


Differentiation Protocol for DM1 Cardiomyocytes. DM1 cardiomyocytes were prepared from the DM1 iSPC cell line SB1. Cells were activated with Wnt (4 l uM CHIR) for 2 days, followed by Wnt inactivation (4 μM WNT-059) for 2 days. Cells were rested for a recovery period in CDM3 media for 6 days. Cells were then transferred to CDM3-no glucose media for metabolic selection for 1 day.


DM1 cardiomyocytes (250,000 per reaction) were mixed with RNPs prepared as follows. Individual chemically synthesized guide RNAs were diluted to 1.5 μg/μl and Cas9 nucleases were diluted to 3 μg/μl and 1 μl of each component was combined together and complexed together for a minimum of 10 minutes at room temperature.


RNP complexes for experiments corresponding to FIGS. 61-64 were prepared by assembling 1.5 μg each of the 5′ guide, the 3′ guide, and 3 μg of the SpCas9 nuclease.


Cells were electroporated a with Lonza Nucleofector (CA-137 setting) and incubated in iCell Maintenance Media. Cells were harvested 72 hours post electroporation. Genomic DNA was isolated and used as template for subsequent PCR for TIDE analysis and ddPCR deletion analysis.


Off-Target Analysis and Hybrid Capture Assay. Homology-dependent off-target site nomination. Off-target sites were computationally predicted for each sgRNA based on sequence similarity to the hg38 human reference genome and the presence of a protospacer adjacent motif (PAM) sequence using three prediction algorithms; CCTop, CRISPOR and COSMID. CCTop and CRISPOR were used to nominate potential off-target sites with up to 3 mismatches relative to the sgRNA sequence. The COSMID algorithm can nominate off-targets sites with gaps and was used to nominate potential off-target sites with up to 3 mismatches with no gaps or up to 2 mismatches with 1 gap relative to the sgRNA sequence. All three algorithms nominated potential off-target sites with the optimal SpCas9 NGG PAM. Alternate PAMs were also included in the search using COSMID (NAG) and CCTop (NAG, NGA, NAA, NCG, NGC, NTG, and NGT). Predicted off-target sites were filtered to exclude sites overlapping low-complexity regions since these regions are subject to promiscuous probe enrichment and sequencing errors that result in incorrect read mapping and indel calling. A total of 577 potential off-target sites were nominated across the 12 sgRNAs (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210).


Hybrid capture probe library design. Percent editing at the on-target site and off-target sites were measured using a hybrid capture assay. Hybrid capture probes were generated to enrich regions of the genome containing the on-target sites and predicted off-targets. For each site, 100 bp flanking region was added both upstream and downstream of the site, and then 120 bp probes were tiled across the site including both flanking regions. Multiple probes were designed per site for all predicted off-target sites as well as on-target sites. Hybrid capture probes from all 12 sgRNAs were pooled together and one Agilent SureSelect probe set was ordered. The total target region of the hybrid capture library was 124.85 kilobases.


Generation of edited and control samples. Hybrid capture assay samples were generated by electroporating two WT donor iPSC lines (1000,000 cells per reaction) with RNPs prepared by assembling 10 gg sgRNA and 10 gg of the SpCas9 nuclease. Cells were electroporated with a Lonza Nucleofector (CA-137 setting) and harvested 72 hours post electroporation. Samples were generated for 12 sgRNAs (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210). Control samples electroporated with only 10 gg of the SpCas9 nuclease were also generated. Genomic DNA was isolated (QlAamp UCP Micro Kit) for hybrid capture followed by sequencing. Only one donor was available for the sgRNA SEQ ID NO: 2210.


Hybrid capture library preparation. Hybrid capture enrichment of on-target and off-target regions using hybrid capture probes was performed as per sample preparation described for 200 ng input genomic DNA samples in the Agilent SureSelectXT HS manufacturer's protocol (Agilent Technologies, Santa Clara, Calif., USA).). Briefly, the genomic DNA was fragmented by acoustic shearing with a Covaris LE220 instrument. DNA fragments were end repaired and then adenylated at the 3′ ends. 5′ and 3′ specific adapters were ligated to the DNA fragments, and adapter-ligated DNA fragments were amplified and indexed with indexing primers. Adapter-ligated DNA fragments were validated using the Agilent D1000 ScreenTape assay on the Agilent 4200 TapeStation, and quantified using a Qubit 3.0 Fluorometer with the Qubit dsDNA BR Assay Kit. 1000 ng adapter-ligated DNA fragments were hybridized with biotinylated RNA baits using a pre-programmed thermocycler for 1.5 hours following the manufacturing recommendations. The hybridized DNAs were captured by streptavidin-coated magnetic beads (Dynabeads MyOne Streptavidin T1). After extensive washes, the captured DNA fragments were enriched with limited cycle PCR. Post-captured DNA libraries were validated using the Agilent High Sensitivity D1000 ScreenTape assay on the Agilent 4200 Tape Station and quantified using Qubit 3.0 Fluorometer with the Qubit dsDNA HS Assay Kit. The libraries were subpooled at a concentration of 50 ng/library, with 4-5 libraries per subpool. The subpools were diluted 1:10 in 10 mM Tris-HCl pH 8.0 and quantitated by qPCR using the KAPA Library Quantification kit-Universal. The subpools were normalized to 4 nM and combined equally to create the final sequencing pool.


Hybrid capture library sequencing and analysis. The final sequencing pool was loaded onto the Illumina NextSeq machine (Illumina, San Diego, Calif., USA) at a final concentration of 1.8 μM with 5% PhiX spiked in and sequenced using a Illumina high output v2.5 reagent kit with the following configuration: 150×8×8×150 to achieve 3000X coverage.


Illumina basecalls were converted to FASTQ format and de-multiplexed by sample-specific barcode using bcl2fastq Conversation Software. Sequencing data was aligned with the BWA MEM algorithm using default parameters to human genome build hg38. De-duplication of the aligned reads was completed with SAMtools. For each on-target site and predicted off-target site, primary read alignments that covered the site and an additional 20 bases on each end were considered for indel quantification. The sum of all reads containing indels within 10 bp of the potential SpCas9 cleavage site was divided by the total number of reads aligned to the cleavage site that passed the filtering criterion, giving the indel frequency at that candidate cut site. Sites with at least 0.2% indel frequency difference between at least one pair of edited and control samples were subject to statistical testing to identify sites that may show significant CRISPR/Cas9 editing. For such sites, a one- tailed paired Student's t-test was performed to test for significantly more editing in edited samples relative to controls. If the test result was significant with P <0.05, the site was considered a confirmed off-target. Since only two donors were available for 11 sgRNA and only one donor was available for the 12th sgRNA (SEQ ID NO: 2210), sites that failed the statistical test were manually inspected and if necessary annotated as “potential off-target sites”, and can be further investigated with more donors and higher sequencing depth.


Hybrid capture assay samples were prepared as shown below.

















Sample
Replicates
Total









Treated samples (1-12)
2
24



Untreated control
2
 2



Total

26










b. Screening of gRNAs in HEK293 T Cells with SpCas9


To assess editing efficiency of individual gRNAs, 169 gRNAs flanking the CTG repeat region of the DMPK gene were selected for screening in HEK293 T cells expressing SpCas9. Cells were transfected with individual gRNAs using lipofectamine-based delivery. Genomic DNA was isolated from the cells and amplified by PCR. Sanger sequencing and TIDE analysis were used to quantify the frequency of indels generated by each sgRNA. Results are shown as % editing efficiency by TIDE analysis (Table 17).












TABLE 17





Guide
SEQ

Editing


RNA
ID NO
Guide Sequence
Efficiency (%)







T107
2202
GTGCATGACGCCCTGCTCTG
99





T131
2170
GCCAGACGCTCCCCAGAGCA
98.9





T18
1746
TCGTCCTCCGACTCGCTGAC
98.3





T14
2258
CTTTGCGAACCAACGATAGG
98.2





T83
2210
TGTGCATGACGCCCTGCTCT
98.2





T150
1346
CAGAGCTTTGGGCAGATGGA
97.9





T73
1914
CTCCGAGAGCAGCGCAAGTG
97.4





T113
2178
GCCCTGCTCTGGGGAGCGTC
97.4





T146
1338
CCAGAGCTTTGGGCAGATGG
96.7





T98
1642
AACGTGGATTGGGGTTGTTG
96.5





T20
2322
CACGCACCCCCACCTATCGT
95.8





T108
1706
GTAGCCTGTCAGCGAGTCGG
95.6





T79
2346
CGTGGAGGATGGAACACGGA
94.8





T13
2242
GCACTTTGCGAACCAACGAT
94.2





T10
1778
AATATCCAAACCGCCGAAGC
94.1





T35
3794
CGGAGCGGTTGTGAACTGGC
93.9





T49
1426
TATTCGCGAGGGTCGGGGGT
93.2





T66
2050
TTTGCCAAACCCGCTTTTTC
91.8





T72
1538
GGGACAGACAATAAATACCG
91.6





T69
1578
ACTGAGACCCCGACATTCCT
91.5





T160
1962
GAGCAGCGCAAGTGAGGAGG
91.2





T53
1842
GCCGGCTCCGCCCGCTTCGG
91.1





T114
2162
CGCCAGACGCTCCCCAGAGC
90.3





T55
4010
CCGGAGTCGAAGACAGTTCT
90.2





T8
4026
TAGAACTGTCTTCGACTCCG
89.9





T50
1586
GTCTCAGTGCATCCAAAACG
89.9





T80
1554
AATAAATACCGAGGAATGTC
89.6





T39
3914
GGGCACTCAGTCTTCCAACG
89.5





T24
2282
TGCGAACCAACGATAGGTGG
88.8





T91
1634
AAACGTGGATTGGGGTTGTT
88.8





T43
1738
TGTCAGCGAGTCGGAGGACG
88.7





T26
1786
ATCCAAACCGCCGAAGCGGG
88.3





T57
3906
CGGGCACTCAGTCTTCCAAC
87.9





T22
2266
TTTGCGAACCAACGATAGGT
87.7





T74
1658
AACAACCCCAATCCACGTTT
87.7





T97
2114
CGATCTCTGCCTGCTTACTC
87.2





T25
1434
CCCCGACCCTCGCGAATAAA
87





T45
4018
CGGAGTCGAAGACAGTTCTA
87





T103
3722
GCTGGGCGGAGACCCACGCT
86.8





T42
4042
CCTAGAACTGTCTTCGACTC
86.7





T87
3938
CCGTTGGAAGACTGAGTGCC
86.5





T104
3898
CCGGGCACTCAGTCTTCCAA
85.5





T58
3922
GTTGGAAGACTGAGTGCCCG
85.4





T134
3818
GGTTGTGAACTGGCAGGCGG
84.5





T135
1946
AGAGCAGCGCAAGTGAGGAG
84.5





T147
2338
GGTGCGTGGAGGATGGAACA
84.5





T44
1602
GTGCATCCAAAACGTGGATT
84.2





T122
1890
GCTGCTCTCGGAGCCCCAGC
84.2





T48
1850
CCAGCCGGCTCCGCCCGCTT
84





T2
3778
GTTCACAACCGCTCCGAGCG
83.8





T36
1714
CCGACTCGCTGACAGGCTAC
83.8





T41
2090
AGCAAATTTCCCGAGTAAGC
83.8





T154
3690
ATCACAGGACTGGAGCTGGG
83.5





T33
1562
ATAAATACCGAGGAATGTCG
83.2





T120
1690
CCTGTAGCCTGTCAGCGAGT
82.9





T28
2010
GCGCGGGATCCCCGAAAAAG
82.3





T30
2018
CGCGGGATCCCCGAAAAAGC
81.4





T121
1818
CCGAAGCGGGCGGAGCCGGC
81





T96
2130
GCGATCTCTGCCTGCTTACT
80.2





T61
3746
GCGGAGACCCACGCTCGGAG
79.2





T64
4034
CTAGAACTGTCTTCGACTCC
79.2





T34
1770
AAATATCCAAACCGCCGAAG
78.9





T117
3682
CGGATCACAGGACTGGAGCT
78.3





T106
3802
AGCGGTTGTGAACTGGCAGG
78.2





T105
3930
CGTTGGAAGACTGAGTGCCC
77.6





T93
1978
CTCCTCACTTGCGCTGCTCT
77.5





T102
3658
GCGGGCCCGGATCACAGGAC
77.3





T115
3674
CCGGATCACAGGACTGGAGC
77.3





T4
1378
GGAGGGCCTTTTATTCGCGA
77





T60
1610
TGCATCCAAAACGTGGATTG
76.9





T12
1386
GGCCTTTTATTCGCGAGGGT
76.1





T137
1482
TCGGGGGTGGGGGTCCTAGG
75.4





T6
1402
CCTTTTATTCGCGAGGGTCG
75.2





T100
1930
CGAGAGCAGCGCAAGTGAGG
75.2





T111
1546
CAATAAATACCGAGGAATGT
74.6





T143
3834
GAACTGGCAGGCGGTGGGCG
74.6





T139
1834
GAAGCGGGCGGAGCCGGCTG
74.4





T16
1394
GCCTTTTATTCGCGAGGGTC
73.8





T31
3418
GGGTCCGCGGCCGGCGAACG
73.7





T119
1938
GAGAGCAGCGCAAGTGAGGA
73.7





T27
2026
GATCCCCGAAAAAGCGGGTT
73.3





T54
1418
TTATTCGCGAGGGTCGGGGG
73.3





T84
3514
CTCCCTCCCCGGCCGCTAGG
73.3





T21
3394
GGCCGGCGAACGGGGCTCGA
72.1





T133
3330
CAGCAGCATTCCCGGCTACA
71.3





T129
4506
CCTCCATCTGCCCAAAGCTC
71.2





T99
3946
TCAGTCTTCCAACGGGGCCC
69.8





T163
1970
AGCAGCGCAAGTGAGGAGGG
68.9





T11
3770
TTCACAACCGCTCCGAGCGT
68.1





T81
3610
GGGCCCGCCCCCTAGCGGCC
67.9





T3
3370
ACCCTTCGAGCCCCGTTCGC
67.8





T90
3858
CGGCTTCTGTGCCGTGCCCC
67.6





T75
3826
GTTGTGAACTGGCAGGCGGT
66.6





T1
1410
CTTTTATTCGCGAGGGTCGG
66.2





T152
3474
CCCCTCCCTCCCCGGCCGCT
65.6





T149
3314
AGCAGCAGCAGCAGCATTCC
65.2





T136
2370
GCCCGGCTTGCTGCCTTCCC
64.6





T156
3442
GGAGGGGCCGGGTCCGCGGC
64.5





T89
3506
CCTCCCTCCCCGGCCGCTAG
63.9





T92
3850
GCGGCTTCTGTGCCGTGCCC
63.6





T95
3490
CCCTCCCTCCCCGGCCGCTA
62.9





T158
2418
GGCAAACTGCAGGCCTGGGA
62.6





T67
2506
GCTGAGGCCCTGACGTGGAT
62





T86
3602
GGCCCGCCCCCTAGCGGCCG
61.9





T130
1514
TTTATTGTCTGTCCCCACCT
61.9





T138
3538
CCCTAGCGGCCGGGGAGGGA
60.2





T63
3642
GATCCGGGCCCGCCCCCTAG
60





T38
3434
CCGGGTCCGCGGCCGGCGAA
59.5





T62
2474
GACGTGGATGGGCAAACTGC
59.4





T164
3522
CCTAGCGGCCGGGGAGGGAG
59.2





T125
3698
CAGCTCCAGTCCTGTGATCC
59





T17
3386
GCCGGCGAACGGGGCTCGAA
58.2





T76
2298
CAACGATAGGTGGGGGTGCG
57.7





T148
2394
GGCCTGGGAAGGCAGCAAGC
57.7





T29
2458
GCAGTTTGCCCATCCACGTC
57.4





T82
3634
AGGGGGCGGGCCCGGATCAC
57.4





T19
3426
CGGGTCCGCGGCCGGCGAAC
56.7





T88
3530
CCTCCCCGGCCGCTAGGGGG
56.1





T46
2226
TTGTGCATGACGCCCTGCTC
55.5





T9
2042
TTGCCAAACCCGCTTTTTCG
55.1





T112
3706
CCAGCTCCAGTCCTGTGATC
54.4





T126
2522
GCCAGGCTGAGGCCCTGACG
54.1





T85
3618
CGGGCCCGCCCCCTAGCGGC
53.1





T70
1826
CGAAGCGGGCGGAGCCGGCT
52.5





T68
1802
ACCGCCGAAGCGGGCGGAGC
52.1





T116
1650
ACGTGGATTGGGGTTGTTGG
52





T94
1626
AAAACGTGGATTGGGGTTGT
50.7





T110
2514
GGCTGAGGCCCTGACGTGGA
49.3





T118
3890
AAGACTGAGTGCCCGGGGCA
49.1





T59
2466
CAGTTTGCCCATCCACGTCA
48.3





T37
3354
GCTCGAAGGGTCCTTGTAGC
47.9





T52
1594
AGTGCATCCAAAACGTGGAT
47.8





T144
1498
GGGGGTGGGGGTCCTAGGTG
46.6





T123
2314
CGATAGGTGGGGGTGCGTGG
46





T71
3546
CTCCCCGGCCGCTAGGGGGC
44.2





T167
3450
GGACCCGGCCCCTCCCTCCC
44.1





T132
2442
GGATGGGCAAACTGCAGGCC
40.9





T159
1458
TTCGCGAGGGTCGGGGGTGG
40.4





T157
3458
GGAGGGAGGGGCCGGGTCCG
40.1





T153
2546
GCCTGGCCGAAAGAAAGAAA
39.6





T51
3410
CCGTTCGCCGGCCGCGGACC
38





T128
2498
TCCACGTCAGGGCCTCAGCC
37.8





T162
2330
AGGTGGGGGTGCGTGGAGGA
37.4





T40
3378
CGAGCCCCGTTCGCCGGCCG
37.3





T77
3570
CGCCCCCTAGCGGCCGGGGA
37.3





T145
1994
GCAAGTGAGGAGGGGGGCGC
37





T109
2570
ACCATTTCTTTCTTTCGGCC
36.6





T56
3346
CTCGAAGGGTCCTTGTAGCC
35.4





T140
3554
CCCCTAGCGGCCGGGGAGGG
33.6





T101
1442
ATTCGCGAGGGTCGGGGGTG
33.1





T168
2554
TCTTTCTTTCGGCCAGGCTG
28.2





T78
3578
CCGCCCCCTAGCGGCCGGGG
26.7





T5
1370
TGGAGGGCCTTTTATTCGCG
25.9





T141
2434
GATGGGCAAACTGCAGGCCT
25.1





T32
3994
CTTCGACTCCGGGGCCCCGT
21.4





T124
1490
CGGGGGTGGGGGTCCTAGGT
20.8





T7
1810
CTCCGCCCGCTTCGGCGGTT
15.3





T172
3498
GCGGCCGGGGAGGGAGGGGC
15





T15
2274
TTGCGAACCAACGATAGGTG
14.5





T155
2378
GCCTGGGAAGGCAGCAAGCC
14.4





T65
2058
TTTTGCCAAACCCGCTTTTT
12.3





T142
2586
CACAGACCATTTCTTTCTTT
11.9





T23
3762
CGCTCGGAGCGGTTGTGAAC
 9.7





T171
3482
CGGCCGGGGAGGGAGGGGCC
 8.3





T47
2354
AGGATGGAACACGGACGGCC
 3.8





T127
3586
CGGCCGCTAGGGGGCGGGCC
 3.4





T161
1474
GGGTCGGGGGTGGGGGTCCT
 3.2





T151
1986
CGCAAGTGAGGAGGGGGGCG
 2.2





T165
2658
CTGCTGCTGCTGCTGCTGGG





*The same guide (based on SEQ ID NO) may be referred to throughout with a “U” number and a “T” number.






c. Screening of gRNAs in DM1 iPSC Cell Lines with SpCas9


Guide RNAs were selected for screening in two DM1 iPSC cell lines (SB1 and 4033-4). Both cell lines contain a pathogenic CTG repeat region.


Six upstream gRNAs (5′ side of the CTG repeat region) (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, and 3746) and six downstream gRNAs (3′ side of the CTG repeat region) (SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210) (see FIG. 54 schematic) were tested for editing efficiency in SB1 cells delivered as RNPs with SpCas9. Results are shown as percent editing efficiency (FIG. 55).


The same gRNAs were further evaluated for the ability to delete the CTG repeat region of the DMPK gene either alone or in pairs in SB1 cells. Thirty six pair combinations were evaluated for CTG repeat region deletion. A two loss-of-signal ddPCR assay was used to detect repeat deletion (see FIG. 53 schematic). The percentage of CTG repeat region deletion ranged from 27% to 65% across the 36 pairs in SB1 cells (Table 18). The % deletion shown in FIG. 56 is a combined average repeat deletion from both LOS assays for individual gRNAs and pairs. The deletion efficiency results from each of the 5′ and 3′ LOS assays, as well as the average repeat deletion from both LOS assays, are shown in Table 18 for individual gRNAs and pairs. A comparison of the 5′ and 3′ LOS ddPCR results across SpCas9 pairs and individual gRNAs is shown in FIG. 57. Guide RNA (T34) showed CTG repeat region deletion activity as an individual guide and may be able to cause repeat deletion alone (FIG. 56, FIG. 57).













TABLE 18









Average


SEQ ID NO
SEQ ID NO
5′ LOS Deletion
3′ LOS Deletion
Deletion


(5′ Guide RNA)
(3′ Guide RNA)
Efficiency (%)
Efficiency (%)
Efficiency (%)















gRNA Pairs











3778 (T40)
1778 (T10)
44
46
45


3778 (T40)
1746 (T18)
32
31
31.5


3778 (T40)
1770 (T34)
43
45
44


3778 (T40)
1586 (T50)
37
36
36.5


3778 (T40)
1914 (T73)
38
33
35.5


3778 (T40)
2210 (T83)
48
48
48


4026 (T8)
1778 (T10)
43
41
42


4026 (T8)
1746 (T18)
40
42
41


4026 (T8)
1770 (T34)
45
42
43.5


4026 (T8)
1586 (T50)
43
46
44.5


4026 (T8)
1914 (T73)
41
35
38


4026 (T8)
2210 (T83)
45
46
45.5


3794 (T35)
1778 (T10)
38
33
35.5


3794 (T35)
1746 (T18)
28
26
27


3794 (T35)
1770 (T34)
44
41
42.5


3794 (T35)
1586 (T50)
34
31
32.5


3794 (T35)
1914 (T73)
32
33
32.5


3794 (T35)
2210 (T83)
48
45
46.5


4010 (T55)
1778 (T10)
33
46
39.5


4010 (T55)
1746 (T18)
42
37
39.5


4010 (T55)
1770 (T34)
47
43
45


4010 (T55)
1586 (T50)
38
37
37.5


4010 (T55)
1914 (T73)
42
38
40


4010 (T55)
2210 (T83)
64
67
65.5


3906 (T57)
1778 (T10)
39
35
37


3906 (T57)
1746 (T18)
37
32
34.5


3906 (T57)
1770 (T34)
44
40
42


3906 (T57)
1586 (T50)
37
34
35.5


3906 (T57)
1914 (T73)
35
33
34


3906 (T57)
2210 (T83)
43
45
44


3746 (T61)
1778 (T10)
50
45
47.5


3746 (T61)
1746 (T18)
45
47
46


3746 (T61)
1770 (T34)
49
48
48.5


3746 (T61)
1586 (T50)
47
46
46.5


3746 (T61)
1914 (T73)
44
43
43.5


3746 (T61)
2210 (T83)
58
58
58










Individual gRNAs











3778 (T40)

 6
−1
 2.5


4026 (T8)

10
 1
 5.5


3794 (T35)

 4
−4
 0


4010 (T55)

10
 3
 6.5


3906 (T57)

 3
0
 1.5


3746 (T61)

 8
  3
 5.5



1778 (T10)
 5
 3
 4



1746 (T18)
−2
−5
−3.5



1770 (T34)
18
18
18



1586 (T50)
 6
−1
 2.5



1914 (T73)
 2
 2
 2



2210 (T83)
 4
 7
 5.5









Guide RNAs were selected for further testing with SpCas9 in another DM1 iPSC cell line (4033-4). Five upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and five downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) were selected (see FIG. 58 schematic). The two loss-of-signal ddPCR assay was used to detect repeat deletion (see FIG. 53 schematic). FIG. 59 shows a comparison of 5′ and 3′ LOS ddPCR results across SpCas9 gRNA pairs and individual gRNAs in 4033-4 cells. Results are shown as percent deletion.


Similar CTG repeat deletion was observed between the DM1 iPSC cell line SB1 (FIG. 60A) and the DM1 iPSC cell line 4033-4 (FIG. 60B). It was further determined that the DM1 iPSC cell line SB1 has -1 kb CTG repeat allele, and the DM1 iPSC cell line 4033-4 has -7.5 kb CTG repeat allele.


d. Screening of gRNA Pairs in DM1 Cardiomyocytes with SpCas9


Guide RNAs were selected for further testing in DM1 cardiomyocytes with SpCas9. Five upstream gRNAs (SEQ ID NOs: 3778, 4026, 3794, 3906, and 3746) and five downstream gRNAs (SEQ ID NOs: 1778, 1746, 1770, 1586, and 2210) of the CTG repeat in the 3′ UTR of DMPK (see FIG. 61 schematic) were evaluated first for individual editing efficiency with SpCas9 in DM1 cardiomyocytes (FIG. 62). The editing results were similar in DM1 cardiomyocytes as obtained with DM1 iPSC SB1 cells (FIG. 62).


Three pairs of gRNAs (SEQ ID NOs: 3746 and 2210; 4026 and 1586; 3778 and 1778) were tested for CTG repeat deletion in DM1 cardiomyocytes and showed similar % deletion as obtained with DM1 iPSC SB1 cells by 5′ LOS ddPCR and 3′ LOS ddPCR (FIG. 63).


e. Off-Target Analysis


Twelve guide RNAs were tested for off-target activity with SpCas9 using a hybrid capture assay (SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210). Results of editing at on-target site and maximum off-target editing across sites and 2 donors are shown in Table 19:














TABLE 19








Number of off-
Maximum




Editing at the
Number
target sites with
off-target
Conclusion from



on-target site
of off-
>0.2% difference
editing
homology-based



(%) from
target
between treated
across sites
hybrid capture for 2


Guide
hybrid capture
sites
and untreated
and donors
donors (3 mm, 2 mm


RNA
data
tested
samples
(%)
1 gap)







T02
97.48
 6
0
NA
No sequence-confirmed







off-target sites


T08
97.28
19
0
NA
No sequence-confirmed







off-target sites


T10
98.05
15
0
NA
No sequence-confirmed







off-target sites


T18
98.37
15
0
NA
No sequence-confirmed







off-target sites


T34
84.29
48
0
NA
No sequence-confirmed







off-target sites


T35
97.07
22
0
NA
No sequence-confirmed







off-target sites


T50
92.13
54
1
0.23
No sequence-confirmed







off-target sites


T55
97.5 
34
1
1.87
>1% off-target site


T57
98.65
80
3
0.45
Potential >0.2% off-







target site


T61
97.5 
102 
3
0.48
Potential >0.2% off-







target site


T73
98.49
78
1
8.67
>1% off-target site


T83
95.86
104 
1
0.34
Potential >0.2% off-







target site









Based on the off-target data, pairs of gRNAs identified as “clean,” “off-target <1%,” or “off-target >1%.” Multiple “clean” gRNAs pairs with SpCas9 were identified that also had greater than 25% CTG repeat deletion in SB1 cells (FIG. 64).


f. Screening of gRNAs with SaCas9


Thirty upstream gRNAs and thirty downstream gRNAs of the CTG repeat in the 3′ UTR of DMPK were selected (see FIG. 65 schematic) and tested for individual editing efficiency with SaCas9 in a wildtype iPSC line (FIG. 66, Table 20) by TIDE analysis. The wildtype iPSC cells used, cell line number 0052, is a GMP-grade iPSC line available through Rutgers University Cell and DNA Repository.












TABLE 20





Guide
SEQ

Editing


RNA
ID NO
Guide Sequence
Efficiency (%)







Sa1
4989
GCGGGATGCGAAGCGGCCGAAT
81.7





Sa2
3256
GCCCCGGAGTCGAAGACAGTTC
78.5





Sa3
2896
CGCGGCCGGCGAACGGGGCTCG
92.8





Sa4
3136
CCAGTTCACAACCGCTCCGAGC
88.1





Sa5
 584
GGGCCTTTTATTCGCGAGGGTC
10.7





Sa6
 560
AGATGGAGGGCCTTTTATTCGC
71.5





Sa7
4990
GAGCTAGCGGGATGCGAAGCGG
81.7





Sa8
 840
CGGCTCCGCCCGCTTCGGCGGT
 0.7





Sa9
1152
CAACGATAGGTGGGGGTGCGTG
32.1





Sa10
 672
TGGGGACAGACAATAAATACCG
 4.1





Sa11
 752
CCCAACAACCCCAATCCACGTT
10.9





Sa12
3216
ACTCAGTCTTCCAACGGGGCCC
86.1





Sa13
 696
GGGGTCTCAGTGCATCCAAAAC
 1





Sa14
4208
ACAACGCAAACCGCGGACACTG
88.3





Sa15
4991
CTTCGGCCGCCTCCACACGCCT
70.2





Sa16
3016
CCCCGGCCGCTAGGGGGCGGGC
 1.8





Sa17
 976
GGGGCGCGGGATCCCCGAAAAA
46.7





Sa18
 744
CAAAACGTGGATTGGGGTTGTT
27.2





Sa19
 760
TTGGGGGTCCTGTAGCCTGTCA
84.4





Sa20
 712
TCAGTGCATCCAAAACGTGGAT
81.1





Sa21
3224
ACTCCGGGGCCCCGTTGGAAGA
78.3





Sa22
 688
GACAATAAATACCGAGGAATGT
73.2





Sa23
1240
TCGGCCAGGCTGAGGCCCTGAC
29





Sa24
1128
ACTTTGCGAACCAACGATAGGT
79.3





Sa25
 984
CTTTTGCCAAACCCGCTTTTTC
12.3





Sa26
2864
GGCTCGAAGGGTCCTTGTAGCC
85.5





Sa27
 608
TTTATTCGCGAGGGTCGGGGGT
47





Sa28
4992
CCGAAGGTCTGGGAGGAGCTAG
 6.5





Sa29
 616
AGGACCCCCACCCCCGACCCTC
21.4





Sa30
1008
GGGTTTGGCAAAAGCAAATTTC
75.5





Sa31
 960
AGCGCAAGTGAGGAGGGGGGCG
 1





Sa32
2944
CTAGCGGCCGGGGAGGGAGGGG
 1.6





Sa33
1272
CTGCTGCTGCTGCTGCTGCTGG
Cannot evaluate





editing, gRNA





cuts on the





repeat





NSa1
1224
CCAGGCTGAGGCCCTGACGTGG
 3.3





NSa3
1136
AACCAACGATAGGTGGGGGTGC
 0.7





NSa4
3248
TGTCTTCGACTCCGGGGCCCCG
 2.5





NSa5
 656
AGGTGGGGACAGACAATAAATA
 2.6





NSa6
 864
GCGGGCGGAGCCGGCTGGGGCT
 1.7





NSa7
3144
CGCCTGCCAGTTCACAACCGCT
 3.6





NSa8
1056
TCGCGCCAGACGCTCCCCAGAG
 1.8





NSa12
3200
GCCCCGTTGGAAGACTGAGTGC
85.6





NSa14
3096
CGCCCAGCTCCAGTCCTGTGAT
 1.6





NSa16
3160
GGCGCGGCTTCTGTGCCGTGCC
 0.9





NSa17
3064
GGGGCGGGCCCGGATCACAGGA
 3





NSa18
2880
GGGGCTCGAAGGGTCCTTGTAG
21.5





NSa24
2856
CATTCCCGGCTACAAGGACCCT
27.4





NSa34
2936
CGGCCCCTCCCTCCCCGGCCGC
 1.4





NSa40
3024
CGGGCCCGCCCCCTAGCGGCCG
 2.2





NSa41
2992
CCCGCCCCCTAGCGGCCGGGGA
 1.5





NSa42
3208
CACTCAGTCTTCCAACGGGGCC
53.2





NSa45
3112
GGAGCTGGGCGGAGACCCACGC
54.5





NSa49
2960
GCCCCTCCCTCCCCGGCCGCTA
 2.5





NSa51
3168
ACTGAGTGCCCGGGGCACGGCA
21.9





NSa54
2904
GTCCGCGGCCGGCGAACGGGGC
14.9





NSa55
3232
GTCTTCCAACGGGGCCCCGGAG
24.1





NSa58
3128
GAGACCCACGCTCGGAGCGGTT
13.3





NSa59
3240
GTCTTCGACTCCGGGGCCCCGT
49.8





NSa63
3264
ACCCTAGAACTGTCTTCGACTC
 1.2





NSa64
3192
CCCCGTTGGAAGACTGAGTGCC
 9.8





NSa65
2912
GGCCGGGTCCGCGGCCGGCGAA
 2









Four upstream gRNAs (SEQ ID NOs: 3256, 2896, 3136, and 3224) and six downstream gRNAs (SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616) were selected for evaluation of CTG repeat region deletion in DM1 iPSC SB1 cells with saCas9 (see FIG. 67 schematic). The percentage of CTG repeat region deletion for saCas9 gRNA pairs and individual saCas9 gRNAs is shown in FIG. 68A based on results from the 3′ LOS ddPCR assay. The 5′ LOS assay did not accurately portray deletion due to single gRNAs knocking out the ddPCR primer site (n=1). Data from the 5′ and 3′ LOS ddPCR are shown in Table 21. The spCas9 gRNA pair (SEQ ID NOs: 3746/2210) was used as a control. Percent editing efficiencies are shown for individual saCas9 gRNAs in FIG. 68B.













TABLE 21





SEQ ID NO
SEQ ID NO
5′ LOS Deletion
3′ LOS Deletion
Average Deletion


(5′ Guide RNA)
(3′ Guide RNA)
Efficiency (%)
Efficiency (%)
Efficiency (%)



















3256 (Sa2)
4989 (Sa1)
50
45
47.5


3256 (Sa2)
 984 (Sa25)
51
44
47.5


3256 (Sa2)
 616 (Sa29)
43
37
40


2896 (Sa3)
4989 (Sa1)
Not determined
43
Not determined


2896 (Sa3)
 672 (Sa10)
Not determined
31
Not determined


2896 (Sa3)
 760 (Sa19)
Not determined
66
Not determined


3136 (Sa4)
4989 (Sa1)
48
46
47


3136 (Sa4)
 560 (Sa6)
55
49
52


3224 (Sa21)
4989 (Sal)
48
44
46


3224 (Sa21)
 976 (Sa17)
42
40
41


3224 (Sa21)
 760 (Sa19)
45
41
43



4989 (Sa1)
25
21
23


3256 (Sa2)

28
21
24.5


2896 (Sa3)

Not determined
16
Not determined


3136 (Sa4)

28
16
22



 560 (Sa6)
24
24
24



 672 (Sa10)
−2
−7
−4.5



 976 (Sa17)
 6
−1
2.5



 760 (Sa19)
22
17
19.5


3224 (Sa21)

32
24
28



 984 (Sa25)
 2
−5
−1.5



 616 (Sa29)
 4
−1
1.5









This description and exemplary embodiments should not be taken as limiting. For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages, or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about,” to the extent they are not already so modified. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” and any singular use of any word, include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.












TABLE OF ADDITIONAL SEQUENCES









SEQ




ID NO
Description
Sequence





    1
F MBNL2 Ex5in qPCR
AGGCCAAAATCAAAGCTGCG



primer






    2
R MBNL2 Ex5in qPCR
AAGGCCAGGTCTACAGTTGC



primer






    3
F MBNL2 Ex4 (Total)
ACAGCACCATGATCGACACA



qPCR primer






    4
R MBNL2 Ex4 (Total)
CGCAGCTTTGATTTTGGCCT



qPCR primer






    5
F MBNL1 Ex5in qPCR
ATGCTCTCGGGAAAAGTGCA



primer






    6
R MBNL1 Ex5in qPCR
AGGTCAAAGGTTGCCTCGAG



primer






    7
F MBNL1 Ex4 (Total)
GTACCAACGTGGCAATTGCA



qPCR primer






    8
R MBNL1 Ex4 (Total)
TGCACTTTTCCCGAGAGCAT



qPCR primer






    9
F NCOR2 Ex45a in
TGCTATGCCCATAACCGCTGCTGA



qPCR primer






   10
R NCOR2 Ex45a in
ACTTGGCTTTTCGGCTGCTG



qPCR primer






   11
F NCOR2 (Total) qPCR
ACCCCAAAAAGCTGGCACCCTTCA



primer






   12
R NCOR2 (Total)
AATGCCTTTGGTGATGCTTCCGCC



qPCR primer






   13
F FN1 (Total) qPCR
GCAAACCCTGACACTGGAGT



primer






   14
R FN1 (Total) qPCR
GCAGGAGCTCTGATCAGCAT



primer






   15
F FN1 Ex25in qPCR
CTACACAGTCACAGGGCTGG



primer






   16
R FN1 Ex25in qPCR
TGTTGGTGAATCGCAGGTCA



primer






   17
F BIN1 (Total) qPCR
ACCCCCGAGATCAGAGTCAA



primer






   18
R BIN1 (Total) qPCR
TGCTTGACTTCCTTGGACGG



primer






   19
F BIN1 Exl1in qPCR
AACCTCAATGATGTGCTGGTCGGC



primer






   20
R BIN1 Ex11in qPCR
AGGCGCGTTGTCACTGTTCTTC



primer






   21
F KIF13A Ex26
GGACAGTTACCAGGAAGAAGACT



skipping qPCR primer






   22
R KIF13A Ex26
ACCAGCACAGCATTCCTTTCC



skipping qPCR primer






   23
F KIF13A (Total) qPCR
TGCGTAAGGGAGAGGTGGTCAGAT



primer






   24
R KIF13A (Total)
TGGCACCAGCACAGCATTCCTT



qPCR primer






   25
F GAPDH qPCR primer
GGTCTCCTCTGACTTCAACA





   26
R GAPDH qPCR
GTGAGGGTCTCTCTCTTCCT



primer






   27
F DMPK qPCR primer
CTGTTCGCCGTTGTTCTGTC





   28
R DMPK qPCR primer
AGTTCTAGGGTTCAGGGAGC





   29
DMPK-nest-F
CCTATCGGAGGCGCTTTCCC



genotyping primer






   30
DMPK-nest-R
ACCGAGGAATGTCGGGGTCT



genotyping primer






   31
AAVS1 gRNA
ACCCCACAGTGGGGCCACTA





   32
DMPK 3′UTR forward
CGCTAGGAAGCAGCCAATGA



PCR primer






   33
DMPK 3′UTR reverse
TAGCTCCTCCCAGACCTTCG



PCR primer






   34
DMPK 3′UTR
AATGACGAGTTCGGACGG



sequencing primer




UTRsF3






   35
DMPK 3′UTR
TGTTCCATCCTCCACGCAC



sequencing primer




UTRsF2






   36
UpR2
TCAAGCCTAAAGTACAAACTCCGG





   37
AltF3
TATCTGACCCAGTTACGCCACGGCT





   38
Ouellet_seq_R3
CAGTGAGCTGAGACTGAGCCA





   39
Ouellet_seq_F2
CAAGTGTGGCCATGATGGTCCT





   40
Ouellet_seq_F1
CCAGCATCTCTGGAAAAATAG





   41
Ouellet R3
AGGGGGAGCTTAGGGTCAAT





   42
Ouellet F3
GCTTTCCTGGAACGAGGTGA





   43
LR_R6
TAAAATACTGATTACATGTT





   44
LR_R5
ACTAGAAAATGTAGAATTATGTGTG





   45
LR_R4
GATAATATTTTGTATGTACTAGGTTG





   46
LR_R1
GCTGCTTTAGAAGTAGATGCAAGGGG





   47
LR_F2
ACTAGCTCACCCCGCTCCTTCTC





   48
FXN_DWN_F4
CCATCAGCAGAGTTTTTAATTTAGG





   49
DwnSeqF2
CTTGCACATCTTGGGTATTTGAGG





   50
AltR1
CAACCCATGCTGTCCACACAGG





   51
AltF3RC
AGCCGTGGCGTAACTGGGTCAGATA





   52
AltF1
GATCCCTTCAGAGTGGCTGGTACG





   53
35 FWD
CACCGaaagaaaagttagccgggcg





   54
31 FWD mod
TGTATTTTTTAGTAGATACTGGG





   55
NPC Primer 1
AGTTCAGCGGCCGCGCTCAGCTCCGT




TTCGGTTTCACTTCCGGT





   56
NPC Primer 2
CAAGTCGCGGCCGCCTTGTAGAAAGC




GCCATTGGAGCCCCGCA





53373
GDG_AAVS1_1
ATCCTGTCCCTAGTGGCCC





53374
Pac Bio primer 1
CGCTAGGAAGCAGCCAATGA





53375
Pac Bio primer 2
TAGCTCCTCCCAGACCTTCG





53376
Forward primer
CGCTAGGAAGCAGCCAATGA



/5Phos/GGGT(16NT_in




dex)






53377
Reverse primer
TAGCTCCTCCCAGACCTTCG



/5Phos/CAGT(16NT_in




dex)






53378
bc_1001_FWD_PacB.P
/5Phos/GGGTCACATATCAGAGTGCGCGCTAGGAAGCAG



CR
CCAATGA





53379
bc_1002_FWD_PacB.P
/5Phos/GGGTACACACAGACTGTGAGCGCTAGGAAGCAG



CR
CCAATGA





53380
bc_1003_FWD_PacB.P
/5Phos/GGGTACACATCTCGTGAGAGCGCTAGGAAGCAG



CR
CCAATGA





53381
bc_1004_FWD_PacB.P
/5Phos/GGGTCACGCACACACGCGCGCGCTAGGAAGCAG



CR
CCAATGA





53382
bc_1005_FWD_PacB.P
/5Phos/GGGTCACTCGACTCTCGCGTCGCTAGGAAGCAGC



CR
CAATGA





53383
bc_1006_FWD_PacB.P
/5Phos/GGGTCATATATATCAGCTGTCGCTAGGAAGCAGC



CR
CAATGA





53384
bc_1007_FWD_PacB.P
/5Phos/GGGTTCTGTATCTCTATGTGCGCTAGGAAGCAGC



CR
CAATGA





53385
bc_1008_FWD_PacB.P
/5Phos/GGGTACAGTCGAGCGCTGCGCGCTAGGAAGCAG



CR
CCAATGA





53386
bc_1009_FWD_PacB.P
/5Phos/GGGTACACACGCGAGACAGACGCTAGGAAGCAG



CR
CCAATGA





53387
bc_1010_FWD_PacB.P
/5Phos/GGGTACGCGCTATCTCAGAGCGCTAGGAAGCAGC



CR
CAATGA





53388
bc_1011_FWD_PacB.P
/5Phos/GGGTCTATACGTATATCTATCGCTAGGAAGCAGC



CR
CAATGA





53389
bc_1012_FWD_PacB.P
/5Phos/GGGTACACTAGATCGCGTGTCGCTAGGAAGCAGC



CR
CAATGA





53390
bc_1025_REV_PacB.P
/5Phos/CAGTGCGCGAGCGTGTCGCGTAGCTCCTCCCAGA



CR
CCTTCG





53391
bc_1026_REV_PacB.P
/5Phos/CAGTTGTGCGTGTCTCTGTGTAGCTCCTCCCAGAC



CR
CTTCG





53392
bc_1027_REV_PacB.P
/5Phos/CAGTTGTGAGAGAGTGTGAGTAGCTCCTCCCAGA



CR
CCTTCG





53393
bc_1028_REV_PacB.P
/5Phos/CAGTGAGAGTCAGAGCAGAGTAGCTCCTCCCAGA



CR
CCTTCG





53394
bc_1029_REV_PacB.P
/5Phos/CAGTTCTATAGACATATATATAGCTCCTCCCAGA



CR
CCTTCG





53395
bc_1030_REV_PacB.P
/5Phos/CAGTGAGCGCGATAGAGAGATAGCTCCTCCCAGA



CR
CCTTCG





53396
bc_1031_REV_PacB.P
/5Phos/CAGTCACACACTCAGACATCTAGCTCCTCCCAGA



CR
CCTTCG





53397
bc_1032_REV_PacB.P
/5Phos/CAGTCACTATCTCTAGTCTCTAGCTCCTCCCAGAC



CR
CTTCG





53398
bc_1033_REV_PacB.P
/5Phos/CAGTAGAGACTGCGACGAGATAGCTCCTCCCAGA



CR
CCTTCG





53399
bc_1034_REV_PacB.P
/5Phos/CAGTATATCTATATACACATTAGCTCCTCCCAGA



CR
CCTTCG





53400
bc_1035_REV_PacB.P
/5Phos/CAGTCAGAGAGTGCGCGCGCTAGCTCCTCCCAGA



CR
CCTTCG





53401
bc_1036_REV_PacB.P
/5Phos/CAGTGTGTGCGACGTGTCTCTAGCTCCTCCCAGA



CR
CCTTCG





53402
UTRF1
GGGGATCACAGACCATTTCT





53403
UTRR14
TGGAGGATGGAACACGGAC





53404
UTRP2-FAM
TTCTTTCGGCCAGGCTGAGGCCCT





53405
DMPKF8
GGATATGTGACCATGCTACC





53406
DMPKR7
GGGTTGTATCCAGTACCTCT





53407
DMPKP6-HEX
TGTCCTGTTCCTTCCCCCAGCCCCA





53408
CDC42BPB gRNA
GAGCCGCACCUUGGCCGACA





53409
RELA gRNA
GAUCUCCACAUAGGGGCCAG





53410
Fw oligo for dual

agaTACCATGTTGGCCAGGTTAGTCTAATTTCTACTCTT




Cas12a sgRNA array
GTAGATCCAGCATCTCTGGAAAAATAG









Primers are indicated as forward or reverse primers using F and R, respectively. qPCR primers for amplifying a product specific for a given form of an mRNA have descriptions including text such as “Ex5in,” which indicates that the primers give product in the presence of exon 5 of the indicated mRNA. qPCR primers for amplifying a product from all expected forms of an mRNA have descriptions including “Total.”

Claims
  • 1. A composition comprising: i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising: a. a spacer sequence selected from SEQ ID NOs: 4018, 4010, 4002, 4042, 4034, 4026, 3954, 3946, 3994, 3914, 3978, 3906, 3898, 3938, 3922, 3858, 3850, 3882, 3826, 3818, 3842, 3794, 3786, 3762, 3810, 3746, 3778, 3738, 3770, 3722, 3754, 3690, 3666, 3658, 3634, 3586, 3546, 3530, 3642, 3514, 3506, 3490, 3618, 3610, 3602, 3578, 3442, 3522, 3410, 3378, 3434, 3370, 3426, 3418, 3394, 3386, 3330, 3354, 3346, 3314, 3930, 3890, 3834, 3802, 3706, 3698, 3682, 3674, 3570, 3554, 3538, 3498, 3482, 3458, 3474, 3450, 2667, 2666, 2650, 2642, 2626, 2618, 2706, 2690, 2682, 2610, 2674, 2658, 2602, 2594, 2634, 2554, 2546, 2586, 2538, 2578, 2570, 2522, 2498, 2490, 2466, 2458, 2450, 2514, 2506, 2418, 2482, 2474, 2394, 2442, 2434, 2370, 2378, 2354, 2346, 2338, 2314, 2298, 2282, 2274, 2266, 2330, 2258, 2322, 2242, 2234, 2290, 2250, 2218, 2226, 2210, 2194, 2146, 2138, 2122, 2106, 2098, 2090, 2130, 2114, 2034, 2026, 2058, 2050, 2042, 1914, 1786, 1778, 1770, 1842, 1738, 1706, 1690, 1746, 1714, 1650, 1642, 1610, 1586, 1562, 1546, 1578, 1538, 1378, 1370, 1922, 1898, 1906, 1794, 1762, 1698, 1674, 1722, 1362, 1450, 2202, 2178, 2170, 2162, 2018, 2010, 1890, 1962, 1946, 1850, 1818, 1658, 1634, 1602, 1554, 1434, 1426, 1338, 1346, 1978, 1994, 1986, 1970, 1938, 1930, 1810, 1834, 1826, 1802, 1626, 1594, 1514, 1498, 1490, 1482, 1474, 1458, 1442, 1418, 1410, 1402, 1394, and 1386; orb. a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, 3722, 3802, 3858, 3514, 3770, 3370, 3354, 4010, 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, 2322, 1770, 1538, 2514, 2458, 2194, 2594, 2162, and 2618; orc. a spacer sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594; ord. a spacer sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594; ore. a spacer sequence selected from SEQ ID NOs: 3330, 3914, 3418, 3746, 3778, 3394, 4026, 3690, 3794, 3386, 3938, 3682, 3818, 3658, and 3722; orf. a spacer sequence selected from SEQ ID NOs: 2202, 1706, 2210, 2170, 1778, 2258, 2114, 2178, 1642, 1738, 1746, and 2322; org. a spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906, 3746, 1778, 1746, 1770, 1586, 1914, and 2210; orh. a spacer sequence selected from SEQ ID NOs: 3378, 3354, 3346, 3330, 3314, 2658, 2690, 2546, 2554, 2498, and 2506; ori. a spacer sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498; orj. a spacer sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498; ork. a spacer sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258; orl. SEQ ID NO: 3914; orm. SEQ ID NO: 3418; orn. SEQ ID NO: 3938; oro. a spacer sequence selected from SEQ ID NOs: 3916, 3420, and 3940; orp. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through o); orq. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through p); orii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising: a. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; 2162 and 3386; 1706 and 3418; 1706 and 3370; 1706 and 3514; 1706 and 3658; 1706 and 4010; 1706 and 4026; 1706 and 3914; 1706 and 3938; 1706 and 3858; 1706 and 3818; 1706 and 3794; 1706 and 3802; 1706 and 3746; 1706 and 3778; 1706 and 3770; 1706 and 3722; 1706 and 3690; 1706 and 3682; 1706 and 3330; 1706 and 3354; 1706 and 3394; 1706 and 3386; 2210 and 3418; 2210 and 3370; 2210 and 3514; 2210 and 3658; 2210 and 4010; 2210 and 4026; 2210 and 3914; 2210 and 3938; 2210 and 3858; 2210 and 3818; 2210 and 3794; 2210 and 3802; 2210 and 3746; 2210 and 3778; 2210 and 3770; 2210 and 3722; 2210 and 3690; 2210 and 3682; 2210 and 3330; 2210 and 3354; 2210 and 3394; 2210 and 3386; 1778 and 3418; 1778 and 3370; 1778 and 3514; 1778 and 3658; 1778 and 4010; 1778 and 4026; 1778 and 3914; 1778 and 3938; 1778 and 3858; 1778 and 3818; 1778 and 3794; 1778 and 3802; 1778 and 3746; 1778 and 3778; 1778 and 3770; 1778 and 3722; 1778 and 3690; 1778 and 3682; 1778 and 3330; 1778 and 3354; 1778 and 3394; 1778 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 2114 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 2258 and 3418; 2258 and 3370; 2258 and 3514; 2258 and 3658; 2258 and 4010; 2258 and 4026; 2258 and 3914; 2258 and 3938; 2258 and 3858; 2258 and 3818; 2258 and 3794; 2258 and 3802; 2258 and 3746; 2258 and 3778; 2258 and 3770; 2258 and 3722; 2258 and 3690; 2258 and 3682; 2258 and 3330; 2258 and 3354; 2258 and 3394; 2258 and 3386; 2114 and 3418; 2114 and 3370; 2114 and 3514; 2114 and 3658; 2114 and 4010; 2114 and 4026; 2114 and 3914; 2114 and 3938; 2114 and 3858; 2114 and 3818; 2114 and 3794; 2114 and 3802; 2114 and 3746; 2114 and 3778; 2114 and 3770; 2114 and 3722; 2114 and 3690; 2114 and 3682; 2114 and 3330; 2114 and 3354; 2114 and 3394; 1706 and 3386; 1642 and 3418; 1642 and 3370; 1642 and 3514; 1642 and 3658; 1642 and 4010; 1642 and 4026; 1642 and 3914; 1642 and 3938; 1642 and 3858; 1642 and 3818; 1642 and 3794; 1642 and 3802; 1642 and 3746; 1642 and 3778; 1642 and 3770; 1642 and 3722; 1642 and 3690; 1642 and 3682; 1642 and 3330; 1642 and 3354; 1642 and 3394; 1642 and 3386; 1738 and 3418; 1738 and 3370; 1738 and 3514; 1738 and 3658; 1738 and 4010; 1738 and 4026; 1738 and 3914; 1738 and 3938; 1738 and 3858; 1738 and 3818; 1738 and 3794; 1738 and 3802; 1738 and 3746; 1738 and 3778; 1738 and 3770; 1738 and 3722; 1738 and 3690; 1738 and 3682; 1738 and 3330; 1738 and 3354; 1738 and 3394; 1738 and 3386; 1746 and 3418; 1746 and 3370; 1746 and 3514; 1746 and 3658; 1746 and 4010; 1746 and 4026; 1746 and 3914; 1746 and 3938; 1746 and 3858; 1746 and 3818; 1746 and 3794; 1746 and 3802; 1746 and 3746; 1746 and 3778; 1746 and 3770; 1746 and 3722; 1746 and 3690; 1746 and 3682; 1746 and 3330; 1746 and 3354; 1746 and 3394; 1746 and 3386; 2322 and 3418; 2322 and 3370; 2322 and 3514; 2322 and 3658; 2322 and 4010; 2322 and 4026; 2322 and 3914; 2322 and 3938; 2322 and 3858; 2322 and 3818; 2322 and 3794; 2322 and 3802; 2322 and 3746; 2322 and 3778; 2322 and 3770; 2322 and 3722; 2322 and 3690; 2322 and 3682; 2322 and 3330; 2322 and 3354; 2322 and 3394; 2322 and 3386; 1770 and 3418; 1770 and 3370; 1770 and 3514; 1770 and 3658; 1770 and 4010; 1770 and 4026; 1770 and 3914; 1770 and 3938; 1770 and 3858; 1770 and 3818; 1770 and 3794; 1770 and 3802; 1770 and 3746; 1770 and 3778; 1770 and 3770; 1770 and 3722; 1770 and 3690; 1770 and 3682; 1770 and 3330; 1770 and 3354; 1770 and 3394; 1770 and 3386; 1538 and 3418; 1538 and 3370; 1538 and 3514; 1538 and 3658; 1538 and 4010; 1538 and 4026; 1538 and 3914; 1538 and 3938; 1538 and 3858; 1538 and 3818; 1538 and 3794; 1538 and 3802; 1538 and 3746; 1538 and 3778; 1538 and 3770; 1538 and 3722; 1538 and 3690; 1538 and 3682; 1538 and 3330; 1538 and 3354; 1538 and 3394; 1538 and 3386; 2514 and 3418; 2514 and 3370; 2514 and 3514; 2514 and 3658; 2514 and 4010; 2514 and 4026; 2514 and 3914; 2514 and 3938; 2514 and 3858; 2514 and 3818; 2514 and 3794; 2514 and 3802; 2514 and 3746; 2514 and 3778; 2514 and 3770; 2514 and 3722; 2514 and 3690; 2514 and 3682; 2514 and 3330; 2514 and 3354; 2514 and 3394; 2514 and 3386; 2458 and 3418; 2458 and 3370; 2458 and 3514; 2458 and 3658; 2458 and 4010; 2458 and 4026; 2458 and 3914; 2458 and 3938; 2458 and 3858; 2458 and 3818; 2458 and 3794; 2458 and 3802; 2458 and 3746; 2458 and 3778; 2458 and 3770; 2458 and 3722; 2458 and 3690; 2458 and 3682; 2458 and 3330; 2458 and 3354; 2458 and 3394; 2458 and 3386; 2194 and 3418; 2194 and 3370; 2194 and 3514; 2194 and 3658; 2194 and 4010; 2194 and 4026; 2194 and 3914; 2194 and 3938; 2194 and 3858; 2194 and 3818; 2194 and 3794; 2194 and 3802; 2194 and 3746; 2194 and 3778; 2194 and 3770; 2194 and 3722; 2194 and 3690; 2194 and 3682; 2194 and 3330; 2194 and 3354; 2194 and 3394; 2194 and 3386; 2594 and 3418; 2594 and 3370; 2594 and 3514; 2594 and 3658; 2594 and 4010; 2594 and 4026; 2594 and 3914; 2594 and 3938; 2594 and 3858; 2594 and 3818; 2594 and 3794; 2594 and 3802; 2594 and 3746; 2594 and 3778; 2594 and 3770; 2594 and 3722; 2594 and 3690; 2594 and 3682; 2594 and 3330; 2594 and 3354; 2594 and 3394; 2594 and 3386; 2618 and 3418; 2618 and 3370; 2618 and 3514; 2618 and 3658; 2618 and 4010; 2618 and 4026; 2618 and 3914; 2618 and 3938; 2618 and 3858; 2618 and 3818; 2618 and 3794; 2618 and 3802; 2618 and 3746; 2618 and 3778; 2618 and 3770; 2618 and 3722; 2618 and 3690; 2618 and 3682; 2618 and 3330; 2618 and 3354; 2618 and 3394; and 2618 and 3386; orb. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; 2162 and 3658; 2202 and 4010; 2202 and 4026; 2202 and 3914; 2202 and 3938; 2202 and 3858; 2202 and 3818; 2202 and 3794; 2202 and 3802; 2202 and 3746; 2202 and 3778; 2202 and 3770; 2202 and 3722; 2202 and 3690; 2202 and 3682; 2202 and 3330; 2202 and 3354; 2202 and 3394; 2202 and 3386; 2178 and 4010; 2178 and 4026; 2178 and 3914; 2178 and 3938; 2178 and 3858; 2178 and 3818; 2178 and 3794; 2178 and 3802; 2178 and 3746; 2178 and 3778; 2178 and 3770; 2178 and 3722; 2178 and 3690; 2178 and 3682; 2178 and 3330; 2178 and 3354; 2178 and 3394; 2178 and 3386; 2170 and 4010; 2170 and 4026; 2170 and 3914; 2170 and 3938; 2170 and 3858; 2170 and 3818; 2170 and 3794; 2170 and 3802; 2170 and 3746; 2170 and 3778; 2170 and 3770; 2170 and 3722; 2170 and 3690; 2170 and 3682; 2170 and 3330; 2170 and 3354; 2170 and 3394; 2170 and 3386; 2162 and 4010; 2162 and 4026; 2162 and 3914; 2162 and 3938; 2162 and 3858; 2162 and 3818; 2162 and 3794; 2162 and 3802; 2162 and 3746; 2162 and 3778; 2162 and 3770; 2162 and 3722; 2162 and 3690; 2162 and 3682; 2162 and 3330; 2162 and 3354; 2162 and 3394; and 2162 and 3386; orc. a first and second spacer sequence selected from SEQ ID NOs: 2202 and 3418; 2202 and 3370; 2202 and 3514; 2202 and 3658; 2178 and 3418; 2178 and 3370; 2178 and 3514; 2178 and 3658; 2170 and 3418; 2170 and 3370; 2170 and 3514; 2170 and 3658; 2162 and 3418; 2162 and 3370; 2162 and 3514; and 2162 and 3658; ord. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2514; 3778 and 2258; 3778 and 2210; 3386 and 2514; 3386 and 2258; 3386 and 2210; 3354 and 2514; 3354 and 2258; and 3354 and 2210; ore. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 2258; 3778 and 2210; 3386 and 2258; 3386 and 2210; and 3354 and 2514; orf. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3330 and 2506; and 3330 and 2546; org. SEQ ID NOs: 1153 and 1129; orh. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; 3330 and 2498; 3354 and 2546; 3354 and 2506; 3378 and 2546; and 3378 and 2506; ori. a first and second spacer sequence selected from SEQ ID NOs: 3346 and 2554; 3346 and 2498; 3330 and 2554; and 3330 and 2498; orj. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through i); ork. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through j).
  • 2. A composition comprising: a pair of guide RNAs comprising a pair of spacer sequences, or one or more nucleic acids encoding the pair of guide RNAs, wherein the pair of spacer sequences comprise: a. a first spacer sequence selected from SEQ ID NOs: 2856, 2864, 2880, 2896, 2904, 2912, 2936, 2944, 2960, 2992, 3016, 3024, 3064, 3096, 3112, 3128, 3136, 3144, 3160, 3168, 3192, 3200, 3208, 3216, 3224, 3232, 3240, 3248, 3256, 3264, 3314, 3330, 3346, 3354, 3370, 3378, 3386, 3394, 3410, 3418, 3426, 3434, 3442, 3450, 3458, 3474, 3482, 3490, 3498, 3506, 3514, 3522, 3530, 3538, 3546, 3554, 3570, 3578, 3586, 3602, 3610, 3618, 3634, 3642, 3658, 3674, 3682, 3690, 3698, 3706, 3722, 3746, 3762, 3770, 3778, 3794, 3802, 3818, 3826, 3834, 3850, 3858, 3890, 3898, 3906, 3914, 3922, 3930, 3938, 3946, 3994, 4010, 4018, 4026, 4034, 4042, 4208, and 4506, and a second spacer sequence selected from SEQ ID NOs: 560, 584, 608, 616, 656, 672, 688, 696, 712, 744, 752, 760, 840, 864, 960, 976, 984, 1008, 1056, 1128, 1136, 1152, 1224, 1240, 1272, 1338, 1346, 1370, 1378, 1386, 1394, 1402, 1410, 1418, 1426, 1434, 1442, 1458, 1474, 1482, 1490, 1498, 1514, 1538, 1546, 1554, 1562, 1578, 1586, 1594, 1602, 1610, 1626, 1634, 1642, 1650, 1658, 1690, 1706, 1714, 1738, 1746, 1770, 1778, 1786, 1802, 1810, 1818, 1826, 1834, 1842, 1850, 1890, 1914, 1930, 1938, 1946, 1962, 1970, 1978, 1986, 1994, 2010, 2018, 2026, 2042, 2050, 2058, 2090, 2114, 2130, 2162, 2170, 2178, 2202, 2210, 2226, 2242, 2258, 2266, 2274, 2282, 2298, 2314, 2322, 2330, 2338, 2346, 2354, 2370, 2378, 2394, 2418, 2434, 2442, 2458, 2466, 2474, 2498, 2506, 2514, 2522, 2546, 2554, 2570, 2586, 2658, 4989, 4990, 4991, and 4992; orb. a first spacer sequence selected from SEQ ID NOs: 3778, 4026, 3794, 4010, 3906 and 3746, and a second spacer sequence selected from SEQ ID NOs: 1778, 1746, 1770, 1586, 1914, and 2210; orc. a first and second spacer sequence selected from SEQ ID NOs: 3778 and 1778; 3778 and 1746; 3778 and 1770; 3778 and 1586; 3778 and 1914; 3778 and 2210; 4026 and 1778; 4026 and 1746; 4026 and 1770; 4026 and 1586; 4026 and 1914; 4026 and 2210; 3794 and 1778; 3794 and 1746; 3794 and 1770; 3794 and 1586; 3794 and 1586; 3794 and 1914; 3794 and 2210; 4010 and 1778; 4010 and 1770; 4010 and 1746; 4010 and 1586; 4010 and 1914; 4010 and 2210; 3906 and 1778; 3906 and 1778; 3906 and 1746; 3906 and 1770; 3906 and 1586; 3906 and 1914; 3906 and 2210; 3746 and 1778; 3746 and 1746; 3746 and 1770; 3746 and 1586; 3746 and 1914; and 3746 and 2210; ord. a first spacer sequence selected from SEQ ID NOs: 3256, 2896, 3136, and 3224, and a second spacer sequence selected from SEQ ID NOs: 4989, 560, 672, 976, 760, 984, and 616; ore. a first and second spacer sequence selected from SEQ ID NOs: 3256 and 4989; 3256 and 984; 3256 and 616; 2896 and 4989; 2896 and 672; 2896 and 760; 3136 and 4989;3136 and 560; 3224 and 4989; 3224 and 976; and 3224 and 760; or f. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through e); org. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through f).
  • 3. A composition comprising: i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising: a. a spacer sequence selected from SEQ ID NOs: 5262, 5782, 5830, 5926, 5950, 5998, 6022, 5310, and 5334; orb. a spacer sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310; orc. a spacer sequence selected from SEQ ID NOs: 5262, 5334, and 5830; ord. SEQ ID NO: 5262; ore. a spacer sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312; orf. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through e); org. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through f); orii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising: a. a first and second spacer sequence selected from SEQ ID NOs: 5782 and 5262; 5830 and 5262; 5926 and 5262; 5950 and 5262; and 5998 and 5262; orb. a first and second spacer sequence selected from SEQ ID NOs: 5830 and 5262; and 6022 and 5310; orc. SEQ ID NOs: 5334 and 5830; ord. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through c); ore. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through d).
  • 4. A composition comprising: i) a guide RNA comprising a spacer sequence, or a nucleic acid encoding the guide RNA, comprising: a. a spacer sequence selected from SEQ ID NOs: 28130, 34442, 45906, 26562, 52666, 51322, 46599, 52898, 26546, 7447, 47047, 49986, 51762, 51754, 52290, 52298, 51474, 52306, 50682, 51706, 52098, 50714, 51498, 52498, 50978, 51746, 52106, 51506, 50674, 52082, 52506, 50538, 52066, 52386, 52090, 52266, 52474, 52258, 52434, 50706, 51490, 52458, 51466, 52354, 51914, 51362, 51058, 50170, 51954, 52250, 51930, 51682, 52594, 52610, 51162, 49162, 50898, 49226, 51658, 52554, 52634, 51394, 49034, 52546, 52522, 52618, 52530, 28322, 26530, 26578, 26602, 26634, 26626, 26698, 26746, 26754, 26786, 26882, 27722, 27730, 27738, 27770, 27754, 27762, 27802, 27850, 27842, 27922, 27946, 27986, 28114, 28122, 28146, 28186, 28194, 28338, 28346, 28322, 28378, 28370, 28458, 28506, 28634, 28642, 28650, 34442, and 45906; orb. a spacer sequence selected from SEQ ID NOs: 51706, 51058, 51754, 52090, 52594, 52098, 52298, 52106, 51682, 52066, 52354, 52458, 52290, 52498, 51658, 51930, 51162, 52506, 51762, 51746, 52386, 52258, 52530, 52634, 27850, 28634, 26882, 28650, 28370, 28194, 26626, 26634, 26786, 26754, 27770, 26578, 28130, 27738, 28338, 28642, 26602, 27754, 27730, and 28122; orc. a spacer sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032; ord. a spacer sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030; ore. a spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any one of the spacer sequences of a) through d); orf. a spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any one of the spacer sequences of a) through e); orii) a pair of guide RNAs comprising a first and second spacer sequence, or one or more nucleic acids encoding the pair of guide RNAs, comprising: a. a first and second spacer sequence selected from SEQ ID NOs: 47047 and 7447; 7463 and 46967; 46768 and 7680; and 47032 and 7447; orb. SEQ ID NOs: 47047 and 7447; orc. SEQ ID NOs: 52898 and 26546; ord. a first and second spacer sequence comprising at least 17, 18, 19, or 20 contiguous nucleotides of any of the first and second spacer sequences of a) through c); ore. a first and second spacer sequence that is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, or 90% identical to any of the first and second spacer sequences of a) through d).
  • 5. The composition of any one of the preceding claims, further comprising an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
  • 6. The composition of any one of the preceding claims, wherein the RNA-targeted endonuclease is a Cas nuclease.
  • 7. The composition of claim 6, wherein the Cas nuclease is Cas9.
  • 8. The composition of claim 7, wherein the Cas9 nuclease is from Streptococcus pyogenes.
  • 9. The composition of claim 7, wherein the Cas9 nuclease is from Staphylococcus aureus.
  • 10. The composition of claim 6, wherein the Cas nuclease is a Cpf1 nuclease.
  • 11. The composition of any one of the preceding claims, further comprising a DNA-PK inhibitor.
  • 12. The composition of any of the preceding claims, wherein the guide RNA is an sgRNA.
  • 13. The composition of claim 12, wherein the sgRNA is modified.
  • 14. The composition of claim 13, wherein the modification alters one or more 2′ positions and/or phosphodiester linkages.
  • 15. The composition of any one of claims 13-14, wherein the modification alters one or more, or all, of the first three nucleotides of the sgRNA.
  • 16. The composition of any one of claims 13-15, wherein the modification alters one or more, or all, of the last three nucleotides of the sgRNA.
  • 17. The composition of any one of claims 13-16, wherein the modification includes one or more of a phosphorothioate modification, a 2′-OME modification, a 2′-O-MOE modification, a 2′-F modification, a 2′-O-methine-4′ bridge modification, a 3′-thiophosphonoacetate modification, or a 2′-deoxy modification.
  • 18. The composition of any one of the preceding claims, wherein the composition further comprises a pharmaceutically acceptable excipient.
  • 19. The composition of any one of the preceding claims, wherein the guide RNA is associated with a lipid nanoparticle (LNP) or a viral vector.
  • 20. The composition of claim 19, wherein the viral vector is an adeno-associated virus vector, a lentiviral vector, an integrase-deficient lentiviral vector, an adenoviral vector, a vaccinia viral vector, an alphaviral vector, or a herpes simplex viral vector.
  • 21. The composition of claim 19, wherein the viral vector is an adeno-associated virus (AAV) vector.
  • 22. The composition of claim 21, wherein the AAV vector is an AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh10, AAVrh74, or AAV9 vector, wherein the number following AAV indicates the AAV serotype.
  • 23. The composition of claim 22, wherein the AAV vector is an AAV serotype 9 vector.
  • 24. The composition of claim 22, wherein the AAV vector is an AAVrh10 vector.
  • 25. The composition of claim 22, wherein the AAV vector is an AAVrh74 vector.
  • 26. The composition of any one of claims 19-25, wherein the viral vector comprises a tissue-specific promoter.
  • 27. The composition of any one of claims 19-26, comprising a viral vector, wherein the viral vector comprises a muscle-specific promoter, optionally wherein the muscle-specific promoter is a muscle creatine kinase promoter, a desmin promoter, an MHCK7 promoter, an SPc5-12 promoter, or a CK8e promoter.
  • 28. The composition of any one of claims 19-25, wherein the viral vector comprises a neuron-specific promoter, optionally wherein the neuron-specific promoter is an enolase promoter.
  • 29. A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in DNA, the method comprising delivering to a cell that comprises a TNR i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor.
  • 30. A method of excising a self-complementary region in DNA comprising delivering to a cell that comprises the self-complementary region i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the self-complementary region, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor, wherein the self-complementary region is excised.
  • 31. A method of excising a trinucleotide repeat (TNR) in DNA comprising delivering to a cell that comprises the TNR i) a guide RNA or a pair of guide RNAs comprising a spacer sequence or a pair of spacer sequences that directs an RNA-targeted endonuclease to or near the TNR, or a nucleic acid encoding the guide RNA or pair of guide RNAs; ii) an RNA-targeted endonuclease or a nucleic acid encoding the RNA-targeted endonuclease; and iii) a DNA-PK inhibitor, wherein at least one TNR is excised.
  • 32. The method of claim 30, wherein the self-complementary region comprises a palindromic sequence, a direct repeat, an inverted repeat, a GC-rich sequence, or an AT-rich sequence, optionally wherein the GC-richness or AT-richness is at least 70%, 75%, 80%, 85%, 90%, or 95% over a length of at least 10 nucleotides which are optionally interrupted by a loop-forming sequence.
  • 33. The method of any one of claims 29-32, comprising a pair of guide RNAs comprising a pair of spacer sequences that deliver the RNA-targeted endonuclease to or near a TNR or self-complementary region, or one or more nucleic acids encoding the pair of guide RNAs, are delivered to the cell.
  • 34. The method of any one of claims 29-33, wherein the target is (i) in the TNR or self-complementary region or (ii) within 10, 15, 20, 25, 30, 40, or 50 nucleotides of the TNR or self-complementary region.
  • 35. The method of any one of claims 29-34 for the preparation of a medicament for treating a human subject having DM1, HD, FA, FXS, FXTAS, FXPOI, FXES, XSBMA, SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, or DRPLA.
  • 36. The method of any one of claim 29, or 31-35, wherein the TNR is a CTG in the 3′ untranslated region (UTR) of the DMPK gene.
  • 37. The method of claim 36, comprising excising at least a portion of the 3′ UTR of the DMPK gene, wherein the excision results in treatment of myotonic dystrophy type 1 (DM1).
  • 38. The method of any one of the claim 29, or 31-35, wherein the TNR is within the FMR1 gene.
  • 39. The method of claim 38, wherein the excision results in treatment of Fragile X syndrome.
  • 40. The method of any one of claim 29, or 31-35, wherein the TNR is within the FXN gene.
  • 41. The method of claim 40, wherein the excision results in treatment of Friedrich's Ataxis (FA).
  • 42. The method of any one of claim 29, or 31-35, wherein the TNR is within the huntingtin, frataxin (FXN), Fragile X Mental Retardation 1 (FMR1), Fragile X Mental Retardation 2 (FMR2), androgen receptor (AR), aristaless related homeobox (ARX), Ataxin 1 (ATXN1), Ataxin 2 (ATXN2), Ataxin 3 (ATXN3), Calcium voltage-gated channel subunit alphal A (CACNA1A), Ataxin 7 (ATXN7), ATXN8 opposite strand lncRNA (ATXN8OS), Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform (PPP2R2B), TATA binding protein (TBP), or Atrophin-1 (ATN1) gene, or the TNR is adjacent to the 5′ UTR of FMR2.
  • 43. The method of claim 42, wherein the excision in huntingtin (HTT) results in treatment of Huntington's disease (HD); the excision in FXN results in treatment of Friedrich's ataxia (FA); the excision in FMR1 results in treatment of Fragile X syndrome (FXS), Fragile X associated primary ovarian insufficiency (FXPOI), or fragile X-associated tremor/ataxia syndrome (FXTAS); the excision in FMR2 or adjacent to the 5′ UTR of FMR2 results in treatment of fragile XE syndrome (FXES); the excision in AR results in treatment of X-linked spinal and bulbar muscular atrophy (XSBMA); the excision in ATXN1 results in treatment of spinocerebellar ataxia type 1 (SCA1), the excision in ATXN2 results in treatment of spinocerebellar ataxia type 2 (SCA2), the excision in ATXN3 results in treatment of spinocerebellar ataxia type 3 (SCA3), the excision in CACNA1A results in treatment of spinocerebellar ataxia type 6 (SCA6), the excision in ATXN7 results in treatment of spinocerebellar ataxia type 7 (SCA7), the excision in ATXN8OS results in treatment of spinocerebellar ataxia type 8 (SCA8), the excision in PPP2R2B results in treatment of spinocerebellar ataxia type 12 (SCA12), the excision in TBP results in treatment of spinocerebellar ataxia type 17 (SCA17), or the excision in ATN1 results in treatment of Dentatorubropallidoluysian atrophy (DRPLA).
  • 44. The method of any one of claim 29, or 31-43, wherein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10,000 TNRs are excised.
  • 45. The method of any one of claim 29, or 31-43, wherein 1-5, 5-10, 10-20, 20-30, 40-60, 60-80, 80-100, 100-150, 150-200, 200-300, 300-500, 500-700, 700-1000, 1000-1500, 1500-2000, 2000-3000, 3000-4000, 4000-5000, 5000-6000, 6000-7000, 7000-8000, 8000-9000, or 9000-10,000 TNRs are excised.
  • 46. The method of any one of claim 29, or 31-35, wherein the TNRs are within the DMPK gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat DMPK gene, said amelioration optionally comprising one or more of increasing myotonic dystrophy protein kinase activity; increasing phosphorylation of phospholemman, dihydropyridine receptor, myogenin, L-type calcium channel beta subunit, and/or myosin phosphatase targeting subunit; increasing inhibition of myosin phosphatase; and/or ameliorating muscle loss, muscle weakness, hypersomnia, one or more executive function deficiencies, insulin resistance, cataract formation, balding, or male infertility or low fertility.
  • 47. The method of any one of claim 29, or 31-35, wherein the TNRs are within the HTT gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat HTT gene, said amelioration optionally comprising ameliorating one or more of striatal neuron loss, involuntary movements, irritability, depression, small involuntary movements, poor coordination, difficulty learning new information or making decisions, difficulty walking, speaking, and/or swallowing, and/or a decline in thinking and/or reasoning abilities.
  • 48. The method of any one of claim 29, or 31-35, wherein the TNRs are within the FMR1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat FMR1 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR1 transcript or Fragile X Mental Retardation Protein levels, translational dysregulation of mRNAs normally associated with FMRP, lowered levels of phospho-cofilin (CFL1), increased levels of phospho-cofilin phosphatase PPP2CA, diminished mRNA transport to neuronal synapses, increased expression of HSP27, HSP70, and/or CRYAB, abnormal cellular distribution of lamin A/C isoforms, early-onset menopause such as menopause before age 40 years, defects in ovarian development or function, elevated level of serum gonadotropins (e.g., FSH), progressive intention tremor, parkinsonism, cognitive decline, generalized brain atrophy, impotence, and/or developmental delay.
  • 49. The method of any one of claim 29, or 31-35, wherein the TNRs are within the FMR2 gene or adjacent to the 5′ UTR of FMR2, and wherein excision of the TNRs ameliorates one or more phenotypes associated with expanded-repeats in or adjacent to the FMR2 gene, said amelioration optionally comprising ameliorating one or more of aberrant FMR2 expression, developmental delays, poor eye contact, repetitive use of language, and hand-flapping.
  • 50. The method of any one of claim 29, or 31-35, wherein the TNRs are within the AR gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat AR gene, said amelioration optionally comprising ameliorating one or more of aberrant AR expression; production of a C-terminally truncated fragment of the androgen receptor protein; proteolysis of androgen receptor protein by caspase-3 and/or through the ubiquitin-proteasome pathway; formation of nuclear inclusions comprising CREB-binding protein; aberrant phosphorylation of p44/42, p38, and/or SAPK/JNK; muscle weakness; muscle wasting; difficulty walking, swallowing, and/or speaking; gynecomastia; and/or male infertility.
  • 51. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATXN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN1 gene, said amelioration optionally comprising ameliorating one or more of formation of aggregates comprising ATXN1; Purkinje cell death; ataxia; muscle stiffness; rapid, involuntary eye movements; limb numbness, tingling, or pain; and/or muscle twitches.
  • 52. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATXN2 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN2 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN2 production; Purkinje cell death; ataxia; difficulty speaking or swallowing; loss of sensation and weakness in the limbs; dementia; muscle wasting; uncontrolled muscle tensing; and/or involuntary jerking movements.
  • 53. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATXN3 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN3 gene, said amelioration optionally comprising ameliorating one or more of aberrant ATXN3 levels; aberrant beclin-1 levels; inhibition of autophagy; impaired regulation of superoxide dismutase 2; ataxia; difficulty swallowing; loss of sensation and weakness in the limbs; dementia; muscle stiffness; uncontrolled muscle tensing; tremors; restless leg symptoms; and/or muscle cramps.
  • 54. The method of any one of claim 29, or 31-35, wherein the TNRs are within the CACNA1A gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat CACNA1A gene, said amelioration optionally comprising ameliorating one or more of aberrant CaV2.1 voltage-gated calcium channels in CACNA1A-expressing cells; ataxia; difficulty speaking; involuntary eye movements; double vision; loss of arm coordination; tremors; and/or uncontrolled muscle tensing.
  • 55. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATXN7 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN7 gene, said amelioration optionally comprising ameliorating one or more of aberrant histone acetylation; aberrant histone deubiquitination; impairment of transactivation by CRX; formation of nuclear inclusions comprising ATXN7; ataxia; incoordination of gait; poor coordination of hands, speech and/or eye movements; retinal degeneration; and/or pigmentary macular dystrophy.
  • 56. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATXN8OS gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATXN8OS gene, said amelioration optionally comprising ameliorating one or more of formation of ribonuclear inclusions comprising ATXN8OS mRNA; aberrant KLHL1 protein expression; ataxia; difficulty speaking and/or walking; and/or involuntary eye movements.
  • 57. The method of any one of claim 29, or 31-35, wherein the TNRs are within the PPP2R2B gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat PPP2R2B gene, said amelioration optionally comprising ameliorating one or more of aberrant PPP2R2B expression; aberrant phosphatase 2 activity; ataxia; cerebellar degeneration; difficulty walking; and/or poor coordination of hands, speech and/or eye movements.
  • 58. The method of any one of claim 29, or 31-35, wherein the TNRs are within the TBP gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat TBP gene, said amelioration optionally comprising ameliorating one or more of aberrant transcription initiation; aberrant TBP protein accumulation (e.g., in cerebellar neurons); aberrant cerebellar neuron cell death; ataxia; difficulty walking; muscle weakness; and/or loss of cognitive abilities.
  • 59. The method of any one of claim 29, or 31-35, wherein the TNRs are within the ATN1 gene, and wherein excision of the TNRs ameliorates one or more phenotypes associated with an expanded-repeat ATN1 gene, said amelioration optionally comprising ameliorating one or more of aberrant transcriptional regulation; aberrant ATN1 protein accumulation (e.g., in neurons); aberrant neuron cell death; involuntary movements; and/or loss of cognitive abilities.
  • 60. A pharmaceutical composition comprising the composition of any one of claims 1-28.
  • 61. A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering the composition of any one of claim 1-2, or 5-28, or the pharmaceutical formulation of claim 60.
  • 62. A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering the composition of any one of claim 1-2, or 5-28, or the pharmaceutical formulation of claim 60.
  • 63. The method of claim 61 or 62, wherein only one gRNA is administered and a CTG repeat in the 3′ UTR of the DMPK gene is excised.
  • 64. The method of claim 63, wherein the gRNA comprises a spacer sequence comprising: a. a spacer sequence selected from SEQ ID NOs: 3746, 3778, 3394, 3386, 3938, 3818, 3722, 3858, 3370, 1706, 2210, 2114, 1538, and 2594; orb. a spacer sequence selected from SEQ ID NOs: 3330, 3746, 3778, 3394, 4026, 3386, 3938, 3818, 3722, 3802, 3858, 3514, 3770, 3370, 2202, 1706, 2210, 1778, 2114, 1738, 1746, 2322, 1538, 2514, 2458, 2194, and 2594; orc. a spacer sequence selected from SEQ ID NOs: 3330, 3314, 2658, 2690, 2554, and 2498; ord. a spacer sequence selected from SEQ ID NOs: 3314, 2690, 2554, and 2498; ore. a spacer sequence selected from SEQ ID NOs: 3914, 3514, 1778, 2458, 3858, 3418, 1706, and 2258; orf. SEQ ID NO: 3914; org. SEQ ID NO: 3418; orh. SEQ ID NO: 3938; ori. a spacer sequence selected from SEQ ID NOs: 3916, 3420, and 3940.
  • 65. A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering the composition of any one of claim 3, or 5-28, or the pharmaceutical formulation of claim 60.
  • 66. A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FMR1 gene, the method comprising administering the composition of any one of claim 3, or 5-28, or the pharmaceutical formulation of claim 60.
  • 67. The method of claim 65 or claim 66, wherein only one gRNA is administered and a TNR in the 5′ UTR of the FMR1 gene is excised.
  • 68. The method of claim 67, wherein the gRNA comprises a spacer sequence comprising: a. a spacer sequence selected from SEQ ID NOs: 5830, 6022, 5262, and 5310; orb. a spacer sequence selected from SEQ ID NOs: 5262, 5334, and 5830; orc. SEQ ID NO: 5262d. a spacer sequence selected from SEQ ID NOs: 5264, 5336, 5832, 6024, and 5312.
  • 69. A method of treating a disease or disorder characterized by a trinucleotide repeat (TNR) in an intron of the FXN gene, the method comprising administering the composition of any one of claims 4-28, or the pharmaceutical formulation of claim 60.
  • 70. A method of excising a trinucleotide repeat (TNR) in the 5′ UTR of the FXN gene, the method comprising administering the composition of any one of claims 4-28, or the pharmaceutical formulation of claim 60.
  • 71. The method of claim 69 or claim 70, wherein only one gRNA is administered and a TNR in the 5′ UTR of the FXN gene is excised.
  • 72. The method of claim 71, wherein the gRNA comprises a spacer sequence comprising a. a spacer sequence selected from SEQ ID NOs: 47047, 7447, 7463, 46967, 46768, 7680, and 47032; orb. a spacer sequence selected from SEQ ID NOs: 47045, 7445, 7461, 46766, 7678, and 47030.
  • 73. The method of any one of claim 29-59 or 61-72, further comprising administering a DNA-PK inhibitor.
  • 74. The method of claim 73, wherein the DNA-PK inhibitor is Compound 6.
  • 75. The method of claim 73, wherein the DNA-PK inhibitor is Compound 3.
  • 76. A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, wherein the first stretch: a. starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat; orb. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site; orc. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site; ord. is SEQ ID NO: 53413; ore. is SEQ ID NO: 53414; orf. is SEQ ID NO: 53415.
  • 77. A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein a second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence, wherein the second stretch: a. starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; orb. starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; orc. is SEQ ID NO: 53416; ord. is SEQ ID NO: 53417.
  • 78. A method of excising a trinucleotide repeat (TNR) in the 3′ UTR of the DMPK gene, the method comprising administering a pair of guide RNAs comprising a pair of spacer sequences, wherein: i. the first spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a first stretch of sequence, wherein the first stretch: a. starts 1 nucleotide from the DMPK-U29 cut site with spCas9 and continues through the repeat; orb. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U56 cut site; orc. starts 1 nucleotide from the DMPK-U30 cut site with spCas9 and continues through 1 nucleotide before the DMPK-U52 cut site; ord. is SEQ ID NO: 53413; ore. is SEQ ID NO: 53414; orf. is SEQ ID NO: 53415; andii. a second spacer sequence directs a RNA-guided DNA nuclease to any nucleotide within a second stretch of sequence, wherein the second stretch: a. starts 1 nucleotide in from the DMPK-D15 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; orb. starts 1 nucleotide from the DMPK-D35 cut site with spCas9 and continues until 1 nucleotide before the DMPK-D51 cut site; orc. is SEQ ID NO: 53416; ord. is SEQ ID NO: 53417.
  • 79. The method of claims 76-78, further comprising administering a DNA-PK inhibitor.
  • 80. The method of claim 79, wherein the DNA-PK inhibitor is Compound 6.
  • 81. The method of claim 79, wherein the DNA-PK inhibitor is Compound 3.
  • 82. The method of any one of claims 76-81, further comprising administering an RNA-targeted endonuclease, or a nucleic acid encoding the RNA-targeted endonuclease.
  • 83. The method of claim 82, wherein the RNA-targeted endonuclease is a Cas nuclease.
  • 84. The method of claim 83, wherein the Cas nuclease is Cas9.
  • 85. The method of claim 84, wherein the Cas9 nuclease is from Streptococcus pyogenes.
  • 86. The method of claim 84, wherein the Cas9 nuclease is from Staphylococcus aureus.
  • 87. The method of claim 83, wherein the Cas nuclease is a Cpf1 nuclease.
  • 88. The method of any one of claims 76-87, wherein: a. the U29 cut site is: chr19: between nucleotides 45,770,383 and 45,770,384, which corresponds to * in the following sequence: ttcacaaccgctccgag*cgtggg;b. the U30 cut site is: chr19: between 45,770,385 and 45,770,386, which corresponds to * in the following sequence: gctgggcggagacccac*gctcgg;c. the D15 cut site is: chr19: between 45,770,154 and 45,770,155, which corresponds to * in the following sequence: ggctgaggccctgacgt*ggatgg; andd. the D35 cut site is: chr19: between 45,770,078 and 45,770,079, which corresponds to * in the following sequence: cacgcacccccacctat*cgttgg.
  • 89. A method of screening for a guide RNA that is capable of excising a TNR or self-complementary region, the method comprising: a. contacting: i. a cell with a guide RNA, an RNA-targeted endonuclease, and a DNA-PK inhibitor;ii. the same type of cell as used in i) with the guide RNA, the RNA-targeted endonuclease but without a DNA-PK inhibitor;b. comparing the excision of the TNR or self-complementary region from the cell contacted in steps a) i) as compared to the cell contacted in step a) ii); andc. selecting a guide RNA wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.
  • 90. A method of screening for a pair of guide RNAs that is capable of excising a TNR or self-complementary region, the method comprising: a. contacting: i. a cell with a pair of guide RNAs, an RNA-targeted endonuclease, and a DNA-PK inhibitor;ii. the same type of cell as used in i) with the guide RNA, the RNA-targeted endonuclease but without a DNA-PK inhibitor;b. comparing the excision of the TNR or self-complementary region from the cell contacted in steps a) i) as compared to the cell contacted in step a) ii); andc. selecting a pair of guide RNAs wherein the excision is improved in the presence of the DNA-PK inhibitor as compared to without the DNA-PK inhibitor.
  • 91. The method of claim 89 or claim 90, wherein the DNA-PK inhibitor is Compound 6.
  • 92. The method of claim 89 or claim 90, wherein the DNA-PK inhibitor is Compound 3.
  • 93. The method of any one of claims 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 3′ UTR of the DMPK gene.
  • 94. The method of any one of claims 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FMR1 gene.
  • 95. The method of any one of claims 89-92, wherein the guide RNA or pair of guide RNAs directs the RNA-targeted endonuclease to the 5′ UTR of the FXN gene.
Parent Case Info

This application is a continuation of International Application No, PCT/US2020/048000, filed Aug. 26, 2020; which claims the benefit of priority to U.S. Provisional Application No. 62/892,445, filed Aug. 27, 2019; U.S. Provisional Application No. 62/993,616, filed Mar. 23, 2020; and U.S. Provisional Application No. 63/067,489, filed Aug. 19, 2020; all of which are incorporated by reference in their entirety.

Provisional Applications (3)
Number Date Country
62993616 Mar 2020 US
62892445 Aug 2019 US
63067489 Aug 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2020/048000 Aug 2020 US
Child 17681138 US