COMPOSITIONS AND METHODS FOR WOUND HEALING

Abstract
Mice in which enhance wound healing occurs can be used to identify genes and gene products which are involved in enhanced wound healing in mammals, including humans. Methods and compositions for treating wounds, including central and peripheral nerve wounds, are also provided.
Description


TECHNICAL FIELD OF THE INVENTION

[0003] This invention is related to the field of wound healing. More particularly, the invention is related to methods and compositions for enhancing wound healing in mammals.



BACKGROUND OF THE INVENTION

[0004] The biological response to tissue injury in higher organisms falls into two main categories: wound repair and regeneration (1). In amphibians, the form of wound healing seen is often epimorphic regeneration, where entire limbs can be reformed after amputation (1). In adult mammals, wound healing can involve wound repair or tissue regeneration, including the replacement of mature cells through cell proliferation (7) or replenishment of cells, but not organs, from immature stem cells (9, 11, 25). Complete wound healing, however, with perfect replacement of tissue and function, is typically not observed. Injuries to the central and peripheral nervous system, including optic nerve and spinal cord injuries, are especially refractory to healing. Thus, there is a need in the art for methods and compositions for enhancing wound healing in mammals.



SUMMARY OF THE INVENTION

[0005] It is an object of the invention to provide methods and compositions for use in healing wounds. These and other objects of the invention are provided by one or more of the embodiments described below.


[0006] One embodiment of the invention is a method of identifying a gene involved in enhanced wound healing. DNA microsatellite markers which can distinguish a first and a second mouse strain are identified. The first mouse strain is a healer mouse strain, and the second mouse strain is not a healer mouse strain. Microsatellite markers which segregate with enhanced wound healing in progeny of the first and second mouse strains are identified. A chromosomal locus which contains at least one gene involved in enhanced wound healing is thereby identified.


[0007] Still another embodiment of the invention is a method of treating a wound in a mammal. A reagent which specifically binds to an expression product of a gene whose expression is decreased in a healer mouse relative to a non-healer mouse is administered to a mammal with a wound. Expression of the gene is thereby decreased.


[0008] Even another embodiment of the invention is a method of treating a wound in a mammal. An expression product of a gene whose expression is increased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse is administered to a mammal with a wound. The level of the expression product in the wound is thereby increased.


[0009] Yet another embodiment of the invention is a method of restoring function after nerve injury in a mammal. A reagent which specifically binds to an expression product of a gene whose expression is decreased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse is administered to a mammal with a nerve injury. Expression of the gene is thereby decreased.


[0010] Another embodiment of the invention is a method of restoring function after nerve injury in a mammal. An expression product of a gene whose expression is increased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse is administered to a mammal with a nerve injury. The level of the expression product in the wound is thereby increased.


[0011] Still another embodiment of the invention is a method of treating a wound in a mammal. A cell or cellular extract obtained from a healer mouse is administered to a mammal with a wound. Healing of the wound in the mammal is thereby enhanced.


[0012] Yet another embodiment of the invention is a method of treating a wound in a mammal. A cell in which expression of a wound healing gene has been altered is administered to a mammal with a wound. Healing of the wound in the mammal is thereby enhanced.


[0013] Even another embodiment of the invention is a healer mouse having at least one quantitative trait locus selected from the group consisting of the quantitative trait loci shown in Tables 2, 9 and 16. The healer mouse exhibits an enhanced healing response to a wound compared to a mouse which does not have the at least one chromosomal locus. The healer mouse is not an MRL mouse.


[0014] Yet another embodiment of the invention is a preparation comprising a fraction of an extract of a tissue of a healer mouse. The preparation alters a biological property of a model of wound healing.


[0015] Still another embodiment of the invention is a preparation comprising cells of a healer mouse. The preparation alters a biological property of a model of wound healing.


[0016] Another embodiment of the invention is a method of identifying a factor involved in enhanced wound healing. A model of wound healing is contacted with a preparation selected from the group consisting of serum, a fraction of serum, an extract of at least one healer mouse tissue, and a fraction of an extract of at least one healer mouse tissue. A property of the model of wound healing is assayed. A preparation which alters the property of the model of wound healing is identified as comprising a factor involved in enhanced wound healing.


[0017] Yet another embodiment of the invention is a method of screening test compounds for the ability to enhance wound healing. A healer model of wound healing is contacted with a test compound. The healer model comprises cells of a healer mouse. The effect of the test compound on a biological property associated with wound healing is measured in the healer model. A test compound which enhances the biological property of the healer model is identified as a potential factor for enhancing wound healing.


[0018] The present invention thus provides the art with a mammalian model of enhanced wound healing. The healer mouse described herein can be used, inter alia, to identify genes and gene products involved in enhanced wound healing and to provide methods and compositions for healing wounds, particularly wounds of the nervous system, in mammals.







BRIEF DESCRIPTION OF THE DRAWINGS

[0019]
FIG. 1. The kinetics of ear punch hole closure. Two mm holes were punched in ears on day 0 and, for each strain of mouse, holes were measured at days indicated on the horizontal axis. Average hole diameters are shown (n=4).


[0020]
FIG. 2. Photographs of the healing ear wounds. C57BL/6 (left side) and MRL/1pr (right side) ears were punched bilaterally in the center of the ears creating a 2 mm through-and-through wound and followed for 33 days. The ear holes of the C57BL/6 mouse remained open 1 day (FIG. 2A), 9 days (FIG. 2B), 20 days (FIG. 2C), and 33 days (FIG. 2D) after punching. In the MRL/1pr mouse, one can see the progression of hole closure from day 1 (FIG. 2E), day 9 (FIG. 2F), day 20 (FIG. 2G), to day 33 (FIG. 2H).


[0021]
FIG. 3. Histological examination of early events in ear hole closure. The first two days after wounding of C57BL/6 ears (FIGS. 3A and 3D) and MRL/+ (FIGS. 3B and 3E) and MRL/1pr ears (FIGS. 3C and 3F) were examined. Day 1: these sections show more swelling at the wound site for the MRL tissue (smaller arrows). Eschar and inflammatory cellular infiltrate at the wound margin is similar for both strains and re-epithelialization is not seen (larger arrows). Day 2: The C57BL/6 wound is partially covered (arrow) by eschar with migrating epithelium not yet covering the wound (9 out of 14 edges examined did not close) while the MRL wound is completely covered (arrows) with epithelium (10 out of 14 edges examined completely closed). Magnification=40×; tissue is stained with hematoxylin and eosin.


[0022]
FIG. 4. Day 5, 10, and 20 wounds. For all days indicated for C57BL/6 tissue (A), MRL/+ tissue (B) and MRL/1pr tissue (C). All sections are stained with hematoxylin and eosin (pictures are representative of 4 edges examined). FIG. 4A. Day 5 (A, B, C: 40×-upper panels and 20×-lower panels): Swelling at the MRL wound site is extensive with neovascularization (40×-arrows) and marked dermal fibroblast proliferation (20×-large arrows). Adnexae in the new epithelium can be seen here (20×-small arrows). A C57BL/6 wound that has failed to epithelialize is shown here, although this is not typical (20×-*). FIG. 4B. Day 10 (A, B, C: 40×-upper panels and 10×-lower panels): There is marked neovascularization (40×-arrows) and fibroblast proliferation (10×-arrows) seen in the MRL wound extending out beyond the borders of the wound where the cut cartilage edges are seen. Note the extent to which dermal cells have migrated out beyond the wound margin marked by the cartilage edge for the two MRL ears compared to the C57BL/6 ear. FIG. 4C. Day 20 (A, C:20×; B:40×-upper panels and 5×-lower panels): The prominent proliferation of fibroblasts in the dermis and the appearance of a blastema-like structure has led to significant closure of the MRL wound as originally marked by the cut edges of cartilage at the right and left margins of the photograph (5×-between arrows). By comparison, there is little extension of C57BL/6 tissue into the wound space. The homogeneity of fibroblast proliferation and ECM deposition is most striking in MRL (B:40×-upper panel).


[0023]
FIG. 5. Late-stage ear wound closure. Wound sites (n=3) 81 days after wounding for C57BL/6 (top) and MRL/1pr (bottom) mice were aligned using a dissection microscope and sutured together to assure sectioning through the former wound for MRL/1pr tissue. Cartilagenous islands (small arrow) present throughout the MRL/1pr section are surrounded by prominent adipocytes (large arrow). These features are absent from the C57BL/6 tissue. The tissue sections are stained with Gomori trichrome. Magnification=10×.


[0024]
FIG. 6. The analysis of frequencies of wound closure on day 30 in parental and crossbred populations. Histograms of day 30 ear punch hole diameters can be seen for the following genotypes: C57BL/6 and MRL/1pr parental mice and F1 mice (upper panel) and the first backcross to each parental strain (lower panel).


[0025]
FIG. 7. Histogram of wound closure in (MRL/1pr×C57BL/6)F1 and F2 intercross populations.


[0026]
FIG. 8. Additive effects of heal1 and heal3 on wound closure. Average residual wound diameters are plotted for each genotype, with the results grouped by D13Mit129 and D8Mit211. The mean of all F2 mice ±1 s.e.m. is depicted as a horizontal line in this graph. B, H, and S designate mice homozygous for the heal b/ballele from C57BL/6, heterozygous for the healb/s alleles from C57BL/6 and MRL/1pr, or homozygous for the heals/s allele from MRL/1pr, respectively.


[0027]
FIG. 9. Healer and non-healer mice 1.5 months after transection of the left optic nerve. FIG. 9A. The non-healer (B6) mouse exhibits complete atrophy of the left eye with marked sinking of the left eye socket compared to the normal untreated right eye. FIG. 9B. The healer (MRL) mouse exhibits only slight sinking of the left eye compared to the normal, untreated right eye.


[0028]
FIG. 10. Images depicting histological longitudinal sections of the healer (MRL) mouse uncut right eye-specific tissue. These serial sections were stained with hematoxylin and eosin.


[0029]
FIG. 11. A series of images depicting histological longitudinal sections of the healer (MRL) mouse cut left eye-specific tissue. These serial sections were stained with hematoxylin and eosin.


[0030]
FIG. 12. FIG. 12A is an image depicting a histological longitudinal section of the healer (MRL) mouse normal uncut right eye-specific tissue. This section was stained with Bodian's silver stain specific for axons. FIG. 12B is an image depicting a histological longitudinal section of the healer (MRL) mouse cut left eye-specific tissue. This section was stained with Bodian's silver stain specific for axons. The blue arrows indicate nerve fibers and the red arrows point to oligodendrocytes.


[0031]
FIG. 13. Graph depicting nerve regeneration in various strains of mice. SFI, Sensory Function Index.


[0032]
FIG. 14. Graph depicting healing of ear holes in LG mice.


[0033]
FIG. 15. Graph depicting adoptive transfer of the healing ability of MRL mice, wherein macrophages obtained from healer mice were transferred to non-healer mice.


[0034]
FIG. 16. Results from microarray analysis of gene expression in MRL mice after ear punch. Series 1, no ear punch; Series 2, 24 hours after ear punch; Series 3, 40 hours after ear punch. Names of genes are given in Table 11.


[0035]
FIG. 17. Graph showing the effect of age on the time course of ear hole closure in healer mice.


[0036]
FIG. 18. Graph demonstrating that T cell depletion leads to complete healing in aged healer mice.


[0037]
FIG. 19. Bar graph demonstrating that T cell receptor knock-outs show enhanced healing.


[0038]
FIG. 20. Bar graph showing that adoptive transfer of fetal liver into X-irradiated non-healer recipients enhances wound healing.


[0039]
FIG. 21. Two-day old explant cultures of punched ears of healer and non-healer mice. FIG. 21A, explant of a healer mouse ear punch. FIG. 21B, magnified view of the healer mouse ear punch explant. FIG. 21C, explant of a non-healer mouse ear punch. FIG. 21D, magnified view of the non-healer ear punch explant.


[0040]
FIG. 22. Magnified view of the area around a healer mouse ear punch explant, demonstrating migration of cells away from the explant.


[0041]
FIG. 23. Graph demonstrating that adoptive transfer of bone marrow-derived dendritic cells into ear-punched C57BL/6 Rage immunodeficient mice enhances wound healing.







DETAILED DESCRIPTION

[0042] It is a discovery of the present invention that healer mice, including MRL mice and strains derived from MRL mice, can be used as murine models of wound healing, particularly of the central and peripheral nervous system. These models are useful for identifying genes and gene products which are involved in enhanced wound healing in mammals, including humans, as well as for developing therapeutic compounds and methods to enhance wound healing.


[0043] Healer Mice


[0044] Typically, holes punched in the ears of non-healer mice are permanent and exhibit at most about 25% closure even 60 days after punching. Patterns of such holes can thus be used to distinguish individual non-healer mice from one another, which is a standard laboratory method for animal identification. In contrast, a hole punched in the ear of a healer mouse will close at least 70%, more preferably at least 80% or 90%, within 60 days, more preferably within 45 or 30 days. Most preferably, an ear hole of a healer mouse closes completely.


[0045] The percent closure of a hole punched in the ear of a mouse can be determined by measuring the initial diameter of the hole and by taking subsequent measurements during the first thirty days after punching. Typically, a 2 mm hole is punched. In particularly preferred healer mouse strains, complete ear hole closure occurs 30 days after punching, without scar tissue and with regeneration (perfect replacement) of cell types initially present in the ear, such as cartilage, dermis, epidermis, and blood vessels.


[0046] The healing capacity of a mouse strain can easily be tested by an ear punch assay, as described above. However, healing capacity can be assessed following other types of wounds in the mouse, including, but not limited to, digit cutting, tail cutting, and cutting or crushing of a nerve, particularly an optic or sciatic nerve, or a partial or complete cutting or crushing of the spinal cord. Liver regeneration can also be measured.


[0047] In addition to ear hole closure as described above, a mouse strain with a healer phenotype, in contrast to a non-healer mouse, may also exhibit one or more of the following characteristics. All such aspects of the healer phenotype, including enhanced tissue regeneration, are components of enhanced wound healing. Blastemas may form in the vicinity of a cut in the ear, digits, tail, or liver in a strain of healer mouse. Following injury to the liver, a strain of healer mouse may exhibit rapid replacement of liver mass and homeostasis. A healer mouse strain may exhibit breakdown in the extracellular matrix-basement membrane to allow epithelial-mesodermal interaction and may express forms of extracellular matrix-basement membrane components, such as tenascin, which are typically expressed only during development or regeneration. Organ regeneration can also occur.


[0048] Healer mouse strains may also exhibit rapid recovery from central or peripheral nerve damage, such as sciatic or optic nerve crush, or cutting or crushing of the spinal cord, and can thus be used as models in which to study regeneration of injured nerves. Nerve regeneration can be detected using functional assays appropriate for the particular nerve involved, such as electrical stimulation of the nerve and detection of contraction of the reinnervated muscle, or can be detected by observing restoration of normal neuronal architecture as a precursor to reacquisition of complete or partial normal function. In preferred healer mouse strains, regrowth and connection occurs after complete transection of nerves of the central or peripheral nervous system. Most preferably, healer mice exhibit maintenance of the optic nerve and eye with no accompanying degeneration of either structure following injury, such as crushing or transection, of the optic nerve. In addition, neurites regrow in the proper direction through a cut region of the optic nerve, and glial cells, such as oligodendrocytes, reappear in the injured area. After cutting or crushing of the spinal cord at the thoracic level, for example, preferred strains of healer mice recover at least partial function in their hind limbs and tail.


[0049] Healer mouse strains can be naturally occurring or can be generated, for example, by traditional genetic crossings, by transgenic manipulation, or by mutagenic techniques, as is known in the art. One strain of healer mouse is the MRL mouse. The MRL mouse (H-2k) is derived from an interbreeding of the LG mouse (75%; H-2d/f), the AKR mouse (12.6%; H-2k); the C3H mouse (12.1% h-2k) and the C57B1/6 mouse (0.3%; H-2b) (13) and was selected originally for its large size. A mutant derived from this colony, MRL/1pr showed enlarged spleen and lymph nodes with age, lymphoproliferation with aberrant control of apoptosis in germinal centers, and a high susceptibility to autoimmune disease with autoantibodies, an arthritis-like syndrome, and glomerulonephritis. This was shown to be the direct result of a retrotransposon insertion into the second intron of the fas gene in the 1pr strain (16, 17,23). However, the rapid and complete wound closure described here is unrelated to fas since the MRL/+ mouse has the same healing characteristics. Furthermore, wound closure is unlinked to the lympadenopathy (R=0.4) associated with 1pr mice and the autoantibodies made to histone proteins by these animals (13-15, 24). This lack of fas involvement has been confirmed in mapping studies using MRL/1pr and C57BL/6 backcross mice showing a clear genetic basis for this regeneration trait, unlinked to the fas genetic locus (McBrearty et al., Proc. Natl. Acad. Sci. U.S.A. 95, 11792-97, 1998). One characteristic of the MRL mouse is its large size, but there is no evidence that this trait is linked to adult body weight (R=0.12).


[0050] Other preferred strains of healer mice can be generated by crossing a healer mouse, such as an MRL mouse, with a non-healer mouse, such as a C57BL/6 mouse, and selecting progeny (F1) mice which display a healer phenotype. F1 healer mice can be intercrossed to form an F2 generation, in which mice with a healer phenotype can be identified. Alternatively, a male or female F1 healer mouse can be back-crossed with a female or male mouse of its healer or non-healer parent strain. The progeny of any of these crosses which display a partial or a complete healer phenotype are healer mice according to the invention. Other non-healer mouse strains, such as 129, can be crossed with a non-healer strain such as C57BL/6 to form healer mouse strains. Characteristics of the healer phenotype are those which are described above.


[0051] Mutagenic techniques, including but not limited to, targeted and non-targeted chemical mutagenesis using agents such as DMBA and ENU, as well as irradiation, for example with UV light or X-rays, can be used to induce mutations in one or more genes involved in enhanced wound healing to form a healer phenotype. Genes which can be mutated include, but are not limited to, the genes disclosed herein in Tables 4-11, 14, 15, and genes comprising the SAGE tags disclosed in Tables 12 and 13, as well as genes which regulate them.


[0052] It is also possible to create healer mouse strains using transgenic manipulations, to create transgenic, knock-in, or knock-out mice in which the function of one or more genes involved in the enhanced healing response is altered to achieve a healer phenotype. The genes of Tables 4-11, 14, 15, and genes comprising the SAGE tags disclosed in Tables 12 and 13, as well as genes which regulate them, are candidates for such manipulation. Conditional knock-in or knock-out mice, which will express one or more wound healing genes at a designated developmental stage or under particular environmental conditions, can also be constructed. Methods of creating transgenic, knock-in, and knock-out mice are well-known in the art. (See, e.g., U.S. Pats. No. 5,464,764 and 4,873,191).


[0053] Identification of Wound Healing Factors


[0054] Healer mice can also be used to identify factors which promote wound healing, particularly recovery from central or peripheral nerve injury, as well as genes which encode the factors. Either in vitro or in vivo models of wound healing can be used for this purpose. In vitro models can comprise tissue explants or cells. For example, all or a portion of an ear comprising a cut or a punch wound can conveniently be maintained as an explant in a collagen gel. Explants of other tissues, such as skin and nerve tissue, can also be used. Methods of maintaining tissue explants are well known in the art.


[0055] Mammalian cell lines or primary cultures of mammalian cells can also be used as in vitro models of wound healing. Suitable cell types include, but are not limited to, epidermal, mesodermal, cartilage, muscle, neuronal, glial, macrophage, and liver cells or cell lines. Many such cell lines can be obtained from commercial sources such as the American Type Culture Collection. Primary cells can be isolated from mammals such as mice, rabbits, rats, pigs, hamsters, monkeys, or humans. Methods of maintaining such cells in vitro as monolayers, suspension cultures, or cellular reaggregates are also well known.


[0056] Alternatively, the model can be a mammal, such as a rat or mouse, which has a wound. The wound can be, for example, a cut or abrasion in the skin, a tail or ear cut or an ear punch, a cut in the liver, or a severed or crushed nerve, including an optic nerve or spinal cord.


[0057] The effects of partially or fully purified proteins or nucleic acids, whole cells, such as macrophages or fibroblasts, or tissue extracts, including serum, obtained from healer mice can be tested in the in vitro or in vivo model of wound healing. Regeneration of the tissues and cells and/or morphological or biochemical changes associated with wound healing can be assessed and compared with those processes in the absence of added proteins, cells, or tissue extracts obtained from healer mice or in the presence of proteins, cells, or extracts obtained from non-healer mice. Cells such as fibroblasts, macrophages, and nerve cells isolated from healer and non-healer mice can be treated with cells, serum, or cell extracts from either non-healer or from healer mice.


[0058] Properties of a wound healing model which can be assessed include, but are not limited to, enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell replication, cell movement, cell adhesion, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability. Methods of assessing these properties include morphological assessment, either with or without the aid of a microscope, as well as biochemical and molecular biology methods well-known in the art. The alteration of at least one of these properties or of another property associated with enhanced wound healing or tissue regeneration, including an alteration in the time course of an effect, identifies a factor involved in these processes.


[0059] Extracts can be prepared from tissues and cells of healer mice using standard tissue disruption techniques, such as sonication, passage through a French press, Dounce homogenization, blending, Polytron disruption, enzymatic digestion, or blending with glass beads, followed by centrifugation. If desired, an extract can be divided into one or more fractions to further identify particular factors involved in enhanced wound healing. Any known method of fractionation, including fractional precipitation with ammonium sulfate, polyethylene glycol, or organic solvents, gel permeation or gel filtration chromatography, ion exchange chromatography, hydrophobic chromatography, dye-ligand affinity chromatography, bio-ligand affinity chromatography, high performance liquid chromatography, fast-flow liquid chromatography, electrophoretic separation methods, and the like, can be used, as is convenient.


[0060] Extracts or fractions of extracts which cause an alteration in an in vitro model or which enhance wound healing in an explant or an in vivo model can be purified by biochemical, molecular biological, and/or immunological means using standard technology or can be identified, for example, by selective inactivation. Methods such as two-dimensional gel electrophoresis can also be used to identify proteins which are present or absent, or which are present in different amounts in healer mice compared with non-healer mice. The effects of a purified factor can be confirmed using either an in vitro or an in vivo model of wound healing, as described above.


[0061] Alternatively, a subtractive hybridization-type approach can be used to identify factors capable of enhancing wound healing or tissue can be obtained from healer mice, and mRNA can be extracted from these cells using methods well known in the art. Specific mRNAs which are expressed in the cells of healer mice can be isolated by subtractive hybridization of healer mRNA with mRNA obtained from identical cells from non-healer mice. Differentially expressed mRNAs can then be reverse transcribed to form cDNA.


[0062] Genes encoding such factors may then be identified, cloned, sequenced and otherwise characterized, as is known in the art. cDNA can be cloned into an expression vector using standard methodologies. Protein expressed from the cDNA can be tested for the ability to enhance wound healing or tissue regeneration of mammalian tissue in an in vitro or in vivo model such as those described above. cDNA which encodes a protein identified as involved in enhanced wound healing can be sequenced and further characterized as desired using ordinary molecular biology technology. The technology required to perform these experiments is well known in the art and is described, for example, in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor Laboratory, New York, 1989) and in Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Green & Wiley, New York, 1993).


[0063] Any murine wound healing factors which are identified using a healer mouse can be used to identify counterpart factors in other mammals, particularly in humans. For example, degenerate primers encoding portions of murine wound healing factors can be constructed and used to probe cDNA libraries of other mammalian species, preferably human cDNA libraries. Antibodies which specifically bind to a murine wound healing factor can be used to identify similar factors in cells, tissues, extracts, or expression libraries of other mammalian species, preferably human. Thus, the invention should be construed to include the identification of any and all mammalian wound healing factors which share homology with those identified in the murine systems described herein.


[0064] The invention also provides methods of screening test compounds for the ability to enhance wound healing. The test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. Members of combinatorial libraries can also be screened for wound healing activity.


[0065] A healer model of wound healing is contacted with a test compound. The healer model comprises cells of a healer mouse, and can be any of the in vitro or in vivo types of wound healing models described above. Healer models in which healer and non-healer cells are mixed can also be used. The effect of the test compound on a biological property associated with wound healing is measured in the healer model. These biological properties include, but are not limited to, enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell replication, cell movement, cell adhesion, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability. A test compound which enhances the biological property of the healer model is identified as a potential factor for enhancing wound healing.


[0066] Optionally, the effect of the test compound on the biological property of the healer model can be compared with its effect on the same or a similar biological property of a non-healer model of wound healing. Non-healer models are any of the in vitro or in vivo models described above, but do not comprise healer mouse cells. A test compound which alters the biological property of the non-healer model such that it resembles the biological property of the healer model is identified as a potential factor for enhancing wound healing.


[0067] Identification of Healer Chromosomal Loci and Genes


[0068] Healer mice are particularly useful for identifying genes which are differentially expressed in healer vs. non-healer mice and which are involved in enhanced wound healing. Wound healing genes include genes whose products are directly involved in enhanced wound healing or tissue regeneration, as well as genes which regulate them. Such genes can be identified by a variety of methods. For example, differentially expressed wound healing genes can be identified based on microarray, SAGE, and RT-PCR analyses, as described in the Examples, below.


[0069] Chromosomal loci which contain at least one gene which encodes a protein involved in enhanced wound healing can be identified by genome screening. DNA microsatellite markers are identified which can distinguish two strains of mice. One of the two strains is a healer mouse strain, such as the MRL mouse or its progeny The other strain is a non-healer mouse, such as a C57BL/6. A number of suitable mouse strains are available commercially, for example from Jackson or Taconic Laboratories. Microsatellite markers which segregate with enhanced wound healing in progeny of the two strains identify a chromosomal locus which contains at least one gene which is involved in enhanced wound healing. The product of this gene may be directly involved in enhanced wound healing or may regulate expression of another gene which is involved in enhanced wound healing. This method is described in detail in Examples 3-7, below.


[0070] Certain quantitative trait loci identified by this method can be observed to segregate with either male or female healer mice. For example, the quantitative trait loci identified on chromosome 7 segregate with male mice, as do some of the quantitative trait loci on chromosome 13. In addition, quantitative trait loci identified on chromosomes 4 and 18 segregate with male mice. On the other hand, the quantitative trait loci identified on chromosomes 12 and 15 segregate with female mice.


[0071] Congenic mouse strains, created by successive back-crossings of the F1 generation of a healer x non-healer cross with its non-healer parent strain and selected for a healer phenotype, are especially useful for identifying chromosomal loci which segregate with the healer phenotype. The healer phenotype of such congenic healer mice ranges from mice with the ability to heal a 2 mm ear hole at least 75% to mice which heal such ear holes completely. For example, after six successive back-crossings, a healer mouse strain was identified which retains approximately 2% of the markers of the healer mouse genome, including the quantitative trait loci shown in Tables 2 , 9, and 16, and which exhibits a healer phenotype (Example 19 and Table 16). By repeated back-crossings, strains of healer mice can be created which have at least one of the quantitative trait loci shown in Tables 2, 9, and 16. One locus of particular interest is marker 39, located at 29 cM on chromosome 16. This locus coincides with the location of a wound healing gene termed p63, located between 14 and 29 cM on chromosome 16.


[0072] A number of genes involved in enhanced wound healing or tissue regeneration have been identified using these methods. Genes which are differentially expressed between healer and non-healer mouse dendritic cells are shown in Table 15. Genes whose expression is differentially increased or decreased in healer mice after wounding, such as ear punching, are shown in Tables 5, 6, 7, 8, 10, 11, and 15. Levels of some gene products, such as ezrin, c-Jun, and c-myc, are increased in both males and females. Levels of other gene products, such as PI-K p58, and glutathione s-transferase, are decreased in both males and females after wounding.


[0073] Still other gene products show more complex changes after wounding, being altered only in males or females, at early or late stages after wounding, or a combination of both. For example, the hox8 (msx2) gene is over-expressed in healer mice at 0, 1, and 5 days after ear punch, but its expression decreases at about 20 days after ear punch, when the ear begins to heal.


[0074] Therapeutic Methods for Treating Wounds


[0075] Manipulation of the expression of wound healing genes in non-healer mammals, including altering effective levels of their expression products, in non-healer mammals can be used to treat wounds and to enhance or promote wound healing, particularly in humans.


[0076] Wounds can be treated at early or late stages after wounding by selectively manipulating expression of particular wound healing genes. Certain of these genes are identified in Tables 5, 6, 7, 8, 10, 11, and 15. Optionally, expression of one or more wound healing genes can be manipulated simultaneously or sequentially. Furthermore, wounds in males or females can be treated most effectively by selecting the appropriate wound healing genes for manipulation.


[0077] Expression of genes of Tables 5, 6, 7, 8, 10, 11, and 15 whose expression is selectively decreased and/or increased in healer mice at particular times after wounding can be manipulated in order to enhance wound healing. Particularly preferred genes are msx2 and RARg. Any method known in the art can be used to decrease or increase expression of a wound healing gene. Methods of decreasing effective expression of a wound healing gene include, but are not limited to, use of ribozyme, antisense, or antibody technologies. Methods of increasing effective expression of a wound healing gene include, but are not limited to, providing polynucleotide sequences encoding expression products of the gene such as protein or mRNA, as well as providing the expression products themselves.


[0078] In one embodiment of the invention, expression of a wound healing gene is altered using an antisense oligonucleotide sequence. The antisense sequence is complementary to at least a portion of the coding sequence of the gene. The coding sequences of preferred wound healing genes can be obtained from databases such as Genbank; accession numbers for some of thtese genes are provided in Table 14. Preferably, the antisense oligonucleotide sequence is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences can also be used. Antisense oligonucleotide molecules can be provided in a construct and introduced into cells using standard methodologies to decrease expression of one or more wound healing genes.


[0079] Antibodies which specifically bind to a wound healing protein can also be used to alter the effective expression levels of a wound healing gene. Wound healing-specific antibodies bind to a wound healing protein and prevent the protein from functioning in the cell. Preparations of polyclonal and monoclonal antibodies can be made using standard methods. Antibody fragments such as Fab, single-chain Fv, or F(ab′)2 fragments can also be prepared. If desired, antibodies and antibody fragments can also be “humanized” in order to prevent a patient from mounting an immune response against the antibody when it is used therapeutically, as is known in the art. Other types of antibodies, such as chimeric antibodies, can be constructed as disclosed, for example, in WO 93/03151. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the “diabodies” described in WO 94/13804, can be prepared and used in methods of the invention. Anti-idiotype antibodies, directed against unique sequence variants in wound healing gene products, can also be used in therapeutic methods of the invention.


[0080] Useful antibodies specifically bind to epitopes present in proteins encoded by a wound healing gene. The amino acid sequences of these proteins are available from Genbank (see, e.g., Table 14 for accession numbers). Antibodies which specifically bind to wound healing proteins provide a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in Western blots or other immunochemical assays. Preferably, antibodies which specifically bind to a wound healing protein do not detect other proteins in immunochemical assays and can immunoprecipitate the wound healing protein from solution.


[0081] Antibodies can be purified by methods well known in the art. For example, the antibodies are affinity purified, by passing the antibodies over a column to which a wound healing protein is bound. The bound antibodies can then be eluted from the column, for example, using a buffer with a high salt concentration.


[0082] Ribozymes can be used to inhibit gene function by hybridizing to and cleaving an RNA sequence of a wound healing mRNA, as is known in the art (e.g., Haseloff et al., U.S. Pat. No. 5,641,673). The nucleotide sequences of wound healing genes, available from databases such as Genbank (see Table 14), are sources of suitable hybridization region sequences.


[0083] Preferably, the mechanism used to decrease the effective expression of the involved gene decreases levels of gene expression products, such as mRNA or protein, by 50%, 60%, 70%, or 80%. Most preferably, effective expression of the gene is decreased by 90%, 95%, 99%, or 100%. Effective expression of the involved gene can be assessed using methods well known in the art, such as hybridization of nucleotide probes to mRNA of a wound healing gene, quantitative RT-PCR, or detection of wound healing protein using specific antibodies.


[0084] Expression of wound healing genes whose expression is increased in healer mice after wounding can be effectively increased in a non-healer mammal in order to enhance wound healing. Any method known in the art for enhancing gene expression can be used for this purpose. For example, the coding sequence of one or more wound healing genes can be delivered to cells in the vicinity of a wound. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce the coding sequence into cells in which it is desired to increase wound healing gene expression. Alternatively, if it is desired that the cells stably retain the construct, it can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art. The construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of the coding sequence in the cells.


[0085] Vectors, such as retroviral- or adenoviral-based vectors, can be used for this purpose. Recombinant retroviruses are described in numerous references, including Mann et al., Cell 33:153, 1983, Cane and Mulligan, Proc. Nat'l. Acad. Sci. USA 81:6349, 1984, Miller et al., Human Gene Therapy 1:5-14, 1990, and U.S. Pat. Nos. 4,405,712, 4,861,719, and 4,980,289.


[0086] Advenoviral vectors are preferred. The use of adenoviral vectors in vitro is described in Chatterjee et al., Science 258: 1485-1488 (1992), Walsh et al., Proc. Nat'l. Acad. Sci. 89: 7257-7261 (1992), Walsh et al., J. Clin. Invest. 94: 1440-1448 (1994), Flotte et al., J. Biol. Chem. 268: 3781-3790 (1993), Ponnazhagan et al., J. Exp. Med. 179: 733-738 (1994), Miller et al., Proc. Nat'l Acad. Sci. 91: 10183 -10187 (1994), Einerhand et al., Gene Ther. 2: 336-343 (1995), Luo et al., Exp. Hematol 23: 1261-1267 (1995), and Zhou et al., Gene Therapy 3: 223-229 (1996). In vivo use of adenoviral vectors is described in Flotte et al, Proc. Nat'l Acad. Sci. 90: 10613-10617 (1993), and Kaplitt et al., Nature Genet. 8:148-153 (1994). Other viral vectors, such as those based on togaviruses or alpha viruses, can also be used.


[0087] A wound healing coding sequence can also be combined with a condensing agent, such as polylysine, polyarginine, polyornithine, protamine, spermine, spermidine, or putrescine, to form a gene delivery vehicle. Many suitable methods for making such linkages are known in the art. Alternatively, a wound healing coding sequence can be associated with a liposome to deliver the coding sequence to cells at the site of the wound. Other suitable methods of providing wound healing coding sequences include DNA-ligand combinations, such as those disclosed in Wu et al., J. Biol. Chem. 264:16985-16987 (1989). Wound healing coding sequences can also be delivered to the site of an internal wound, for example, using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11,202-05 (1993); Chiou et al., GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J. A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et al., J. Biol. Chem. 269, 542-46 (1994); Zenke et al., Proc. Natl. Acad. Sci. U.S.A. 87, 3655-59 (1990); Wu et al., J. Biol. Chem. 266, 338-42 (1991). Expression of a wound healing gene can be monitored by detecting production of mRNA which hybridizes to a delivered coding sequence or by detecting the protein product of the gene using, for example, immunological techniques.


[0088] Expression of an endogenous wound healing gene in a cell can also be altered by introducing in frame with the endogenous gene a DNA construct comprising a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site by homologous recombination, such that a homologously recombinant cell comprising a new transcription unit is formed. The new transcription unit can be used to turn the wound healing gene on or off as desired. This method of affecting endogenous gene expression is taught in U.S. Pat. No. 5,641,670, which is incorporated herein by reference.


[0089] The targeting sequence is a segment of at least 10, 15, 20, or 50 contiguous nucleotides selected from the nucleotide sequence of a wound healing gene. The nucleotide sequences of the wound healing genes disclosed herein are available, for example, from Genbank, using the accession numbers provided in Table 14. The transcription unit is located upstream of a coding sequence of the endogenous wound healing gene. The exogenous regulatory sequence directs transcription of the coding sequence of the wound healing gene.


[0090] Optionally, effective expression of one or more wound healing genes can be altered in cells which have been removed from a mammal, such as dermal fibroblasts or peripheral blood leukocytes. The cells can then be replaced into the same or another mammal with a wound, preferably to or within the vicinity of the wound to enhance healing of the wound. Alternatively, cells obtained from healer mice can be used to treat a wound in a mammal. Preferred cells include macrophages, stem cells, fetal liver cells, peripheral blood leukocytes, and bone marrow cells. Extracts from these cells can be prepared using standard methodologies and used for wound treatment. The cells or cellular extracts can be placed directly at the site of the wound to promote its healing.


[0091] In another embodiment, protein products of wound healing genes whose expression is increased after wounding in healer mice can be applied directly to the area of the wound. Protein products of wound healing genes can be used in a pharmaceutically acceptable composition and can be applied topically, as is well known in the art and described below.


[0092] The lowered capacity for wound healing which occurs in aged mammals, including humans, can be enhanced by suppressing T cell function, for example using an antibody which specifically binds to a T cell receptor (TCR) or, in experimental mammals, by genetically eliminating functional T cell receptors. Anti-TCR antibodies are available in the art or can be prepared using established methodologies. Optionally, a polynucleotide encoding a single chain anti-TCR antibody can be used. Anti-TCR antibodies can be administered to mammals, including humans, to reduce levels of functional TCRs. Sub-populations of TCRs can also be targeted.


[0093] Wounds which can be treated using methods of the invention include, but are not limited to, cuts, stretches, tears, pulls, abrasions, burns, bone breaks, crushes, scrapes, contusions, bruises, and the like. Particularly, peripheral or central nerve injuries, such as crushed or severed nerves, including the spinal cord, can be treated. Methods and compositions of the invention can be used to treat and thus enhance healing of a wound by promoting processes such as angiogenesis, chondrogenesis, return of hair follicles and/or sebaceous glands, reepithelialization, rapid connective tissue proliferation, deposition of organized extracellular matrix, and restoration of normal tissue architecture and function. Surgical adhesions can be prevented by prophylactic treatment of surgical incisions using compositions and methods of the invention. These methods and compositions are useful in any situation in which regeneration or healing of a wound without formation of scar tissue is desired.


[0094] Wound healing compositions of the invention can comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to those in the art. Such carriers include, but are not limited to, large, slowly metabolized macromolecules, such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles.


[0095] Pharmaceutically acceptable salts can also be used in wound healing compositions, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as salts of organic acids such as acetates, proprionates, malonates, or benzoates. Wound healing compositions can also contain liquids, such as water, saline, glycerol, and ethanol, as well as substances such as wetting agents, emulsifying agents, or pH buffering agents. Liposomes, such as those described in U.S. Pat. No. 5,422,120, WO 95/13796, WO 91/14445, or EP 524,968 B1, can also be used as a carrier for a wound healing composition.


[0096] Administration of wound healing compositions of the invention can include local or systemic administration, including injection, oral administration, particle gun, or catheterized administration, and topical administration. For treatment of wounds on the surface of the body, a wound healing composition is typically prepared in a topical form, either as a liquid solution, suspension, gel, or cream. However, solid forms suitable for solution or suspension in liquid vehicles prior to injection can also be prepared, for local treatment of internal wounds. Both the dose of a particular wound healing composition and the means of administering the composition can be determined based on specific qualities of the wound healing composition, the condition, age, and weight of the patient, the type and extent of the wound being treated, and other relevant factors.


[0097] The above disclosure generally describes the present invention. All references cited in this disclosure are expressly incorporated herein by reference. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.



MATERIALS AND METHODS

[0098] The following materials and methods were used in the examples described below.


[0099] Mice. The MRL/MpJ-Fas1Pr (hereafter referred to as MRL/1pr) mice were obtained from the Jackson Laboratory (Bar Harbor, Me.). C57BL/6 mice were acquired from the Taconic Laboratory (Germantown, N.Y.). Mice were bred and maintained under standard conditions at The Wistar Institute (Philadelphia, Pa.).


[0100] F1, F2 and MRL/1pr backcross populations were generated to conduct the genetic studies. The female parent used for generating the F2 and backcross animals was MRL/1pr. In the examples below, alleles derived from the C57BL/6 parent are designated B and the MRL/1pr-derived alleles are designated S.


[0101] Phenotyping A 2.1 millimeter through-and-through hole was made in the center of the cartilagenous part of both ears of six week old mice using a metal ear punch (Fisher Scientific, Pittsburgh, cat # 01-337B). The holes were measured at the time of wounding and followed for wound closure using a grid-etched reticle (Bausch and Lomb, 7×).


[0102] Histology. Ears were removed with scissors by cutting at the base of the pinna. They were fixed overnight in 10% buffered formalin. To facilitate sectioning, they were held flat during fixation by inverting the lid of a processing cassette on the base and sandwiching the flattened ear by applying gentle pressure with a rubber band.


[0103] Once fixed, ears were bisected across the widest point of the hole under a dissecting microscope, using a #10 scalpel blade. The two halves were then glued together with collodion, again using the dissecting microscope to obtain perfect alignment of the cut edges and hole margins. Because the collodion would most likely dissolve in reagents used to prepare specimens for paraffin embedding, the ears were sutured together using 5.0 silk on a 1½ inch straight Keith Abdominal cutting needle with a triangular point.


[0104] Tissues were embedded in paraffin and sectioned so that the cut edges containing the hole margins were in the plane of the section. Sections were stained with hematoxylin and eosin or with Gomori trichrome stain.


[0105] Genetic Analysis. Genomic DNA was prepared from the liver of each animal in the (MRL/1pr×C57BL/6)×(MRL/1pr×C57BL/6)F2 population. Frozen tissue was homogenized and digested overnight with 100 mg/ml proteinase K. Samples were treated with two phenol:chloroform extractions and one final chloroform extraction. Finally, genomic DNA was purified by an overnight dialysis against TE buffer.


[0106] PCR primers, purchased from Research Genetics (Huntsville, AL), were employed to perform a genome wide scan of the mouse. Amplification was conducted using Boehringer Mannheim reagents with the following concentrations: 1×PCR buffer, 0.375 mM dNTPs, 0.5 U/μls of Taq polymerase, 0.165 μM of each primer, and 160 ng/20 μls of genomic DNA. Cycling conditions include a 1 min at 95 ° C. denaturing, 35 to 50 cycles of 1 min at 94 ° C., 1 min 30 sec at 55 ° C., 2 min 10 sec at 72 ° C., and a 6 min final extension at 72° C. PCR products were resolved using 3% Metaphor agarose (FMC) and were visualized through ethidium bromide staining. This method was followed for the majority of polymorphic markers. In the case of small base pair differences, PCR amplification was carried out using 32P-ATP labeled forward primers as described (38). Radiolabelled PCR products were then fractionated by size on 6% denaturing polyacrylamide gels.


[0107] Statistics. Genotype data was organized and analyzed through the use of Map Manager QT (39). For quantitative trait analysis, critical threshold values for significance of linkage were determined by the permutation test, based on a regression model developed by Churchill and Doerge (40, 41). The values for the additive model of inheritance were calculated in terms of a likelihood ratio statistic (LRS).


[0108] The threshold in the F2 under assumptions of the additive model for suggestive linkage is LRS≧3.3 and for significant linkage is LRS≦10.7. The dominant, free and recessive models were also tested and did not show a significant difference (i. e., they were less than 18-fold different) in resultant p values. The additive regression model was used because it is the simplest model and because it is consistent with the mode of inheritance of the quantitative trait loci (QTL) determined in this study. It should also be noted that the use of the additive regression model does not assume the pattern of inheritance to be strictly additive and at present the degree of additivity and dominance has not been determined. The threshold values in the backcross are 3.7 and 11.8, respectively. Loci were named as healing quantitative QTL if they independently attained significance in either cross or a suggestive level of significance in one cross, confirmed in the other (p <0.05). Microsatellite markers were evaluated individually for linkage to the healing phenotype, based on the threshold values. In addition, a mean healing score for markers closely linked to each healing QTL was calculated independently of other loci using ANOVA, using a Bonferroni/Dunn post-hoc test for making the three possible pairwise comparisons in the F2, resulting in single-locus genotypic values (Table 3) (45).



EXAMPLE 1

[0109] Kinetics and Gross Aspects of the Wound Healing Phenotype


[0110] C57BL/6 and MRL mice were ear punched using a standard metal ear punch to create a well circumscribed circular surgical wound of about 2 mm in diameter at a site at which the thickness of the ear is considerably less than a millimeter. The animals used initially were within the 8-12 week young adult age range so that early developmental considerations would not be an issue. As can be seen in FIG. 1, by day 15 maximal closure was achieved in the C57BL/6 with a 30% reduction in the original hole diameter, which remains stable. In contrast, the MRL achieves an 85% reduction in hole diameter by day 15 with complete closure by day 25. Re-examination of the ears on day 81 showed no further changes.


[0111] In FIG. 2, the closed MRL wound is evident and it is difficult to identify the original site of the hole since there is no fibrosis or scarring.



EXAMPLE 2

[0112] Histological Aspects of the Wound Healing Phenotype


[0113] Histologic sections of healing ear punch holes were examined during the first two days after injury to determine if there was a defect in the ability of their epithelium to migrate across the cut edge of the dermis and cartilage, thereby allowing uninhibited connective tissue proliferation (FIG. 3). However, not only did epithelium promptly migrate across the MRL wounds, but this change occurred one day earlier for MRL mice (day 2) than for C57BL/6 mice (day 3). Indeed, for MRL mice epithelium completely covered virtually all wounds examined after day 1. Epithelium covered all C57BL/6 wounds examined after and including day 3, except for one wound from day 5 (FIG. 4A) which showed continued presence of eschar with migrating epithelium failing to bridge the cut edge.


[0114] As ears were prepared for histology, two grossly observable differences were noted between C57BL/6 and MRL. First, for all time points, the tissue surrounding the wounds in the MRL ears was severely hyperemic when compared to that of the C57BL/6 wounds. Second, starting on day 4, and continuing on each succeeding day, a prominent annular swelling was observed around the MRL wounds that was absent for C57BL/6 wounds.


[0115] Consistent with the grossly observable differences between the wounds, histological examination at each timepoint (5 days, FIG. 4A; 10 days, FIG. 4B; 20 days, FIG. 4C) showed a marked difference in the degree of angiogenesis, cell proliferation, connective tissue matrix formation, fibroblast migration, and ECM deposition which occurred in the two strains. Also, the presence of hair follicles with accompanying sebaceous glands within the healing wounds was noted for both MRL and C57BL/6 wounds but appeared more prominent and numerous in MRL than in C57BL/6 wounds.


[0116] At all of these time points, C57BL/6 wounds have shown limited progression beyond the cut cartilage margins and have a distinct paucity of epidermal hair follicles and sebaceous glands. In contrast, the MRL wounds show marked progress towards full closure due to extensive dermal proliferation and are well supplied with hair follicles and sebaceous glands in the new growth zone. ECM is laid down so as to preserve normal architecture, underlying connective tissue is hyperplastic, and the epidermis is rich and thick. The ear cartilage layer has not significantly extended into the wound site beyond the initial cut margin.


[0117] C57BL/6 and MRL ears are shown on day 81 after wounding in FIG. 5. Numerous ingrowths of cartilage can be seen in the MRL ear that are absent from the C57BL/6 ear. The cartilage ingrowths are surrounded by numerous adipocytes which normally make up the minor subcutaneous or hypodermal layer connecting ear cartilage to dermis. It is not clear why fat cells have come to be such a prominent cell type by this time point.



EXAMPLE 3

[0118] The Pattern of Inheritance of the Wound Healing Trait is Quantitative


[0119] Our initial findings on the hereditary nature of the wound healing trait can be seen in FIG. 6 (upper panel). In these studies, mice were ear punched at 6 weeks of age and were examined at 2 weeks and 4 weeks after ear punching. The 4 week ear hole size of the MRL mice ranged from 0 to 0.4 mm, while the ear hole size of the C57BL/6 mice ranged from 1.2 to 1.6 mm. These two healing phenotypes were non-overlapping. Fifteen F, mice bred from MRL×C57BL/6 had ear holes intermediate between the two parents (ranging from 0.4 to 1.1 mm).


[0120] In an initial experiment, two backcross populations were created by using (MRL female×C57BL/6 male) F1 females and mating them to the parental males (FIG. 6, lower panel). The backcross population to MRL displayed a curve skewed to MRL-type healing. In the backcross population to C57BL/6, the progeny showed a curve with its mean displaced to C57BL/6-type (i.e. poor) healing. The healing thus appears to be a quantitative trait.



EXAMPLE 4

[0121] The Pattern of Inheritance of the Wound Healing Trait


[0122] All MRL mice quickly and effectively close the wounds in their ears; C57BL/6 (B6) mice are unable to completely close their wounds (36). The F1 has an intermediate phenotype, with considerable variability (FIG. 7). Like the F1, the (MRL/1pr×B6)F2 population demonstrates a bell-shaped curve of healing diameters (FIG. 7). The backcross (BC1) population to MRL/1pr ((MRL/1pr×B6)F1×MRL/1pr ) displays a curve skewed to MRL/1pr-type healing, whereas in the backcross population to B6 [(MRL/1pr×B6)F1×B6], the progeny show a mean displaced to B6-type (i.e. poor) healing (36).


[0123] The healing profiles of each of the populations used in this study are given in Table 1. The distribution of the variance in each of these populations compared to those of the parental and F1 mice were used to give a rough estimate of the number of unlinked genes that contribute to this quantitative trait (42, 43). From this calculation, it is likely that at minimum three to four unlinked loci (QTLs) have an impact on the healing trait in this strain combination.



EXAMPLE 5

[0124] Mapping of SSLP Markers and Significant Threshold Values


[0125] A total of 436 SSLP markers were tested for potential polymorphisms between the two strains of mice. Ninety two markers detected allelic variants in the parental strains and therefore were used for genotyping of the segregating populations. Markers were chosen based on their location in the genome, in an attempt to make a linkage map with an even spacing of 20 centimorgans between markers to generate a complete genome-wide scan (44). In regions where linkage to the healing trait was detected, the density of markers was increased to obtain a more accurate genetic dissection in the area of interest. Overall, genomic coverage reached 97.7 percent across the nineteen autosomes. Surprisingly, despite the distant genetic relationship between these two inbred strains (13, 37), no polymorphisms were found on the X chromosome (0/18 primers tested, data not shown).


[0126] The 92 polymorphic microsatellite markers were then used to map the wound healing/regeneration trait in 101 mice from the (MRL/1pr×C57BL/6)F2 intercross. For assessment of the probability of genetic linkage, critical values were calculated from this database using the permutation test (40; see Materials and Methods). The order of all markers in this linkage analysis was consistent with the order predicted by the available genomic maps (Whitehead Institute/MIT, and Mouse Genome Database, The Jackson Laboratory, Bar Harbor, Me.: www.informaticsjax.org).



EXAMPLE 6

[0127] Mapping of Quantitative Trait Loci Linked to the Healing Phenotype in the F2 Population


[0128] Table 2 shows all of the microsatellite markers that were positive for linkage to the healing phenotype in two crosses and Table 3 lists the healing scores for markers associated with wound closure. Table 9 shows microsatellite markers that were positive for linkage to the healing phenotype analyzed separately for male and female mice.


[0129] In the F2 cross, QTLs that contribute to the healing phenotype and are derived from MRL/1pr exist in three primary support intervals. Two of these QTLs are located on individual sites on chromosome 13, and are designated heal2 and heal3. These QTLs are located as follows (with their corresponding microsatellite marker): heal2, on proximal chromosome 13, near D13Mit115 (p=0.0019) and heal3, at a more distal location near D13Mit129 (p=0.0010). One of the two QTLs on chromosome 13 (heal3) has achieved significant likelihood of linkage to the healing trait while the other (heal2) is suggestive, though confirmed in a second cross (see below).


[0130] Multiple markers near these loci show a suggestive level of significance, including for heal2: D13Mit135 and D13Mit116 and for heal3: D13Mit53, D13Mit151, D13Mit144, and D13Mit107 (Table 2). D13Nds1 and D13Mit119 both achieved highly suggestive LRS values but the assignment of a QTL in this region is provisional at the present time because the 95% confidence intervals for these markers and the two flanking QTLs overlap (not shown). Nevertheless, there are distinct breaks between these QTLs in the level of significance for their linkage to healing with no deviation from the predicted order of these markers. A second region that contains a QTL with significant linkage to the healing phenotype was detected on chromosome 15, in the region of marker D15Mit244 (p=0.0011). Other microsatellite markers mapping to this location which meet the criteria for suggestive linkage to wound healing include D15Mit 172 and D15Mit 14. We have designated this QTL heal4.


[0131] In addition to the QTL on chromosome 13 and chromosome 15, which have MRL/1pr-derived healing alleles, a B6-derived healing QTL was mapped to chromosome eight, near the marker D8Mit211, with a significant LRS value (10.7, p=0.0011). Other markers in this location which showed linkage were D8Mit132, D8Mit 166, and D8Mit249. This locus was the first QTL identified and was designated heal1.


[0132] The contribution of each heal locus to the process of wound closure, as expressed by the single-locus genotypic values (45) (Table 3), generally fit an additive mode of inheritance, with the heterozygote healing score approximately halfway between the scores of the two homozygotes. One exception is the heal3 QTL, which may be recessive (i.e., heal3s/s homozygotes show significantly better wound closure than either heterozygotes or heal3b/b homozygotes). In addition, the heal3 QTL appears to interact with heal1 to give the most completely healed ear holes (ANOVA, p=0.017). The average residual wound in heal1b/b homozygotes is 0.73+0.27; however, in animals that are both heal1b/b and heal3s/s, residual wound size is 0.53+0.30 (FIG. 2). Conversely, in mice homozygous for heal1s/s but also homozygous for heal3b/b, the residual wound size is 1.2+0.22. Other pairs of heal QTLs also show these largely additive interactions, but do not attain statistical significance.



EXAMPLE 7

[0133] Mapping of Quantitative Trait Loci Associated with the Healing Phenotype in the Backcross


[0134] To confirm the linkage assignments seen in the F2, we conducted a small backcross study (42 mice), using (MRL/1pr×B6) F1 females and MRL/1pr males as parents. The F1 between MRL/1pr and B6 has an intermediate wound closure phenotype, and all progeny in this cross were expected to show intermediate to good healing. In fact, this was largely the case, although several mice in the backcross had poor wound healing. An analysis of this cross showed linkage to healing at locations that coincided with the supported intervals of association seen in the F2 for both of the two QTLs on chromosome 13 (heal2 and heal3). These QTLs were near markers D13Mit115 (LRS value=5.0, p=0.0261) and D13Mit129 (LRS value=8.3, p=0.0040), respectively (Table 2). In addition, linkage to the healing phenotype was also detected on chromosome 12 (heal5) at marker D12Mit132 with a LRS value of 10.9 (p=0.0009) and at the closely-linked marker, D12Mit233 (LRS=9.4, p=0.0022). This linkage was supported by suggestive linkage in the F2. The single locus genotypic value for residual wound diameter for the heal5 (D12Mit132) QTL is also given in Table 3. Finally, a locus showing a highly suggestive LRS value of 10.2 (p=0.0014) was found on chromosome 7 near marker D7Mit220.



EXAMPLE 8

[0135] Differential Gene Expression in Healer and Non-Healer Mice


[0136] Assays were carried out to analyze differential gene expression in healer versus non healer mice at different times during the healing process after ear punch.


[0137] SAGE analysis. mRNA transcripts were identified and their levels quantitated using the SAGE technique, as described in U.S. Pat. 5,695,937. In order to use SAGE for transcript identification and quantitation, messenger RNA (mRNA) was first prepared from the desired cell or tissue sample. Complementary DNA (cDNA) was then synthesized from the mRNA using standard techniques. The entire population of cDNA molecules was treated to create a single unique “tag” from each cDNA. These tags are listed in Tables 12 (C57BL/6) and 13 (MRL).


[0138] The sequence of the tags serves to identify each transcript. The number of times each tag occurs measures the number of copies of the mRNA originally present in the biological sample. Tags can then be identified and quantitated. Gene expression data obtained from SAGE analysis of each tissue was stored in a database to facilitate multiple comparisons with gene expression in other tissues.


[0139] Microarray analysis. Gene expression in wound tissue of healer and non healer mice and their progeny was analyzed using the Atlas Mouse cDNA Expression Array (Clontech). This array includes 588 genes that play key roles in a variety of biological processes. cDNA was synthesized from healing wound tissue from healer and non healer mice, labeled with 32P, and hybridized separately to the arrays according to the protocol provided. After a high-stringency wash step and autoradiography, expression profiles were obtained.


[0140] RT-PCR and Differential Display. The presence of known gene products in healing wound tissue was analyzed using RT-PCR and Differential Display analysis. cDNA was synthesized from RNA using reverse transcriptase. The cDNA was amplified using specific primers and displayed as fragments by gel electrophoresis for comparison. Quantitation was carried out using titrations of input material, and then samples were compared. This method is valuable for assessing the presence of known gene products and is relatively quantitative.


[0141] Expression of candidate genes identified in the genome screen described above, were separated into the following groups. Group I comprises genes which may be directly involved in wound healing based on their mapping to a chromosomal locus identified in the genome screen. Group IA comprises genes in loci whose correlation with wound healing are statistically suggestive. Group IB comprises genes in loci whose correlation with wound healing are statistically significant. Group II comprises genes which are regulated by products of the mapped genes in Group I.


[0142] The results of these assays are given in Tables 5-8. Differential expression of several candidate gene products were confirmed in two assays: MSX-2 or HOX8 (chromosome 13) and RARG (chromosome 15) were identified by both RT-PCR and microarray analyses at early time points. The gene encoding epidermal keratin (on chromosome 15) was identified by microarray at all time points and by SAGE analysis. Expression of RARG and epidermal keratin could be related, because retinoic acid (RA) causes growth of epidermal cells via the RA receptors in skin (i.e., RARG). Epidermal keratin would then be upregulated.



EXAMPLE 9

[0143] Quantitative Trait Loci Associated with Healing


[0144] The Mouse Genome Database and associated literature were searched for potential candidates near the heal QTL (Table 4). The first locus, heal 1, located on chromosome 8, is derived from C57BL/6 and is one of the strongest QTL of the five (p=0.0011), In the absence of contributing genes from MRL, C57BL/6 mice clearly cannot accomplish complete wound closure with heal1 alone. It has been shown that alleles that contribute to a trait from a parental strain that does not display that trait are not uncommon (46). Thus, it is not surprising that heal1 shows a strong additive effect with MRL loci in the F2 (see FIG. 8). Candidate genes for heal1 (Table 4) in the strongest supported interval include the guanine nucleotide binding protein alpha 0, Gnao, an alpha subunit of a heterotrimeric G-protein which interacts with an activated G protein coupled receptor (Gp-cr), preceding downstream signaling (47). It is interesting to speculate that the basis of the additive interaction of heal1 with heal3 is an interaction between the gene products encoded by Gnao and the Gp-cr 18 found in the heal3 interval.


[0145] Though the method used for determining QTL cannot separate multiple loci in the same linkage group, we have observed highly suggestive LRS values for two regions of chromosome 13 in addition to the two QTLs identified (Table 2). That these may be unique QTLs is supported by the fact that they are separable from each other in phenotype congenics that have been generated (data not shown). One of these regions is located on chromosome 13, near marker D13nds1. Msx2 (also known as Hox8) is found in this interval and is expressed in regenerating amphibian tissue (48) as well as regrowing fingertips in neonatal mice (49). In this regard, we have evidence that Msx2 expression is different in healing ear tissue between MRL and B6 mice (Samulewicz et al, manuscript in preparation). This difference could be due to a polymorphism in the Msx2 gene itself, or to the indirect effect of an FGF signaling difference (50) mediated through the FGF receptor, FGFR4 (51), which is also encoded by a candidate gene located in this interval.


[0146] Heal4 is found on chromosome 15 near marker D15Mit244. The chromosome 15 QTL is strongly associated with the wound closure trait (p=0.0011) and is located in an area rich in candidate genes, including the gene encoding retinoic acid receptor gamma (Rarg), members of the keratin family which influence differentiation in the epidermis, as well as developmental genes known as homeobox and wnt genes. The retinoic acid pathway is known for its role in regeneration in amphibians (32, 34, and 52). Furthermore, the gamma subtype of the RAR displays preferential expression over the alpha and beta subtypes in skin and cartilage tissues (53), which is the site where the MRL/1pr healing trait is evaluated in the present study.


[0147] Finally, this set of genes does not include the fas gene, H-2, or any other gene known to play a role in the autoimmune profile of MRL/1pr mice. Several lines of evidence support this. First, our previous findings showed that the MRL/MpJ mice heal similarly to MRL/MpJ-Fas1Pr mice (36). Secondly, intervals containing wound-healing genes in our crosses showed no overlap with those from another report on the genetic analysis of MRL/1pr autoimmune phenotypes (17). Third, we tested the lymph node cell number, a parameter associated with lymphoproliferation, of each of 101 F2 mice in a regression comparison with their healing phenotype, and no association was found with the healing trait (r2=0.0002, p=0.89) (Blankenhorn, et al., in preparation).


[0148] The MRL/1pr mouse strain was originally selected for its large size (13, 37); it was subsequently found to have a major defect in immune regulation, due to a retrotransposon insertion into the second intron of the fas gene (16, 54). This mouse exhibits immunological defects closely mimicking those of the human disease, systemic lupus erythematosus (SLE) and other lymphoproliferative disorders (14, 15). In the present study, however, none of the five healing QTLs nor the highly suggestive regions identified displays linkage to the fas gene or other genes proposed thus far to control the other autoimmune phenotypes seen in this strain of mouse.



EXAMPLE 10

[0149] Optic Nerve Regeneration in MRL Mice


[0150] Healer (MRL/+) and non-healer (C57B1/6) mice were anesthetized and the optic nerve was cut using a micro-dissecting spring scissors from behind the left eye socket. The optic nerve was visually inspected to identify a cut end. The right eye was not touched. The mice were examined after 1.5 months.


[0151] Tissue from both the control right eye and the left eye where the optic nerve had been transected was removed, fixed in formalin, and embedded in paraffin. Serial sections were made and stained with hematoxylin and eosin. Several tissue sections were destained and restained with Bodian's silver stain to visualize axons.


[0152] In the all three non-healer mice the left eye had completely atrophied and had sunken into the eye socket while the control, right eye appeared normal (FIG. 9B). There was no evidence of eye-specific tissue in the left socket, although lacrimal gland tissue was present. The optic nerve near the eye and the chiasm had disappeared. Thus, there was no evidence of the presence of any part of the left eye or the associated optic nerve remaining in these animals.


[0153] In contrast, in all four healer mice the left eye had either only slightly sunken or was of normal size when compared to the right (control, non-treated) eye which was normal (FIG. 9A). The optic nerve could be found in both eyes of all four healer mice and the chiasm appeared normal. The right (control, non-treated) optic nerve appeared normal in each case.


[0154] Histologic sections of eye-specific tissue from both healer and non-healer mice were examined 1.5 months after the optic nerve of each mouse's left eye had been surgically transected. In the healer mice, longitudinal serial sections of the right (control) eye tissue exhibited a normal, uncut optic nerve (FIG. 10). However, histologic sections of tissue from the left eye of healer mice demonstrated, in the first and last sections, a cut optic nerve (FIG. 11). More importantly, the middle histologic sections exhibited an increasing neural connection between the cut regions of the optic nerve. FIG. 11 shows an example of a restored optic nerve region as being thinner and irregular when compared with the uncut optic nerve of the (control, non-treated) right eye shown in FIG. 10.


[0155] Further, there appeared to be connective tissue and infiltrating macrophages filled with melanin as well as a proliferation of glial cells, especially oligodendrocytes, in the left eye-specific tissue of healer mice. Additionally, a blood vessel can be seen running along side the restored optic nerve in FIG. 11. This observation is important because cross-sections of uncut normal and healer optic nerves have blood vessels which run along side and are embedded into the optic nerve. These blood vessels would have been unavoidably cut upon transection of the optic nerve. Thus, it appears that the healer mice demonstrated regrowth of the blood vessels running along the restored optic nerve in addition to regeneration of the optic nerve itself.


[0156] Several sections were then destained and restained to visualize axons with Bodian's silver stain. As can be seen in FIG. 12A, the healer uncut (right) eye has bundles of nerves woven through the optic nerve. On the other hand, the cut (left) healer optic nerve (shown in FIG. 12B) has a left optic nerve which appears to be generally depleted of nerve fibers. On the side of the healed optic nerve nearest to the eye, nerve fibers can be seen growing towards the brain. These fibers can be seen leaving a nerve cell body and having directionality (FIG. 12B). Near the newly grown nerve fibers are an abundance of oligodendrocytes.


[0157] Thus, healer MRL mice can regenerate nerve tissue. More specifically, all four MRL mice in which the left optic nerve was transected exhibited regrowth of the optic nerve within 1.5 months after transection. In these mice, the left optic nerve has clearly been cut but a neural connection was reestablished, with marked cellular proliferation including infiltrating macrophages filled with melanin and oligodendrocytes. Further, vascular connections had also been reestablished in the left healer eye as demonstrated by the presence of a blood vessel running along the side of the restored optic nerve. By comparison, the non-healer mice had no eye-specific tissue in the left eye socket and no nerve regeneration was detected.


[0158] Nerves which have been examined using the above-described procedures are the peripheral nerve, including the sciatic nerve, and central nervous system nerves including the optic nerve, brain stem and spinal cord.



EXAMPLE 11

[0159] Restoration of Function in MRL Mice Following Sciatic Nerve Crush


[0160] Three strains of mice, C57BL/6, MRL and A/J, were examined after sciatic nerve crush. The percent of sensory function index (SFI), which is related to sciatic nerve function, is the comparison of the gait of the mouse having a normal left and a cut right sciatic nerve. To measure the SFI, the footpads of the animals were inked, and the animals were allowed to walk on a paper pad in a housing which forces them to walk forward. The pattern of ink deposition is directly related to the SFI, which was then calculated for each mouse.


[0161] The results of these experiments are shown in FIG. 13. Significant recovery of sciatic nerve function was observed in MRL mice (50% of 2/3 mice) at day 30. In contrast, C57BL/6 and A/J mice exhibited an average negative SFI value, indicating that the sciatic nerves in these animals did not recover.



EXAMPLE 12

[0162] Involvement of T Cells in Healing in Aged Healer Mice


[0163] Several facts indicated that T cells might play a role in wound healing in aged healer mice. First, scarless healing occurs in fetal mice until embryonic day 16, when T cells develop in the thymus. Second, in MRL/1pr mice, the number of lymphocytes increases with age. Third, aged healer mice do not heal as well as younger healer mice (FIG. 17). We therefore examined the role of T cells in the enhanced healing response of these mice in two ways.


[0164] First, we treated aged (5 month-old) healer mice with antibodies against T cell receptors and punched a 2 mm ear hole in the treated aged mice. As measured by this assay, aged mice which were treated with anti-TCR antibodies became complete healers, similar to their younger counterparts (FIG. 18).


[0165] Second, we crossed a member of the F1 generation from a cross between a healer and a non-healer mouse whose T cell receptors had been genetically eliminated, or “knocked out.” Members of the resulting F2 generation were then examined for a healer phenotype using an ear punch assay and for the presence of T cells by flow cytometry. Approximately 12% of the F2 generation had no T cells and were complete healers. (FIG. 19).


[0166] These results suggest that T cells somehow suppress the healing response in aged healer mice and that elimination of functional T cells restored the healing capacity of the mice. T cells obtained from non-healer mice can now be transferred into healer mice to determine whether the T cells, or a particular population of the T cells, have an effect on the enhanced wound healing of healer mice.



EXAMPLE 13

[0167] Adoptive Transfer of Fetal Liver Cells from Healer Mice Into X-irradiated Non-Healer Recipients Enhances Wound Healing


[0168] C57BL/6 mice were lethally irradiated. After 24 hours, each mouse received an injection of fetal MRL liver cells into the tail vein. Ear punches were performed at 2, 4, and 6 months after injection of the liver cells.


[0169] No healing was observed in the ears of mice after 2 or 4 months. After 6 months, however, ear holes of the C57BL/6 (non-healer) mice exhibited a healing response. This response was correlated with the detection of chimeric cells in the thymus and/or lymph node of the mice, as shown in FIG. 20.


[0170] Thus, it is possible to transfer the ability to heal ear holes to adult non-healer mice using adoptive transfer of fetal liver cells from a healer mouse strain.



EXAMPLE 14

[0171] Adoptive Transfer of Macrophages Obtained from Healer Mice to Non-Healer mice Recipients Enhances Wound Healing


[0172] The MRL mouse is derived from crossbreeding of LG (75%), AKR (12%), C3H (12%) and C57BL (0.3%) mice. Wild type strains of these mice were tested for their ability to heal or to partially heal 2 mm ear hole wounds. The only mouse which exhibited partial healing was the LG mouse (FIG. 14). The experiment was conducted as described herein for the MRL mouse.


[0173] Normal C57BL/6 mice were injected intraperitoneally with macrophages obtained from healer mice at the time of ear punching of the non-healer mice. The macrophages which were transferred were five day thioglycollate induced peritoneal cells obtained from an (MRL×B6)F2 T cell receptor alpha chain knockout mouse. This mouse was used because the αβ+ T cells were absent and the cells were only partially allogeneic.


[0174] Macrophages were obtained from healer mice using standard procedures, selected by adherence to plastic, and transferred to non-healer mice. Uninjected non-healer mice and non-healer mice injected with non-healer macrophages served as controls in the experiment. Ear hole closure was measured during the 30 days after wounding. The results of the experiment are shown in FIG. 15.


[0175] Healer macrophages induced the best ear closure (greater than 75%) in non-healer mice. (FIG. 21). Macrophages which were obtained from non-healer mice and which were transferred into non-healer mice were unable to confer healing on non-healer mice. These results establish that tissues and cells obtained from healer mice can be used to confer healing ability on non-healer mice.



EXAMPLE 15

[0176] Functional Recovery of Healer Mice Following Complete Transection of the Spinal Cord


[0177] A complete transection of the spinal cord at thoracic level (TH9-TH 11) was made in MRL and in C57BL/6 mice anesthetized with ketamine/xylazine (100/15 mg/kg, i.p.). A dorsal median incision was made over the lower thoracic vertebra. Retractors were placed in the wound to allow surgical manipulation. After exposing the vertebral arch and the spinous processes by retracting the medial part of the autochtone musculature, the osseous parts of one vertebral bone were removed with a milling cutter, leaving the dura mater intact. After continuous cooling of the spinal cord with ice cold isotonic saline to minimize bleeding, transection was performed with a scalpel. In some mice, a portion of the spinal cord was removed, rather than simply cut. In these mice, more of the spinal cord is exposed, by removing only the caudal part of the more cranial vertebral arch. The cranial part of the more caudal vertebral arch was also be removed to minimize vertebral instability. Two transections were performed, and the tissue between the transections was removed with a fine forceps.


[0178] Ice cold isotonic saline was then applied in pulses until no bleeding occurred. The muscles of both sides were repositioned and gently opposed by single 8-0 resorbable sutures. The skin was closed in the usual manner with single sutures using 8-0 Dexon (Polyglycolic Acid).


[0179] Animals were weighed daily to ensure proper water and nutritional intake. Food and water was made available at ground level through a special device. In the first postoperative days, each mouse was watched carefully for its ability to eat and drink, unless it was fed manually. The bladder was emptied 3 times a day by applying gentle pressure to the abdomen. The mice were also carefully watched for potential injury and self mutilation due to loss of innervation of the hind limbs.


[0180] After 2 days of postoperative recovery, the mice were examined for loss of lower limb innervation. Both strains showed no innervation of the hind limbs, which were dragged behind. After 2 weeks, neither strain of mice showed signs of innervation of the hind limbs. Between seven and nine weeks, however, MRL mice regained partial proximal innervation of the tail and lower limbs, exhibiting the ability to flex and then extend their hind legs. C57BL/6 mice continued to show no movement of the hind limbs or tail and to show degeneration of the limb musculature and fixed flexion of the joints. In contrast, fixed flexion of the joints of the MRL mice never occurred, and only minor muscle degeneration was in the observed first month.


[0181] Histological examination revealed that MRL mice produced only a minor scar between the two ends of the transected spinal cord (2-5 cell layers), whereas C57BL/6 mice produced a conventional glial scar (10-15 cell layers), thereby preventing the spinal cord to reconnect on an axonal level.


[0182] The partial functional recovery in MRL mice, as well as the underlying histomorphology, suggests that regeneration and reconnection on the axonal level of the spinal cord of MRL mice can occur after complete transection of the spinal cord.



EXAMPLE 16

[0183] Differential Expression of Genes in Dendritic Cells of Healer and Non-Healer Mice


[0184] Dendritic cells (immature macrophages) were isolated from the bone marrow of adult C57BL/6 and MRL+ mice using standard procedures. Total RNA was isolated from the dendritic cells and subjected to microarray analysis, as described above in the Materials and Methods section.


[0185] Table 15 shows genes which were increased more than 50% in either MRL+ or C57BL/6 mice. The gene names and array locations are from the Clontech web site (http://www.clontech.com/clontech/JAN98UPD/Atlaslist.html).



EXAMPLE 17

[0186] An in Vitro Assay of Wound Healing


[0187] A hole was punched in the ear of a healer and a non-healer mouse. Two days later, an explant of the ear tissue, including the punched hole, was excised, embedded in a collagen gel, and maintained in vitro.


[0188]
FIG. 22 shows explants of healer (FIGS. 22A, B) and non-healer (FIGS. 22C, D) ear punch explants in vitro. FIG. 23 shows cells migrating away from the explant of the healer ear punch, possibly in response to factors which are produced by the wounded ear.



EXAMPLE 18

[0189] Adoptive Transfer of Bone Marrow-Derived Dendritic Cells from Healer Mice into Non-Healer Immunodeficient Mice Enhances Healing


[0190] Dendritic cells were isolated from healer (MRL+) and non-healer (C57BL/6) mice as described in Example 16. C57BL/6 Rag−/− mice, which are immunodeficient and unable to reject the dendritic cells, were ear-punched to make a 2 mm hole and immediately injected intraperitoneally with dendritic cells of either MRL+ or C57BL/6 mice. Ear hole closure was measured at 0, 2, 5, 10, 18, 24, and 27 days after wounding. The results of this experiment are shown in FIG. 23.


[0191] Healer dendritic cells induced the best ear closure (approximately 90%) in the non-healer mice, demonstrating that the healer dendritic cells can be used to transfer enhanced healing ability to non-healer mice.



EXAMPLE 19

[0192] Segregation of Quantitative Trait Loci in Phenotype Congenic Mice


[0193] Congenic mice were generated by six successive back-crossings of the F1 generation of a healer (MRL)×non-healer (C57BL/6) cross with its non-healer parent strain. Segregation of quantitative trait loci was examined in healer phenotype congenic mice (see Examples 5-8, above). Each of the 17 phenotype congenic mice examined healed a 2 mm ear hole from at least 75% to 100% 30 days after punching.


[0194] Table 16 shows that only certain markers segregate with the healer phenotype in these phenotype congenic mice. These mice are therefore useful for dissecting out the minimum number of chromosomal loci and genes involved in enhanced wound healing.
1TABLE 1Residual wound sizeParental strains and hybridBackcross and intercross progenyC57BL/61.10 ± 0.27F1 × MRL/lpr0.35 ± 0.27MRL/lpr0.04 ± 0.06F1 × B60.95 ± 0.25(MRL × B6)F10.73 ± 0.22(MRL × B6)F20.83 ± 0.28Numbers are the diameter of holes in mm ± standard deviation (SD) on day 28-30. F1 = (MRL × C57BL/6)F1 hybrid.


[0195]

2





TABLE 2










Location of heal QTL as determined in the


intercross (F2) and the backcross (BC1) progeny.













MGD

F2
F2
BC1
BC1



cM
Primers
LRS1
p value
LRS2
p value
QTL
















71.5
D1Mit288
6.1
0.0130

ns



105
D2Mit148

nd
4.8
0.0279


55.6
D4Nds2 4.2
4.2
0.0400

ns


77.5
D4Mit127
5.5
0.0190

ns


52.4
D7Mit220

ns
10.2*
0.0014


21
D8Mit191

ns
6.4
0.0115


33
D8Mit132
5.5
0.0188

ns


37
D8Mit249
7.3
0.0069

ns


49
D8Mit211


10.7


0.0011

ns
heal1*


56
D8Mit166
7.3
0.0068

nd


34
D12Mit4

ns
7.1
0.0077


52
D12Mit233


6.1


0.0137


9.4


0.0022


52
D12Mit132

nd


10.9


0.0009
heal5*#


9
D13Mit135
9.4
0.0022
4.8
0.0290


11
D13Mit115


9.7


0.0019


5.0


0.0261
heal2*#


13
D13Mit116
8.7
0.0030
5.1
0.0230


30
D13Mit245
7.5
0.0335

nd


32
D13Nds1
10.2*
0.0014

ns


44
D13Mit126
7.4
0.0065

ns


44
D13Mit191
10.2*
0.0014

ns


47
D13Mit29
6.5
0.0101

nd


48
D13Mit107
7.4
0.0064

ns


49
D13Mit144
6.9
0.0088

nd


60
D13Mit129


10.8


0.0010


8.3


0.0040
heal3*#


62
D13Mit53
10.5
0.0012
7.1
0.0077


71
D13Mit151
8.2
0.0042
4.6
0.0318


54.5
D15Mit171
6.6
0.0104

nd


55.6
D15Mit242
7.1
0.0079

nd


57.8
D15Mit172
7.3
0.0070

nd


56.8
D15Mit244


10.7


0.0011

nd
heal4*


56.8
Di5Mit14
8.5
0.0035

ns






Underlining indicates the LRS values that were used for assigning heal QTL.




Footnotes:




1, Threshold LRS for significant linkage = 10.7, and for suggestive linkage, 3.3




2, Threshold LRS for significant linkage = 11.8, and for suggestive linkage, 3.7




*, see text for discussion






#
, confirmed in second cross









[0196]

3





TABLE 3










Single locus genotypic values for heal1 to heal5.










D8Mit211 (heal1)
D13Mit115 (heal2)













Genotype
avg
stdev
p*
avg
stdev
p





b/b
0.73
0.27
0.0319
0.96
0.25
0.0904


b/s
0.84
0.27
0.1214
0.84
0.29
0.0567


s/s
0.95
0.28
0.0013***
0.72
0.26
0.0024***













D13Mit129 (heal3)
D15Mit244 (heal4)














avg
stdev
p
avg
stdev
p





b/b
0.96
0.28
0.2156
0.95
0.19
0.0485


b/s
0.84
0.22
0.0141**
0.86
0.30
0.0677


s/s
0.74
0.34
0.0022***
0.70
0.27
0.0013***













D12Mit132 (heal5)












avg
stdev
p





b/s
0.51
0.40
0.0005***


s/s
0.15
0.32






Averages and standard deviations for wound diameters at day 30 are given for mice sorted by the genotype of markers near each healing QTL. *, p values in the F2 are listed vertically for b/b vs. b/s, s/s vs. b/s, or b/b vs. s/s; in the backcross, p values are for the heterozygote b/s vs. the homozygote s/s. Genotype values are significant at α = 0.05 (**) or α= 0.01 (***) in post-hoc analyses.








[0197]

4





TABLE 4










Candidate genes in genomic intervals containing QTLs









OTL
MGD cM
Candidate genes in interval












heal1
33
Comp, cartilage oligomeric matrix protein



39
pdw, pwportional dwarf



42
Os, oligosyndactylism



46
Gna0



51.5 to 67
Cadherin family


heal2
7
Nid, nidogen



8
Gli3, GLI-Kruppel family member GLI3



10
Amph, amphiphysin



10
Inhba, inhibin beta-A



10
Rasl1, Ras-like, family 1


heal3
32
Msx2, hox8



32.5
Fgfr4, fibroblast growth factor receptor



33
mes, mesenchymal dysplasia



36
Tgfbi, transforming growth factor induced



44
Cspg2, chondroitin sulfate proteoglycan



45
Rasa, ras p21 GTPase activating protein



56
Gpcr18, G-protein coupled receptor 18



62
Itga 1,2, integrin alpha 2 (Cd49b)


heal4
51.6
Pdgfec, platelet derived growth factor



56.8
Col2a1, procollagen, type II, alpha 1



56.8
Ela1, elastase 1



57
Emb, embigin



57.1
Hoxc, homeo box C cluster



57.1
Rarg, retinoic acid receptor, gamma



57.5
Dhh, desert hedgehog homolog



58.7
Krt2, keratin gene complex 2



60
Itga5, integrin alpha 5



61.1
Itgb7, integrin beta 7



63
Glycam1 adhesion molecule


heal5
40
Fos, FBJ osteosarcoma oncogene



41
Tgfb3, transforming growth factor, beta



44.6
Chx10, C elegans ceh-10 homeo domain con



45
Pgf, placental growth factor










[0198]

5





TABLE 5










Differentially expressed or regulated genes identified using microarray


analysis of mRNA obtained from healing tissue on days 5 and 20 after


ear punch compared to tissue obtained on day 0.









Gene Group*
Chromosome #
Gene












IA
1
Stat 1



1
PAI-2



2
ABI-2



2
Integrin alpha



2
Basic domain transcription factor



2
SEF-2



4
TNFR-1



4
SKI



7
H-ras



7
Cathepsin D



8
Glutathione Reductase



10
TIMP-3



10
STAT6



11
ACE



11
Macrophage inflammatory Protein



11
c-erb



14
BMP-l



14
Cathepsin B



16
HMG



16
ETS



18
c-FMS


IB
2
CRAPBII (RA binding protein)



2
CD44



2
SKY proto-oncogene



8
Casein kinase



12
YY1



12
c-AKT



13
GTT



13
SPI-3



13
GKLF



13
Cathepsin L



13
PDGF signalling molecule



13
thrombin receptor



15
epidermal keratin






*Genes in Group II are listed in Tables 10 and 11. Table 10 is a list of genes which are differentially expressed on days 5 and 20 after ear punch between control mice (B6 & F2 nonhealers) and experimental mice (MRL & F2 healers). Table 11 is a list of genes which are regulated in MRL tissue from 0, 24, and 40 hrs after wounding or ear punching (see FIG. 16).








[0199]

6





TABLE 6










Differentially expressed or regulated genes identified using RT-PCR


analysis of mRNA from healing tissue.











Gene Group
Chromosome #
Gene







IB
13
MSX-2




15
RAR-gamma











[0200]

7





TABLE 7










Differentially expressed genes in Groups I and II identified using


differential display analysis of mRNA from healing tissue.*











Gene Group
Chromosome #
Gene







IB
8
ecadherin



II

PMG-1





TR 2-11





tropomyosin








*RNA from healer and nonhealer ears on days 0, 5 and 20 after ear punching were analyzed by RT-PCR. Random primers obtained from “Gene Hunter Corp” were used to amplify bands. Since these are random primers, the products are unknown but can be sequenced. It is a useful way of examining what amplifies in one population and not another. Thus, one has to compare what is present or not in B6 and MRL for each time point and then subtract out the differences seen in day 0.








[0201]

8





TABLE 8










Differentially expressed genes from Groups I and II identified


using SAGE analysis of mRNA from healing tissue.









Gene Group
Chromosome #
Gene





IB
15
epidermal keratin


II

macrophage ferritin heavy subunit




est (1758377)and see Table D










[0202]

9





TABLE 9










Microsatellite Markers Linked to Male and Female Healer Mice











CHROM #
MARKER
LOCATION(CM
LRS
CROSS














1
D1MIT64
21
5.1
F2-Male


1
D1MIT123
36.9
4
F2-Male


1
D1MIT288
71.5
7.5
F2


1
D1MIT356
95.8
4.3
F2-Female


2
D2MIT329
45
5.6
F2-Female


2
D2MIT37
45
6.3
F2-Female


2
D2MIT14
49
8
F2-Female


##2
D2MIT207
60
10.5
F2-Male; F2


2
D2MIT107
75.6
7.9
F2-Male


2
D2MIT223
76.7
9.3
F2-Male


2
D2MIT148
105
4.8
Backcross


3
D3MIT60
0
6.3
F2


3
D3MIT203
11.2
4.3
F2


3
D3MIT310
38.3
5.4
F2; F2-Male


##4
D4MIT149
0
13.4
F2-Male


4
D4MIT235
2
9.8
F2-Male


4
D4MIT236
12
5
F2-Male


4
D4MIT241
25
5.5
F2-Male


4
D4MIT127
78
8.8
F2-Male


5
D5MIT148
18
5.8
F2-Female


6
NONE


##7
D7MIT220
52
10.2
Backcross


7
D7MIT237
66
6.6
Backcross


8
D8MIT191
21
6.4
Backcross


#8
D8MIT211
49
9.9
B6


9
NONE


10
D10MIT42
44
3.5
F2-Female


10
D10MIT233
62
4.2
F2-Male


11
D11MIT124
61
8.1
F2-Male; F2


12
D12MIT4
34
7.1
Backcross


12
D12MIT233
52
9.4
Backcross


##12
D12MIT132
52
10.9
Backcross


13
D13MIT135
10
9.4
F2


13
D13MIT115
11
9.7
F2


13
D13MIT116
13
9
F2


13
D13MIT245
30
8.8
F2


##13
D13NDS1
32
15.9
F2


13
D13MIT126
45
6.6
F2


13
D13MIT191
45
9.4
F2


##13
D13MIT159
45
12.7
F2


13
D13MIT29
47
6.5
F2


13
D13MIT107
48
7
F2


13
D13MIT144
48
6
F2


##13
D13MIT148
59
11.9
F2


##13
D13MIT129
60
11.2
F2


13
D13MIT53
62
9.1
F2


13
D13MIT151
71
8.2
F2


14
D14MIT193
40
5
F2-Male


14
D14MIT131
58
4
F2-Male


15
D15MIT189
48.5
6.6
F2; F2-Female


15
D15MIT171
54.5
6.7
*


15
D15MIT242
55.6
6.7
*


15
D15MIT172
57.8
6.9
*


##15
D15MIT242
55.6
10.7
*


15
D15MIT14
56.8
9.3
*


15
D15MIT43
60.4
4.6
*


15
D15MIT79
66.2
7.9
*


15
D15MIT16
61.7
5.9
*


16
D16MIT122
3.85
6.2
F2


16
D16MIT32
48.2
6.6
F2


17
D17MIT68
24.5
5.7
F2


18
D18MIT123
31
4.8
F2


18
D18MIT49
49
4.1
F2


19
D19MIT59
0.5
7.2
F2-Female






The sugestive loci have an LRS value of 3.5 or greater




The significant loci have an LRS value of 10.5 or greater (except when confirmed in a second cross (##)








[0203]

10





TABLE 10










Wound Healing Gene Products Identified by Microarray Analysis












Chrom. Locat.
Gene Products identified by


Day 5 Express.
Day 20 Exp.
(cM)
microarray analysis (day 5 and 20 healer and nonhealer ear holes compared to day 0)





up
up
?
Ezrfn; Villin 2; NF-2 (merlin) related filament/plasma membrane associated protein


no change
DOWN
14 (41)
Rb; pp105; Retinoblastoma susceptibility-associated protein





(tumor suppressor gene; cell cycle regulator)


up (female)

7 (syntenic)
TSG101 tumor susceptibility protein


down(female)
down(female)
?
Tumor suppressor maspin


down(male)
down(male)
7 (28.5)
ZO-1; Tight junction protein; discs-large family member, partially homologous to a





dig-A tumor suppressor in Drosophila


down(male)
down(male)
11 (57)
cErbA oncogene; thyroid hormone receptor


up
up
4 (44.6)
c-Jun proto-oncogene (transcription factor AP-1 component)


no change
down
?
RNA polymerase I termination factor TTF-1


up
up
15 (32)
c-myc proto-oncogene protein


down(female)
up(female)
8 (49.5)
Casein kinase II (alpha subunit)


down(male)
down(male)
17 (16.4)
Pim-1 proto-oncogene


up(female)

18 (30)
c-Fms proto-oncogene (macrophage colony stimulating factor 1 (CSF-1) receptor)


up(female)
up(female)
5 (42)
PDGFRa; platelet-derived growth factor alpha-receptor


down(male)
down(male)
4 (78.9)
Ski proto-oncogene


up

2 (67)
Sky proto-oncogene (Tyro3; Rse; Dtk)


up(female)

7 (72.2)
H-ras proto-oncogene; transforming G-protein



down(male)
3 (48.5)
N-ras proto-oncogene: transformong G-protein



up(male)
1 (36.1)
IGFBP-2; Insulin-like growth factor binding





protein 2; autocrine and/or paracrine


up(female)

?
Cyclin B2 (G2/M-specific)


down
up
?
Cyclin D2 (G1/S-specific)


up(male)
down(male)
?
Cyclin G (G2/M-specific)


up
down
?
p18ink4; cdk4 and cdk6 inhibitor


down
up
?
Prothymosin alpha


up

?
HSP84; heat shock 84kD protein


up

?
HSP86; heat shock 86kD protein


up

2 (22.5)
Glucose regulated protein, 78kD; Grp78


up(male)

3 (66.2)
Golgi 4-transmembrane spanning transporter; MTP


up

13 (47)
Cf2r; coagulation factor II (thrombin) receptor


up(female)

?
Interleukin-6 receptor beta chain; membrane glycoprotein gp130


up

19(0.5)
I-kappa B alpha chain


up (male)
down(male)
1(28)
Stat1; signal transducer and activator of transcription


up(male)
down(male)
10(70)
Stat6; signal transducer and activator of transcription 6; IL-4 Stat; STA6


up

11(syntenic)
Crk adaptor protein


up
down
17(40)
Inhibitor of the RNA-activated protein kinase, 58-kDa


up

?
MAPK; MAP kinase; p38


UP
DOWN
g (36)
MAPKK1; MAP kinase kinase 3 (dual specificity) (MKK1)


up
down
2 (2)
PKC-theta


down
down
13(50)
PI-K p58,





PDGF signaling pathway member


up(male)
down(male)
?
Rab-2 ras-related protein


up(male)
down(male)
?
14-3-3 protein eta


up

11 (29)
IRF1; interferon regulatory factor 1


UP
DOWN
?
Zyxin; LIM domain protein; alpha-actinin binding protein


up(male)
down(male)
?
BAG-1; bcl-2 binding protein with anti-cell death activity


up
up
13(8)
Glutathione peroxidase (plasma protein); selenoprotein


up

8(16)
Glutathione reductase


DOWN
DOWN
?
Glutathione S-transferase (microsomal)


down(male)

?
Glutathione S-transferase Mu 1


up
down
12(58)
c-Akt proto-oncogene; Rac-alpha; proteine kinase B (PKB)


up
down
?
FLIP-L; apoptosis inhibitor; FLICE-like inhibitory protein


up(female)
down(female)
3(70.5)
Gadd45; growth arrest and DNA-damage-inducible protein


up

?
Nm23-M2; nucleoside diphosphate kinase B; metastasis-reducing protein;





c-myc-related transcription factor


up(male)
down(male)
?
Protein tyrosine phosphatase


up(male)
down(female)
19(23)
RIP cell death protein; Fas/APO-1 (CD95) interactor, contains death domain


UP
DOWN
13(16)
SPI3; serpin; similar to human proteinase inhibitor 6 (placental thrombin





inhibitor) serine proteinase inhibitor


UP
DOWN
4(75.5)
Tumor necrosis factor receptor 1: TNFR-1


up(female)
UP(female)
?
PA6 stromal protein; RAG1 gene activator


up

?
MHR23B; Rad23 UV excision repair protein homologue; xeroderma pigmentosum group C





(XPC) repair complementing protein


up

2(45)
Abiphillin-1 (abl-1) similar to HOXD3



UP
x-14
Adipocyte differentiation-associated protein


H>>NH
H>>NH
2(91)
Basic domain/leucine zipper transcription factor


up

?
Butyrate response factor 1


NH>>H
NH>>H
?
CACCC Box- binding protein BKLF


up

?
DP-1 (DRTF-polipeptide 1) cell cycle regulatory transription factor


down(female)
up(female)
16(68.5)
Ets-2 transcription factor


down (female)
up(female)
2(7)
GATA-3 transcription factor


down(female)
up(female)
13(16)
Gut specific Kruppel-like factor GKLF


down(female)
up(female)
16(69)
HMG-14 non histone chromosomal protein


up NH>H

?
Interferon regulatory factor 2 (IRF 2)


up NH>H

?
NF-1B protein (transcription factor)


up
down
15(61.7)
Nuclear factor related to P45 NF-E2


up(male)
down(male)
9(36)
Nuclear hormone receptor ROR-ALPHA-1


up
down
6(syntenic)
Split hand/foot gene


down(female)
up(female)
2(54)
Retinoic acid binding protein II cellular (CRABP-II)


down (female)
up(female)
?
Retinoid X receptor interacting protein (RIP 15)


up
down
?
Transcription factor 1 for heat shock gene


up

?
Transcription factor CTCF (11 zinc fingers)


NH>>H
up(female)
2(94)
Transcription factor SEF2


down(female)
up(female)
?
YB1 DNA binding protein


up(female)
up(female)
12(53)
YY1 (UCRBP) transcriptional factor


NH>>H
up(female)
?
Activin type I receptor


down(f)


up(male)
down (male)
?
C-C chemokine receptor (Monocyte





chemoattractant protein 1 receptor (MCP-1RA)


down(female)
down (female)
?
Growth factor receptor


NH>>>H
up
18(20)
Glucocorticoid receptor form A


up

6(31.5)
CD31 (Platelet, endothelial cell adhesion molecule 1)


up
up
2(56)
CD44 antigen


up

9(56)
Dystroglycan 1


up
down
?
Glutamate receptor channel subunit gamma


up

2(38)
Integrin alpha 6


UP(female)
up(female)
?
Integrin beta


UP (female)
up(female)
?
Laminin receptor 1


up(male)
UP(female)
14(32.5)
Bone morphogenetic protein 1


NH>>H up

?
Insulin-like growth factor binding protein -6 (IGFBP 6)



up
11(2)
Insulin-like growth factor binding protein-3 (IGFBP-3)



UP
?
Insulin-like growth factor binding protein-4 (IGFBP-4)



UP
1(36)
Insulin-like growth factor binding protein-5 (IGFBP-5)


UP(female)
UP(female)
10(48)
Insulin-like growth factor-IA


up

11(47.6)
Macrophage Inflammatory protein



down(male)
18(48)
Mad related protein 2 (MADR2)


up

7(11)
Neuroleukin



UP(female)
14(20)
Placental ribonuclease inhibitor (Anglogenin)


up
down
7(6.5)
Transforming growth factor beta


up
down
7(6.5)
Transforming growth factor beta 2


up(female)

x(1.7)
Cytoskeletal epidermal keratin (14 human)


H>>>NH UP
UP
15(58.7)
Epidermal keratin (1 human)


up(male)
down(male)
9(61)
Non-muscle myosin light chain 3


up(female)

2(7)
Vimentin


up
down
11(65)
Anglotensin-converting enzyme (ACE) (clone ACE.5.)



up
14(28.5)
Cathepsin B



down
7(72.5)
Cathepsin D



up
13(30)
Cathepsin L


H>>NH up(f)
down(male)
?
Cytotoxic T lymphocyte-specific serine protease CCP I gene (CTLA-1)


NH>>H
UP
14(20)
Mast cell protease (MMCP) -4



UP(female)
?
Membrane type matrix metalloproteinase



DOWN
1(61)
Plasminogen activator inhibitor-2



UP
?
Serine protease inhibitor homolog J6


NH>>>H up

10(47)
TIMP-3 tissue inhibitor of metalloproteinases-3










[0204]

11





TABLE 11










Genes whose expression is altered in MRL mice 0 hrs.,


24 hrs., and 40 hrs. after ear punch.










Block A
Block B
Block C
Block D

















1a.
APC
1a.
HSP-27
1a.
Caspase -11
1a.
abi-1


1b.
BRCA1
1b.
HSP-60
1e.
bag-1
1j.
BKLF


1e.
EB1
1c.
HSP-84
1f.
Bak
1k.
C/EBP


1f.
ezrin
1d.
HSP-86
1g.
Bax
2g.
DP-1


1i.
NF2
1f.
Osp-94
2a.
GTT trnfs.
2j.
Elf-1


1j.
p107
1j.
cyp1b1
2b.
GTT Mu-1
3m.
HMG-14


1l.
p53
2e.
Glut1
2d.
GST pi-1
3n.
Hox1.1


2a.
maspin
3d.
CXCR4
2e.
A20 znc fnger pr.
4g.
Hox 8


2d.
VHL
3f.
Prostaglandin E R
2k.
c-Akt
4m.
LKLF


2g.
c-erb
3g.
Tie-1
3a.
CHOP 10
4n.
Lbx1


2j.
TTF-1
3j.
Vegfr-2
3b.
Clusterin
5a.
Mph-1


2l.
c-myc
4h.
TANK
3f.
Fas1 R
5b.
MRE


3b.
FLI-1
4k.
Tristetraproline
4c.
Nm23-M2
5h.
NF-E2


3e.
Gli
5b.
Hck
4g.
PtPhosphatase
5m.
DSS-1


3l.
B-Raf
5f.
CamK
4h.
PS-2
5n.
Sox3


4e.
PDGFRa
5h.
Erk1
5a.
TDAG51(fas reltd)
6b.
PAX-6


4g.
SKI
5j.
Jak3
5b.
TNF 55
6f.
RXR-6


4j.
Vegfr-1
6h.
PKC-theta
5d.
TNFR-1
6g.
RIP-15


4n.
c-Src
6k.
PI3-K
6j.
MHR23B
6i.
TF-1 for HSP


5c.
H-ras
7b.
Rab-2
7b.
PCNA
7e.
SEF2


5d.
LFC


5j.
b-protachykinin
7j.
GapIII
7c.
bluelight R
7g.
SP2


5m.
IGFBP-2


6a.
cyclin A
7n.
Zyxin
7e.
Pur


6d.
cyclin B2


6h.
cyclin D3


7k.
HR6B


7b.
p58/GTA


7e.
cdk inhibit prot.


7n.
XRCC1


7j.
cdc25a


7m.
prothymosin a













Block E

Block F


















1c.
BMP-R
6m.
dystroglycan
1b.
BMP-1
5i.
epid.k-18


1g.
CSA-R
6n.
glutamate R
1d.
BMP-4
5k.
epiderm keratin


2b.
FGFR-4
7a.
CD49b
1g.
Cek 5
5n.
kinesin


2e.
GMCSF-R
7c.
CD51
1h.
Cek 7
6b.
nonmuscle myos.


2l.
INFab-R
7g.
Integrin beta
1j.
EGF
6d.
vimentin


2m.
INFg-R
7i.
ICAM-1
2a.
G-CSF
6e.
unconv myosin VI


3a.
IL-1R
7j.
Laminin R 1
2i.
IGFBP-6
6g.
cathep B


3c.
1L2-R
7l.
Neuronal prot F3
2k.
IGFBP-3
6h.
cathep D


3d.
IL3R
7n.
VLA-3
2l.
IGFBP-4
6i.
cathep H


3g.
IL-7R


2m.
IGFBP-5
6j.
cathep L


3h.
IL8-R


3a.
ILGF-14
6k.
collagenase IV


3i.
Estrog R


3c.
K-FGF
6m.
CTLA-1


3j.
Androg R


3g.
MIP2
6n.
gelatinase B


3m.
Glucocort R


3h.
MADR2
7b.
MMCP-4


4a.
Insulin R


3j.
Smad 1
7c.
MTMMP


4b.
IRS-1


3k.
NGF
7e.
TPA


4h.
Serotonin R 1e-b


3m.
neuroleukin
7g.
Protease Inhib 2


4j.
Serotonin R 3


3n.
oncostatin
7i.
PAI-2


4m.
Adrenergic R beta 1


4d.
thrombomod.
7j.
Spi-2


5c.
GPCR


4g.
TGFb2
7n.
TIMP-3


5f.
GABA-A 3


5b.
IL-4


5g.
GABA-A 4


5c.
IL-6


5l.
P-selectin


5d.
IL-7


5m.
catenin alpha


5e.
cardiac myosin


6a.
CD2


5g.
CDC42 bind. prot.


6h.
CD14


5h.
epidermal keratin-14










[0205]

12





TABLE 12








SAGE Analysis of C57BL/6 Mice Five Days After


Wounding















SearchName = B5BANK


FileName = c:\sage\data\b5data˜1\b5bank.bag


Anchoring Enzyme = Nlalll—CATG


Tag Length = 11


DiTag Length = 24


Total Files = 56


Total Tags = 1508


Total Duplicate Dimers = 0


Tag Abundance Report


Total tags after excluding tags = 1508













Count
Percent
Tag Sequence
-Tag BaseFour Number





16
1.061
GGCTTCGGTCT
-2750136


13
.862
AGAGCGAAGTG
-563247


12
.7957
AGCAGTCCCCT
-601432


12
.7957
GTGGCTCACAA
-3054865


10
.6631
AGGCAGACAGT
-673868


9
.5968
GCTGGCCCTTC
-2598270


8
.5305
AGGTCGGGTGG
-711355


8
.5305
CGCCGCCGGCT
-1664424


7
.4641
CTGCTCAGGCT
-1995944


7
.4641
TGGGCATCCAC
-3838802


6
.3978
AAGGAAATGGG
-164075


6
.3978
ATACTGACATT
-817232


6
.3978
CCTTTGTGACT
-1571720


6
.3978
GAACATTGCAC
-2117522


6
.3978
GGGAAGGCGGC
-2755178


5
.3315
ATGACTGATAG
-925235


5
.3315
CACAAACGGTA
-1114541


5
.3315
CACCACCGTTG
-1131967


5
.3315
CAGAACCCACG
-1180999


5
.3315
CCCTGAGTCCA
-1434325


5
.3315
CCCTGGGTTCT
-1436408


5
.3315
GCCCGGGAATA
-2451981


5
.3315
GCGGCGGATGG
-2529851


5
.3315
GGAAGCCACTT
-2630944


5
.3315
TAAAGAGGCCG
-3154583


5
.3315
TATGTCAAGCT
-3388456


5
.3315
TGGGTTGTCTA
-3849949


5
.3315
TGTAGTGTAAT
-3878596


5
.3315
TTCAGTGGACC
-4009606


5
.3315
TTGGTGAAGGA
-4110377


4
.2652
AGAAACCAATA
-525581


4
.2652
AGTGAGGAAGA
-756233


4
.2652
ATAATACATAA
-799025


4
.2652
ATACTGAAGCC
-817190


4
.2652
ATTCTCCAGTG
-1013039


4
.2652
CAAACTCTCAC
-1056210


4
.2652
CAGTCACCAAC
-1233218


4
.2652
CCCACAAGGTA
-1380525


4
.2652
CCTTGCTCAAT
-1566532


4
.2652
CCTTTGAGATC
-1570958


4
.2652
CTAGTCTTTGT
-1882108


4
.2652
CTGAACATCTC
-1967326


4
.2652
GGCAAGCCCCA
-2689365


4
.2652
GGCCTGGCTTA
-2718333


4
.2652
TCCCCGTACAT
-3496724


4
.2652
TCCCTATTAAG
-3503043


4
.2652
TCTTCTCACAA
-3661073


4
.2652
TGGCCCAAATT
-3822608


3
.1989
AAGGTGGAAGA
-178697


3
.1989
ACATCATAGAT
-316196


3
.1989
AGGAAGGCGGC
-658026


3
.1989
CAAGTGGAAAA
-1096193


3
.1989
CACGCTCCCGG
-1154395


3
.1989
CAGGOCACACA
-1217605


3
.1989
CCAGAACAGAC
-1343778


3
.1989
CCCAGAGCACT
-1385032


3
.1989
CCCTAAACTGA
-1425529


3
.1989
CCTGATCTTTA
-1543677


3
.1989
CCTTTAATCCC
-1568982


3
.1989
CTCAACAGCAA
-1901713


3
.1989
CTCCTGGACAC
-1931794


3
.1989
CTGGCTTTCAG
-2006995


3
.1989
GACTTTGGAAA
-2227841


3
.1989
GAGCGTTTGG
-2256891


3
.1989
GATGACACCAG
-2327635


3
.1989
GCTGCAGTTGA
-2593529


3
.1989
GCTGCCCTCCA
-2594261


3
.1989
GTCTGCTGATG
-3008399


3
.1989
GTGGAGGCGCC
-3050086


3
.1989
GTGGGCGTGTA
-3057389


3
.1989
TAAACCTGCTA
-3151773


3
.1989
TATCCCACGCC
-3363942


3
.1989
TCGGTTTCTGC
-3587962


3
.1989
TCTCACCACCC
-3622166


3
.1989
TGACCCCGGGA
-3691945


3
.1989
TGCACAGTGCT
-3740392


3
.1989
TGGTCTGGTCC
-3858102


3
.1989
TGTAACAGGAC
-3867810


3
.1989
TTCAGGTGGTT
-4008880


3
.1989
TTGGCTGCCCA
-4103765


2
.1326
AAAACAGTGGC
-4842


2
.1326
AAAGCAGTGCT
-37608


2
.1326
AAGAGGCAAGA
-141577


2
.1326
AAGCAACAGGT
-147756


2
.1326
AAGGTCGAGCT
-177704


2
.1326
ACAGAACTCTT
-295392


2
.1326
ACCTTGGAAGG
-391691


2
.1326
ACTCTTTGTTT
-491456


2
.1326
ACTGGCTGGGC
-501674


2
.1326
ACTTATTATGC
-511802


2
.1326
AGAACCATTAA
-529649


2
.1326
AGACCCTCTCA
-546677


2
.1326
AGCAATTCAM
-593729


2
.1326
ATCAACACCGC
-853082


2
.1326
ATCCGAAAGAT
-876580


2
.1326
CACCACCACAG
-1131795


2
.1326
CACCTTGGTGC
-1146554


2
.1326
CACGGGACCAC
-1157202


2
.1326
CACTGACCTCC
-1171830


2
.1326
CATTATGGGTG
-1298095


2
.1326
CCCAATGGCCC
-1379990


2
.1326
CCCGGACTTAC
-1417714


2
.1326
CCCGTAGCCCC
-1421910


2
.1326
CCTACAGTTGA
-1512185


2
.1326
CCTCGGAAAAT
-1533956


2
.1326
CCTGTGTGAAA
-1555329


2
.1326
CGCCTGCTAGC
-1669578


2
.1326
CGCTGGTTCCA
-1698773


2
.1326
CGGTTCCACCC
-1766678


2
.1326
CTAATAAAGCC
-1847334


2
.1326
CTACCAGGATA
-1856141


2
.1326
CTGCTATCCGA
-1995609


2
.1326
CTGCTTTGTGC
-1998778


2
.1326
CTGGGCGTGTC
-2008814


2
.1326
CTGTAGGTGAT
-2018020


2
.1326
CTGTGCCCTCC
-2024822


2
.1326
CTTAAGGATCC
-2034230


2
.1326
GAATCTGAAGT
-2153996


2
.1326
GAATGCAGGGA
-2155689


2
.1326
GAGGAGAAGAA
-2263073


2
.1326
GATGCATAGTG
-2331439


2
.1326
GATGTGACCAC
-2340946


2
.1326
GATTTCTGTCT
-2357176


2
.1326
GCACCGAACAC
-2381842


2
.1326
GCATACGGCGC
-2410138


2
.1326
GCATTGCATCT
-2423096


2
.1326
GCCAAGGGTCA
-2427573


2
.1326
GCCAAGTGGAG
-2427811


2
.1326
GCCTAATGTAC
-2474930


2
.1326
GCCTCGGGGGA
-2480809


2
.1326
GCGACGCGGGC
-2496938


2
.1326
GCGGCGGGATG
-2529935


2
.1326
GCTCAGGATTC
-2574910


2
.1326
GCTGGCAGACG
-2598023


2
.1326
GCTTGCTTCCT
-2615256


2
.1326
GGAAGGTGTCT
-2632632


2
.1326
GGATTTGGCTT
-2686624


2
.1326
GGGAGCTGTGC
-2762682


2
.1326
GGGGAAATCGC
-2785498


2
.1326
GGGGCTCAGCC
-2792742


2
.1326
GGTGAGCCTGA
-2853241


2
.1326
GGTGGGACACA
-2861125


2
.1326
GTAAGCATAAA
-2892993


2
.1326
GTCTGGGGGGA
-3009193


2
.1326
GTGGTAGGCTA
-3060381


2
.1326
GTTGCTGAGAA
-3120673


2
.1326
GTTGGGGGGGG
-3123883


2
.1326
TAACTGACAAT
-3176516


2
.1326
TATACAATACA
-3346629


2
.1326
TCCACTGTGCA
-3481317


2
.1326
TCTGGACGCGG
-3645851


2
.1326
TGAAACACTGT
-3671164


2
.1326
TGACCCCGGGT
-3691948


2
.1326
TGCCTGTGATA
-3767181


2
.1326
TGGATCCTGAG
-3814883


2
.1326
TGGGCAAAGCC
-3837990


2
.1326
TGGTGACAAAA
-3858689


2
.1326
TGTGCCAAGTG
-3904559


2
.1326
TGTTCATCTTG
-3920767


2
.1326
TTCAGCTCGAG
-4007779


2
.1326
TTGCTGCAGTG
-4094255










Tags included in this report = 161





DataBase Link


Database = c:










16
1.061%
GGCTTCGGTCT
-2750136








Noted Tags = 0
Collected Tags = 0










13
.862%
AGAGCGAAGTG
-563247








Noted Tags = 1
Collected Tags = 1







GCGGAA, Class A, U93862, Mus musculus ribosomal


protein L41 mRNA, complete










12
.7957%
AGCAGTCCCCT
-601432








Noted Tags = 4
Collected Tags = 0










12
.7957%
GTGGCTCACAA
-3054865








Noted Tags = 207
Collected Tags = 56







CCATCC, Class A, AB0046, Mus musculus mRNA for Rab


33B, complete ods.


CCATCT, Class C, 129190, Mouse MHC class I H2-D


transplantation antigen gen


CCATCT, Class A, U20225, Mus musculus ad-


enylosuccinate lyase (adi) mRNA, Co


CCATCT, Class A, X931 68, M.musculus mRNA for can-


nabinoid receptor 2.


CCATCT, Class A, X56974, M.musculus mRNA for exter-


nal transcribed spacer (p


CCATCT, Class C, X52915, M.musculus gene for H-2D


(q) antigen, partial 3' c


CCATCT, Class C, V00751, Mouse gene H-2Ld coding for


a transplantation anti


CCATCT, Class C, X52916, M.musculus H-2L(q) gene


for H-2L(q) antigen. 3″ p


CCATCT, Class C, U06244, Mus musculus interferon


alphalbeta receptor (IFNAR


CCATCC, Class C, X64716, M.musculus NKR-P1 2 gene


for natural killer cell r










10
.6631%
AGGCAGACAGT
-673868








Noted Tags = 2
Collected Tags = 2







TGCTGT, Class A, X13661, Mouse mRNA for e-


longation factor 1-alpha (EF 1-alp


TGCTGT, Class A, M22432, Mus musculus protein


synthesis elongation factor T










9
.5968%
GCTGGCCCTTC
-2598270








Noted Tags = 0
Collected Tags = 0










8
.5305%
AGGTCGGGTGG
-711355








Noted Tags = 1
Collected Tags = 0










8
.5305%
CGCCGCCGGCT
-1664424








Noted Tags = 1
Collected Tags = 0










7
.4641%
CTGCTCAGGCT
-1995944








Noted Tags = 1
Collected Tags = 1







TAGGAG, Class A, M13806, Mouse keratin (epider-


mal) type I mRNA, clone pkScc










7
.4641%
TGGGCATCCAC
-3838802








Noted Tags = 0
Collected Tags = 0










6
.3978%
AAGGAAATGGG
-164075








Noted Tags = 0
Collected Tags = 0










6
.3978%
ATACTGACATT
-817232








Noted Tags = 4
Collected Tags = 0










6
.3978%
CCTTTGTGACT
-1571720








Noted Tags = 0
Collected Tags = 0










6
.3978%
GAACATTGCAC
-2117522








Noted Tags = 3
Collected Tags = 2







CACACG, Class A, X12697, Mouse p2-4 mRNA for


SPARC/osteonectin (SPARC = sec


CACACG, Class C, M20691, Mouse osteonectin (Sparc)


gene, exon 9.










6
.3978%
GGGAAGGCGGC
-2755178








Noted Tags = 2
Collected Tags = 1







ACGTCT, Class A, M88335, M.musculus mRNA sequence.










5
.3315%
ATGACTGATAG
-925235








Noted Tags = 4
Collected Tags = 0










5
.3315%
CACAAACGGTA
-1114541








Noted Tags = 0
Collected Tags = 0










5
.3315%
CACCACCGTTG
-1131967








Noted Tags = 1
Collected Tags = 1







CCTTCA, Class C, M21460, Mouse surfeit locus sur-


feit 3 protein gene, exon 6










5
.3315%
CAGAACCCACG
-1180999








Noted Tags = 2
Collected Tags = 2







ACAGTA, Class C, M76762, Mus musculus ribosomal


protein (Ke-3) gene, exons


ACAGTA, Class A, M76763, Mus musculus ribosomal


protein (Ke-3) mRNA, comple










5
.3315%
CCCTGAGTCCA
-1434325








Noted Tags = 2
Collected Tags = 2







CCCCGG, Class A, X03672, Mouse cytoskeletal mRNA


for beta-actin.


CCCCGG, Class A, J041 81, Mouse A-X actin mRNA,


complete ods.










5
.3315%
CCCTGGGTTCT
-1436408








Noted Tags = 2
Collected Tags=1







GCCCGC, Class A, J0471 6, Mouse ferritin light


chain, complete cds.










5
.3315%
GCCCGGGAATA
-2451981








Noted Tags = 1
Collected Tags = 1







AATTCA, Class A, J05277, Mouse hexokinase mRNA,


complete cds.










5
.3315%
GCGGCGGATGG
-2529851








Noted Tags = 6
Collected Tags = 5







AGACTT, Class C, A27894, Coding sequence for GBP.


AGACTT, Class A, X53067, Mouse mRNA for 14KDa lec-


tin.


AGACTT, Class A, X15986, Mouse 3′mRNA for beta-


galactoside specific lectin


AGACTT, Class A, X66532, M.musculus mRNA for L14


lectin.


AGACTT, Class A, M57470, Murine beta-galactoside


binding protein mRNA, comp










5
.3315%
GGAAGCCACTT
-2630944








Noted Tags = 0
Collected Tags = 0










5
.3315%
TAAAGAGGCCG
-3154583








Noted Tags = 1
Collected Tags = 1







TTTTGT, Class A, U67770, Mus musculus ribosomal


protein S26 (RPS26) mRNA, c










5
.3315%
TATGTCAAGCT
-3388456








Noted Tags = 1
Collected Tags=1







GGTGGA, Class A, X15962, Mouse mRNA for ribosomal


protein S12.










5
.3315%
TGGGTTGTCTA
-3849949








Noted Tags=1
Collected Tags = 1







AAAATA, Class A, X06407, Mouse mRNA for 21 kd po-


lypeptide under translation










5
.3315%
TGTAGTGTAAT
-3878596








Noted Tags=1
Collected Tags = 1







AAAGGT, Class A, X73829, M.musculus mRNA for ribo-


somal protein S8.










5
.3315%
TTCAGTGGACC
-4009606








Noted Tags = 0
Collected Tags = 0










5
.3315%
TTGGTGAAGGA
-4110377








Noted Tags = 2
Collected Tags = 0










4
.2652%
AGAAACCAATA
-525581








Noted Tags = 2
Collected Tags = 1







CGAACA, Class A, V00830, Mouse mRNA encoding epi-


dermal keratin subunit.










4
.2652%
AGTGAGGAAGA
-756233








Noted Tags = 1
Collected Tags = 0










4
.2652%
ATAATACATAA
-799025








Noted Tags = 4
Collected Tags = 0










4
.2652%
ATACTGAAGCC
-817190








Noted Tags = 1
Collected Tags = 1







CCACTT, Class A, U2891 7, Mus musculus 60S riboso-


mal protein (A52) mRNA, corn










4
.2652%
ATTCTCCAGTG
-1013039








Noted Tags = 1
Collected Tags = 0










4
.2652%
CAAACTCTCAC
-1056210








Noted Tags = 2
Collected Tags = 2







AGCGAT, Class A, X04017, Mouse mRNA for cysteine-


rich glycoprotein SPARC.


AGCGAT, Class C, M20692, Mouse osteonectin (Sparc)


gene, exon 10.










4
.2652%
CAGTCACCAAC
-1233218








Noted Tags = 0
Collected Tags = 0










4
.2652%
CCCACAAGGTA
-1380525








Noted Tags = 0
Collected Tags = 0










4
.2652%
CCTTGCTCAAT
-1568532








Noted Tags = 2
Collected Tags = 1







TAAAA, Class A, M59470, Mouse cystatin C mRNA,


complete cds.










4
.2652%
CCTTTGAGATC
-1570958








Noted Tags = 1
Collected Tags=1







ATCCAC, Class A, U78085, Mus musculus ribosomal


protein S5 mRNA, complete c










4
.2652%
CTAGTCTTTGT
-1882108








Noted Tags = 1
Collected Tags = 1







ACACAA, Class A, L31609, Mus musculus (clone


mcori-1 ck9) S29 ribosomal prot










4
.2652%
CTGAACATCTC
-1967326








Noted Tags = 1
Collected Tags = 1







CCCCTT, Class A, X15267, Mouse mRNA for acidic


ribosomal phosophoprotein PO










4
.2652%
GGCAAGCCCCA
-2689365








Noted Tags = 2
Collected Tags = 1







GCGTCT, Class A, U12403, Mus musculus Csa-19 mRNA,


complete cds.










4
.2652%
GGCCTGGCTTA
-2718333








Noted Tags = 0
Collected Tags = 0










4
.2652%
TCCCCGTACAT
-3496724








Noted Tags = 0
Collected Tags = 0










4
.2652%
TCCCTATTAAG
-3503043








Noted Tags = 0
Collected Tags = 0










4
.2652%
TCTTCTCACAA
-3661073








Noted Tags = 0
Collected Tags = 0










4
.2652%
TGGCCCAAATT
-3822608








Noted Tags = 2
Collected Tags=1







TATGCC, Class C, M11409, Mouse S16 ribosomal pro-


tein processed pseudogene.










3
.1989%
AAGGTGGAAGA
-178697








Noted Tags = 0
Collected Tags = 0










3
.1989%
ACATCATAGAT
-316196








Noted Tags = 1
Collected Tags=1







GACATC, Class A, L04280, Mus musculus ribosomal


protein (Rpl12) mRNA, compl










3
.1989%
AGGAAGGCGGC
-658026








Noted Tags = 0
Collected Tags = 0










3
.1989%
CAAGTGGAAAA
-1096193








Noted Tags = 0
Collected Tags = 0










3
.1989%
CACGCTCCCGG
-1154395








Noted Tags = 0
Collected Tags = 0










3
.1989%
CAGGCCACACA
-1217605








Noted Tags = 1
Collected Tags = 1







AGAGCC, Class A, AF0305, Mus musculus ATP synthase


beta-subunit (beta-F1 AT










3
.1989%
CCAGAACAGAC
-1343778








Noted Tags = 3
Collected Tags = 0










3
.1989%
CCCAGAGCACT
-1385032








Noted Tags = 1
Collected Tags = 1







GGGTTG, Class A, M10937, Mouse epidermal 67-kDa


type II keratin mRNA.










3
.1989%
CCCTAAACTGA
-1425529








Noted Tags = 0
Collected Tags = 0










3
.1989%
CCTGATCTTTA
-1543677








Noted Tags = 2
Collected Tags = 2







CTTCTA, Class A, X06406, Mouse mRNA for transla-


tional controlled 40 kDa pol


CTTCTA, Class A, J02870, Mouse laminin receptor


mRNA, complete cds.










3
.1989%
CCTTTAATCCC
-1568982








Noted Tags = 58
Collected Tags = 9







AGCACT, Class A, D42051, Mus musculus mRNA for


Glutamate Decarboxylase, com


AGAGGC, Class A, X79508, M.musculus (C57BL/10)


CW37 mRNA, B1 repeat.


AGCACT, Class A, U03421, Mus musculus interleukin-


11 mRNA, complete cds.


AGTTAC, Class C, U59807, Mus musculus cystatin B


(Stfb) gene, complete cds.


AGCACT, Class A, M58288, Mus musculus granulocyte


colony-stimulating factor


AGCACT, Class A, M58288, Mus musculus granulocyte


colony-stimulating factor


AGCACC, Class C, M14361, Mouse lg germline kappa-


chain V-region gene V-Ser,


AGCAAT, Class C, M93320, Mus musculus DNA frag-


ment, L1 repeat family region


AGCCCT, Class C, J00632, mouse b1 ubiquitous re-


peat (copy c) mrna and flank


AGGACT, Class A, L08394, Mus musculus betacellulin


(bcn) mRNA, complete cds










3
.1989%
CTCAACAGCAA
-1901713








Noted Tags = 0
Collected Tags = 0










3
.1989%
CTCCTGGACAC
-1931794








Noted Tags=1
Collected Tags = 1







CTGGGA, Class A, J04953, Mouse gelsolin gene, com-


plete cds.










3
.1989%
CTGGCTTTCAG
-2006995








Noted Tags = 0
Collected Tags = 0










3
.1989%
GACTTTGGAAA
-2227841








NotedTags = 6
CollectedTags = 3







ACATTT, Class A, U03419, Mus musculus alpha-1 type


I procollagen mRNA, part


ACATTT, Class C, X57981, Mouse gene for pro alpha1


(I) collagen chain (COL1


ACATTT, Class A, U08020, Mus musculus FVB/N colla-


gen pro-alpha-1 type I cha










3
.1989%
GAGCGTTTTGG
-2256891








Noted Tags = 2
Collected Tags = 1







GTCCAG, Class A, X52803, Mouse mRNA for cyclophi-


lin (EC 5.2.1.8).










3
.1989%
GATGACACCAG
-2327635








Noted Tags = 1
Collected Tags = 1







CCGCTC, Class A, U11248, Mus musculus C57BL/6J


ribosomal protein S28 mRNA,










3
.1989%
GCTGCAGTTGA
-2593529








Noted Tags = 0
Collected Tags = 0










3
.1989%
GCTGCCCTCCA
-2594261








Noted Tags = 5
Collected Tags = 0










3
.1989%
GTCTGCTGATG
-3008399








Noted Tags = 2
Collected Tags = 2


GCCAGA, Class A, X75313, M.musculus (C57BL/6) GB-


like mRNA.


GCCAGA, Class A, D29802, Mouse mRNA for G protein


beta subunit homologue, c










3
.1989%
GTGGAGGCGCC
-3050086








Noted Tags = 0
Collected Tags=0










3
.1989%
GTGGGCGTGTA
-3057389








Noted Tags = 1
Collected Tags = 1







CAACGG, Class A, M33330, Mouse insulinoma (rig)


mRNA, complete cds.










3
.1989%
TAAACCTGCTA
-3151773








Noted Tags = 0
Collected Tags = 0










3
.1989%
TATCCCACGCC
-3363942








Noted Tags = 0
Collected Tags = 0










3
.1989%
TCGGTTTCTGC
-3587962








Noted Tags = 0
Collected Tags = 0










3
.1989%
TCTCACCACCC
-3622166








Noted Tags = 0
Collected Tags = 0










3
.1989%
TGACCCCGGGA
-3691945








Noted Tags = 0
Collected Tags = 0










3
.1989%
TGCACAGTGCT
-3740392








Noted Tags = 5
Collected Tags = 4







GAGCAA, Class A, X05835, Mouse mRNA for placental


calcium-binding protein.


GAGCAA, Class A, X16190, Mouse mts1 gene.


GAGCAA, Class A, Z36947, Murine retrovirus RNA


containing parts of mts1 of


GAGCAA, Class A, D00208, Mus musculus mRNA for


pEL98 protein, complete cds.










3
.1989%
TGGTCTGGTCC
-3858102








Noted Tags = 0
Collected Tags = 0










3
.1989%
TGTAACAGGAC
-3867810








Noted Tags = 1
Collected Tags = 1







TGCTAT, Class A, X04648, Mouse mRNA for lgG1/lgG2b


Fc receptor (FcR).










3
.1989%
TTCAGGTGGTT
-4008880








Noted Tags = 1
Collected Tags = 1







TCTTCT, Class A, X73607, M.musculus mRNA for tro-


pomyosin 5 (3′UTR).









3
.1989%TTGGCTGCCCA
-4103765








Noted Tags = 1
Collected Tags = 1







GGATGT, Class C, Y08307, M.musculus mitochondrial


mRNA for ribosomal protei










2
.1326%
AAAACAGTGGC
-4842








Noted Tags = 1
Collected Tags = 1







CGGTGG, Class A, X73331, M.musculus mRNA for ribo-


somal protein L37a.










2
.1326%
AAAGCAGTGCT
-37608








Noted Tags = 0
Collected Tags = 0










2
.1326%
AAGAGGCAAGA
-141577








Noted Tags = 0
Collected Tags = 0










2
.1326%
AAGCAACAGGT
-147756








Noted Tags = 0
Collected Tags = 0










2
.1326%
AAGGTCGAGCT
-177704








Noted Tags = 0
Collected Tags = 0










2
.1326%
ACAGAACTCTT
-295392








Noted Tags = 1
Collected Tags = 1







CTCAAT, Class A, AJ0023, Mus musculus mRNA for an-


nexin VIII.










2
.1326%
ACCTTGGAAGG
-391691








Noted Tags = 1
Collected Tags = 0










2
.1326%
ACTCTTTGTTT
-491456








Noted Tags = 0
Collected Tags = 0










2
.1326%
ACTGGCTGGGC
-501674








Noted Tags = 0
Collected Tags = 0










2
.1326%
ACTTATTATGC
-511802








Noted Tags = 0
Collected Tags = 0










2
.1326%
AGAACCATTAA
-529649








Noted Tags = 0
Collected Tags = 0










2
.1326%
AGACCCTCTCA
-546677








Noted Tags = 0
Collected Tags = 0










2
.1326%
AGCAATTCAAA
-593729








Noted Tags = 6
Collected Tags = 2







CAATTA, Class C, U09637, Mus musculus domesticus


mitochondrion NADH dehydro


CAATTA, Class C, U09638, Mus musculus musculus


mitochondrion NADH dehydroge










2
.1326%
ATCAACACCGC
-853082








Noted Tags = 2
Collected Tags = 2







AACCTT, Class A, Y00703, Mouse uncoupled S49 cells


mRNA for stimulatory GTP


AACCTT, Class A, M13964, Mouse stimulatory G pro-


tein of adenylate cyclase,










2
.1326%
ATCCGAAAGAT
-876580








Noted Tags = 2
Collected Tags = 1







GAAGCT, Class A, L04128, Mus musculus ribosomal


protein L18 (rpL18) mRNA, c










2
.1326%
CACCACCACAG
-1131795








Noted Tags = 1
Collected Tags = 1







GATCAA, Class A, X05021, Murine mRNA with homolo-


gy to yeast L29 ribosomal p










2
.1326%
CACCTTGGTGC
-1146554








Noted Tags = 0
Collected Tags = 0









2
.1326%CACGGGACCAC
-1157202








Noted Tags=0
Collected Tags = 0










2
.1326%
CACTGACCTCC
-1171830








Noted Tags = 1
Collected Tags = 0










2
.1326%
CATTATGGGTG
-1298095








Noted Tags = 3
Collected Tags = 3







GCAAGA, Class A, U16818, Mus musculus UDP glucu-


ronosyltransferase (UGT1-06)


GCAAGA, Class A L02333, Murine bilirubin/phenol


family UDP glucuronosyltra


GCAAGA, Class A, L27122, Mus musculus (A-1) bili-


rubin/phenol UDP-glucuronos










2
.1326%
CCCAATGGCCC
-1379990








Noted Tags = 3
Collected Tags=3







AATAAA, Class A, X65582, M.musculus mRNA for al-


pha-2 collagen VI.


AATAAA, Class A, X62332, M.muscutus mRNA for al-


pha-2 collagen type VI, subu


AATAAA, Class A, Z18272, Mus musculus collagen al-


pha 2 chain type VI.










2
.1326%
CCCGGACTTAC
-1417714








Noted Tags = 2
Collected Tags = 0










2
.1326%
CCCGTAGCCCC
-1421910








Noted Tags = I
Collected Tags = 1







TTCCGA, Class A, M22479, Mouse tropomyosin isoform


2 mRNA, complete cds.










2
.1326%
CCTACAGTTGA
-1512185








Noted Tags = 3
Collected Tags = 3







TAATCT, Class C, K02241, Mouse alkali myosin light


chains, exons 6 and 7 co


TAATCT, Class A, K02242, Mouse alkali myosin light


chains MLC1f and MLC3f 3


TAATCT, Class C, K02243, Mouse alkali myosin light


chains MLC1f/MLC3f pseud










2
.1326%
CCTCGGAAAAT
-1533956








Noted Tags = 0
Collected Tags = 0










2
.1326%
CCTGTGTGAAA
-1555329








Noted Tags = 0
Collected Tags = 0










2
.1326%
CGCCTGCTAGC
-1669578








Noted Tags = 2
Collected Tags = 1







CAACCG, Class A, X58251 Mouse COL1A2 mRNA for pro-


alpha-2(l) collagen.










2
.1326%
CGCTGGTTCCA
-1698773








Noted Tags = 2
Collected Tags = 0










2
.1326%
CGGTTCCACCC
-1766678








Noted Tags = 0
Collected Tags = 0










2
.1326%
CTAATAAAGCC
-1847334








Noted Tags = 3
Collected Tags = 2







ACTGTG, Class A, X65922, M.musculus fau mRNA.


ACTGTG, Class A, D26610, Mouse mRNA for monoclonal


nonspecific suppressor f










2
.1326%
CTACCAGGATA
-1856141








Noted Tags = 0
Collected Tags = 0










2
.1326%
CTGCTATCCGA
-1995609








Noted Tags = 1
Collected Tags = 1







GAGAAT, Class A, X83590, M.musculus mRNA for ribo-


somal protein L5, 3′end.










2
.1326%
CTGCTTTGTGC
-1998778








Noted Tags = 2
Collected Tags = 2







TGTACA, Class A, M13227, Mouse enkephalin mRNA.


TGTACA, Class A, M55181, Mouse spermatogenic-spe-


cific proenkephalin mRNA, c










2
.1326%
CTGGGCGTGTC
-2008814








Noted Tags = 0
Collected Tags = 0










2
.1326%
CTGTAGGTGAT
-2018020








Noted Tags = 0
Collected Tags = 0










2
.1326%
CTGTGCCCTCC
-2024822








Noted Tags = 0
Collected Tags = 0










2
.1326%
CTTAAGGATCC
-2034230








Noted Tags = 0
Collected Tags = 0










2
.1326%
GAATCTGAAGT
-2153996








Noted Tags = 0
Collected Tags = 0










2
.1326%
GAATGCAGGGA
-2155689








Noted Tags = 0
Collected Tags = 0










2
.1326%
GAGGAGAAGAA
-2263073








Noted Tags = 2
Collected Tags = 1







AGCATT, Class A, Y00225, Murine mRNA for J1 pro-


tein, yeast ribosomal protei










2
.1326%
GATGCATAGTG
-2331439








Noted Tags = 1
Collected Tags = 0










2
.1326%
GATGTGACCAC
-2340946








Noted Tags = 0
Collected Tags = 0










2
.1326%
GATTTCTGTCT
-2357176








Noted Tags = 0
Collected Tags=0










2
.1326%
GCACCGAACAC
-2381842








Noted Tags=0
Collected Tags = 0










2
.1326%
GCATACGGCGC
-2410138








Noted Tags = 1
Collected Tags = 0










2
.1326%
GCATTGCATCT
-2423096








Noted Tags = 0
Collected Tags = 0










2
.1326%
GCCAAGGGTCA
-2427573








Noted Tags = 1
Collected Tags = 1







GAGGCT, Class A, L08651, Mus musculus large ribo-


somal subunit protein mRNA,










2
.1326%
GCCAAGTGGAG
-2427811








Noted Tags = 5
Collected Tags = 1







TTCCCA, Class A, M76131, Mouse elongation factor 2


(ef-2) mRNA, 3′end.










2
.1326%
GCCTAATGTAC
-2474930








Noted Tags = 1
Collected Tags = 1







ACAAAG, Class A, U93863, Mus musculus ribosomal


protein L21 mRNA, complete










2
.1326%
GCCTCGGGGGA
-2480809








Noted Tags = 0
Collected Tags = 0










2
.1326%
GCGACGCGGGC
-2496938








Noted Tags = 0
Collected Tags = 0










2
.1326%
GCGGCGGGATG
-2529935








Noted Tags = 0
Collected Tags = 0










2
.1326%
GCTCAGGATTC
-2574910








Noted Tags = 1
Collected Tags = 1







ATCTGA, Class A, X91824, M.musculus mRNA for


SPRR1a protein.










2
.1326%
GCTGGCAGACG
-2598023








Noted Tags = 0
Collected Tags = 0










2
.1326%
GCTTGCTTCCT
-2615256








Noted Tags = 1
Collected Tags = 1







GGAGCA, Class A, X89650, M.musculus mRNA for Rab7


protein.










2
.1326%
GGAAGGTGTCT
-2632632








Noted Tags = 0
Collected Tags = 0










2
.1326%
GGATTTGGCTT
-2686624








Noted Tags = 0
Collected Tags = 0










2
.1326%
GGGAGCTGTGC
-2762682








Noted Tags = 0
Collected Tags = 0










2
.1326%
GGGGAAATCGC
-2785498








Noted Tags = 1
Collected Tags = 1







CAGCTT, Class A, Z48496, M.musculus mRNA for tes-


tis-specific thymosin beta-










2
.1326%
GGGGCTCAGCC
-2792742








Noted Tags = 2
Collected Tags = 0










2
.1326%
GGTGAGCCTGA
-2853241








Noted Tags = 1
Collected Tags = 1







AGCTTG, Class A, U20611, Mus musculus thioredoxin-


dependent peroxide reduct










2
.1326%
GGTGGGACACA
-2861125








Noted Tags = 0
Collected Tags = 0










2
.1326%
GTAAGCATAAA
-2892993








Noted Tags = 0
Collected Tags = 0










2
.1326%
GTCTGGGGGGA
-3009193








Noted Tags = 0
Collected Tags = 0










2
.1326%
GTGGTAGGCTA
-3060381








Noted Tags = 0
Collected Tags = 0










2
.1326%
GTTGCTGAGAA
-3120673








Noted Tags = 2
Collected Tags = 2







GCGGCT, Class A, X75312, M.musculus (C57BL/6) QM


mRNA.


GCGGCT, Class A, M93980, Mouse 24.6 kda protein


mRNA, complete cds.










2
.1326%
GTTGGGGGGGG
-3123883








Noted Tags = 0
Collected Tags = 0










2
.1326%
TAACTGACAAT
-3176516








Noted Tags = 1
Collected Tags = 0










2
.1326%
TATACAATACA
-3346629








Noted Tags = 0
Collected Tags = 0










2
.1326%
TCCACTGTGCA
-3481317








Noted Tags=1
Collected Tags = 1







CGTGTG, Class C, L38580, Mus musculus galanin


gene, exon 6 and complete cds










2
.1326%
TCTGGACGCGG
-3645851








Noted Tags = 2
Collected Tags = 2







AAAGCA, Class C, M33988, Mouse histone H2A.1 gene,


complete cds.


CAAGCA, Class C, M37736, Mouse replication-depen-


dent histone H2A.1 gene.










2
.1326%
TGAAACACTGT
-3671164








Noted Tags = 2
Collected Tags = 2







,Class A, 086344, Mouse mRNA for Topoisomerase-in


hibitor suppressed,


T, Class A, D50465, Mouse MA-3 (apoptosis-related


gene) mRNA, complete










2
.1326%
TGACCCCGGGT
-3691948








Noted Tags = 0
Collected Tags = 0










2
.1326%
TGCCTGTGATA
-3767181








Noted Tags = 0
Collected Tags = 0










2
.1326%
TGGATCCTGAG
-3814883








Noted Tags=21
Collected Tags = 4







AACTTC, Class C, V00742, Fragment of the mouse


gene for epsilon-globin Y3 (


AACTTC, Class A, M19236, Mouse beta-globin gene.


AACTTC, Class C, J00414, Mouse beta-globin epsilon


y3 gene, exon 2.


AACTTC, Class C, M10688, Mouse beta-globin gene


with intron boundary.










2
.1326%
TGGGCAAAGCC
-3837990








Noted Tags = 0
Collected Tags = 0










2
.1326%
TGGTGACAAAA
-3858689








Noted Tags = 0
Collected Tags = 0










2
.1326%
TGTGCCAAGTG
-3904559








Noted Tags = 0
Collected Tags = 0










2
.1326%
TGTTCATCTTG
-3920767








Noted Tags = 2
Collected Tags = 1







TTTTAA, Class C, X57983, Mouse gene for pro alpha1


(III) collagen chain (CO










2
.1326%
TTCAGCTCGAG
-4007779








Noted Tags = 0
Collected Tags = 0










2
.1326%
TTGCTGCAGTG
-4094255








Noted Tags = 0
Collected Tags = 0










[0206]

13





TABLE 13








SAGE Analysis of MEL Mice Five Days After Wound-


ing















SearchName = C5BANK


FileName = c:\sage\data\c5data\c5bank.bag


Anchoring Enzyme = NlaIII-CATG


Tag Length = 11


DiTag Length = 24


Total Files = 67


Total Tags = 1790


Total Duplicate Dimers = 0


Tag Abundance Report


Total tags after excluding tags = 1790













Count
Percent
Tag Sequence
-Tag BaseFour Number





23
1.2849
CGGTCCAGGGA
-1758377


18
1.0955
GTGGCTCACAA
-3054865


16
.8938
GGCTTCGGTCT
-2750136


14
.7821
AGGTCGGGTGG
-711355


13
.7262
CACAAACGGTA
-1114541


13
.7262
TGGGTTGTCTA
-3849949


12
.6703
CGCCGCCGGCT
-1664424


12
.6703
CTGCTCAGGCT
-1995944


12
.6703
GCTGGCCCTTC
-2598270


11
.6145
AGGCAGACAGT
-673868


11
.6145
TTGGCTGCCCA
-4103765


10
.5586
GCCCGGGAATA
-2451981


9
.5027
AGAGCGAAGTG
-563247


9
.5027
CAGAACCCACG
-1180999


9
.5027
CATCGCCAGTG
-1271087


9
.5027
CCCCAGCCAGT
-1395020


8
.4469
AGCAGTCCCCT
-601432


8
.4469
CAAACTCTCAC
-1056210


8
.4469
CTAATAAAGCC
-1847334


8
.4469
GGCAAGCCCCA
-2689365


7
.391
CAAGGTGACAG
-1093139


7
.391
CCAGAACAGAC
-1343778


7
.391
CTGAACATCTC
-1967326


7
.391
GCCTTTATGAG
-2489571


7
.391
GGAAGCCACTT
-2630944


7
.391
GTGAACGTGCC
-3016422


7
.391
GTGGGCGTGTA
-3057389


6
.3351
AACACCAAGCT
-70696


6
.3351
CACCACCACAG
-1131795


6
.3351
CACCACCGTTG
-1131967


6
.3351
CACGCTCCCGG
-1154395


6
.3351
CCCGTGTGCTC
-1424286


6
.3351
CCTTGCTCAAT
-1566532


6
.3351
CTGCTATCCGA
-1995609


6
.3351
GAACATTGCAC
-2117522


6
.3351
GGATTTGGCTT
-2686624


6
.3351
GGGAAGGCGGC
-2755178


6
.3351
GTCTGCTGATG
-3008399


6
.3351
TCAGGCTGCCT
-3450776


6
.3351
TGGATCCTGAG
-3814883


5
.2793
CGCTGGTTCCA
-1698773


5
.2793
CTCCTGGACAC
-1931794


5
.2793
TATGTCAAGCT
-3388456


5
.2793
TCGTGATTGTG
-3597295


5
.2793
TTCAGTGGACC
-4009606


4
.2234
AAGAGGCAAGA
-141577


4
.2234
ATACTGACATT
-817232


4
.2234
CAAGTGGAAAA
-1096193


4
.2234
CCCAATGGCCC
-1379990


4
.2234
CCTACCAAGAC
-1512482


4
.2234
GATGACACCAG
-2327635


4
.2234
GATTCCGTGAG
-2348771


4
.2234
GCAGAGTGCGC
-2395034


4
.2234
GCCAAGTGGAG
-2427811


4
.2234
GCGGCGGATGG
-2529851


4
.2234
GTGGAGGCGCC
-3050086


4
.2234
TGCACAGTGCT
-3740392


4
.2234
TGGATCAGTCT
-3814584


4
.2234
TGGCTCGGTCA
-3831477


4
.2234
TGTGCCAAGTG
-3904559


4
.2234
TTCTTTGGTGA
-4062905


3
.1675
AGTGAGGAAGA
-756233


3
.1675
CACCTTGGTGC
-1146554


3
.1675
CCCTGAGTCCA
-1434325


3
.1675
CTACCACTCAA
-1855953


3
.1675
CTGAGAGAGAA
-1974817


3
.1675
CTGTAGACTGC
-2017402


3
.1675
CTGTAGGTGAT
-2018020


3
.1675
CTTGACACACA
-2065477


3
.1675
GAGTCTCCCTG
-2284895


3
.1675
GATGTGGCTGC
-2341498


3
.1675
GCCGCTAGGCC
-2464934


3
.1675
GCOTGTGGCCT
-2485912


3
.1675
GCGCCCTCCCC
-2512726


3
.1675
GGGGGCCCAGG
-2794827


3
.1675
GTGTGGGCACT
-3074632


3
.1675
GTGTTAACCAG
-3076179


3
.1675
TAAAGAGGCCG
-3154583


3
.1675
TGCTTATGATG
-3797903


3
.1675
TGGTGACAAAA
-3858689


3
.1675
TGTCAGTCTGT
-3885948


3
.1675
TTCAGCTCGAG
-4007779


2
.1117
AACAATTTGGG
-69611


2
.1117
AACAGGTTCAA
-76753


2
.1117
AAGCGCCTCAC
-157138


2
.1117
AAGGAAATGGG
-164075


2
.1117
AAGGTCTGCCT
-178072


2
.1117
AAGGTGGAAGA
-178697


2
.1117
ACAGTTCCAGA
-310601


2
.1117
ACCCTCCTCCC
-357846


2
.1117
AGAGGAAGCTG
-565407


2
.1117
AGCAGGGATCC
-600630


2
.1117
AGGAAGGCGGC
-658026


2
.1117
AGGGAGCGOTA
-690589


2
.1117
AGTGACTCTGG
-755579


2
.1117
ATTCTCCAGTG
-1013039


2
.1117
ATTTGATTAGC
-1041354


2
.1117
ATTTTCCAGTG
-1045807


2
.1117
CAATGTGGGTT
-1109680


2
.1117
CACAGACTGTG
-1122799


2
.1117
CACAGCCCACT
-1123656


2
.1117
CACCGCCAGTG
-1140015


2
.1117
CACGGCTTTCA
-1157109


2
.1117
CACGGGACCAC
-1157202


2
.1117
CAGTCACCAAC
-1233218


2
.1117
CAGTCTCTCAA
-1236433


2
.1117
CCAACGCTTTA
-1317373


2
.1117
CCACCTCCTGT
-1334652


2
.1117
CCCAGGCTGAA
-1386977


2
.1117
CCCTAAACTGA
-1425529


2
.1117
CCCTCTACAAG
-1432643


2
.1117
CCCTGGGTTCT
-1436408


2
.1117
CCCTGTGGCCG
-1437335


2
.1117
CCCTTCTTCTC
-1439710


2
.1117
CCGCCTGCAAG
-1465923


2
.1117
CCTCAGCCTGG
-1526139


2
.1117
CCTCGCACAGT
-1533004


2
.1117
CCTTTAATCCC
-1568982


2
.1117
CCTTTGTGACT
-1571720


2
.1117
CGCCTGCTAGC
-1689578


2
.1117
CTGAGAGAAAA
-1974785


2
.1117
CTGCCTCACAG
-1989907


2
.1117
CTGCGAGATTC
-1991230


2
.1117
CTGCTTTGTGC
-1998778


2
.1117
CTGTCTGAAAG
-2022915


2
.1117
CTTCTCATTTG
-2061567


2
.1117
CTTGCTCAATG
-2071823


2
.1117
CTTGGCGAGCG
-2074151


2
.1117
GAAAGTTGGCC
-2109350


2
.1117
GAACGCGACGG
-2123291


2
.1117
GACTTTGGAAA
-2227841


2
.1117
GAGTTTTCACG
-2293575


2
.1117
GCACAACTTGC
-2376186


2
.1117
GCACTGCGCAC
-2390418


2
.1117
GCCCCCGCATA
-2446925


2
.1117
GCCCCTGCGCA
-2448997


2
.1117
GCCTAATGTAC
-2474930


2
.1117
GCCTCCTCCCA
-2479957


2
.1117
GCCTTGGTGAA
-2489057


2
.1117
GCGAAGCTCAG
-2492883


2
.1117
GCGGCGCCGCA
-2529637


2
.1117
GCTCTCCAGCA
-2585893


2
.1117
GCTGCCCTCCA
-2594261


2
.1117
GCTGTGGCCAC
-2603602


2
.1117
GGCAGCCCCCT
-2696536


2
.1117
GGCTGGGGGCT
-2747048


2
.1117
GGGCCTGTGGG
-2776811


2
.1117
GGTGCCAACTA
-2855965


2
.1117
GGTGGGGGGGC
-2861738


2
.1117
GTCACAGGCAA
-2953873


2
.1117
GTCTGCGTGCC
-3008230


2
.1117
GTCTGGGGGGA
-3009193


2
.1117
GTCTGTGCCCA
-3010133


2
.1117
GTGAGCCCATT
-3024208


2
.1117
GTGGCGCACGC
-3053850


2
.1117
GTGGCTCAOAG
-3054867


2
.1117
GTGGGTGTTGG
-3059451


2
.1117
TATCTGTGCAT
-3373972


2
.1117
TATTGGCTCTG
-3402207


2
.1117
TCACTGGCCCC
-3489190


2
.1117
TCCAACTCCTT
-3475296


2
.1117
TCCCTGTGGTT
-3505072


2
.1117
TCCGGGCGAGG
-3516811


2
.1117
TCTCACCACCC
-3622166


2
.1117
TCTGCCAATTT
-3642432


2
.1117
TCTGGACGCGG
-3645851


2
.1117
TCTTCTCACAA
-3661073


2
.1117
TGAACCGTCCC
-3675862


2
.1117
TGACAGCTGCC
-3888934


2
.1117
TGACCCCGGGC
-3691946


2
.1117
TGACCCCGGGT
-3691948


2
.1117
TGAGCATCGGG
-3707755


2
.1117
TGCGTGCTGGA
-3783145


2
.1117
TGGCCCAAATT
-3822608


2
.1117
TGTAACAGGAC
-3867810


2
.1117
TGTAACTGGTC
-3868590


2
.1117
TGTGAACT1TG
-3899903


2
.1117
TGTTCATCTTG
-3920767


2
.1117
TTCAGCTCGAA
-4007777


2
.1117
TTCTGTCCTGT
-4058492


2
.1117
TTGCACCTTCT
-4081144


2
.1117
TTGGGCCAGAG
-4105507


2
.1117
TTGGTGAAGGA
-4110377


2
.1117
TTTCGTGTTGG
-4157179


2
.1117
TTTTCCACTTG
-4183167










Tags included in this report = 185





DataBase Link


Database = c:










23
1.2849%
CGGTCCAGGGA
-1758377








Noted Tags = 0
Collected Tags = 0










18
1.0055%
GTGGCTCACAA
-3054865








Noted Tags = 207
Collected Tags = 56







CCATCC, Class A, AB0046, Mus musculus mRNA for


Rab33B, complete cds.


CCATCT, Class C, 129190, Mouse MHC class I H2-D


transplantation antigen gen


CCATCT, Class A, U20225, Mus musculus adenylosuc-


cinate lyase (adi) mRNA, co


CCATCT, Class A, X93168, M.musculus mRNA for can-


nabinoid receptor 2.


CCATCT, Class A, X56974, M.musculus mRNA for ex-


ternal transcribed spacer (p


CCATCT, Class C, X52915, M. musculus gene for


H-2D(q) antigen, partial 3′c


CCATCT, Class C, V00751, Mousegene H-2Ld coding


for a transplantation anti


CCATCT, Class C, X52916, M. musculus H-2L(q) gene


for H-2L(q) antigen. 3′p


CCATCT, Class C, U06244, Mus musculus interferon


alpha/beta receptor (IFNAR


CCATCC, Class C, X64716, M.musculus NKR-P1 2 gene


for natural killer cell r










16
.8938%
GGCTTCGGTCT
-2750136








Noted Tags = 0
Collected Tags = 0










14
.7821%
AGGTCGGGTGG
-711355








Noted Tags = 1
Collected Tags = 0










13
.7262%
CACAAACGGTA
-1114541








Noted Tags = 0
Collected Tags = 0










13
.7262%
TGGGTTGTCTA
-3849949








Noted Tags = 1
Collected Tags = 1







AAAATA, Class A. X06407, Mouse mRNA for 21 kd po-


lypeptide under translation










12
.6703%
CGCCGCCGGCT
-1664424








Noted Tags = 1
Collected Tags = 0










12
.6703%
CTGCTCAGGCT
-1995944








Noted Tags = 1
Collected Tags = 1







TAGGAG, Class A, Ml 3806, Mouse keratin (epider-


mal) type I mRNA, clone pkScc










12
.6703%
GCTGGCCCTTC
-2598270








Noted Tags = 0
Collected Tags = 0










11
.6145%
AGGCAGACAGT
-673868








Noted Tags = 2
Collected Tags = 2







TGCTGT, Class A, X13661, Mouse mRNA for elongation


factor 1-alpha (EF 1-alp


TGCTGT, Class A, M22432, Mus musculus protein syn-


thesis elongation factor T










11
.6145%
TTGGCTGCCCA
-4103765








Noted Tags = 1
Collected Tags = 1







GGATGT, Class C, Y08307, M.musculus mitochondrial


mRNA for ribosomal protei










10
.5586%
GCCCGGGAATA
-2451981








Noted Tags = 1
Collected Tags = 1







AATTCA, Class A, J05277, Mouse hexokinase mRNA,


complete cds.










9
.5027%
AGAGCGAAGTG
-563247








Noted Tags = 1
Collected Tags = 1







GCGGAA, Class A, U93862, Mus musculus ribosomal


protein L41 mRNA, complete










9
.5027%
CAGAACCCACG
-1180999








Noted Tags = 2
Collected Tags = 2







ACAGTA, Class C, M76762, Mus musculus ribosomal


protein (Ke-3) gene, exons


ACAGTA, Class A, M76763, Mus musculus ribosomal


protein (Ke-3) mRNA, comple










9
.5027%
CATCGCCAGTG
-1271087








Noted Tags = 3
Collected Tags = 2







GGCAAA, Class A, M12414, Mouse apolipoprotein E


mRNA, complete cds.


GGCAAA, Class A, M73490, Mus musculus apolipopro-


tein E mRNA, 3′end.










9
.5027%
CCCCAGCCAGT
-1395020








Noted Tags = 2
Collected Tags = 1







GCCTAC, Class A, X76772, M.musculus mRNA for ribo-


somal protein S3.










8
.4469%
AGCAGTCCCCT
-601432








Noted Tags = 4
Collected Tags = 0










8
.4469%
CAAACTCTCAC
-1056210








Noted Tags = 2
Collected Tags = 2







AGCGAT, Class A, X04017, Mouse mRNA for cysteine-


rich glycoprotein SPARC.


AGCGAT, Class C, M20692, Mouse osteonectin (Sparc)


gene, exon 10.










8
.4469%
CTAATAAAGCC
-1847334








Noted Tags = 3
Collected Tags = 2







ACTGTG, Class A, X65922, M.musculus fau mRNA.


ACTGTG, Class A, D26610, Mouse mRNA for monoclonal


nonspecific suppressor f










8
.4469%
GGCAAGCCCCA
-2689365








Noted Tags = 2
Collected Tags = 1







GCGTCT, Class A, U12403, Mus musculus Csa-19 mRNA,


complete cds.










7
.391%
CAAGGTGACAG
-1093139








Noted Tags = 3
Collected Tags = 3







GCCGCT, Class A, M20632, Mouse LLRep3 protein mRNA


from a repetitive elemen


GCCGCT, Class C, M20633, Mouse LLRep3 protein


pseudogene from a repetitive


GCCGCT, Class C, M20634, Mouse LLRep3 protein


pseudogene from a repetitive










7
.391%
CCAGAACAGAC
-1343778








Noted Tags = 3
Collected Tags = 0










7
.391%
CTGAACATCTC
-1967326








Noted Tags = 1
Collected Tags = 1







CCCCTT, Class A, X15267, Mouse mRNA for acidic


ribosomal phosophoprotein PO










7
.391%
GCCTTTATGAG
-2489571








Noted Tags = 2
Collected Tags = 1







AAGAAA, Class A, X60289, M.musculus mRNA for ribo-


somal protein 524.










7
.391%
GGAAGCCACTT
-2630944








Noted Tags = 0
Collected Tags = 0










7
.391%
GTGAACGTGCC
-3016422








Noted Tags = 0
Collected Tags = 0










7
.391%
GTGGGCGTGTA
-3057389








Noted Tags = 1
Collected Tags = 1







CAACGG, Class A, M33330, Mouse insulinoma (rig)


mRNA, complete cds.










6
.3351%
AACACCAAGCT
-70696








Noted Tags = 2
Collected Tags = 2







GTCCCT, Class A, X74784, M.musculus mk2e mRNA.


GTCCCT, Class A, M24151, Mouse keratin 70 kd type


II mRNA, 3′end.










6
.3351%
CACCACCACAG
-1131795








Noted Tags = 1.
Collected Tags = 1







GATCAA, Class A, X05021, Murine mRNA with homology


to yeast L29 ribosomal p










6
.3351%.
CACCACCGTTG
-1131967








Noted Tags = 1
Collected Tags = 1







CCTTCA, Class C, M21460, Mouse surfeit locus sur-


feit 3 protein gene, exon 6










6
.3351%
CACGCTCCCGG
-1154395








Noted Tags = 0
Collected Tags = 0










6
.3351%
CCCGTGTGCTC
-1424286








Noted Tags = 0
Collected Tags = 0










6
.3351%
CCTTGCTCAAT
-1566532








Noted Tags = 2
Collected Tags = 1







TAAAA, Class A, M59470, Mouse cystatin C mRNA,


complete cds.










6
.3351%
CTGCTATCCGA
-1995609








Noted Tags = 1
Collected Tags = 1







GAGAAT, Class A, X83590, M.musculus mRNA for ri-


bosomal proteIn L5, 3′end.










6
.3351%
GAACATTGCAC
-2117522








Noted Tags = 3
Collected Tags = 2







CACACG, Class A, X12697, Mouse p2-4 mRNA for


SPARC/osteonectin (SPARC = sec


CACACG, Class C, M20691, Mouse osteonectin (Sparc)


gene, exon 9.










6
.3351%
GGATTTGGCTT
-2686624








Noted Tags = 0
Collected Tags = 0










6
.3351%
GGGAAGGCGGC
-2755178








Noted Tags = 2
Collected Tags = 1







ACGTCT, Class A, M88335, M.musculus mRNA sequence.










6
.3351%
GTCTGCTGATG
-3008399








Noted Tags = 2
Collected Tags = 2







GCCAGA, Class A, X75313, M.musculus (C57BL/6) GB-


like mRNA.


GCCAGA, Class A, D29802, Mouse mRNA for G protein


beta subunit homologue, c










6
.3351%
TCAGGCTGCCT
-3450776








Noted Tags = 7
Collected Tags = 6







TCATCT, Class A, X12812, Murine mRNA for macro-


phage ferritin heavy subunit.


TCATCT, Class C, X52561, Mouse gene for ferritin H


subunit.


TCATCT, Class A, J03941, Mouse ferritin heavy


chain (MFH) mRNA, complete cd


TTATCT, Class A, M24509, Mouse ferritin heavy


chain, complete cds.


TTATCC, Class C, M73678, Mus musculus (clone


pMHFY9) ferritin H pseudogene.


TTATCT, Class C, M73679, Mus musculus (clone


pMHFY1) ferritin H pseudogene.










6
.3351%
TGGATCCTGAG
-3814883








Noted Tags = 21
Collected Tags = 4







AACTTC, Class C, V00742, Fragment of the mouse


gene for epsiton-globin Y3 (


AACTTC, Class A, M19236, Mouse beta-globin gene.


AACTTC, Class C, J00414, Mouse beta-globin epsilon


y3 gene, exon 2.


AACTTC, Class C, M10688, Mouse beta-globin gene


with intron boundary.










5
.2793%
CGCTGGTTCCA
-1698773








Noted Tags = 2
Collected Tags = 0










5
.2793%
CTCCTGGACAC
-1931794








Noted Tags = 1
Collected Tags = 1







CTGGGA, Class A, J04953, Mouse gelsolin gene, com-


plete cds.










5
.2793%
TATGTCAAGCT
-3388456








Noted Tags = 1
Collected Tags = 1







GGTGGA, Class A. X15962, Mouse mRNA for ribosomal


protein S12.










5
.2793%
TCGTGATTGTG
-3597295








Noted Tags = 3
Collected Tags = 3







CAGAAT, Class A, U52822, Mus musculus ornithine


decarboxylase antizyme mRNA


CAGAAT, Class C, U52823, Mus musculus ornithine


decarboxylase antizyme gene


CAGAAT, Class C, U84291, Mus musculus ornithine


decarboxylase antizyme gene










5
.2793%
TTCAGTGGACC
-4009606








Noted Tags = 0
Collected Tags = 0










4
.2234%
AAGAGGCAAGA
-141577








Noted Tags = 0
Collected Tags = 0










4
.2234%
ATACTGACATT
-817232








Noted Tags = 4
Collected Tags = 0










4
.2234%
CAAGTGGAAAA
-1096193








Noted Tags = 0
Collected Tags = 0










4
.2234%
CCCAATGGCCC
-1379990








Noted Tags = 3
Collected Tags = 3







AATAAA, Class A, X65582, M.musculus mRNA for al-


pha-2 collagen VI.


AATAAA, Class A, X62332, M.musculus mRNA for al-


pha-2 collagen type VI, subu


AATAAA, Class A, Z18272, Mus musculus collagen al-


pha 2 chain type VI.










4
.2234%
CCTACCAAGAC
-1512482








Noted Tags = 0
Collected Tags = 0










4
.2234%
GATGACACCAG
-2327635








Noted Tags = 1
Collected Tags = 1







CCGCTC, Class A, U11248, Mus musculus C57BL/6J


ribosomal protein S28 mRNA,










4
.2234%
GATTCCGTGAG
-2348771








Noted Tags = 0
Collected Tags = 0










4
.2234%
GCAGAGTGCGC
-2395034








Noted Tags = 2
Collected Tags = 1







CTGCTG, Class A, Y00348, Mouse mRNA for ribosomal


protein S6.










4
.2234%
GCCAAGTGGAG
-2427811








Noted Tags = 5
Collected Tags = 1







TTCCCA, Class A, M76131, Mouse elongation factor 2


(ef-2) mRNA, 3′end.










4
.2234%
GCGGCGGATGG
-2529851








Noted Tags = 6
Collected Tags = 5







AGACTT, Class C, A27894, Coding sequence for GBP.


AGACTT, Class A, X53067, Mouse mRNA for 14KDa lec-


tin.


AGACTT, Class A, X15986, Mouse 3′mRNA for beta-


galactoside specific lectin


AGACTT, Class A, X66532, M.musculus mRNA for L14


lectin.


AGACTT, Class A, M57470, Murine beta-galactoside


binding protein mRNA, comp










4
.2234%
GTGGAGGCGCC
-3050086








Noted Tags = 0
Collected Tags = 0










4
.2234%
TGCACAGTGCT
-3740392








Noted Tags = 5
Collected Tags = 4







GAGCAA, Class A, X05835, Mouse mRNA for placental


calcium-binding protein.


GAGCAA, Class A, X16190, Mouse mts1 gene.


GAGCAA, Class A; Z36947, Murine retrovirus RNA


containing parts of mts1 of


GAGCAA, Class A, D00208, Mus musculus mRNA for


pEL9B protein, complete cds.










4
.2234%
TGGATCAGTCT
-3814584








Noted Tags = 1
Collected Tags = 1







TTAAAA, Class A, M62952, Mus musculus ribosomal


protein L19, complete cds.










4
.2234%
TGGCTCGGTCA
-3831477








Noted Tags = 6
Collected Tags = 3







CTTGGG, Class A, X13055, Murine mRNA for cytoplas-


mic gamma-actin.


CTTGGG, Class C, X13056, Murine gamma-118-actin


pseudogene.


CTTGGG, Class A, M21495, Mouse cytoskeletal gamma-


actin mRNA, complete cds.










4
.2234%
TGTGCCAAGTG
-3904559








Noted Tags = 0
Collected Tags = 0










4
.2234%
TTCTTTGGTGA
-4062905








Noted Tags = 1
Collected Tags = 0










3
.1675%
AGTGAGGAAGA
-756233








Noted Tags = 1
Collected Tags = 0










3
.1675%
CACCTTGGTGC
-1146554








Noted Tags = 0
Collected Tags = 0










3
.1675%
CCCTGAGTCCA
-1434325








Noted Tags = 2
Collected Tags = 2







CCCCGG, Class A, X03672, Mouse cytoskeletal mRNA


for beta-actin.


CCCCGG, Class A, J04181, Mouse A-X actin mRNA,


complete cds.










3
.1675%
CTACCACTCAA
-1855953








Noted Tags = 0
Collected Tags = 0










3
.1675%
CTGAGAGAGAA
-1974817








Noted Tags = 0
Collected Tags = 0










3
.1675%
CTGTAGACTGC
-2017402








Noted Tags = 0
Collected Tags = 0










3
.1675%
CTGTAGGTGAT
-2018020








Noted Tags = 0
Collected Tags = 0










3
.1675%
CTTGACACACA
-2065477








Noted Tags = 0
Collected Tags = 0










3
.1675%
GAGTCTCCCTG
-2284895








Noted Tags = 2
Collected Tags = 2







GATTGT, Class C, X59747, Mouse Sm B gene for Sm B


protein of U snRNP's, exo


GATTGT, Class A, M58761, Mouse Sm-B protein gene,


complete cds.










3
.1675%
GATGTGGCTGC
-2341498








Noted Tags = 0
Collected Tags = 0










3
.1675%
GCCGCTAGGCC
-2464934








Noted Tags = 0
Collected Tags = 0










3
.1675%
GCCTGTGGCCT
-2485912








Noted Tags = 0
Collected Tags = 0










3
.1675%
GCGCCCTCCCC
-2512726








Noted Tags = 1
Collected Tags = 1







TTGTCC, Class A, U88322, Mus musculus beta chemo-


kine Exodus-2 mRNA, complet










3
.1675%
GGGGGCCCAGG
-2794827








Noted Tags = 1
Collected Tags = 1







TGTAGA, Class C, X03059, Mouse germllne gene for


T-cell receptor J-alpha 65










3
.1675%
GTGTGGGCACT
-3074632








Noted Tags = 1
Collected Tags = 1







GGATTT, Class A, X93035, M.musculus mRNA for BRP39


protein.










3
.1675%
GTGTTAACCAG
-3076179








Noted Tags = 0
Collected Tags = 0










3
.1675%
TAAAGAGGCCG
-3154583








Noted Tags = 1
Collected Tags = 1







TTTTGT, Class A, U67770, Mus musculus ribosomal


protein S26 (RPS26) mRNA, c










3
.1675%
TGCTTATGATG
-3797903








Noted Tags = 0
Collected Tags = 0










3
.1675%
TGGTGACAAAA
-3858689








Noted Tags = 0
Collected Tags = 0










3
.1675%
TGTCAGTCTGT
-3885948








Noted Tags = 1
Collected Tags = 1







TTAACC, Class C, M21050, Mouse lysozyme M gene,


exon 4.










3
.1675%
TTCAGCTCGAG
-4007779








Noted Tags = 0
Collected Tags = 0










2
.1117%
AACAATTTGGG
-69611








Noted Tags = 0
Collected Tags = 0










2
.1117%
AACAGGTTCAA
-76753








Noted Tags = 0
Collected Tags = 0










2
.1117%
AAGCGCCTCAC
-157138








Noted Tags = 0
Collected Tags = 0










2
.1117%
AAGGAAATGGG
-164075








Noted Tags = 0
Collected Tags = 0










2
.1117%.
AAGGTCTGCCT
-178072








Noted Tags = 1
Collected Tags = 1







GAAAAC, Class A, D87896, Mus musculus phgpx mRNA


for phospholipid hydropero










2
.1117%
AAGGTGGAAGA
-178697








Noted Tags = 0
Collected Tags = 0










2
.1117%
ACAGTTCCAGA
-310601








Noted Tags = 3
Collected Tags = 3







AGTGAT, Class A, AF0234, Mus musculus HS1-asso-


ciating protein (mHAX-1s) mRN


AGTGAT, Class A, AF0234, Mus musculus HS-1-associ-


ating protein HAX-1L (mHAX


AGTGAT, Class A, X81444, M.musculus SIG-111 mRNA.










2
.1117%
ACCCTCCTCCC
-357846








Noted Tags = 3
Collected Tags = 2







CCCGCT, Class C, K01365, Mouse 18S-5.8S-28S rRNA


gene internal transcribed


CCCGCT, Class C, J00623, Mouse 18S, 5.8S, 28S rRNA


gene cluster (clone pMEB










2
.1117%
AGAGGAAGCTG
-565407








Noted Tags = 0
Collected Tags = 0










2
.1117%
AGCAGGGATCC
-600630








Noted Tags = 1
Collected Tags = 1







CCGTGC, Class A, X97490, M.musculus mRNA for PNG


protein.










2
.1117%
AGGAAGGCGGC
-658026








Noted Tags = 0
CollectedTags = 0








2
.1117%










[0207]

14





TABLE 14








Accession Numbers for Wound Healing Genes

















X60671
Ezrin; Villin 2; NF-2 (merlin) related filament/plasma
Aff



membrane associated protein


M26391
Rb; pp105; Relinoblastoma susceptibility-associated
Afm



protein (tumor suppressor gene; cellcycle regulator)


U52945
TSG101 tumor suscepibility protein
Afn


U54705
Tumor suppressor maspin
A2a


D14340
ZO-1; Tight juction protein; discs-large family member,
A2d



partially homologous to a dig-A tumor suppressor



in Drosphila


X51983
o-ErbA oncogene; thyroid hormone receptor
A2g


J04115
o-Jun proto-onogene (transcription factor AP-1
A2i



component)


X83974
RNA polymerase I termination factor TTF-I
A2j


X01023
c-myc proto-oncogene protein
A2l


U51866
Casin kinase II (alpha subunit)
A3n


M13845
Pim-1 proto-oncogene
A4a


X68932
c-Fms proto-oncogene (macrophage colony stimulating
A4b



factor (CSF-1) receptor)


M84607
PDGFRa; platelet-derived growth factor alpha-receptor
A4e


U14173
Ski proto-oncogene
A4g


U18342
Sky proto-obcogene (Tyro3; Rse; Dtk)
A4h


Z50013
H-ras proto-oncogene; transforming G-protein
A5c


X13664
N-ras proto-oncogene; transforming G-protein
A5e


X81580
IGFBP-2; insulin-like growth factor binding protein 2;
A5m



autocrine and/or paracine


X66032
Cyclin B2 (G2/M-specific)
A6d


M83749
Cyclin D2 (G1/S-specific)
A6g


Z37110
Cyclin G (G2/M-specific)
A6k


U19596
p1Bink4; cdk4 and cdk6 inhibitor
A7c


X56135
Prothymosin alpha
A7m


M36829
HSP84; heat shock 84kD protein
B1c


M36830
HSP86; heat shock 88kD protein
B1d


D78645
Glucose regulated protein, 78kDl Grp78
B1m


U34259
Golgi 4-transmembrane spanning transporter; MTP
B2d


L03529
Cl2r; coagulation factor II (thrombin) receptor
B2j


M83336
Interleukin-6 receptor beta chain; membrane gylcoprotein
B3c



gp130


U36277
I-kappa B alpha chain
B3m


U06924
Stall; signal transducer and activator of transcription
B4d


L47650
Stat6; signal transducer and activator of transcription 6;
B4g



IL-4 Stat; STA6


S72408
Crk adaptor protein
B5m


U28423
Inhibitor of the RNA-activated protein kinase, 58-kDa
B5i


U10671
MAPK; MAP kinase; p38
B6m


L02526
MAPKK1; MAP kinase kinase 3 (dual specificity)
B6a



(MKK1)


D11091
PI3-K p85; phosphatidyfinositol 3-kinase regulatory
B6h



subunit; phosphoprotein p85;



PKC-theta; protein kinase C theta type


M60651
PDGF-signaling pathway member
B8k


X95403
Rab-2 ras-related protein
B7b


U57311
14-3-3 protein eta
B7g


M21065
IRF1; Interferon regulatory factor 1
B7k


X99063
Zyxin; LtM domain protein; alpha-actinin binding
B7n



activity


U17162
BAG-1; bcl-2 binding protein with anti-cell death activity
C1e


U13705
Glutathione peroxidase (plasma protei); selenoprotein
C1l


X76341
Glulathione reductase
C1m


J03762
Glutathione S-transferase (microsomal)
C2a


J04696
Glutathione S-transferase Mu 1
C2b


M94335
c-Akt proto-oncogenel Rac-alpha; protein kinase B
C2k



(PKB)


U97076
FLIP-L; apoptosis inhibitor; FLICE-like inhibitory
C3h



protein


L28177
Gadd45; growth arrest and DNA-damage-inducible
C3j



protein


X68193
Nm23-M2; nucleoside diphosphate kinase B; melastasis-
C4c



reducing protein;



c-myo-related transcription factor


D83966
Protein tyrosine phosphatase
C4g


U25995
RIP cell death protein; Fas/APO-1 (CD95) interactor,
C4j



contains death domain


U25844
SPI3; serpin; similar to human proteinase inhibitor 6
C4l



(placental thrombin



inhibitor) serine proteinase inhibitor


M59376
Tumor necrosis factor receptor 1; TNFR-1
C5d


X96618
PA6 stromal protein; RAG1 gene activator
C6a


X92410
MHR23B; Rad23 UV excision repair protein homologue;
C6j



xeroderma plgmentosum group C



(XPC) repair complementing protein


U17698
Ablphilln-1 (abi-1) similar to HOXD3
D1a


L12721
Adipocyle diffentiation-associated protein
D1c


L36435
Basic domain/leucine zipper transcription factor
D1e


M58568
Butyrate response factor 1
D1i


U36340
CACCC Box-binding protein BKLF
D1j


X72310
DP-1 (DRTF-polipeptide 1) cell cycle regulatory
D2g



transcription factor


J04103
Ets-2 transcription factor
D3b


X55123
GATA-3 transcription factor
D3f


U20344
Gut-specific Kruppel-like factor GKLF
D3i


X53476
HMG-14 non histone chromosomal protein
D3m


J03168
Interferon regulatory factor 2 (IRF 2)
D4l


D90176
NF-1B protein (transcription factor)
D5f


U20532
Nuclear factor related to P45 NF-E2
D5h


U53228
Nuclear hormone receptor ROR-ALPHA-1
D5i


U41628
Split hand/foot gene
D5m


M35523
Retinoic acid binding protein II cellular (CRABP-II)
D6e


U09419
Retinoid X receptor interacting protein (RIP 15)
D6g


X61753
Transcription factor 1 for heal shock gene
D6i


U51037
Transcription factor CTCF (11 zinc fingers)
D6j


X91753
Transcription factor SEF2
D7e


X57621
YB1 DNA binding protein
D7j


L13968
YY1 (UCRBP) transcriptional factor
D7k


Z31663
Activin type I receptor
E1a


U56819
C-C chamokine receptor (Monocyle chemoattractant
E1d



protein 1 receptor (MCP-1RA)


M98547
Growth factor receptor
E2f


X13358
Glucocorticoid receptor form A
E3m


L06039
CD3f (Platelet endothelial cell adhesion molecule 1)
E6d


M27129
CD44 antigen
E6e


U43512
Dystroglycan 1
E6m


X04648
Glutamate receptor channel subunit gamma
E6n


X69902
Integrin alpha 6
E7d


Y00769
Integrin beta
E7g


J02870
Lamimin receptor 1
E7j


L24755
Bone morphogenetic protein 1
F1b


X81584
Insulin-like growth factor binding protein-6 (IGFBP 6)
F2i


X81581
Insulin-like growth factor binding protein-3 (IGFBP-3)
F2k


X81582
Insulin-like growth factor binding protein-4 (IGFBP-4)
F2l


X81583
Insulin-like growth factor binding protein-5 (IGFBP-5)
F2m


X04480
Insulin-like growth factor-IA
F3a


X12531
Macrophage inflammatory protein
F3a


U60530
Mad related protein 2 (MADR2)
F3h


M14220
Neuroleukin
F3m


U22516
Placental ribonuclease inhibitor (Angiogenin)
F4a


M13177
Transforming growth factor beta
F4f


X57413
Transforming growth factor beta 2
F4g


M13806
Cytoskeletal epidermal ketatin (14 human)
F5h


M10937
Epidermal keratin (1 human)
F5k


U04443
Non-muscle myson light chain 3
F6b


X51438
Vimentin
F6d


J04946
Angiotensin-converting enzyme (ACE) (clone ACE.5.)
F6g


M14222
Cathepsin B
F6g


X53337
Cathepsin D
F6h


X06086
Cathepsin L
F6j


M12302
Cytotoxin T lymphocyte-specific serine protease CCP
F6m



I gene (CTLA-1)


M55617
Mast cell protease (MMCP)-4
F7b


X83536
Membrane tyoe matrix metalloproteinase
F7c


X16490
Plasminogen activator inhibitor-2
F7i


J05609
Serine protease inhibitor homolog J6
F7l


L19622
TIMP-3 tissue inhibitor of metalloproteinases-3
F7n










[0208]

15





TABLE 15










Differentially Expressed Genes in Healer and Non-Healer Dendritic Cells









GENE NAME
Array location
50%>





Elk-1 ets related proto-oncogene
A3a
MRL >


Pim-1 proto-oncogene
A4a
MRL >


cyclin A
A6a
MRL >


BRCA 1
A1b
MRL >


VHL
A2b
MRL >


Fli-1 ets related proto-oncogene
A3b
MRL >


BRCA2
A1c
MRL >


Fos-B
A3c
MRL >


Dcc; netrin receptor
A1d
MRL >


Fra-2
A3d
MRL >


EB1 APC binding protein
A1e
MRL >


GII oncogene
A3e
MRL >


PDGFRa
A4e
MRL >


N-ras
A5e
MRL >


ezrin
A1f
B6 >


B-myb proto-oncogene
A2f
MRL >


Jun-B
A3f
MRL >


Ret proto-oncogene
A4f
MRL >


Shc transforming adaptor protein
A5f
MRL >


Madr1
A1g
MRL >


c-ErbA oncogene
A2g
MRL >


Ski proto-oncogene
A4g
MRL >


CSF-1
A5g
MRL >


Mdm2
A1h
MRL >


c-Fos proto-oncogene
A2h
MRL >


Sky proto-oncogene
A4h
MRL >


Nf2; merlin
A1i
MRL >


c-Jun proto-oncogene
A2i
MRL >


p107; RBL1
A1j
MRL >


p130
A1k
MRL >


p53; tumor suppressor
A1l
MRL >


Fyn proto-oncogene
B5a
B6 >


Mapkk1
B6a
B6 >


Gem
B7a
B6 >


Hck tyrosine protein kinase
B5b
B6 >


Mapkk3
B6b
B6 >


Rab-2 ras related protein
B7b
B6 >


B7-2; T lymphocyte activation antigen CD86
B2g
MRL >


Mapkepk-2
B5n
B6 >


zyxin
B7n
B6 >


Craf-1
C3c
B6 >


Nm23-M2
C4c
B6 >


DAD-1
C3d
B6 >


Nur77 early response protein
C4d
B6 >


Faf1
C3e
B6 >


p55cdc
C4e
B6 >


Fas1 receptor
C3f
B6 >


PD-1 possible cell death inducer
C4f
B6 >


Adenosine A2M2 receptor
C2g
B6 >


Fas1
C3g
B6 >


protein tyrosine kphosphatase
C4g
B6 >


Adenosine A3 receptor
C2h
B6 >


MHR23A
C6i
B6 >


Blk
C2j
B6 >


c-Akt proto-oncogene
C2k
B6 >


Glutathione peroxidase
C1l
B6 >


iNOS1
C3m
B6 >


interleukin 1 receptor
C3n
B6 >


stromolysin 3
C4n
B6 >


activating transcription factor 4
D1b
MRL >


Pax6
D6b
B6 >


SRY-box containing gene 4
D7b
B6 >


adipocyte differentiation-associated protein
D1c
MRL >


transcription factor ReIB
D7c
B6 >


AT motif-binding factor ATBF1
D1d
MRL >


transcription factor NURR-1
D1g
MRL >


nuclear factor related to P45NF-E2
D5h
B6 >


Butyrate response factor 1
D1i
MRL >


CCAAT-binding transcription factor
D1k
MRL >


IRF-2
D4l
B6 >


split hand/foot gene
D5m
B6 >


Zinc finger transcription factor RU49
D7m
B6 >


SOX-3
D5n
B6 >


Zinc finger X-chromosomal protein ZFX
D7n
B6 >


activin type 1 receptor
E1a
B6 >


orphan receptor
E1b
B6 >


G-protein coupled receptor
E5c
B6 >


MCP-1RA
E1d
B6 >


CD31
E6d
B6 >


CD4 receptor
E1e
B6 >


GABA-A transporter 1
E5e
B6 >


CD44
E6e
B6 >


CD14
E6h
B6 >


CD22
E6i
B6 >


desmocollin 2
E6l
B6 >


interferon-gamma receptor
E2m
B6 >


dystroglycan 1
E6m
B6 >


ERBB-3 receptor
E1n
B6 >


interleukin-1 receptor type II
E2n
B6 >


growth hormone receptor
E3n
B6 >


VLA-3 alpha subunit
E7n
B6 >


angiogenin
F4a
B6 >


interleukin 15
F5a
B6 >


KIF3B
F6a
B6 >


non-muscle myosin light chain 3
F6b
B6 >


prepro-endothelin-3
F4c
B6 >


TGF-beta 2
F4g
B6 >


TNF-beta
F4h
B6 >


plasminogen activator inhibitor
F7h
B6 >


IGFBP-6
F2i
B6 >


uromodulin
F4i
B6 >


cathepsin H
F6i
B6 >


plasminogen activator inhibitor 2
F7i
B6 >


vascular endothelial growth factor
F4j
B6 >


cytoskeletal epidermal keratin 19
F5j
B6 >


cathepsin L
F6j
B6 >


Spi-2
F7j
B6 >


interleukin-1 beta
F4k
B6 >


collagenase type IV
F6k
B6 >


serin protease inhibitor 2.4
F7k
B6 >


follistatin
F1l
B6 >


IGFBP-4
F2l
B6 >


interleukin 10
F4l
B6 >


cytotoxic cell protease (B10)
F6l
B6 >


serine protease inhibitor homolog J6
F7l
B6 >


MIG
F1m
B6 >


neuroleukin
F3m
B6 >


Interleukin 11
F4m
B6 >


KIF1A
F5m
B6 >


CTLA1
F6m
B6 >


TIMP-2
F7m
B6 >


glial cell derived neuronal growth factor
F1n
B6 >


IGF-2
F2n
B6 >


oncostatin M
F3n
B6 >


interleukin 12 (p40) beta chain
F4n
B6 >


gelatinase B
F6n
B6 >


TIMP-3
F7n
B6 >










[0209]

16





TABLE 16










Segregation of Quantitative Trait Loci in Phenotype Congenic Mice











Marker
1-2-3-4-5
6-7-8-9-10
11-12-13-
14-15-17





1-185(59)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


1-228 (72)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


2-329 (45)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


2-207 (60)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


2-107 (76)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


2-113(103)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


3-310 (38)
B-B-B-B-B
H-H-H-H-B
B--B--B
B--B--H


4-149 (0)
H-H-H-H-H
H-H-H-H-S
S--S--S
S--S--


4-236(12)

U-H-

B--B--B


4-151(29)
H-S-B-U-H
H-B-H-H-H
H--S--S
H--H--B


4-306(51)

U-B-H-H-H
H--S--U
S--S--B


4-127(78)
U-B-U-U-U
U-U-B-U-B
B--B--B
B--B--B


5-255(34)
H-U-S-U-S
S-S-H-H-S
H--H--H
S--S--B


5-215(71)
S-U-S-U-U
U-S-U-S-H
H--S--S
S--S--B


7-228 (19)
H-B-B-U-H
B-B-H-B-H
B--H--B
B--B--B


7-220(52)
H-S-B-S-B
B-H-B-H-S
B--S--S
H--H--H


7-237 (53)
H-S-B-H-B
B-H-B-H-S
H--S--S
H--H--H


8-211(49)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


8-166
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


9-297(15)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


9-207(33)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


10-106(17)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


10-198(40)
H-H-B-B-B
B-H-H-H-S
H--H--S
H--H--B


10-233(62)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


11-74(0)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


11-235(20)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


11-245(43)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


11-48(77)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


12-158(38)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


12-132(52)
B-B-B-B-B
B-B-B-B-B
B--B--B
H--H--B


12-233(52)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


13-135(10)
B-B-B-B-B
B-B-B-B-B
H--H--H--
B--H--H


13-115(11)
B-B-B-B-B
B-B-B-B-B
H--H--H
B--H--H


13-116(13)
B-B-B-B-B
B-B-B-B-B
H--H--H
B--H--H


13-60 (16)
B-B-B-S-H
B-S-S-H-B
H--H--H
B--H--H


13-245 (30)
B-B-B-S-H
B-U-S-H-B
H--H--H
B--H--H


13-139 (32)
H-H-S-H-B
B-S-S-H-H
H--S--H
S--S--H


13-NDS1(32)
H-H-S-H-B
B-S-S-H-H
H--S--H
S--S--H


13-13(35)
H-H-S-H-B
B-S-S-H-H
H--S--H
S--S--H


13-184(35)
H-H-S-H-B
B-S-S-H-H
H--S--H
S--S--H


13-122(36)
H-H-S-U-B
B-S-S-H-B
H--S--H
S--S--H


13-124(37)
H-H-S-U-B
B-S-S-H-B
H--S--H
S--S--H


13-142(37)
H-H-S-H-B
B-S-S-H-B
H--S--H
S--S--H


13-26 (38)
H-H-S-H-B
B-S-S-H-B
H--S--H
S--S--U


13-231 (39)
H-H-S-B-B
B-S-U-H-B
H--S--H
S--S--H


13-11 (40)
H-H-S-U-B
B-S-U-H-U
H--S--H
S--S--H


13-254 (40)
H-H-S-H-B
B-S-S-H-B
H--S--H
S--S--H


13-191 (45)
H-H-S-U-B
B-S-S-S-B
H--S--H
S--S--H


13-27 (42)
H-H-S-U-B
B-S-S-S-B
B--H--H
H--B--U


13-144(48)
H-H-S-H-B
B-S-S-S-B
B--H--H
H--B--B


13-148(59)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--U


13-129(60)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


13-260 (65)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


14-110(3.5)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


14-121(17)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


15-230(28)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


15-189(49)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


15-242(56)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


15-244(56)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


16-32(2)
B-B-B-B-B
B-B-H-H-B
B--B--B
B--B--B


16-39(29)
S-H-H-S-H
H-H-S-H-H-
B--H--H
H--H--B


18-158(16)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


18-123(31)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B


19-101(26)
B-B-B-B-B
B-B-B-B-B
B--B--B
B--B--B











REFERENCES

[0210] 1. Gross, J. Getting to mammalian wound repair and amphibian limb regeneration: a mechanistic link in the early events. Wound Repair and Regeneration 4,190-202, 1996.


[0211] 2. Stocum, D. L. Tissue restoration: approaches and prospects. Wound Repair and Regeneration. 4, 3-15, 1996.


[0212] 3. Borgens, R. B. Mice regrow the tips of the foretoes. Science 217,747-50, 1982.


[0213] 4. Goss, R. J. Problems of antlerogenesis. Clin. Orthopaedics 69,227-38, 1970.


[0214] 5. Goss, R. J. and Grimes, L. N. Epidermal downgrowths in regenerating rabbit ear holes. J. Morphology 146, 533-42, 1975.


[0215] 6. Fausto, N. Hepatic regeneration. In Hepatology: a textbook in liver disease, 2nd edition (eds. Zakim, D. and Boyer, T. D.), pp. 49-65 Saunders, Philadelphia, 1990.


[0216] 7. Michalopoulos, G. K. and DeFrances, M. C. Liver Regeneration. Science 276, 60-66, 1997.


[0217] 8. Folkman, J. and Klagsbrun, M. Angiogenic factors. Science 235, 442-447,1987.


[0218] 9. Potten, C. S. and Morris, R. J. Epithelial stem cells in vivo. In Stem Cells. (eds. Lord, B. I. and Dexter, T. M.) pp. 45-62, The Company of Biologists Limited, Cambridge, 1988.


[0219] 10. Martin, P. Wound Healing—Aiming for perfect skin regeneration. Science 276, 75-81, 1997.


[0220] 11. Spangrude, G. J., Heimfeld, S., Weisman I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62,1988.


[0221] 12. Wornom, I. L. and Buchman, S. R. Bone and cartilaginous tissue. In Wound healing: biochemical and clinical aspects. (eds. Cohen, I. K., Diegelmann, R. F. and Lindblad, W. J.) pp.356-83, Saunders, Philadelphia, 1992.


[0222] 13. Murphy, E. D. and Roths, J. B. Autoimmunity and lymphoproliferation: Induction by mutant gene 1pr and acceleration by a male-associated factor in strain BXSB. In Genetic Control of Autoimmune Disease. (eds. Rose, N. R., Bigazzi, P. E., and Warner, N. L).pp. 207-220, Elsevier, New York, 1979.


[0223] 14. Cohen, P. L. and Eisenberg, R. A. Lpr and gld: Single Gene models of Systemic Autoimmunity and Lymphoproliferartive disease. Annu. Rev. Immunol. 9,243-69,1991.


[0224] 15. Theofilopoulos, A. N. Immunologic genes in mouse lupus models. In The Molecular Pathology of Autoimmune Diseases. (eds. Bona, C., Siminovitch, K. A., Zanetti, M. and Theofilopoulos, A. N.) pp. 281-316, Harwood Academic Publishers, Langhorne, 1993.


[0225] 16. Watanabe-Fukunaga, R., Brannan, C., Copeland, N. G., Jenkins, N. A. and Nagata, S. Lymphoproliferation disorder in mice is explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314-316, 1992.


[0226] 17. Watson, M. L., et. al. Genetic analysis of MRL-1pr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease modifying loci. J. Exp. Med. 176, 1645-1656, 1992.


[0227] 18. Russell, P. S. and Billingham, R. E. Some aspects of the repair process in mammals. Prog. Surg. 2,1-72, 1962.


[0228] 19. Chalkley, D. T. The cellular basis of limb regeneration. In Regeneration in vertebrates. (ed. Thornton, C. S.) pp.34-58, Univ. of Chicago Press, Chicago, 1959.


[0229] 20. Simon, H-G, Kittappa, R., Khan, P. A., Tsilfidis,C., Liversage, R. A., and Oppenheimer, S. A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes in vertebrate forelimb/hindlimb patterning. Development 124:1355-1366,1997.


[0230] 21. Muneoka, K., Fox, W. F., and Bryant, S. V. Cellular contribution from dermis and cartilage to the regenerating limb blastema in axolotls. Developmental Biology 116: 256-60, 1986.


[0231] 22. Carrel, A. and Hartmann, A. Cicatrization of wounds. I. The relation between the size of the wound and the rate of its cicatrization. J. Exp. Med. 24: 429-450, 1916.


[0232] 23. Adachi, M., Watanabe-Fukunaga, R. and Nagata, S. Aberrant transcription caused by the insertion of an endogenous retrovirus in an apoptosis gene. PNAS 90,1756-1760,1993.


[0233] 24. Costa, O. and Monier, J. C. Anithistone antibodies detected by microELISA and immunoblotting in mice with lupus-like syndrome (MRL/1, MRL/n, PN, AND NZB strains). Clin. Immunol. Immunopath. 40, 276-282,1986.


[0234] 25. Clark, R. A. F. Wound Repair: Overview and general considerations. In The Molecular and Cellular Biology of Wound Repair. (ed.Clark, R.) pp. 3-35, Plenum Press, New York, 1996.


[0235] 26. Yamada, K. M. and Clark, R. A. F. Provisional Matrix In The Molecular and Cellular Biology of Wound Repair. (ed.Clark, R.) pp.51-82, Plenum Press, New York, 1996.


[0236] 27. Stocum, D. L. The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation. 27,13-28, 1984.


[0237] 28. Mustoe, T. A., Pierce, G. F., Morishima, C. and Deuel, T.F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J. Clin. Invest. 87, 694-703, 1991.


[0238] 29. Pierce, G. F., et. al. Platelet-derived growth factor (BB homodimer), transforming growth factor-B 1, and basic fibroblast growth factor in dermal wound healing: Neovessel and matrix formation and cessation of repair. Am. J. Pathol. 140, 1375-1388, 1992.


[0239] 30. Uh1, E., et al. Basic fibroblast growth factor accelerates wound healing in chronically ischaemic tissue. Br. J. Surg. 80, 977-980, 1993.


[0240] 31. McBrearty, B. A., Desquenne Clark, L., Zhang, X-M, Blankenhorn, E. P., and Heber-Katz,E. Genetic analysis of a mammalian wound healing trait. Proc. Natl. Acad. Sci. U.S.A., in press.


[0241] 32. Ragsdale, C. W., Gates, P., Hill, D. S. and Brockes, J. P. Delta retinoic acid receptor isoform d1 is distinquished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mechanisms of Development. 40,99-112, 1992.


[0242] 33. White, J. A., Boffa, M. B., Jones, B. and Petkovich, M. A zebrafish retinoic acid expressed in the regenerating caudal fin. Development. 120, 1861-1872, 1994.


[0243] 34. Chernoff, E. A. G. and Stocum, D. Developmental aspects of spinal cord and limb regeneration. Dev. Growth Diff 37,133-47, 1995.


[0244] 35. Joseph, J., and Dyson, M. (1966) Brit. J. Surg. 53, 372-380.


[0245] 36. Clark, L. D., Clark, R. K., and Heber-Katz, E. (1998) Clin Immunol Immunopath, 88, 34-45.


[0246] 37. Murphy E. D. (1981) in Immunological defects in laboratory animals Vol.2, eds. Gershwin, M. E., Merchant, B. (New York and London), pp 143-73.


[0247] 38. Dietrich, W. F. et al. (1994) Nature Genetics 7, 220-245.


[0248] 39. Manly, K. F. (1993) Mammalian Genome 4, 303-313.


[0249] 40. Doerge, R. W., and Churchill, G. A. (1996) Genetics 142, 285-294.


[0250] 41. Churchill, G. A., and Doerge, R. W. (1994) Genetics 138, 963-971.


[0251] 42. Wright, S. in Quantitative Genetics (1952) eds. Reeve, E. C. and Waddington, C. H.) (HMSO, London), pp. 5-41.


[0252] 43. Hartl, D. L. in Basic Genetics (1991) (Jones and Bartlett, Boston), pp. 218-220.


[0253] 44. Lander, E. S., and Krugylak, L. (1995). Nature Genetics 11, 241-247.


[0254] 45. Cheveraud, J. M., and Routman, E. J. (1995) Genetics 139, 1455-61.


[0255] 46. Frankel, W. (1995) Trends Genet 11, 471-477.


[0256]

47
. Simon, M I, Strathmann, M P, and Gautum, N. (1991) Science 252, 802-808.


[0257] 48. Bryant, S. V. and Gardinar, D. M. (1997) in Metamorphosis and regeneration: Keys to tissue Regeneration, p. 12.


[0258] 49. Reginelli, A. D., Wang,Y-Q, Sassoon, D., and Muneoka, K. (1995) Development 121, 1065-1076.


[0259] 50. Chuong, C. M., Widelitz, R. B., Ting-Berreth, S., and Jiang., T. X. (1996) J. Invest. Derm. 107, 639-646.


[0260] 51. Ron, D., Reich,R., Chedid, M., Lengel, C., Cohen, O. E., Chan, A. M. Neufeld, G., Miki, T., and Tronick, S. R. (1993) J. Biol.Chem. 268, 5388-5394.


[0261] 52. Percrino, L. T., Lo, D. C., Brockes, J. P. (1994) Development 20, 325-333.


[0262] 53. Sucov, H. M. and Evans, R. M. (1995) Molecular Neurobiology 10, 1969-184.


[0263] 54. Shah, M., et al. (1995) J. Cell Sci. 108, 15-17.


Claims
  • 1. A method of identifying a gene involved in enhanced wound healing, comprising the steps of: identifying DNA microsatellite markers which can distinguish a first and a second mouse strain, wherein the first mouse strain is a healer mouse strain and wherein the second mouse strain is not a healer mouse strain; and identifying microsatellite markers which segregate with enhanced wound healing in progeny of the first and second mouse strains, whereby a chromosomal locus which contains at least one gene involved in enhanced wound healing is identified.
  • 2. The method of claim 1 wherein the first mouse strain is an MRL mouse.
  • 3. The method of claim 1 wherein the first mouse strain is a progeny of a healer mouse and a non-healer mouse.
  • 4. The method of claim 3 wherein the healer mouse is an MRL mouse.
  • 5. The method of claim 1 wherein the first mouse strain is created by: performing a cross between a first mouse of a healer strain and a mouse of a non-healer strain to form an F1 mouse; and performing a back-cross between the F1 mouse and a second mouse of the healer strain.
  • 6. The method of claim 1 wherein the first mouse strain is created by: performing a cross between a mouse of a healer strain and a first mouse of a non-healer strain to form an F1 mouse; and performing a back-cross between the F1 mouse and a second mouse of the non-healer strain.
  • 7. The method of claim 1 wherein the first mouse strain is created by: performing a cross between a mouse of a healer strain and a mouse of a non-healer strain to form F1 progeny mice; and performing a cross between two of the F1 progeny mice to form F2 progeny mice.
  • 8. The method of claim 1 wherein the first mouse strain is created by successive repetition of the steps of claim 5.
  • 9. The method of claim 1 wherein the first mouse strain is created by successive repetition of the steps of claim 6.
  • 10. The method of claim 1 wherein the first mouse strain is a progeny of a first non-healer mouse and a second non-healer mouse.
  • 11. The method of claim 1 wherein the first mouse strain comprises at least one quantitative trait locus selected from the group consisting of the quantitative trait loci shown in Tables 2 , 9, and 16, wherein the first mouse exhibits an enhanced healing response to a wound compared to a second mouse which does not comprise the at least one chromosomal locus, wherein the first mouse is not an MRL mouse.
  • 12. A method of treating a wound in a mammal, comprising the step of: administering to a mammal with a wound a reagent which specifically binds to an expression product of a gene whose expression is decreased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse, whereby expression of the gene is decreased.
  • 13. The method of claim 12 wherein the gene is selected from the group consisting of genes of Tables 5-8, 10, 11, 14, 15, and genes comprising a SAGE tag of Tables 12 and 13 whose expression is decreased after wounding.
  • 14. The method of claim 12 wherein the gene is selected from the group consisting of msx2 and RARg.
  • 15. The method of claim 12 wherein the expression product is an mRNA.
  • 16. The method of claim 15 wherein the reagent is an antisense oligonucleotide.
  • 17. The method of claim 12 wherein the expression product is a protein.
  • 18. The method of claim 17 wherein the reagent is an antibody.
  • 19. The method of claim 12 wherein the wound is contacted with the reagent.
  • 20. The method of claim 12 further comprising the step of suppressing T cell function in the mammal.
  • 21. A method of treating a wound in a mammal, comprising the step of: administering to a mammal with a wound an expression product of a gene whose expression is increased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse, whereby the level of the expression product in the wound is increased.
  • 22. The method of claim 21 wherein the gene is selected from the group consisting of genes of Tables 5-8, 10, 11, 14, 15, and genes comprising a SAGE tag of Tables 12 and 13 whose expression is increased after wounding.
  • 23. The method of claim 21 wherein the gene is selected from the group consisting of msx2 and RARg.
  • 24. The method of claim 21 wherein the expression product is provided using a Polynucleotide which encodes the expression product.
  • 25. The method of claim 21 wherein the wound is contacted with the expression product.
  • 26. The method of claim 21 further comprising the step of suppressing T cell function in the mammal.
  • 27. A method of restoring function after nerve injury in a mammal, comprising the step of: administering to a mammal with a nerve injury a reagent which specifically binds to an expression product of a gene whose expression is decreased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse, whereby expression of the gene is decreased.
  • 28. The method of claim 27 wherein the expression product is an mRNA.
  • 29. The method of claim 28 wherein the reagent is an antisense oligonucleotide.
  • 30. The method of claim 27 wherein the expression product is a protein.
  • 31. The method of claim 30 wherein the reagent is an antibody.
  • 32. The method of claim 27 wherein the gene is selected from the group consisting of genes of Tables 5-8, 10, 11, 14, 15, and genes comprising a SAGE tag of Tables 12 and 13 whose expression is decreased after wounding.
  • 33. The method of claim 27 wherein the gene is selected from the group consisting of msx2 and RARg.
  • 34. The method of claim 27 further comprising the step of suppressing T cell function in the mammal.
  • 35. The method of claim 27 wherein the nerve injury is contacted with the expression product.
  • 36. A method of restoring function after nerve injury in a mammal, comprising the step of: administering to a mammal with a nerve injury an expression product of a gene whose expression is increased after wounding in a healer mouse relative to expression of the gene after wounding in a non-healer mouse, whereby the level of the expression product in the wound is increased.
  • 37. The method of claim 36 wherein the gene is selected from the group consisting of genes of Tables 5-8, 10, 11, 14, 15, and genes comprising a SAGE tag of Tables 12 and 13 whose expression is increased after wounding.
  • 38. The method of claim 36 wherein the gene is selected from the group consisting of msx2 and RARg.
  • 39. The method of claim 36 further comprising the step of suppressing T cell function in the mammal.
  • 40. The method of claim 36 wherein the nerve injury is contacted with the expression product.
  • 41. The method of claim 36 wherein the expression product is provided using a polynucleotide which encodes the expression product.
  • 42. A method of treating a wound in a mammal, comprising the step of: administering to a mammal with a wound a cell or a cellular extract obtained from a healer mouse, whereby healing of the wound in the mammal is enhanced.
  • 43. The method of claim 42 wherein the transferred cell is selected from the group consisting of macrophages, fetal liver cells, dendritic cells, stem cells, peripheral blood leukocytes, and bone marrow cells.
  • 44. The method of claim 42 further comprising the step of suppressin g T cell function in the mammal.
  • 45. A method of treating a wound in a mammal, comprising the step of: administering to a mammal with a wound a cell in which expression of a wound healing gene has been altered, whereby healing of the wound in the mammal is enhanced.
  • 46. The method of claim 45 wherein the wound healing gene is selected from the group consisting of genes of Tables 5-8, 10, 11, 14, 15, and genes comprising a SAGE tag of Tables 12 and 13.
  • 47. The method of claim 45 wherein the wound healing gene is selected from the group consisting of msx2 and RARg.
  • 48. The method of claim 45 further comprising the step of suppressing T cell function in the mammal.
  • 49. A healer mouse having at least one quantitative trait locus selected from the group consisting of the quantitative trait loci shown in Tables 2, 9, and 16, wherein the healer mouse exhibits an enhanced healing response to a wound compared to a mouse which does not have the at least one chromosomal locus, wherein the healer mouse is not an MRL mouse.
  • 50. The healer mouse of claim 49 which is created by: performing a cross between a mouse of a healer strain and a mouse of a non-healer strain.
  • 51. The healer mouse of claim 49 which is created by: performing a cross between a mouse of a first non-healer strain and a mouse of a second non-healer strain.
  • 52. The healer mouse of claim 49 which is created by: performing a cross between a mouse of a healer strain and a mouse of a non-healer strain to form F1 progeny mice; and performing a cross between two of the F1 progeny mice to form F2 progeny mice.
  • 53. The healer mouse of claim 49 which is created by: performing a cross between a mouse of a healer strain and a first mouse of a non-healer strain to form an F1 mouse; and performing a back-cross between the F1 mouse and a second mouse of the non-healer strain.
  • 54. The healer mouse of claim 49 which is created by: performing a cross between a first mouse of a healer strain and a mouse of a non-healer strain to form an F1 mouse; and performing a back-cross between the F1 mouse and a second mouse of the healer strain.
  • 55. The healer mouse of claim 49 which is created by successive repetition of the steps of claim 48.
  • 56. The healer mouse of claim 49 which is created by successive repetition of the steps of claim 49.
  • 57. The healer mouse of claim 49, wherein a hole punched in an ear of the healer mouse closes at least 70% within 60 days after punching.
  • 58. The healer mouse of claim 49 wherein the enhanced healing response comprises regeneration of a wounded tissue.
  • 59. The healer mouse of claim 49 wherein the wound is a neural tissue wound.
  • 60. The healer mouse of claim 59 wherein the neural tissue is spinal cord.
  • 61. The healer mouse of claim 59 wherein the neural tissue is optic nerve.
  • 62. The healer mouse of claim 49 which is a male mouse.
  • 63. The healer mouse of claim 49 which is a female mouse.
  • 64. The healer mouse of claim 49 which is T cell deficient.
  • 65. A preparation comprising a fraction of an extract of a tissue of a healer mouse, wherein the preparation alters a biological property of a model of wound healing.
  • 66. The preparation of claim 65 wherein the biological property is selected from the group consisting of enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell movement, cell adhesion, cell replication, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability.
  • 67. A preparation comprising cells of a healer mouse, wherein the preparation alters a biological property of a model of wound healing.
  • 68. The preparation of claim 67 wherein the biological property is selected from the group consisting of enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell movement, cell adhesion, cell replication, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability.
  • 69. The preparation of claim 67 wherein the cells are selected from the group consisting of macrophages, fetal liver cells, dendritic cells, stem cells, peripheral blood leukocytes, and bone marrow cells.
  • 70. A method of identifying a factor involved in enhanced wound healing, comprising the steps of: contacting a model of wound healing with a fraction of a composition selected from the group consisting of serum, a fraction of serum, an extract of at least one healer mouse tissue, and a fraction of an extract of at least one healer mouse tissue; assaying a property of the model of wound healing, wherein a fraction of a composition which alters the property of the model of wound healing is identified as comprising a factor involved in enhanced wound healing.
  • 71. The method of claim 70 wherein the model of wound healing is an in vitro model.
  • 72. The method of claim 70 wherein the model of wound healing is an in vivo model.
  • 73. The method of claim 70 wherein the property of the model of wound healing is selected from the group consisting of enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell movement, cell adhesion, cell replication, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability.
  • 74. A method of screening test compounds for the ability to enhance wound healing, comprising the steps of: contacting a healer model of wound healing with a test compound, wherein the healer model comprises cells of a healer mouse; and measuring the effect of the test compound on a biological property associated with wound healing in the healer model, wherein a test compound which enhances the biological property of the healer model is identified as a potential factor for enhancing wound healing.
  • 75. The method of claim 74 wherein the biological property of the healer model is selected from the group consisting of enhanced wound healing, enhanced tissue regeneration, cell growth, apoptosis, cell movement, cell adhesion, cell replication, DNA synthesis, protein synthesis, mRNA synthesis, and mRNA stability.
  • 76. The method of claim 74 wherein the healer model is an in vitro model.
  • 77. The method of claim 74 wherein the healer model is an in vivo model.
  • 78. The method of claim 74 further comprising the step of comparing the effect of the test compound on the biological property of the healer model with a biological property of a non-healer model of wound healing, wherein a test compound which alters the biological property of the non-healer model to resemble the biological property of the healer model is identified as a potential factor for enhancing wound healing.
Parent Case Info

[0001] This application claims the benefit of co-pending provisional applications Ser. No. 60/074,737 filed Feb. 13, 1998, Ser. No. 60/097,937 filed Aug. 26, 1998, and Ser. No. 60/102,051 filed Sep. 28, 1998, which are incorporated herein by reference.

Government Interests

[0002] This work was partially supported by the U.S. Government under USPHS grant AI42395 awarded by the National Institutes of Health. The U.S. Government retains certain rights in this invention.

Provisional Applications (3)
Number Date Country
60074737 Feb 1998 US
60097937 Aug 1998 US
60102051 Sep 1998 US